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Abstract

Although machine learning, reinforcement learning, and learning from demonstration have im-
proved the rate and accuracy at which robots can gain intelligence from humans, they haven’t reached
the rapid rate at which humans are able to acquire new knowledge. Many systems that exploit im-
itation learning use simple positive and negative reinforcement, and place the burden of learning
completely on the computer. This neglects the expressive capabilities of humans, as well as their
remarkable ability to quickly refine motor skills. While passive dynamics offers the most human-like
locomotion for bipedal robots, it also relies on particular design specifications. This thesis presents
a general Framework for Interactive Control of a Humanoid by Motion Capture (FICHMC ), that
offers rapid motion development for large classes of bipedal robots. Essentially, a human in a motion-
capture laboratory “puppets” a biped, with a real-time mapping from human to robot. The training
process requires no technical knowledge and provides a natural interface for humans to directly
transfer skills to robots.

1



Contents

1 Introduction 3

2 Background 5
2.1 Human-robotic interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Hardware systems 6
3.1 PhaseSpace IMPULSE Motion Capture System . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 The Aldebaran Nao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Kinematic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 FICHMC : Framework for Interactive Control of Humanoids through Motion Capture 9
4.1 Justifying our approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 User Interface and Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Results 14
5.1 Car-Park Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Discussion 16
6.1 Bipedal locomotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.1.1 Passive dynamic walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1.2 Extending the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.1.3 Alternative approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.1.4 Passive dynamics on the Nao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Conclusion 21

2



1 Introduction

The past few decades have enabled computers to surpass humans at many jobs, specifically those that are
computationally demanding. Hardware is getting faster (and cheaper), the internet contains a massive
amount of useful data, and innovative algorithms are able to parse and interpret this data with remarkable
speed. However, despite the fact that modern computers are capable of outperforming humans at many
tasks, there is still a large group of jobs for which human skill surpasses computers. For example, humans
are easily able to walk across a room, identify a specific friend, and give them a handshake - this is no
trivial task for a robot. However, if you ask a human to determine the average population of every
city in Pennsylvania without using a computer, it would take them days, if not weeks. Computers are
now completely immersed in many people’s lives, and recent breakthroughs in robotics and artificial
intelligence suggest that in the future, robots will also play an integral part in our everyday routine.

Machine learning, the study of algorithms that improve automatically through experience, has dras-
tically improved the rate at which robots can learn. Recently, machine learning algorithms have seen
great success in the training robots to move quickly and efficiently. For example, the work of Saggar,
D’Silva, Kohl, and Stone presents a policy gradient machine learning algorithm specialized for finding
fast quadruped locomotion while ensuring a stable camera [31] (which is necessary for other essential
tasks in robotics such as image segmentation and localization). There are numerous case studies in
which machine learning has been used for on-line and off-line performance improvement in multi-agent
autonomous robot environments [28].

Human-robotic interaction (HRI) examines the principles and methods by which robots and humans
can naturally communicate and interact. In the near future, humanoid robots will not be limited to
scientists and researchers, but to the non-technical community as well. As the number of robots we
interact with on a day-to-day basis increases, the ability for non-technical users to program, train, and
interact with these robots will be vital. Thus, any viable framework for human-robotic interaction should
require very little technical knowledge to use. Additionally, HRI systems should aim to make the method
of communication between robot and human as natural as possible, namely by providing a convenient
interface for the human.

As human-robotic interfaces mature, it is inevitable that agents will need to learn directly from
humans. Learning from demonstration (sometimes called imitation learning) is a process in which a
robot attempts to learn a task by observing a demonstration, typically performed by a human. Imitation
learning is a promising way of transferring knowledge from agent to agent, and work by Dautenhahn and
Nehaniv illustrates how many animals use this technique to learn new skills [10]. A good deal of recent
work in learning from demonstration uses human feedback as a reward signal to a reinforcement learning
or policy-search algorithm [16], [6]. Reinforcement learning, a specialized type of machine learning,
encompasses the task of learning what to do - namely how to map states to actions in order to maximize
a reward function. The learner is not given any instructions as to which action to take, but must explore
the state-space and discern which actions result in the highest reward [34]. Figure 1 shows a typical
control-flow diagram of such a framework (specifically from the TAMER framework proposed by Knox
and Stone [16]). Note that in this scheme, the learning process is fully contained within the agent, with
only its policies influenced by human reinforcement.

While machine learning, reinforcement learning, and learning from demonstration have advanced
the speed and accuracy at which robots can learn from humans, they haven’t even come close to ap-
proaching the rate at which humans are able to acquire new knowledge. In this thesis, we take a new
approach through an innovative framework for training biped robots that exploits a system finely tuned
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Figure 1: Typical flow for training agents via human feedback[16]

by thousands of years of biological evolution: the human body.
Our work introduces a novel interface between a human in a motion-capture suit and a humanoid

robot. In our framework, the learning happens exclusively by the human - not the robot. While the
process by which humans are able to learn exceptionally quickly is not yet fully understood, work being
done on the neurological basis of learning is steadily shedding light on how humans rapidly acquire and
apply new knowledge [19]. Specifically, our framework exploits the ability at which humans are able to
learn and refine fine-motor skills. Recent breakthroughs in behavioral motor control have enhanced our
understanding of the human brain and illustrate how remarkable our innate capacity for delicate motor
control is [32]. Recent work by Muellbacher et al. indicates that given a 60-minute training period,
human subjects can rapidly optimize performance of a complex task involving fine motor control [24].

