
Measuring and Improving the Performance of

Cache-efficient Priority Queues in Dijkstra’s

Algorithm

Mo Chen

Thesis Supervisor : Dr. Ramachandran

August 9, 2007

Abstract

The priority queue is an useful data structure in computation. There

currently exist many implementations of this data structure, including

some that are cache-aware and some cache-oblivious. In this study, we

compare the performance of several implementations of priority queues in

Dijkstra’s Single Source Shortest Path algorithm. We compare high per-

formance heaps, such as the 4ary Aligned Heap, Fast Binary Heap and Se-

quence Heap against in-house heap implementations, namely Buffer Heap

and Auxiliary Buffer Heap, and against well-known implementations such

as the textbook Binary Heap. We focus our analysis on the benefit of

supporting decrease-key operations within the priority queue. Results in-

dicate that graph density affect the relative performance of the different

priority queues, and that using the Decrease-Key operation incurs unex-

pected performance hits. Furthermore, we will propose a parallel version

of Buffer Heap which remains cache-oblivious and scales to a high level of

parallelism.

1 Overview

This thesis focuses on two related topics regarding performance of priority
queues and SSSP algorithms on cached memory. The first part includes em-
pirical experiments on Dijkstra’s algorithm using existing implementations of
priority queues to investigate the benefit of supporting Decrease-Key instruc-
tions in priority queues. The second part includes a description and theoretical
analysis of a parallel cache-oblivious priority queue based on Buffer Heap.

In the first part, we conduct empirical experiments on several categories of
priority queues. Fast Binary Heap, Sequence Heap, 4-ary Aligned Heap are
performance-optimized heaps for which source code was readily available [4].
Buffer Heap and Auxiliary Buffer Heap are cache-oblivious heaps which were
implemented in-house[3]. As a point of comparison, we also include the DIMACS
solver, a reference design SSSP solver for the 9th DIMACS Implementation
Challenge [6]. Finally, we have included the textbook implementation of a
binary heap, and a variation which does not support decrease-key.

Our main measure of performance of a priority queue was the speed at which
Dijkstra’s SSSP algorithm ran using said priority queue. More specifically, we

1

were interested in the speed of execution in a memory hierarchy of a typical
modern processor. For the purpose of isolating reasons behind performance
differences, we tested the priority queues in-core as well as out-of core, and on
the simulator Valgrind. For in-core tests, we used an Intel Xeon 3.06 GHz system
with 512KB of L2 cache (uruk-5,6). For out-of-core tests, we used the STXXL
library, which allowed us to restrict the size of memory used in execution, and
specify its block size.

In the second part of this work, we explore the possibility of creating an
efficient priority queue which can exploit parallel processing and cached memory
hierarchies. Cached memory is widely prevalent on modern processors, and in
recent years, we have seen a move toward multi-core processors. Our hope is
that such a priority queue would be more efficient on future systems compared
to traditional priority queue implementations.

1.1 Ground Work

The empirical measurements are done as a continuation of the work done by Lan
Roche on his thesis [1]. His experiments used graphs of a fixed density (8x), and
varying number of vertices. He found that in such graphs, the general trend was
that sequence heap performed best, followed by Auxiliary Buffer Heap, 4-ary
Aligned Heap, Fast Binary Heap, Buffer Heap, and Binary Heap, in order of
decreasing speed.

We found it interesting that overall, priority queues without support for the
decrease-key operation ran Dijkstra’s algorithm faster than those with support
for decrease-key. This is a surprising result since previous works often over-
looked the possibility of running Dijkstra’s algorithm without using Decrease-

Key. However, in Roche’s work, the priority queues which do not support
Decrease-Key were also highly optimized, and had no counterpart with support
for Decrease-Key to compare with. The only exception to this was in the case
of Auxiliary Buffer Heap, since it was a simplified version of Buffer Heap but
without support for Decrease-Key and Delete. In our current work, we designed
and ran experiments to investigate further whether Dijkstra’s algorithm should
or should not be used with Decrease-Key.

Buffer Heap was introduced by Chowdhury and Ramachandran [3]. The
implementations of these heaps are done by Tong [8] and Chowdhury.

Fast Binary Heap, 4-ary Aligned Heap, and Sequence Heap were developed
by Sanders, who also coded implementations [4]. We obtained the source code
electronically. For in-core tests, we used them as-is, tweaking parameters when
called for. Some changes were necessary to make them compatible with STXXL.
Roche [1] had already made these changes for his experimental work.

2 Background Information

2.1 Priority Queues

A priority queue is a collection of elements each with a numerical priority, also
known as its key. Priority queues support insert, extract-min (or delete-min)
operations. An insert operation adds one element and its key into the priority

2

queue. A call to extract-min deletes the element with the lowest key from the
queue, and returns the element with its key.

Optionally, a priority queue may support delete and decrease-key operation.
The decrease-key operation takes as its parameters an element reference, and a
new key. The result is that if the element is present in the priority queue, its
current key is replaced with the new key. To implement delete and decrease-key
operations efficiently, a priority queue must be able to access specific elements
in constant time. Usually this is done by keeping a table of element pointers. It
is easy to see that this adds a large overhead to the data structure. The reason
for including these operations will be discussed in 2.3.

2.2 Dijkstra’s Algorithm and Variations

Dijkstra’s algorithm is a greedy algorithm. Given a non-negatively weighted
graph and a source vertex, computes the shortest paths from the source to every
vertex. In other words, it is a Single-Source-Shortest-Path (SSSP) algorithm.
The algorithm repeatedly looks for the vertex currently known to be closest to
the source, and applies edge-relaxation its adjacent vertices. A priority queue is
used to keep a list of distances to each vertex. This way, we can find the closest
vertex with an extract-min operation. Similarly, edge relaxation involves a call
to decrease-key.

