AN ENGLISH AFFIX ANALYZER
WITH INTERMEDIATE
DICTIONARY LOCK-U?

Jonathan Slocum

Working Paper
February 193l
LRC-81-1

ABSTRACT

A program for removing any of a set of ‘productive”
English affixes is described. The program is <claimed
to be efficient in that it combines context with
empirically-derived probabilistic information to
determine the best (first) guess. The guess must be
verified via dictionary look-up before it can be
accepted; furthermore, the affix must be appropriate
to some syntactic class{es) of the proposed root.




INTRODUCTION

This paper documents a production INTERLISP program for affix
separation in English text. The program considers only what are called
"productive affixes -— those admitting algorithmic determination of
the meaning of the original word given the root and affix(es), without
recourse to special, "lexical’ flags or markers. As an added bonus, it
expands contractions (-N"T, -"RE, =-7VE, -7LL, ="M, -'D, -“8) into
their full forms, separates any appended punctuation, and converts the
determiner “AN” to “A”. This program began as an implementation of the
flowchart presented by Winograd (1972); in the process of testing and
evaluation, several bugs were excised and the algorithm was made more
efficient. Subsequentiy, its capabilities were significantly extended.

The analyzer handles a complete range of regular verb endings (-8,
-ING, and —-ED), noun endings (-S, -’S, and -87), adjective and adverb
endings (-ER, —-EST, and =-LY), and ordinal number endings (-ST, =-ND,
-RD, and -TH) -— some of which involve minor spelling changes (e.g.,
consonant doubling). In addition, it handles almost all of the -EN
verb endings plus many irregular verb forms exhibiting intermnal vowel
shifts, as well as several noun plural variants drawn from Latin or
Greek (e.g., FORMULAE, QUANTA, THESES, SCHEMATA). If all other
attempts fail to produce a root, the program checks for one of several
negative prefixes (e.g., NON-, UN-); if found, the prefix is removed
and the remainder is once again checked for a suffix. In all cases, if
the proposed root scores a lexical "hit", a test is performed to
insure that the suffix is in fact appropriate to at least one semnse of
the root: if the test fails, the interpretation is rejected and others
may be tried. (This strategy also serves to disambiguate roots with
nultiple senses, based on syntactic class.) If all attempts fail to
disclose a root, the analyzer calls the user—-supplied function
SPELLING-ERROR to take appropriate action.

The first function of the analyzer is always to seek a lexical entry
for the complete word; but even if one exists, affix stripping 1is
attempted due to potential ambiguities. The stripper returns the
first successful "hit" -- no alternate stripping is performed once a
lexical root appropriate to the affix(es) has been found; this 1s
combined with any "unstripped” analysis to constitute the 1list of

znalyses returnmed by the top~level function LEX.LOOKUP. it 1is
intended that the analyzer be used to return affixes (if any) plus
word senses syntactically appropriate to the root and its suffix. In

line with this practice, the user 1is responsible for providing (11 =
lexicon of roots and certain "exceptional" variants (e.g., CHILDREN) ,
along with [2] a definition for the function LEXENTRIES to take a word
or proposed root as 1its first argument, a list of category
restrictions as its second, and return a (possibly empty) list of
senses (definitions, of whatever nature) as its value, and optionally,
[3] definitions for the functions SPELLING-ERROR, LEXBEG, and LEXEND,
for which defaults are provided.



[ 8%

For handling all regular affixes, the program reverses a fairly well-
known set of rules governing consonant doubling, changing Y to I, etc.
For handling irregular verb forms, certain rules have been empirically
derived from "families'" of vowel shifts and deletions in English verb
morphology: this derivation resulted from a .study of what is thought
to be a complete 1list of irregular English verbs (barring compounds
which inflect like the verb root, e.g., BEGET, FORBID, like GET, BID).
Appendix I lists all the irregular verbs, some forms of which the
analyzer can handle by rule. Appendix II lists all irregular verb
forms that are known to be "exceptional.'" The analyzer should be
capable of reducing any other verb forms to their roots, provided the
user s lexicon includes all the roots (infinitive forms) of the verbs
that will be encountered. The analyzer should also be capable of
reducing all regular noun plurals to their singular forms (again, with
the user’s lexicon caveat); however, no comprehensive list of noun
exceptions (e.g., CHILDREN) is included.

ROQT-SUFFIX AGREEMENT

Associated with each canonical suffix (ED, EN, ER, EST, GEN [7], ING,
1Y, NEG, -N, -8, TH) and each expanded contraction (AM, ARE, HAVE, IS,
NOT, WILL, WOULD) is the attribute P.0.S; the value associated with
the attribute 1s a list of categories indicating which parts of speech
of the root may appear with the suffix or contraction. The user
function LEXENTRIES will receive such a list as its second argument,
and should return the subset of the sense meanings of a proposed root
(the first argument) which «c¢an accept the suffix. f the subset 1is
empty, then the proposed root is rejected, and another interpretation
will be sought. That is, in any case where the P.0.S attribute does
not agree with the syntactic category of one or more senses of the
proposed root, then either [1] the entire word must appear in the
lexicon (in which case it will be found before any stripping 1is
attempted), or [2] the stripping process will fail, and the
user—supplied function SPELLING-LRROR will be «called. Appendix IIX
contains a suggested collection of attributes.

PUNCTUATION

The program checks for the terminal characters ~!7, ~77, *;7, ~:7, 7,7
and ~.7 —— exclamation point, question mark, semicolon, colon, comma
and period — immediately after the full form has been checked against
the lexicon. (So, for instance, abbreviations like "MR.™ may appear
in the lexicom.) ©No check for internal punctuation (like hyphens or
dashes) or preceding punctuation (like quotation marks) is made. See
Figure 1.




i
§

OULD -- but only provided that the P.0.S5

CONTRACTIONS

s, N°T, "LL, and ‘D are separated and
AM, ARE, HAVE, IS, NOT, WILL, and
attribute of the expanded
form (e.g., HAVE) agrees with one or more senses of the preceding stem
(e.g., a PROnoun or a MODAL). The program Knows about the exceptional
forms CAN"T, WON'T, SHAN’T, and AIN'T (which do not "srrip" properly),
NOT, WILL NOT, SHALL NOT, and AN

The contractions “M, “RE, “VE,
expanded into their full forms:

and attempts to convert these to CAN
NOT, respectively. See Figure l.




