
Building an Autonomous Ground Traffic System

Tarun Nimmagadda

April 20th, 2007

Abstract

Ground traffic systems are the combination of ground vehicles, roads,
highways and intersection infrastructure that make it possible for people
to commute on the road. Recent advances in the field of robotics allow
us to increase the autonomy of currently human-operated ground traffic
systems. This document presents the key software components developed
as a part of this thesis research to create an autonomous vehicle plat-
form; specifically, a lane-based obstacle tracking system which enabled
our autonomous vehicle, Marvin, to successfully handle dynamic traffic.
Furthermore, the Autonomous Intersection Management (AIM) protocol
designed by Dresner and Stone [7] shows that intersection efficiency can be
significantly increased if the intersection can communicate wirelessly with
autonomous vehicles. Towards this end, this document presents the exten-
sions made to Marvin’s capabilities so that it would communicate with
the AIM system thereby bringing us closer to an Autonomous Ground
Traffic System.

Figure 1:
Marvin, the autonomous vehicle in California during the 2007 DARPA Urban
Grand Challenge.

1



1 Introduction
It is obvious from industry and government investments and even entertainment
media, that we envision autonomous vehicles to have a substantial role in the
future of transportation. What is less obvious is what needs to happen to
convert our existing technologies to be autonomous and the intermediate steps
along the way.

The creation of large scale automobile manufacturing by Henry Ford in 1914
and the standardization of the National Highway System in 1920 are the ori-
gins of today’s Ground Traffic Systems. American highways which were once
the source of quick and reliable travel are now a source of frustration due to
congestion, and loss of life [1]. A report from the National Highway Traffic
Safety Administration says that nearly 6 million police-reported motor vehicle
crashes occurred in the United States in 2006 [5]. A total of 42,642 people
lost their lives and 2.6 million people were injured. The 2007 Urban Mobility
Report [10] shows that congestion in urban areas caused Americans to travel
4.2 billion hours more and to purchase an extra 2.9 billion gallons of fuel costing
them over 78 billion. There is good reason to believe that autonomous vehicles
combined with intelligent traffic infrastructure could save thousands of lives and
also provide large savings in time and money.

1.1 History
Autonomous vehicle research has been an active field since 1995, when CMU’s
Navlab project achieved 98.2% semi-autonomous driving on a 3000 mile trip
across America. There has been a surge since 2002, when DARPA announced
the Grand Challenge. The first DARPA Grand Challenge started in 2004 as a
150 mile autonomous race through the desert. DARPA’s goal was to develop
technology that will keep soldiers off the battlefield and out of harm’s way. The
challenge is conducted in support of the congressional mandate to transition to
one-third of the United States’ ground military vehicles being autonomous by
2015. The 2004 and 2005 Challenges featured a 150 mile course in the Mojave
Desert. While none of the teams made it past 8 miles in 2004, the 2005 Grand
Challenge course was completed by five teams with Stanford University’s team
finishing first [15]. Austin Robot Technology (A.R.T.) also participated in the
2005 race and reached the semi-finals.

The DARPA Urban Grand Challenge was held in 2007 in an attempt to have
vehicles race against each other in a mock “urban” city. This challenge required
cars to obey traffic laws while navigating traffic circles and intersections contain-
ing professional drivers and other robot cars. Unlike in the previous challenges,
where the robots did not encounter other vehicles on the course, the Urban
Challenge required robots to interact closely with other vehicles. Carnegie Mel-
lon’s Tartan racing team won the race and five other teams completed the course
with four of these teams finishing within the 6 hour deadline. This goes to show
that cars possessing the capability to navigate traffic autonomously is no longer
just a dream.

2



1.2 Background
The University of Texas did not participate in the two previous Grand Chal-
lenges, but partnered with A.R.T for the 2007 Grand Challenge. Since our
collaboration began in August 2006, we have acquired and installed the Velo-
dyne High Definition Lidar (HDL) Sensor and the Applanix GPS System on
the vehicle. Dr Peter Stone’s course at the University of Texas focused on in-
troducing undergraduate students to the challenge of autonomous driving. This
partnership provided an great platform to create unique undergraduate research
opportunities. Our team made it to the National Qualifying Event (semi-finals)
again in 2007, but was not among the top eleven teams chosen for the final
race. This was in a large part because we did not have enough time to make
our system robust by the competition deadline. Our car, Marvin, performed
quite well until a self-inflicted accident put us out of the race. In particular,
the lane-based obstacle tracking approach presented in this article showed very
promising results in real-world tests. In one test that required robots to merge
into moving traffic, Marvin made 7 laps of the course and was one of the few top
performers on that test. We now have a stable platform for future development
and improvements.

This article describes the software architecture we built for the grand chal-
lenge, while focusing on my contributions to the project. The second half of the
article is a description of our ongoing effort to use the AIM system to create
a complete Autonomous Ground Traffic System.The Autonomous Intersection
project is an ongoing project at the University of Texas for over 3 years. Dresner
and Stone’s research on implementing the proposed Intersection Management
Protocol on a custom simulator has been widely published [7]. The success of
this approach in the simulator suggests that the next logical step is to implement
the protocol on real hardware. Because we have only one autonomous car, we
are creating a ’mixed-reality’ demonstration where one of the cars approaching
the intersection is Marvin and the the rest of the cars are virtual (simulated).
If the project is succesful, it will be the starting point for a research effort to
implement the AIM system at a General Motors (GM) facility in Detroit with
10 autonomous cars.

