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Abstract

Historically, the primary model of computation employed in the design and analysis
of algorithms has been the sequential RAM model. However, recent developments
in computer architecture have reduced the efficacy of the sequential RAM model for
algorithmic development. In response, theoretical computer scientists have developed
models of computation which better reflect these modern architectures. In this project,
we consider a variety of graph problems on parallel, cache-efficient, and multicore models
of computation. We introduce each model by defining the analysis of algorithms on these
models. Then, for each model, we present current results for the problems of prefix sums,
list ranking, various tree problems, connected components, and minimum spanning tree.
Finally, we present our novel results, which include the multicore oblivious extension of
current results on a private cache multicore model to a more general multilevel multicore
model.
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1 Introduction

Historically, the primary model of computation employed in the design and analysis of al-
gorithms has been the sequential RAM model. However, recent developments in computer
architecture have reduced the efficacy of the sequential RAM model for algorithmic develop-
ment. In response, theoretical computer scientists have developed models of computation
which better reflect these recent architectural developments. In this thesis, we consider
primarily the problems of computing the prefix sums, of ranking a list, and some related
graph problems in the parallel, cache efficient, and multicore models of computation.

1.1 Problems Considered

We start by defining the problems under consideration in this thesis.
Consider a sequence (x1, x2, . . . , xn) of n elements taken from a set G with a binary

operation denoted by +. We define the ith partial sum si of such a sequence to be si =
x1 + x2 + · · · + xi. The prefix sums of such a sequence, originally posed by Ladner and
Fischer [20], is the n partial sums of the sequence. There is a trivial sequential algorithm
which recursively computes si using the fact that si = si−1 + xi for 2 ≤ i ≤ n and hence
takes O(n) time.

Consider a linked list L of n nodes. We define the rank r(i) of a node i to be its distance
from the end of the list. The list ranking problem, originally posed by Wyllie in [22], is to
determine the ranks of every node in a list. The linked list L is typically represented by a
successor array S where S(i) contains a pointer to the next node following node i in L. We
additionally assume that S(t) = t for the last node t in L and for no node i does S(i) = s,
for some node s, the first node. Note that r(t) = 0 and that r(1) = n. The challenge
in solving this problem results from the fact that consecutive nodes are not necessarily in
adjacent memory addresses. Again, there is a trivial sequential algorithm which recursively
computes r(i) = r(S(i)) + 1 for i "= t and hence takes O(n) time.

We will sometimes use the language of graph theory to describe a linked list L on n nodes
as graph G = (V,E) where V = {1, 2, . . . , n} and E = {(i, S(i))|1 ≤ i ≤ n}. Additionally,
there is a weighted version of this problem where each edge has an associated weight and
the rank of a node is defined to be the sum of the weights of all edges along the path from
that node to the last node.

Additionally, we consider a number of problems on trees. Let T = (V,E) be a tree. Let
T ′ = (V,E′) be the directed graph constructed by replacing every edge (u, v) ∈ E with the
two directed arcs (u, v) and (v, u); that is, E′ = {(u, v), (v, u)|(u, v) ∈ E}. We define an
Euler circuit on T to be a directed circuit that traverses each arc exactly once. Because
the indegree of each vertex equals its outdegree, every graph constructed this way will have
such an Euler circuit. We call the Euler circuit of T ′ the Euler tour of T . The Euler tour
technique can be used for the optimal computation of many problems on trees; in a sense,
it is a highly parallel alternative to depth first search. Given a tree and a designated vertex
r ∈ V , a function p : V → V roots a tree at r if for each node v "= r, p(v) is the next node
on the unique path from v to r. Given a tree T rooted at r, the preorder of a node is the
order in which that node is visited in a depth first search of T . The depth of a vertex v is
the distance between v and r. The subtree size at v is the number of nodes below v in T ;
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that is, the number of nodes whose path to r contains v. For each of these values we define
an associated problem for which we must compute that value for each vertex.

Finally, we consider two more problems on graphs. Given a graph G = (V,E), two
vertices u and v are said to be connected if there is a path from u to v in G. The problem of
computing the connected components of a graph is to compute a partition D : V → V
such that D(u) = D(v) if and only if u is connected to v for each u, v ∈ V .

We say that a subset T ⊆ E of the edges of a connected graph G = (V,E) is a spanning
tree if (V, T ) is a tree and every pair of vertices is connected through T . If G has an
associated weight function w : E → R, then we define the weight w(T ) of a spanning tree to
be the sum of the weights of each edge in T . We define a tree to be a minimum spanning
tree if it is a spanning tree with weight at most that of any other spanning tree.

1.2 Overview

In the next three sections, we review the parallel, cache-efficient, and multicore models of
computation, define the analysis of algorithms on these models, and then describe algo-
rithms solving the previously defined problems. For the parallel model, we first describe
the optimal prefix-sums algorithm and then three list-ranking algorithms, leading up to
the optimal algorithm. We then describe how the Euler tour technique can be applied to
solve tree problems optimally. We end this section by describing the best known parallel
algorithms for the connected components and minimum spanning tree problems. For the
cache-efficient model, we describe the list-ranking algorithm employing a cache-oblivious
queue, and note that the sequential algorithm for prefix-sums is already cache-efficient. We
then describe previous results which adapt parallel algorithms solving graph problems to
the cache efficient context. Finally, we review two multicore models of computation (pri-
vate cache and multilevel multicore) and describe current results for these models. Also of
interest are the cache oblivious and multicore oblvious algorithms which achieve good time
and cache performance without explicitly referencing any machine parameters.

In the following section, we present our novel results. In particular, we show that the
PRAM prefix-sums algorithm (with a reasonable scheduler) is also multicore efficient (and
so, multicore oblivious). Next, we extend the list ranking and tree problems results of Arge
et al. [3] from the private external memory multicore model to the multilevel multicore
model. Finally, we present algorithms solving the connected components and minimum
spanning tree problems on the multilevel multicore model. One of our main contributions
is to obtain multicore oblivious algorithms for these graph problems.

In the next section, we remark briefly on the challenges that remain in creating an
optimal multicore algorithm for list ranking, and what kind of limitations we might expect
in eliminating certain assumptions relating multicore parameters.

2 Parallel Algorithms

2.1 Parallel Models

Algorithm design has historically centered around the sequential model with unit access time
to memory. However, certain niche and scientific computing applications have introduced
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parallelism as a tool for faster computation. In response, theoretical computer scientists
have developed the PRAM (parallel random access memory) model [19, 18] as a compromise
between simplicity and realism for modeling parallel computation.

In the PRAM model, we have multiple processors which share access to a main memory
and we are interested in the number of parallel steps required to solve a problem instance
as a function of the size of the instance and the number of processors. However, there is
the possibility of simultaneous access of several processors to the same memory location;
variations on the PRAM model address this issue. The exclusive read exclusive write
(EREW) PRAM forbids simultaneous access to the same memory location. The concur-
rent read exclusive write (CREW) PRAM allows concurrent reads but not concurrent
writes. The concurrent read concurrent write (CRCW) PRAM allows both concurrent
reads and writes; again, variations on this model address how write conflicts are resolved.
It is worth noting that, while the CRCW is strictly more powerful than the CREW and the
CREW is strictly more powerful than the EREW, these variants do not differ substantially
in their computational speed.

2.2 Performance of Parallel Algorithms

Our analysis of parallel algorithms will consider a number of dimensions. Let Q be a problem
which runs in time T (n) with P (n) processors on a PRAM model for an instance of size n.
Then we define C(n) = T (n)P (n) to be the cost of the parallel algorithm. Furthermore,
we define the work performed by a parallel algorithm to be the total number of operations
used. If we denote by T ∗(n) the inherent sequential time complexity of Q, then a sequential
algorithm whose running time is O(T ∗(n)) is called time optimal. A parallel algorithm
to solve Q is said to be optimal if the work W (n) of the algorithm satisfies Θ(T ∗(n)).
Furthermore, an optimal parallel algorithm is said to be work-time optimal if its time
requirement cannot be improved by any other optimal parallel algorithm.

