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Abstract

Rapidly advancing technologies offer a greater volume of people the possi-
bility to both create and consume information. And, with this widening of
opportunity, the volume of digital information has increased in mammoth
proportion. Indeed, this age of information is marked by quantity, but what
of quality? It has become necessary to formulate a systematic method to
sift through the vast amount of data. This paper presents an algorithm
that seeks to emulate the manner by which a human might judge an image’s
aesthetic value. The notion that a machine could imitate human thought
processes is not necessarily novel, and, as such, a fair amount of work has
been done regarding algorithmic aesthetic digital image rating. Most of these
proposed algorithms, however, have been unable to satisfactorily mimic ac-
tual human ratings. This paper builds on these past works and yet goes
further by significantly improving on these prior accomplishments. The re-
sult of our focus on the discovery of an optimal vector of image features is
a highly accurate emulation of human ratings.



1 Introduction

The so-called “Information Age” denotes our current era in which the global
economy has become increasingly dependent on the manufacture and ex-
change of digital information. Rapidly advancing technologies offer a greater
number of people the possibility to both create and consume information.
And, with this widening of opportunity, the volume of digital information
has increased in mammoth proportion.

Currently, a prevailing currency of our global economy is information,
and this information is available in gargantuan amounts. A growing number
of companies engage solely in the business of exchanging information such as
music, videos, and images. One such company is Corbis. Since its inception,
Corbis has accumulated more than 100 million photographs and over 25,000
videos[5]. By understanding how the masses may respond to a video or
photograph, a company such as Corbis can more quickly determine the
potential value of their merchandise.

An article published three years ago entitled Hit Song Science brought
attention to a service that, essentially, places a value on music[9]. The
service grades a song based on how the masses might rate that song. This
program plots songs in a multidimensional space based on various features,
and automatically rates the songs according to their placement in that space.
I used this as evidence that any artistic medium can be decomposed into
basic components, and can be subsequently rated accordingly.

I sought to create an Aesthetic Image Rating (AIR) algorithm that will
faithfully replicate an average human’s rating for any given photograph.
Such an algorithm has a myriad of applications. The most immediate appli-
cation would be to provide users of photograph management software with
initial ratings for imported images, allowing them to focus on more promis-
ing images. This algorithm can also be used to aid media dealers, such as
Corbis, by setting appropriate prices for images. Finally, such an algorithm
is useful for the process of image retrieval by search engines.

It is necessary to differentiate the goal of my algorithm from the goals of
previous image Quality Assessment(QA) algorithms. There are three types
of image QA algorithms Full-Reference QA, Reduced-Reference QA, and No-
Reference QA. Full-Reference QA and Reduced-Reference QA are typically
used to measure distortions or artifacts introduced by image compression al-
gorithms. Full-Reference QA implies the original image is available whereas
Reduced-Reference implies some knowledge about how the image was al-
tered or compressed. My algorithm falls within the realm of No-Reference
QA, and specifically focuses on the aesthetic aspect of the images.
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I chose to approach this No-Reference QA problem in the same manner
as had been presented in the Hit Song Science article. First, I decompose
the image into a vector of features, such as saturation, contrast, and more.
To clarify, a feature is an algorithm that returns a rating when applied to an
image. I was able to plot each image in a multidimensional space based on
the feature vector I obtained. This allowed me to then perform a regression
on the points in this space; that regression gave me the rating function I
desired.

2 Related Works

2.1 Related Works Methodology

The concept of aesthetic-based image rating is not a novel one. The goal
of understanding aesthetics is as old as art itself; from Leonardo da Vinci’s
golden ratio analysis to Rudolf Arnheim’s Art and Visual Perception: A
Psychology of the Creative Eye [2]. More recently the image retrieval com-
munity has made more substantive progress towards understanding aesthet-
ics. Their motivation stems from the desire to create algorithms that return
the most pleasing image with a particular tag rather that just a random set
of those images. In particular, four recent papers reflect the advancements
made towards understanding what features correlate to users’ ratings, and
what is an optimal approach to process these features.

Each paper applies a standard machine learning technique to attempt
to empirically determine what features are most aesthetically important.
The technique can be reduced to a simple high-level algorithm. The al-
gorithm requires you to start by generating as many features as possible.
Then, because features that are poor discriminators actually tend to hurt
performance, they are removed through a feature selection process. Finally,
a classification or regression algorithm is applied on the optimal set of fea-
tures.

Classification is simply the process of using a algorithm to determine
if a document with a certain feature vector belongs to one of an integer
number of classes. Regression involves fitting a continuous function to the
multidimensional feature space. A two-dimensional visual representation of
these processes is displayed in Figure 1.
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Figure 1: Classification and Regression

2.2 Previous Publications

Tong et al. [13] is the first paper published that I was able to find that dealt
with automatic image rating. Initially it seems as if the paper should be
the most insightful since it has the largest set of features, training images,
and classification techniques. However this paper is rendered useless by its
refusal to discuss, in sufficient detail, the features or the feature selection
results.

The Design of High-Level Features for Photo Quality Assessment by Ke
et al. [11] even made a point to note deficiencies in the Tong et al. paper.
Ke et al. took a large dataset from dpchallenge.com and classified the top
10% as professional photographs and the bottom 10% as snapshots. The
paper then explored the fundamental differences between these two sets.
Through this process they discovered several important features. The two
best features were the blurriness of an image and the spatial distribution of
edges present in an image. It is surprising how discriminative the features
are, considering the small number presented. To determine the optimal
features, Ke et al. employed a precision-recall curve which, given their goal
of image retrieval, is reasonable.