R T S

i

A R R Y R R R N RS R S T SRR SR s S mm =

! ¥
end=N"T7 ===> cutoff N'T ====> yord=CA? ===> add § =====)>]

| 3 |
end="RE? ===> cutoff “RE word=W0? ===> cutoff O f

! cons ARE ====>| I add ILL ===>]|

f | | l
end="VE? ===> cutoff “VE | word=SHA? ==> add LL ====>|

| cons HAVE ===>]| | ~ !

| | word=AI? ===> cutoff I !
end="LL? ===> cutoff “LL ! | add M =====>|

| cons WILL ===>]| l |

z ] I T IR R TR S R S e s aw < i
end="M? ====> cutoff M l [

| cons AM =====>| cons NOT ======)|

| | ]
end="D7 ==== cutoff D ‘ DummmmsosmmmmnToommmzD> ‘

| cons WOULD ==>| |

| |
end="87 ====> cutoff “S {

1 i ‘):::::::::::) TRY

| cons IS | |

l cons -8§ | |

I cons GEN ==========================>! }

{J V

Figure 1
Punctuation, Contractions and -"§

Interpretation: if answer is ves, follow double line (to right), el
follow single line down; “end” refers to the last characters in the
string; “last” refers to the single last character; ~2nd” refers to
the next—to~last character; ~3rd” refers to the character preceding
“2nd”; “word” refers to the current string, as processed — it may not
actually be an English word; “cutoff” means to remove the character(s)
from the end of the word (but from the front, in prefix~stripping);
“add” means to add the character(s) to the end of the current string;
“cons” means to add the categeries associated with an ending to the
ENDings list, for wuse by TRY; and lastly, “TRY  means to find the
current string in the lexicon if possible, to check the senses against
the categories in the ENDings list for consistency, and to return the
agreeing senses 1f extant, else fail (answer NIL, meaning “no”).




b R T B SRR S

%

|

S A O AR50 SR S

s

VERBE

The rules for regular verb endings are rather simple: one strips -3,
sometimes —ES, -D, sometimes -ED, and -ING; this may involve restoring
the original shift from ~-Y to -I-, adding a deleted -E, un-doubling
doubled consonants, or even restoring an -1E to ~Y~ ghift. There are
heuristics to minimize the aumber of false "tries"; for example,
knowing that no verbs (or nouns) end in -XE allows one to strip -XES
directly to -X, without stripping to —XE, trying that and failing,
then stripping to -X. Note that the same cannot be stated of, say,
-585 (except in the form ~SSES) due to some counter—examples like
SURMISE and SURPRISE. Figures 2-3 depict the "regular ending" portion
of the program; the reader can extract from them the logic of

pping regular verbs.

Irregular verbs are another matter; there is no '"global” set of rules
to account for irregularly inflected verbs. While some of the -EN
endings are relatively predictable, others are exemplified by very few
members of the language. Some —ED and -EN forms involve vowel shifts
that, while phonologically predictable, are graphically unpredictable:
consider SHOE-SHOD vs. SHOOT-SHOT. Others are mot even phonologically
predictable: consider SINK-SANK-SUNK vs. SLINK-SLUNK, or STICK-STUCK
vs. STRIKE-STRUCK. And even when a "family" of verbs is predictable,
it is probably mot worth the effort to write the stripping rules 1if
that family numbers, €-.8-, only two members. In this type of
situation, we are faced with an aesthetic decision: whether to code
stripping rules, or make "exceptional' lexical entries. We have
rended to code stripping rules where the family numbers three or more
members, and where there is relatively little chance of confusion with
other families. Tables 1-3 exhibit the family types and their
members. Figure 3 includes the relatively regular -EN endings.
Figure 4 depicts that part of the analyzer devoted to the wvery

irregular verbs.




= > Cutoff mmmsE=2> CONS GEN ===== TRY s==msssSSsSmms=s
|
===============z=========:======> Cutoff S =:::>l
|
l (mmm=mmmnsEREEE CONS S mrmmmmsmmamm == !
l
endzLHE’7 ::::::==:=====:::::::::::::::;—.:) TRY
| 1
end:ﬁE? m====> cutoff E mEmmommmE=S TRY s e o s e o
| i
end=IE?7 ==> cutoff IE add E ==> TRY
] add Y I TR S TRY }
3 I e
1 cutoff Y
| add IE ==> TRY
end=SSE? ========> cutoff E i
| TRY cutoff E
i l TRY
end=SE? ==> TRY cutoff § ====> TRY |
l i i §
| cutoff E ====> TRY e
i |
end=XE? =====>| add 18 ===>]|
1 1 l
end:ZZE? z:z:)i):::::}cutoff E ====== i):::) TRY
i | |
end:ZE‘? I R S I T I S R I S IR IR IR I IR IR I IR | [FIN———
i
TRY
|
end=CE? ==> cutoff CE ==> add X => TRY
l |
end=DE? ==> cutoff DE end=IX? => cutoff IX
| add S ! add EX
i TRY I TRY
i | | |
‘ e o o e ——— e > e s e e > e o e o e
|
end=GE? ====> cutoff GE ====> add X ====> TRY
| |
end=VE? ==> cutoff VE ==> add F ==> TRY e
|
end=E? ===> cutoff E add E
l TRY TRY
5 l
R 3 o o e e e e pp— —

“
S



HERG LR

end=ER?
{

|
end=EST?

i
i
i
!
;
|
i
|
|
|
|
i
|
I
|
I
|
!
|
l
i
|
|
I
I
|
|
v

I

]
A
==> cutoff ING | |
add E |>==> end=EE? ===> ING? ===> cutoff E |
cons ING ==>| | | TRY i
I 1 TRY i I
| i | | I
! | o e o e e > o o e e >
==> cutoff D l l I
cons ED ===>| 2nd=3rd? > cutoff E ]
! ! TRY |
==> cutoff N | | l f
cons EN ===>] } EN? ==> cutoff last |
! I | add E |
== cutoff R } end=RLE? ====>| TRY ]

cons ==>| ! | l
| | | | |
==> cutoff ST | end=XE? =====)| | é
cons EST ==>]| ! | | |
| § ! |
| < + IR G + |
| | |

end=CKE? ===> cutoff E |
| TRY I |
| | | |
| o o o > cutoff last |
| TRY f
| | |
end=YE? ==> cutoff E ==> TRY e e >
! | i
! ING? ======>| |
I | | |
TRY add E [>==> cutoff Y f
| TRY | add IE |
| | l TRY i
| cutoff E ====>]| i j
cutoff E o e >
lasg=1? ====> cutoff I ;
| add Y ;
I TRY i
TRY | |
! cutoff Y i
I add I |
| TRY i
| ; |
- > o o o o o o e o o >
i
v
Figure 3
-ING, -ED, -EN, -ER, and -EST

