The LRC Machine Translation System:
An Application of State-of-the-Art Text
and Natural Language Processing Techniques
to the Tramslation of Technical Manuals

Jonathan Slocum
Siemens Corporation

and Winfield S. Bennett

Working Paper LRC-82-1
July, 1982

ABSTRACT

This paper describes the prototype Machine Tramslation system
developed at the Linguistics Research Center of the University
of Texas. The LRC MT system includes a translation program,
METAL, as part of a suite of programs designed to automate the
complete process of translating technical texts. Sections of
this paper will deal with our domain of application, the
principles guiding our MI system design, a general description
of the MT system, a more detailed description of METAL, notes on
the METAL parser, a discussion of the system”s technical merits,
the results of some extensive experiments in translating German
telecommunications texts into English, and conclusions regarding
our contribution to the science of Computational Linguistics.

This paper is a composite of two papers presented separately by
the authors at the 9th International Conference on Computational
Linguistics (COLING 82), held in Prague, during July 5-10, 1982.
Due to mail delays, it did not appear in the Proceedings.

The LRC Machine Translation System:
An Application of State-of-the~Art Text
and Matural Language Processing Techniques
to the Translation of Technical Manuals

Jonathan Slocum
Siemens Corporation

and Winfield S. Bennett

Introduction

The Linguistics Research Center of the University of Texas has been working on
Machine Translation (MT) since its founding in 1961. Unlike some centers of
MT research, its early focus was largely theoretical. Most groups which
developed first— and second-generation systems for MT were eliminated through
the impact of the National Academy of Sciences report, '"Languages and
Machines,'” released in 1966. Limited funding continued, with some lapses, at
the LRC. In 1978, Rome Air Development Center provided the means to apply the
Center’s theoretical findings; this was augmented in 1979 by support £from
Siemens AG, Munich. 1In 1980, Siemens became the sole project sponsor.

This paper describes the prototype MT system developed by the LRC; it
represents a rare large-scale application of state-of~the—art Natural Language

Processing techniques. The LRC MT system includes a translation program,
METAL, as part of a suite of programs designed to automate the complete
process of translating techmnical texts. Since 1980, METAL has been

implemented in INTERLISP and run on a DEC 2060. As the COLING 82 conference
convenes, the LRC MT system is being implemented on 2 much less expensive,
personal minicomputer: a Symbolics LM-2 (Lisp Machine).

Sections of this paper will deal with our domain of application, the
principles guiding our MT system design, a genmeral description of the MT
system, a more detailed description of METAL, notes on the METAL parser, a
discussion of the system”s techmical merits, the results of some extensive
experiments in translating German telecommunications texts into English, and
conclusions regarding our contributionm to the science of Computational
Linguistics.

The Domain of Application

Natural language texts range in '"complexity' from edited abstracts through
technical documentation and scientific reports to newspaper articles and
literary materials. As far as MT 1s concerned, the former portion of this
spectrum is less complex than the latter because it is characterized by
relatively less syntactic and semantic variety. Paradoxically, the order of
complexity for human translators is essentially reversed due to a dramatic
increase in the size of the vocabulary: no qualified human translator has much
difficulty with straightforward syntax or normal idiomatic usage, but the
prevalence and voletility of technical terms and jargon poses a considerable
problem. Time pressures impose another set of problems, for which there
appear to be no solutions in the realm of unaided human translation, and few
if any good ones in the realm of machine-aided human translation as commonly
interpreted (e.g., a text editor coupled with automated dictionary look-up).

In terms of the demand for MT, then, the market is in techmical translationm.
There is no significant demand for machine translation of newspaper stories,
folklore, literary materials and the 1like, but there is a substantial and
growing demand for machine tramslation of technical texts.

Advantages of Translating Technical Texts

There are several advantages in translating technical texts as opposed to more
general texts. One of these concerns vocabulary: technical texts tend to
concentrate on one subject area at a time, wherein the terminology (lexical
semantics) is relatively consistent, and where the vocabulary is relatively
unambiguous, even though it may be quite large. (This is not to say that
lexical problems disappear!) Another advantage is that there is typically
little problematic anaphora, and little or no "discourse structure' as usually
defined. Third, in accordance with current practice for high-quality human
translation, revision is to be expected. That is, there is no a priori reason
why machine translations must be '"perfect' when human translations are mnot
expected to be so: it is sufficient that they be acceptable to the humans who
revise them, and that they prove cost—effective overall (including revision).

Problems in Translating Technical Texts

Notwithstanding the advantages of translating technical texts, there are
definite problems to be confronted. First of all, the volume of such material
is staggering: potentially tens or hundreds of millions cof pages per year.
Even ignoring all cost-effectiveness considerations, the existence of this
much candidate material demands a serious concern for efficiency in the
implementation. Second, the emphasis in Machine Tramslation is changing from
information acquisition to information dissemination. The demand is not so
much for loosely approximate translations from which someone knowledgeable
about the subject can infer the import of the text (perhaps with a view toward
determining whether a human translationm 1is desired); rather, the real demand
is for high-quality tranmslations of, e.g., operating and/or maintenance
manuals -~ for instructing someone not necessarily knowledgeable about the
vendor”s equipment in precisely what must (and must not) be done, in any given
situation. Fidelity, therefore, is essential.

In addition to the problems of size and fidelity, there are problems regarding
the text itself: the format and writing style. For exzample, it is not unusual
to be confronted with a text which has been "typeset" by a computer, but for
which the typesetting commands are no longer available. This can be true even
when the text was originally produced, or later tramscribed, in machine-
readable form. The format may include charts, diagrams, multi~column tables,
section headings, paragraphs, etc. Misspellings, typographical errors, and
grammatical errors can and do appear. Technical texts are notable for their
frequency of "unusual" syntax such as phrase- and sentence-fragments, a high
incidence of acronyms and formulas, plus a plethora of parenthetical
expressions. The "discourse structure,” if it can be argued to exist, may be
decidedly unusual -— as exemplified by a flowchart. Unknown words will appear
in the text. Sentences can be long and complicated, notwithstanding the
earlier statement about reduced complexity. Technically-oriented individuals
are renowned for abusing natural language. The sucessful MT system will
address these problems as well as those more commonly anticipated.

Principles of Advanced MT

As the LRC MT system has been developed, our goal has been to observe certain
design principles. Here we briefly discuss the design goals and how the LRC
MT system adheres to them.

Separation of Program from Linguistic Theory

The LRC MT system clearly separates the program component from the linguistic
component. Linguistic theory is not static. The linguistic theory on which
an MT system is based at any given time must be able to undergo further
improvement with little or no impact on the computer programs implementing, or
interpreting, that theory. So, for example, the grammar rules which describe
the languages covered by our system are modifiable without concern for the
programs that wutilize the rules for tramslation. Similarly, computaticmnal
procedures may be found amenable to improvement, and the LRC MI system
programmers are free to change their component with mno undue restrictions
imposed by the linguistic component.

