
FDL: A Feature Description Language for Semantic Role Labeling

Trevor Fountain
doches@mail.utexas.edu

Department of Computer Sciences
The University of Texas at Austin

May 7, 2008

Abstract

In this paper I describe a language for extracting features from parse trees, especially those used
in semantic role labelling (SRL). The language, which I call FDL, is designed to be accessible to non-
programmers yet powerful enough to express most features found in SRL literature. I argue that such a
language is useful both as an engineering platform and as an educational tool. I present the syntax for
FDL and describe its implementation, and evaluate its usefulness by investigating how well it expresses
novel features used in the CoNLL 2005 shared task.

1 Introduction

A semantic role describes the predicate-argument relationship between a constituent and its predicate. The
task of semantic role labelling (SRL), then, is to automatically determine which constituents of a sentence
are arguments for a particular predicate, and which roles those arguments fill. For example, the sentence
in Figure 1 has two roles for the predicate ”eat”, ”ingestor” and ”ingestibles”, which are filled by the
constituents ”I” and ”pie”, respectively.

Figure 1: A simple sentence annotated with semantic roles

Typical SRL systems are broken down into three phases: preprocessing, argument recognition, and argu-
ment labelling. In the preprocessing step, free (unannotated) text is annotated with syntactic (or semantic)
information, which may include anything from a simple syntactic or dependency parse to information about
named entities or disambiguated word senses. The latter pair of steps, argument recognition and labelling,
are more complicated and generally involve some sort of supervised training. To train an argument recog-
nizer or labeller, features are extracted from a large corpus of data which has been annotated with semantic

1

roles. These features, combined with the gold data from the training corpus, are used as input to a machine
learning algorithm.

The task of determining what features are valuable to each task is referred to as feature engineering. Early
SRL systems relied on a small number of features (Gildea and Jurafsky [2002]), including voice, constituent
phrase type, and the path between constituent and predicate; state-of-the-art systems often utilize much large
feature sets (Pradhan et al. [2005]). Each of these features is typically calculate independently of the others; I
refer to a method or function which calculates a single feature for a given sentence and constituent-predicate
pair as a feature extractor.

Feature engineering is a difficult part of building any semantic role labelling (SRL) system. The design of
useful features, and the implementation of methods to extract those features from text, has been the focus
of a great deal of experimentation in current SRL literature. Indeed, while researchers have settled on a core
feature set based around the work of Gildea and Jurafsky [2002] and Pradhan et al. [2004], contemporary
systems still rely upon a considerable number of novel features (Carreras and Màrquez [2005]).

This paper presents a description language (FDL) for writing feature extractors in a declarative fashion.
Section 2 describes why such a language is useful, section 3 explains why existing tools are poorly suited to
this task, and section 7 attempts to evaluate the effectiveness language by determining what percentage of
features used during the CoNLL 2005 shared task on SRL can be represented in FDL. An informal description
of FDL is included in section 4, along with a detailed example feature in section 5 and a formal specification
in the form of a BNF grammar in section 6. Sample features from the Gildea and Jurafsky [2002] and
Pradhan et al. [2004] papers are included in appendices A and B, respectively.

2 Motivation

2.1 Engineering

Primarily, FDL is a tool for improving feature engineering. Like any automatic programming system, FDL
provides a syntax for writing a program specification (in this case, a feature description) and then uses that
specification to generate a more complex program (a feature extractor). Because FDL expressions are so
simple and domain-specific, it should be easier for experimenters to write their feature extractors indirectly
in FDL than directly in code. Furthermore, FDL is similar in design to other declarative languages like
LEX and YACC (tools for generating lexical scanners and parsers, respectively). Like these languages, FDL
allows users to specify structures in a high-level fashion, avoiding unnecessary bookkeeping and extraneous
code not directly related to the task at hand.

The ease with which FDL can be used to generate complex feature extractors points to another advantage;
designing, building, and testing FDL features should be much quicker than manually building equivalent
functions. Systems built with FDL features can be prototyped much faster; indeed, it is possible within
the Shalmaneser system (Erk and Pado [2006]) in which FDL is embedded to design an entire SRL system
with a minimal amount of code. The addition of FDL to the Shalmaneser tools will allow much of the work
that would previously have required programming to be completed by non-programmers, expanding the
tool’s use rbase considerably. A further advantage comes from the portability of FDL expressions; writing
feature extractors declaratively alleviates much of the difficulty in porting an SRL system to a new parser
or language.

