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1 Introduction 
 
Due to the increasing amount of available electronic text, there is a growing need for 
an automated system to extract certain information from natural language documents 
so they may be organized for data mining purposes. For example, we may be 
interested in extracting certain data such as names of people, organizations, and 
locations from the numerous news articles available. This task can be accomplished 
using named entity tagging, in which tokens in natural language text are classified 
into categories such as names of people, date, company names, etc. For example, 
given the following sentence 

President Bush on Monday launched a rare round of intensive 
personal diplomacy with Saudi King Abdullah aimed at winning support 
for a variety of American objectives such as rebuilding Iraq, pressuring 
Iran, fighting al-Qaeda and backing the U.S.-brokered peace talks 
between Israel and the Palestinians. 

We may want to tag �President Bush� and �Saudi King Abdullah� as names of people, 
�Iraq�, �al-Qaeda�, �Iran� as political entities, etc.  Once extracted, these data has 
can then be analyzed or used to build more structured databases. Named entity 
tagging is an important task in information extraction and can be applied to a variety 
of fields such as natural language processing and bioinformatics. 
 
There are a variety of algorithms that could be applied to the problem of named entity 
tagging (Grishman, 2003). In this paper, we will first introduce a few effective 
algorithms and models that have been used for named entity tagging as well as their 
strengths and weaknesses. Then we will propose to use a recently developed model 
called Markov Logic Network to improve upon existing models. MLN is a very 
powerful statistical relational learning model that provides a very rich representation 
(Richardson and Domingos, 2006). We will show that using our approach, we are able 
to model complex dependencies in our named entity extraction task to achieve a better 
result. We now begin by introducing some background on related named entity 
tagging approaches. 
 
2 History and Related Work 
 
2.1 Early named entity tagging. 
 
Early approaches to the problem of named entity tagging involve a lot of human effort 
(Grishman, 2003). For example, we can write a complex series of regular expressions 
to match each category of entities. We may also need to develop a large dictionary of 
common names or locations so each token in the text can be compared to ones in the 
dictionary. These systems have been quite effective in resolving entities in a particular 
domain. However, the development of these systems requires a lot of human effort 
and expertise on the subject, which takes a substantial amount of time to develop. In 
addition, these forms of named entity taggers are engineered to suit a specific domain, 



and can not be easily extended to new categories of texts.  
 

These limitations motivated the development of machine learning systems in natural 
language processing. There are a number of different machine learning approaches for 
named entity tagging such as decision tree or maximum entropy models. Probabilistic 
graphical models have been very effective because they are capable of handling 
uncertainty. A number of different models have been used, including Hidden Markov 
Models, Maximum Entropy, and others (Grishman 2003). We will now introduce the 
Hidden Markov Model, which is a rather successful probabilistic graphical model.  
 
 
2.2 Hidden Markov Models (HMM) 
  
The problem of named entity tagging differs somewhat from that of classification 
because classifiers such as Naïve Bayes and Logistic Regression are built to predict a 
variable only using its local features. However, in named entity tagging, the label of a 
token is dependent upon its local features as well as context. For example, while the 
word Washington itself may in indicate a location, the two words Mr. Washington 
combined gives strong evidence that the phrase denotes a person. Probabilistic 
graphical models have an advantage in this type of tasks because they have the ability 
to represent such dependencies. If we make an assumption that most of the context 
dependencies are short range and between neighboring nodes, then we can arrange the 
tokens in a sequence. A HMM is such a model that models named entity tagging as a 
sequence labeling task (Rabiner, 1989). In a sequence labeling task, we are interested 
in assigning a label to each elements of a sequence. In this case, our sequence is the 
words that appear in sequential order in a sentence. 
 
A Markov model is a state machine in which state transitions are nondeterministic and 
transitions are made according to a certain probability distribution. The model obeys 
the Markov property, in which given the present state, the future states are 
independent of the past states. A Hidden Markov Model is like a regular Markov 
model, except that the state is hidden and not visible. However, each state will 
produce and influence certain output variables. Therefore, by observing a sequence of 
output variables, we are able to make inferences on the sequence of states that 
produced the output.  
 