-3



¥ % e v " PR LR IR 1t

leo

cutoff -T: burnt-burn dealt-deal dreamt-dream leant—lean leapt-leap
learnt—learn meant-mean misdealt-misdeal spoilt-spoil
sunburnt—sunburn

change =T to =D: bent—bend blent-blend built-Build gilt-gild girt-gird
lent—lend rent-rend sent-send spent-spend

change -LT to -LL: dwelt-dwell smelt—-smell spelt-spell spilt-spill

change —EPT to —EEP: crept=creep kept-keep slept-sleep swept—sweep
wept—weep

change —~EFT to —EAVE: bereft-bereave cleft-cleave left-leave

Table 1
Rules for -ED inflections ending in -T




B T 0 A R O K56 A S BR

change —EN to —E: arisen—arise awaken—awake betaken—betake

driven-drive forgiven—forgive forsaken—-forsake given-give
graven—grave laden-lade mistaken-mistake partaken—partake
proven-prove risen-rise riven—rive seen-see shaken—shake

shriven—shrive striven—-strive taken—-take thriven-thrive
undertaken—undertake waken-wake :

tten—-backbite bestridden-bestride
hide hidden-hide ridden-ride smitten—smite
ite written—-write

change —ccEN to —cE: backbi
bitten-bite chidden-c
stridden—stride underwritten—underwr

change ~ccEN to -c: bidden-bid forbidden-forbid

drop —EN: beaten—beat been-be befallen-befall browbeaten—browbeat

eaten—eat fallen—fall

blown-blow drawn—-draw ZrOwLn—grow hewn—hew known—know

change -WN to ~W:
hown-show sown—sow strewn—strew thrown—throw

MOWN—MmMOW Sewn—sew S
withdrawn~-withdraw

change —-UNK to -INK: drunk-drink shrunk-shrink sunk-sink stunk=-stink

change —ORN to —EAR: forsworn-forswear shorn-shear sworn—swear

torn—tear worn—wear

Table 2
Rules for unambiguously —EN inflections




R e S
ot
<

change —OKE to —EAK: bespoke-bespeak broke-break spoke-speak
change —OLE to —EAL: stole-steal

change —ORE to —EAR: bore-bear forbore-forbear forswore—forswear
swore—swear tore-tear wore-wear )

e

2 change —OVE to —EAVE: clove-cleave hove-heave wove-weave

change —OcE to —IcE: abode-abide arose~arise bestrode-bestride
bode—-bide dove-dive drove-drive rode-ride rose-rise shone-shine
shrove-shrive smote-smite strode-—stride strove-strive
throve-thrive underwrote-underwrite wrote-write

change -UNG to -ING: clung-cling flung-fling hamstrung-hamstring
slung-sling stung-sting strung-string SwWung-swing Wrung-wring

change —ANG to -ING: rang-ring sang-sing sprang-spring
change —ANK to —-INK: drank-drink shrank-shrink sank-sink stank-stink

: to —OW: blew-blow crew—crow grew—grow knew-know threw-throw

change —EW

change —4ID to -AY: gainsaid-gainsay inlaid~inlay laid-lay
mislaid-mislay paid-pay said-say waylaid-waylay

change —OUND to -IND: bound-bind found-find ground-grind wound-wind

change -00K to -AKE: betook-betake forsook-forsake mistook-mistake

shook—-shake took-take undertook—undertake

Table 3
Rules for -ED inflections with internal vowel shifts




A A 0 B ‘

B
*W%%%NWMWWMMmmmmm%wwmwwqmm -

end=T7 ==> cutoff T |
| cons ED |
! end=EF? ===> cutoff F ===> add AVE ===> TRY |
§ I i i
i TRY o o e e >
i I |
| add D ==> TRY
H
i | |
| cutoff D |
| add last |
| last=L? ==> TRY
i | l !
1 +--> 3rd=E? ==> replace 2nd with E |
% | TRY z
| TRY ! |
f } l !
end=UNG? ==> cutoff UNG ==>| G > e e e >
| I |
end=ANG? ==> cutoff ANG ==>|>==> add ING ==>|
l | |
end=ANK? ==> cutoff ANK ====> add INK =====) |
| ! ?
end=00K? ==> cutoff 00K ====> add AKE m=mm==) |
)
| i |
end=AID? ===> cutoff AID ====> add AY =====>] |
{ l 3
ond=0UND? ==> cutoff OUND ===> add IND mmma) |
g | >====> cons ED !
cnd=EW? ===> cutoff EW =====> add OV ======>] TRY |
| ‘ 3 | i
end=CKE? ==> cutoff OKE ====> add EAK =====>| R >
| l |
end=0LE? ==> cutoff CLE ====> add L[AL ===== |
f z 2
end=0RE? ==> cutoff ORE ====> add EAR m=z==) |
| |
end=0cE? ==> replace 3rd with I ;
| cons ED s========> TRY |
| | !
| end=IVE? ===> cutcfi IVE |
l add EAVE ==> TRY i
| | i
end=0RN? ==> cutoff ORN ==> add EAR ==>]| > |
| 3 ]
end=UNK? ==> cutoff UNK ==> add INK ==>[>==> cons EN ==> TRY ¥
| | l |
end=WN'.7 =D Cutoff N TS SIS I ININIEININE D } i s oo > l
!

|
i

¥
¥

Figure 4

Verbs with internal vowel shifts

AY4



e

VR S R R

(&

AW Y A N v

o
b

R R A P AR R s

tE ]

NOUNS

The rules for regular noun endings are quite simple: one strips =85,

sometimes —ES, -=7S, =87, and sometimes ~ES”. Actually, the regular
plural inflection of a noun involves stripping two suffixes —— the
cenitive "”", and (separately) the plural “(E)S”. (Thus FATHERS™ ->

FATHER S GEN.) See Figures 1-2.