Modularity within Components

The requirement of modularity is the sine qua non of flexibility. In the LRC
parser, for example, one routime is responsible for morphological analysis of
words; another, for idiomatic analysis; another, for application of syntex
rules; yet another, for application of transformations; and so forth. The
observance of modularity is not confined to the programs alone, but applied to
the linguistic component as well: for example, the grammar rules are segmented
into two types of acceptance test procedures (one for individual constituents,
one for collections of constituents), and into two types of operations (one
for analysis [independent of target language], one for transfer). Because of
careful attention to separation of responsibility in this manner, our system
is easy to modify and extend in accordance with the dictates of experience.
In the LRC MT system, evolution is provided for so that the system is wnot
rendered obsolete by its own design.

Linguistic Rule Base

The LRC MT system grammars and lexicons are maintained in a format optimized
for use by linguists, rather than by METAL or its programmers. The issue of
overall efficiency in research, development, and application precludes
interest in machipe efficiency alone. Machine Translation is an exceedingly
difficult problem whose optimal sclution is mnot vyet well understood.
Empirical results can and will dictate that linguistic procedures be changed.
For this to be effected by linguists who are not sophisticated in the computer
arts, our rule base is expressed in a formalism with which they are familiar.

Minimal Constraints on Representation

The program component imposes no significant constraint on how the linguistic
component represents interpretations of sentences, The most coramon
representation formalism in modern linguistics, for example, is syntax trees;
in related disciplines, other formalisms are preferred. In order to allow
freedom of choice, a few specialized routines are written for each desired
representation; the LRC parser interfaces with these modules in a well-defimned
manner, Thus the linguists may change thelr representation formalism at will.

"Fail-soft" Mechanisms

One great drawback of almost all natural language processing systems has Dbeen
their fragility. When confronted by a sentence beyond the descriptions
provided by the rule base, analysis usually terminates; most systems that have
any sort of ‘'intelligent error recovery" at all provide only spelling
correction. Some recent research has’focused on how parsers might interact
with the user when blocks occur. This is certainly interesting, but hardly
relevant to an applied MT system, where the users are neither linguists mnor
programmers, and where any interactiom’ with the user during translation runs
the risk of degrading performance to‘éh unacceptable level. Since coverage
deficiencies will arise in any collection of fixed rules, an MI system must
incorporate provisions for overcoming them. In the LRC MT system, a sentence
which cannot be analyzed as a unit is #@nalyzed into the lowest possible number
of phrases or, that seeming unreasonable, into a sequence of technical terms;
these are translated individually. In’addition, the interpretation-rejection
mechanism is implemented to allow "relexation' of conditions and restrictions
in case the rule base fails to account for a 'grammatical sentence, or in
case of an error in the input sentence (such as subject-verb number
disagreement) .

Extensicn to New Languages -

The LRC MT system admits extension through the addition of new languages; the
work involves little if any more thar writing grammars and lexiccons for the
new language. The framework in which bur linguistic theory is formulated and
expressed is able to account for languages other than the ones to which it 1is
now being applied (specifically, for most, if mnot all, languages in the
Indo-European family). Historically, attempts to tzke a system designed for
translation from/into one language and modify it for tramslation from/into
another have not been notably successful. The reason for this is in part due
to the typical lack of extensibility built into the fabric of MI systems.

Multi-lingual Translation

For some applicatioms it is desirablé to translate a text into not just one
but several languages. Typically, the amount of time spent analyzing a text
greatly exceeds that spent synthesizing its Target Language (TL) equivalent,
so that a system like ours that is able to translate into several languages
following a single analysis has a decided practical advantage. This may even
have a theoretical advantage insofar ‘as such practice counteracts a tendency
to produce a grammar that analyzes a Source Language (SL) only to the extent
required to translate into a particular TL, Some systems have been
constructed ab initio using a single~target strategy; the usual result is a
complete inability to translate intd any other language without a total
revision of the system.

-
bl

A Framework for Application

If a new theory of MT is proposed, and is claimed to advance the state of the
art, it camnot indulge in the luxury of confining its attentiom to isolated
problems in small texts: (1) it s usually the case that attempts at
large-scale application reveal striking deficiencies in methods that work well
in small-scale experiments; (2) some proposals for MT, while perhaps workable
in theory, clearly require access to encyclopedic knowledge which may not Dbe

available in appropriate form for another century —-- and certainly not in this
century. To some extent this can be regarded as indicative of the ultimate
difficulty of tramslation. Nevertheless, any proposed advance in MT today
must address the problems encountered in production tramslation; in doing so,
the theory will benefit considerably through refinement in a real-world
enviromment. Among other things, this implies a serious concern for
efficiency in the underlying programs. It also implies a means for resolving
the text-processing problems confronting any MT system. The LRC MT system has
been used to translate moderately large amounts of text -- extremely large, by
Artificial Intelligence (AI) standards -~ and shows every sign of being
efficient enough to serve as a framework for direct application.

A Framework for Research

No system today or in the near future will constitute an optimum solutiom to
the MT problem. Instead, it will at best constitute an implementation of the
most highly developed practical linguistic and computational theories of
translation. Both kinds of theory will continue to evolve, and both would
benefit from large-scale testing. Since an efficient, applied MT system would
be a prime vehicle for such testing, it seems only reasonable to require it to
support a research function. The LRC MT system has always served as a
framework for front-line research in machine translation.

General System Description

In this section we discuss the facilities of the LRC MI system which
substantially automate the overall translation process, including the
production and maintemance of the lexical databases along with several
text-prccessing programs and METAL”s place among them.

Lexical Datebase Management

In any large software system, the problem of producing and maintaining the
data sets on which the programs operate becomes important, if not critical.
First of all, when there is a large volume of such material the data entry
process itself can consume a significant amount of time; second, the task of
insuring data integrity becomes an even larger time sink. We will briefly
expand on these two problems, and indicate how the LRC MT system provides
sof tware tools to help cope with them.

There are two problems associated with data entry: creating the data in the
“first place, and getting it entered in machine-readable form. In most
applications of database management systems, the creation of data is
relatively straightforward: such data items as personal name, identification
number{(s), age, job title, salary, etc., serve as examples to i1llustrate the
peint that the data items wusually pre-exist, thus data entry Dbecomes
relatively more important. In an application such as MT represents, however,
creating the original data is the major bottleneck: cone must decide, for each
of thousands of words, many details of behavior in a complicated linguistic
environment. Certainly these details may be said to "pre-exist," but a real
problem arises when humans attempt to identify them. Generally speaking, the
more sophisticated the MT system, the more of these details there are. Data
entry, relatively speaking, becomes a small or insignificant issue == although
it remains a significant issue 1in absolute terms.

As part of the LRC MT system, we have developed a sophisticated 'lexical
default" program that accepts minimal information (the root form of the woxd,
and its category) and automatically encodes &almost all of the features and
values that, for METAL, specify the details of linguistic behavior. This 1is
accomplished by a combination of morphological analysis of the root form of
the input word, and search of the existing lexical database for 'similar”
entries. Defaulted lexical entries are created - in machine-readable form to
begin with, and are available for human review/revision using standard on-line
editing facilities. This greatly reduces both coding time and coding errors.