One possible change to Dijkstra’s algorithm is to eliminate the need to sup-
port decrease-key in the accompanying priority queue. We can do this by chang-
ing the edge relaxation process. Instead of calling decrease-key, we can insert a
new key with the new distance into the heap. Since the new distance is shorter,
it is sure to be extracted before the old distance. This allows us to use a priority
queue that does not support the Decrease-Key operation, which means it does
not have to carry the aforementioned overhead of element pointers.

Another possible change to improve cache efficiency is to use two prior-
ity queues. Using a second, auxiliary priority queue prevents having to check
whether each vertex has settled [5], and thus incurring a block transfer. Here,
we use Buffer Heap and Auxiliary Buffer Heap as the two priority queues.

For the sake of clarity, we will use Dijkstra-dec, Dijkstra-nodec, and Dijkstra-
ext to indicate the version of Dijkstra’s algorithm being used, whether it be with
Decrease-Key, without, or using dual priority queues.

2.3 The Theoretical and Practical Benefit of Supporting

Decrease-Key operations

The theoretical time bound for Dijkstra’s algorithm with Decrease-Key us-
ing a priority queue which supports Insert, Delete-Min, and Decrease-Key in
O(log n) time, which was typical, on a graph with m edges and n vertices, is
O((m+n) log n). Using a priority queue such as Fibonacci Heap which supports
Decrease-Key operations in constant time, this time bound could be decreased
to O(m + n log n). In practice, however, Fibonacci Heap is a complex data
structure and has slow running times.

In our case, even though all the heap operations have the same worst case
asymptotic time, in practice, Decrease-Key is typically much faster compared
to Insert and Delete-Min operations, since a small change in a key value would
only cause a small disturbance to the heap structure, and not require much

3

rearrangement to preserve the heap property. In addition, to do edge relaxation
without decrease-key, we would need to insert a new element into the heap
for every call that would otherwise be a decrease-key. On non-sparse graphs,
this should noticeably increase the size of our heap. These reasons lead us
to hypothesize that taking the additional overhead of supporting decrease-key
should be worthwhile as long as the graph is not sparse.

2.4 Cache-efficient and Cache-oblivious Algorithms

Traditionally, an algorithm’s speed is measured in the number of computational
steps per operation. In modern computer systems, due to the disparity between
processor speeds and memory access speeds, we can no longer assume that
each computational step will take the same amount of time. It is important
to note that even RAM accesses are thousands of times slower than arithmetic
computations within the processor. The trend has been that memory access
times continue to lag further and further behind processor speeds. The challenge
this presents to an algorithm designer is that now we must not only reduce
the number of computation steps, but also the number of memory accesses.
Fortunately, we can expect some small amount of fast cache memory to use in
this goal.

In general, a cache efficient algorithm is an algorithm that uses smaller but
faster cache memory to substantially reduce the number of accesses to larger
but slower memory. Note that this doesn’t only refer to using processor cache
for RAM accesses, but also using RAM for disk accesses, and other similar uses.

The notion of cache-obliviousness means that an algorithm does not know
about the size and block size of the cache, nor its layout, be it distributed or
shared. This concept was first presented by Frigo et al. [2] We will assume that
there exists a scheduler that is able to assign concurrent tasks to processors in
a way that will optimize cache hits. The scheduler is allowed to know about the
size and layout of the cache to achieve this goal.

3 Priority Queues being Tested

We will give a brief description of each of the priority queues we ran tests on.

3.1 Priority Queues Developed In-House

These priority queues were all developed under Dr. Ramachandran’s research
group.

3.1.1 Binary Heap

The plain binary heap was implemented based on the well known textbook
implementation. For simplicity, we did not add any additional constructs and
only performed basic, local optimizations. The heap is stored as a list of pointers
in a std::vector object. A separate std::vector stores keys, values, and back-
pointers to the first vector. This additional level of indirection allows us to
implement decrease-key operations, as the second vector is never rearranged.
Deleted keys form holes for new elements to fill. A decrease-key operation

4

modifies the key in the second vector, and causes the first vector to be possibly
rearranged, which would trigger pointer updates.

3.1.2 Modified Binary Heap

Removing the need to support decrease-key operations means that only one
vector is necessary to store the key/value pairs. Furthermore, no pointer or
back pointers need to be stored. We applied these changes to the binary heap,
and called it Modified Binary Heap. The hope for the Mod-BH is that its
greater simplicity would lead to better performance. In addition, since it directly
mirrors Binary Heap, we can use it to benchmark the performance benefits of
having a decrease-key operation. The Modified Binary Heap was developed
specifically to address the primary issue in the experimental section of this work,
which was to investigate the usefulness of decrease-key operations in priority
queues.

3.1.3 Buffer Heap

The Buffer Heap is an efficient cache-oblivious priority queue. It supports
Extract-min, Delete, and Decrease-Key operations in O(1

B log2
N
B) amortized

block transfers [3]. To achieve, this, it uses buffers of increasing size to hold
queue elements, and an update buffer for each level of element buffer. Since
each buffer is in the form of a stack, maintenance and updates can be done in
a cache-oblivious fashion.

3.1.4 Auxiliary Buffer Heap

Auxiliary Buffer Heap is a modification based on the Buffer Heap which does
not support the decrease-key operation. This heap can be used on its own as
part of the Dijkstra-nodec algorithm, or as a component in the dual buffer heap
algorithm, which was its original purpose.

3.2 High Performance Priority Queue Software

Other people developed these priority queues. We obtained the source code and
used them for comparison.