 
 
 
 
 
 

FIG 2.2.1 HMM 
 



The above diagram shows the basic structure of a Hidden Markov Model. X is a 
random variable ranging over the sequence of states. In the domain of named entity 
tagging, this might be the named entity labels of the word at position t, which is 
hidden. Y is a random variable ranging over the output of each state. These outputs are 
the observed features associated with each word, such as the identity of the word. If 
we learn the initial probability of the states p(x1) as well as the transition distribution 
p(xt|xt-1) and the observation distribution p(yt|xt),  then we can model the joint 
probability distribution.  
 
Hidden Markov Models have often been used for sequence labeling tasks, but it does 
have weaknesses because it is a generative model. Consider the above Hidden 
Markov Model. There is only one feature variable associated with each state. 
However, we may want to incorporate more output features in our model to improve 
the accuracy of the tagger. For example, for a given token, we do not want to only 
consider the identity of the word. We would also want to take into account features 
such as the previous token, the next token, capitalization, whether the token includes 
any digits or symbols, and other features. The goal of generative graphical models is 
to model the joint probability distributions p(X, Y) where X ranges over the observed 
features about the tokens we wish to tag, and Y ranges over the label of the tokens. If 
we add additional features such as the ones above, then all possible combinations of 
the observed features must be enumerated in order to compute the joint distribution. 
This is usually very difficult to achieve if we want to maintain tractability of 
computation. One solution to this problem is to assume that each observation feature 
is independent from each other. This would reduce the amount of computation 
necessary, and the entire joint distribution can still be derived. However, in real life, 
most observations do have complex dependencies, and assuming independence 
between the features can severely impair the performance of the model. 
 
2.3 Conditional Random Fields (CRF) 
 
Because of the above limitation of a HMM, discriminative models are better suited to 
the problem of named entity tagging. We will now introduce the CRF, which is a 
discriminative version of the HMM. It solves the problem of making computations 
tractable when including complex features (Sutton and McCallum, 2007). 
Comparison of recent experimental results shows that conditional random fields have 
leading performances in information extraction (Sutton and McCallum, 2007).  
 
A Conditional random field solves the problem of generative models by modeling the 
conditional distribution p(X|Y) instead of the joint probability distribution. In the case 
of named entity tagging, we are interested only in determining the labels of the tokens. 
A model of the joint distribution is not necessary. A CRF is an undirected graphical 
model that defines a conditional probability distribution. Because dependencies are 
captured in its representation, dependencies between observations no longer need to 
be modeled explicitly. The advantage of using conditional random fields is that they 



relax the independence assumptions needed by generative models. 
 

In a CRF, each vertex represents a random variable. Each dependent pair of vertices is 
linked together by an edge. A CRF is globally conditioned on the observation 
sequence X. 

 
Even though the structure of a CRF may be random, in named entity recognition 
systems, one specific type of CRF is most commonly used, the linear-chain CRF. In a 
linear-chain CRF, the set of output label variables are arranged in a sequence just like 
a HMM. The only dependency relationships are between an output variable and the 
previous variable in the sequence, as well as the observations corresponding to that 
variable. This closely corresponds to the sequenced Hidden Markov Model discussed 
earlier.  
 
 
 
 
 
 
 
 
 
 

  FIG 2.3.1 CRF 
 
In this model, the only dependency relationship would be between each label and its 
previous label, as well as between each label and the set of features associated with 
that token. The linear chain CRF has many advantages over CRFs in general. It allows 
for efficient exact inference while exact inference may be intractable in CRFs in 
general.  
 
