—

Jonathan Slocum

Working Paper
February 1981

LRC~61~-2
ABSTRACT
A parsing system for defining, debugging, 2diting and
saving collections oI grammar rules and lexical
entries is described. The system 13 therefore much
more than a mere parser; I is an enviromment for
a

a t

constructing theories of natural language, at least
for the purpose of analysis. It has been used to
implement a theory of analysis of one human language
for transiation into another. The system was intended
to provide a means, not just of analysis, but of
highly efficient analysis which would make large-scale
verificarion of linguistic theories bota possible in
theory and affordable 1in practice. To that end, it
has been highly successful.

£

5

g
n
1
|
:

SRR

Intrcduction

There are actually two METAL parsers: one implements a Left~
Cornmer algorithm, and the other the Cocke-Kasami-Younger bottom—up
algorithm. They are imbedded in the identical enviromment of "help”
routines for defining, editing, deleting, and querying the contents of
collections of augmented context—frae grammar rules and lexical
iependent grammars

o
i1

entries. The system supports the maintenance of inden
(collectionms of rules and lexical entries), useful for example when
comparing the performance of alternative grammars on a given text
corpus. Another important difference between the METAL parsing system
and a "plain" parser is the degree of control afforded the user during
the parsing process. Most parsers offer little or nothing more than a
means of intreducing context-free rules and lexical entries, plus some
way to perform "semantic" tests and/or operations. To this, the METAL
parsers add considerably more powerful facilities.

4
g1
280

First, there may be both a preprocessor (o operate upon the
input before the parser sees it, able to change it arbitrarily, and a
postprocessor to operate upon the 'output’ after the parser is
finished, able to change it arbitrarily. Second, lexical analysis 1is
left to the user -- seemingly a burden at first thought, but ia the
end a blessing when one considers the possible (un)desirability of
spelling correction, or differential treatment of languages other
than, say, English. Lexical analysis is performed on each word as it
is encountered during parsing by calling a certain user—-definable
function {which has a reascnable default). Third, and most
importantly, the evaluation or interpretation of "semantic routines
-~ indeed, the entire question of the parse structure (e.g., tree) =—-—
is left to the user; this too may seem onerous until one realizes that
each application may place different requirements upon the nature of a
parse structure (syntax tree here, semantic structure there, database
query somewhere =2lse) and more generally wupon the nature of the
"semantic” tests or routines themselves (transformations here, LISP
code there, templates somewhere else). The parser 1itself makes no
committment concerning the nature or effect of "semantic” routines, or
even to their existence. Other features, explained below, offer even
more flexibility in its application to language oroblems. After a
brief sketch of the general procedure for parsing an input, this
manual will describe in more detail each function available in the
basic system, and sach function and variable providing special control
capability to the user.

The function PARSE expects a "sentence’ as input, and proceeds
to interpret that input according to the currentliy—active grammar.

First, USER_PREPROCISSOR is invoked; then the resulc (4 LISP list) is
added, word by word, to the charr. Adding a word to the charrc implies
calling USER_WORD with the word, and adding the result {morph by

oot

morph) to the chart; USER_WORD may vproduce parallel (ambiguous)
interpretations, each of which is a sequence of one or mere morpns to
be added to the chart in order. Addition of any morph to the chart
may result in & sequence matching the right-hand-side of a grammar
rule; if so, the associated left—hand-side is added, provided the
associated "rule body expression” {when passed to USER BULE) results
in a legal interpretation; since ANY additicn may complete the right-
hand-side of one or wmore grammar rules, the process is recursive.
““hen the recursion dies out, the next morphk is added to the chart (if
there are any more), else the next word is analyzed into morphs (if
there is a next word), else the parser looks for “sentential’ spans in
the chart and passes them to USER_POSTPROCESSOR. The value of this
function is the value returmed by PARSE. 1In the case that USER WORD
fails to produce a lexical analysis, there is another mechanism (the
function USER_ADD) to handle such novelties. In the case that none of
these account for a word, USER ERRCR is called, which may call for the
termination of the parse effort, or perhaps an attempt to continue.
This, then, is an ocutline of the general procedure for parsing an
input.

0 i

S R RS

£
A0

5
154

samarn
44

i R R

e

By WA

™

These are the key words: Define, BEdit, eXpunge, and Print;
Tdiom(s), Rule(s), and Words;
also velue and References.
These are the key funciions:
{the names are ucrodxts
nased on the key wor s)

]
ot
"

R A B S e B o B
-

DR, DV;

FR, EW;

KR, X3

PR, P,

RR, WR;

cc FR (Functiom Re

and YR (Value References) .