The next paper, Studying Aesthetics in Photographic Images Using a
Computational Approach [6] , published by Datta et al. in 2006, focused on
using Support Vector Machine (SVM) based classification. In addition to in-
troducing more novel features than Ke et al., it proposed a feature selection
technique by simply using SVMs to determine a feature’s discriminating
power. Subsequently, Datta published a paper [7] that further explored
techniques to analyze his original set of features. He confirmed previous re-
sults that advanced types of regression are powerful techniques in extracting
information for the image retrieval problem.
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Regardless of the various classification or regression techniques applied
to them, the set of features is what remains vital to any algorithm’s success.
This encouraged me to focus on improving the set of features which is clearly
the current limiting factor.

3 Features

Features are at the heart of any machine learning algorithm, and are the key
to its success. Because aesthetic based image rating is a fairly unexplored
area I take care to try as many avenues as possible. Due to the fact that
I have a large number of features, and these features need to be computed
for a vast quantity of images, I chose to cut down on computation time by
recursively halving both dimensions in the input images until the largest
side was smaller than 1024. This process is reasonable, since most images
are similarly resized for viewing on a monitor.

3.1 Dimension Features

DIMENSION FEATURES
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Y
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X Dimension

Y Dimension

Aspect Ratio

Largest Side Aspect Ratio

Filtered  Largest Side Aspect Ratio

Raspect =
Xdim

Ydim

Figure 2: Image Dimensions

3.1.1 X dimension and Y dimension

The x and y dimensions of an image are features f0 and f1. They determine
if the original size of the image has any correlation to a user’s ratings. The
reasoning is that if the original image is large, then the resized image will

5



perhaps have a shallower depth of field (DOF). This correlation is true if
the original image you are discussing is a physical negative and the resized
image is a fixed-size print. An 8x10 image, printed from a 4x5 negative,
tends to have a shallower DOF than an 8x10 image printed from a 35mm
negative, simply due to the physics of the systems.

3.1.2 Aspect Ratio

Feature f2 is the same as Datta’s [6]. I made certain to include it due to
Datta’s observation that aspect ratio is highly correlated with a users rating
:

f2 =
Xdim

Ydim
(1)

3.1.3 Largest Side Aspect Ratio

Building on Datta’s observation, I wanted to determine if perhaps the shape
of the image mattered more than orientation. Therefore, the next feature is
defined as:

f3 =
Ldim

Sdim
(2)

where Ldim is simply the larger of the dimensions, and Sdim is the smaller
of the dimensions.

3.1.4 Heuristically filtered largest side aspect ratio

Feature f4 is based solely on my observation that people tend to prefer
square and panoramic images, but dislike awkward ratios in between as well
as extreme panoramic images. I generated this feature by going through
a small set of images and empirically determining crops that appeared to
be transition points from good to bad crops. I viewed the aspect ratios of
these images and subsequently created a filter. The response of that filter
is plotted in Figure 3.
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Figure 3: Heuristic Largest Side Aspect Ratio Filter

3.2 Point Operation Features

3.2.1 Lab tests

Features f5 - f7 are simply the means of the channels from the Lab space,
respectively. The L channel is lightness while the a and b channel are color
opponent dimensions. The Lab space is attractive because it is perceptu-
ally uniform, meaning that a single change in value corresponds to a single
increase in visual importance. Transforming the image from Figure 2 into
Lab space results in Figure 4.

(a) Lightness (b) a Channel (c) b Channel

Figure 4: Lab Space
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3.2.2 Colloquial Contrast

(a) Original Histogram (b) Histogram after S Curve Mapping

Figure 5: S Curve Mapping of Histogram

By colloquial contras, I refer to the distribution of luminosity levels in an
image. An image is contrasty if there are few pixels with mid valued levels
and more grouped at the black and white levels. This can be confirmed
by noting that a remapping of the luminosity values in an image with an S
curve is well known to increase contrast and produces the effect of grouping
luminosity values towards the extremes. This effect is displayed in Figure 5.
To create this feature, I compute the distance between the top and bottom
halves of the histogram, Equation 3.

d =
1

.5 ·max

(.5·max∑
k=0

HI(k)−
max∑

k=.5·max

HI(k)
)

(3)

where d is the distance, max is the maximum number of levels from the
image, HI(k) is the value of the histogram of image I at level k

I then filtered this distance with the heuristic filter displayed in Figure 6.
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Figure 6: Colloquial Contrast Filter

The function in Figure 6 was generated by taking a small series of images
and finding the locations where the image became gray, contrasty, and ideal.
The resultant function shows that there exists a “sweet spot” where images
have an optimal contrast.