The contributions of this research are the following: A Lane-based obstacle
tracking approach, MapLanes Manager to process and filter large amounts of
laser data, Hermite splines to closely approximate roads, the Mission and Graph
modules, and visualVelodyne to display range data in a easily navigable 3D
scene.

2 Vehicle Hardware
The Austin Robot Technology (ART) vehicle, Marvin, is a 1999 Isuzu VehiCross
that was selected for its ability to negotiate off-road terrain in the 2005 Grand
Challenge. It has been outfitted with a custom-built reinforced front and rear
bumper brackets to protect it against collisions and facilitate mounting of front

3



and rear facing Lidar devices. It has been upgraded by the ART team to achieve
drive-by-wire and now has alternators to power the onboard systems. They
added shift-by-wire, steering, and braking actuators to the vehicle. Control of
the throttle was achieved by interfacing with the vehicle’s existing cruise control
system. The car had a red “Manual Override” button on the custom center
console that allowed the operator to engage and disengage the car controls for
use by a human driver. All of the hardware work done on the car including the
installation of our sensors was done by the ART Hardware team.

The computing power on the car consists of 3 machines containing AMD
Opteron processors and 6600 GT NVIDIA graphics cards. Each machine is
shock-mounted in a custom-designed computer rack. The two on-board alter-
nators provide power to the computers, actuators, the siren, and the various
sensors. The vehicle is equipped with a variety of sensors. The Applanix POS-
LV device provides sub-meter odometry information by combining information
gathered using Differential GPS, an inertial measurement unit (IMU), and the
Distance Measurement Indicator (wheel rotation information). The information
from the various devices is combined internally using sophisticated filters [12],
in order to provide accurate position, orientation, and velocity of the car. This
unit is shock-mounted alongside the computers on the rack in the back of the
car. The ART team built a custom roof rack for the Velodyne Lidar and the
GPS receiver. The roof rack being the highest point of the vehicle provided the
best visibility of the terrain and clear reception of GPS signals.

2.1 Lidar Devices
A laser range finder works by measuring the time of flight of laser pulses. It
transmits a narrow laser beam in a given direction, and records the time taken
for the pulse to return back to it. This information is then used to find the
distance to the closest object in that direction. Lidar systems (Laser Radar)
deflect the laser beam using an internal rotating mirror in order to create a fan-
shaped scan of the surroundings. On Marvin, we use SICK LMS Lidars which
are know for their ruggedness and ability to work in adverse weather conditions.
These devices are also used in hundreds of mobile robot frameworks around the

4



world. We use two Sick lidars for precise, accurate sensing in front of and behind
the vehicle.

Figure 2: This figure explains how a simple laser range finder like the Sick LMS
perceives the world. The scanner provides the distance, and the corresponding
angle to each of the points in the picture above.

Lidar devices can also return intensity information (color) of the object that
the laser beam hit. However, Lidar devices are a different class of devices than
cameras. Cameras are considered passive sensors because they are designed to
detect naturally occurring energy. Unlike passive sensors that can only work
when naturally occurring energy is available, Active sensor technologies such as
Lidar provide their own source of energy to illuminate their target. This allows
them to work at all times of the day independent of lighting conditions created
by the sun. Shadows and low-light conditions are known problems with using
video cameras for sensing which do not affect the operation of Lidar devices.

2.2 Velodyne HD Lidar

The Velodyne HDL is a unique device that has 360 Horizontal Field of View
(FOV) and a 26.8* Vertical FOV. It produces range information to one million

5



points a second, which is three orders of magnitude more information than
the SICK Lidars. The device internally utilizes 64 fixed-mounted lasers each
mounted at a specific vertical angle. The entire unit spins at a configurable
rate between 5-15Hz while each laser fires thousands of times per revolution,
producing range information with very impressive density [4]. The device scans
objects that are up to 120 meters away. Five out of six finishing teams at the
Urban Challenge had purchased Velodyne units which they used extensively.

Figure 3: The above image was produced using the VisualVelodyne tool developed
for visualizing the 3D range data produced by the Velodyne HD Lidar

3 Vehicle Software Architecture
The first and perhaps the most important step to creating a complete robotic
system is the choice of the architecture. Any architecture must impose beneficial
and reasonable constraints on the design, and interfaces without being overly
restrictive. The design considerations for a robot system are quite different
from other software applications. The environment around the robot is very
dynamic, and the sensors are always noisy and uncertain. A good architecture
should provide reasonable frameworks for the following:

• Designing complex high-level behaviors. In order to manage the complex-
ity, an architecture should provide mechanisms for task decomposition to

6



design modular components.

• Faciliate concurrent execution of behaviors, drivers.

• Creating a real-time system that is capable of processing large amounts
of sensor data, and acting on it within fractions of a second.

• Testing and valdiation of individual modules independent of the entire
system.