Irregular plural inflections are more complicated; some forms borrowed
from Latin or Greek retain their native inflections. Thus we have
cases like ALUMNUS-ALUMNI, FORMULA-FORMULAE, QUANTUM-QUANTA, GENUS-
GENFRA from Latin, and INDEX-INDICES, APPENDIX-APPENDICES, SCHEMA-
SCHEMATA, PHENOMENON-PHENOMENA, NOMEN-HNOMINA, APHIS-APHIDES, PHALANX-
PHALANGES from Greek. Where the inflected forms end with -A, the
root—-determination is non-deterministic: the analyzer must try one
and, failing, try another, until it hits the right root. Figures 2 and
5 include the portions of the flowchart devoted to these cases.

-

ADJECTIVES AND ADVERBS

The rules for adjectives and adverbs are quite simple: ome strips =&,
sometimes —ER, =ST, sometimes =EST, and the adverbial suffix -LY.
Sometimes this may require reversing the =Y to -I- shift, etc. Of the
very few irregular adjective formations (e.g., GOOD, BETTER, BEST),
none are amenable to stripping rules; hence all must be entered as

lexical exceptions. See Figures 3 and 5.

ORDINAL NUMBERS

The rules for ordinal suffix removal are straightforward; the only
special cases are in spelled-out numbers: reversing the =-Y to

1
-l

|

i

conversion (e.g., TWENTIETH -> TWENTY TH), adding a deleted ~E (e.g.,
NINTE -> NINE TH), reversing a voiced-voiceless shift (e.g., TWELFT:
-> TWELVE TH), or adding a deleted -T (only instance: EIGHTH -> EIGHT
). In the case of ordinal numbers (e.g., lst, 2nd, 3rd, 4th), =-ST,
-ND, and -RD are all treated 1like -TH, and the wuser function
LEXENTRIES is called to construct (or find) a lexical entry for cthe

numeral. See Figure 0.

PREFIXES

The only prefixes removed are those which indicate a simple mnegative
inversion: NON=-, UN~-, IN-, IM~, and Icc~ (I followed by a doubled
-onsonant, €.Z., IRREGULAR). All are converted to the canomical NEG.
Prefix stripping is only tried after all suffix rules have failed to
oroduce a root; if applicable, the prefix rules recursively invcke the
analyzer with the remainder of the word, in an attempt to find the
root. Only if this succeeds will the prefix be removed; otherwise, the

entire stripping process fails, and the user function SPELLIKG-ERROR

is called. See Figure 6.




Ea it

R O

T S A e R R R

TR

R TR S B R S R T s

LY? ==

cutoff [ =s=s==s===sss===z==)| |
| !
cutoff I 1 |
add US =====s=======sssss===)| !
l I
end=ERA? ==> cutoff ERA |>===> cons 5 ==> TRY |
| add U§ =======>| i %
| | Eaabdl
end=ATA? ==> cutoff TA ====>| |
l | i
end=INA? ==> cutoff INA | |
I add EN s======>| |
cutoff A |
add UM i
cons § ====> TRY |
l |
cutoff UM ====> add ON ====> TRY |
l |
e o e = >
1
cons LY |
end=BLY? ==> cutoff Y f
| add E |
I TRY |
| | I
! e e e o e >
l |
end=ILY? ==> cutoff ILY ]
| add Y |
| TRY |
l | I
! e o e e o e >
cutoff LY i
TRY |
i i
add E f
TRY |
I !
cutoff E |
add LE %
TRY !
i |
e e o o e o e >
|
X/
Figure 5

Foreign plural nouns and -LY




AR VIR

| i
| v
end=ST? ==> cutoff ST !
| number? ====>| |
i i | |
§ | goto PFX | |
| 3 |
% end=ND? ==> cutoff ND ! ]
| number? ====>| |
i | I 1 !
3 1 goto PFX I ;
: i | >====> cons TH =======> TRY I
2 end=RD? ==> cutoff RD | |
5 | number? ====>| S e e e e >
g 1 l | |
] | goto PFX i |
| I
and=TH? ==> cutoff TH !
| number? ====>| i
2 | | i
3 | cons TH |
E i end=TIE? ====> cutoff IE ====> add Y ====> TRY |
i = i | |
i i end=F? ===> cutoff F ==> add VE ==> TRY o >
i I | 1 f
g | word=EIGH? ====> gdd T =s===> TRY | |
2 | i | e >
i | word=NIN? ==> add E ==> TRY ! |
| | I | |
i TRY i 1 |
g | 1 | | (
5 F0 G S — +< D S _— —< ]
: !
= discard ENDings ====> use original word ====>|
!
§ |
& |
2 | (z====s=s===ssz=s=ss=ssssssssssss=szsmzasd |
i
Sfx=UN? ===> cutoff UN =====>|
3 f !
§ ofx=NON? ==> cutoff HON ====>|
£ }
§ Sfx=Icc? ==> cutoff Ic =====)>|>====> LEX.LOOKUP ==> cons LEG
E f { | return
5 pfx=IN? ===> cutoff IN =====>| fail
g i |
pfx=IM? ===> cutoff IM =====) |
|
fail
: . ~
1 Figure ©
: Ordinal numbers and prefixes
| -

1.
L



oo
Lt

Appendix I

The irregular English verbs

{Yote: some of the infinitives may also have regular inflections.)

S LA A O A L A S P

abide abode) (dive dove)
{arise arocse arlseng (do did domne)
{awake awoke awaken draw drew drawn)
Eaackblte backbit backbitten) dream dreamt)
{backslide backslid) {(drink drank drunk)
(be been being am are is was were) (drive drove driven)
¢ (bear bore bormne) dwell dwelt)
(beat beatem) eat ate caten)
become became) (fall fell fallen)
\oeLall befell befallen) feed fed)
{beget begot begotten) feel felt)
begin began begun) fight fought)
behold beheld) flnd found)
{bend bent) fit
gbereave bereft) flee fled)
beseech besought) fling rlun%
beset fly flew flown)
(bespeak bespoke bespoken) forbear forbore forbOfue}
{bestride bestrode bestridden) forbid forbade forbidden)
bet forecast
(oetake betook betaken) forget forgot forgotten)
‘optnlnk bethought) forsake forsook forsaken)
éDld bade bidden) forswear forswore forsworne)
bide bode) freeze froze frozen)
(5ind bound) gainsay gainsaid)
{(bite bit bitten) {get sot gotten)
= {bleed bled) gll gilt
H {blend blent gird Glrt
i (bless blest (¢ive gave given)
2 gnlow blew blown) Oo went gone)
B break broke broken) rave graven
4 goleea bred) DLlnd ground
= bring brought) £YOW grew grown)
§ broadcast ﬁdmstrlno hams;runO}
& browbeat browbeaten) hang hung;
8 (build built) knave had has)
g (burn burnt) (hear heard)
= burst {heave hove)
] (buy bought) Ehew hewn)
cast (hide hid hidden)
{catch caught hit
gchide chi chlcdep) (hold held)
{choose chose chosen) hurt
(cleave cleft clove cloven) 1nlay lnLula)
\c71no clung keep kept)
clothe clad Ekneel knelt)
{come came) knit
cost know knew known)
(creep crept) lade laden)
(crow crew lay 1a16§
cu lead led
(deal dealt) lean leantg
vdig dug) leap leapt




ket
_Lose lost
{make made

joi}
[
‘_.l
=
[N N o+
S .