2.3 Prefix Sums

The following algorithm, due to Ladner and Fischer [20], employs the balanced binary tree
technique to compute prefix sums in O(n/p) time with p ≤ n/ log n processors on an EREW
PRAM.

Recursive Prefix Sums
if n = 1 then s1 := x1; return
pfor i = 1, . . . , n/2

yi := x2i−1 + x2i

Recursively compute the prefix sums z1, z2, . . . , zn/2 of (y1, y2, . . . , yn/2).
pfor 1 ≤ i ≤ n

if i = 1 then si := x1

else if i is even then si := zi/2

else si := z(i−1)/2 + xi

end
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The correctness of this algorithm can be proven by induction on k, where the size of the
input n = 2k, though we omit the details of the proof as they are primarily arithmetic.

We now analyze the complexity of this algorithm. The base case clearly takes time
and work O(1), and every nonrecursive step reduces the input size by half and takes time
O(n/p) where p ≤ n using work O(n). Thus, the time complexity of this algorithm satisfies
T (n) = T (n/2) + O(n/p) for p ≤ n and T (p) = O(log p) while the work required by this
algorithm satisfies W (n) = W (n/2) + O(n) where W (1) = O(1). The solutions to these
recurrences are therefore T (n) = O(n/p) + O(log p) and W (n) = O(n). This algorithm
is therefore optimal, and whenever n/ log n ≤ p ≤ n, this algorithm takes time O(log n),
which matches a known lower bound.

Finally, we remark that another approach to parallel computation is to consider the
computation DAG (directed acyclic graph). A computation DAG is a model of the exe-
cution of an algorithm: nodes represent subtasks for a computation, while directed edges
represent dependencies among subtasks. Here, the computation DAG for prefix-sums is a
balanced binary tree (as previously remarked), where internal nodes represent the sum of
their children. We can thus view this algorithm as continually computing the sums of any
2p children of greatest depth. This provides an alternate proof of the time complexity as
O(N/p + log p).

2.4 List Ranking

While the list ranking problem has a trivial sequential algorithm, designing an optimal
parallel algorithm is more challenging. We will thus describe the well known optimal algo-
rithm incrementally, describing the ideas which will be used for the accelerated cascading
technique.

2.4.1 A Simple Algorithm

The following parallel algorithm, due to Wyllie [22], employs the pointer jumping technique
to compute list rankings in O(n log n/p) time with p ≤ n processors on an CREW PRAM.

List Ranking by Pointer Jumping
pfor i = 1, . . . , n

σ(i) := S(i).
if S(i) = i then ∆(i) := 0

else ∆(i) := 1.
for &log n' iterations repeat

pfor i = 1, . . . , n
∆(i) := ∆(i) + ∆(S(i))
S(i) := S(S(i))

output ∆(i)

To complexity of this algorithm is clear. To argue correctness, let r(i) denote the rank
of the element in location i. Correctness follows from the invariant that at the start of
iteration l, we have that S(i) = σ2l−1(i) and ∆(i) = r(i) − r(S(i)). Thus, after &log n'
iterations, S(i) = σn(i) and so r(S(i)) = 0, implying that ∆(i) = r(i).
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2.4.2 A Linear Work Algorithm

Note that the work performed by this algorithm is Θ(n log n). Because there exists a linear-
time sequential algorithm, this parallel algorithm is not optimal. However, this algorithm
can be made optimal if we could somehow in time O(n/p) and linear work decrease the size
of the list to O(n/ log n). In fact, we can do so by recursively constructing a reduced list by
contracting the nodes of an independent set of size at least n/c for some c > 1, using ideas
due to Cole and Vishkin [14]. We first describe their algorithm abstractly, and then discuss
how to construct an independent set using nearly constant time and linear work.

List Ranking by Contraction
(1) Create reduced list by contracting an independent set.
(2) Recursively solve the list ranking problem for the reduced list.
(3) Extend the solution to the contracted nodes.

They conclude the recursion by solving the problem in time O(n/p) using the List
Ranking with Pointer Jumping algorithm once the contracted list is of size n/ log n.
They show how to construct in time O(n/p) an independent set of size n with c > 1, and so
can recursively contract the list to length at most n/ log n using O(log log n) contractions.
They can extend the solution to each of the n′ contracted nodes i in parallel by setting
∆(i) = ∆(S(i)) + 1; this uses O(n′/p) time with p ≤ n′/ log n′. So the total running time
is O(n log log n/p).

We now describe an algorithm from [13] to determine an independent set without ran-
domization in almost constant time. We find an independent set by k-coloring (with inte-
gers) the nodes of the linked list and selecting all nodes u such that the color of u is less than
the colors of both its predecessor and its successor. Note that, between any two consecutive
local minima u and v is an increasing sequence followed by a decreasing sequence; therefore,
any two consecutive local minima have at most 2k − 3 nodes between them, and so this
independent set is of size Ω(n/k). Specifically, we show how to construct a 4-coloring c for
this directed path, obtaining an independent set of size cn for some 0 < c < 1.

We begin by initializing in parallel c(l) = l for all l. Next, we iteratively decrease the
number of colors by finding a new coloring c′ with the following algorithm.

Iterative Coloring
pfor i = 1, . . . , n

Set ki to the least significant bit position at which c(i) and c(S(i)) disagree.
Set c′(i) := 2ki + c(i)ki

First, note that because c is a coloring, every c(i) disagrees with c(S(i)) at some k.
Next, suppose for contradiction that c′(i) = c′(j) for some i, j where S(i) = j. Then for
the uniquely determined k, l in the algorithm, c′(i) = 2k + c(i)k and c′(j) = 2l + c(j)l.
Because c′(i) = c′(j), we have that k = l (since the two additive terms influence disjoint
bit positions). This implies that c(i)k = c(j)k, contradicting the definition of k. Therefore,
c′(i) "= c′(j) whenever S(i) = j. So c′ is a valid coloring.

We now establish a bound on the number of colors in c′ as a function of the number
in c. Let t ≥ 4 be the number of bits used to represent each of the colors in c. Then the
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least significant bit in which two colors disagree is at most k = t. So every color in c′ is
at most 2t + 1. Thus, each color in c′ can be represented with at most &log2 t' + 1 bits.
Therefore, if the number of colors q in c satisfies 2t−1 < q ≤ 2t, the the number of colors
in c′ is 2$log2 t%+1 = O(t) = O(log q). Hence, the number of colors decreases exponentially
with each iteration; that is, |c′| ∈ O(log |c|).

Beginning with the initial coloring c(l) = l of n colors, after iteration i the number of
colors in our coloring is O(log(i) n). Therefore, after O(log∗ n) iterations, our coloring will
use at most 8 colors.

Hence, by contracting out as previously described O(log log n) times the nodes in the
independent set determined by O(log∗ n) applications of Iterative Coloring, we can
solve the list ranking problem in time O(n

p log log n log∗ n) for p ≤ n log∗ n/ log n using
the List Ranking by Contraction technique. However, as we have already seen an
algorithm which uses O(log n) time, this algorithm is not work-time optimal.

2.4.3 An Optimal Logarithmic Time Algorithm

The shortcoming of the algorithm presented in the previous section comes from the expen-
sive contraction operations. In this section, we present a method, due to Anderson and
Miller [2], to shrink the list of n nodes to O(n/ log n) nodes without the need to recursively
contract out nodes in the list.