Our architecture is very similar to the 3T architecture proposed by the Jet
Propulsion Laboratory (JPL) [6]. However, it is hard to determine which spe-
cific architectural paradigm was used in our system, as we also incorporate
principles of Brooks’ Subsumption architecture within the Navigator module.
[cite Intelligence without Representation] The actual implementation of our ar-
chitecture uses a open-source robotics software framework called Player/Stage.

3.1 Player/Stage
Player is a robot device server that facilitates communication between sensors,
client programs / drivers, and actuators. Player allows you to write device
drivers for each sensor and actuator that is part of the system. Player uses IPC
internally to allow drivers to communicate with each other. Message passing is
handled using incoming and outgoing message queues for each driver. Player
uses a publish/subscribe system that allows each driver to publish information
that multiple other devices can subscribe to. This mechanism allows for the
publisher to keep sending the data even if one of the non-critical subscribers
(such as a visualization utility) crashes. This paradigm also allows for the
creation of ’abstract’ drivers that decompose complex higher level behaviors
into more manageable modules. We have created several of the modules that
make up our world model using abstract player drivers. As described above,
Player provides reasonable and beneficial constraints on our design without
being overly restrictive. It benefits us by allowing us to build a highly concurrent
and modular program. It allows us to easily test our large complex system by
turning on and off drivers, and creating simpling placeholder drivers.

Perhaps the biggest reason to choose player as a starting point was because
ART’s existing system from the previous Grand Challenge attempt contained
player device-drivers for all the existing actuators, and some of the sensors that
were installed on Marvin. Beyond a small amount of ’tuning’ conducted by
some Team Members, we used the existing drivers unchanged.

Stage is a simulator of a 2D environment that is built to work with Player. It
simulates devices like 2D laser scanners fairly well. It has allowed us to rapidly
develop and test higher level behaviors that work without any changes on the
real vehicle. Testing our software on Stage was a vital part of our development
cycle. Testing software on the car is a very time consuming process, and Stage
allowed us to develop and test large portions of our code without having to
access the real hardware. Stage allows you to create configurable devices that

7



emulate real hardware quite closely. In order to get the most leverage out of
stage, we created an odometry device that simulated the dynamics of the car
using the real wheel-base, acceleration and steering capabilities of Marvin. We
also added artificial noise to the output of the laser scanner device, thus forcing
us to design our controllers to have a higher degree of robustness.

3.2 Objective
The DARPA Urban Grand Challenge required cars to use the provided Route
Network Definition File (RNDF), and then execute the Mission as specified in
the Mission Data File (MDF) while following all the driving rules specified in
the California Drivers Handbook for human drivers. The RNDF specified a
relatively description of all the accessible roads where the vehicle is allowed to
travel, including information such as the latitude and longitude of waypoints,
the locations of stop signs, parking lots, lane widths, and lane markings. It
also specifies the locations and the names of all the checkpoints. The RNDF
does not specify a starting and ending point, or the locations of road blockages.
DARPA also provided a MDF file that specifies an ordered list of checkpoints
to reach, and the speed limits for various sections of the course. [2] [3]

3.3 World Model
3.3.1 MissionGraph

The MissionGraph module consists of two separate pieces: A rich Graph data
structure and a Mission data structure. The very first step in the execution of
our software is to parse the provided RNDF file, and create a graph to represent
it. Waypoints are represented by nodes, and the connections between these
waypoints are represented by edges. Nodes and edges also store additional
information provided in the RNDF such as the type of lane markings to their left
and right and whether or not a node is at a stop line. Other information, such as
the speed limits, is parsed from the MDF and associated with the corresponding
edges. The optimal graph search algorithm A* (A Star) was used to develop
a path planning algorithm upon this data structure1. This planner produces
the quickest path from the current location of Marvin through all the required
checkpoints.

The Mission data structure is created from the MDF file and represented
using a queue of the checkpoints to be reached. In order to be robust to a
massive system failure that shuts down the entire software system, the Mission
module logs the progress made to a file on disk at regular intervals. If and
when the program is restarted, the Mission module automatically recovers the
progress made and allows Commander to plan a path through the remaining
checkpoints instead of starting over from the beginning.

Building the Mission planning in a modular fashion allowed us to test it
independently from the rest of the software system. RNDF Parser, the MDF

1A team member, Mickey Ristroph developed this module

8



Figure 4: Software Architecture: We use the Player [9] robot server as our inter-
face infrastructure. Hardware devices are shown in green at the bottom. Device
drivers are shown in red in the middle of the diagram. Commander (planning),
Navigator(behaviors), and Pilot(low-level actuator control)—are shown on the
right side.

Parser were tested rigorously on several hundred positive and negative samples
of RNDF and MDF files.

3.3.2 MapLanes

A core module of our World Model that allowed us to build our navigation
behaviors, and our obstacle tracking module is a new map data representation
that we call MapLanes. The MapLanes representation partitions space using
a set of convex quadrilaterals. Each quadrilateral is constructed such that its
left and right edges form the boundaries of the lane. A lane is partitioned into
several such quadrilaterals that share their top and bottom edges with their
neighbors. MapLanes uses the Graph created by the MissionGraph module and
creates a lane map in the global Cartesian coordinate system.