2.2 Education

Many current SRL systems are designed to be as open and flexible as possible, allowing the user to tinker
with almost all aspects of the tool chain. These systems are ideal for adaptation into educational tools; the
emphasis on open-ness The integration of FDL features into such a system opens up entire new areas of
experimentation. Indeed, engineering useful features and determining their effectiveness is often a significant
part of the work involved in building a new SRL system; it is only natural to open this avenue of research
to non-programmers.

2

This is analogous to grammar workbenches, which mask the complexity of grammar creation under a
friendly (or at least friendlier) user interface. Furthermore, grammar workbenches have been shown to
greatly assist users with and without programming experience both in learning new grammar formalisms
and in using those formalisms to construct useful grammars (Baldridge et al. [2007]).

2.3 Communication

An additional benefit of using FDL is the ability to communicate the design of feature extractors in a way
that is both simple and consistent. Generally, this is done with pseudo-code, but FDL has the additional
benefit of being directly compilable. Features described in literature can be run through the FDL compiler
to generate a feature extractor without modifying them in any way.

3 Design

FDL must be powerful enough to be useful while remaining simple enough to be easily understandable. If
it is too complex then there is no reason not to simply write feature extractors directly; if it is too simple
it will be unable to describe common features and again result in requiring experimenters to write feature
extractors directly in code. Applying this notion of power versus simplicity illustrates why existing tools
are ill-suited to the task of describing feature extractors: Xpath, a language for selecting nodes from an
XML document (Clark and DeRose [1999]), and TIGERSearch, a corpus query language, are quite easy to
learn but do not allow expressions complex enough to describe common features. Tregex, a tool for applying
regular expressions to trees (Levy and Andrew [2006]) comes closer to the necessary level of complexity, but,
like TIGERSearch, also doesn’t provide a mechanism for extracting data from matched trees.

In order to meet this goal FDL was purposely designed to capture only those features that rely purely
on information extracted from the parse tree. More complex information (like named entity recognition or
clustered verb senses) can only be used to construct features if it is added to the parse tree by a preprocessing
step. This restriction does somewhat limit the possible coverage of FDL, but I believe this is a legitimate
line after which it is easier to write extractors directly in code rather than by description. It also provides
a useful metric for evaluation; ideally, FDL will be able to describe all features that can be computed using
only information from the parse tree.

Obviously, numerous tools exist for extracting information from graphs. These tools, however, tend to
have been designed to fill a particular niche, and as such are too domain-specific to be of much use in this
particular task. Of the three mentioned above (TIGERSearch, Tregex, and Xpath) only TIGERSearch comes
close to describing the necessary information for building feature extractors. TIGERSearch is a query lan-
guage for extracting information from an annotated corpus – essentially a database query language for graphs
(König and Lezius [2000]). However, TIGERSearch expressions can provide only a binary match indicating
whether a particular graph matches the expression described. Complex features require additional informa-
tion; for example, extracting the path between two nodes would be quite impossible within TIGERSearch.
FDL’s syntax for node descriptors and edge labels is drawn almost directly from TIGERSearch.

FDL expands on TIGERSearch in several ways. Primarily, FDL is a language for extracting data rather
than simple matching; it adds a means of retrieving node-specific information from parse trees. Whereas
a TIGERSearch expression describing a particular sub-graph will return the entire parse tree of a sentence
containing that sub-graph, a comparable FDL expression will return only the requested information from
selected nodes within the sub-graph. Furthermore, matching expressions in FDL are significantly more ex-
pressive than TIGERSearch: FDL expressions can contain both negation and universally quantified variables,
features which are notably absent in TIGERSearch.

3

4 Informal Language Specification

4.1 Evaluation

FDL expressions are evaluated over directed graphs in which nodes possess various attributes which are
drawn from a fixed list. The list of attributes nodes may possess is determined by the pre-processing steps
performed.

The search for nodes that match a node descriptor and satisfy the constraints imposed by the current
search path (i.e. the tree traversal operators previously encountered while matching a path) proceeds via a
left-most depth-first search. If a node descriptor is unbound or bound existentially the search terminates at
the first satisfying node; if a descriptor is bound using a universal quantifier, the parse tree is exhaustively
searched for matching nodes.