At a high level, their strategy is to divide the array S into n/ log n contiguous subarrays
{Bi}, called blocks, each containing log n items. An index p(i) points to a node in Bi,
denoted by N(p(i)). Initially, p(i) points to the first node in each block Bi. They label
each initial N(p(i)) as active and the rest as inactive. They call an active node isolated if
neither its predecessor nor successor is active.

Their goal is to contract a suitably sized independent set. The contraction procedure
consists of O(log n) stages, each of which runs in O(n/p log n) time using O(n/ log n) oper-
ations.

In the first stage, they remove each isolated node N(p(i)) from the list. Now, each
active node is part of a sublist. We show how to break each sublist into short chains in
O(1) time using a linear number of operations. They apply Iterative Coloring to the
remaining O(n/ log n) active nodes, resulting in a valid coloring with O(log log n) colors.
Each node whose color is a local minimum is designated as a ruler, while the rest are labeled
as subjects. Thus, the rulers partition the sublists into chains of length O(log log n). They
conclude the first stage by incrementing the pointer of each subject node and each removed
node, labeling these corresponding new nodes as active.

In the general case, they begin with at most p ≤ n/ log n pointers p(i), each pointing to
an element in block Bi. Each node N(p(i)) is labeled either active or a ruler. For each ruler
N(p(i)), the next subject given by the original successor relation is removed and labeled
removed. If the removed node was its last subject, N(p(i)) is labeled active. They then
proceed as in the first stage by removing isolated nodes and identifying rulers and subjects
again, concluding by advancing the pointers of the removed and subject nodes and labeling
the new nodes as active.

The following describes the operation of processor Pi on block Bi at any general iteration.
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Parallel Contraction
(1) If N(p(i)) is a ruler, remove the next subject. Label N(p(i)) as active if this was the
last subject in its chain
(2) If N(p(i)) is active and isolated, remove N(p(i))
(3) If N(p(i)) is active, recolor N(p(i)) twice and label either subject or ruler.
(4) If N(p(i)) was removed or labeled subject, increment p(i). If p(i) leaves Bi, exit. Oth-
erwise, label N(p(i)) as active.

Observe that each pointer is updated at most O(log n) times. Thus, assuming we can
complete each iteration in O(1) time, each of the p processors finishes in time O(n/p)
and so our total work is O(n), which is optimal. All that will remain to show is that at
termination the number of remaining nodes is O(n/ log n). We first verify that each step
can be completed in O(1) time.

In steps (1) and (2), we only check the labels and change the labels of a constant
number of nodes, which requires O(1) time. In step (4), we additionally only increment
a pointer value. Some care must be taken to describe step (3). Specifically, all active
nodes are recolored. Note that we assign a pointer to each processor, and every active
node has a pointer to it. Thus, each processor can apply in parallel the coloring function
c′(i) := 2ki + c(i)ki where ki is the least significant bit at which i and S(i) disagree in O(1)
time, and this is done twice. Furthermore, we can decide in O(1) time whether N(p(i)) is
a ruler by comparing its color with that of its predecessor and that of its successor. Thus,
each processor in step (3) takes O(1) time per iteration.

We now prove that the contracted list has size at most n/ log n after O(log n) iterations.
Because nodes in each block are processed at different rates, our analysis depends on a
scheme which accounts for the removal of nodes in an amortized sense.

Let q = 1/ log log n and assign each of the 0 ≤ i < log n nodes in a block (1− q)i where
i is the distance of the node from the top of the block. Thus, the total weight of each block
is Σ0≤i<log n(1− q)i < 1/q and the total weight of all items is thus less than n/q log n. We
will thus show that after 5 log n iterations, the weight of the remaining elements is at most
(n/ log n)(1 − q)log n, which implies that at most n/ log n elements remain as the smallest
weight of any element is (1− q)log n−1.

Lemma 2.1. After each iteration, the total weight of the elements that have not been
removed is reduced by at least a factor of at least (1− q

4).

Proof. We distribute the total remaining weight in the list as follows. With each block Bi,
we associate the elements remaining in Bi and also the subjects of N(p(i)) if N(p(i)) is a
ruler. Note that at any stage, each remaining node is associated with exactly one block.

We have three cases to consider.

1. An active node is removed. If the node removed is the ith node, then the weight of
the block is reduced from Σi≤j<log n(1− q)j to Σi+1≤j<log n(1− q)j , which is less than
(1− q

4)Σi≤j<log n(1− q)j .

2. An active node is labeled as a subject. We consider the chain containing this node and
all associated blocks. Will will account for half of the weight when the node becomes
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a subject and the other half when the subject is removed. Suppose the weight of the
ruler is (1− q)i1 and the weights of the subjects are (1− q)ij with 2 ≤ j ≤ k for some
k. Furthermore, we assume that i1 is the largest weight (because otherwise we could
reassign the weights from the start). The total weight Q of all blocks associated with
this chain is Σk

j=1Σij≤l<log n(1− q)l, and the labeling of this node as subject reduces
the weight to Q− 1

2Σk
j=2(1− q)ij ≤ (1− q

4)Q.

3. The current node is labeled ruler and removes a subject. Let the ruler have weight
(1 − q)i1 and its subjects have weights (1− q)ij where 2 ≤ j ≤ k for some k. Again,
assume the element of heaviest weight (say, i2) is removed. Then the total weight of the
block and subjects of the ruler is Q = Σi1≤l<log n(1−q)l+ 1

2Σ2≤j≤k(1−q)ij ≤ (1− q
4)Q.

Thus, after each iteration, the total weight is reduced by a factor of at least (1− q
4).

Therefore, after 5 log n iterations, the total weight is at most (n/q log n)(1 − q
4)5 log n,

which, for sufficiently large n, is less than (n/ log n)(1 − q)log n. As the smallest weight is
(1− q)log n−1, there are O(n/ log n) elements after O(log n) iterations.

As each of the O(log n) iterations runs in time O(n/p log n), the total running time of
this routine is O(n/p), with linear work.

2.5 Euler Tours and Tree Problems

In this section, we first explain how to efficiently obtain such an Euler tour in parallel, and
then describe various optimal algorithms for tree problems using the Euler tour technique.

2.5.1 Euler Tours

We specify an Euler tour of T = (V,E′) by defining a successor function S mapping each
arc to the next arc along the circuit. One way to do this, described by Tarjan and Vishkin
[21], is to fix a cyclic ordering on V and the sucessor of each arc (u, v) is (v, w) where w is
the node following u in the cyclic ordering of the adjacency of v. We show that this defines
an Euler tour (instead of a set of arc-disjoint cycles) by induction on |V | = n. The base
case of n = 2 is trivial. Next, let n > 2 and consider some leaf node u adjacent to v. Then,
by definition of our function S, the successor of (v, u) is (u, v). We can thus remove u from
the graph and our inductive hypothesis guarantees that the successor function S defines an
Euler tour on the resulting tree. Thus, the full range of S defines an Euler tour on T ′.

Algorithmically constructing this function is straightforward. For each node v, we as-
sume that the ordering on the set of nodes adjacent to v is simply the order in which these
nodes appear in the adjacency list of v. Then for each edge (ui, v), we can identify the
successor (v, ui′) as ui′ follows ui in the adjacency list, except when ui is the last node in
the adjacency list of v. We can fix this by making the adjacency list circular. Thus, for
each node ui in a given adjacency list of v, we can define the successor (v, ui′) of (u, v) in
constant time. Thus, as we have 2n− 2 such edges to define, we can construct this function
in time O(n/p) for any p ≤ n.