3.2.3 Exposure Ratings

In trying to determine if an image is over- or under-exposed, it is important
to determine what the contrast is in the image. The standard deviation is
a good measure of contrast. Therefore I made an attempt in each of these
novel algorithms to relate the standard deviation to the percentages of the
various regions of the histogram. This should help differentiate extreme
contrast images that contain significant samples in these regions from images
that are closely grouped towards white or black.
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UNDER/OVER EXPOSURE

Under Exposure Region Over Exposure Region

Luminosity Image Histogram

Bottom 20% Top 0.8%

Figure 7: Over and Under Exposure

Over Exposure Over exposure refers to when visually important regions
of an image are rendered white and featureless by clipping. It is not currently
possible to determine what areas of an image are supposed to be regions of
interest. What we can say is that a large portion of an image is blown out.
The only instance where this is acceptable is silhouettes.

This algorithm uses the top 0.8% of the value image histogram because
clipping’s effect is relegated to the levels which correspond to white and
nothing else.

More explicitly:

f8 =
.008·max∑

k=0

HI(k)−

√√√√ 1
max

max∑
k=0

(HI(k)− H̄I)2 (4)

where f8 refers to the over exposure feature, max is the number of levels -1
in the histogram, HI(k) is the number of pixels of Image I with level k, H̄I

is the mean of the histogram.

Under Exposure Under exposure describes an underutilization of the
dynamic range of a camera. It tends to result in the majority of the values
in the image’s histogram residing in the lower half of the histogram.

f9 =
.2·max∑
k=0

HI(k)−

√√√√ 1
max

max∑
k=0

(HI(k)− H̄I)2 (5)
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This algorithm is identical to the over exposure algorithm except that it
takes into account the first 20% of the image. Under exposure tends to be
simply an underutilization of the dynamic range of the camera and results
in the majority of the values being located in the lower valued bins.

3.2.4 Average RGB HSV Tests

(a) Hue (b) Saturation (c) Value

Figure 8: HSV Space

Transforming an RGB pixel into HSV (Hue, Saturation, Value) space pro-
vides a more intuitive sense of information at that pixel. Transforming the
image from Figure 2 into HSV space results in Figure 8.

The first features simply average the RGB of every pixel in an image
and then convert this pixel into HSV. Then feature f9 - f10 are the H and
S channel from that pixel, respectively. The Value channel is not a feature
here because there is an equivalent feature in Section 3.2.6.

3.2.5 Hue Tests

Color has a very influential effect on humans. Psychological tests [17] have
suggested that certain colors have specific mood altering effects. Other tests
tend to display that people have a propensity towards blue and green over
other colors. Due to this evidence, I focused on the H channel and subjected
it to a series of tests to see how closely the color in this image lies to colors
that people tend to enjoy.

I applied the following tests to the Hue from the previous section. The
first test, feature f11 , simply finds the distance from the Hue to blue (hue
of 240). The second test, feature f12 , is the distance from the Hue to green
(hue of 140) as the target hue. The final test, feature f13 , is the minimum
of the previous two tests.
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3.2.6 Fixed HSV Tests
PROBLEMS WITH HSV

Original Hue Saturation

Figure 9: Highlight of Abnormalities in HSV Space

Ke et al. [11] touched on the fact that unintuitive results arise from cer-
tain channels of the HSV image when the value channel and the saturation
channel are not within a given range. If we look at Figure 9 we see that in
the shadows and the highlights there are Hue values and saturation values
that are nonsensical. Notice as the shirt gets darker, the saturation becomes
greater! Equally disturbing is that as the sky transitions to being clipped,
the hue changes drastically. The average for each channel is altered to ac-
count for these abnormalities. Those averages are computed by Algorithm 1
and correspond to features f14 - f16 .

Algorithm 1 Fixed HSV Algorithm:
Value always added to the running average.
if Value≥ 0.35 &&Value ≤ .95 then

Saturation of current pixel added to running average.
if Saturation ≥ 0.2 then

Hue of current pixel added to running average.
end if

end if

Feature f17 simply uses a heuristic function that takes feature f15 as in-
put. Like previous filters, I generated it by looking at a small set of images.
I adjusted a saturation slider in an image-editing application until I hit ob-
vious thresholds separating good regions and bad regions. These thresholds
became the inflection points in the function. The function displays that
black and white images and well-saturated images in a certain range are
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favored, but images that are under-saturated or over-saturated tend to look
poor. The function shown in Figure 10 reflects these general trends.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

Figure 10: Saturation Filter

I use the same set of hue tests from Section 3.2.5 run for feature f14

generate features f18 - f20 .

3.2.7 Most Common Hue

Another feature that has not previously appeared in AIR literature, feature
f21 , is the most common hue (MCH). In an attempt to find a more mean-
ingful feature than simply a mean, I located the hue that occurs most in
the image, visually represented in Figure 11. To achieve this I took the hue
histogram and computed its derivative. Then, I found the maximum Hue
from the places where the derivative is either zero or changes from positive
to negative. This is the MCH.

This most common hue is then subjected to the same battery of tests in
Section 3.2.5, which correspond to feature f22 - f24 .

3.2.8 Complementary Color Hue Features

It is common knowledge in the art community that using a complementary
color scheme makes a piece more aesthetically pleasing. Datta et al.[6] cre-
ated features that tried to measure complementary color using the average
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color of various segments. I do not feel this properly deals with the corner
case of the subject being one color and the background being a complemen-
tary color, therefore, I chose to use a different approach. This feature uses
the MCH, feature f21, and looks for the second most common hue (SMCH).
The second most common hue is defined as the hue that has the most occur-
rences and lies more than 20% of the total hue space away from the MCH.
Taking the normalized distance between these two hues results in my com-
plementary color hue feature, f25 . Figure 11 displays the MCH and SMCH
concept and the distance between the two as I have described.