This thesis presents an original framework for training biped robots that has been developed, applied,
and tested on a real humanoid robot. Our framework has numerous possibilities for applications - consider
a leading brain-surgeon being able to perform operations remotely, or a lazy human teaching a robot
how to correctly fold laundry. We will specifically evaluate the rate at which human subjects learn to
exploit a direct robot mapping, and one motivation of our approach is to develop an efficient and stable
robotic gait.

Due to hardware problems with the legs of our humanoid, we were unable to use our approach to train
a walk. However, we have fully implemented a framework for training humanoids by motion capture,
and our results indicate that humans are able to quickly improve robotic performance of a task requiring
fine-motor skills. We have coined our novel framework FICHMC : Framework for Interactive Control
of Humanoids through Motion Capture. Although our work with FICHMC has just begun, we believe
that it is a powerful way of harnessing the cognitive flexibility of humans for training large classes of
robots.

The structure of this thesis is as follows: Section 2 provides a background of human-robotic inter-
action. Section 3 describes the motion capture system and humanoid robot that were used. Section 4
presents our motivation, implementation details, and user interface of FICHMC, and Section 5 describes
some of our results in using FICHMC. Section 6 contains a discussion of previous work on bipedal loco-
motion, presents work related to FICHMC, and outlines some possible directions for future work using
FICHMC. Finally, Section 7 presents our conclusions.
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2 Background

This section presents a brief description of current work in human-robotic interaction.

2.1 Human-robotic interaction

Human-robotic interaction is a young and exciting field that investigates the principles required for a
natural synergy between humans and robots. Though the field is relatively new, recent work has shed
some light on the factors needed to facilitate humanoid robots as cooperative partners for humans.
Breazeal et al. argue that “there are many reasons to believe that a social interaction will be the most
natural and intuitive way for ordinary people to work with humanoid robots and to teach them” [4].
While there is still a large amount of work being done on finding the perfect ingredients for human-
robot interfaces, there have been very successful cases of fully-implemented systems, such as socially
assistive robots assisting post-stroke rehabilitation patients [21]. Steinfeld et al. emphasize the need
for any viable human-robot interface to cater to non-technical users, and state that when testing any
interface it is “critical to recruit subjects having a broad range of knowledge, experience, and expertise”
[33]. Although our work doesn’t address the societal implications of social robots, there is ongoing work
addressing this topic [12].

There are numerous case studies which show that using human feedback to a reinforcement learning
or policy-search algorithm significantly improves learning speed [35], [16], [6]. [2]. This illustrates the
importance of harnessing human-robot interfaces in order to “design algorithms that support how people
want to teach and simultaneously improve the robots learning behavior” [35]. Thomaz and Breazeal coin
this paradigm “Socially guided machine learning”, where the benefits of machine learning are combined
with the intuitive knowledge of humans.

Learning from demonstration (LfD) is one tested way of harnessing the power of a human-robot
interface that has shown extremely positive results. However, Argall, Chernova, Veloso, and Browning
insist that the LfD community is suffering from the lack of a structured approach. They propose that the
problem be broken down into two distinct phases - first gathering examples and then deriving a policy
[1].

Breazeal and Scassellati posit that there are four integral questions to consider when designing a
system that uses learning from demonstration [5]:

• How does the robot know when to imitate?

• How does the robot know what to imitate?

• How does the robot map observed action into behavior?

• How does the robot evaluate its behavior, correct errors, and recognize when it has achieved its
goal?

Our system bypasses the first two questions, as the robot imitates the human in real-time. The robot
maps observed actions into behaviors using a deterministic scaling function (that can be tuned by the
user). Finally, while our robot doesn’t currently evaluate its behavior, we discuss this question in our
future work (Section 6.3).
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3 Hardware systems

In this section, we describe the motion capture system that was used (Section 3.1) and the humanoid
robot that was used (Section 3.2).

3.1 PhaseSpace IMPULSE Motion Capture System

The PhaseSpace IMPULSE motion capture system uses a standard server-client interface, with a flexible
API allowing the development of custom clients. The system utilizes 16 high-sensitivity 12.6 megapixel
cameras positioned overhead surrounding a 20 by 20 foot tracking area. A human subject wears a black
virtual-reality body suit, on which 36 LED markers are strategically placed (7 on each leg and foot, 4 on
the right arm, 12 on the left arm and hand, and the rest comprising the body). With a sample rate of
up to 480 Hz and a latency of less than 10ms, the PhaseSpace IMPULSE system is a fast and accurate
way of capturing even the most subtle human movements. The server receives data from the cameras
and disambiguates the LEDs of the body-suit as fixed-point markers. The 36 markers are clustered into
groups of four, and each group is updated at 120Hz (thus helping disambiguate unique marker positions).
These markers can be combined to represent rigid-bodies - groups of markers that are stationary with
respect to one another. Once these markers and rigid bodies are computed by the server, they are made
available for reception by a client.

A majority of motion-capture labs also place cameras at the floor of the bounded area, in order to
account for a condition in which the line of sight to a particular marker is obstructed by all cameras.
However, our lab only has the overhead cameras, which often leads to markers “dropping out” for a brief
period. The 480Hz sample rate allows for some flexibility as to when commands are sent to the robot,
but there are still times when the confidence of a particular marker is relatively low. Last year, Lee,
Kulic, and Nakamura presented a way to recover such “lost markers” using a factorial hidden Markov
model [20]. Although dropped markers are not terribly frequent, implementation of this HMM-based
estimation could improve data reliability.