misdealt)

{sislay mislaid

islead misled

lscake mistook mistaken)
Teunderstand misunderstood)
oW TOWID

sartake partook partaken)
“5ay paid) |

‘olead pled)

Srove proven)

zut
suit
c2ad
_rend rent)
z1d . \
{ride rode ridden)
(ring rang rung
rise rose risen
run ran)

ay said)

ce saw seen)

eek sought)

¢ sold

sent

/ snake shook shaken)
shear shormn

;ued ‘

{ shine shone)

{shoe shod

{ shoot shotg

( show shown

{shrink shrank shrunk)
{shrive shrove shriven
shut .

{sing sang sungﬁ

{sink sank sunk
it sat) .
lay slew slain)
leep slept

1ide slid
i
1
i

L ing slungg
- 2
L ink slunk

N
E*%
mell smelt)
ite smote smitten)
ow sowi)

(speak spoke spoken)
%speed sped)

spell spelt

spend spent

spill spilt

spin spun

spit spat

1t -
(spoil spoilt)
spread
%sprlng sprang sprung)
stand stood
stave stove
steal stole stolem)
stick stuck
sting stung
stink stank stunk)
strew strewn)
stride strode stridden%
strike struck stricken
string strung)
strive strove striven)
sunburn sunburnt)
swear Swore SWOIn
sweat
sweep swept)
swell swollen)
swim swam Swum

~,

teach taught)
tear tore torm) -

tell told)

think thought)

thrive throve thriven)

throw threw thrown)
thrust

(tread trod trodden)

undergo underwent undergone)
understand understood

swing swung
rake took taken)

undertake undertook undertaken)
underwrite underwrote underwritten)

ypset
%wake woke waken)
waylay waylaidz

wear wore worn,s |
weave wove wWOven/

wed

(weep wept)
wetl

win won)

wind wound)

withdraw withdrew withdrawn)
{witnhold withheld)

witnstand withstood)

work wrought

%wring wrung)

Write wrote written)

food



BvAL TR br S AT R b

&

T

134
§
§
£
<
73

A T 5 R S B R B L e

am
are

ate
awoke
backbit
hackslid
bade
became
been
befell
tegan
begot
begotten

-begun

beheld
besougnt
bespoken
bethought
bit
bled
blest
borne
bought
bred
broken
brought
came
caught
chic
chose
chosen
clad
cloven
did

forbade
forborne
forgot
forgotten

Appendix II

Irregular verb forms not handled by the Analyzer

heard *
held
hid
hung
is
%aln
ay
led
11t
lost
made
met
misled

misunderstood

pled
ran
sat
saw
shod
shot
slain
slew
siid
sold
sought
spat
sped
spoken
spun
stolen
steod
stove
stricken
struck
stuck
swan
swollen
swum
taught
thought
told
trod
rodden
undergone
understood
underwent
was
went
were
withdrew
withheld
withstocod
woke
won
woven
wrought

~J



T AT Ve R A

AR

S B v R A B L A S g RN RO 4 R S iy

Appendix III

Suggested AFFIXLIST associations

ED
EN
ER
EST
GEN
ING
1Y
NEG
-N
-S
TH

AM
ARE
HAVE
IS8
NOT
WILL
WOULD

(V)

(V)

(ADJ)

(ADJI)

(¥ PRO)

(V BE DO HAVE)
(ADJ)

(@ v ADJ ADV)
(W)

(¥ vV DO NUM)
(ruM)

(PRO)

(PRO)

(PRO MODAL)

(1 PRO)

(BE DO HAVE MODAL)
(PRO 1)

(PRO M)



T A ST

g
¥ €

SE I G Ao

O
St St

v
A o

%

el St

SRR

AbAv R

e

Lt

{ LEX.LOOKUP
(.u

b
(]

appendix IV
The INTERLISP program

[LAMBDA (W POS)

the top-level function. W (the word to be

er case; P0OS must be a list of part-of-speech
restrictions on the root of W, or a single
szrt-oi-speech, else NIL if there are 10 restrictions. LEX.LOOKUP
of all possible analyses of W (within the category
else NIL if there are mnomne; each analysis 1s
Y a list of “morphemes’ comprising the word W.
the author has another
different

" LEX.LOOKUP 1is
snalyzed) must be in upp
{grsmmatical category)

returns a list
-estrictions, if any),
{in this implementation
1 °Y.LOOKUP does NOT correct spelling errors;
1exical analysis program that does, operating on quite
srinciples, and which 1s language—independent; the dictionary
required, however, 1is more extensive.')

(oR (NULL POS)
(LISTP POS)
(sgTQ PCS (LIST P0S)))
(PrROG (END X (STRIPS (LEXENTRIES W P0S))) (* (TRY))

[COND
((NOT (LITATOM W)))
[[SETQ END (CAR (FMEMB (NTHCHAR W -1)
(QUOTE (2 ! 5 : , %]
(* punctuation?)