WHY SETTLE FOR AVERAGE?

MCH

SMCH

Rather than relying on means, we
 find the Most Common Hue (MCH) 

and the Second Most Common Hue (SMCH)
using the maxima in the hue histogram

Hue Histogram

#

Hue

Figure 11: MCH and NMCH

3.2.9 Hue Count

Feature f26 is the “Hue Count” technique from Ke et al. paper [11]. The
algorithm involves simply creating and arbitrarily thresholding a 20 bin Hue
histogram. Then, Equation 6

N = {i | H(i) > αm} (6)

is computed. Where m is the maximum value and α is a variable to reduce
noise sensitivity. Ke suggests 0.05 as a good value for α. 20−N is the Hue
Count. According to Ke et al., a smaller N correlates to higher rated images
because professional images are compositionally simpler than snapshots.
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3.3 Spacial Features

3.3.1 Fourier Space tests

For these tests, the magnitude of the DFT applied to the the luminosity
image is computed. Then the bottom half is removed, as is displayed in
Figure 12.

Figure 12: Top Half of DFT Magnitude

Angle frequency tests One property of the (DC centered) DFT is that
the angle from the center of the image to a frequency gives the angular
propagation of that frequency. These features attempt to determine if the
human visual system sees more frequencies with a given angle, relative to
all others, as aesthetically pleasing. Put another way: are images with more
horizontal content than vertical content pleasing?

This novel metric requires taking the top half of the magnitude of the
DFT and dividing it into six angular sections, as is shown in Figure 13.
Features f27 - f32 are the ratios of the sums of the magnitudes in each
individual region compared to the sum of all magnitudes.

Figure 13: Angular Regions of the DFT magnitude Image

Frequency range cutoff The next metric I invented took various ranges
of frequencies from the DFT. For example, the ratio obtained from compar-
ing the zeroeth frequency region to the whole image’s power tells you if the
majority of the image content is low frequency. Low frequency content just
refers to largest scale changes such as a gradient across an image.
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The top half of the magnitude of the DFT is taken and divided into four
radial sections, as is shown in Figure 14 . Features f33 - f36 are the ratios of
the sums of the magnitudes in each individual region compared to the sum
of all magnitudes.

Figure 14: Frequency Cutoffs for the DFT magnitude Image

Mean Feature f37 is the mean of the magnitude of the DFT. It is simply
a measure of the power in the image.

The above Fourier tests were similarly run on the B channel image to
produce features f38 - f48 .

Ke Blur Analysis Feature f49 is another from Ke et al. [11]. It takes the
magnitude of the DFT and, using a threshold of five, obtains a binary image.
The mean of this binary image is the Ke Blur feature. Ke claimed that this,
combined with the Tong et al. algorithm [14], was his most discriminating
feature. I chose not to use the Tong et al. algorithm because I could not
obtain the binaries, as Ke et al.[11] did, and the paper did not explain the
algorithm in sufficient detail (or appropriate terminology) to re-implement
it.

3.3.2 Ratio of edges at borders versus total edges

Ke et al. claimed that the distribution of the edges was the second most
effective feature in differentiating low-rated images from high-rated ones. I
chose not to implement Ke et al’.s algorithm because it involved two image
masks that I did not have access to. Also, the two masks were obtained
from summing up the images in two classes, making the metric somewhat
suspect. Essentially, using their method seemed to tune the feature to the
particular dataset they were using.

My feature f50 essentially measures the same effect. The algorithm takes
the original image and transforms it into luminosity space. Then, I apply a
1 sigma, first order, Canny-Deriche filter on the image, see Figure 15. This
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edge image is squared to obtain absolute changes. Then, all the pixels within
a border, the width being 10% of the smallest dimension, are summed and
the ratio of the pixels within the border to all the other pixels in the edge
image is computed, shown in Figure 16. The result of the ratio for the Value
space image generates feature f51 .

Figure 15: Luminosity Edge Image

RATIO OF BORDER EDGES 

VS TOTAL

10% of smallest dimension

Figure 16: Border of Luminosity Edges Image

3.3.3 Wavelet Tests

All wavelet analysis uses a three level Daubechies wavelet transform, as de-
scribed in Datta et al. [6]. A three level Daubechies wavelet transform
applied to the image in Figure 2 produces Figure 17. A level consists of
three images. The three images, LH, HL, and HH, correspond to an image
that has had a highpass or lowpass filter applied to a given direction. LH
has had a lowpass filter applied to it in the horizontal direction and a high-
pass filter applied in the vertical direction. Running the image through the
filter bank is recursively applied three times to produce Figure 17. Level
one corresponds to the content with the smallest spatial variation, whereas

17



level three corresponds to image content with the largest spatial variation;
therefore noise is commonly captured by the first level.

WAVELET INTRO

HH

LH

HL

This is a 3 level Daubechies transform of the luminosity channel. 
It gives you a sense of edge information at various image scales.

2nd level

Figure 17: 3 Level Daubechies Wavelet Transform of Image in Figure 2

Dattas wavelet level analysis Datta et al [6] introduced the concept of
taking the ratio of the sum of each wavelet level versus the sum from all
levels, see Equation 7. Features f52 - f60 are this analysis for each channel
in Lab space, where the levels are in ascending order. Similarly, the features
f61 - f69 are for the channels in the HSV space.