Even though linear chain CRF has many advantages over some of the more traditional 
models, it also has weaknesses. In a linear chain CRF, we assumed that the only 
dependencies are between the labels of adjacent words. Thus, CRFs are not able to 
use information from longer range dependencies to assist in the labeling. Returning to 
our previous example, even if Mr. Washington is tagged correctly as a name because it 
is preceded by a title, another occurrence Washington by itself later in the text may be 
incorrectly tagged as a location. We would like to add additional dependencies such 
that the labeling of one token would influence the labeling of another identical token. 

  
As a result, researchers have turned to using a variety of statistical relational learning 
methods to increase the accuracy. Statistical relational learning (SRL) is a 
combination of probabilistic learning and relational learning (Richardson and 
Domingos, 2007). The strength of probabilistic models is that they can handle 



uncertainty in learning and reasoning. Meanwhile, first order logic or relational 
databases can effectively represent a wide range of knowledge. Statistical relational 
learning techniques attempt to combine the strength of the two approaches. This 
combined strength of probabilistic learning and relational learning gives SRLs more 
power in learning and inferences (Richardson and Domingos, 2007).  Recently, there 
has been some interest in the application of SRL techniques to information extraction. 
Bunescu and Mooney have used Relational Markov Networks to identify protein 
names in biomedical text (Bunescu and Mooney, 2007). Domingos and Poon have 
applied Markov Logic Networks for the segmentation and entity resolution of 
bibliographic citations (Poon and Domingos, 2007).  
 
Here, we will propose to use the power of Markov Logic Networks to model these 
longer range dependencies. We will now introduce Markov Logic Networks, and then 
present the specific MLN representations we used for our named entity tagging 
problem. 
 
2.4 Markov Logic Networks (MLN) 
 
Markov Logic Networks is SRL technique that combines first order logic and Markov 
Networks. Combining the strengths of these two techniques give us the flexibility of 
knowledge representation as well as the ability to handle uncertainty. We will now 
provide an introduction to Markov Networks as well as first order logic and then 
discuss how these two techniques are combined in Markov Logic Networks  
 
2.4.1 Markov Networks 
 
A Markov Network is an undirected probabilistic graphical model that specifies the 
joint probability distribution. In a Markov network, each vertex represents a random 
variable and each edge indicates a dependency relationship between the two vertices it 
links. A node in the Markov network is conditionally independent of another node in 
the Markov network given its set of neighbors. Each clique in the graph has a 
corresponding potential function associated with it that maps the possible states of the 
elements in the clique to non-negative real numbers.  
 
The joint distribution of a Markov Network is 
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Where X is a vector of random variables represented in the Markov Network, x is an 
assignment to these random variables, φk is a potential function that maps the state of 
the kth clique to non-negative real numbers, and Z is a normalization constant that 
makes sure that the probability of all possible values of x sums to 1.  
 



 
 
A Markov Network is usually more conveniently represented as a log-linear model  
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In this representation, fj(x) is a feature corresponding to each possible state of the 
clique, and wj is the weight associated with the feature, which is usually the value of 
the potential function.  
 
In a Markov Network, exact inference is #P complete (Roth, 1996). Therefore, 
approximation algorithms such as Markov Chain Monte Carlo and Gibbs Sampling 
have been used for efficient approximation inference (Gilks et al., 1996). Belief 
propagation is another commonly used approximation technique (Yedidia et al., 2001). 
 
2.4.2 First Order Logic 
 
First Order Logic is a system of representing knowledge in deductive systems. This 
system is much more expressive than propositional logic because it allows for 
predicates as well as quantification. 
 
The syntax of first order logic is composed of user defined variables, constants, 
functions, and predicates.  
 
A variable ranges over objects in the domain, and are usually represented as lower 
case letters.  
A constant represents a specific object such as a particular person (John), or a specific 
organization (University of Texas). 
Functions are used to map certain objects or tuples of objects to other objects (John = 
FatherOf(Steve)).  
Predicates define certain attributes or relationships between objects (Parent(John, 
Steve)).  
 