4.2 Definitions

Features are defined using the feature keyword, followed by an alphanumeric name, a feature expression,
and an optional return vector. If the feature expression can be matched, the variables bound during the
matching are used to fill out the return vector, and the feature will return the resulting array. Otherwise,
if the expression cannot by matched in the parse tree, the feature returns false. If the expression can be
matched but no return vector is provided, the feature will simply return true.

In general, features are of the form:

Figure 2: General form of features.

feature feature_name
expression
<return vector>

Similarly to features, particular nodes or sets can be defined using the node keyword followed by an
alphanumeric name, an expression in which at least one variable is bound, and a vector of bound variables to
return. Defined nodes can be referenced in features or other node definitions as if they were bound variables,
and will be re-computed for different contexts (i.e., when self or target differ).

Figure 3: Find the least common ancestor between the current and target nodes.

node LCA
[is=self] /* x:[] AND x * [is=target] AND
not (x \ y:[] AND y * [is=self] AND y * [is=target])
<x>

4.3 Expressions

An expression consists of one or more subgraph expressions joined by logical operators. subgraph expressions
descibe individual structures within the parse tree, and are composed of node descriptors joined by tree
traversal operators. For example, the expression:

[is=self] / [cat=’NP’] AND
[is=self] | [cat=’PP’]

4

represents two subgraphs; one involving the current node and its parent, which has the category ’NP’, and
one involving the current node and its sibling, which has the category ’PP’. This expression is only true if
both of these subgraph expressions can be matched in the current parse tree (i.e. relative to the current
assignment of is=self).

4.4 Node Descriptors

Node descriptors filter all nodes in the parse tree based on the properties and conditions specified therein.
They consist of zero or more property=value pairs separated by logical (and,or) enclosed by square brackets.
property is one of pos,head, or the special property is (described later); value is either a quote-delimited
string or a regular expression (delimited by forward slashes). property,value pairs may be related by either
an equals (=) or a not-equals (!=) sign; properties that are not set have a default value of nil. Multiple
properties and conjunctions can be grouped with parenthesis; properties and parenthetical expressions may
be negated with the not keyword. For example:

[is=target and (cat="v" or cat="vp")]

matches the target node if the target node’s part-of-speech is either ”v” or ”vp”. The descriptor returns
a boolean indicating whether such a node exists on the current search path. Note that this syntax for
matching nodes by their properties is drawn directly from TIGERSearch’s feature constraints (König and
Lezius [2003]).

The is property checks to see if a node matches a pre-defined type; it may take a value of self, root,
or target (all of which refer to the corresponding node in the tree) or the name of a bound variable. The
constituent under consideration (i.e. the node being considered for role assignment) is assigned the property
is=self; the node for which this role is being assigned (the predicate) takes the property is=target. The
root of the parse tree is assigned is=root. Obviously, these assignments are relative to each parse tree node.

The properties attached to each node are determined by the choice of parser. For example, a parse tree
generated by the Collins parser (Collins [1999]) will have the headword property, whereas a parse generated
by a dependency parser (such as Minipar or C&C) may not even have a category property.

The empty descriptor [] matches all nodes on the current search path.

4.5 Variable Binding

Nodes matched by descriptors can be bound to named variables by preceding the descriptor with the variable
name a’ la varname:[pos = "NP"]. After binding, variables can be referenced anywhere a node descriptor
would be appropriate, or in the return statement. Variables can be bound to sets using the universal quantifier
ALL(x, expression), where x is the variable to be bound and x is bound in expression. Variables bound
to sets will automatically be expanded if referenced in the return vector. Expanded variables are replaced
with a comma-separated list of their member nodes with the requested property; if both nodes a and b
have been bound to the variable x, the return vector <x.cat> will be expanded into <a.cat, b.cat>. For
example, consider the feature:

Figure 4: Find the derivation rule for the current node.

feature derivation
parent:[is=self] AND ALL(child, parent \ child:[])
<parent.cat, "->", child.cat>

Because child is a set of nodes, this feature may return something like <NP, ->, NP, PP>.

5

4.6 Tree Traversal Operators

Operator Name Semantics
/ child-of X / Y if X is the child of Y.
\ parent-of X \ Y if X is the parent of Y.
/* dominated-by X /* Y if Y dominates X.
* dominates X * Y if X dominates Y.
| sibling-of X | Y if X and Y share a common parent.
<| left sibling X <| Y if X and Y share a common parent and X appears before

Y in the parent’s list of children.
>| right sibling X >| Y if X and Y share a common parent and X appears after

Y in the parent’s list of children.
<* left-of within tree X <* Y if X is dominated by a left child of Y, a left sibling of Y,

or a left sibling of any node which dominates Y, or if X dominates
Y and all the nodes between X and Y are right children of their
parent.