(COND
((SETQ X (LEX.LOOKUP (MKATOM (SUBSTRING W I -2))
P0S))
(LEXEND X)

(SETQ STRIPS (NCONC STRIPS X1
([SETQ X (WDSTRIP (DREVERSE {UNPACK W]
(SETQ STRIPS (NCONC STRIPS X1
(RETURN (INTERSECTION STRIPS STRIPS])

(WDSTRIP
[LaMBDA (L)
(PROG (CATS END X)

(AYD

(SETQ X (FMEMB (QUOTE D)
L)) (¥ =7-

(SETQ L (PROGL (CDR X)
(FRPLACD X)
(SETQ X L))

(OR
(SETLEXCATS
(SELECTQ
(PACK (DREVERSE X))
[T
{COND
([SETQ X
(REVERSE




SR T W AR

AR TR

P s

R

S8 4

ELARE S S

e

T T T R T

Wich

(CDR (FASSOC W (QUOTE ((CAN"T C A M)
(WON"T W I L L)
(SHAN"T S H AL L)
(AINT A M]
(SETQ L X)
(QUOTE NOT))
((£Q (CAR L)
{QUOTE N))
(AND
{ SETLEXCATSQ NOT)
(COND
((SETQ X
(LEX.LOOKUP (PACK (DREVERSE (CDR L))

CATS))
(LEXEND X)
(RETURN X]
(S (AND (SETLEXCATSQ -S)
(WDTRY L))
(AND (SETLEXCATSQ IS)
(WDTRY L))
(QUOTE GEN))
(“RE (QUOTE ARE))
(“VE (QUOTE HAVE))
(“LL (QUOTE WILL))
M (QUOTE AM))
(“D (QUOTE WOULD))
[~ (AND (EQ (CAR L)
(QUOTE $))
(SETLEXCATSQ GEN)
(COKRD
((WDTRY L)
(RETURN))
((SETQ X (WDSTRIPS L CATS))
(LEXEND X)
(RETURN Xi
RIL))
(GG TRR))
(GO TRY))
(OR (SETQ X (CDDR L))
(GO ERR))
(SELECTQ
(CAR L)
(s (AND (SETQ X (WDSTRIPS L P0S))
(RETURN X)) (* ~8)
(GO PFX))
[(DGNRTH
(COND
[ (SETLEXCATS (SELECTQ
(CAR L)
(G (% -ING)
(AMD (EQ (CADR L)
(QUOTE N))
(EQ (CAR X)
(QUOTE 1))




.
&
3
¥
&
u
B
b d
2
E
&
]
g
%3
&
B
=
15
pas
2
&
B
o

.

T T L Ty U D P e

(CDDR XD

(SETQ L X)

(FRPLACA L (QUOTE E))
(QUOTE 1ING)))

[(D N R (* -ED -EN -ER)
(AND (EQ (CADR L)
(QUOTE E))
(CDR X)

(PROGL (PACK* (QUOTE E)
(CAR L))
(sETQ L (CDR LI
(T (* ~EST)
(aND (EQ (CADR L)
(QUOTE S))
(EQ (CAR X)
(QUOTE E))
{CDDR X)
(SETQ L X)
(QUOTE EST)))

NIL))
(COND
[(EQ (CAR L)
(CADR L)) (* -EE-)

(AND (EQ END (QUOTE ING))
(SETQ L (CDR L]
[(EQ (CADR L)
(CADDR L)) (* -11-)
(SETQ L (CDR 1))
(COND
((WDTRY L)
(GO PFX))
([AND (EQ END (QUOTE EN))
(WDTRY (FRPLACA L (QUOTE E]
(% ~ccEN)
(GO PFX))
((SETQ L (CDR L]
((4¥D (EQ (CADR L)
(QUOTE L))
(EQ (CADDR L)
(QUOTE RJY)) (* -RL-)
(SETQ L (CDR L)))
((eq (CADR L)
(QUOTE Y)) (% =¥7-)
(AND (COND
((WDTRY (CDR LJ}))
((NEQ END (QUOTE ING))
(WDTRY 1))
(GO PFX))
(FRPLACA (CDR L)
(QUOTE 1)))
((EQ (CADR L)
(QUOTE X)) (% =X-)
(SETQ L (CDR L)))




BRYTAE SR b N e T

SR AT

.

ARG

R o5 s 5 St LT L

IR

RO

oy sy
N

B T PR > e e o

({AND (EGQ (CADR L)
(QUOTE KJ)
(EQ (CADDR L)

(QUOTE C))
(SETQ L (CDR L)) (% =CK-)
NIL))
((WDTRY L)
(GO PFX))
((EQ (CAR (SETQ L (CDR L)))
(QUOTE 1)) (% -1-)

(COND
((WDTRY (FRPLACA L (QUOTE Y)))
(G0 PFX))
((FRPLACA L (QUOTE I]

((EVERY X (FUNCTION SMALLP)) (* ordinal?)
(AND (SELECTQ (CAR L)
(H (* nTH)
(EQ T (CADR 1)))
[D (% 3RD 2ND)

(FMEMB {(CADR L)
(QUOTE (X R]
(T (* 187T)
(EQ (CADR L)
(QUOTE 8)))
NIL)
(SETLEXCATSQ TH)
(WDTRY L)
(RETURN))
(GO ERR))
((SELECTQ
(CAR L)
[N (OR [AND (SETLEXCATSQ EN)
{(COND
((EQ (CADR L)
(QUOTE W))
(% ~W)
(sETQ L (CDR L))
((AND (EQ (CADR L)
(QUOTE R))
(EQ (CAR XD
(QUOTE 0)))
(* —QRN)
(FRPLACA X (QUOTE E))
(FRPLACA L (QUOTE R))
(FRPLACA (CDR L)
(QUOTE Al
(AND (EQ (CADR L)
(QUOTE A))
(SETLEXCATSQ -1)
{COND
((WDTRY (CDR L))
(% =N)
(GO PFX))

i



({¥DTRY X) (% -A)
(GO PFX))
((WDTRY (FRPLACA (CDR L)
(QUOTE 0)))

(GO PFX))
((MEQ (CAR X) .
(QUOTE 1))
{ NIL)
: ((WDTRY (CDR X))
* ~TAN)
(GO PFX))
. ((SETQ L (FRPLACA X (QUOTE Y]
£ 5y
4 (AYD
‘ (SETLEXCATSQ ED)
(COND
((FMEMB (CADR L)
x (QUOTE (L N P M R)))
: (% =cT)
: (AND (COND
: ((WDTRY (CDR L)))
- [ (WDTRY (FRPLACA L (GQUOTE D]
: ((AND (EQ (CAR (FRPLACA L
(CADR LJ))
g (QUOTE 1))
; (* -LT)
; (WDTRY L))
3 ((EQ (CADDR L)
: (QUOTE E))

(¥ =EcT)
(FRPLACA (CDR L)
(QUOTE E))
(WDTRY 1L)))
(GO PFX)))
(48D (EQ (CADR L)
(QUOTE F))
(EQ (CAR X)
(QUOTE E))) (¥ -LFT)
(FRPLACA (CDR L)
(QUOTE A))
(ATTACE (QUOTE E)
(FRPLACA L (Q Y
[G (% -AKG -UNG)
(aND (EQ (CADR L)
{QUOTE N))
(FMEMB (CAR X)
(QUOTE (U A)))
(SETLEXCATSQ ED)
(FRPLACA X (QUOTE I}
[D (ConD
[{AaND (EQ (CADR L)
(QUOTE H))
(£Q (CAR X)
(QUOTE UJ)