First order logic also includes a set of logical connectives and quantifiers. The 
connectives include ¬  (negation), ∧  (conjunction), ∨  (disjunction), → (implication) 
and ↔ (equivalence). Quantifiers include the universal quantifier (∀ ) and existential 
quantifier (∃ ). (∀ x)P(x) is true only if P(x) is true for all possible values of x in the 
domain. (∃ x)P(x) is true if P holds for at least one value of x in the domain. 

A term is a constant symbol, a variable symbol, or function applied to other terms. For 
example, x, John, and FatherOf (Steve) are terms.  

An atom or atomic formula is a predicate applied to terms. For example, Parent(John, 
Steve) is an atom. Atoms can be used to construct formulas by connecting one or more 



atoms using connectives.  For example, if p and q are atomic formulas, then ~q, p ^ q, 
p → q, etc are also formulas. Formulas can be universally quantified or existentially 
quantified.  

A first order knowledge base is a set of formulas in first order logic. It is usually 
represented in conjunctive normal form for convenience. Conjunctive normal form is 
a conjunction of clauses. A clause is a disjunction of literals, which are atoms or 
negated atoms. Inference can then be performed on such a knowledge base. First 
order logic provides an expressive way to describe knowledge, but it is impractical in 
many AI systems. The inference algorithms commonly used include forward chaining, 
backward chaining, and resolution. Unfortunately, these systems are usually 
intractable computationally. For first order logic, Godel�s Completeness Theorem 
states that it is possible to prove a sentence if it is entailed by the knowledge base 
(Russel 2004). However, resolution cannot be used to prove that a sentence is not 
entailed by the knowledge base. Therefore, resolution theorem proving is only 
semidecidable. Another weakness in using pure first order logic is that a formula in 
the knowledge base must be always true, and the knowledge base cannot have any 
inconsistencies within it. In most cases, each formula may be true most of the time, 
but one cannot overlook the possibility that it may be false (Richardson and 
Domingos, 2006). This problem can be solved using Markov Logic Networks, which 
combine first order logic with Markov networks.  

2.4.3 Markov Logic Networks 
 
A Markov logic network consists of a first-order knowledge base with a weight 
attached to each formula. In a first-order knowledge base, each formula is a hard 
constraint on the state of the possible worlds. Therefore, if even one formula is 
violated, the probability of such a world becomes 0. A Markov Logic Network tries to 
soften this constraint to handle uncertainty. Each weight attached to the formula 
specifies how strong the constraint is. The stronger the weight, then a world in which 
the formula is satisfied would have a higher probability than a world in which it is not. 
If a world violates a few formulas, its probability does not become 0. It is just less 
likely to occur than one that does not violate any formulas.  
 
A Markov logic network consists of a set of pairs of (Fi, wi) where Fi is a formula in 
first order logic, and wi is a real number weight associated with the formula. The 
Markov logic network also contains a finite set of constants. The pairs of formulas 
and weights together with the set of constants can be used as a template for 
construction ground Markov networks.  
 
A predicate is ground if all variables in the predicate have been substituted with 
constants. Each possible grounding of each predicate becomes a node in the 
corresponding Markov Network. The value of the node is 1 if the ground predicate is 
true, and 0 if the ground predicate is false. Each possible grounding of each formula 
becomes a feature in the Markov Network. The value of the feature is 1 if the ground 



formula is true, and 0 if the formula is false. Each feature will have a weight attached 
to it. If the ground predicates appear together in at least one grounding of one formula, 
this indicates that there is a dependency relationship between the predicates, and 
hence the Markov Network would have an edge to link these nodes. Therefore, each 
formula forms a clique in the ground Markov Network. Once constructed, inference in 
the ground Markov Networks can be performed in the same way as in regular Markov 
Networks. 
 
For example, in our entity tagging model, we can define some first order logic 
formulas to capture our model: 
 

Identical tokens should be tagged the same: SameToken(x, y) ∧  Label(x, l) ⇒ Label(y, l) 
 

In this formula, x and y are variables of type token, and l is a variable for type label 
We may also define a weight for this formula, or simply learn the weights from 
training data. 
 