Absolute means I wanted to see if the average of each wavelet level had
more importance than the relative power of a level with the others. Thus,
features f70 - f78 are the mean of each level for Lab space and features f79

- f87 are the same analysis for the HSV space.

Ratio of wavelets in Luminocity at borders versus total In light of
the discovery by Ke et al., that the edge distribution is important and given
the wavelet levels measure edges in a weak sense, I chose to test if comparing
the sum of the power at the border of each wavelet level to the total power
was a discriminate a feature. I used the method of determining the border
as in Section 3.3.2. Features f88 - f90 are the ratios for each level

3.3.4 DOF measures

These features are taken from Datta et al. [6]; they are a comparison of the
sum of the central region of the third wavelet level versus the sum of all the
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pixels in this level. Figure 18 displays the division scheme and Equation 7
explicitly describes this feature for a single level.

fx =

∑
(x,y)∈M6∪M7∪M10∪M11

wl(x, y)

16∑
i=0

∑
(x,y)∈Mi

wl(x, y)

(7)

where {M1, ..., M16} are the 16 equal rectangular blocks, numbered in row-
major order, created by the division scheme; wl is {whh

l , wlh
l , w

hl
l } for a given

wavelet level l.
I chose to apply this same analysis to each level. Features f91 - f99

correspond to doing this analysis for each level and every channel in the
Lab Space and features f100 - f108 are similarly defined for the HSV space.

DATTA’S WAVELET FEATURES

We re-implemented a feature from Datta et al. by taking the sum of each 

level and comparing it to the sum of all levels.

Datta also proposed a feature that consists of breaking the 3rd wavelet level 

image into fourths and comparing the center of the image to the border. We 

chose to re-implement this for all levels. 

Figure 18: Depth of Field Sectioning

3.3.5 Novel ROT/ROH tests

Ratio of one region of image verses others
I have a novel interpretation about how to determine one aspect of the

rule of thirds that I have not seen discussed or presented previously. Most
images that follow the rule of thirds seem to follow two sets of rules. First is
the rule that states that the center of the subject matter should lie near the
third regions intersection points, see Figure 19. The second rule is that one
should divide regions on one of the third region division lines. I interpret
this to mean third regions to help divide up an image in terms of color,
texture, luminosity, etc.
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RULE OF THIRDS (ROT)

This is commonly taught as a very important rule in photography. 

We interpret it to be separable into two rules.

Place interesting content near the intersections of the third divisions. 

Try to align large changes in an image on a third divisions.

(a) Rule of Thirds Divisions

ROT IN PRACTICE

Notice the horizon line is almost perfectly on a third division. 
In this example the interesting content doesn’t lie 

exactly at the intersections but it is close

(b) Rule of Thirds Applied

Figure 19: Rule of Thirds

Thus, I devised a set of tests that I feel accurately assess the first and
second aspect of the rule of thirds. My feature for the first test involves
simply summing up the pixels of the image weighted by the inverse of the
distance from one of the rule of thirds points, see Equation 8.

Sp(k,l)
=

N−1∑
n=0

M−1∑
m=0

1√
(n− k)2 + (m− l)2 + 1

I(n,m) (8)

Sp(k,l)
=

N−1∑
n=0

M−1∑
m=0

1
(n− k)2 + (m− l)2 + 1

I(n,m) (9)

where Sp(k,l)
is the sum of all the weighted pixels relative to point p, p is an

intersection point at coordinate (k, l) and I(n,m) is the value of image I at
point (n,m), N is the x dimension of the image, and M is the y dimension
of the image.

The sums from each of the four rule of thirds intersection points discussed
above are features f109 - f112 for the luminosity edges image. The sums
from all the intersection points is feature f113. I also weight the pixels by
the inverse of the radius squared, Equation 9, to generate features f114 -
f118. This whole procedure is repeated for the value edges image to produce
features f119 - f128.

For the second rule of thirds test, I simply take the average of one of the
third regions for a given image and compare it to the combination of the
other two regions. Figure 20 gives a conceptual sense of this and Equation 10
formally describes how I compute the ratios.
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ROT/ROH REGION FEATURES

1 2

1

2

We compare one third region against the other two. 
We repeat this process for each third division.

Similarly we repeat this for ROH divided images.

Figure 20: Rule of Thirds Sectioning

fx =
(σ1 − σ2)
(σ1 + σ2)

(10)

where fx is the feature for the current third region, σ1 is the sum of all third
regions other than the current one and σ2 is the sum of the current third
region.

These ratios produce features f129 - f131 for the luminosity edge image,
f132 - f134 for the value edge image, f135 - f143 for the set of channels from
the fixed HSV space, and f144 - f152 for the set of channels from the Lab
space.

Santella et al. [12] discuss preferring crops created using a rule of halves
procedure over crops created using the rule of thirds. I concede that images
using the rule of halves might be more aesthetically pleasing than rule of
thirds images. Therefore, I repeated all the above tests using two divisions
of the image rather than three. This generated features f153 - f173.