The MapLanes data structure was originally created2 to represent the loca-
2A student on the team, David Li, was responsible for this concept and the original im-

plementation of MapLanes. Patrick Beeson is responsible for the current implementation of
MapLanes

9



tions of the lanes in a manner that is useful for building navigation behaviors,
such as ’Lane Following’. It was then extended to make it possible to use this
data structure to filter laser range data, and build Obstacle tracking algorithms.

To summarize, the purpose of MapLanes is to

1. Represent lane information in a form that is useful for vehicle navigation.

2. Provide a way of classifying range data as being in the current lane, in an
adjacent lane, or off the road entirely.

3. Provide a data structure that is more suited for building obstacle tracking
algortihms than the OccupancyGrid.

Figure 5: Guessing the road shape: Given waypoints that define a lane, a cubic
spline is used to generate a rough approximation of the road. We utilize a few
non-standard heuristics to detect straight portions of roadway which improve the
spline tangents at each point. The curves are used to generate the quadrilaterals,
the collection of which are called MapLanes

The MapLanes road generation algorithm3 uses standard cubic splines [1],
augmented with a few heuristics about roadways, to connect the RNDF way-
points (Figure 4). We first create a C1 continuous Hermite spline from the dis-
crete series of waypoints that define a lane in the RNDF. We chose the Hermite
form because its representation allows us to control the tangents at the curve
end points. We can then specify the derivatives at the waypoints in such a way
that the spline that we create from these curves has the continuity properties
we desire.

3Justin Hilburn and I worked together to create an implementation of smoothly interpo-
lating Hermite splines

10



We then convert the spline from a Hermite basis to the Bézier basis. This
step allows us to use any of a large number of algorithms available to evalu-
ate Bézier curves. At this time, we express the curve in terms of nth degree
Bernstein polynomials which are defined explicitly by:

Bn
i (t) = (n

i ) ti (1− t)n−i
i = 0, . . . , n.

Any point on the curve can be evaluated by:

bn (t) =
n∑

j=0

bjB
n
j (t) .

We set n = 3. The coefficients bj are the Bézier control points.
This spline, along with the lane widths defined in the RNDF, gives the vehicle

an initial guess at the shape of the roadway (see Figures 5, 12). Each lane is
then broken into adjacent quadrilaterals that together tile the road. This system
was designed originally to allow the vision sub-system to refine the shapes of
these quadrilaterals and provide a more accurate depiction of the road, but we
did not manage to accomplish this in time for the Urban Grand Challenge.

MapLanes is an alternative data structure to the OccupancyGrid for tasks
such as Urban Driving. The OccupancyGrid is commonly used in robotics appli-
cations to provide spatial and temporal filtering of range information obtained
by a laser range finder. The OccupancyGrid allows you to fuse the range data
gathered by several different lasers into a single coherent map with very lit-
tle computational overhead. A disadvantage of using the OccupancyGrid to
store and process this information is that it partitions space into grid-aligned
square cells which do not allow you to represent lanes that are used for driving
closely (see fig) especially when the lane has a curve. MapLanes provides a very
different alternative to partitioning space by using a partitioning that closely
reflects/resembles the structure of the road.

Figure 6: Pictured on the left is the OccupancyGrid representation and on the
right is the MapLanes representation

11



3.3.3 Polygon Operations

Each quadrilateral within MapLanes is placed into a data structure that con-
tains some important information such as the type of lane markings on the
boundaries of the polygon, and also cached information about the quadrilateral
such as the midpoint, length, width, and heading of the polygon. We created
a polygon library that provides numerous methods for extracting information
from the ordered list of polygons. This library performs most of the computation
pertaining to the current state of the world surrounding the vehicle. Examples
include: filtering out range data not on the road, determining distances along
curvy lanes, and determining which lanes will be crossed when passing through
an intersection.

Figure 7: The distance function in this space is not Euclidean but rather an
approximation of distance along the lane. The distance computation between
two points first projects each point onto the mid-line of the lane being tracked.
In this figure, A’, B’ are the closest points on the midline to A, B respectively.
The lane distance is computed by using the summation of piecewise line segments
between A’ and B’ that form the midline of lane.

3.3.4 MapLanes Manager

Any world model that does not consume and interpret the sensor data quickly
enough is not feasible for use in Urban Driving. One of the biggest advantages
of the OccupancyGrid representation is that it is a very efficient data-structure
to store and retrieve data. Some commonly used functions (defined on the Oc-
cupancyGrid) are computationally efficient and easy to write. For example,
consider the ’Containment Operator’ that calculates which cell contains a par-
ticular Point (x, y). This operator is often used to determine the cell that the
end point of a laser return is located in. This operator is used extensively in the
filtering of Velodyne data and in the Obstacle Tracker. This function is trivially
simple, and O(1) for an OccupancyGrid with a fixed grid resolution. The naive
approach, for MapLanes requires you to iterate through all quadrilaterals in the
region. This is a O(n) function, which is a disaster considering that the Velo-
dyne produces one million data points in a second. The initial implementation
proved to be too slow to meet the required real-time constraints.

12



Figure 8: This sequence of images illustrates the MapLanes structure of a road,
the hierarchical bounding boxes that can be constructed corresponding to them,
and finally the tree of bounding boxes.