- W PG
M -

[]
-

The above functions {for those knowing INTERLISP) are NLAMBDA versions
£ the following LAMBDA functions:

DEFINE_IDIOH, DEFIXE_RULE, DEFINE_WORDS;
EDIT_IDICH, EDIT_RULE, EDIT_WORDS;
EXPUNGE_IDIOM, EXPUNGE_RULE, EXPUNGE_WORDS;
PRINT IDICHMS, PRINT_RULES, PRINT _WORDS;
IDICK REFERENCES, RULE_ REFERENCES, WORD _REFERENCES;
also FUNCTION_ REFERENCES and VALUZ RE £S
A Rule is composed of a left-hand-side "father category
svmbol, a sequence of right-hand-side "oons” categories (or quoted
words), and a rule body expression. An Idiom is like & rule, except
that ail the sons are understood to be words &tarmlnala), and the rule
body expression (definition) is not expected to be evaluated {(though
it may be; see USER _IDICH, below) . woras are entries in the lexicon;
they may be associated with values {4efinitioms). In addition to the
above, PARSE notes the datatype (TYPLNAL E; of each item in a sentence;
if its TYPENAME appears as the CAR of an element _INTRINSICS
assoc—list, the item wiil De interpreted as : e of the
category(s) in the CDR. Currently the parser Xnow: sse TYPENAMEs:
LITATOM, STRIXNGE, 1,ISTP, SHALLY, TIXP, FLOATP, and 2. The default
value of ADD_INTRIF MSICS 1s

((SMALLP NUMBER) (FIXr NUMBER) (FLOAT? NUMRER)) -

Finally., if the value of ADD UUKNOWNS is not NIL, that value is taken
as a list of categories Eo which all unknown LITATCH terminals (i.e.,

those words not previously accounted for) will be temporarily
assigned; if the sentemnce is successfully parsed, DEFINE_WORDS may be
called to make the assignment permanent to all categories in

ADD_UNKNOWNS {see USER_ POSTPROCESSOR) .

N

The user normally proceeds by Defining Rules, Idioms, and/or
words, and then testing out the resultant grommar —o serhaps Editing
parts of it and/or eXpunging parts. 25 well as adding more Rules,
Tdioms, and/or Words ~—~ Ly attfempting tO PARSE representative
sentences. 1o do this, Ome calls various Define, BAiL, and/or eXpunge

functions with appropriate arguments; one might also make use of the
warious grammar—explication functions to see, for example, where
certain symbols are used in the grammar, or Lo see the current Tule
set associated with a particular category symbol. When a reasonably
stable and/or large grammar is acguired, ome can direct INTERLIS? to
dump it omto a file, where it may be reloaded later for further use
and/or development.

EEaREe

The syntax of the grammar maintenance function call

oI [cat (words...) value] -- Defines an Idiom (list of words) in the
category ~cat’ with the definition “value” lef USER_IDIOMI.
An idiom may be comsidered toO pe a multi-word cal entry.
fx: (DI NP (THE UNITED STATES) (COUNIRY . USA))

1

f op [cat (symbols...) exprl —- Defines a Rule (list of symbols) in the
category ~cat” with Mgemantic" interpretacion provided Dby
evaluating ~expr when PARSE finds a symbol sequence in the
chart matching the list ~(symbols...)” [cf. USER RULE].

Any/every symbol in the 1ist which is enclcsed in guotes "
is a terminal (word) rather tham a catezory symbol.
Fx: (DR NP ("THE" ADJ ¥) (DEF-KF ADJ M)

D [cat word (word . value)...] —— Defines Worcs (lexical entries) im
the category ~cat’. Each “word” may be paired with a “value”
(default = the word irself); one may associate MORE than 1

Z “yalue” per ~word” by using "sense numbers' as the CARs of the

values [cf. USER_WORD]. The default sense no. is 0.
E<: (DW N (mcs (Isa . SHIP) (TYPE EQ “MCS7))
(MCS 1 (ISA . ATTR) (DBATTR . MCS)))
NOTE that the multiple senses must correspond 1-1 with words;
i.e., the “word” must be individually pairea with each value
it is to take as a ''semse reaning'’, and each such pair must

1

have a different ''sense number” as the CAR of the “value .

certain)

El [cat idioms—to-be—edited] -— used tO P 1y
" ory “cat”. If
g p

Tdioms associated with the 1-b-s fa
no Idioms are specified (i.e., only the rg 1

all idioms associated with category “cat” are brought up for
editing.
Fx: (EI NP (THE UNITED STATES))

ER [cat rules-to-be—edited] -- used to Eait {pervaps only certain)
Rules associated with the 1-b-s e ther category cat’. If mo
Rules are specified (i.e., only the “cat” arg is passed), all
rules associated with <category ~cat” are brought up for

L1
R s - IR IS e L] -~ RN
Fx: (Er np (VTHE" asd N

X1

ZR

PR

W

IR

RR

WR

[cat words—to-be-edited] =-- used to Edit {(perhaps only certain)
Words associated with the 1-h-s "father' category “cat”. If no
Words are specified (i.e., only the “cat” arg is passed), all
words associated with category “cat” are brought wup for
editing.