3.4 Saliency Map Features

The saliency map, developed by Itti et al. [10], can be interpreted as an
image where a larger pixel intensity corresponds to image content that is
most interesting to the human eye. The saliency map for Figure 2 is shown
in Figure 21 The saliency map was utilized in Gaze-based interaction for
semi-automatic photo cropping [12] for determining an optimal composition
for the crop of an image.
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Figure 21: Saliency Map

3.4.1 Ratio of saliency from ROT/ROH locations

By repeating my analysis from Section 3.3.5 for the saliency map, I generate
features f174 - f200 .

3.4.2 Ratio of saliency at borders versus total saliency

I applied the same analysis from Section 3.3.2 to the saliency map. The
reasoning being that both salient content and edges near the borders are
just as distracting. Then, the ratio is computed between the saliency within
that border and the total amount of saliency in the image. This is feature
f201.

3.4.3 Saliency Center of Mass

A common concept in graphic design is to reduce tension in an image by
keeping it balanced. Based on this concept that the salient content within
an image should be balanced, I postulate that images with a center of mass
near the center of the image will be more aesthetically pleasing. The x and
y location of the center of mass for all the saliency in the image, computed
by Equation 11, are features f202 and f203.

ICOMx =
N−1∑
n=0

M−1∑
m=0

n× I(n,m)

ICOMy =
N−1∑
n=0

M−1∑
m=0

m× I(n,m)

(11)
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where ICOMx is the center of mass for the x dimension, N is the size of the
X dimension of the image, M is the size of the Y dimension of the image,
and I(n,m) is the value of the pixel in image I at point (n,m)

3.4.4 Saliency Map Segments

In the same manner described in Santella et al., [12] I created segments
by thresholding the saliency map based on a percentage of the maximum
salience. The threshold I chose was 25% of the maximum saliency. Empiri-
cally, this yielded appropriately sized segments. These segments were then
labeled, which created an image like the one in Figure 22. I subsequently
analyze the segmented image using the techniques listed below.

Figure 22: Saliency Map Segments

I computed the center of mass for the largest contiguous segment using
the same approach as Equation 11, but applying it to a binary image where
the pixels from the largest region are assigned 1 and all other pixels are 0.
These normalized coordinates, x and y, are features f204 and f205 .

Datta et al. [6] also performed segmentation, but used a different ap-
proach. One way they analyzed their largest segment was by locating which
quadrant it is located in. I copied this concept for feature f206, which is the
quadrant where the largest saliency segment’s centroid lies.

Closeness to ROT/ROH locations For feature f207 I follow in the
footsteps of Gaze-based interaction for semi-automatic photo cropping [12].
In this paper, Santella et al. attempted to determine the best way to perform
automatic cropping. I utilized an algorithm that is similar to the one they

23



introduced. It involves finding the centroid of all the regions and calculating
each region’s distance to the closest rule of thirds intersection point. The
sum of all these distances is feature f207.

3.5 Frameworks Employed

Due to the complex nature of some of the image decomposition techniques
various software packages were used to aid in the overall processing of im-
ages. CImg [15] was the framework that provided the most support for
implementation of the various algorithms. Waili [16] was necessary for per-
forming the three level Daubechies discrete wavelet transform. Finally, the
iLab Neuromorphic Vision Toolkit [1] was used to create saliency maps.

4 Methodology

4.1 Datasets

I chose to use two datasets in my study. The first dataset is from the 2006
Datta et al. publication[6]. My set consists of a 3,181 image subset from
Dattas original set of photographs taken from the photo.net photo rating
community. However, there is a major flaw in this dataset; there are a large
quantity of images with a small number of ratings. This flaw is apparent
from the graph Datta published shown in Figure 23. Datta et al. highlighted
the seriousness of this issue by plotting the threshold of minimum number of
ratings required per image versus the amount of classification improvement
in his algorithm.
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2.3 Selecting High-quality Pictures
Equipped with the above two methods, we are now ready

to describe our approach to selecting high-quality images.
First we need a definition for ‘high-quality’. An image Ik

is considered to be visually of high-quality if its estimated
consensus score, as determined by a subset of the popula-
tion, exceeds a predetermined threshold, i.e., q̂k ≥ HIGH .
Now, the task is to automatically select T high-quality im-
ages out of a collection of N images. Clearly, this problem
is no longer one of classification, but that of retrieval. The
goal is to have high precision in retrieving pictures, such
that a large percentage of the T pictures selected are of
high-quality. To achieve this, we perform the following:

1. A weighted regression model (Sec. 2.1) is learned on
the training data.

2. A naive Bayes’ classifier (Sec. 2.2) is learned on train-

ing data, where the class labels ĥk are defined as

ĥk =
+1 if q̂k ≥ HIGH
−1 if q̂k < HIGH

3. Given an unseen set of N test images, we get predict
consensus scores {q̂1, · · · , q̂N} using the weighted re-
gression model, which we sort in descending order.

4. Using the naive Bayes’ classifier, we start from the top
of the ranklist, selecting images for which the predicted

class is +1, i.e., ĥ = +1, and Pr(H=+1|X(1),··· ,X(D))
Pr(H=−1|X(1),··· ,X(D))

>

θ, until T of them have been selected. This filter ap-
plied to the ranked list therefore requires that only
those images at the top of the ranked list that are also
classified as high-quality by the naive Bayes’ (and con-
vincingly so) are allowed to pass. For our experiments,
we chose θ = 5 arbitrarily and got satisfactory results.