We now show how, by list ranking an Euler tour with cleverly defined edge weights, we
can solve particular tree problems.
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2.5.2 Rooting a Tree

Given a tree T = (V,E) and a vertex r ∈ V , we can root a tree at r as follows. We construct
an Euler tour S starting at r, but breaking the edge from the last node u on the adjacency
list of r and setting S((u, r)) = u. We then compute the list ranking of the list of arcs
defined by S. Finally, for each arc (x, y), we set p(y) = x whenever the ranking of (x, y) is
smaller than that of (y, x). Correctness of this algorithm follows from the observation that
the Euler tour starting at r follows a depth first search of T ; thus, an arcs along the path
towards the root will have smaller rankings than those along paths away from the root.
That the time complexity of this algorithm is O(n/p + log n) follows from our previous
observations of complexities of the subroutines of this algorithm, as well as the observation
that the weights of the rankings of the n−1 pairs of edges can be compared in time O(n/p).

2.5.3 Traversal Numbering

Given a tree T = (V,E) rooted at r ∈ V by p : V → V , we can compute the preorder
traversal d in which each node appears in time O(n/p+log n) as follows. First, we construct
an Euler tour S of T ′ as previously described. We then assign the weights w((p(v), v)) = 1
and w((v, p(v))) = 0 to these arcs. Then the preordering d of a vertex v equals the ranking
of (v, p(v)), and p(r) = 0. With small variations, we can also compute the inorder traversal
and the postorder traversal of T .

2.5.4 Vertex Depth

Given a tree T = (V,E) rooted at r ∈ V by p : V → V , we can compute the depth d of
each vertex in time O(n/p + log n) using the same approach as before, except by defining
w((p(v), v)) = 1 and w((v, p(v))) = −1. Then the depth d of a node v equals the rank of
(p(v), v).

2.5.5 Subtree Size

Using a similar approach, but with w((p(v), v)) = 0 and w((v, p(v))) = 1, the size of the
subtrees rooted at each vertex v equals the difference between the ranking of (v, p(v)) and
(p(v), v) since each arc between these two arcs is in the subtree rooted at v.

2.6 Connected Components

In this section, we describe an algorithm as presented by Hirschberg, Chandra, and Sarwate
[17] for connected components, assuming the input is provided as an adjacency list. We
recursively solve the problem as follows. For each node, we select the edge incident to the
smallest ordered vertex. The set of edges induces a forest on the graph; in each tree, some
edge appears twice. We arbitrarily select one of the endpoints as the root of this tree, and
connect all roots to a ‘superroot’ s. We then compute the depth first search ordering on this
tree and note that nodes in the same tree will have adjacent numberings. Using this fact,
we can replace all edges (u, v) with edges incident to the leaders of u and v and recursively
solve the problem. As each iteration decreases the number of nodes by at least half, we
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will solve the base case after O(log n) iterations. Thus, this problem can be solved in time
O((m + n) log n/p) for any p ≤ n + m.

2.7 Minimum Spanning Tree

We can adapt the previous algorithm for connected components to find a minimum spanning
tree. For each vertex v, instead of selecting the vertex of smallest address, we select a
vertex v′ across the edge of least weight incident to v, as long as the address of v′ is less
than that of v. Thus, by the same analysis, the total time complexity of this algorithm is
O((m + n) log n/p).

3 Cache-Efficient Algorithms

A shortcoming of the sequential model is the assumption of unit access time to memory.
In reality, processor speeds are increasing at a rate much greater than that of data access
speeds. For example, main memory access is about one million times faster than disk access.
Consequently, often in applications with large data sets, a significant fraction of the running
time is the memory access time.

Initially, external memory algorithms were developed for certain applications with large
datasets, such as sorting checks by account numbers for banks [1]. More recently, however,
with the development of cache hierarchies, the benefit of these algorithms extends to more
mainstream applications and architectures, as L1 caches behave essentially the same as
external memories.

3.1 Performance of Cache-Efficient Algorithms

In the cache efficient model, we have a memory hierarchy consisting of two levels– an internal
memory (or cache) of size M and an arbitrarily large external memory (or disk)– between
which we exchange blocks of size B in unit time. The efficiency of an algorithm is measured
in terms of the number of such exchanges (called memory transfers).

The cache efficient model serves well to model memory transfers between two adjacent
cache levels. However, with multiple cache levels, algorithm design tuned to cache parame-
ters becomes cumbersome and rarely portable. A result due to Frigo et al. [15] states that,
if we design good cache efficient algorithms without reference to the particular parameters
of memory hierarchy, then this cache-oblivious algorithm will perform well on any multilevel
memory hierarchy.

There are two lower bounds for primitive operations in cache efficient algorithms. First,
the linear or scanning bound Ω(N

B ) represents the number of memory transfers needed to
just read N contiguous elements from memory. This scanning bound is trivial to prove, as
we can read at most B new words with one cache miss, and so to read N words, we will
cause at least N/B cache misses. Second, the sorting bound Ω(N

B logM/B
N
B ) represents the

number of memory transfers needed to sort N elements. The sort bound is presented by
Aggarwal and Vitter [1].
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3.2 Cache-Oblivious Prefix Sums

In the cache efficient model, computing the prefix sums optimally is trivial, however we
include it in this thesis for completeness and for a simple example of I/O analysis. The
algorithm operates exactly the same as the sequential algorithm and so that remains to
analyze is its I/O complexity. This computation proceeds by transferring in one block of
O(B) summands into the cache, computing the first B partial sums, and writing these
partial sums to memory. These summands are no longer used in the computation, and so
can be evicted later; we need only maintain a current summation of all summands added so
far, and this requires only constant space. Thus, each contiguous block of O(B) summands
contributes 2 memory transfers. This process continues until all partial sums have been
written, and so this algorithm executes O(N/B) memory transfers. Additionally, note that,
because the sequential algorithm does not reference the cache parameters, this algorithm is
cache-oblivious.

3.3 Cache-Oblivious List Ranking

The cache-oblivious algorithm due to Arge et al.[4] for list ranking is inspired by those
for parallel models. At a high level, the algorithm behaves essentially the same: an
independent set of Θ(N) nodes is found in with O(sort(N)) cache misses, these nodes
are contracted out, and the remaining list is recursively ranked. This requires a total of
T (n) = T (N/c) + O(sort(N)) = O(sort(N)) I/Os. One essential difference is in the con-
struction of an independent set.

One way of finding an independent set by 4-coloring a list, due to Arge et al. [4], is
as follows. Call an edge (i, S(i)) a forward edge if i appears before S(i) in the unordered
sequence of nodes; that is, i < S(i). Otherwise call it a backwards edge. This definition
naturally separates sequences of node into forward chains and backwards chains. Call a
node i a head node if it has the least index in its forward chain; that is, i < S(i) and
i < P (i). Similarly define tail nodes. Note that every node will be in one chain, and head
or tail nodes will be in both a forward chain and a backward chain. They color these chains
as follows. They color the head of each forward chain red, and then color the succeeding
nodes alternatingly blue and red. Similarly, they color the heads of each backward chain
red, and then color the succeeding nodes alternatingly blue and red. At this point, every
node is colored with one color validly except for the head and tail nodes. This can be fixed
by coloring every head node green and every tail node yellow.

Following Arge et al. [4], we describe how to efficiently implement this algorithm cache-
obliviously assuming that we have a cache-oblivious priority queue which supports each
insert, deletemin, and delete operation in O( 1

B logM/B
N
B ) amortized memory transfers

and O(log N) amortized computation time. Arge et al. [4] describe how to implement such
a priority queue. We detail how to cache-obliviously color the forward lists, as the backward
lists can be colored similarly.

Cache-Oblivious Coloring
(1) Create a cache oblivious priority queue Q
(2) Insert each head node with color red
(3) While Q is nonempty

13



(3.1) Let i be the index and c be the color of the ExtractMin operation
(3.2) Color node i with color c
(3.3) If S(i) is in this forward chain, Insert S(i) with the color opposite c.

At a high level, they use the priority queue to ensure that nodes are colored (and thus,
accessed) from least to highest memory address, so as to require only O(scan(N)) I/Os.
The correctness of this algorithm can be proven with the following loop invariant: Let F
denote all nodes in a forward chain. After i ExtractMin operations, the i nodes in F of
least index are properly 2-colored and each element of Q not a head node has associated
color opposite that of its predecessor.