3.2.1 Sequence Heap

Sequence heap was developed by Sanders [4] as a fast cache-efficient priority
queue. It is cache-aware. It uses a small insert heap to store recently inserted
elements until they need to be sorted and added to the main structure. The
main structure is a collection of k-mergers on sorted sequences. The k-merger
operator cache-efficiently merges these sequences into group buffers, which are
then merged into a deletion buffer, all on demand. In experiments, the sequence
heap is quite efficient, beating out all other heaps presented here on in-core tests.

3.2.2 Fast Binary Heap

Fast Binary Heap is an optimized implementation of the Binary Heap. It in-
cludes an insertion buffer, and uses the bottom up heuristic for delete-min. This

5

strategy lifts up elements on the top levels when a root is deleted. This strategy
reduces the number of comparisons needed to perform a delete-min operation.

3.2.3 4-ary Aligned Heap

The 4-ary Aligned Heap is similar to Fast Binary Heap in that both use the
bottom up heuristic. In addition, 4-ary Aligned Heap is cache aware. WIth
knowledge of the cache line size, it aligns data to minimize cache misses.

3.2.4 DIMACS Solver

The DIMACS solver is one of the reference implementations used to judge the
9th DIMACS Implementation Challenge on SSSP algorithms [6]. It is worth
noting that the DIMACS solver is a standalone SSSP solver, and not simply a
priority queue. In addition, it is only capable of handling integer-valued edge
weights.

4 Graph Experiments

As previously mentioned, previous experiments showed that priority queues
which did not support Decrease-Key were generally faster, when used on at
least some graphs. To expand on that, we first determine precisely which graphs
favored nodec priority queues.

4.1 Graphs of Varying Density and Types

Roche’s results used a constant density of 8. Since Decrease-Key operations
are performed more often on denser graphs, we will first look at the effect of
varying graph density. To achieve this end, we first use random Gn,m graphs
with a constant edge count, and varying number of vertices. This keeps the
relative sizes of the graphs similar. Secondly, we use sparse non-Gn,m graphs to
see if the effect of Decrease-Key is consistent with different graph types.

Random Graphs These graphs were random Gn,m graphs with randomized
edge weights. Theoretically, SSSP on a dense graph should benefit from having
the Decrease- Key operation than on a sparse graph, since the size of the heap
is kept smaller using Decrease-Key. The results, shown on figure 1 are consis-
tent with this assessment. Despite this, it was still slower to use Dijkstra-dec
as opposed to Dijkstra-nodec, as indicated by the modified Binary Heap and
Auxiliary Buffer Heap both beating or tieing their Decrease-Key-capable coun-
terparts on all density values. On very dense graphs, the differences were quite
small.

Roadmap Graphs and Grid Graphs Roadmaps are sparse, since intersec-
tions are rarely more than four way. Our results on roadmaps are shown on
2(a). As we would expect, priority queues that do not support decrease-key
performed better. What is surprising is that cache-efficient priority queues such
as Auxiliary Buffer Heap and 4ary Aligned Heap were slower than the Fast
Binary Heap and Modified Binary Heap, which are not cache-efficient.

6

(a) (b)

Figure 1: Gn,m graphs, 8 million edges, variable vertex count

(a) (b)

Figure 2: (a) Roadmap graphs, time relative to DIMACS solver (b) Grid graphs

Grid graphs have a fixed structure that resembles a two dimensional square
grid. These sparse graphs were also populated with random edge weights. On
figure 2(b) we see that unlike the trends on roadmaps, Auxiliary Buffer Heap
is slightly faster than Modified Binary Heap. However, the overall trend that
supporting Decrease-Key hurts performance still holds.

4.2 Analysis of Graph Experiment Results

4.2.1 Binary Heap and Modified Binary Heap

In our experiments on graphs, we saw two trends between Binary Heap and Mod-
ified Binary Heap. Firstly, that the modified Binary Heap was faster in general
compared to the original. Secondly, that the original Binary Heap started to
catch up in performance when the edge density became larger. Our hypothesis
for why this was happening is that Insert and Delete-Min operations are faster
on the modified Binary Heap if the heaps were the same size, but since Binary
Heap has a lower element count when the graph is dense, the increased number
of levels on the modified Binary Heap made operations slower in comparison.

To find out the relation between time spent on each operation type, we ran
the profiler Callgrind. See figure 3 for sample results. Callgrind records the
number of instruction fetches, cache misses (in various levels/sections of cache).
Using this information, and arbitrary weights on each event, we can construct an
estimated cycle count per call, t = (Ir +10L1+100L2)/c, where Ir is the number

7

of instruction fetches, L1 is the number of L1 misses, and L2 is the number of L2
misses. While this estimate is simplistic compared to the real world performance
of modern processors, it is nontheless a reasonable approximation. Using this
data and the number of calls to each subroutine (not shown), we can compute
the number of cycles spent on each call to each operation. This is shown in
figure 4.

main
 3 136 885 179

solve_SSSP
 3 136 885 179

 3 136 885 179

BinaryHeap::adjust
 1 821 731 596

run_SSSP
 3 136 885 179

 3 136 885 179

BinaryHeap::Delete_Min
 1 930 894 372

 1 821 731 596

BinaryHeap::new_node
 54 059 277

 1 930 894 372

BinaryHeap::Decrease_Key
 36 949 440

 36 949 440

BinaryHeap::Insert
 202 366 222

 202 366 222

__umoddi3
 35 897 790

 35 897 790

BinaryHeap::push
 103 043 734

 54 059 277 103 043 734

__umoddi3
 35 897 790

main
 1 948 570 053

solve_SSSP
 1 948 570 053

 1 948 570 053

run_SSSP
 1 948 570 053

 1 948 570 053

BinaryHeapNoDec::Delete_Min
 952 217 865

BinaryHeapNoDec::percolateDown
 898 303 734

 898 303 734

 35 897 790 952 217 865

BinaryHeapNoDec::Insert
 120 059 370

 120 059 370

BinaryHeapNoDec::percolateUp
 67 079 126

 67 079 126

(a) (b)

Figure 3: Callgraph results on Binary Heap and modified Binary Heap on
G2500,400. Number shown are approximate cycle counts in all calls to each sub-
routine.