Applying this formula to the tokens A and B, and labels Person (P), and Organization 
(O) will result in the following ground Markov network:  

 
FIG 2.4.1 GROUNDED MARKOV NETWORK 

 
Markov Logic Networks subsume all other propositional probabilistic models. 
Probabilistic graphical models can be represented as MLNs simply by defining 
predicates and formulas for the features. A first order knowledge base can also be 
represented as a MLN by setting all the weights to infinity. A MLN can be used to 
represent these other models, but it is more powerful than them. A MLN can handle 
uncertainty and contradictions within the knowledge base. It can also model more 
dependency relationships through its first order logic knowledge representation. This 
gives MLNs more power over CRFs in its application in named entity tagging.  
 
 
 
 



 
3. Algorithms and Methodology 
 
3.1 Alchemy Software 
 
Our MLN model will be developed using the Alchemy system, which is a software 
package developed at the University of Washington that provides interfaces and 
algorithms for modeling Markov Logic Networks (alchemy.cs.washington.edu). 
 
This software package allows us to represent a MLN simply by defining our 
first-order logic predicates and formulas in an input document. Therefore, it provides 
a very versatile system for defining arbitrary dependencies in the MLN. We will then 
provide the ground clauses to Alchemy for training.  
 
3.2 MLN representation 
 
We will now discuss our detailed approach to use MLN�s for information extraction. 
To keep the MLN simple, we used only three features: 
The identity of the word (W), its part of speech (POS), and its capitalization pattern 
(Cb). In our MLN, we will declare predicates to represent each of our features: 
W(word, w), Pos(word, pos), Cb(word, cb). Our task is to determine the label of a 
token given its features and its context. So our query predicate is Label(word, lab).  
 
3.2.1 Basic MLN to Model CRF 
Because the label of a token depends on its features, we will define rules to capture 
this dependency: 
W(x, +a) ⇒ Label(x, +l) 
Cb(x, +a) ⇒ Label(x, +l) 
Pos(x, +a) ⇒ Label(x, +l) 

When a �+� operator is applied, a separate weight is learned for each formula 
obtained by grounding that variable to each of its values. For example, the formula 
Cb(x, +a) ⇒ Label(x,+l) will be expanded into the following formulas: 

Cb(x, Capitalized) ⇒ Label(x, Person) 
Cb(x, Capitalized) ⇒ Label(x, Organization) 
Cb(x, Lowercase) ⇒ Label(x, Person) 
Cb(x, Lowercase) ⇒ Label(x, Organization) 

A distinct weight will be learned for each of these formulas. 

To model the dependency between the label of the previous word and the current label 
as in a linear chain CRF, we now must define a predicate to represent contextual 
information: Neighbor(word, word), representing two consecutive tokens. 
We will also add the following rule into our MLN:  



Neighbor(x, y) ∧  Label(x, +l) ⇒ Label(y, +l) 
 
3.2.2 Including More Short Range Contextual Features 
 
In named entity tagging, knowing more information about a token�s context will 
significantly improve the accuracy of the system. For example, knowing that the 
previous word is Dr., or that the next word is said will greatly increase the probability 
that the current word is a person. Therefore, we will now modify our MLN to include 
information about the previous and next word as well as their part of speech and 
capitalization pattern. To incorporate more contextual information, we will define 
rules to associate a token with features of neighboring tokens.  
Neighbor(x, y) ∧  W(x, +a) ⇒ Label(y, +l) 
Neighbor(x, y) ∧  W(y, +a) ⇒ Label(x, +l) 
We will also add similar rules for Pos and Cb. 
 