Ex: (EW N MCS)

[cat (words...) value] —-— used to eXpunge an Idiem (list of words).
If no idicm is specified (i.e., only the “cat” arg is passed),
then all idioms in category ~cat” are deleted.

Ex: (XI NP (THE UNITED STATES) (COUNTIRY . USA))

[cat (symbols...) expr] =-- used to eXpunge a Rule (list of
symbols). If no rule is specified (i.e., only the “cat” arg
is passed), then all rules in category “cat” are deleted.

Ex: (XR NP ("THE" ADJ N) (DEF-NP ADJ N))

[cat words—to-be-expunged] -- used to eXpunge (lexical) Words; all
senses of each word are deleted. If no words are specified
(i.e., only the “cat” arg is passed), then all words in
category “cat” are deleted.

Ex: (XW N MCS)

[cat flgl =- Prints all Idioms in category ~cat’, and their
associated values if “flg” is not NIL.

Ex: (PI NP T)

{cat flg]l =-- Prints all Rules in category ~“cat’, and their
associated rule body exprs if “flg” is not NIL.

Ex: (PR NP T)

[cat flg] =-- Prints all Words in category ~cat’, and their
associated values if “flg” is not Nil.

Ex: (FW N D

[word flgl =-- prints all Idiom References to ~word”, and their
associated values if “flg” is not NIL.

Ex: (IR THE T)

[sym flg] -- prints all Rule References to “sym’ ("-ed if a word),
and their associated rule body exprs if “flg” is not NIL.

Fx: (RR "THE" T)

[word flgl -- prints all Word (lexical) References to “word”, and
their associated values if “flg” is not NIL.

Fx: (WR MCS T)

{fn-name flg] -- prints all rules where the named Function 1s

Referenced, and their associated rule body expressions (whose
CARs = fn) if “filg” is not HWIL.
Fx: (FR DEF-NP T)

B g 5 LR,

fe)

VR [value] -- prints all rules, idioms, and words (lexical entries)
where “value” is Referenced (returmned).
Ex: (VR (COUNTRY . USA)) '

Note that Defining a Rule or am Idiom that is already defined with a
different rule body expression or value does NOT redefine the old onel
1t simply adds the mnew definition. The parsers both produce all
interpretations, and assume ambiguity 1is OK. Thus to replace a
definition one must (1) eXpunge the old ome, or (2) [better] use the
appropriate Edit function. Ex:

(ER S (NP VP) (NP VP PP))

will edit the 2 rules § ~> NP VP and S -> NP VP PP —- along with their
rule body expressioms. When using EI, ER, or EW, one may delete all
20T ONE of the definitions if desired; the LISF editor won't allow
deletion of the last one. The (potential) ambiguities w.r.t. Words is
handled differently, using sense numbers as mentioned above. One CAN
reDefine a sense of a Word to return a new value via DW, using the
appropriate number (default 0) for the semse being redefined. The
acceptance of ambiguous grammars is why the rule body expr or value
must be supplied to XI and XR. These considerations make the editor
more likely to be used than one might expect a priori.

B A B AR A A S S R S T

LS

AR

Parsing

PARSE is the top-level function; its arg is a list of words

{the sentence). Its value is that returned by USER _POSTPROCESSOR. It
works bottom-up, left—right, by adding one word at a time to the CHART
—— in terms of its morphemes’ category symbols and their definitions
(interpretations) -- and then exploring the "ramifications' of the
addition. If an addition results in the completion of the right-hand-
side of a rule, then a new arc is constructed spanning the CHART s
corresponding "right-hand-side arcs" with the category on the rule”s
left-hand-side as its' phrase marker. This construction, however,
depends on the USER"s 'semantic" RULE function returning amn
interpretation other than (the value of) *ERROR* when invoked with the
1-h-s FATHER symbol, the r-h-s SON symbols, and their corresponding
interpretations. At the end of the sentence, PARSE looks for ome or
more spans in the chart from the last node to the first, whose phrase
markers are in the list ROOTCATEGORIES; these spans, if any,
constitute the interpretations of the sentence, and are passed to
USER_POSTPROCESSOR for any processing the user desires.