(a) (b)

Figure 4: Approximate average number of cycles spent in each call to priority
queue operations on G2500,400 and G250000,4

We discovered that we were only partially correct in our hypothesis. It is
true that modified Binary Heap spent less time per operation. It is also true
that time cost per operation becamse closer as the graph became denser, but
there was another factor that played into the closing of the speed gap. Calling
Decrease-Key once in Dijkstra-dec to relax an edge was significantly faster than
calling both Insert and Delete-Min once each in Dijkstra-nodec, regardless of
the density of the graph. On dense graphs, the distribution of calls shifted more
towards Decrease-Key, as more edges were visited along several paths. We can

8

Figure 5: Ratio of Decrease-Key operations to Insert or Delete-Min operations,
Gn,m graph with 1 million edges

see this trend on figure 5.

4.2.2 Out-of-Core Analysis

To analyze the cache-efficiency of supporting Decrease-Key operations, we ran
our graph tests under STXXL, and constrained the amount of cache to 256KB,
in 64 4KB blocks, and measured the number of block transfers incurred in
executing Dijkstra’s algorithm. The results are shown in figure 6. We see that
the Binary Heap, lacking any sophisticated performance optimizations, is quite
cache-inefficient. The cache-aware 4-ary Alighed Heap, and the simpler Fast
Binary Heap and modified Binary Heap, form a class of their own for sparse
graphs. At higher densities, modified Binary Heap moves closer to the cache-
oblivious Buffer Heap and Auxiliary Buffer Heap. We suspect this is because
modified Binary Heap has the smallest memory signature due to its simple
nature, therefore fits more easily into cache, despite it not being optimized for
cache efficiency.

Although Binary Heap has many more cache misses than its modified cousin,
Buffer Heap and Auxiliary Buffer Heap are quite close in cache efficiency. There-
fore, we don’t believe that supporting Decrease-Key operations makes a priority
queue inherently more or less cache efficient.

Dijkstra-ext, used on Buffer Heap and Auxiliary Buffer Heap, is more cache-
efficient on sparse graphs than any of the other priority queues. However, its
running time in-core is quite slow due to its additional complexity.

9

Figure 6: Block transfers under under STXXL, constrained to 64x4KB cache,
Gn,m graph with 2 million edges

4.3 Concluding the First Part

In light of these discoveries, our conclusion is that using Decrease-Key in Di-
jkstra’s algorithm slows down execution time, because building in support for
Decrease-Key incurs overheads in space and time usage. On sparse graphs,
these overheads results in dramatically slower running times. The benefits us-
ing Decrease-Key to solve dense graphs do not fully offset the overhead, and
results in the same or slower running times, and increased priority queue com-
plexity.

5 Parallelizing Buffer Heap

5.1 Introduction

The Buffer Heap is an efficient cache-oblivious priority queue. It supports
Delete-Min, Delete, and Decrease-Key operations in O(1

B log2
N
B) amortized

block transfers [3]. As a general priority queue, it is useful in a variety of
applications. One possible application of Buffer Heap is in executing Dijkstra’s
Algorithm.

The purpose of this work is to propose an implementation of Buffer Heap
which can run on a p-processor system. The goal is for the algorithm to remain
cache-oblivious, with the same or nearly the same amortized I/O bounds, and
at the same time achieve a near-p-fold decrease in running time with a wide
range of values for p.

To achieve this goal, we will focus on parallelizing the Delete-Min operation
of Buffer heap. The Delete-Min operation requires several merges, sorts, and
selection steps. These are what will ultimately determine the running time of

10

the Delete-Min operation, which in turn takes up almost most of the running
time of the algorithm.

To analyze the running time performance of the parallel algorithm, we will
use the CREW (Concurrent Read Exclusive Write) PRAM model as introduced
in Chapter 1 of Jájá’s book [7]. The chapter defines the notion of running

time, T (n), and work done, W (n). Running time, T (n), also known as parallel

time, or critical path length, is the minimum time a given algorithm takes to
execute, given unlimited number of processors. Work, W (n) is the number
of operations needed to complete the computation, regardless of number of
processors. A parallel algorithm is considered work-optimal when W (n) is equal
to the work done of a sequential algorithm. One other useful measurement is
the cost of running an algorithm. The cost, C(n) is defined to be the amount of
computational resource dedicated to completing the algorithm. In other words,
it is the number of processors times the amount of time until completion. It
is possible for C(n) to be greater than or equal to W (n), but never less. It
is useful to minimize cost while simultaneously minimizing asymptotic running

time. This happens at W (n) = C(n) = pT (n). Solving for p, we get p = W (n)
T (n) .

In order to analyze the I/O performance1 of the algorithm, we examine it
under two different caching models. The shared cache model assumes that there
is one pool of cache that is accessible by all processors. The distributed cache

model, on the other hand, gives each processor its own pool of cache, which
is not accessible by other processors. Both models assume that the cache is
arranged in blocks of size B, and that the cache replacement policy is optimal.
In other words, the block that will be accessed furthest in the future will be
evicted first. The total amount of cache across all processors is denoted by M .
In this work, caches are assumed to be fully associative. One block transfer

brings a contiguous block of data into the cache, replacing one of the existing
blocks. Subsequent reads and writes to a block in the processor’s cache, in
the case of a distributed cache, or the common cache, in the case of a shared
cache, are considered cache hits, and do not incur a block transfer. The caching
performance of an algorithm will be measured in the number of block transfers
required to complete the computation in the worst case on an input of a given
length.