We now analyze complexity. We assume we have a predecessor array P as it can be
constructed with O(sort(N)) I/Os. We can then identify the head nodes by testing if
both i < S(i) and i < P (i) with O(scan(N)) I/Os. We perform at most N of each of the
Insert and ExtractMin operations, and so the queue operations require O(sort(N)) I/Os.
Finally, because we color nodes from least memory address to greatest, these operations
require O(scan(N)) I/Os. Thus, we can color the forward lists with O(scan(N)) I/Os.

Finally, they achieve a complete coloring of the list by performing a similar 2-coloring on
the backward chains and a straightforward coloring of the head and tail nodes as previously
described.

So, we can color a linked list of N nodes in time O(sort(N)). In conjunction with the
contraction technique, we can solve the list ranking problem cache-obliviously in O(sort(N))
memory transfers.

3.4 Euler Tours and Tree Problems

We now show how Arge et al. [4] cache obliviously construct the Euler Tour defined in
section 2.5 by adapting the corresponding parallel algorithm. First, for each vertex v, they
construct a list of every incoming edge to v and sort it according to the cyclic order. Then,
if (u, v) appears just before (u, w) in this sorted list, the successor of the incoming edge
(u, v) is the outgoing edge (v, w). Therefore, they can can compute all successors in a scan
of each of these lists. Thus, by taking the set of all pairs of edges and their successors, they
can compute an Euler Tour of a tree by list ranking that set and then sorting the edges
by rank. Because each subroutine of this algorithm has O(sort(N)) cache complexity, and
each subroutine is called only a constant number of times, the total cache complexity of
this algorithm is O(sort(N)).

As described in the previous section, by assigning certain weights to these edges and by
comparing the rankings of the edges, we can compute a variety of tree problems, all within
the O(sort(N)) cache complexity.

3.5 Connected Components and Minimum Spanning Tree

We now describe a cache oblivious minimum spanning tree algorithm presented by Arge et
al. [4]. At a high level, we contract a minimum weight edges of each vertex and recursively
solve the problem on resulting super-vertices. At the beginning of each stage, we sort
the edges by weight and for each vertex, we select a minimum weight edge to be part of
our MST. The subgraph induced by the edges selected is then a forest. For each connected
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component (tree) in this induced subgraph, some edge appears twice (namely, the minimum
weight edge in the tree); we designate an endpoint of this vertex as the leader of its connected
component. We connect each leader to a special vertex s and compute depth first search
of the resulting tree rooted at s. Nodes within the same tree will then have consecutive
numbers and so with a constant number of sorts and scans we can mark every vertex with
its leader. Finally, we replace every edge between u and v with an edge between the leaders
of u and v. The number of vertices has been reduce by at least half, using a constant number
of sorts and scans. Thus, we can compute a minimum spanning tree (or, more generally, a
minimum spanning forest) cache obliviously with O(sort(E) · log V ) cache complexity.

4 Multicore Algorithms

As increases in processor speeds decelerate, multicore architectures have been introduced to
restore the performance improvements to its historical orders of magnitude. Consequently,
a variety of theoretical models [6, 5] have been presented to fully realize these advances
in computer architecture. In this section, we discuss multicore models and we describe a
number of graph algorithm results from [5] for the private cache model.

4.1 History of Theoretical Frameworks for Multicores

Alongside the introduction of chip multiprocessors (or multicores) has been the development
of theoretical frameworks to maximally exploit these emerging architectures. A variety of
papers [11, 6, 12, 16, 7, 10] have begun to realize this goal. Initial approaches focused
on the development of schedulers with provably good performance [6]. Chowdhury and
Ramachandran [10] introduced the evaluation of parallel algorithms with both private and
shared caches by extending the Gaussian Elimination Paradigm framework to have dis-
tributed cache efficiency. Subsequent papers have introduced a variety of multicore models.
Blelloch, Chowdhury et al. [6] describe a multicore cache model with both per-processor
private caches and a large shared cache. Arge et al. [5] introduced a parallel external
memory model which generalizes the PRAM model by augmenting each processor with a
private cache. Chowdhury and Ramachandran [11] present a number of divide and conquer
algorithms for this framework. In recent work, Chowdhury, Ramachandran, and Silvestri
introduced a multicore with multilevel cache hierarchy model as well as a multicore oblivi-
ousness framework [12].

4.2 Performance of Multicore Algorithms

The model of computation we will use in this section is the private cache multicore model.
In this model, each of the p processors has a private cache of size M and all share a common
arbitrarily large external memory. The complexity analysis of an algorithm considers the
number of parallel memory cache misses, parallel computation time, and space requirements.
More formally, the cache complexity of an algorithm is the maximum number of cache misses
at any processor. This model is similar to, but more general than the parallel external
memory (PEM) model presented by Arge et al. in [5]. In particular, the private cache
multicore model implements parallelism through the standard parallel constructs of fork
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and join and parallel loop constructs, mirroring modern architectures, whereas the PEM
model resembles the PRAM model with a global clock but with a single level of private
caches. In this section, however, we will describe an algorithm for the PEM model before
considering the private cache multicore model.

As introduced by Chowdhury, Ramachandran, and Silvestri [12], an oblivious algorithm
is one which does not explicitly reference any machine parameters: the number of proces-
sors, the number of cache levels or their cache or block size. These algorithms often offer an
appealing compromise between speed and portability. As multicores become increasingly
prevalent, the expansive number of permutations on architectural specifications (number of
processors, block transfer sizes, cache sizes, memory topology, among others) will make im-
plementing multicore aware algorithms increasingly and perhaps prohibitively cumbersome.
In a later section, we will present multicore oblivious variations on these algorithms and
compare the complexity of these algorithms with that of their multicore aware counterparts.

4.3 Private Cache Multicore List Ranking

At a high level, Arge et al. [3] adapt the known PRAM algorithms and cache-efficient
algorithms for list ranking to create a multicore efficient algorithm for list ranking with
private caches. They first produce an independent set S of size Θ(N) and contract out of
the list the members of this independent set. They then solve this problem recursively on
the remaining nodes before extending the solution to the nodes in S.

The nonrecursive steps require a constant number of scans and sorts and operations with
cache complexity O(sortp(N)). Thus, if an independent set S of size N/c for some c > 1
can be found in O(sortp(N)) cache misses, then the cache complexity of the list ranking
algorithm satisfies Q(N, p) = Q(N/c, p) + O(sortp(N)) = O(sortp(N)). However, the only
known PEM sorting algorithm in this context is optimal for only up to N/B2 processors.
Thus, they need in addition an optimal algorithm for problems of size less than pB2. They
solve the problem recursively in different ways depending on the size of the problem.

When N > pB2, they use the optimal algorithm previously described with cache com-
plexity of O(sortp(N)). When the problem size is pB ≤ N ≤ pB2, they reduce the number
of processors proportionally to the problem size while maintaining the cache complexity of
sorting at O(B logM/B N/B). Finally, when the problem size is N < pB, they revert to the
PRAM list ranking algorithm which runs in O(N

p + log N) parallel time; when N < pB,
this reduces to O(B +log pB) = O(B +log p) parallel time. Even if at every time step they
incur a cache miss, this results in cache complexity of O(B + log p). We claim that this
approach obtains the following recurrence relation for the cache complexity (the proof will
follow shortly).