3.2 The Aldebaran Nao

We have implemented FICHMC on a humanoid robot called the Nao. Developed by Aldebaran Robotics,
the Nao is the current platform for the RoboCup Standard Platform League. Utilizing an AMD Geode
500Mhz processor and 256MB of memory, the Nao runs a conventional Linux operating system and
includes ethernet and 802.11a/b/g connectivity. Measuring at 23 inches and just under 9.6 pounds, the
The Nao has 21 degrees of freedom and body proportions similar to that of a human. Although the
version of the Nao we used does not have functioning hands, a version exists with a rotating wrist and
actuated fingers. A complete diagram specifying each joint of the Nao can be seen in Figure 2. Each joint
houses a dedicated motor - the type in the top portion of the body has a nominal speed and nominal
torque of 8810 RPM and 3.84 mNm, while the leg motors have a nominal speed and torque of 6330 RPM
and 12.3mNm. Each foot of the robot contains four force-sensitive resistors, with a working range from
0−25N . The Nao houses an integrated inertial measurement unit with its own processor, which contains
a two-axis gyrometer (5% precision and an angular speed of ∼ 500◦/sec) and a three-axis accelerometer
(1% precision with an acceleration of ∼ 2G). Four ultrasound sensors and two 640x480 cameras provide
range-sensing and vision capabilities, respectively. A powerful C++ interface, called NaoQi, allows for
controlling the robot and harnesses an event-based shared memory. Early testing was performed with
the Webots simulation software, which accounts for the unique dynamics of the Nao. The UT Austin

6



Villa Robotic Soccer Team has developed an interface to NaoQi using the Lua scripting language to
allow for a dynamic programming environment for implementing high-level behaviors.

Figure 2: Joint diagram specifying 21 DoF for the Aldebaran Nao

3.2.1 Kinematic Model

The Nao’s kinematic model is based on a modified Denavit-Hartenberg representation, a relatively
straightforward scheme for describing robotic chain-manipulators. First proposed in 1955 [11], The
Denavit-Hardenberg model systematically assigns an orthonormal (x, y, z) coordinate system to every
joint in the chain, and has become the standard representation for serial manipulators. Using these indi-
vidual coordinate systems in each joint, we can simply relate any joint in a chain to the following joint,
which results in a complete representation of the Nao’s geometry. Figure 3 depicts a simple three-joint
chain, using a modified notation with joints connected by links.
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Figure 3: Modified Denavit and Hartenberg scheme for a three-joint chain

Any joint can be related to the following joint using four straightforward parameters, which can be
described as follows:

• link length a: offset distance between the Zi−1 and Zi axes along the Xi−1 axis

• link twist α: angle from the Zi−1 axis to the Zi axis about the Xi−1 axis

• link offset d: distance from the origin of frame Xi−1 to the Xi axis along the Zi axis

• joint angle θ: angle between the Xi−1 and Xi axes about the Zi axis

Figure 4 represents the Denavit and Hartenberg schematic of the Nao, comprising a complete model
for specifying forward kinematics. Note that the HipYawPitch of the left and right leg are physically
bound.
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Figure 4: Complete Denavit and Hartenberg Nao Schematic

4 FICHMC : Framework for Interactive Control of Humanoids

through Motion Capture

The following section describes the FICHMC framework. Section 4.1 outlines our motivation for devel-
oping FICHMC. Section 4.2 describes the implementation details of FICHMC, and section 4.3 describes
the FICHMC user interface and training methodology.

4.1 Justifying our approach

The overall motivation of our approach is that a real-time mapping from a human to a robot will serve as
a convenient interface for quickly and systematically training efficient motion sequences. While there is
certainly a difference in the natural dynamics of the Nao and Homo sapiens, it is our belief that people’s
ability to quickly learn fine motor skills can be exploited to improve the gait of the Nao. Essentially,
FICHMC uses a human to control the robot as a puppet. Even if the mapping from human-sized
coordinates to the smaller robot coordinates contains minor errors, humans should be able to learn and
exploit these errors. Indeed, modeling the robot’s natural dynamics (assuming they are not friction-
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dominated), might lead to a more power-efficient walk. However, once the mapping is established, we
believe that our novel interface will provide a convenient way to quickly develop effective motions for
classes of bipedal robots - even robots where physical limitations inhibit passive dynamic walking.

For example, imagine the following situation: the human subject realizes that when training the
robot to walk, the robot frequently loses balance and topples forward. The human can try different
things to correct this - lengthening of stride, reduction of knee-bend, etc. Humans are so skilled at fine
motor control, that minor nuances essential for maximizing performance in bipedal locomotion (typically
discoverable through computationally expensive and time-consuming exhaustive methods) may be found
with significantly less effort.

One of the motivations for this work is to create a rapid development environment for creating finely-
tuned and specialized motions for the UT Austin Villa robotic soccer team. A process that might take
weeks using a standard machine learning approach could be approximated in a matter of hours. This
would enable Austin Villa to create a large set of tailor-made motions, such as walking up to a ball with
proper positioning, kicking a ball, or strafing around an opponent.