13



In order to increase the speed of this operator, we used a data structure that
consisted of hierarchical tree of bounding boxes for the MapLanes quadrilater-
als. This data structure was inspired by KD trees and resembles a simplified
form of them. The MapLanes quadrilaterals change infrequently (1 Hz) in sharp
contrast to the high data-rate of the Velodyne. So, we created a hierarchical
structure that pre-computes the axis-aligned bounding boxes for each quadri-
lateral, and all the quadrilaterals in a lane, and so forth. This change allowed us
to improve the complexity of the containment operator to O(log(n)) and gave
us an 6.5x speedup in practice. As most of the data produced by the Velodyne
was outside the lanes, this allowed us to greatly reduce the amount of data that
we processed.

MapLanes manager also caches several computations that are common to
multiple users of the MapLanes data structure. All of these optimizations were
driven by the very real need to process all our sensor data in real-time.

3.3.5 Velodyne Processing / Filtering

The Velodyne High Definition Lidar (HDL) provides around one million points
of data every second. Most robotics platforms across the world that were created
prior to the availability of the Velodyne used lidar devices such as the Sick LMS.
The Velodyne produces 3 orders more magnitude more data than the Sick, and
so, the data produced by it cannot be processed with the same techniques.
Instead of using computationally intensive 3D modeling techniques [16], we use
simple “height-difference” maps to identify vertical surfaces in the environment.
With every complete set of 360◦ data, we create a 2D (x, y) grid map from the
3D point cloud, recording the maximum and minimum z (vertical) values seen
in each grid cell 4.

Next, a simple ray-casting algorithm casts rays from the sensor origin to
calculate the closest obstacle in each direction. A cell in the 2D grid is said to
have an obstacle is the difference between the maximum and minimum heights
is above a certain threshold. This data is used to create a simulated 2D lidar
scan which looks very similar to the data output by the Sick lidar devices (see
Figure 9);

4Patrick Beeson was responsible for the design and implementation of this module.

14



Figure 9: Raw Velodyne HDL point cloud (bird’s eye view of Figure 3 is shown)
gets processed into a 2D scan. Notice corresponding features between the two
data formulations. This method creates occlusions, but allows for fast processing
of the million points per second that the Velodyne HDL transmits.

Even with the very basic processing technique describe above, we found that
the design of this module was not meeting its real-time constraints, and was in-
troducing delays that propagated through the entire system. We experimented
with various alternatives to speed-up the processing such as decreasing the ’res-
olution’ of the grid and creating a multi-resolution grid to trade off accuracy
for speed. But we found that we were still not processing the Velodyne data
as fast as we wanted. Finally, We were able to use MapLanes representation to
speed-up our processing. The MapLanes Manager component that I developed
used the pre-computed bounding-box tree to provide a quick lookup of whether
a point was outside of all lanes. By not considering the points thats were outside
the lanes, we greatly reduced the delays in processing laser data.

15



Figure 10: MapLanes are overlayed on an overhead view of the point cloud data
provided by the Velodyne. The car is located on one of the lanes, at the center
of the several concentric range-scans.

3.3.6 Obstacle Tracking

For autonomous driving, a robot needs good approximations of the locations and
velocities of surrounding traffic. Recent approaches to obstacle tracking have
often utilized a Cartesian-based occupancy grid [8] for spatial and temporal
filtering of obstacles. This occupancy grid is used to estimate the state of the
obstacle

S =
(
X, Ẋ

)
, X = (x, y, θ) , Ẋ =

(
ẋ, ẏ, θ̇

)
S is the state of the obstacle, X = (x, y, θ) represents the position and

orientation of the obstacle, and Ẋ = (ẋ, ẏ, θ̇) represents the rate of change in
the state of the obstacle.

Many of these approaches also attempt sometimes the shape or extent of
surrounding obstacles [13]. These approaches typically tend to be difficult to
implement, and get slower as more vehicles need to be tracked.

Our design differs from omni-directional tracking in that we utilize the Ma-
pLanes model of the roadway to solve the obstacle tracking problem. The key
insight in simplifying the problem of obstacle tracking in the urban driving do-
main is that the vehicle only needs to track obstacles that are within lanes.5
We further reduce the dimensionality of the problem by observing that it is
sufficient to track the velocity of each obstacle only along the obstacle’s lane.

By partitioning the world into lanes and defining an order on the quadri-
laterals comprising each lane, we impose a linearization on the space. Thus we
can easily track the distance to the closest obstacle in each direction of a lane
and the velocity of the obstacle along the lane. This approach is inspired by the
way some humans make decisions about driving. When driving 80 mph along a
highway it might easily appear that an oncoming car in the neighboring lane is

5The 2007 Urban Challenge specifically ruled out pedestrians or any other obstacles that
might move into traffic from off the roadway.

16



about to collide with you with even a minor change in its heading. Despite the
presence of imminent danger, a human driver, having mentally tracked cars in
neighboring lanes, will continue to drive calmly; he will reason that the other car
will stay in its lane. This assumption, based on a human driver’s own obstacle
tracking, enables that human driver to drive at great speeds without having to
be extremely cautious and watchful.