 
3.2.3 Including Long Range Dependencies 
 
In addition to modeling neighboring context, we would also like to incorporate longer 
range dependencies. For example, if two tokens are the same word, then they are 
likely to be tagged the same in the same document. One variation of CRF�s, the skip 
chain CRF, is able to model such dependencies between identical tokens (Sutton and 
McCallum, 2007). However, adding this dependency requires a complete 
modification of the CRF�s structure. The advantage of using a MLN is that arbitrary 
dependencies may be specified in just a few formulas.  
 
We will define a predicate to represent two tokens that are the same word: 
SameToken(word, word). 
 
The label of one token will have some influence over the label of another identical 
token: SameToken(x,y) ∧  Label(x, z) ⇒ Label(y,z). 
 
3.3 MLN Weight Training 
 
In addition to the formulas, a MLN must also include the relative weights of each of 
these clauses. For some cases, it is reasonable to hard code these weights, but in our 
case it is unlikely that we will know the relative strength of all of the above 
dependencies before hand. Therefore, we must train the model to automatically learn 
the weights of each formula.  
 
In our system, we already know a specific query predicate we would like to predict, 
which is the label of a token. Therefore, using a discriminative training approach will 
be more effective because in discriminative training, we attempt to maximize p(q|e) 
instead of p(q,e), where q is the query predicates and e is the evidence predicates.  



 
The state-of-the-art discriminative weight learning algorithm for MLN�s is the voted 
perceptron algorithm (Lowd and Domingos, 2007). The voted perceptron is a gradient 
descent algorithm that will first set all the weights to zero. It will iterate through the 
training data and update the weights of each of the formulas based on whether the 
predicted value of the training set matches the true value. Finally, to prevent 
overfitting, we will use the average weights of each iteration rather than the final 
weights. In order to train the data using the voted perceptron algorithm, we must 
know the expected number of true groundings of each clause. This problem is 
generally intractable, and therefore, the MC-SAT algorithm is used for approximation. 
Refer to Singla and Domingos (2005) for a more detailed discussion of the weight 
training algorithm.  
 
3.4 MLN Inference 
 
Inference in MLN requires reasoning with both probabilistic and deterministic 
dependencies. Traditionally, MCMC algorithms have been used for inference in 
probabilistic models, and satisfiability algorithms have been used for pure logical 
systems. Since a MLN contains both probabilistic and deterministic dependencies, 
neither will give good results. In our experiments, the MC-SAT algorithm will be 
used to determine the values of query predicates. The MC-SAT is an algorithm that 
combines MCMC and satisfiability techniques, and therefore performs well in MLN 
inferences. Refer to Poon and Pedro Domingos (2006) for a more detailed discussion 
of the inference algorithm. 

4. Experimental Methodology and Results 

4.1 Dataset 

In order to compare the MLN approach with existing approaches, we tested our 
approach on the ACE dataset (http://projects.ldc.upenn.edu/ace/). This dataset 
contains 97 news articles from various sources. Each document contains 
approximately 400 words. Our task is to tag each word in the dataset with one of the 
following labels: 

1. Person 
2. Organization 
3. Location 
4. Facility 
5. GPE(Geopolitical Entity) 
6. None 

 

 



4.2 Evaluation metrics 

In our experiments, we used cross validation to estimate the accuracy of our named 
entity tagging system. We divided our data into 10 different subsets. Each time, we 
selected a fraction of the data for training, and used all the rest of the data for testing.  

For each of the training and testing sets, we preprocessed the data and extracted the 
capitalization and word features for each token. The part of speech feature is extracted 
using opennlp (opennlp.sourceforge.net).We then used the Alchemy package for 
training as well as testing.  

The MLN tagging system will output the probability of all six labels for a given token. 
We used the label with the highest probability as the predicted output label.  

The accuracy of our system is evaluated using three standard metrics: precision, recall, 
and F1.  