The parser makes no commitment to any parse structure (such as

a tree). In fact, it does not produce anything but a chart == which
contains insufficient information to compute a parse tree, or much of
anything else. In this way it shifts the burden of producing the
desired output structure onto the grammar writer. While this might
not at first glance seem reasonable, it becomes so when considering
that, by not building anything by default, the system will not burden
the user with building a structure (such as a parse tree) that is
unnecessary for his particular applicatiom. {(For instance, some
applications require only the construction of a database query from an
English input, and have no use at all for syntactic structures.) Even
in applications where a parse tree 1is desired, there may be
differences of opinion as to the best parse tree structure (e.g.,
GENSYMs and property lists vs. ASS0C-lists vs. multi-vord plexes
[records] with assigned slots). This approach, then, seems most
reasonable a priori. Every necessary facility 1is provided whereby the
grammar writer may cause a structure appropriate to his application to
be created; specifically, what is called a "semantic” interpretation
of a phrase is constructed by code writtem by the user. It may for
example be a parse tree. The parser in no way considers the content
or structure of what that interpretation is, other tham to determine
whether is is EQ to *ERROR¥ (which implies an error condition, i.e.,
rejection), but associates the interpretatiocn with the arc it builds
in the chart so that it may be passed back to the interpretation
routine USER_RULE at sppropriate times. Finally, the interpretations
associated with the ROOTCATEGORIES arcs spanning the input will be
passed to USER_POSTPROCESSOR for ultimate disposition.

The user may work with any number of disjoint grammars and

lexicons in a single session (e.g., in a Machin Translation system
where different natural languages require different grammars) . To
offect the switch from one grammar to another, the function GRAMMAR 1s

ol T S TS e TR S SRR R A e b)

S R

Y

provided. The argument -- any literal atom the user desires -- 'names”
the grammar to be employed or defined. In addition to SETting some
variables special to the parser, GRAMMAR binds the global wvariables
*CRAMMAR® and *LEXICON* to its arg. The initial value of *GRAMMAR¥ is
“CKY” or “LC”, depending on the particular parser employed. In order
to specify which grammatical categories are to be considered as
"sentences," the function SET_ROOTCATEGORIES is provided. The
argument 18 a list of one or more categories from the
currently~selected grammar to act as ROOTCATEGORIES. ROOTCATEGORIES
are phrase-markers spanning 1 or more sentences in the language
defined by the grammar; each ROOTCATEGORY symbol will appear as the
“father” of at least one Rule, Idiom, or Wordlist defined by DR, DI,
or DW, or appear in ADD_UNKNGWNS or ADD_INTRINSICS. The initial value
of ROOTCATEGORIES is ~(8)7. 1In addition, ROOTCATEGORY 4is bound to
(CAR ROOTCATEGORIES): this is the "father™ symbol which various system
functions default to 1f a NIL argument is provided.
SET_ROOTCATEGORIES returms as its value the previous value of
ROOTCATEGORIES.

Each of the METAL bottom—up parsers is augmented by 'top-—down
filtering." Top-down filtering 1is the restriction of the rules
applied by a bottom-up parser to those that would be applied by a
top-down parser; in other words, a bottom-up parser with top—down
filtering will apply no rules that a good top—down parser would fail
to apply. Good top-down parsers are noted for their restriction of
the rules they apply based on the input string (sentence), but have
various drawbacks such as an inability to effectively deal with left-
recursive syntax rules and lack of great speed in discovering rules to
apply; bottom—up parsers, while discovering applicable rules very
quickly, have the drawback of applying many rules needlessly (i.e.,
applying rules which could not possibly contribute to a sentence-level
enalysis). Top-down filtering, then, implies a combination of both
strategies in the hope that the speed of rule application associated
with the bottom-up strategy will be abetted by the restriction omn
rules supplied by the top-down strategy. The advantages of filtering
have been demonstrated to depend on sentence length, and may depend on
other factors as well. The use of filtering is strictly controlled by
(the value of) the global variable TOP-DOWN_FILTER (see below).

T T S R S A R R

R GRS AEN DA

User—definable Functious

USER_ADD [FATHER SON] is called by the parser when it encounters in
the sentence a numeric literal matching a constant in some
grammar rule or idiom, or an item whose datatype TYPENAME is
in ADD_INTRINSICS, or & literal atom not accounted for by any
other mechanism. FATHER is the category (from ADD_INTRINSICS
or ADD_UNKNOWNS) or literal to be added to the CHART. SON 1is
the item in the sentence. By returning (the value of) *ERROR¥
USER_ADD signals the proposed syntactic interpretation to Dbe
unacceptable; it will thus mnot be added to the CHART.
Otherwise, the value returned by USER ADD 1is taken as the
“semantic’ interpretation of the proposed —— and accepted --
syntactic interpretation wherein FATHER dominates SOH.