LR L R e i

Ra st

e e



PR RIT P

REG AR E4 St

i YR DR

P AL T AR

s v

A T L SR A T

T

”y Z'r

(£q (CADR X)
(QUOTE 0))
(SETLEXCATSQ ED] (¥ -QUND)
(FRPLACD X (CDDR X))
(FRPLACA X (QUOTE I]
([AND (EQ (CADR L)
(QUOTE 1))
(gQ (CAR X)
(QUOTE A))
(SETLEXCATSQ ED] (¥ -AID)
(sETQ L (CDR L))
(FRPLACA L (QUOTE Y]
[H (* -TH)
(AND (EQ T (CADR L))
(SETLEXCATSQ TH)
(COND
((EQ W (QUOTE EIGHTH))
(SETQ L (CDR L)))
[(EQ W (QUOTE NINTH))
(SETQ L (FRPLACA (CDR L)
(QUOTE El
[ (FMEMB W (QUOTE (FIFTH TWELFTH)))
(FRPLACA X (QUOTE V))
(SETQ L (FRPLACA (CDR L)
(QUOTE EI
[ (AND (CDDR (CDDDR X))
(rQ (CAR X)
(QUOTE E))
(£Q (CADR X)
(QUOTE 1))
(EQ T (CADDR X)))
(* -TIETH)
(SETQ L (FRPLACA (CDR X)
(QUOTE Y|

NIL))
((Go PFX]
[E (conD
[(AND (EQ (CAR X)
(QUOTE 0))
(SETLEXCATSQ ED)
(SELECTG (CADR L)
(v (% -QVE)
(FRPLACA X (QUOTE I))
(AND (WDTRY L)
(GO PFX))
(ATTACH (QUOTE A)
(FRPLACA (CDDR L)
(QUOTE El

({pT s ¥ (% =0cE)
(FRPLACA X (QUOTE 1)))
(r (% ~QRE)

(FRPLACA X (QUOTE E))




R

NPRYECY

IR BTN MR,

ST SRR ST R 2T

ST

feii i i G A R ST R

S

(FRPLACA L {QUOTE R))
(FRPLACA (CDR L)
(QUOTE 4)))
((x L) (* -0KE ~OLE)
(FRPLACA X (QUOTE E))
(FRPLACA L (CADR L))
(FRPLACA (CDR L)
(QUOTE A)))
(SETQ END]
((AND (EQ (CADR L)
(QUOTE A))
( SETLEXCATSQ -S)) (* -AE)
(SETQ L (CDR 1L)))
[ (AND (EQ (CADR L)
(QUOTE 8))
(EQ (CAR X)
(QUOTE E))
(SETLEXCATSQ -¥)) (* -ESE)
(COND
({(WDTRY (CDR X))
(GO PFX))
((WDTRY (FRPLACA X (QUOTE &
(GO PFX))
({SETQ L (CDDR X]
((GO0 PFX]
[Y (COND
[(AND (EQ (CADR L)
(QUOTE L))
(SETLEXCATSQ LY)) (* -LY)
(COND
[(EQ (CAR X)
(QUOTE 1)) (=
(SETQ L (FRPLACA X (QUOTE Y]
((EQ (CAR X)
(QUOTE B)) (* -BLY)
(FRPLACA L (GUOTE EJ))
((WDTRY X)
(GO PFX))
((WDTRY (CONS (QUOTE E)
(CDDR L)))

s
~
e

(GO PFX))
((FRPLACA L (QUOTE E]
({GO PFX]
[X (cowp
([AND (EQ (CADR L)
(QUOTE NJ)

(COND
((EQ (CAR X)
(QUOTE A)) (% =AVK)

(SETLEXCATSQ ED))
({(EQ (CAR )

(QUOTE 1)) (* —UNK)




TR AR

TR

WP

(FRPLACA X (QUOTE 1))
((AND (EQ (CADR L)
(QUOTE 0))
(EQ (CAR X)
(QUOTE 0))
(SETLEXCATSQ ED)) (=
(FRPLACA X (QUOTE A))
(FRPLACA L (QUOTE E))
(FRPLACA (CDR L)
(QUOTE K)))
({60 PFX]
[w (COND
((aND (EQ (CADR L)
(QUOTE E))
(SETLEXCATSQ ED)) (=
(FRPLACA (CDR L)
(QUOTE 0)))
((G0 PFX]
[A (OR (SETLEXCATSQ -S)
(GO PFX)) (*
(COND
((AND (EQ (CADR L)
(QUOTE R))
(EQ (CAR X)
(QUOTE E))) (*
(SETQ L (CDR L))
(FRPLACA X (QUOTE U))
(FRPLACA L (QUOTE 8)))
((AND (EQ T (CADR L))
(EQ (CAR X)
(QUOTE A))) (*
(SETQ L X))
((AND (EQ (CADR L)
(QUOTE N))
(EQ (CAR X)
(QUOTE 1J)) (o
(SETQ L {CDR L))
(FRPLACA X (QUOTE E)))
([WDTRY (ATTACH (QUOTE )
(FRPLACA L (QUOT

tvi

(GO PFX))
((FRPLACA L (QUOTE N))
(FRPLACA (CDR L)
(QUOTE 0]
[T (AND (SETLEXCATSQ -N)

1]
i

~00K)

-ERA)

LN
-IN& )

Ui

(WDTRY (CDR 1)) (* -1)

(OR (SETLEXCATSQ -S)
(GO PFX))
(ATTACH (QUOTE 8)
(FRPLACA L (QUOTE Ul
(GO PFX))
TRY {(WDTRY L)
PFX (SETGQQ X 3)

PN
.
v

ot

roeg
o



APk e Y

BU——

(AND (SETLEXCATSQ NEG)
(ILESSP 4 (NCHARS W))
(SELECTQ (NTHCHAR W 1)
(U (* UN-)
(EQ (NTHCHAR W 2)
(QUOTE N))) .
[N (* NOw-)
(AND (EQ (NTHCHAR W 2)
(QUOTE 0))
(EQ (NTHCHAR W 3)
(QUOTE N))