Precision is the fraction of the tokens tagged as a label other than �NONE� that are 
tagged correctly: 

Precision = 
dTotalTagge
ectNumberCorr  

Recall is the fraction of the tokens that should be tagged as a label other than 
�NONE� that are tagged successfully: 

Recall = 
belsExpectedLa
ectNumberCorr  

The F-measure is the weighted harmonic mean of precision and recall. We used the 
F1 measure, which weighed precision and recall equally: 

F1=
)Re(Pr

)Re*(Pr*2
callecision

callecision
+

 

 

4.3 Comparison of CRF vs. MLN 

In our experiment, we first constructed a first order linear chain CRF using Mallet 
(http://mallet.cs.umass.edu/) with the basic features described above. Mallet is a java 
package that can be applied to a variety of machine learning tasks. We used its CRF 
class to construct our CRF. We then constructed the MLN representation in section 



3.1.1 to represent similar dependencies as the CRF. We trained the CRF and MLN on 
5%, 10%, and 20% of the training data. We did not attempt to train our models with 
more than 20% training data because the training time for the MLN increases 
dramatically. When we included both short and long range context, training the MLN 
with 10% of the training data will expand it into about 20000 formulas, and training 
with 20% of the training data will expand the MLN into about 30000 formulas. The 
number of ground clauses for each 10% of the data is over 100000. Therefore, 
training and testing are both very time consuming for bigger datasets.  
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We noticed that the CRF outperformed the MLN slightly, especially with 20% 
training data, in which the MLN performance actually declined. Next, we tested the 
MLN with additional neighboring context. This MLN achieved about a 5% better 
performance in precision, recall, and F1, which is reasonable because we are using 
neighboring token�s features to help determine the label. Finally, we incorporated the 
long range dependencies. In the preprocessing, we removed SameToken clauses 
containing irrelevant words such as articles, prepositions to reduce noise. Removal of 
clauses containing stop words gave us better results, especially with 20% training data. 
For training data less than 20%, the improvement in precision is offset by a drop in 
precision. For 20% training data, the overall improvement is much more significant. 
We used a paired t-test to compare the result for before and after the long range 
dependency is added to the MLN. We found that the improvement by using long 
range dependencies is statistically significant when training on 20% of the training 
data, which gave us a P=0.043.  

 

5 Future Work 

Including additional features or conjunctions of features 

MLN provides a very rich representation and the ability to model complex 
dependencies easily. This allows a lot of room for improvement upon this existing 
model.  

One way to improve our tagger is to include a larger selection of relevant features 
such as bigrams or whether the word appeared in any dictionaries such as a dictionary 
of names or companies. The inclusion of more contextual information should be able 
to improve the performance.  

Another possibility is to use conjunctions of features to improve labeling results. 
Sometimes, the combination of a few features will give us indicative information 
about the label (McCallum 2003). The expressive representation of MLN gives us the 
ability to represent this dependency very easily compared to other models. However, 
we must also be careful to select only relevant conjunctions so the performance will 
not be penalized due to overfitting.  

Co-reference resolution  

The tagger we constructed simply classifies each token into categories. In the ACE 
dataset, each entity may have multiple mentions, and it is useful to determine which 
entity mentions are referring to the same entity. This is the problem of co-reference 
resolution (Denis and Baldridge, 2007). Building upon our existing model, we may be 



able to define an additional MLN to determine which of our labeled entities represent 
the same entity.   

6 Conclusion 

This paper has shown an approach for utilizing Markov Logic Networks for the 
problem of named entity tagging. We also improved upon our basic model by 
including short and long range context to influence the predicted labels. We showed 
that the inclusion of short range context can increase the F1 of the labeling by 5%, 
and that including long range context can positively increase the recall of our labeling. 
Despite this positive increase, the overall improvement is confined to using 20% of 
the training data. 

The expressive representation power of MLN�s provides us a flexible framework for 
modeling information extraction problems. Using this framework, we can easily 
model other graphical models, but we can also modify them to incorporate more 
complex dependencies by the inclusion of additional formulas. Unfortunately, using 
MLN�s do pay a heavy price in training and inference time. 
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