A potentially harder problem, however, 1is the maintenance of data integrity.
Humans will make mental errors in creating lexical entries, and will aggravate
these by making typographical errors during data entry. Even assuming a
lexical default program (which, of course, does not make such mistakes), the
process of human revision of the defaulted entries may introduce such errors.
Therefore, the LRC MT system includes a validation program that, working from
a formal specification of what is and is not legal in lexical entries,
identifies any errors of format and/or syntax within each submitted entry.
The formal specification is organized by language, by grammatical category
within language, and by feature within category. The incidence of semantic
errors —- which our validation program could not detect -- has not been found
to be significantly high. As a result, the use of this program has virtually
eliminated incorrect coding of momolingual lexical entries, which used to be a
major source of error in METAL translations. Related programs employ similar
techniques to identify errors in the phrase-structure grammar rules and
transformations that constitute the remainder of our linguistic rule base.

Finally, there is the problem of maintaining an existing lexical database. In
any MT system, there will be a need for changing existing entries in the light
of experience; in a system like ours, which serves as a vehicle for research
in MT, this problem is magnified by the occcasional need for large-scale
changes in lexical entries to accomodate new system features, or even theories
of translation. As part of the LRC MT system, then, we have incorporated a
general relational Data Base Management System (DBMS) along with a group of
interface routines that transform, upon entry, both monolingual and transfer
lexical entries from a format optimized for human wuse into a format more
suitable for storage by the DBMS, and which vreverse the transformation when
retrieving the entries. Not omnly do the interface routines facilitate the
entry, retrieval, and revision of lexical entries, but they also are
integrated with the validation program so that a lexicographer may not, while
using the DBMS, introduce errors in the format and/or syntax of a lexical
entry. This same on-line DBMS is accessed directly by METAL; therefore,
changes made in the database are instantly reflected in translatiouns,
resulting in a rapid turnaround that both encourages and enhances research and
developrment. See Figure 1.

Text—~processing Programs

As a glance at any technical manual will show, it is not always the case that
all material in a document must or can be translated. Large portions of a
text (up to 50% of the characters, im our experience) may not be translatable
material; the bulk of this may fall outside sentence boundaries, but some will
fall within them. Thus it is necessary for a text to be marked, or annotated,
to distinguish that which 1is to be translated (e.g., tables of contents,
instructions, prose paragraphs) from that which is not (e.g., text formatting

Acquire termirnology in machine~readable form

Code transfer entries

Validate transfer entries

(error)

Generate default monolingual entries

Review/revise monolingual entries

Validate monolingual entries

(error)

Add entries to database

Release database for use

Figure 1

Coding Lexical Entries

information, flowchart box boundaries, acronyms, and various attention-
focusing devices). In the LRC MT system, a program determines which members
of the machine”s character set are unused in the text at hand, and a few of
these are used to mark the text.

Within multi-column tables, different sentences would intermingle if the MT
system were to read the text in the usual computer fashion (i.e., horizontally
across the line). Our text-processing component currently detects most such
situations, and makes annotations that, after further automatic processing,
will allow the translation compomnent to ‘'see' the sentences as humans would:
reading vertically down the page. Another annotation program attempts to
identify translatable units (isolated words, phrases, and sentences) and
brackets them. Some untranslatable material (e.g., flowchart box labels) may
appear to fall within sentence boundaries, but plays no grammatical role in a
sentence: therefore we introduced a "toggle" comvention for excluding such
material so that it 1is invisible to the analyzer. On the other hand, some
untranslatable material within a sentence (e.g., equations and formulas) may
indeed play a grammatical role: the anmotation program marks such strings to
be analyzed, but carried though to the target language without translation.
Human verification and emendation of the annotation component”s output is
necessary, as might be expected, but this task does not require significant
training, and in particular it requires no knowledge of the Target Language(s)
or the MI system.

Once the text has been annotated, another program extracts the sentences to be
translated and prepares them for input to the MT system. Essentially, this
entails copying any bracketed units into a new file, excluding toggled—out
material. Anything outside of brackets is ignored completely. Complicating
this process is the fact that, in order to minimize human intervention in
reformatting the text after translation, the extraction program must record
the location of the original sentences copied into the MT input file, so that
the results of translation may be formatted just like the original document.

The next (optiomal) step is lexical pre-analysis of the text. The MI input
file is scanned, and the unique word occurrences are identified; each is then
submitted to lexical analysis. This step offers the potential advantage of
detecting dictionary shortages (i.e., unknown words) before they have a chance
to affect the translation process; also, proposed spelling corrections can be
noted for human review, and suspected acronyms can be verified. As another
potential advantage, a "lemmatized concordance” can be constructed, in which
each word is indexed according to its root, rather than inflected, form. As a
final advantage, a dictionary restricted to the text at hand could be
constructed if one wished to reduce dictionary storage requirements in the MT
system. After a human has checked any textual errors noted during lexical
pre-analysis, translation may proceed.

Translation, briefly stated, involves reading in the Source Language (SL) file
and printing out the corresponding Target Language (TL) file. This step ==
performed by METAL itself -- 1is detailed below. The process of text
reformatting is an important component of the overall process of translation.
If an MT system provides only a sequence of translated sentences, then a human
revisor must manually reformat the entire document, producing charts, figures,
etc. This can be a source of unnecessary frustration and expense, and can
constitute a significant cost factor in translation. The alternative of
providing unformatted translations to the user is distinctly unattractive. 1In

Acquire text in machine-readable form

Identify characters used in text;
chocse other characters for annotation

Mark multi-column tables
= Human review =

Mark translatable material
= Human review =

Extract translatable material;
produce template file |

optionally

Identify unknown words
= Update lexicon(s) =

Translate text with METAL

(choice)
Reconstitution = Human revision =
= Human revision = Reconstitution
= Touch~-up format = = Touch-up format =
Figure 2

Steps in Translation

the LRC MT system a special recomnstitution program automatically formats
translated text as much 1like the original text as is possible: margins,
indentation, and blank lines are all observed, and special forms (e.g., multi-
column tables) are all reconstructed.

The last step involves human revision of the machine”s translations. (This
step may actually take place before reconstitution, using the MT input and MT
output files separately, or an interlinear version of these two that is also
available; but some text format problems may remain that require human
attention after recomstitution.) The linguistic and computational research
behind METAL has always had as its goal a comprehensive analysis and
translation of whole sentences in their context; the work of the revisor,
then, should be mostly a matter of review. Where METAL fzails to achieve a
unified analysis of a sentence, a translation by phrases is provided which the
revisor must render into a well-formed translation; where METAL fails to
achieve a concise phrasal analysis, a translation of the technical terms is
provided, and the revisor must complete the translation. Figure 2 depicts the
steps in "production' machine translation using the LRC MT system.

The Translation Component: METAL

This section presents a more detailed description of METAL -- the actual
translation component of the LRC MT system. The top-level control structure
is quite simple: the function TRANSLATE is invoked with a sentence in the 5L
(currently, German) and returns as its value an equivalent sentence in the TL
(currently, English). TRANSLATE invokes three functions in succession: PARSE,
TRANSFER, and GENERATE. We briefly discuss the linguistic rules that describe
how analysis, transfer, and synthesis are to take place, then proceed to
illustrate the three~step process using an example sentence.