4.2 Implementation details

FICHMC has been implemented with two distinct modules - a generalized C++ framework that includes
a custom IMPULSE client to connect to the motion-capture server and a Lua behavioral scheme that is
run directly on the robot. We have developed a tunable and customizable interface for FICHMC that
facilitates in coordinating gestures between the motion capture server and the Nao. A fully-functional
GUI (written using the cross-platform QT framework) utilizing OpenGL allows viewing of both humanoid
and robotic kinematics, supports real-time tuning of mapping scalars, and provides a mechanism for
recording motion sequences for later use. The FICHMC interface includes a custom IMPULSE client
that directly communicates with the motion capture server. The sampling rate of the IMPULSE server
is 480Hz, but commands are sent to the robot at 16 frames-per-second due to the frame-rate at which
the robot can operate.

The control flow of our interface can be seen in Figure 5. A simple initialization procedure correlates
the bounds of the human subject to the bounds of the robot. Initialization is essential for every unique
subject that puts on the virtual-reality suit due to the subtleties in different human’s body geometries.
After initialization is complete, a configuration file can be saved in order to bypass this initial step in
further training sessions.

Once initialized, the client captures the markers from the motion capture server (via TCP) and
decodes each point to a body part based on unique marker IDs. The decoded packet is then transformed
from the coordinate system of the IMPULSE system to that of the Nao. The motion-capture geometry is
absolute based at one corner of the moveable grid, whereas the Nao coordinate system places the origin
at the robot’s center of mass (the stomach-region), with a forward-facing x-axis, a vertical z-axis, and
a y-axis pointing towards the left side of the robot. The origin is set at the human’s stomach, and a
forward-facing x-axis is computed by taking the vector orthogonal to the plane represented by vectors
from the stomach to the left and right shoulders. Vectors from the stomach are computed for each
motion marker, and these vectors are finally rotated around the new appropriate z-axis. These vectors,
now in the robot’s coordinate system, are scaled down to the robot’s size by considering the subject’s
initialization information in conjunction with the robot’s physical bounds and the interactive sliders of
the graphical user interface.

We now have a complete representation of the human’s body that is scaled down to the robot’s
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Figure 5: Control flow of the FICHMC Interface

coordinate system. We first calculate the end-effector positions of the robots arms and legs. However,
bipedal stability is not solely dependent on foot positioning, but also precise ankle orientation. Therefore,
we use LEDs on the foot of the subject to determine appropriate angles for the robot’s ankle pitch and
ankle roll. We package the end-effector positions, the ankle pitch and roll for each foot, and a timestamp
into a packet and send this information to the robot via UDP. Pseudocode of the client’s algorithm can
be seen in Algorithm 1. When the robot receives a packet, it places the corresponding information into
its shared memory, which is detected in the robot’s Lua module. Using a standard Jacobian approach
to inverse kinematics (described in section 3.2.1), the robot sets the joints of each chain in order to set
the position of its end-effectors. Finally, the robot sets its AnklePitch and AnkleRoll for each foot, and
then waits for more packets. The robot uses a 3rd-degree polynomial smoothing function to interpolate
from one motion to the next, resulting in seemingly continuous motion. The robot’s motion module is
outlined in Algorithm 2.
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Input: n (number of markers), config (Body Configuration), framerate (Robot framerate)
timestamp = 0;
while + + timestamp do

n = getMarkers();
if n == 0 then

continue;
end
MoCapPacket pose;
foreach marker m do

decodeToBodyPart(m);
pose.add(m.x, m.y, m.z);

end
if handGestureDetected(LOOP) then

loopState = nextLoopState();
end
// whereframerate = actual framerate / 480Hz

if timestamp % framerate == 0 then
if loopState == RECORDING then Recording a loop

loop.add(pose);
end
else if loopState == LOOPING then Playing back a loop

pose = loop.nextPose();
end

Vector
−−−−−−→
forward = orthogonal(pose.lShoulder - pose.stomach, pose.rShoulder - pose.stomach);

foreach marker m do
Vector −→v = Vector(m - pose.origin);
−→v .rotate(

−−−−−−→
forward); // Rotate v around Z-Axis to align with forward

pose.update(m, −→v );
pose.scale(config); // Scale body based on human’s configuration

pose.scale(GUI.interactiveScalars()); // Adjust according to interactive scalars

updateGUI(pose);
RobotPacket packet = pose.strip(); // where strip() removes extraneous information

packet.setTimestamp(timestamp / framerate);
// Loop signal hand-gesture detected

if handGestureDetected(LOOP) then
packet.nextLoopState();

end
sendToRobot(packet);

end

end

end

Algorithm 1: Main motion-client algorithm
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Input: framerate (Robot framerate)

// Initialization

setPose(INITIAL-POSE); // Set pose corresponding to human standing neutral

lastT imeStamp = 0;

while True do
RobotPacket packet = memory.getLatestMotionCapturePacket();

if packet.timestamp != lastT imeStamp then

updateLoopState(packet.loopState); // Conveys current loop state to human

foreach Chain c ∈ Body do

[
−→
Θ] = solveInvKin(packet.x, packet.y, packet.z);

interpJoints(c,
−→
Θ, framerate); // Smooth interpolation of a particular chain

end

// Directly set AnklePitch and AnkleRoll

interpJoints( L-ANKLE, packet.
−−−−−−−→
leftAnkle, framerate);

interpJoints( R-ANKLE, packet.
−−−−−−−−→
rightAnkle, framerate);

end

lastT imeStamp = packet.timestamp;

sleep(1 / framerate);

end

Algorithm 2: Robot motion control algorithm

4.3 User Interface and Training

The FICHMC user interface requires very little technical knowledge to use. The training process works
best with two people - one controlling the FICHMC graphical user interface (GUI) and one in the motion-
capture suit. The first step in training is creating a configuration file for the human in the motion-capture
suit. The user controlling the GUI prompts the subject to place their arms at their sides, fully extended
straight forward, fully extended to the sides, and fully extended upward. This initializes our mapping
scalars which correlate to the corresponding physical bounds of the robot. After initialization (or loading
a previously saved MoCap config file), the human and robot are synchronized and the user controlling
the GUI clicks a button to start streaming the live motion-capture data to the robot. The FICHMC
graphical user interface can be seen in Figure 6.