The innovation in the Lane-Based Obstacle Tracking approach is that we
are tracking a simplified aspect of each obstacle’s state:

S =
(
d, ḋ
)

d and ḋ represent the distance and velocity of the obstacle along the lane.
The basic operator in the lane-based obstacle tracking system is:

f (lane, point, direction)→ S

For each lane, a point on the lane and direction along the lane, we build an
obstacle tracker that track the distance to the closest obstacle in the specified
lane and direction. The obstacle tracker for each lane receives a laser scan
which specifies the positions of all obstacles that are within its lane. It then
iterates through all these obstacles to find the closest obstacle in the specified
direction. It maintains a history of these observations and the time at which they
were recorded using a queue of fixed size. We then filter out noise using known
acceleration and velocity bounds for cars and estimate the relative velocity from
the queue of recent observations. A tracker can then combine the velocity and
distance information to calculate ‘t’ the time to collision. In our system, we
choose the closest point along the midline of each lane and create a lane-based
obstacle tracker in each direction (forwards and backwards) along that lane.
We then compare the time to collision reported by each tracker and provide the
details of the more imminent collision in each lane.

Figure 13 illustrates an experiment where our vehicle was sitting still and
tracking another vehicle driving in an adjacent lane.

One of the advantages of this obstacle tracking approach is that it is lane-
centric instead of being obstacle-centric. This means that it scales linearly with
respect to the number of lanes that our vehicle attends to, not the number of
obstacles. This is a desirable property in Urban driving where we are often
surrounded by several fast moving cars that are within the range of our sen-
sors. It also allows us to easily configure the amount of historical data we take
into consideration by changing the size of the distance queue. We found that
even though it had a simplified model of the world, it was powerful enough to
complete the various requirements that DARPA outlined in the Technical Eval-
uation Criteria, and therefore sufficient for most urban driving tasks. During
the NQE event we used a 10 frame queue of distances which reduced the risk
of inaccurate measurements from sensor noise, but introduced a lag of about
1 second in the measurements given the 10Hz lidar updates (see Figure 14).
We accepted this lag as a trade-off for the Urban Grand Challenge in favor of

17



robust, safe driving over aggressive behavior. If we find and use more robust
approaches to estimate velocity the queue of distances, we can decrease the size
of the queue and decrease the latency in our decision making.

3.3.7 Lane Observers

The second portion of the perception necessary for multi-agent interaction is
a set of Lane Observers, each of which instantiates an obstacle tracker on the
appropriate set of nearby lanes, and reports the situation to the Navigator
control module. A Lane Observer focuses on a set of lanes and lidar range
data to track the most imminent collision in those lanes. Think of an observer
as a back-seat driver in charge of reporting whether a specific behavior is safe
or unsafe, based on the presence of dynamic obstacles. Based on its current
plan/state, Navigator chooses which observers to pay attention to. The primary
information each observer provides is a single bit, which represents whether the
behavior is is safe or unsafe. The observer also provides useful quantitative
data (such as estimated time to the most imminent collision) if the behavior is
executed.

Our system uses six key observers: Nearest Forward, Nearest Backward,
Adjacent Left, Adjacent Right, Merging, and Intersection Precedence. Some of
the important ones are described below:

Nearest Forward, Nearest Backward Observers These observers are
concerned with the lane that Marvin is currently on 6. They report to Naviga-
tor the most imminent collision in front of, and behind the vehicle respectively.
If NearestForward reports that there is a car in front of Marvin in the current
lane moving towards it, Navigator will respond by pulling over (Evading) in
accordance to the CA Defensive Driving rules.

Adjacent Right Observer The Adjacent Right observer reports whether the
lane immediately to the right of the vehicle’s current lane is safe to enter, for
example to pass a stopped vehicle. If there is a vehicle in the right lane but the
time to collision is larger than 10 seconds7, the lane is considered to be clear.
Unlike the Nearest Forward and Nearest Backward observers, this observer in-
corporates two trackers, one directed front and one behind. It compares the
time to collision backwards and forwards in the right lane and reports the most
imminent threat to Navigator.

Merging Observer The Merging observer is used to check when it is safe for
the vehicle to driving through an intersection or turning into/ merging across
traffic. Like the Adjacent Left observer, it combines information from several
Obstacle Trackers. In merging scenarios, the observer checks whether all lanes

6These observers track the nearest lane if Marvin is is not on any lane (off the road)
7This is a configurable value in our system. Many such values were specified in the DARPA

Rule book for the event

18



Figure 11: This diagram shows Marvin in pink, with two cars in the lane to the
right of Marvin

the vehicle can possibly traverse are safe8. For example, at an intersection, if it
is unsafe to turn left the vehicle will wait, even if it plans to turn right. The
reason for this is that the Observers are not aware of Navigator’s plan and which
direction the car is about to turn. Our architecture can be extended to make
this possible, but we decided against this because the net effect of the current
design is to make Marvin more conservative than required. As expected, in the
context of the Grand Challenge, this decision did not impact us negatively.

Figure 12: This diagram illustrates how the Merging observer determines which
lanes to track at an intersection. All the lanes that the outgoing transitions
overlap are considered.

8Bartley Gillian, a student on the team was responsible for developing the function to
determine which lanes to track

19



3.3.8 Obstacle Tracking Results

Figure 13: In this experiment, our vehicle was stopped on a road and tracking
another vehicle in the lane to the left. The driver of the tracked vehicle reported
an estimated speed of 9 m/s. Other than a brief initial transient, the obstacle
tracker accurately models the oncoming vehicle starting from about 60 meters
away.