Lexical Entries

METAL lexicons are divided into two types: monolingual, and bilingual (called
"rransfer”). A monolingual lexicon must be created for each of the languages
involved in the translatiom process; transfer lexicons 1link the source- and
target-language monolingual lexicons. Monolingual lexicons consist of entries
for each lexical item. Each entry begins with a left parenthesis followed
immediately by the canonical or "dictionary" form of the entry, then a series
of feature labels, each with a sequence of zero or more values enclosed within
parentheses. The entry is terminated by a right parenthesis. The entries for
the German mnoun stem (NST) “Ausgabe” and the corresponding English NST
“output” will serve as examples (see Figure 3).

Space contraints do not allow an analysis of either entry; simply stated, each
monolingual entry provides the system with the information necessary for
parsing and synthesis of the lexical items. In addition to entries for
distinct word stems, the METAL monolingual lexicons contain separate lexical
entries for such morphemes as prefixes, infixes, suffixes, and punctuation.

Transfer lexicons consist essentially of canonical word pairs which indicate
the correspondence between the SL and TL word stems. Each pair may be
augmented by an arbitrary collection of context restrictions that must be met
in order for the indicated translation to take place. A sample transfer entry
for the pair "Ausgabe - output' is included in Figure 3.

(Ausgabe CAT (NST)
ALO (Ausgabe)

PLC (WD)
TAG (ALL)
RC (AGT) (Loc)
MC (durch uveber) (an auf) $
FC (rp)
CL (p~6 S—-A)
GD (F)
cPp e
DR (NP RD)
SX (M)
)
{output CAT (IST)
ALO (output)
PLC (WI)
TAG (ALL)
RC (AGT) (LoC)
MC (through) (on) §
FC (pp)
CL (p-02 s-01)
cP (e
ON (vo)
DR (¥P RD)
SX (M)
)
(output (Ausgabe) NST (CAT NC))
Figure 3

Monolingual and Transfer Entries
for the German noun stem Ausgabe”
and the English noun stem output”

As an example of tramnsfer restriction, it is possible to specify that a given
German preposition corresponds to any of several English prepositions
depending on the semantic type of its object noun. Three transfer entries for
the German preposition ~vor”, shown below, will illustrate:

(ago (vor) PREP (CAT PREP) (TY DUR))
(before (vor) PREP (CAT PREP) (TY PUN))
(in-front—of (vor) PREP (CAT PREP) (TY % DUR PUN))

In these entries the English translation is defined by a vrestriction on
semantic type (TY); i.e., the presence in context of an object noun of T¥pe
DURative results in the English translation “ago” (which will 1later be
postposed); if PUNctual, then “before”; otherwise, “in front of” is chosen.

Grammar Rules

For human-engineering reasons, the most convenient form for expressing a
grammar is via context-free phrase-structure rules. Context-free rules alone
cannot fully describe a human language, but more general phrase-structure
rules preclude efficient computational treatment. The traditional solution to
this dilemma is to augment the context-free rules by associating with them
procedures in some programming language in order to provide the necessary
generative power. In METAL, these rule-body procedures are invoked as soon as
the parser finds a phrase matching their constituent phrase structure.

The traditional purpose of such procedures is to restrict the application of a
rule by tests on syntax (e.g., number agreement between noun and verb) and/or
semantics (e.g., whether the proposed syntactic subject can be interpreted as
an agent); if such tests fail, the syntax rule is not applied. In METAL these
procedures not only accept or reject rule application, but they also construct
an interpretation of the phrase. Traditional parsers automatically build a
separate syntax tree and may add the output .of such procedures as semantic
information; in METAL, the parser (i.e., the LISP program) makes no commitment
to a syntactic structure, but instead, linguistic procedures construct the
interpretation (phrase) and compute its weight, or plausibility measure. The
weight of a phrase 1is used when comparing it with any others that span the
same sequence of words, in order to identify the most likely reading.

A rule-body procedure in our system has several components: a constituent test
part that checks the sons to ensure their wutility in the current rule; an
agreement TEST part to enforce syntactic and semantic correspondence among
constituents; a phrase CONSTRuctor, which formulates the interpretation
(phrase) defined by the current rule; and a TRANSFer part, which operates
during the second stage of translation (following complete sentence analysis).
The inter—~comstituent test, the phrase constructor, and the transfer
procedures may include calls to case frames and/or transformations, as well as
simpler routines to test and set syntactic and semantic features/values.

Case frames may apply semantic and syntactic agreement restrictions to the
predicate (verb structure) and its arguments (noun and prepositiomal phrases)
when constructing a clause. Each predicate”s 1lexical entry specifies 1its
possible 'central arguments'. For German, the case frame will identify the
case role-players according to voice {e.g., active) and mood (e.g.,
indicative) of the clause, and information about each potential argument such
as its semantic type, form {(noun phrase or prepositional phrase), and

grammatical case (e.g., accusative) or prepositional marker. The restrictions
can be general, or specific to the individual verb, preposition, and/or mnoun.
The frame will fail, causing application of the clause rule to be rejected, if
any of the restrictioms are not met. Otherwise, case roles are assigned to
the central arguments and the "peripheral arguments" are then identified.

The geometry of interpretatioms typically (though not necessarily) parallels

their original phrase structure. In other words, they are usually
topologically equivalent to what the parser would produce if it were
automatically constructing a tree. Some rules, however, incorporate

transformations which may arbitrarily alter the phrase being constructed. The
transformation module allows a linguist to specify a structural descriptor to
any depth, to perform syntactic and/or semantic tests as in rule body
procedures, and to specify a new structure into which the cld is transformed.
The transformation program attempts to match the "old" pattern descriptor with
the currently instantiated phrase. If the match is successful, and the
specified conditions are met, a new phrase 1is constructed using the '"new”
pattern descriptor, with the (old) matched phrase usually providing (most of)
the structural contents, and constructor operations may further annotate the
phrase with new features and/or values. The transformation module can have no
effect on the parsing algorithm, whatever the outcome of its application,
unless the rule is written so that failure to complete a transformation causes
the interpretation to be rejected; in such a case, only the fact of the
rejection has an effect on the parser: it abandoms that search path, just as
it would if any other condition in the rule-body procedure were unsatisfied.

The grammar for METAL consists of a number of unordered, augmented phrase-
structure syntax rules plus transformations. The following relatively simple
rule for building nouns will be used to illustrate the parts and format of
METAL grammar rules:

NN NST N-FLEX
0 1 2

-- (REQ WI) (REQ WF)
TEST (INT 1 CL 2 CL)

CONSTR (CPX 1 ALO CL)
(CPY 2 NU CA)
(CPY 1 WI)

TRANSF (XFR 1)
(ADF 1 OH)
(CPY 1 MC DR)

The first line consists of a left-hand element, the "father" node (here, NN),
and one or more right-hand elements -- the "sons"” (here, NST and N-FLEX). In
the example rule, the left-hand element is the noun (¥¥) node and the
right-hand elements are the noun stem (NST) and the nominal ending (N-FLEX)
nodes. The second line enumerates the elements (from 0 to n) for reference in
the rule-body procedure. Each constituent may have individual conditions,
called "column tests', to restrict exactly what elements fit the rule. If any
column test fails, the grammar rule will fail =-= i.e., the parser will sbandon
its attempt to apply this rule. 1In this example, the column test £for the

first element (NST) requires it to be word initial (WI) =-— i.e., preceded by a
blank space in the matrix sentence; the column test for the second element
(N-FLEX) requires it to be word final (WF) -- i.e., followed by a blank space.