2.4 Eliminating Low-quality Pictures
Here, we first need to define ‘low-quality’. An image Ik

is considered to be visually of low-quality if its consensus
score is below a threshold, i.e., q̂k ≤ LOW . Again, the task
is to automatically filter out T low-quality images out of a
collection of N images, as part of a space-saving strategy
(e.g., presented to the user for deletion). The goal is to have
high precision in eliminating low-quality pictures, with the
added requirement that as few high-quality ones (defined by
threshold HIGH) be eliminated in the process as possible.
Thus, we wish to eliminate as many images having score ≤
LOW as possible, while keeping those with score ≥ HIGH
low in count. Here, steps 1 and 2 of the procedure are same
as before, while steps 3 and 4 differ as follows:

1. In Step 3, instead of sorting the predicted consensus
scores in descending order, we do so in ascending order.

2. In Step 4, we start from the top of the ranklist, se-
lecting images for which the predicted class is -1 (not
+1, as before), by a margin. This acts as as a two-fold
filter: (a) low values for the regressed score ensure pref-
erence toward selecting low-quality pictures, and (b) a
predicted class of −1 by the naive Bayes’ classifier pre-
vents those with HIGH scores from being eliminated.

3. EXPERIMENTS
All experiments are performed on the same dataset ob-

tained from Photo.net that was used in [3], consisting of 3581
images, each rated publicly by one or more Photo.net users
on a 1− 7 scale, on two parameters, (a) aesthetics, and (b)
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Figure 2: Distributions of no. of ratings (left) and scores

(right) in the Photo.net dataset.

originality. As before, we use the aesthetics score as a mea-
sure of quality. While individual scores are unavailable, we
do have the average scores q̂k for each image Ik, and the no.
of ratings nk given to it. The score distribution in the 1− 7
range, along with the distribution of the per-image number
of ratings, is presented in Fig. 2. Note that the lowest aver-
age score given to an image is 3.55, and that the number of
ratings has a heavy-tailed distribution. The same 56 visual
features extracted in [3] (which include measures for bright-
ness, contrast, depth-of-field, saturation, shape convexity,
region composition, etc.) are used here as well, but without
any feature selection being performed. Furthermore, nonlin-
ear powers of each of these features, namely their squares,
cubes, and square-roots, are augmented with them to get
D = 224 dimensional feature vectors describing each image.
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Figure 3: Precision in selecting high-quality images, shown

here for three selection set sizes, T = 10, 20, and 30. Bottom-

right: Impact of using weighted model estimation vs. their

unweighted counterparts, with HIGH fixed and T varying.

3.1 Selecting High-quality Pictures
Using the procedure described in Sec. 2.3, we perform

experiments for selection of high-quality images for differ-
ent values of HIGH , ranging over 4.8 − 6.0 out of a pos-
sible 7, in intervals of 0.1. In each case, 1000 images are
drawn uniformly at random from the 3581 images for test-
ing, and the remaining are used for training the regressor
and the classifier. The task here is to select T = 5, 10,
and 20 images out of the pool of 1000 (other values of
T ≤ 50 showed similar trends), and measure the precision

= #(high-quality images selected)
#(images selected)

, where the denominator is a

chosen T . We compare our approach with three baselines.
First, we use only the regressor and not the subsequent clas-
sifier (named ‘Regression only’). Next we use an SVM, as

535

Figure 23: photo.net Dataset’s Number of Ratings per Image [7]

The second dataset I utilized was introduced in the paper by Ke et
al.[11]. It is a substantially larger dataset, consisting of 12,116 photos, and
was taken from the dpchallenge.com community. In addition, the number
of ratings per photograph in this dataset are significantly higher on average,
obvious from Figure 24.
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Figure 24: dpchallenge.com Dataset’s Number of Ratings per Image

Finally, it is important to note that the datasets I discuss above are a
subset of the originals. This occurred because the researchers were unwilling
to provide the images, for fear of copyright infringement. I crawled the
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various sites to collect these images; many, however, had since been removed.

4.2 Feature Selection

The feature selection technique I chose to use is a variant of the F-Score +
SVM technique that was created by Chen and Lin[4]. F-score is a simple
measure of the discrimination of two sets of real numbers. Equation 12 shows
the f-score of the ith feature, where the number of negative and positive
instances are n− and n+ and the training vectors are xn for n = 1, 2, ..., l.

F (i) ≡ (x̄i
(+) − x̄i)2 + (x̄i

(−) − x̄i)2

1
n+−1

n+∑
k=1

(x(+)
k,i − x̄i

(+))2 +
1

n− − 1

n−∑
k=1

(x(−)
k,i − x̄i

(−))2
(12)

here the average of the ith feature of the whole, positive and negative data
sets are x̄i, x̄i

(+), x̄i
(−), respectively. The ith feature of the kth positive

and negative instance are x(+)
k,i and x

(−)
k,i , respectively. In Equation 12 the

numerator indicates the discrimination between the positive and negative
sets, while the denominator indicates the discrimination within each set.
The larger the F-score is, the more likely this feature is to have a greater
discriminative ability. [4]

This metric is used to test each feature and allows us to gain some
sense of the order of discrimination ability of the individual features. The
features are sorted by their F-Score and placed into a list. Recursively, the
top half of this list has its classification accuracy tested using SVM until
the list becomes smaller than two. The SVM classification is tested using a
five fold cross validation through LibSVM [3]. The set with the best SVM
classification is selected as optimal. From my initial tests, this method
showed similar results to the brute force method, introduced by Datta [6]
of acquiring the SVM classification accuracy of each individual feature. I
did, however, choose to obtain the individual accuracies for the top fifteen
highest f-scoring features, attempting to get a more reliable measure of their
relative abilities.