20



Figure 14: In this setup, our vehicle drove up to another vehicle that was stopped
in the same lane. Our vehicle then passed before returning to the original lane
of travel. The above graphs show the relative state of the obstacle estimated by
two trackers: one forward and one behind in the current lane.

21



4 Control
Our strategy was to decompose the levels of reasoning involved in controlling
Marvin into High-level Planning (Commander), A state-machine of various be-
haviors (Navigator) and low level control execution (Pilot). This structure
largely resembles the 3T architecture.

4.0.9 Commander

Commander uses the Graph and the Mission components of the WorldModel,
and A* search to find the shortest path through the various checkpoints that the
car is required to reach. Commander provides navigator with a route through
the next few waypoints that the car should follow, and frequently updates this
route based on the progress that Navigator has made, and the feedback it re-
ceives. For instance, it is responsible for planning a new route when Navigator
reports that the road ahead is blocked.

4.0.10 Navigator

The Navigator module is a hierarchical state machine of various behaviors. such
as Lane following, U-turn, Change Lane, etc. It runs the appropriate behavior
based on the route provided by Commander.

Figure 15: A simplified illustration of the vehicle’s Run state machine. It uses
the information provided by the Lane observers to make decisions regarding
traffic. For instance, the Adjacent Right observer communicates to Navigator
whether it is safe to merge into the right lane

Each behavior computes a desired travel and turning velocity based on the
information provided by the world model. The Pilot module transforms the
requested velocity and heading commands into the low-level throttle, brake
pressure, and steering angle commands to the respective actuators.

22



The description of the Autonomous Vehicle system above makes many refer-
ences to the rules specified by DARPA for the Urban Grand Challenge. However,
the provided rules were largely derived from the California Drivers Handbook,
and reflect most of the capabilities necessary for any urban autonomous vehicle
platform.

5 Autonomous Intersection Management
The Autonomous Intersection Management system developed by Dresner and
Stone provides a protocol for autonomous vehicles to communicate with the
intersection.To improve the throughput and effeciency of the system, vehicles
’call ahead’ to the intersection and request a reservation. The intersection man-
ager determines whether or not these requests can be met. Depending on the
decision that the intersection manager makes the vehicle must either record the
parameters of the reservation and attempts to meet them, or make another
request at a later time.

Figure 16: This is a screenshot of the AIM Simulator developed by Dresner and
Stone. Multiple autonomous vehicles communicate with the intersection and
move through it without colliding with each other

To determine whether or not a request can be met, the reservation manager
simulates the journey of the vehicle across the intersection, which it divides
into a grid of n × n tiles. The parameter n is called the granularity of the
reservation manager. At each time step of the simulation, it determines which
tiles the vehicle occupies. If throughout this simulation, no required tile is
occupied by another vehicle (from a previous reservation), the manager reserves
the tiles for this vehicle.

Dresner and Stone evaluated the performance of the reservation system
against alternatives such as an overpass, or an traffic light. Using the simulator,
they showed that using the reservation-based policy, vehicles crossing an inter-
section experience much lower delay than the traffic light. Furthermore, they

23



showed that the reservation-based policy also drastically increases the through-
put of the intersection. The details of the protocol are explained in their paper
. I will focus here on the driver agent, as this is what I have implemented on
the actual vehicle.

Figure 17: This diagram explains the communication between the car (driver
agent) and the Autonomous Intersection Manager

The original AIM Simulator worked as a single monolithic program that al-
lowed the cars and the intersection to communicate through function calls. To
extend this system to work in the real world, the cars need to be able to work
in a decentralized system where they communicate with the intersection over
network communication. I extended the capabilities of the original communi-
cation system by creating a framework to serialize and de-serialize messages
and communicate with the intersection using UDP Communication. The AIM
protocol is designed to handle packet loss, but is sensitive to delays in commu-
nication. I chose UDP over TCP because it has lower overhead, and has the
right characteristics to enable us to scale this system to many more cars in the
future.

Digital Short Range Communications (DSRC) [11] is a wireless protocol
designed for Vehicle to Vehicle (V2V) and Vehicle to Infrastructure communi-
cations. It is designed to provide high data transfer rates over medium range
distances. DSRC is a UDP based communication protocol, and using UDP now
allows us to transition to using the DSRC protocol in the future.

5.1 Driver Agent
When a vehicle approaches the intersection, the vehicle’s driver agent transmits
a reservation request, which includes parameters such as time of arrival, velocity
of arrival, as well as vehicle characteristics like size and acceleration/deceleration
capabilities, to the intersection manager. If the requested reservation is deemed
safe, the intersection manager responds to the driver agent with a message indi-
cating the reservation has been accepted. Otherwise, the intersection manager
sends a message indicating that the reservation request has been rejected, pos-
sibly including the grounds for rejection. The driver agent may not pilot the
vehicle into the intersection without a reservation.

In order to be able to effectively use the Intersection Manager, a driver agent
must be accurately capable of estimating the time and velocity at which it will

24



reach the intersection accurately. As discussed previously in this paper, the
output of the obstacle tracking module and in particular the ’Nearest Forward
Obstacle Tracker’ that I developed for Marvin is sufficient to reasonably estimate
the time to arrival.