In addition to the column tests, which apply only to single elements, each
rule has a TEST part that states agreement restrictions between the right-hand
elements. Failure of any agreement test will also result in failure of the
entire rule. In the example rule, the single agreement test states that there
must be an intersection (INT) of the inflectional «class (CL) values for the
two constituents; i.e., the values for the feature CL coded on the NST and the
N-FLEX are compared to insure that they have at least one value in common.

Only after all conditions have been satisfied is it possible for the system to
build the appropriate syntax tree. This is done in the CONSTR part of the
rule, which can also add or copy information in the form of features and
values from the sons to the father. In the example rule, the CONSTRuctor
(by not applying a transformation) would produce the tree represented below:

NN

—
|

NST N-FLEX

In the example rule-body procedure, the CONSTRuctor will <copy all features
with their associated values from the first element (i.e., the NST), except
for the allomorph (ALO) and inflectional <c¢lass (CL) features, wusing the
operation CPX. CONSTR in this rule will also copy (CPY) the grammatical
cumber (NU) and case (CA) features from the second constituent (the N-FLEX),
and the word initial (WI) feature from the first constituent {(the NST).

The final part of the grammar rule is the TRANSF section. (In a multi~lingual
implementation, there would be a separate TRANSF section for each Target
Language.) TRANSFer is invoked only after a sentence (S) has been built, at
which point the system will perform the operations specified, generally moving
down the tree to the terminal nodes where 1lexical substitution takes place.
In our example rule, the first operation is

(XFR 1)

which causes the system to recursively invoke transfer on the first node
(i.e., the NST). Because the NST happens to be a terminal (lexical) node, it
* will be translated using the appropriate transfer entry. The remaining two
operations (ADF and CPY) are performed as the system ascends the tree.

Transformations may be applied in the TEST, CONSTR, and/or TRANSF portiomns of
grammar rules. These range from simple movement and deletion operatioms to
highly complex transformations which add structure, perform tests, etc. The
following exemplfies a simple movement transformation:

(XFM (&:1 (&:2 &:3))
(&:1 (&:3 &:2)))

This transformation simply exchanges the two sons (#2 and #3) of the current
node (#1): each ampersand represents one and only one constituent, or node.

Determining whether a sequence of words constitutes a clause is handled by a
case frame, which is invoked in the TEST portion of <clause-level rules.
Simply stated, the case frame uses the argument information coded on the verb
stem” s lexical entry to identify 1its arguments, perform agreement tests, and
label those arguments. In METAL, an argument may be a mnoun phrase,
prepositional phrase, or adverbial phrase, depending on the verb.

Space does mnot allow a more detailed discussion of the grammar or lexicon (see
Bennett, 1982). However, the short German sentence '"Die Ausgaben werden auf
Magnetband geschrieben'” will be used to demonstrate the translation process in
the following three sections on analysis, transfer, and synthesis. For the
sake of brevity, only the successful rules for ome interpretation will be
outlined. (Using an all-paths parser, METAL actually tries all possible rules
and may find a number of possible interpretations for a given sentence.)

Analysis

The PARSE module constructs a unified syntactic and semantic analysis of the
"sentence" (actually, unit of tramslation), and its output serves as input to
TRANSFER. The ©parsing program interprets the sentence according to the
available 1linguistic analysis rules. These <come 1in several varieties:
dictionary rules, called lexical entries; phrase—structure syntax rules; case
frzmes, which determine the relationships between the main verb and the mnouns
in its clause; and transformations. More detailed discussion of the parser
(i.e., the LISP program that interprets the linguistic rules) appears in the
next major section.

The trace below indicates the appropriate grammar rules for parsing the German
noun phrase "die Ausgaben'. The specific morphemes are given in square
brackets; the numbers are solely for reference.

NN:1 -=> NST[AUSGABE] N-FLEX[N]
NO:2 -> NN:1
NP:3 -> DETIDIE] NO:2

The auxiliary “werden” 1is then lexically analyzed as such, and the
prepositional phrase "auf Magnetband" is built-up using the sequence of rules
indicated in the following trace:

NN:4 -> NSTIMAGNETBAND]
NO:5 -> NN:&
NP:6 -> NO:5
" PP:7 ~> PREP[AUF] NP:6

Then the past participle “geschrieben” is built-up to be a verb (VB); this VB,
in turn, becomes a non-finite predicate (NFPRED) and, with "auf Magnetband”, a
non-finite clause (NFCL), using the rules indicated in the following trace:

VB:8 -> GE~VB[GE] VST[SCHRIEB] V-FLEX[EN]
NFPRED:9 -> VB:8
NFCL:10 -> PP:7 NFPRED:9

The auxiliary “werden” then combines with the non—finite clause (NFCL) to form
a right-branching clause (RCL); a clause (CLS) is formed wusing the NP 'die
Ausgaben' and the RCL '"werden auf Magnetband geschrieben”. These rules are

indicated in the following trace:

RCL:11 -> WERDEN[WERDEN] NFCL:10
CLS:12 -> NP:3 RCL:11

The syntax tree built so far is represented below:

CLS
NP R%L
WERDEN | N%CL
lP | NFPRED
—
PREP NP
——
DET NO NO
ILN D‘TN VB
. | |
N?T N‘?LEX N?T GE;VB V?T V-%LEX

die Ausgabe n werden auf Magnetband ge schrieb en

The TEST part of the clause rule (i.e., the rule CLS => NP RCL) includes
application of the case frame. The case frame will use the information coded
on the lexical entry for the verb “schreiben” to test for a valid clause (the
presence and appropriateness of necessary arguments, etc.) and assign roles
to the clause constituents. Only if the case frame succeeds can a clause
" (CLS) be built. In our example the CLS rule will succeed, and the clause may
then be built-up to an $ using the rule indicated in the following trace:

$:13 => "§" CLs:12 "s§v

(Dollar signs are inserted during the preprocessing of the text to mark S
boundaries.) Once the S is built (actually, all Ss), analysis terminates.

Transfer
The purpose of the TRANSFER module is to restructure the most plausible

interpretation of the SL sentence into an interpretation of an equivalent
sentence in the TL. Fvery non-terminal node (phrase) in every sentence

interpretation has attached to it the "suspended"” rule-body procedure that
originally created it; this eliminates the need to search through a momolithic
transfer grammar for a matching pattern or routine -— and also eliminates the
danger of inadvertently applying an inappropriate pattern or routine that
happened to match (part of) the same structure. The suspended procedure
associated with the root phrase in the most plausible interpretation is
(re)invoked by TRANSFER. The syntactic transfer .part of a rule-body procedure
can recursively transfer all or some of the node’s sons (i.e., its
non-terminal constituents) in any order, apply a transformation, and/or
lexically transfer a terminal son. Lexical transfer replaces a SL canonical
form with a TL canonical form using the transfer lexicon; this process may be
sensitive to sentential context. The TL stem 1is created and appropriate
suffixes are added to create the proper TL word. Features in TL lexical
entries may be used to help select the proper semse (i.e., word).