Default: return SON.

USER_ERROR [PARSED WORD REST] is called when an unknown WORD is
encountered. PARSED is the (possibly empty) 1list of words
understood so far; WORD is the word which cannot be accepted;
REST is the (possibly empty) list of words remaining in the
sentence. USER ERROR is user—definable, and may do anything
the user 1likes == including defining WORD somehow, or
substituting another word. If USER ERROR returns {the wvalue
of) *ERROR* then parsing will terminate and USER_POSTPROCESSOR
will be called immediately. Otherwise (NOTE!) the value 1is
taken as the word to try in place of WORD (though it may be
WORD if WORD is defined herein) and the parser will continue.
NOTE that, if WORD is returned without some necessary
corrective action (e.g., defining WORD) an INFINITE LOOP may
result -— i.e., WORD will still be unknown, and the parser
will call USER _ERROR zgain with the same arguments.

Default: (PRIN1 *GRAMMARY¥)

(COND [PARSED (PRINl " does mnot permit ")

(PRIN1 WORD)
(PRINL " to follow ")
(MAPRINT PARSED)
(TERPRI)]

[(PRIN! " does not accept the lst word: ™)

(PRINT1 WORD)1)

then return *ERROR¥,

USER_IDIOM [FATHER SONS BINDS VALUE] is called when the parser finds
an IDIOM in the sentence. FATHER is the 1-h-s symbol in the
idiom”s definition; SONS are the r—h-s symbols (words) im the
definition; BINDS are the "semantic' interpretations of the
respective SONS [cf. USER _WORD}; VALUE 1is the "semantic”
interpretation from the idiom”s definition [ef. DIl. It 1is
expected that, for most applications, USER _IDICH will simply
return VALUE. UHowever, the user may perform anv gperation he
desires, such as reformatting VALUE, or <calling some other
function. The value returned by USER_IDIOM will Le treated as
the "semantic’ interpretation of the idiom in the usual way;

(ARt s]

i

15

i.e., the parser will ignore it other thanm associating it with
the FATHFR symbol in the CHART and {perhaps) passing it as an
element of BINDS when czlling USER RULE later.

Default: return VALUE.

USER_NEW WORD [W] is called with every word, rule literal and idiom
constituent, the first time such 1s encountered in the
definition of a grammar. In the latter two cases, the arg W
will be a string, number, etc, but not a literal atom; in the
case of words, it will be a literal atom as required by
DEFINE_WORDS. USER_NEW_WORD may do anything the user likes,
including nothing. It may operate to help his functions
USER_WORD and/or USER_PREPROCESSOR when they look for lexical
analyses of the word by, for instance, constructing a '"letter-
tree' to support spelling correctiomn. Default: just return W.

USER_POSTPROCESSOR [INTERPS INFO] is called with two args: a list of
"semantic'" INTERPretationS, if any, as returned by the
ROOTCATEGORIES”® rule body expression(s); and either the
(perhaps partial) CHART built by PARSE if that process was
unsuccessful (not normally of much help to users), or the
(perhaps empty) list of UNKNCWN words encountered during a
successful parse, with their "semantic”" interpretations as
returned by USER_ADD in a format suitable for passing as the
second argument to DEFINE WORDS. if the INTERPS 1list 1is
empty, then PARSE fziled to find any interpretations with a
spanning arc frem the list ROOTCATEGORIES. (The linguist
might wish to view the INFO chart in this «case.) The user
might, e.g., wish to wuse USER_POSTPROCESSOR to primt out
and/or disambiguate interpretations, print the processing
time, bind the inputs to some global variables, and/cr Define
the previocusly unknown Words in INFO using the category(s) 1im
ADD_UNKNOWNS.

Default: (SETQ PARSETIME (DIFFERENCE (CLCCR 2

(AND [SETC INTERPRETATIONLIST INTERP
INFO
[MAPC ADD_UNKNOWNS

f23
N
~

TAD QTP TR
} PARSETIHE
o
<
o

]

(FUNCTION (LAMBDA (CAT)
(DEFINE _WORDS CAT INFO)))1)
(SELECTQ [SETQ INFO (LENGTH INTERPRETATIORLIST)]
[0 (PRINL "0 interpretatiomns; ')
PRIN1 PARSETIME)

PRIN1 " milliseconds.')]
PRINL "1 interpretation in ')
RIN1 PARSETIME)
RINI " milliseconds.')]
N (PRINI INFO)
{PRIN1 " interpretaticns in
{PRINL PARSETIME)
(PRIN1 " milliseconds: ™)

iy
;

N Wﬁ% it

(PRIN1 (QUOTIENT PARSETIME
(PRIN1 " msecs/interp.')])
(TERPRI)
then return INTERFS.
USER_PREPROCESSOR [L] thas ome crack at each input
PARSE sees it. The output must be a list
words, though PARSE could care 1less. Then,
is added to the CHART by PARSE, USER WORD
word. This function might be used, for
TOP-DOWN_FILTER to T or NIL depending on sen
Default: (SETQ PARSETIME (CLOCK 2))
then return L.