The notion of cache-obliviousness means that an algorithm does not know
about the size and block size of the cache, nor its layout, be it distributed or
shared. This concept was first presented by Frigo et al. [2] We will assume that
there exists a scheduler that is able to assign concurrent tasks to processors in
a way that will optimize cache hits. The scheduler is allowed to know about the
size and layout of the cache to achieve this goal.

5.2 Brief Description of Buffer Heap

The Buffer Heap is composed of two sets of buffers in levels. Let r be the total
number of levels. The element buffers are labeled B0 to Br. The update buffers

are similarly labeled U0 to Ur. The size of each Bi is capped at 2i, and the size
of each Ui is unbounded. The range of keys within each level is bounded below
by a boundary value that is dynamically updated. These buffers are stored in

1We will use the term I/O performance, and cache-efficiency interchangeably. More specif-
ically, the number of I/Os refers to the number of cache misses

11

a stack, with level 0 on top of the stack, followed by level 1, and so on.
For operations such as Insert and Decrease-Key, the operation is simply

appended to U0.
During a Delete-Min operation, we call Apply-Updates, which sorts U0, and

merges instructions and elements until at least one element is found which
doesn’t need to be deleted. Finally, it puts the merged elements back into
the element buffers, and pushes any leftover elements into the next level’s up-
date buffer. This final step requires multiple selection steps, one for each level
of the element buffer.

5.3 Parallel Subroutines

We will attack the parallelization problem by parallelizing the merge, sort, and
selection subroutines, which take up most of the time and I/O. The last sub-
routine, scan, is omitted since it is trivial.

5.3.1 Merge

Input: Two lists, A1, A2, sorted by element ID. Assume that both A1 and A2

are of length n. The number of processors p.
Output: A sorted list Ao such that Ao has all elements that appear in A1

or A2.

Description The parallel merge algorithm is a modified version of an optimal
O(log log n) time parallel algorithm given by Jájá [7, p. 153]. We have modified
Jájá’s algorithm to exploit locality with a small cost in running time. Each step
is done by p processors unless otherwise specified.

1. Divide both arrays evenly into p pieces.

2. Let q = 〈q1, q2, · · · , qp〉 be the first elements of each piece in A1, and
r = 〈r1, r2, · · · , rp〉 be the same for A2.

3. Merge q and r using p
log p processors in the following fashion.

(a) Divide q and r into segments of length log p. Let the array of the
first elements of each segment in q be q′ = 〈q′i〉, and the the first
elements of each segment in r be r′ = 〈r′i〉.

(b) Rank each element of q′ in r′ using a binary search. This determines
the segment of r each element of q′ rests in.

(c) Rank each element of q′ within its corresponding segment of r using
a linear search. For any arbitrary q′, its rank in r is computed by
Rank(x) = α log p+β, where α is the rank of the first element of the
segment in q′ containing x, and β is the rank of x in its corresponding
segment in r.

(d) Repeat steps (b) and (c) to rank each element of r′ in q. This divides
the merge problem into up to 2p

log p non overlapping subproblems of
size at most 2 log p each, since both q and r are divided along the
same list of pivots.

12

(e) Compute the index to write out each merged segment within a single
merged array. The index to start writing segment i is equal to the
sum of the sizes of all the segments with indexes less than i. Use the
logarithmic running time parallel prefix sum algorithm given by Jájá
[7, p. 44] on an array of segment sizes to find these indexes.

(f) Merge each segment concurrently. Write the result back at the correct
index.

4. Rank each qi in A2, and each ri in A1 using linear searches. Note that we
already know which piece of B each qi lies in, so we only have to search in
that piece. This divides the problem into up to up to 2p non overlapping
subproblems each of size at most n/p.

5. Compute the index to write out each merged piece within a single merged
array. This is again equivalent to finding the prefix sums of an array C of
p elements. Use the following algorithm with p

log p processors.

(a) Divide C evenly into sections of size log p, call it C1, C2, · · · , Cd p

log p
e.

Use one processor to find the array of prefix sums of Ci, call these
arrays yi,j .

(b) Find the prefix sums of the array composed of the first elements of
each Ci, call this array of prefix sums xi.

(c) For any given i, the prefix sum of C up to i is si = xk + yk,i mod log p,
where k = b i

log pc.

6. Merge each piece concurrently. Write the result back at the correct index.

Running Time To find the worst case running time of this algorithm, we
can look at the amount of time each step takes. Steps 1, 2 and 3(a) can be
done in constant time using one processor per piece. Step 3(b) takes time
O(log p

log p). 3(c) and 3(d) takes time O(log p). 3(e) takes time O(log p
log p).

3(f) takes O(log p) with the standard sequential merge algorithm. Step 4 takes
O(n

p) time, since we have to look at at most all the elements of both arrays.

Step 5(a), (b), (c) take time O(log log p), O(log p
log p), and O(log p) respectively.

Step 6 take O(n
p) time. Therefore, in total, the merge has a time bound of

T (n) = O(n
p + log p).

Work Since steps 1, 2, 4, 6 are done using p processors, for those steps W (n) ≤
pT (n) = O(n). For steps 3 and 5, W (n) ≤ pT (n) = p

log p log p = O(p).

This means that this algorithm has W (n) = O(n + p), which is optimal for
p = O(n). The cost, however, is C(n) = pT (n) = O(n + p log p), which is only
linear when p log p = O(n). Hence, when p = n

log n , T (n) = O(log n).

This parallel algorithm requires the CREW model since steps 3(b) and 3(d)
require concurrent reads.