A case frame, when applied during the transfer phase, will order the case
role~fillers as required by the TL verb, based on voice, mood, etc. The
syntactic form of the central arguments 1is chosen, and if necessary
prepositions are introduced as specified in the verb entry. 1In our example,
the role-fillers for “write” are assigned to the Subject and Object positions.

Thus, while analysis generally proceeds bottom—up, transfer proceeds top—down.
At each node 1in the tree, all mnodes below are accessable for reading (to
determine context) and writing (to pass down information necessary for proper
transfer). The top-level node (phrase) in the newly constructed TL tree is
returned by TRANSFER as its functional value.

Synthesis

The GENERATE function synthesizes the translation by simply taking the TL tree
produced by TRANSFER and appending together all of the lexical allomorphs
(words) located in its terminal nodes. The value of the function GENERATE 1is
a sentence; it is returned to the function TRANSLATE, which returns that
sentence as its functional value: "The outputs are written on magnetic tape."”

The Parser

The parser =— the LISP program that interprets a sentence according to the
linguistic rules -~ is the heart of METAL. If the parser is inefficient, the
analysis effort will consume far too much space and time to be of practical
benefit. The current METAL parser is a variation on the Cocke-Kasami-Younger
- bottom—up algorithm [Aho & Ullman, 1972], augmented with "top-down filtering"
(similar to an "oracle" [Pratt, 1975]) for restricting the potential rules to
at most those that a top~down parser would apply. This parser was shown to be
highly efficient during an extensive series of experiments comparing a dozen
parsers on the basis of their practical performance characteristics [Slocum,
1981]; the one parser determined to be slightly more efficient during those
experiments (a left-cornmer parser augmented by top-down filtering, which
closely resembles an Earley parser) will soon replace the current CKY parser.

The LRC parsers work with a special data structure called a "chart” that

records the complete state of an analysis at every point in that .analysis.
The parser adds the first word to the chart, draws all grammatical inferences

from that addition, then repeats this process, adding one word at a time. The

grammatical inferences are of two varieties: (1) interpretaticns of the syntax
rules found to apply to the current portion of the input, referred to as
instantiated phrases; and (2) predictions about what types of phrases (what
grammatical categories) may appear next in the input. After the parser has
processed all the words in the input, the chart is examined for phrases which
span that input, and whose syntactic categories appear in the user-definable
1ist of acceptable ROOTCATEGORIES: usually (S). These phrases constitute the
interpretations of the input sentence.

In order for the parser to add a word to the chart, the word must be lexically
analyzed. There are three ways to do this: (1) the word may appear in the
dictionary as an entry; (2) the word may be decomposed into a sequence of
morphemes, each of which appears in the dictionary; or (3) the word may have 2
lexical entry generated on—the-fly. In METAL, any combination of the three is
possible. Words, or sequences of letters that appear to be words, are looked
up in the dictionary; independently, an attempt is made to decompose each word
into an acceptable sequence of morphemes, each of which appears in the
dictionary. (In METAL, the dictionary is composed of lexical entries in the
usual sense, plus any literals appearing in phrase—structure grammar rules.)
Lexical entries for numbers are automatically generated. Definitions for
unknown words and non—-words are also generated. Parenthetical expressions are
"lexically analyzed" via a recursive call to the parser: each is parsed as if
it were a complete sentence, then 1its interpretations are autcmatically
transformed into "lexical entries" for incorporation into the analysis of the
encompassing sentence.

Morphological analysis 1is a vrelatively simple process, relying on a
letter—tree to indicate the legal transitioms from character to character in
known morphemes (defined via lexical entries or as literals in syntax rules).
For z highly synthetic language like German, this tree is searched recursively
to discover successive morphemes in a word. As a bonus, METAL includes a
program capable of correcting the most common spelling and typographic errors
(deletion, substitution, addition, wrong case, and transposition); thus
typical transcription errors pose no problem. The results of morphological
analysis can be ambiguous in many ways: morph sense, morph category, and even
morph boundaries may be indeterminate. The parser (using the phrase structure
rules) sorts out the ambiguities according to word and sentential context, as
a natural part of its operation == i.e., lexical disambiguation is not 2
process distinct from other forms of disambiguation.

As PARSE finds phrase-structure rules that are applicable to a current
sequence of morphs, words, and/or phrases in the ongoing analysis, it does mnot
automatically build a syntactic structure expressing this fact; instead, it
invokes a special routine which is responmsible for determining (through the
invocation of the rule-body procedure) the applicability of the rule, and for
constructing and scering the interpretation. This special routine constructs
a preliminary parse tree, invokes the rule-body procedure to determine if the
rule is applicable (and possibly to annotate the tree and/or transform it),
and if acceptable scores the resulting phrase based on the scores of its
constituents and any preference assigned by the <rule~body procedure; it
rejects the interpretation if its score falls below cutoff, else attaches the
"suspended" rule~body procedure to the phrase (important in the transfer
phase, as explained earlier). The scores of the root nodes in the sentence
analyses will be used later to determine the "most plausible analysis" for
transfer and synthesis.

If the METAL parser fails to achieve a unified interpretation of a sentence
(or of a parenthetical expression, which is recursively parsed as if it were a
sentence), it attempts to "fake' an analysis of the sentence. A phrasal
analysis is constructed from the fewest, largest, highest—scoring phrases that
together span the input sentence. Provided the number of such phrases falls
below a threshold, an S phrase is built just as if there were a grammar rule
with the discovered phrases listed in its right-hand-side. But if the number
of such phrzses exceeds a threshold, a terminological analysis —-— phrases
consisting only of technical terms in the SL sentence -— is produced instead.
A default rule-body procedure is attached, to be invoked during the transfer
phase; this procedure will simply invoke TRANSFER omn the constituent phrases
of the dummy phrase just built. In order for phrasal/terminoleogical analysis
to be possible when the parser 1is unable to continue an analysis attempt
(i.e., when it blocks in the middle of the sentence), the top-down filtering
process must be turned off. (Since the filter restricts the rules considered
to those that a top-down parser would consider, the same fate would otherwise
befall METAL s parser as befalls any top-down parser when a block occurs: it
would have to halt.) With the filter turned off, METAL s parser reverts to
being a pure bottom-up parser —— i.e., it applies any rule which matches the
current phrase sequence in the chart, regardless of whether it could ever
contribute to a sentential analysis in the current context.

Discussion

From the Artificial 1Intelligence standpoint, there are several perhaps
controversial facets of the METAL translator. A few of these can be discussed
in the available space: the existence of a transfer phase; phrase-structure
syntax rules; feature-based semantics; and a bottom—up, all-paths parser.
Before proceeding to the arguments, we must state the goal of our project: to
demonstrate the feasibility of an operational NMT system involving joint
application of linguistic theory and state-of-the-art capabilities in natural
language processing. The key words here are “operational” and “application”.
Qur intent is to employ such methods as seem most likely to prove effective in
immediate large-scale application. The research activities of the LRC MT
project are to a large degree directed toward refining and extending
techniques which have been significantly, yet perhaps inadequately, explored;
indeed, part of our project”s intent is to approach an adequate exploration of
sometimes overlooked methods. We are not involved in extending the frontiers
of science into what might be called "deep understanding since there is no
possibility of immediate application of such techniques. Nevertheless we do
feel that we are contributing to the science of Computational Linguistics: we
are experimentalists attempting to validate linguistic theories (our own as
well as others”) in a realistic environment.