The training process provides a natural interface for the human, and requires no technical knowledge
at all (other than the IP address of the motion-capture server and robot). The human performs a motion,
which can be seen through the real-time mimicking by the robot. The GUI includes sliders for tweaking
the x, y, and z scalars of the arms and legs. For example, if the human realizes that he has to fully extend
his leg (past a comfortable point) to achieve a sufficiently long stride by the robot. The x-directional
scalar for the legs can be increased, making the human’s forward leg motions exaggerated on the robot.

During training, it is often useful to have a “looped” motion sequence. For example, the human could
take two steps and wish the robot to repeat this sequence over and over, resulting in a continuous gait.
It is very important that the trainer controls when to start/stop the loop, so a simple button on the
GUI wouldn’t be appropriate. Extending the body-suit with an 8-marker glove on the left hand, we have
implemented natural hand-gesture recognition to control the looping state of the robot. Whenever the
human touches his thumb and pinky fingers together, the robot changes its looping state (and changes
the color of the LEDs in its eyes to reflect to the human which state it is currently in). Optionally, the
robot can also use speech synthesis to simply tell the human what state it is in through language. There
are three looping states - live capture that is not being recorded, live capture that is being recorded
for looping, and currently performing a loop. Every time a hand-gesture by the human is recognized,
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Figure 6: The FICHMC Graphical User Interface

FICHMC delegates the signal and changes the state of the robot accordingly. The loops are saved and
can be replayed using the GUI. Additionally, the loops can be exported as a generic Lua function, that
can be called from any high-level behavioral code to reproduce the looped motion.

Three images from a typical training session can be seen in Figure 7.

Figure 7: A typical training session

5 Results

Due to hardware problems in the legs of our robots, we were unable to train the Nao to walk. Although
we still plan to use FICHMC to teach the Nao a stable and efficient gait in the future, our initial
evaluation is based on upper-body tasks alone. This section primarily evaluates the ease of the training
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interface and assesses the ability of a human to quickly improve at a task involving fine-motor control.
Eight people were used as test subjects in this initial evaluation of FICHMC, and each subject

completed a 45 minute interactive training session with the Nao. Our test subjects consisted of both
technical and non-technical users, and each training session involved of two tasks. In the first task, a
felt-tipped marker was taped to the Nao’s right hand, and the robot was placed in front of a drawing
board. Various shapes were put on the board (including a straight line, square, triangle, circle, “smiley-
face”, and the words “HI” and “HELLO”), and the user was instructed to have the robot trace over the
pre-drawn shape. The second task, Car-Park, consisted of moving a toy car from one box to another.
We discuss Car-Park in detail in Section 5.1.

As users practiced drawing a particular shape, their performance improved noticeably over time.
Additionally, for one test, the interactive scalars were augmented at random without the subjects knowl-
edge. There was no noticeable decrease in performance during this test, which indicates that the human
was dynamically adapting its movements to those of the robot.

One user’s first task was to trace the word “HI”, at which they were only given one attempt. The
training session proceeded normally, but their final task was to again to draw “HI”. Even though they
had only practiced this shape once, their results indicate a notable improvement (as can be seen in Figure
8.). This suggests that the human’s learning in exploiting our interface is not isolated to a particular
job, but it extends over tasks.

Figure 8: Tracing the word “HI” before and after a 45-minute training session

5.1 Car-Park Task

The setup of Car-Park can be seen in Figure 9. The robot stands in front of a surface with two distinct
boxes - a source and a sink. The human stands behind the robot and attempts to puppet the robot to
move a toy car from the source to the sink. The robot starts with both arms at its sides, and the task
was completed when all of the car’s wheels resided inside the bounds of the sink. If the car was knocked
off the surface, the subject was given a 3-second penalty (in addition to the time it took to place the car
back in the source).

One of the test subjects performed 60 iterations of Car-Park. For the first 10 episodes, the average
time to completion was 28.5 seconds - for the last 10 episodes the average was 6.8 seconds. As can be seen
in Figure 10, the learning curve representing elapsed time to complete Car-Park decreases significantly
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Figure 9: The Car-Park Setup

over 60 iterations. This entire training session took less than 1 hour, and the subject decreased his
average completion time by a factor greater than 4.

Figure 10: Learning curve obtained from 60 iterations of Car-Park

6 Discussion

This section contains a discussion of typical approaches towards bipedal locomotion (section 6.1). Section
6.2 presents work that is related to ours, and Section 6.3 outlines possible ways to harness the approach
of FICHMC in future work.