Problem Size Cache Complexity Algorithm
N ≥ pB2 Q(N/c, p) + O( N

pB logM/B
N
B + log p log log N + (log log N)2) Recursive

pB < N < pB2 Q(N/c, p/c) + O(B logM/B
N
B + log p + log log pB) Processor Scaling

N ≤ pB O(B + log p) PRAM

The solution to this recurrence is O((B log B+ N
pB ) logM/B

N
B +(log p+log log N)(log N

pB log log N)),
which under a certain set of assumptions reduces to O(sortp(N)).
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As usual, the heart of the problem is efficiently finding an independent set. The method
described in [3] involves constructing a 2-ruling set from a log log n-coloring as follows. At a
high level, they group nodes by color, and in iteration i select all nodes of color i which are
not adjacent to nodes already selected. For the moment, we exclude the details of exactly
how wise sorting makes this algorithm cache efficient, but will later describe our the details
in the cache complexity analysis.

Multicore Ruling Set
(1) Apply Iterative Coloring twice to log log n-color the nodes and sort by color.
(2) Associate with each node the ID and color of its predecessor and successor.
(3) For each group Gi of nodes colored i from 1 ≤ i ≤ log log n, do:

(3.1) Collect the nodes without duplicates into a contiguous array Ti.
(3.2) Add a duplicate of the successor of each node in Ti to its color group.
(3.3) Add a duplicate of the predecessor of each node in Ti to its color group.

(4) Return R, the concatenation of all Ti

The correctness of this algorithm follows from the following claims which show that the
set R =

⋃
Ti constructed satisfies the definition of a 2-ruling set.

Lemma 4.1 ([3]). The set R is an independent set.

Proof. In each iteration, we add only nodes of the same color and so by the definition of a
coloring, none of these nodes are adjacent. Across each iteration, we explicitly exclude the
successor and predecessor of nodes already added to R. So R is an independent set.

Lemma 4.2 ([3]). Every element not in R has a neighbor in R.

Proof. This algorithm excludes a vertex precisely when one of its neighbors has been selected
for the ruling set.

From Lemma 4.3, we conclude that every sequence of consecutive unselected items has
at most two items; otherwise, a middle element would not have a neighbor in the ruling
set. So R is in fact a 2-ruling set. As we have established correctness, we now analyze
complexity. Recall first that we assume that log N ∈ O(B) and M = BO(1)

Lemma 4.3 ([3]). The cache complexity of Multicore Ruling Set is O( N
pB logM/B

N
B ).

Proof. Steps (1) and (2) take some constant number of sorts and scans of the whole list for a
total of O(sortp(N)) cache misses. We now consider the complexity of each round of step (3),
denoting by Ni the size of group Gi. To identify the items with duplicates present, they sort
the nodes by their original numbering and scan across this list, comparing adjacent nodes.
They compute the addresses to write the contiguous array by a prefix sums with cache
complexity O(Ni/pB + log p). So line (3.1) has a cache complexity of O(sortp(Ni) + log p).
Between lines (1) and (2), for each node, this algorithm has computed the ID and color
for both the predecessor and successor of a given node with a constant number of sorts,
and have this information associated with that particular node with only a constant space
overhead. Thus, in line (3.2), this algorithm will sort the array Ti first by color and then
by ID. This algorithm then appends the duplicates to the end of the appropriate group by
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computing a prefix sums on the array of duplicates and on the sizes of the groups. Note
that, in the worst case, this algorithm must write some number of duplicates to each of the
log log N groups.

Thus, each round takes O(sortp(Ni) + log p + (log log N)) cache misses. There are at
most two duplicates of each node (that is, ΣiNi ≤ 3N) and so each node participates in at
most some constant number of sorts. Therefore, the sum cache complexity of step (3) is

log log N∑

i=1

O(sortp(Ni) + log p + log log N) = O(sortp(N) + log p · log log N + (log log N)2)

We now want to argue that sortp(N) is the dominating term in this complexity. Because
N ≥ pB2 and M = BO(1), we have that B log N

log B = O(B logM/B
N
B ) = O(sortp(N)).

Thus, their primary result follows.

Theorem 4.4. A linked list of size N can be ranked in the PEM model with cache complexity
O(sortp(N)) using up to p = N

B2 log B processors, assuming log N = O(B) and M = BO(1).

As a concluding remark, we note that, by executing Iterated Coloring additional
times, the latter assumption can be reduced to log(k) N = O(B) for any constant k.

4.4 Euler Tours and Tree Problems

All that is required to construct an Euler tour and solve various tree problems is an algorithm
to solve list ranking. The details were discussed in the previous two eponymous sections
and so we do not revisit them in this section, except to mention that it can be done with
the expected complexity bounds.

4.5 Connected Components and Minimum Spanning Tree

We now describe the algorithm due for connected components and minimum spanning tree.
This algorithm is an adaptation of the single-processor external memory algorithm of Chiang
et al. [8], which in turn is based on the PRAM algorithm of Chin et al. [9]. This multicore
algorithm follows the same strategy as the external memory algorithm, but instead using
the appropriate multicore subroutines and concluding the recursion with a PRAM optimal
algorithm. As we have previously shown, the list ranking and tree contraction multicore
algorithms are optimal for p ≤ N

B2 log B . Therefore, when the size of the subproblem decreases
to O(pB2 log B) vertices, we scale down the number of processors in proportion to the
number of vertices. Finally, when the number of remaining vertices has decreased to O(pB),
we use the PRAM optimal algorithm with time complexity O(n+m

p +log p). Thus, the cache
complexity of this algorithm is defined by the following recurrence:

C(n, m, p) =






C(n/2, m, p) + O(n+m
pB logM/B

n+m
B ) n ≥ pB2 log B

C(n/2, m, p/2) + O(B log B logM/B
n+m

B ) pB < n < pB2 log B
O(n+m

p + log p) n ≤ pB
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This recurrence solves to C(n, m, p) = O(( n
pB + m

pB log n
pB + B log2 B) logM/B

n+m
B ).

Thus, assuming p ≤ n
B2 log2 B

, we have that C(n, m) = O(sortp(n) + sortp(m) log n
pB ).

5 Our Novel Results for the Multilevel Multicore Model

In this section, we present our novel results. We will discuss the multilevel multicore model
using the following notation. We let h be the number of distinct levels in the cache hierarchy.
For 1 ≤ i ≤ h, Mi denotes the size of the caches to level i, Bi denotes the size of the block
transfer at level i, and qi denotes the number of level i caches (or, equivalently, the number of
distinct groups of processors sharing a cache). When any of these variables appear without
a subscript, we implicitly intend it to be subscripted with a 1. We extend the tall cache
assumption to entail Mi ≥ B2

i . We also assume that Mi ≥ pi−1Mi−1. Essentially, this
assumption states that lower cache levels have at least as much bandwidth and storage as
higher levels; otherwise, these lower levels could not accomodate the higher levels.

5.1 Prefix Sums

We observe that, with a wise scheduler, the optimal PRAM algorithm for prefix sums can
be made cache efficient for a multicore model with an arbitrary cache hierarchy. Essentially,
we tell the scheduler to assign contiguous elements to contiguous processors; that is, those
which share caches. This scheduler and proof of complexity can be found in [12].

We now analyze the time complexity of this algorithm. We claim that the time com-
plexity of this algorithm is defined by the following function:

T (N) =






O(N/p) + T (N/2) N ≥ 2p
O(1) + T (N/2) 1 < N < 2p

O(1) N = 1

To solve this recurrence, we consider two separate recurrences whose sum is an upper
bound of T (N). The first recurrence is defined by T ′(N) = O(N/p) + T (N/2) when N > 1
and O(1) otherwise; by the master theorem, this solves to O(N/p). The second recurrence is
defined by T ′′(N) = O(1) + T (N/2) for N > 1 and O(1) otherwise; by the master theorem,
this solves to O(log N). As every term in T (n) is accounted for in T ′(N) or T ′′(N), we have
that T (N) ≤ T ′(N) + T ′′(N) = O(N/p + log N).