Cache Misses Under Shared Cache Steps 1 and 2 do not require any I/O.
Steps 3 and 5 work on up to 2 of arrays of size p, so under the assumption
M > 3p, O(p

B) cache misses will bring in the entire data set and write the
output. Step 4 and 5 can be done by assigning each processor to work on one

13

piece at a time. This needs at most O(n
B) steps to look through the entire array,

granted that M ≥ 3pB to provide each processor with 2 blocks hold one block
of each input array and one block to write the output in. In the end, we have
O(n

B + p
B) cache misses. At the optimal speedup range where p = O(n

log n), the

number of cache misses is O(n
B).

Cache Misses Under Distributed Cache Steps 1 and 2 similarly require
no I/O. Step 3(a) and 3(b) need p

log p processors to each perform O(log p
B log p)

I/O, assuming that each operation is a cache miss until the binary search no
longer takes strides greater than size B. Hence, a total of O(p) cache misses
are needed. 3(c) and 3(d) require O(p

log p + p
B) block transfers. 3(e) requires

O(p) block transfers assuming every operation is a cache miss. 3(f) requires
O(p

log p + p
B) block transfers. Step 4 needs O(n

B + n
log p) block transfers. Here,

using a linear search simplifies the I/O bound without expanding it. Step 5(a),
(b), and (c) need O(p

log p log log p), O(log p
log p), and O(p

B + p
log p) respectively,

assuming all cache misses. Finally, step 6 needs O(n
B + p).

The total number of block transfers is then within O(n
B + p). Our choice of

limiting steps 3 and 5 to using only p
log p processors was to reduce the I/O bound

on a distributed cache. A straightforward implementation using p processors
would use O(n

B + p log p) block transfers.

Comparison with Sequential Algorithm A trivial sequential implementa-
tion of a cache oblivious merge would have O(n) running time and O(n

B) cache
misses. The parallel version of merge has a p-fold speedup compared to the
sequential version when p log p ≤ n. The algorithm has the same number of
cache misses as the sequential version when p ≤ n for the shared cache version,
and pB ≤ n for the distributed cache. Both are assuming that M ≥ 3pB.

5.3.2 Merge Sort

Input: unsorted array A with elements from an arbitrary set S. Number of
processors p. A partial order r on S.

Output: sorted A, where r(Ai, Aj)∀i < j.

Description

1 Divide A into p pieces. Sort each piece cache-obliviously using one pro-
cessor.

2 for h = 1 to log p

3 for 1 ≤ j ≤ n/2h pardo

4 merge pieces 2j − 1, 2j.

Running Time Step 1 can be done in parallel, in O(n
p log n

p) steps using
the sequential algorithm. Step 4 can be done using the above described merge
algorithm. Since p

2h processors are available for each merge, and each merge is
of size n

2h−1 , each merge step takes

O(
n

2h−1

p
2h

+ log
p

2h
) = O(

n

p
+ log

p

2h
)

14

time. Assuming that p log p ≤ n, the bound simplifies to O(n
p). Since there

are log p such steps, steps 2-4 take a total of O(n
p log p) time. Therefore, the

entire algorithm takes O(n
p log n

p + n
p log p) = O(n

p log n) time to complete given
p log p ≤ n. A good estimate for p is p < n

log n . With this value of p, the

algorithm has a running time of O(log2 n).

Work Without actually looking at the actual number of operations performed,
we can conclude that W (n) ≤ pT (n) = O(np

p log n) = O(n log n), which is
optimal for comparison based sorts.

Cache Misses Under Shared Cache In order for step 1 to cache efficient
on a shared cache, the size of the cache, M , must be greater than pB2 so
that each processor has the equivalent of a tall cache. We can use the funnel
sort algorithm, which gives an IO bound per processor of O(n

pB logM/pB
n

pB)

[2]. We have also previously determined that merging takes O(n
B) cache misses

when M ≥ 3pB, so steps 2-4 take O(n
B log p) cache misses. Adding these two

expressions requires us to find the max of logM/pB
n

pB and log p. We can use
the bound pB ≤ n, which would bound the max at log n

B . Finally, this means
that the entire algorithm incurs O(n

B log n
B) cache misses when M ≥ pB2.

Cache Misses Under Distributed Cache Step 1 has the same number of
cache misses as the shared cache algorithm, which is O(n

B logM/pB
n

pB) among

all processors. This requires a tall cache for each processor, so M ≥ pB2. If we
assume that pB ≤ n, Step 2-4 can be done in O(n

B log p) block reads. The reason
we want to ensure that pB ≤ n is so that the one block transfer per processor
per level does not become the dominating term. The total is O(n

B log n
B) block

reads under the assumption pB ≤ n and M ≥ pB2.

Comparison with Sequential Algorithm The optimal cache oblivious sort
algorithm has running time O(n log n) and requires O(n

B logM
B

n
B) block trans-

fers. [2] The algorithm is p times faster than the sequential algorithm if p log p ≤
n. Satisfying M ≥ pB2 allows for only slightly more shared or distributed cache
misses than the sequential version.

5.3.3 Selection

Given an unsorted list A, and p processors. Find the ith largest element in the
list.

Description We can use the sample select algorithm. [8]

1. Sample s = n
3
4 items from A. Call the new list S.

2. Find the largest p′ such that p′ < p and p log p ≤ n
3
4 . Sort S with p′

processors.

3. Let x = s[is
n −√

n] y = s[is
n +

√
n]

4. Let L = Rank(A, x), R = Rank(A, y). Do this by scanning A. With high
probability, L < i < R.

15

5. Let Q = {elements of A with values between x and y}.

6. Find the largest p′′ such that p′ < p and p log p ≤ n
1
2 . Sort Q using p′′

processors.