6.1 Bipedal locomotion

One of our evaluation metrics will be attempting to use FICHMC to train an efficient gait on a humanoid
robot, therefore the following sections provide a background of bipedal locomotion.
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6.1.1 Passive dynamic walking

The past two decades have brought countless improvements to the field of bipedal locomotion. Prior to
1988, bipedal robotic locomotion was accomplished by applying constant power to actuators in order to
completely control the robot’s legs. This technique, which is largely inefficient due to constant motor
output, typically results in a stiff and mechanical gait. However, in 1988 Tad McGeer revolutionized
bipedal locomotion by analyzing a simple toy model of a bipedal frame. He discovered that when
started on a shallow slope it could achieve a steady gait simply by exploiting gravity and the robot’s
momentum. He demonstrated this “passive dynamic walking” on an unpowered machine, but he argued
that this breakthrough promised to lead to efficient powered walkers. McGeer’s discovery started a field
of robotic locomotion known as passive dynamics [22], which utilizes the momentum of swinging limbs
to achieve efficient bipedal locomotion.

Since McGeer’s breakthrough, research in bipedal locomotion has largely focused on exploiting passive
dynamics for more power-efficient and human-like gait. In 2005, Collins and Ruina designed a passive-
dynamics based bipedal walking robot that displayed a human-like morphology and gait while consuming
relatively little energy [7]. This robot was specifically designed with features to exploit the nature of
passive dynamics, including freely rotating hip and knee joints, direct actuation of the ankles with a
spring, and wide feet shaped to aid lateral stability. These results, which built on previous work by
Collins and Ruina in development of the first three-dimensional, kneed, two-legged passive dynamic
walker [8], support the hypothesis that passive dynamics provides a feasible route towards animal-like
locomotion.

Recent work by Owaki, Osuka, and Ishiguro [9] investigates passive bipedal running - a task where
the body’s intrinsic dynamics becomes increasingly dominating (due to greater momentum, there is more
opportunity to exploit it through passive dynamic modeling). Their work attempts to discern an effective
coupling between control and mechanics (i.e., applying power to actuators and exploiting the dynamics
of the physical system). Though their research has not yet been applied to a physical robot (numerical
simulation alone provides the basis of their conclusions), it was determined that the most important
elastic parameters during passive dynamic running are leg spring constant and hip coil spring constant.

6.1.2 Extending the problem

Several extensions to the passive dynamic walking problem have been investigated in the past few years.
For example, Asano and Luo claim that the problem has only been studied for robots without upper-
bodies - their recent research investigates passive dynamic walking for a robot with a torso [13]. However,
in order to preserve the natural dynamics of the biped model, they use a simple 1-link torso with a
bisecting hip mechanism. Another recent paper by Ikemata, Yasuhara, Sano, and Fujimoto investigates
the importance of the leg-swing mechanism in the effectiveness of an animal-like gait [14].

While we typically envision robots moving on flat surfaces, Ramamoorthy and Kuipers present a
qualitative approach to bipedal walking that enables passive dynamic bipedal locomotion in realistic
terrain conditions [29]. A three-phase loop controls the biped to utilize its natural dynamics. The first
phase applies energy to the system, the second allows for passive leg-swing until a stopping condition
is detected, and the third swaps the roles of the legs. One unique aspect of this work is that there is
no limit-cycle on the number of steps the robot can take (due to the irregular nature of the terrain).
This elimination of limit-cycles, which are almost always enforced in typical robotic walking scenarios,
takes bipedal robotic locomotion one step closer to reaching a human level. Ramamoorthy and Kuipers
extend on this work by presenting a qualitative approach to trajectory generation [30]. One interesting
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result stemming from this paper illustrates how to achieve task-level control over step length.

6.1.3 Alternative approaches

Passive dynamics is one blossoming approach to improving bipedal locomotion, although it is not the only
method that has seen success. Pratt and Tedrake [27] compare distinct walking algorithms by factoring
in the robot’s center of gravity, reachable region of a single leg-swing, time of a single leg-swing, and
available angular momentum. Using these parameters, along with a simple inverted pendulum model,
a method for estimating the maximum stable stride-length is determined. Simulated results indicate
that these estimates are beneficial using a 12 degree-of-freedom distributed-mass lower-body biped.
Pratt, Chew, Torres, Dilworth, and Pratt introduce an unconventional framework called virtual model
control, which is especially useful for robots without advanced sensor systems [26]. Virtual model control
uses simulations of virtual components to calculate desired joint torques, creating the illusion that the
simulated components are connected to the real robot. Their techniques have been successfully applied
to control dynamic walking bipedal robots, assuming the robot contains foot contact switches. Finally,
a truly novel approach was recently proposed by Kulic, Takano, and Nakamura that uses incremental
learning of human motion pattern primitives by observation of human motion capture data [18].

6.1.4 Passive dynamics on the Nao

It is our belief that developing an efficient, human-like gait for the Nao cannot be done by simply modeling
its passive dynamics for two reasons. First, the RoboCup standard platform league enforces every team
to use the same exact robot - the physical specifications cannot be altered. Successful instances of passive
dynamic walking normally assume a robot designed specifically for this problem. For example, Collins
and Ruina [7], [8] conclude that certain physical properties are needed in order to use passive dynamics,
including freely rotating hip and knee joints, direct actuation of the ankles with a spring, and wide feet
shaped to aid lateral stability. Whereas the Nao indeed has wide feet, the ankles use motors for direct
actuation, and the hip and knee joints are again confined by motor stiffness. In a similar vein, Owaki,
Osuka, and Ishiguro [9] concluded that the most important factors in passive bipedal running are the
leg spring constant and hip coil spring constant - both inapplicable to the Nao. Along the same lines,
Asano and Luo [13] successfully extend the passive bipedal walking problem for robots with an upper
body, but only when using a simple 1-link torso with a bisecting hip mechanism. In each of these cases,
successful application of passive dynamic walking relies on certain physical properties of the robot, none
of which the Nao possesses.