The above technique requires binary classified data but the data has a
continuous range of ratings; therefore, I must threshold the data into two
classes so that I can apply the feature selection technique. For the photo.net
data, I threshold it in the same manner Datta et al.[6] discussed, by setting
the lower threshold at 4.2 and the upper threshold at 5.8. I chose to threshold
the dpchallenge data at 5, since Ke et al. already separated the data into
two groups; those groups being the top and bottom 10%.
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I validate the optimal feature set by computing an ROC curve on the bi-
nary classified data. The ROC is a powerful tool which allows one to discern
how well the optimal feature set performs regardless of which classification
technique is applied to it. It also allows us to compute the area under the
curve (AUC), which represents how well the optimal feature set separates
the two classes. Basically, the AUC for the ROC is a more universally
comparable metric than the output of my SVM classifier.

4.3 Regression

After finding the optimal feature set using classification, I wanted to obtain
the goal of this paper: to acquire an Aesthetic Image Rater. To obtain
my AIR function, I used regression. The data is prepared for regression by
normalizing the ratings from both datasets to ensure that they ranged from
0 to 1, rather than 0 to 7 or 0 to 10, then adjusting the means of the datasets
to be 0.5. The specific regression technique I chose to employ is nu-SVR
(support vector regression).

5 Results

5.1 Feature Selection

From the binary classification technique discussed in Section 4.2, I deter-
mined the optimal feature set, for both datasets, to be a 63 feature set.
This feature set resulted in a 74.96% classification accuracy for the photo.net
dataset and a 75.32% classification accuracy for the dpChallenge.com dataset.
These two accuracies are higher than the ones published by Datta et al. or
Ke et al., which led me to believe that my feature set is better; but, because
I am using subsets of of the original datasets, it is impossible to claim this
with certainty. Also, trying to compare my two classification accuracies is
unproductive since the thresholds are substantially different. I can, however,
judge the relative performance of the individual features, thus allowing me
to compare my novel features with those that were previously introduced.
The top 15 features and their individual accuracies for the dpchallenge.com
dataset and the photo.net dataset are shown in Figure 25.
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Figure 25: The Top 15 Ratings for Each dataset

It is worth noting that when we combine the two sets of features the
top five features from this set {f46, f35, f44, f1, f47} are all features that I
created.

The ROC curves for the two datasets are shown in Figure 26. The AUC
value is 74.95% for the photo.net curve and 77.71% for the dpchallenge.com
curve. These curves confirm that the chosen set of features have excellent
performance.

(a) photo.net ROC Curve (b) dpchallenge.com ROC Curve

Figure 26: ROC Curves
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5.2 Regression

After performing nu-SVR on the normalized datasets, I found the mean
squared error (MSE) to be 0.0113 for the photo.net dataset and 0.0127
for the dpChallenge.com dataset. Surprisingly, combining the two datasets
results in a smaller MSE of 0.0109. To generate a more intuitive result I
rescale the normalized data to a rating range from 1 to 5, the standard
range for photo management software, and on average I was only off by
.52 of a rating point. This error is very reasonable and makes it possible
to say with certainty that I have discovered an efficient set of features for
photo management software users and more generally to achieve my goal of
creating an AIR algorithm .

6 Discussion and Future Work

During the development of this AIR algorithm, I added to the set of known
features that strongly correlate to human rating of images. I was able to
unify previous features that were claimed to perform well and attest to their
relative performance with my features. My features outperformed all the
features I was able to recreate from previous papers. More importantly than
individual feature performance my feature set shows excellent performance
at the task of creating absolute image ratings on par with a human’s.

Regardless of my improvements, more efficient features need to be cre-
ated to ensure that the ratings assigned to images are reliable. To compare
the performance of the new features, a standard set of photographs is needed.
Without this standard set of images, papers will continue to be published
that contain useless performance measures.

I believe that if even a small amount of more efficient features are discov-
ered, this algorithm will be reliable enough to be included in every piece of
photo management software; and, as camera’s processors become more pow-
erful, soon be included directly in digital cameras as a source of immediate
feedback.

Including the algorithm in cameras is a step in the right direction for
helping users improve their images. However, with all the information one
is able to gather in this process, it seems as if more than just a rating
should be relayed to the end user. A concept I had, which appears to be
novel, is to attempt to expose the internals of the multidimensional space to
the user. Exposing more information to the user would allow her feedback
based on all the criteria the algorithm is using; thus allowing her to learn
quickly and adjust her photographs accordingly. This can be accomplished
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by providing the end user with an approach on how to adjust her image to
direct it towards a higher rating area of the multidimensional space. I do not
know of an optimal technique to achieve this end. Although, it appears that
there are papers, such as Discriminative Direction for Kernel Classifiers [8],
that offer a promising approach. Aiding humans is really the goal of AIR
algorithm, and, turning this algorithm into an informative guide rather than
a simple judge, would surely solidify its use in all image related applications.
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