>* right-of within tree X >* Y if X is dominated by a right child of Y, a right sibling
of Y, or a right sibling of any node which dominates Y, or if X
dominates Y and all the nodes between X and Y are left children
of their parent.

cc c-command X cc Y if X and Y are siblings or Y is dominated by a sibling of
X.

4.7 Return Vectors

A return vector is a comma-separated list of values that are returned by a feature. Each value in the vector
must be either a property extracted from a bound variable (parent.cat) or a quote-delimited string. Vectors
are delimited by <,>. Variables bound to sets (using ALL()) are expanded, so the vector:

<parent.cat,"->",child.cat>

would return the array ["S","->","NP","VP"] if the node bound to parent had two children (bound
using ALL()) with part-of-speech tags ”NP” and ”VP”.

4.8 Summary

Features in FDL have two parts: a required expression (4.3) and an optional return vector (4.7). The
expression describes some substructure of the parse tree, and may bind nodes within that structure to
variables (4.5). The return vector lists the properties of nodes, bound while matching the expression, that
make up the feature. If no return vector is present, the feature returns a boolean value indicating whether
the expression could be matched within the parse tree. As an example, consider a feature that extracts the
category of the current node’s parent:

feature parent_cat
[is=self] / parent:[]
<parent.cat>

The first line declares a feature named parent_cat (see section 4.2). The second line is the expression,
which in this case consists only of a single path (section 4.3). [is=self] is a node descriptor which matches
the current node; the forward slash restricts the set of nodes that can be matched by the next descriptor
to the parent of the previous node. parent:[] binds any node on the current search path to the variable
parent ([], the empty node descriptor, matches any node). The final line is the return vector; it is enclosed

6

by angle brackets and consists of a comma-delimited list of elements, either quote-delimited strings or (in
this case) node.property pairs (section 4.7).

If the return vector was omitted this would be a binary feature indicating whether or not the current
node had a parent, which illustrates an important point: unless explicitly specified, bound variables are
existential. That is, if there are multiple nodes on the search path that match a node descriptor, only one
of them will be bound. In fact, this will be the first node found by a leftmost, depth-first traversal of the
parse tree, starting at the root.

5 Path Example

As an in-depth example, consider a feature that represents the path from the current node to the target.
Finding a path is particularly difficult because it requires the capture of an indeterminate number of nodes
along the tree in a way that maintains the order in which they appear. For convenience, path is defined
by first defining a node that represents the lowest common ancestor (LCA) between the current and target
nodes. LCA is defined (where N is the set of all nodes) as:

∃lca ∈ N ∧ (lca\ ∗ SELF ∧ lca\ ∗ TARGET ∧ (∃!x ∈ N ∧ (x\ ∗ SELF ∧ x\ ∗ TARGET ∧ lca\ ∗ x)))

Figure 5: Lowest Common Ancestor

node LCA
[is=self] /* x:[] and x * [is=target] and
not (x \ y:[] and y * [is=self] and y * [is=target]0
<x>

This collects a node x that dominates self and also dominates target, and that does not have any
children that also dominate self and target. Note the similarity between the FDL expression and the
predicate logic, above: FDL can be viewed as nothing more than a logic which operates on trees. In this
way, FDL is somewhat similar to logic languages like Prolog.

Using the LCA, the path from self to target can be easily extracted as the concatenation of the partial
paths between self up to the LCA and the LCA down to target. For convenience, both of these are defined
in the same order; as long as the order is consistent across definitions this difference is inconsequential. Also,
note that the LCA is included in this path three times: once at in the up variable, once as top, and once in
down. This is because the traversal operator (/*) behaves like a Kleene star; it captures all nodes that are
dominated by zero or more levels, and thus includes the node on each side of the expression. Redundantly
including the LCA does not adversely affect the feature, though, since it is consistently appended in the
same position each time it appears.