The second reason is that the Nao’s natural dynamics are likely dominated by friction, rendering
passive dynamics inapplicable. Despite the fact that the Nao has 21 degrees of freedom, each joint is
directly controlled with an actuator. This joint-stiffness leads us to believe that momentum will have a
minimal effect on motion.

Note that the assumptions made in the successful work of Pratt and Tedrake [27] (namely 12 degrees-
of-freedom and a distributed-mass lower body) are applicable to the Nao. However, it is unlikely that the
Nao’s bulky legs can be modeled as an inverted pendulum. Additionally, Pratt and Tedrake’s systematic
approach would not allow rapid development of original motion sequences like specialized walks and
kicks.
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6.2 Related Work

Although motion-capture data has been harnessed to improve bipedal locomotion, to our knowledge a
real-time human-robot interface using motion-capture has never been exploited in the way FICHMC
proposes. Last year, a paper by Kulic, Takano, and Nakamura proposed a system using incremental
learning of “human motion pattern primitives” by observation of motion-capture data [18]. Additionally,
Nakanishi et al. have introduced a framework for learning biped locomotion using dynamical movement
primitives based on non-linear oscillators, which uses motion-capture data as input [25]. While these
approaches are based on a similar motivation of using human motion to train robots, FICHMC works
in real-time, and provides a direct route of controlling the pose of a humanoid. Our approach may seem
similar to teleoperation, but the motivation is to train robots that are able to perform motions without
human instruction.

So far, we have only discussed how to represent and control bipedal locomotion in the field of robotics.
However, the same basic idea is an ongoing topic in the field of neuroscience - discerning the functional
basis of bipedal locomotion in humans. Last year, Azevedo, Espiau, Amblard, and Assaiante published
an exciting cross-discipline paper called Bipedal locomotion: toward unified concepts in robotics and
neuroscience [3]. This work claims that ongoing research in robotics can clarify our understanding
of human postural control by articulating various experimental concepts and representations useful in
neuroscience. On the other side, the authors investigate the inspiration behind bipedal robot design and
control by human posture and gait.

Kanaoka, Shirogauchi, and Nakamura have investigated a different type of human-controlled robotics
by developing a system for robotic-assisted walking using human skill and robot power [15]. Their Power-
Pedal system fixes force sensors to a human’s feet, and the human is able to walk around in a set of
powered robotic legs. The Power-Pedal system creates a synergy of the fine motor control of humans
and the theoretical brute strength of robots - the legs are able to amplify the force of a human leg by up
to 40 times.

While the similarities of human movement and robotic locomotion have been investigated [3], our
idea of exploiting human motor skills for efficient learning of bipedal locomotion takes a completely
new approach. We will control the motion of a biped not by modeling its natural dynamics or using a
virtual model of the robot, but by taking advantage of the most finely-tuned and sophisticated control
mechanism known to man: himself.

6.3 Future Work

This thesis has presented a flexible framework for directly transferring human skill to a robot. We have
shown that a task involving fine-motor control can be improved by over 400% in as little as 1 hour.
There is still work to be done to attain our initial goal of using FICHMC to train the Nao to walk, but
this thesis opens up some exciting possibilities for future research.

The first step in our future work will be to improve the inverse kinematics system of the Nao. In 2000,
Tolani, Goswami, and Badler developed an efficient algorithm for real-time inverse kinematics specifically
for anthropomorphic limbs using a combination of analytical and numerical methods [36]. The inverse
kinematics implemented in NaoQi uses a Jacobian approach, which can lead to more than one solution.
Especially when applied to the arms, this results in the Nao often picking a solution that attempts to
move the arms through it’s body. While the human trainer can account for this by exaggerating its
movements and exploit the mapping, improving the inverse kinematics would remove this burden.

In principle, we could adapt FICHMC to use a mapping from a person’s arms (or even fingers) to the
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robot’s legs. It might be that humans are more adept at rapid motor learning in the upper body than
lower body - it remains an open question what type of mapping will provide the most rapid environment
for motion development.

At this point, FICHMC restricts the learning process to the human. However, we would like to explore
results in which parts of the learning process are performed by the robot. Specifically, it would be very
interesting to use incremental learning in which the human performs an action, the robot attempts the
action, and the human gives feedback. Note that in this scenario, both the human and the robot are
“learning” - the human still learns to exploit the mapping, while the robot uses reinforcement learning
with evaluative feedback to learn a model of walking. The TAMER framework introduced by Knox and
Stone [16] could be adapted to work with FICHMC, complementing our natural human interface with
a powerful system capable of evaluative reinforcement. TAMER has been shown to increase learning
speed by more than an order of magnitude on the Tetris domain, and similarly to FICHMC requires no
technical knowledge.

Last year, Kulic, Takano, and Nakamura published a system that uses incremental learning of human
motion pattern primitives by observation of human motion capture data [18]. The observed data is
stochastically segmented into potential motion primitives, and then a tree-based representation is built,
with specialized motions at the leaves and more general motions closer to the root. FICHMC could
combine with this method in a semi-supervised approach with an initial tutelage period to build the
model of primitives, followed by training in which the robot uses live data in combination with the
trained model.