7. Return Q[i − L]

Running Time Step 1 requires n
3
4

p time. Step 2 uses O(n
3
4

p log n
3
4) time with

the parallel merge sort algorithm. The lower bound is O(log2 n
3
4) = O(log2 n).

Step 3 is a constant time operation. Step 4 requires O(n
3
4

p) time. It is trivial

to execute step 5 in O(n/p) running time down to O(1) time at p = n. Step 6

sorts at most 2
√

n elements, and requires O(
√

n
p log n) time. Similar to step 2,

this also has a lower bound of O(log2 n). Step 7 requires constant time.
In total, this algorithm runs in O(n/p+log2 n) time. We continue to benefit

in asymptotic running time up to p = O(n
log2 n

).

Work Without having to consider steps, we can conclude from the running
time that W (n) ≤ pT (n) = O(n). This is optimal. The cost remains linear as
long as p = O(n).

Cache Misses Under Shared Cache Assuming M ≥ pB2.

Step 1 requires n
3
4

B block transfers. Step 2 uses O(n
3
4

B log n
3
4) block transfers.

Step 3 requires no I/O. Step 4 requires O(n
3
4

B) reads, since we are doing scans.
Step 5 requires O(n

B) reads. Step 6 takes fewer block transfers than step 2. Step
7 requires constant I/O operations.

The dominant term is O(n
B).

Cache Misses Under Distributed Cache The distributed cache model
gives the same I/O bounds at each step as the shared cache model. However,
there is an additional condition that pB = O(n) so that step 5 does not domi-
nate.

Comparison with Sequential Algorithm A sequential cache-oblivious ver-
sion of selection has O(n) running time, and O(1 + N

B) cache misses. [9] Given
pB = O(n), M ≥ pB2, and pB = O(n), the this parallel version of search is p
times faster than the sequential version, and incur the same number of cache
misses.

5.4 Parallel Buffer Heap

Intuitively, Buffer Heap gets its cache-efficiency by using cache-friendly data
structures such as stacks and arrays, and cache-efficient subroutines such as
scans and sequential versions of the subroutines presented above.

Since all the parallel subroutines can achieve the same I/O bounds as the
sequential version, the amortized I/O cost of buffer heap remains very close.
That is, if the required constraints can be met. It is easy to see that some of
the constraints would be violated if p is large and the size of the Buffer Heap is

16

small. Fortunately, we can artificially limit the number of processors used when
executing a subroutine in order to keep the processors from contending for I/O
accesses. There are three kinds of constraints in the subroutines .

1. Constraints which depend on p and n, such as p log p ≤ n. For these, we
can simply calculate the optimal value of p.

2. Constraints do not depend on n, such as M ≥ 3pB. For these, decreasing
the value of p will not break the constraint.

3. The third kind, namely pB ≤ n is present for sorting. The algorithm
cannot enforce this since it does not know the value of B. However, since
optimal running time requires that p < n/ log n, and in practice, B is
quite small, this is not likely to cause problems.

As a consequence of this, the Parallel Buffer Heap has the same I/O per-
formance as its sequential counterpart on a shared cache system, but cannot
guarantee the same I/O bounds when running on a distributed cache system.

5.4.1 Detailed Analysis of a Call to Delete-Min

We will first take a look at the cost of an individual Delete-Min operation. Since
the cost depends on the current state of the heap, we will parameterize the state
of the heap as follows.

Let r be the number of populated levels in the buffer heap. For 0 ≤ i ≤ r−1,
let bi be the number of items in each element buffer, and let ui be the number
of operations in each update buffer. Note that Apply-Updates may delete all the
elements at any given level, and will stop when it encounters the first element
which does not get deleted. Let k be the number of levels visited by the Apply-

Updates function. After applying updates, the elements that were not deleted
from the first k levels are passed to Redistribute-Elements, to form full element
buffers on the first l levels. For the sake of simplification, let x =

∑k
i=0 ui + bi,

or the number of elements visited by Apply-Updates.

Running Time Let NS be the number of steps required to perform a sequen-
tial Delete-Min operation.

NS ≤c1u0 log u0 (Sorting the first level)

+c2

k∑

i=0

(bi + (k − i)ui) (Merging each level)

+c3

l∑

i=0

2i (Selection to redistribute)

≤c(u0 log u0 + kx + 2l+1)

Here, c, c1, c2, c3 are arbitrary constants. Meanwhile, let NP be to the num-
ber of steps required to perform a Delete-Min operation in parallel.

17

NP ≤c1(
u0

p
log u0 + log2 u0) (Sorting the first level)

+c2

k∑

i=0

(
bi

p
+ log bi +

(k − i)ui

p
+ (k − i) log ui) (Merging each level)

+c3

l∑

i=0

(
2i

p
+ log2 2i) (Selection to redistribute)

≤c(
u0

p
log u0 + log2 u0 +

kx

p
+ k2 log x +

2l+1

p
+ l3)

=c(
NS

p
+ log2 u0 + k2 log x + l3)

Similarly, c, c1, c2, c3 are arbitrary constants. The critical path in the parallel
algorithm costs O(log2 u0 + k2 log x + l3) steps.

Cached Performance On a sequential or shared cache system, let MS be
the number of block transfers required to perform a Delete-Min operation.

MS ≤c1d
u0

B
log u0e (Sorting the first level)

+c2

k∑

i=0

(
bi

B
+

(k − i)ui

B
) (Merging each level)

+c3

l∑

i=0

2i

B
(Selection to redistribute)

≤c(
u0

B
log u0 +

kx

B
+

2l+1

B
)

c, c1, c2, c3 are arbitrary constants, and B is the size of a cache block. On a
distributed cache, things are a little worse since we have to incur a cache miss
every time we access a level. Let the number of block transfers be MD.