Figure 6: Path feature.

feature Path
ALL(up,[is=self] /* up:[] and up /* LCA) AND
ALL(down,[is=target] /* down:[] and down /* LCA) AND
top:LCA
<up.cat, "<", top.cat, ">", down.cat>

7

6 Formal Grammar (BNF)

〈file〉→〈definition〉|〈definition〉 〈file〉
〈definition〉→〈feature〉|〈node〉
〈feature〉→feature 〈string〉 〈expression〉 〈opt-return-vector〉
〈node〉→node 〈string〉 〈expression〉 〈opt-node-return-vector〉
〈expression〉→〈subexpression〉|〈subexpression〉 〈conj〉 〈expression〉|NOT 〈expression〉
〈subexpression〉→〈path〉|〈quantifier〉|(〈expression〉)
〈path〉→〈node〉|〈node〉 〈traversal〉 〈path〉
〈quantifier〉→ALL(〈string〉 , 〈expression〉)
〈node〉→〈string〉:〈noded〉|〈noded〉
〈noded〉→[〈opt-node-exp〉]| 〈string〉
〈node-exp〉→〈string〉 = 〈rvalue〉|〈string〉 != 〈rvalue〉|〈node-exp〉 〈conj〉 〈node-exp〉|(〈node-exp〉
)
〈rvalue〉→”〈string〉”|〈string〉|〈regular-expression〉|nil|〈string〉.〈string〉
〈return-vector〉→<〈list〉>
〈node-return-vector〉→<〈node-vector-list〉>
〈list〉→〈listitem〉|〈listitem〉,〈list〉
〈listitem〉→〈string〉.〈string〉|”〈string〉”
〈node-vector-list〉→〈string〉|〈string〉,〈node-vector-list〉
〈conj〉→AND|OR

7 Evaluation

While developing FDL I used the feature set from Gildea and Jurafsky [2002] as my development set; the
initial specification for the language was, I believe, the smallest set of rules that could adequately describe
that feature set. I then used the feature set from Pradhan et al. [2004] as my initial test set; with no
modifications (from the version of FDL used to cover Gildea and Jurafsky [2002]), I was able to describe
18 of the 23 features (out of 25 total; two required additional information not found in the parse tree). By
adding additional tree traversal operators to capture sibling information, I was able to describe an additional
four. The final remaining feature, constituent tree distance, required only the addition of cardinality as a
property of variables and the introduction of basic arithmetic operators in the return vector.

Ultimately, I was able to capture 23 of the 25 features employed in Pradhan et al. [2004]; of the two
features which could not be described (dynamic class context and ordinal constituent position), both required
extra information not found in the parse tree which would be difficult to introduce in a preprocessing step.
Three of the describable features (named entities, verb clusters, and verb senses) required extra preprocessing
to add additional information to the parse tree.

To evaluate the expressivity of the language, I examined the features used from 10 papers presented at
CoNLL 2005. Of the features used in these papers I identified 56 unique features beyond those used in Gildea
and Jurafsky [2002] and Pradhan et al. [2004]. 77% of these features were immediately expressible in FDL;
86% were expressible with additional pre-processing (i.e. after adding named entity information to the parse
tree). Those that remain fall into one of two categories: either they are based on dynamic information (i.e.
n most recent role assignments) or they require additional post-processing (i.e. converting the path into a
set of trigrams).

A Example features from Gildea and Jurafsky [2002].

8

Figure 7: Phrase type feature.

feature Phrase_Type
x:[is=self]
<x.cat>

Figure 8: Governing category feature.

feature Governing_Category
[is=self and cat="NP"] /* gov:[cat=/s|vp/] AND
gov \ gov_below:[] AND
gov_below * [is=self] AND
NOT (ALL(also,gov_below * also:[cat=/s|vp/]) AND

also * [is=self])
<gov.cat>

Figure 9: Path feature.

node LCA
[is=self] /* x:[] AND x * [is=target] AND
not (x \ y:[] AND y * [is=self] AND y * [is=target])
<x>

feature Path
ALL(up,[is=self] /* up:[] and up /* LCA) AND
ALL(down,[is=target] /* down:[] and down /* LCA) AND
top:LCA
<up.cat, "<", top.cat, ">", down.cat>

Figure 10: Position feature.

feature Position
[is=self] < [is=target]

9

Figure 11: Voice feature.

feature ActiveVoice
[is=target and cat=/v*/] AND
([is=target and cat=/(vbg|vbp|vbz|vb)/] OR

([is=target] / [] / [cat=/(s|v*)/] AND
NOT ([is=target] /* x:[] AND

x * [lemma=/(be|am|is|are|was|were)/]))

feature PassiveVoice
[is=target and cat=/v*/] AND
NOT [is=target and cat=/(vbg|vbp|vbz|vb)/] AND
[is=target] / [] / gp:[] AND