If an iterative learning approach is used, we would like to make the human evaluation as natural as
possible, and facilitate the ability to provide reinforcement in the motion-capture suit without having to
use a keyboard. One possible way we could provide for such an easy interface is to use natural language
recognition by the Nao. There have been very successful results at guiding a reinforcement learner with
natural language advice [17], which could be adapted to work for the Nao. The Nao has 4 built-in
omnidirectional microphones, and two stereo loudspeakers, which can easily facilitate speech recognition
and synthesis. Additionally, we would likely only need the Nao to recognize two commands (such as
“good” and “bad”), so training a language recognition model to understand these two words would be
fairly straightforward.

Although the robot doesn’t do any reasoning about the human’s intentions in FICHMC, much work
has been done on this topic. Breazeal et al. have proposed what they call joint intention theory, which
allows robots to perform a learned task cooperatively with a human teammate [4]. While our work
focuses on teaching robots how to perform tasks in isolation, it would be possible to have the robot
observe the accurate representation of the trainer’s actions, reason about them, and collaborate with the
human.

One interesting property of FICHMC is that the closer the dynamics of the robot are to the dynamics
of a human, the less the framework relies on the ability to exploit peculiarities in mapping the different
body frames. Whereas the Nao is a very capable robot, a full-sized humanoid designed to exploit natural
dynamics would likely give more positive results using FICHMC. As mentioned earlier, Collins and Ruina
[7], [8] found that certain physical properties are needed in order to exploit passive dynamics, namely
freely rotating hip and knee joints, direct actuation of the ankles with a spring, and wide feet shaped
to aid lateral stability. Despite the fact that the Nao has wide feet, the ankles use motors for direct
actuation, and the hip and knee joints are again confined by motor stiffness. If a full-sized humanoid
(with joints not constrained by motor stiffness and direct actuation of the ankles with a spring) was
combined with FICHMC, it is possible that the momentum of the robot could be exploited without
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directly modeling any of the robot’s dynamics.
Although a motion-capture suit provides a very natural interface to directly control the motions

of a humanoid robot, motion-capture laboratories are few and far between. In our introduction, we
gave two examples of possible applications of FICHMC, one being remote-based surgery. A top surgeon
could easily have a motion-capture lab installed near his residence, and “suit-up” every day to perform
operations across the world. However, as humanoid robots become more immersed in our every-day lives,
teaching a robot to perform a specific task should not require a motion-capture laboratory. Fortunately,
advances in vision-based human motion capture are making great strides. A recent survey by Moeslund,
Hilton, and Krüger presents some positive results. They summarize that human motion reconstruction
from multiple views can currently capture gross body movement, but do not accurately reconstruct fine
detail, such as hand movements or axial rotations (though motion-capture systems do this very well).
While reconstruction from a single viewpoint is advancing, Moeslun, Hilton, and Krüger stress that
“the use of strong a priori models enables improved monocular tracking of specific movements”. They
concluded that “the visual understanding of human behavior and action ... requires fundamental advances
in behavior representation for dynamic scenes, viewpoint invariant relationships for movement and higher
level reasoning for interpretation of actions” [23]. The current influx of research on visual-based motion
reconstruction may some day allow for humanoid motion-coordination using solely mono-directional
cameras.

Finally, scientists at Honda Research Institute have recently developed what they call a “Brain
Machine Interface”, which “uses electroencephalography (EEG) and near-infrared spectroscopy (NIRS)
along with newly developed information extraction technology to enable control of a robot by human
thought alone”. They have yet to publish their work, but Honda has released videos of a human con-
trolling the humanoid “Asimo” by simply thinking of which body part they would like it to move. Their
system only allows for recognition of a handful of general commands (e.g., move right arm, move left
arm), but has been shown to correctly identify with 90 percent accuracy. The future of human-robot
interfaces may not require any movement at all...just a thought.

7 Conclusion

As stated previously, we are still working on our initial goal of training the Nao to learn a stable and
efficient gait. Although our work was hindered by hardware problems, this thesis has presented strong
evidence that human motor skills can be exploited to quickly train a robot. Currently, motion capture
systems offer one of the easiest ways to capture the subtleties of human motion, and FICHMC provides
a natural and real-time interface for robotic interaction, requiring very little technical knowledge.

The technical users performed slightly better during training sessions, specifically users who were
familiar with the basis of inverse kinematics. The motion of these technical users was slower and more
exaggerated, leading the inverse kinematics to typically choose the “correct” solution (i.e., not attempting
to move the arms “through” the body). This leads us to believe that a customized inverse kinematics
algorithm is needed to facilitate a more natural training environment for non-technical users.

The Nao is a capable humanoid that has served as a great test bench for FICHMC, but we believe
that a more capable humanoid would be significantly easier to control. The Nao has no freely rotating
waist and the HipYawPitch of the left and right leg are physically bound, inhibiting the ability to mimic
the full range of motion provided by the human. Also, the Nao lacks direct actuation of its ankles
with a spring, which has been shown to be a critical factor in mimicking humanoid locomotion [8]. A
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full-sized humanoid designed to exploit its natural dynamics, such as the Honda Asimo, would likely see
an increased benefit by using FICHMC.

As mentioned earlier, FICHMC abstracts the task of learning away from the robot and places this
burden on the human. Although our results indicate that this is a viable approach, a more dynamic set
of problems could be approached if the robot and human learned in harmony. Three of the four “integral
questions” for LfD proposed by Breazeal and Scassellati [5] are naturally answered by FICHMC, while
the fourth requires the robot to reason about its actions (“How does the robot evaluate its behavior,
correct errors, and recognize when it has achieved its goal?”). Our work using FICHMC has just begun,
and we plan to address this important question in the near future.
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