(COND
((EQ (NTHCHAR W &)
(QUOTE -))

(SETQQ X 5))
((SETQQ X 4]
(1 (* Icc- IM~ IN=-)
(OR (EQ (NTHCHAR W 2)
(NTHCHAR W 3))
(FMEMB (NTHCHAR W 2)
(QUOTE (M NI
NIL)
(SETQ X (LEX.LOOKUP (MKATOM (SUBSTRING W X -1))
CATS))
(LEXBEG X (QUOTE NEG))
(RETURN X))
ERR (OR STRIPS (SPELLING-ERROR W END))
(RETURN])

(WDSTRIPS
[LAMBDA (L POS STRIPS)
{PROG (X CATS END)
(OR (SETLEXCATSQ -5)
(RETURN))
(SETQ L (CDR L))
[AND
(EQ (CAR L)
(QUOTE E)) (* ~E8)
(SELECTQ
(CADR L)
{H (7" ke i)
(COND
({(Q T (CADDR L)))
((WDpTRY (CDR 1))
(RETURN]
(1 (* -128)
(COND
((WDTRY (CONS (QUOTE Y¥)
{CDDR L)J)

—~
2
f
92
N

(RETURN))
((WDTRY L)

(RETURN))
((SETQ L (CDE L]




§ [s (% -8ES)
£ (COND
P ((AND (EQ (CADDR L)
- (QUOTE $))
2 (SETQ L (CDR L)) (* -SSES)
£ NIL))
P ((WDTRY L)
i (RETURN))
- ((WDTRY (CDR L))
B (RETURN))
5 ((FRPLACA L (QUOTE 1))
g (ATTACH (QUOTE S)
# 1]
F (X (* -XES)
5 (SETQ L (CDR L)))
: [z (* -ZES)
: (AND (EQ (CADDR L)
(QUOTE 2)) (* -ZZES)
(SETQ L (CDR LI
(COND
: ((WDTRY L)
(SETQ L (CDR L)))
((SELECTQ
(CADR L)
[C ' (* -CES)
(COND
: ( (WDTRY (FRPLACA (FRPLACD L (CDDR L))
] (QUOTE X)))
] (RETURN))
£ ((EQ (CADR L)
: (QUOTE 1))
% (FRPLACA (CDR L)
(QUOTE E]
(D (% ~DES)

(SETQ L (CDR L))
(FRPLACA L (QUOTE 8)))

(G {(* -GES)
(SETQ L (CDR 1))
{(FRPLACA L (QUOTE X)))

(v (* -VES)
(AND (WDTRY (FRPLACA (CDR L)

(QUOTE F)))

G i AR R R S i

(RETURM)))
(SETQ L (CDR L]
(WDTRY L))
STRIPSI)

(WDTRY
[LaMBDA (L)
(PrOG (W X)
(SETQ L (DREVERSE L))
(SETQ W (PACK L))
(DREVERSE L)

(e8]



[ COND
((SETQ X (LEXENTRIES W CATS))
(LEXEND X)
(SETQ STRIPS (NCONC STRIPS X]
(RETURN X1)

( SETLEXCATS
[LaMBDA (E)

(COND
((nULL (SETQ END E)J
NIL)
((1ULL (SETQ CATS (FASSOC E AFFIXLIST)))
NIL)
((NULL (SETQ CATS (CDR CATS)))
(SETQ CATS POS)
)
((¥ULL POS))
((SETQ CATS (INTERSECTION CATS POSI)

¥

(SETLEXCATSQ
[LAaMBDA (E)
(SETLEXCATS E])

{SPELLING-ERROR
[LAMBDA (W AFX) (* user—definable)

(* This functiom is called when the analyzer cannot discover any
analysis for a word; the user may define this function as
desired, but LEX.LOOKUP will return NIL in any case. W is the
word, and AFX is the analyzer’s most recent guess about the
possible affix.)

NILD)
(LEXBEG
[LAMBDA (X PFX {# vser-definable)

(¥ The default definition of LEXBEC sticks the PreFiX onto the
cront of each of the analyses in the list L

(MAPC X (FUNCTION (LAMBDA (4) (ATTACH PFX ald

(LEXEN
[LAMBDA (XD (* user—cefinablie)

(# The default definition of LEXEND sticks the suffix END onto the
ond of each of the analyses in the list . Ixcepricns: 1f LN
is in the list DROPSUFFIXES, it 1is ignored; 1if END is in the
1ist INVERTSUFFIXES, it is treated as a prefix. If this doesn t

make sense to the reader, don’t worry about it.)
(COND

( (FMEMB END DROPSUFFIXES))

((FMEMB END INVERTSUFFIXES)

(LEXBEG X END))

((MAPC X (FuNCTION (LAMBDA (4) (HCOHCL A END])



W0 (* user—definable)

(* " LEXENTRIES is the function that actually looks up words 1n the
lexicon. W is the word or number, and C is a list of grammatical
category restrictions on the definitions of W. - The value returmned by
LEXENTRIES must be a list of analyses; each analysis must be a list
which LEXBEG and LEXEND may alter destructively -—— ‘Thence a
newly-created list. (The contents are arbitrary, but are presumably
related to W in some way.) The value may be as simple as: ((Word)) .

Since no definition of LEXENTRIES would likely suffice for a
new implementation, no realistic default is provided. That which 1
srovided is for illustrative purposes only, indicating the minima
structure of a result; specifically, it accesses no dictionary, though
such access would naturally be expected in the implementation.’)

[ IS O}

(LIST (LIST Wl



Appendix V
Default Declarations

(SETQQ AFFIXLIST ((-§ N V DO NUM)
(ING V DO HAVE BE)
(ED V)

(EN V)

(ER ADJ)

(EST ADJ)

(LY ADJ)

(GEW N PRO)

(NOT DO HAVE BE MODAL)
(NEG N V ADJ ADV)
{(AM PRO)

(ARE PRO)

(IS N PRO)

(HAVE PRO MODAL)
(WILL N PRO)
(WOULD N PRO)

(TH NUM)

(=N N)))

(SETQQ CONTRACTICNS (“M “RE “VE “$ N'T “LL D))
(SETQQ DROPSUFFIXES NIL)

(SETQQ INVERTSUFFIXES NIL)

(SETQQ PREFIXES (Icc I¥ IN NON UN))

(SETQQ SUFFIXES (ED EN ER EST GEN ING LY =N NOT -S TH))