Y

-
o

R

PeiER 3

USER_RULe [FATHER SONS BINDS EXPR] is called when th
RULE from the CHART. FATHER 1is the l-h-s

A
definition; SONS is a list of the r-h-s symbols

11

THFO))

to PARSE before

presumably of
foze each word
iled with that
ample, Lto set
ce length.
e parser matches a
in the rule’s

in the rule’s

definition; BINDS is a list of the "semantic” interpretations
of the respective SONS; EXPR is the expression associated with
the rule. By returning the wvalue of *ERROR*, USER RULE
signals the proposed syntactic interpretation to be
unacceptable; it will therefore not be added to the CHART.
Otherwise, the value returned by USER_RULE is taken as the
"semantic” interpretation of the proposed —— and accepted -—
syntactic interpretation.
efault: (MAP2C SONS BINDS
(FUNCTION (LAMBDA (USER_S USER_B)
(AND [LITATOM USER_S]
[SET USER_S USER_BI))))
then return (EVAL EXPR).

USER_WORD [W REST] is responsible for Word analysis, including
“literals”. (Literals are strings in idioms and grammar
rules.) W is the word [actually sentence item, whether word
(LITATOM), number, guotation (STRING), or parenthetical (LIST)
expression]; REST is the remainder of the sentence {(after W)
-— useful, e.g., when deciding whether ¢to separate~out
punctuation. The ouzput of USER_WORD, if neor HIL, is
interpreted as a list of ALTERNATIVE analyses which ¥MUST have
one of the following form (where the asterisk "% 7 indicates
the format created by the DEFINE functions):

(analysisl analysisZ ... analysis-n)¥ or {cat . senses)
The analyses are considered to be parallel alternatives, each
of which MUST have one of the following forms

(morphl ... morph-n) or (cat . senses}“
The morphs will be CHARTed in the serial o¢rder specified.
NOTE: the morph—~1i 1ists may be destructivelyv altered by the
parser; therefore, they must be newly CONStructed for each
analvsis. Fach morph must have one of the following forms:

(interpl ... interp-n) or (cat . senses)

%
i
£
;i‘!é
:

12

The interps are considered to be parallel alternarives, each
of which must have the form:

(cat . senses)
If “cat” = (the value of) LITERAL CATEGORY, then senses’

corresponds to a literal inm the grammar (created as a side-
effect of DEFINE _IDICM or DEFINE _RULE); it will be treated
like a category symbol and CHARTed using W as its “value” (see
below). Otherwise, ~cat” is a grammatical category and
“senses” must have the form:

(sensel ... sense-n)
The senses are considered to be parallel alternatives, each of
which must have the form:

(sns# . value) ,
The values are added to the CHART (in parallel) under the

associated category, as would happen if USER_RULE returned the
value in response to a call wherein FATHER was bound to the
associated category. The default below, for example, returns
LITERAL and WORD analyses for the word W in the format

((cat . senses) ... {cat . senses))
else NIL if there are noune.

Default: return (GETP W *LEXICON¥*).

DRI R, VN

]
g

ST

R

14
=
s
=
=
>

13
Glopal Variables
¥ERROR® is the "error' flag; if/when USER _ADD, USER_ERROR, USER_IDIOH,
and/or USER_RULE return (the value of) this variable, special
action is taken (see those 4 functions for details). The
default value of *ERROR¥ 1s itself; the user may change it as
desired —- for example, to NIL to disallow NIL as 2 "semantic”
interpretation of a phrase.

1

#GRAMMAR* and *LEXICON* are both bound to the name of the currently
active grammar. {See the function GRAMMAR for details.’
Default: “CKY” or “LC7, depending on the particular parser.

ADD_INTRINSICS is bound to an assoc-list, the CARs of whose elements
are names of LISP s intrinsic datatypes -- currenctly chosen
from among LITATCH, STRINGP, 1ISTP, SMALLY? (for 'small"
integers up to 100C or so, depending on LIS? implementation
details), FIXP (larger integers), TFLOATP, and OTHER (for
anything else —- not very likely to be encountered). The CDRs

of those elements are to be lists of grammatical categories to

which input items of the matching datatype will be assigned -
regardless of whether the item was found in the lexicon. (See
the discussion of ADD_INTRINSICS above, plus the function

USER_ADD, for more details.)