We now analyze the cache complexity of the nonrecursive steps in the algorithm, given
a caching policy which distributes. When N > 2p, an optimal caching policy would request
the first C1 summands from each contiguous block of N/p summands. After all the pairs
have been summed, the next set of C1 summands is requested, and so on. An optimal
caching policy would follow a similar approach after the recursive step as well. Thus, the
cache complexity of this algorithm is defined by the following recurrence:

C(N, p) =






O(N/pB) + C(N/2, p) N ≥ 2p
O(1) + C(N/2, p/2) 1 < N < 2p

O(1) N ≤ 1

Again, to solve this recurrence, we consider two separate recurrences whose sum is an
upper bound of C(N, p). The first recurrence is defined by C ′(N) = O(N/pB) + C(N/2, p)
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whenever N > 1 and O(1) otherwise; again, by the master theorem, this solves to O(N/pB).
The second recurrence is defined by C ′′(N) = O(1)+C(N/2) whenever N > 1 and C ′′(N) =
O(1) otherwise; by the master theorem, this solves to O(log N). As every term in C(N, p)
is accounted for in C ′(N, p) or C ′′(2p), it follows that C(N, p) ≤ C ′(N, p) + C ′′(2p) =
O(N/pB + log p).

Finally, we note that this L1 cache complexity analysis easily extends to caches in
an arbitrary hierarchy, as described by Chowdhury, Ramachandran, and Silvestri [12], by
replacing M with Mi, the Li cache size, by replacing B with Bi, the size of the block
transfers to level i, and by replacing p with pi, the number of processors sharing an Li

cache. Thus, the Li cache complexity of this algorithm is O(N/piB + log pi), which is
optimal. Additionally, it follows that, because this algorithm is multicore-oblivious (that
is, it does not reference the parameters of the multicore) and because it is cache efficient
for a particular cache level, this algorithm is efficient for any particular cache level.

5.2 List Ranking

In the previous section, we described list ranking algorithms efficient for the private external
multicore model given certain assumptions. In this section, we extend these results to the
multilevel multicore model. First, we present an improvement to the list ranking algorithm
as stated. In the algorithm due to Arge et al. [5], while writing the duplicates to separate
groups, each processor could write to up to log log N different groups; thus, step (3.2) of each
iteration of the loop incurred O(sortp(Ni)+log p+log log N) cache misses. We claim that this
can be done with O(sortp(Ni)+log p+log log N/p) cache complexity with a novel scheduler
(their paper does not describe any scheduler for this routine). This results in optimal
O(sortp(N)) cache complexity under the assumptions that log p log log N = O(sortp(N)),
N > M , and the tall cache assumption M = Ω(B2), instead of the nonstandard assumptions
of M = BO(1) and log N = O(B). In fact, we could derive the same result with N = Ω(B1+ε)
for any ε > 0 instead of N > M and M = Ω(B2).

5.2.1 Disjoint Blocks Writing

We begin by stating the problem abstractly and motivate this problem as nontrivial before
presenting our solution and applying it to the list ranking problem. The input to the
Disjoint Blocks Writing problem is a set of G tags, each with an associated G memory
addresses sufficiently distant, and N items in contiguous memory, each with an associated
tag from G. Note that the N items are not necessarily grouped by tag number. The required
output is all of the items of the same tag written contiguously starting at the corresponding
memory address. This problem is of theoretical interest also because it is trivial in both
the parallel and the cache efficient contexts, but nontrivial in the multicore context.

We now motivate the need for a nontrivial scheduler by showing the cases when two
näıve schedulers are unsatisfactory. At a given time step t, let G(t) denote the number
of contiguous groups, let Ni(t) denote the number of unwritten elements in group i, and
let N(t) denote the total number of elements not yet written. First, consider the scheduler
where we assign an equal number of processors to each group, and whenever a group finishes,
its processors are reassigned to the lexicographically next group. Consider the instance
where the size of group i is G

p (2i− 1) and N > 2p, as depicted in the following illustration.
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Then it can be proven by induction that between time steps t and t + 1, all groups i ≤ t
have been written, and group t + 1 has G

p (t + 1) elements to be written. So the processors
assigned to the first group will be assigned to write some elements of every group, and so
will have cache complexity Ω(G).

Second, consider the scheduler which assigns the ith chunk of elements to be written to
processor i. Consider the instance where the first G − 1 groups have size 1 and the last
group has size (G− 1)(p− 1), as depicted in the following illustration.

The first processor will be assigned the first G − 1 elements, each in separate groups, and
so will have cache complexity Ω(G).

We now describe our scheduler, which assigns processors according to two separate cases.
In both cases, we first sort the groups by tag and then sort the groups from smallest to
greatest size. Whenever p < G, we assign any available processor to the group of smallest
size which currently has no processor assigned to it. Thus, whenever a processor completes
its group, all processors which were assigned since it was reassigned have finished their
group as well (because these groups were of smaller size), and so each time a processor is
reassigned, p groups have been completed. So, during this phase, no processor is assigned
to more than G

p groups. Next, whenever p ≥ G, we assign &N ′
i

N ′ 'p processors to group i. So

we assign each processor to one group, and a total of Σi(
N ′

i
N ′ + 1)p = p + G processors are

scheduled; however, because G ≤ p, we will need no more than 2p processors. We can thus
assign each of the p processors to complete the load of two processors, and so each processor
is assigned to at most 2 = O(G

p ) groups. Finally, it is clear that under this schedule, except
for the last time step per group it is assigned to, each processor writes B elements, and so
the total cache complexity of this schedule is O(sortp(N ′)+ N ′+BG

pB + G
p ) = O(sortp(N)+ G

p ).
We now apply this result to augment the Multicore Ruling Set algorithm. In our

particular case of one iteration of step (3), N ′ = Ni and G = O(log log N), and so the cache
complexities of step (3.2) and (3.3) are both O(sortp(Ni)+ log p+(log log N)/p). Thus, the
cache complexity of the the entire ruling set algorithm is O(sortp(N) + log p log log N +
(log log N)2/p). We now show that (log log N)2/p = O(sortp(N)). By the tall cache
assumption that M = Ω(B2) and the assumption that N > M , we have that

√
N =

N√
N

= O( N√
M

) = O(N
B ). Because (log log N)2 = O(

√
N), we have that (log log N)2/p =

O(sortp(N)). Thus, this complexity reduces to O(sortp(N) + log p log log N), and so our
scheduler improves the asymptotic complexity of this algorithm whenever (log log N)2 would
have been the dominating term in the complexity.

We now want to show that sortp(N) is the dominating term in this complexity whenever
log N = O(B) and N ≥ pM . We thus have that logN/pB

N
B ≤ logM/B

N
B . Also, logN/pB

N
B =

1 + logN/pB p and log N
pB = log p

logN/pB p . So if log N
pB log log N = O( N

pB ), then log p log log N =
O(sortp(N)). Because N ≥ pB2 and by our assumption that log N = O(B), we have that
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log N = O(B) = O( N
pB ) and thus that log log N = O( N

pB ). Therefore, log p
logN/pB p log log N =

O((log N
pB )2) = O( N

pB ) and so we conclude that log p log log N = O(sortp(N)).
The analysis of the list ranking algorithm given our analysis of this independent set

algorithm follows in the same manner as before. We now highlight the conditions on the
multicore parameters for which the two analyses presented reduce to the O(sortp(N)) lower
bound. In this analysis, we have assumed that N ≥ pM , N ≥ B2 log B and log(k) N = O(B)
for any constant k. The analysis in [5] assumes that N ≥ pB2 log B, M = BO(1), and
log(k) B = O(N) for any constant k.