The Existence of a Transfer Phase

It is argued that machime tramslation should be a two-stage affair -- that an
MT system should analyze SL into a "gniversal' deep structure and then
generate TL sentences. This may indeed be the ideal solution in the best of
all possible worlds, but is not a viable approach at the current time. No
adequate description of universal deep structure has been proposed, and it is
clear that such a theory will not soon be forthcoming. More cogently,
reasonable arguments have been advanced that such an approach may not be
necessary or even desirable, at least for certain families of languages

[Boitet, 1980al. If we can demonstrate the lack of necessity for such depth,
even if for our limited purposes, then a significant contribution to
understanding natural language will have been made.

The Use of Phrase=-structure Rules

The use of Tphrase~structure rules -~ or syntax rules of any variety -— 1is
castigated by some who favor other approaches, particularly when it is felt
that their inadequacy has been demonstrated. However, several reasonably
succassful large-~scale natural language processing systems have wused, and
continue to use, phrase-structure rules [Hendrix et al., 1978; Robinson, 1980;
Sager, 19811, and recent linguistic research [e.g., Bresnan, 1977; Gazdar,
19811 advances theoretical arguments in favor of phrase-structure grammars.
In the laudable interest of achieving the "deeper understanding' claimed to be
necessary for successful MI, certain AI proposals have eschewed breadth --
without demonstrating that breadth is achievable within rational space/time
constraints via such methods [e.g., Carbomnel et al., 1978]. Again, if real
progress can be made in MT with phrase-structure rules, it is worth knowing.

The Use of Feature Semantics

The use of feature semantics may be questioned. But large-scale application
of such a theory is not difficult, and the prospect of constructing literally
thousands of "frames,”" 'scripts,” or 1large, complex semantic models by any
other name, is very unattractive to say the least. Since there exists mno
mature semantic theory, in any guise, suitable for inclusion within an applied
natural language processing system, one nust seek a formalism allowing easy
large-scale application even though the theory be incomplete. This is true of
a feature semantics theory, but the same cannot be said of a theory requiring
complex models. More to the point, while 1t may be true that complex models
are necessary for understanding stories, the structure of techmical texts such
as we are dealing with is in no way comparable to stories, and complex models
do not seem to be required for cost-effective translation. (Admittedly, they
may be required for "perfect" tramslation.) Technical texts in particular are
not written in narrative style, nor do they appear to exhibit the regular,
predictable patterns on which complex models are predicated. If it happens
that such models are indeed required for cost—effective techmical MI, ome <can
rest assured that success is yet decades in the future: no one has advanced an
adequate proposal for automatically identifying the models applicable to a
given text segment, for one thing, and for another, the production of such
models is a very long-term proposition. In contrast, we are encouraged by the
relatively successful applications of feature semantics 1in reasonably large
natural language processing systems.

The Use of a Bottom—up, All-paths Parser

Finally, there is the matter of using a bottom-up, all-paths parser. It 1is
true that bottom—up parsers tend to apply many more rules than top-down
parsers. But they also tend to be much faster at applicable rule discovery.
Recent experiments [Slocum, 1981] have shown that bottom—up parsers can be
more efficient than top-down parsers in actuzl practice. In addition, there
is no need to proscribe or discourage the writing of left-recursive syntax
rules when a bottom~up parser is employed. However, a critical factor for
applications like MT is that, if the grammar does not account for a senfence,
a top-down parser cannot ordinarily continue, and it will fail to produce any

analysis for at least part of the sentence (usually all of it). A Dbottom—up
parser 1s not so restricted. Of course, given the same grammar and the same
"ungrammatical” sentence, a2 bottom—up parser cannot achieve a unified analysis
any more than a top~down parser can, but it is possible to continue the
analysis attempt through the entire sentence, which a top~down parser does not
normally admit. (It could be done, in theory, but not in any straightforward
manner naturally suited to the standard control structure for a top-down
parser. To the writer’s knowledge this has never been attempted, probably
because the performance penalty would be severe in any implementation.) Thus,
with a bottom—up parser and a suitable chart searching program, an analysis of
the sentence in terms of its phrases can easily be found and employed for
translation -— a decided advantage over failing to produce any translation.

Qur phrasal analysis mechanism, which essentially requires a bottom-up parser,
has several advantages besides allowing some translation to be synthesized
when no analysis of the input sentence is possible with the available rules.
First, it allows successful analysis of a sentence even if it contains a
parenthetical expression which itself cannot be analyzed (except via phrases);
thus a failure to fully analyze a parenthetical expression need not result in
a failure to analyze the sentence containing it. Second, phrasal analysis has
proven beneficial for debugging purposes: the resulting phrases provide a clue
to the rule or rules which failed to operate correctly, or which were missing
entirely. Finally, it allows us to explore the possibility of varying levels
of translation quality with corresponding levels of expense. For example, by
discarding or rendering inoperative certain rules, METAL might operate much
more rapidly because of the decrease in ambiguity, with attendant loss in
translation quality. (This has not yet been tried.)

We base our use of an all-paths techmnique (which is not necessarily
characteristic of a bottom—up parser) on two observaticns: mo one knows how to
write a best-path parser; and a first—path parser has a characteristic problem
that an all-paths parser can overcome. The first point is self-evident, so we
will proceed to the second. A first—path parser depends on a static ordering
of the syntax rules; if there is any ambiguity in the grammar at all, it will

be the case that some rules might never be "seen' by the parser ~— even though
they may be required for (the correct reading of) a given sentence. An
all-paths parser will miss no readings because it produces all of them. This

permits a comparison of the alternatives, and an intelligent choice among them
to be made. The METAL parsers are all-path parsers, and include a 'scoring”
feature whereby different readings of a morpheme, word, phrase, and finally a
sentence, may be assigned different degrees of plausibility, allowing
translation of the most likely =-— rather than the only -- interpretation. The
only remaining argument against the all=-paths technique dis that it 1is
presumably too expensive computationally to be cost—effective. We regard this
position as a matter for empirical validation; our data to date indicate that,
contrary to popular opinion, an all-paths parser is not necessarily exXpensive.

Recent Experimental Results

In the last two years, METAL has been applied to the translation into English
of over 43,000 words of CGerman telecommunications text. To date no definitive
comparisons of METAL translations with human translations have been attempted;
this situation will soon be remedied. However, some stimulating quantitative
aund qualitative statistics have been gathered.