Default: ((SMALLP NUMBER) (FIXP NUMBER) (FLCATF MNUMBER)).

ADD_UNKNOWNS is bound to a list of grammatical categories to which an
unknown word (not handled lexically or through ADD_INTRINSICS)
is to be assigned. The default is (PROPN). If set to NIL,
for example, unknown words will result in a call to USER_ERROR
when encountered. If ADD_UNKNGWNS is not NIL —- and 1t must
then be a list —— then USER _ERROR may never de called. (See
ADD_UNKNOWNS and USER_ADD for more details.

R]

CKY_FUNCTIONS, (KY_CRAMMAR, CKY GRAMMARCOMS, CXY_IDICHS, CKY_RULES,
CKY_TREE, and CKY_WORDS are reserved symbols —- as are ALL
symbols starting with MCRY Y oor Mcky M.

FUN_SIZE is bound to a number that determines whe
is to be made into & funcriom. Tor '"prod
system will generally ben ti
rule body exprs, but to be compiled the
functions. On the other hand, compiling very small exprs may
be wasteful. When a grammar rule is defimed, the size {number
of list cells) of its rule body expression is compared with
FUN_SIZE; if FUN_SIZE 1is larger, the expression remains
unchanged; otherwise the expression becomes a call to a
gzenerated function whose definition is that rule body
expressicn. Thereafter, when the grammar is dumped using the
MAKEFILE cum CRY_GRAMMARCOUS [or LC_GRAIMMARCOMS] £
resultant file may be compiled to produc
containing the grammar and lexicon plus compiled Functions,

ther a rule body expr
tion” runs, a

of the larger

must become

efit from compi

1

v
ke

TR

Sy,

sy

GRAMMAR SOURCE 1s the flag which controls whethsar
— fe
7

-
I~

which may then be lcaded in place of the original grammar
source file. Tefault value: 10.

M is a pseudo~reserved symbol; certain LISPs {(like INTERLISP) use
this as a GENSYM initializer, and the parser treats it in a
similar fashion. The user should not use GENNUM.

the "source” form of
a grammar (cum lexicon) is to be maintained. is mai nte ance

is necessary, for example, if the user wishes to edi or
expunge rules, idioms, or words. For “production” runs lt may

be desirable to set GRAMMAR SOURCE to HIL before loading a
grammar, to save space. The default value is T, which means
that source forms are saved and changes may be effected in the
grammar at run time. CGRAMMAR SOURCE should be changed, if at
all, BEFORE lcading the grammar.

!
4

it

ul

LC_FUNCTIONS, LC_GRAMMAR, 1.C_GRAMMARCOMS, LC_IDIoHS, LC_RULES,

LC STARTEES, LC_STARTERS and LC %ORDS are reserved symbols -—

as are ALL symbols beginning with "LC_" or "lc ",

ITERAL CATEGORY 1is bound Lo the name of the grammatical

pseudo—category into which literals {in grammar rules) and
idiom constituents are inserted so that USER_WORD may {find
them. The value of LITERAL CATEGORY (default = LITERAL) must

NOT correspond to any true lexical category, since -— like
lexical categories == it will appear as the CAR c©f an element
on the word’s lexical-entries assoc—list; wunlike lexical
categories, however, {the value of) LITERAL CATEG

GORY is nmnot
CHARTed as a category in the lexical analysis, b rather 1its
associated literal (the CDR of the pair) is, usi
word as its walue {definition). {See <the de
USER_WORD for more details]. The user mav, if des

LITERAL CATEGORY to any symbol, but must do so b
grammars are loaded and not afterwards.

tion of

ROOTCATEGORY is bound to (CAR ROCTCATEGORIES) &bty the function

SET_ROOTCATEGORIES. This is the category to which the various

EDITing and PRINTing functiomns default when mno argument 1s
f=4

provided.

ROOTCATEGORIES is bound to the list of grammatical/lexical categories
which are acceptable {tc the user) in accounting for an input
[else to "T7 indica iﬂg that all categories are acceptablel.

In other words, ''root' categories define what a "sentence’ 1is
in terms of the currently active grammar {see the function
SET_ROOTCATEGORIES for more details). Default value: (S).