MD ≤c1d
u0

B
log u0e (Sorting the first level)

+c2

k∑

i=0

d bi

B
+

(k − i)ui

B
e (Merging each level)

+c3

l∑

i=0

d2i

B
e (Selection to redistribute)

≤c(
u0

B
log u0 +

kx

B
+

2l+1

B
+ k)

=c(MS + k)

As always, c, c1, c2, c3 are arbitrary constants, and B is the size of a cache
block.

18

5.5 Concluding the Second Part

All the work for Buffer Heap are done during Delete-Min. The I/O bounds are
the same or very close to their sequential counterpart. In practice, the value of
k and l are small, and x is large so the critical path terms should not tend to
dominate.

6 Conclusions

6.1 Conclusions

In the first section of this work, we studied whether we should use Decrease-Key

in Dijkstra’s algorithm. We observed in previous works that running Dijkstra’s
algorithm without Decrease-Key was faster on certain graphs. This is interesting
since Dijkstra’s algorithm traditionally used only priority queues with Decrease-

Key operations. Since priority queues could be smaller and faster if they did
not support Decrease-Key, there was potential for improvement to Dijkstra’s
algorithm. We expected that smaller heap sizes and fast path relaxation in
Dijkstra-dec to offset the overheads of supporting Decrease-Key. Our results
indicated that this was not the case. We ran tests on graphs of varying types and
edge densities, and in all of these tests, we found that Dijsktra-nodec consistently
outperformed Dijkstra-dec. When the edge density of the graph became very
high, the performance difference became small. The running time and memory
usage overheads in supporting Decrease-Key could not be justified in any of
the graphs we tested. Therefore, until there is data indicating otherwise, we
recommend using Dijkstra-nodec with an efficient priority queue that does not
support Decrease-Key over using Dijkstra-dec for solving SSSP problems on any
graph type.

In the second section of this work, we proposed a parallel cache-efficient pri-
ority queue based on Chowdhury and Ramachandran’s Buffer Heap [3]. This
data structure achieves the same number of cache misses as the sequential ver-
sion under a shared cache, and slightly more under the assumption of a dis-
tributed cache. It achieves these bounds without knowing whether the cache is
shared or distributed, and without knowing the layout of the cache. With the
trend of modern computer systems moving towards more parallelism, and more
dependence on complex, multi-leveled cache schemes, we believe that such a
cache-oblivous algorithm can find itself adapting well to various levels of cache,
which may not only change in size and block size, but also change from be-
ing distributed to shared caches or vice versa. The potential gains from cache-
obliviousness was not free, however. Simple sequential algorithms such as merge
became much more complex in order to satisfy the varying range of criteria.

One of the biggest difficulties came from balancing between parallelism and
cache-efficiency. To achieve high parallelism, an algorithm ideally divides a
data set into small independent problems that can be worked on simultanously.
However, to be cache-efficient, especially on a distributed cache, an algorithm
should work on at least one cache block worth of data at once. This is made
difficult by the cache-oblivious model, since we cannot know how large a block
is. Therefore, ideally we want to work on a large continuous block of data
on a single processor. This directly conflicts with our wish for fine-grained

19

parallelism. On a shared cache, this is easier since many processors can access
one block of cache without incurring additional cache misses.

6.2 Future Work

Since the original Buffer Heap and its no-Decrease-Key variant, the Auxiliary
Buffer Heap, perform well on Dijkstra’s algorithm, one could conceivably de-
velop a parallel cache-oblivious implementation of Dijkstra’s algorithm using
the parallel Buffer Heap. Additionally, due to some of the difficulties mentioned
above, the parallel subroutines do not achieve the lower bound for critical path
length, but merely attempt to get close to the lower bound.

References

[1] Lan Roche. Experimental Study of High Performance Priority Queues. Uni-

versity of Texas Computer Sciences Undergraduate Thesis, 2007.

[2] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In Proceedings of the 40th Annual Symposium on Foundations

of Computer Science, pp.285-297, 1999.

[3] Rezaul Alam Chowdhury, Vijaya Ramachandran. Cache-Oblivious Shortest
Paths in Graphs Using Buffer Heap. Proceedings of the 16th Annual ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA 2004),
Barcelona, Spain, pp. 245-254, 2004.

[4] Peter Sanders. Fast Priority Queues for Cached Memory. In Proceedings of

the 1st Workshop on Algorithm Engineering and Experimentation, Volume

1619 of the Lecture Notes in Computer Science. 1999. pp. 312-327. Springer-
Verlag, Berlin/Heidelberg.

[5] V. Kumar and E. Schwabe. Improved algorithms and data structures for
solving graph problems in external memory. In Proc. 8th SPDP, pp. 169-
177, 1996.

[6] DIMACS 9th Implementation Challenge. http://www.dis.uniroma1.it/ chal-
lenge9/

[7] Joseph Jájá An Introduction to Parallel Algorithms 1992: Addison-Wesley
Publishing Company.

[8] Lingling Tong. Implementation and Experimental Evaluation of the Cache-
oblivious Buffer Heap. University of Texas Computer Sciences Undergradu-

ate Thesis, 2006.

[9] Erik D. Demaine. Cache-Oblivious Algorithms and Data Structures. In
Lecture Notes from the EEF Summer School on Massive Data Sets, Lec-

ture Notes in Computer Science, BRICS, University of Aarhus, Denmark

(BRICS 2002) June 27-July 1, 2002

[10] R.M. Karp. and V. Ramachandran. Parallel Algorithms for Shared Memory
Machines. In Handbook of Theoretical Computer Science : Algorithms and

Complexity MIT Press. 1990.

20