(([is=gp and cat=/(s|v*)/] AND
([is=target] /* x:[] AND

x * [lemma=/(be|am|is|are|was|were)/])) OR
[is=target and cat=/(vbn|vbd)/])

Figure 12: Head word feature.

feature Head_word
x:[is=self]
<x.head>

10

B Example Features From Pradhan et al. [2004]

Figure 13: Named entities (with preprocessing).

feature named_entity
x:[is=self]
<x.entity_type>

Figure 14: Partial path.

node LCA
[is=self] /* x:[] AND x * [is=target] and
not (x \ y:[] and y * [is=self] and y * [is=target]
<x>

feature partial_path
ALL(p, [is=self] /* p:[] AND p /* LCA) AND
top:LCA
<p.cat,top.cat>

Figure 15: Head word of prepositional phrases.

feature noun_head
[is=self and cat=’PP’] \ np:[cat=’NP’]
<np.head>

Figure 16: First word in constituent.

node LEAVES
ALL(x,[is=self] * x:[word!=nil])
<x>

feature first_word
ALL(x,x /* LEAVES AND x <* LEAVES)
<x.word>

References

Jason Baldridge, Sudipta Chatterjee, Alexis Palmer, and Ben Wing. DotCCG and VisCCG: Wiki and pro-
gramming paradigms for improved grammar engineering with OpenCCG. In Tracy Holloway King and
Emily M. Bender, editors, Proceedings of the GEAF07 Workshop, pages 5–25, Stanford, CA, 2007. CSLI. URL
http://csli-publications.stanford.edu/GEAF/2007/geaf07-toc.html.

11

Figure 17: Parent phrase type.

feature parent_cat
[is=self] / parent:[]
<parent.cat>

Figure 18: Right sibling phrase type.

feature right_sibling_cat
[is=self] >| x:[]
<x.cat>

Figure 19: Head word category.

feature head_word_cat
self:[is=self] AND LEAVES * head:[word=self.head]
<head.cat>

Figure 20: Constituent tree distance.

node PATH_NODES
ALL(p, [is=self] /* p:[] and p /* LCA) AND
ALL(d, [is=target] /* d:[] and d/* LCA)
<p,d>

feature tree_distance
p:PATH_NODES
<p.size>

Figure 21: Temporal cue words.

feature cue_words
[word="cue_word_1" or word="cue_word_2"]

Xavier Carreras and Llúıs Màrquez. Introduction to the conll-2005 shared task: Semantic role labeling. Proceedings
of CoNLL-2005, 2005.

James Clark and Steve DeRose, editors. XML Path Language (XPath), Version 1.0, November 1999. W3C. URL
http://www.w3.org/TR/xpath.

Michael Collins. Head-Driven Statistical Models for Natural Language Parsing. PhD thesis, University of Pennsylva-
nia, 1999.

Katrin Erk and Sebastian Pado. Shalmaneser - a flexible toolbox for semantic role assignment. In Proceedings of
LREC 2006, Genoa, Italy, 2006.

D. Gildea and D. Jurafsky. Automatic labeling of semantic roles. Computational Linguistics, 28(3):245–288, 2002.

12

Esther König and Wolfgang Lezius. A description language for syntactically annotated corpora. In
Proceedings of the COLING Conference, pages 1056–1060, Saarbrücken, Germany, 2000. URL
http://www.ims.uni-stuttgart.de/projekte/corplex/paper/lezius/coling2000.pdf.

Esther König and Wolfgang Lezius. The tiger language - a description language for syntax graphs, formal definition.
Technical report ims, Universität Stuttgart, Germany, 2003.

Roger Levy and Galen Andrew. Tregex and tsurgeon: tools for querying and manipulating tree data structures. 5th
International Conference on Language Resources and Evaluation, 2006.

Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James Martin, and Dan Jurafsky. Shallow semantic parsing using
support vector machines. In Proceedings of the Human Language Technology Conference/North American chapter
of the Association of Computational Linguistics (HLT/NAACL), Boston, MA, 2004.

Sameer Pradhan, Kadri Hacioglu, Wayne Ward, James H. Martin, and Daniel Jurafsky. Semantic role chunking
combining complementary syntactic views. In Proceedings of the Ninth Conference on Computational Natural Lan-
guage Learning (CoNLL-2005), pages 217–220, Ann Arbor, Michigan, June 2005. Association for Computational
Linguistics.

13