5.3 Multicore Oblivious List Ranking

In this section, we assume we have a multicore oblivious sorting algorithm with time com-
plexity O(N/p+log p), cache complexity O(sortp(N)), and that the greatest term dominates
in a series geometrically decreasing in N down to some g(N) for a given p. We now adapt
the previous algorithm to create a multicore oblivious algorithm. The algorithm follows the
design of the List Ranking by Contraction Algorithm of section 2.4.2, but we find an
independent set using the Multicore Ruling Set algorithm.

At a high level, beginning with a problem initially of size N0, we identify an independent
set using the Multicore Ruling Set algorithm, contract out the nodes, and recursively
solve until the problem size decreases to at most a certain size g(N0). We then solve the
subproblem of size g(N0) with the optimal PRAM list ranking algorithm, noting that the
number of parallel time steps is an upper bound for the number of parallel cache misses. We
thus derive the following recurrence relation defining the time complexity of this algorithm:

T (N, p) =

{
O(N

p + log p) + T (N/c, p) g(N0) ≤ N

O(N
p + log p) N < g(N0)

This recurrence relation solves to O(N0
p + log p log N0

g(N0)). Next, we derive the following
recurrence relation defining the cache complexity of this algorithm:

C(N, p) =
{

O(sortp(N) + log p log log N + (log log N)2) + C(N/c, p) g(N0) ≤ N
O(N

p + log p) N < g(N0)

Similarly, this recurrence relation solves to O(sortp(N0)+(log p log log N0+(log log N0)2) log N0
g(N0)+

g(N0)
p ).Furthermore, the Li cache complexity of this algorithm can be similarly derived with

the appropriately subscripted parameters.

5.4 Euler Tours and Tree Problems

We can directly adapt many the parallel algorithms for tree problems to be multicore
oblivious by using the previously described multicore oblivious list ranking algorithm. As
previously described, all that is required is to define an Euler tour within the required
complexity bounds. Instead of making the adjacency list circular, we simply ensure that
the same processor is assigned to writing the successor of arc from the first node and to the
last node in the adjacency list. Assigning the successor of each edge in the same manner
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as the parallel algorithm is straightforward. This can thus be accomplished with the same
complexity as list ranking. Furthermore, given a tree, we can computing a rooting, a
traversal numbering, the depths of the vertices, and the sizes of the subtrees within the
same complexity bounds.

5.5 Connected Components and Minimum Spanning Tree

Similarly, we can directly adapt the parallel algorithms for connected components and
minimum spanning tree to be multicore oblivious by using the previously described multicore
oblivious algorithms. Recall the steps in the connectivity graph algorithms. First, for each
vertex, an edge of minimum weight is selected. Then, the roots of the forest induced by
these edges are identified by selecting an endpoint of the edges which appear twice. A depth
first traversal numbering of the nodes in these trees then associates each node with its root.
Every edge is then replaced with an edge between its endpoints corresponding roots, and the
problem is recursively solved. However, whenever the problem reaches size less than g(N0),
we revert to the PRAM optimal algorithm for the corresponding connectivity problem. We
thus derive the following recurrence relation defining the time complexity of this algorithm,
where we denote by N the size of the input (i.e., N = n + m):

T (n, m, p) =

{
O(N

p + log p log N
g(N) + g(N0)

p ) + T (n/2, m, p) g(N0) ≤ N

O(g(N0)
p + log p)) otherwise

This recurrence relation solves to O((N0
p + log p log N0

g(N0)) log N0
g(N0) + g(N0)

p ). Next, we
derive the following recurrence relation defining the cache complexity of this algorithm:

C(n, m, p) =

{
O(sortp(N) + (log p log log N + (log log N)2) log N

g(N0) + g(N0)
p ) + C(n/2, m, p) g(N0) ≤ N

O(N
p log g(N)) otherwise

Similarly, this recurrence relation solves to O((sortp(N0)+(log p log log N0+(log log N0)2) log N0
g(N0)+

g(N0)
p ) log N0

g(N0) + g(N0)
p log g(N0))

5.6 Shared Caches

In presenting these multicore oblivious algorithms, we have analyzed only the private cache
complexity explicitly. However, note that, other than sorting, all operations occur on dis-
joint sets of data of constant size. Thus, by using the coarse grained contiguous scheduler
described by Chowdhury, Ramachandran and Silvestri [12], these steps achieve the scan-
ning bound for cache complexity at any level. Thus, the cache complexity at each level is
dominated by the cache complexity of sorting or of the PRAM algorithm.

6 Remarks

At present, Arge et al. require that N ≥ pB2 and we require that log p log log N =
O(sortp(N)). Ideally, we would eliminate this nonstandard assumption and design an algo-
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rithm which is efficient for up to p ≤ N/ log N processors. In this section, we discuss what
we might expect of this algorithm, and some of the substantial challenges this imposes.

6.1 Maintaining Work-Time Optimality

The first consideration in developing a multicore efficient algorithm is its time complexity.
Ideally, we expect such list ranking algorithms to run in time O(N/p + log p). The most
simple parallel algorithm which achieves this time bound is the well known algorithm pre-
sented by Anderson and Miller [2]. We show that, in the worst case, this algorithm incurs
unacceptably many cache misses in both shared and private caches. Additionally, we cannot
overcome this bound by a simple preprocessing permutation, and it seems unlikely that a
constant number of permutations through the execution of the algorithm could overcome
these bounds. Thus, it seems we first need to develop a more sophisticated optimally paral-
lel algorithm for list ranking; that is, to avoid needing nonstandard assumptions, we would
need completely novel parallel techniques.

6.1.1 Shared Cache

As we process the blocks at different rates, we are unable to predict a priori which pointers
will increment next, and thus our memory access could correspond to random access. We
now present a (worst case) instance of the Parallel Contraction algorithm and analyze
its cache complexity. In summary, each adjacent node is B memory addresses apart, except
for the last in any block, which points to the first node in the next block. More formally,
in a given block Bi where 1 is the index of the first node, we have that

S(i) =






log n if x = log n− 1
i + B if i + B < log n

i + B − log n otherwise

In the case where B < log N and M < BN/ log N < N , both the successor and predecessor
of every node N(p(i)) are in different memory blocks than N(p(i)). Thus, the number of
distinct memory blocks needed for each parallel step is 3N/ log N . So every parallel step
incurs Θ(N/ log N) cache misses. As the algorithm runs for Ω(log N) steps, Parallel
Contraction incurs Θ(N/ log N)Θ(log N) = Θ(N) cache misses.

6.1.2 Private Cache

In the Parallel Contraction algorithm, nodes are explicitly partitioned to processors,
but dynamic data about other processors’ nodes is required. In particular, each iteration
requires access the successor of N(p(i)), either to remove the next subject or to check if its
isolated or to recolor itself. Furthermore, this successor changes with each iteration. We
now present a (worst case) instance of the Parallel Contraction algorithm and analyze
its cache complexity. In summary, every pair of blocks has a node in one whose successor
is in the other. More formally, where i′ denotes the distance from i to the top of the block
and b denotes the block i is in,

S(i) = b + i′ log n− i′ (mod N)
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In the case where M < log N/B, the successor of any given node N(p(i)) is in a different
memory block. Thus, because each iteration accesses the successor of N(p(i)), each iteration
of Parallel Contraction incurs a cache miss for each pointer p(i). So, after Ω(log N)
iterations, we have incurred Θ(log N)Θ(N/p log N) = Θ(N/p) cache misses.

7 Conclusion

In this thesis, we have considered the problem of computing prefix sums, the problem of
ranking a linked list, and some related graph problems on the parallel, cache efficient, and
multicore models of computation. We have presented an optimal and multicore oblivious
prefix sums algorithm on the multilevel multicore model. We also describe a scheduler for a
part of a known list ranking algorithm which enables us to eliminate a term from the cache
complexity of the algorithm. Finally, we have presented a multicore oblivious algorithms for
solving list ranking, constructing an Euler tour, and related tree and connectivity problems.
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