5.2 Mixed Reality Demonstration
Testing the Autonomous Intersection Management system on real hardware ob-
viously requires more than one car. Because we are currently limited to only
one autonomous vehicle platform, we created a Mixed Reality demonstration
that allows us to test the system using one autonomous car, and several virtual
(or simulated) cars. In our setup, we ran the Autonomous Intersection Manager
software on a wireless-enabled laptop that was placed inside Marvin for conve-
nience. As Marvin drove up to an intersection with a stop line, he sent "Request
Messages" over a specified UDP port to the AIM Laptop. These messages spec-
ify the estimated time of arrival, and the lane into which Marvin is going to
turn. The AIM Laptop also simulates other vehicles that communicate with
the AIM, which grants a reservation to Marvin based on this ’virtual traffic’.
Marvin obtains a reservation and then drives through the intersection based on
the "Confirmation Message" it receives from the AIM Laptop. We repeated this
test successfully a few times. Videos of the demonstration are available at the
author’s website [14]

Figure 18: This illustrates the ’Mixed Reality’ Demonstration, where the cars in
red are simulated and the car in pink is Marvin

Future work on this system will analyze the performance of the AIM system
in a real-world system through further experiments. Some important issues
that are yet to be simulated relate to actual performance of commodity wireless
hardware when we transition to having the AIM system physically located at
the intersection.

25



6 Summary and Future Work
In summary, this thesis represents almost 2 years of research conducted in col-
laboration with A.R.T, and several students at the University of Texas. As
presented throughout the document, the research resulted in many contribu-
tions to the overall project. The 3 main contributions were:

• Lane-Based Obstacle Tracking (Section 3.3.6)

• MapLanes Manager (Section 3.3.4)

• Mixed-Reality for AIM (Section 5.2)

In addition, several other significant contributions were made along the way:

• Hermite Curves to provide a smooth representation of lanes.

• RNDF, MDF Parser

• Mission, Graph components of the World Model.

• VisualVelodyne: A tool to playback the point cloud produced by the Velo-
dyne in a easily navigable 3d scene.

• VisualCommander: A tool to visually inspect RNDF files.

Despite the significant progress made over the course of this research, there
are still many fruitful directions for future work. In particular, the migration
of the AIM system of real hardware will involve transitioning from the Mixed-
Reality demonstration to incorporate multiple autonomous vehicles. In order to
do this successfully, we need to evaluate the performance of the AIM system in
the presence of networking issues like low data rates, packet-loss, etc. Another
interesting direction for further research is to explore the possibility of equipping
Marvin with the ability to transition from human control, to autonomous control
while traveling through an intersection.

6.1 Acknowledgements
Many people were involved the creation of the hardware and software platform
for Marvin. Several students from the Spring 2007 Autonomous Driving Class
contributed substantially to the overall code base. Several members of ART con-
tributed their time towards keeping the hardware components running smoothly.
Jack O’ Quinn, a volunteer from ART maintained the Automake based build
system, the SVN repository, and also wrote a large part of Navigator. Patrick
Beeson, the only Graduate level member of the team, contributed significantly
to almost all aspects of the overall architecture.

26



References
[1] 2010 and Beyond: A Vision of America’s Transportation Future, 2004.

[2] DARPA Urban Challenge technical evaluation criteria, 2007.

[3] Route Network Definition File (RNDF) and Mission Data File (MDF) for-
mats, 2007.

[4] Velodyne HDL-64E Datasheet, 2007.

[5] The National Highway Traffic Safety Administration. Traffic safety facts,
2006.

[6] R. Peter Bonasso, James Firby, Erann Gat, David Kortenkamp, David P.
Miller, and Marc G. Slack. Experiences with an architecture for intelligent,
reactive agents. volume 9, pages 237–256, April 1997.

[7] Kurt Dresner and Peter Stone. Multiagent traffic management: A
reservation-based intersection control mechanism.

[8] A. Elfes. Occupancy Grids: A Probabilistic Framework for Robot Perception
and Navigation. PhD thesis, Carnegie Mellon University, 1989.

[9] Brian Gerkey, Richard T. Vaughan, and Andrew Howard. The Player/Stage
project: Tools for multi-robot and distributed sensor systems. In Proceed-
ings of the International Conference on Advanced Robotics (ICAR), 2003.

[10] Texas Transportation Institute. The 2007 Urban Mobility Report, 2007.

[11] Daniel Jiang. What is DSRC?, 2002.

[12] Mohamed Mostafa Joe. GPS/IMU products – the Applanix approach.

[13] J. Modayil and B. Kuipers. Bootstrap learning for object discovery. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2004.

[14] Tarun Nimmagadda. AIM Videos, 2008.

[15] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann, K. Lau, C. Oakley,
M. Palatucci, V. Pratt, P. Stang, S. Strohband, C. Dupont, L. E. Jen-
drossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk, E. Jensen,
P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian,
and P. Mahoney. Winning the DARPA Grand Challenge. Journal of Field
Robotics, 23(9):661–692, 2006.

[16] D. Wolf, A. Howard, and G. S. Sukhatme. Towards geometric 3D map-
ping of outdoor environments using mobile robots. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2005.

27