T P R S O T R R S S

15

TOP~DOWN_FILTER is a flag which controls the activity known as "top-

down filtering.”" If filtering is desired, this variable must
be set non—-NIL BEFORE (1) the relevant grammar is defined, in
addition to its being non~NIL when parsing. If NIL, no

filtering is performed. Once a grammar has been defined with
TOP-DOWN_FILTER non-NIL, filtering can be turned om or off as

desired by toggling TCP-DOWN_FILTER. Default value: NIL.

ool SRR wmmmmwmmwmmmmwmm?mm

e e

YR T

16
Appendix I
Commands to Create, Test and Save a Sample Grammar
for sentences like: THE QLD MAN ATE FISH
GLISP
_(LOAD “<LRC.MI>CKY.COM) {* or <LRC.MI>LCP.COM)
_(GRAMMAR “ENGLISH) (* name the grammar)
(DR s (mp VP) (LIST “S NP VP)) (* define S rule)
_(DR NP (DET NP) (LIST NP DET KP)) (* define NP rules)
_(DR NP (ADJ NP) (LIST “NP ADJ NP))
_(DR NP (N) (LIST “NP N))
_(pr VP (V NP) (LIST “VP V NP)) (* define VP rule)
_ (DI xP (THE MAN) (NP TEE MAN)) (* define NP idiom)
_(pW DET (A DET . IND) (THE DET . DEF)) (* define DETerminers)
_(DW ADJ OLD) (* define an ADJective)
_(pw N (FISH N . FISH) (MAN N . MAN)) (* define Houns)
_(pW V (ATE V EAT -ED)) (* define a Verb)
_(SET_ROOTCATEGORIES “(S)) (* choose ROOTCATEGORY)
_(PARSE “(THE MAN ATE 4 FISH)) (* test the grammar)
_(SETQ TEST-GRAMCOMS CKY_GRAMMARCOMS) {* or LC_GRAMMARCOMS)
_(MAKEFILE TEST-GRAM.LSP) (*# save the grammar)

17

Appendix 1I

The Sample Grammar File (suitable for LOADing)
resulting from the commands in Appendix I

(FILECREATED "11-Feb-81 16:44:43" <LRC.PUBLIC>TEST-GRAM.LSP.1 1865)

: {PRETTYCOMPRINT TEST-GRAMCOMS)

{2PAQQ TEST-GRAMCOMS [(FNS * (SORT (GETP (QUOTE CKY_FUNCTIONS)

g *GRAMMAR®)))
3 (p
- (LIST
- (LIST (QUOTE GRAMMAR)
z (KWOTE *GRAMMARY))
i (L1ST (QUOTE PUT)
5 (QUOTE {(QUOTE CKY_FUNCTIONS))
(KWOTE *GRAMMAR¥)
4 (KWOTE (GETP (QUOTE CKY_FUNCTIONS)
| *GRAMMAR®)))
= [cons (QUOTE DRQ)
g (MAPCAR (SORT (GETP (QUOTE CKY_RULES)
4 *GRAMMAR®))
- (FuncTION (LAMBDA (R)
- (CONS R (GETP R CKY_RULES]
: [CONS (QUOTE DIQ)
: (MAPCAR (SORT (GETP (QUOTE CXY_IDIOHMS)
: *GRAMMAR®))
: (FUNCTION (LAMBDA (I)
L (CONS I (GETP I CKY_IDIOMS]
4 [coNs
¢ (QUOTE DWQ)
i (MAPCAR
. (SCRT (GETP (QUOTE CKY_WORDS)
*GRAMMAR®))
(FUNCTION
(LAMBDA
(3
(CONS 8
(MAPCONC

(SORT (GETP S CKY_WORDS))
(FUNCTION
(LAMBDA (W)
{MAPCAR (CDR (FTASSOC 8§

{GETP W
LEXICON®)))
(FURCTION
(LAMBEDA
9

R CAC N AR Tt RN TN Rt R R Tt

TR T

R T S e A R A Ny S U s A e

(LIST (QUOTE SET_ROOTCATEGORIES)
(KWOTE ROOTCATEGORIES])

(DEFINEQ
)

(GRAMMAR (QUOTE ENGLISH))
(PUT (QUOTE CKY_FUNCTIONS)
(QUOTE ENGLISH)

NIL)
[DRQ (WP ((W)
(LIST (QUOTE NP)

)
((ADJ ¥P)
(LIST “NP ADJ NP))
((DET NP)
(LIST (QUOTE NP)
DET NP)))

(s ((mp VP)
(LIST (QUOTE $)
NP VP)))
(ve ((V ¥P)
(LIST (QUOTE VP)
vV NP]
[DIg (NP ((THE MAN)
(NP THE MAN]
(pwq (ADJ OLD)
(DET (A DET . IND)
(THE DET . DEF))

(N (FISH N . FISH)

(MAN N . MAN))

(v (ATE V EAT -ED)))
(SET_ROOTCATEGORIES (QUOTE (S)))
(DECLARE: DONTCOPY

(FILEMAP (NIL (1310 1321))))
STOP

138

(coNp -
({(NEQ 0 (CAR X))
(CONS W X))
((EQ W (CDR X))
W)
((cons W

{CDR X]