Quantitative Results

Since 1980, METAL has been implemented in INTERLISP and run on a DEC 2060.
Due to the 18bit address space limitation imposed by this combination of
sof tware and hardware, METAL has been split into two processes (one analysis,
one transfer and synthesis) which comnmunicate via a shared text file. In
addition, special programs have been written to reduce the amount of address
space deveted to data objects; these programs degrade runtime performance.
Nevertheless, recent measurements have shown that METAL s translation speed in
this enviromment is around two CPU seconds per word of SL (German) text. This

figure encompasses all -forms of overhead — swapping, paging, text I/0
(including inter-prccess communication), and storage management —-- in addition
to actual tramslation time. In particular, storage management (called

"garbage collection" in LISP) accounts for approximately 45% of this CPU time,
due to the fact that usable working space is scarce despite all our efforts to
increase it via software techniques. In an enviromment with a larger address
space this 45% figure should decrease drastically, resulting in a significant
performance increase ——- all other things being equal.

To eliminate the address—space barrier and its associated R&D problems, one of
the project sponsors has recently provided the LRC with a Lisp Machine (a
Symbolics LM-2) having a 24-bit address space. The L1LM-2 1is much less
expensive than a DEC 2060. But even though it is significantly slower in
terms of raw CPU power, we expect it to closely approximate the 20607s
real-time performance due to the eliminaticn of the data compaction/expansion
overhead, the virtual elimination of storage management (garbage collection)
overhead, and the lack of resource competition with other users. METAL s
throughput, then, should not suffer significantly. It may even improve.

The single quantitative assessment of greatest interest in the MT community 1is
almost certainly cost-effectiveness. Until this figure is established by
unbiased third parties, taking into account the full costs of tramslation and
revision using METAL vs. conventional (human) techniques, this question cannot
be adequately addressed. (This type of assessment should becowe availzble to
us later this vyear.) Hovever, we have worked out some minimum performance
parameters that are of interest. It has been calculated that METAL should
prove cost—effective if it can be implemented on a Lisp Machine supporting 4-6
post—editors who can sustain an average total output of about 60 pages/day.
At 250 words/page, and 8 hours/day, this works out to 1.92 seconds/word,
minimum realtime machine performance. If the upcoming second-generation Lisp
Machines are, as generally claimed, three times as fast as the current
generation (represented by our LM-2), then our immediate target 1is 5.76
seconds /word, minimum realtime performance -=— about what we now experience oOn
a very lightly-loaded DEC 2060. If this goal can be reached while mairtaining
a high enough standard of quality that an individual revisor can handle 10-15
pages/day, METAL will have achieved cost-effectiveness.

Qualitative Results

Measuring translation quality is a vexing problem -- a problem not exclusive
to machine translation or techmical texts, to be sure. In evaluating claims
of "high-quality™" MT, one must carefully consider how “quality” is defined;
"sercentage of words [or sentences] correct [or acceptablel"”, for example,
requires definition of the operative word, “correct’. A closely related
question is that of who determines correctness. Acceptability is ultimately

defined by the user, according to his particular reeds: what is acceptable to
one user in one situation may be quite unacceptable in another situaticn, or
to another wuser 1in the same situation. For example, some professional
post—editors have candidly informed wus that they actually look forward to
editing MT output because they "can have more control over the result." For
sociological reasons, there seems to be only so much that one dare change imn
human translations; but as everyone knows (and our informants pointed out),
"the machine doesn”t care." The clear implication here is that 'correctness'

has traditionally suffered where human translation 1is concerned; or,
alternately, that "acceptability' depends in part on the relationship between
the translator and the revisor. Either way, judgements of "correctness" or

"acceptability" by translators and editors is 1likely to be more harsh when
directed toward MT than when directed toward human translation (HT). It 1is
not yet clear what the full implications of this situation are, but the
general import should be of some concern to the MI community.

For different (and obvious) reasons, qualitative assessments by MT system
vendors are subject to bias =- generally unintentional -- and must be treated
with caution. But omne must also consider other circumstances under which the
measurement experiment is conducted: whether (and for how 1long, and in what
form) the text being translated, and/or its vocabulary, was made available to
the vendor before the experiment; whether the MI system was previously
exercised on that text, or similar texts; etc. At the LRC, we conduct two
kinds of measurement experiments: "blind"”, and "follow-up”. When a new text
is acquired from the project sponsor, its vocabulary is extracted by various
lexical analysis procedures and given to the lexicographers. This may include
a partial or full concordance of the text, in which each word is displayed in
a context that may or may not include the full matrix sentence, depending on
its length. The lexicographers then write ("code") entries for any novel
words discovered in the text. The linguistic staff never sees the text prior
to a blind experiment. Once the results of the blind translation are in, the
project staff are free to update the grammar rules and lexical entries
according to what is learned from the test, and may try out their revisions on
sample sentences from the text. (The text 1is never retranslated in its
entirety during this phase.) A few months later the same text is translated
again, so that some idea of the amount of improvement can be obtained.

In addition to collecting some machine performance statistics, we count the
number of "correct' sentence translations and divide by the total number of
sentence units in the text, in order to arrive at a "correctness' figure.
(For our purposes, ''correct" is defined as 'noted to be unchanged in any way
whatever, with respect to the original machine translation, after revisionm 1is
complete.” 8o far, revision has been performed by members of our project
staff.) More importantly, we measure revision performance: the amount of time
required to edit the text.

In the course of experimenting with four different texts comprising some 43000
words, our "correctness' figures have varied from 55% to 85% (of full-sentence
units) depending on the individual text and whether the experiment was of the
"blind" or "follow-up" variety. In our only sericus measurement of revision
performance to date, taken after a "follow-up” translation of 50 pages of
text, revision required 15 hours using a primitive on—line editing program --
3.33 pages/hour, or 26.7 pages per day. Since the revision was perfermed by a
project staff member, it cannot serve as the basis of an unbiased projection;
nevertheless, we take it to indicate that METAL s tramnslation quality at least
approximates the minimum required for cost-effectiveness.

Conclusions

MT Research at the LRC involves the selection and testing of Natural Language
Processing techniques in a real-world enviromment. With an efficient
computational component such as we now have it becomes possible to empirically
validate new linguistic theories as they are proposed: cur research can answer
questions about their extensibility and limits of application.

Some "old"™ Natural Language Processing techniques are producing surprisingly
gocd results, and new ones are being developed. Others have not proven to be
effective, and have been abandoned. METAL is capable of producing useful
English translations for 2 wide variety of German sentences; however, further
development 1s currently underway to resolve a number of remaining problems.
Two areas in which the LRC is making improvements in the METAL linguistic
component are the treatment and placement cf adverbials, and a more extensive
use of semantics. By early fall, 1982, a semantic matrix and a more
intelligent way of handling adverbials will have been implemented.

0f special scientific interest is this: the degree to which "shallow"
techniques can profitably be applied to certain areas of language processing
argues against the necessity of "deeper" (and much more expensive) AL methods
for those application areas. Progress in Machine Translation at the LRC
[Slocum, 1980] and elsewhere [Boitet, 1980bl], generally wusing the more
traditional NLP techniques, argues for a recounsideration of positions denying
their adequacy and utility; indeed, it establishes the successful methods as
exemplifying the state of the art in Computational Linguistics.

References

Aho, A. V., and J. Ullman. The Theory of Parsing, Translation and Compiling,
Vol. 1. Prentice~Hall, New Jersey, 1972.

Bennett, W. S., "The Linguistic Component of METAL," Working Paper LRC~82-Z,
Linguistics Research Center, University of Texas, July 1982.

Boitet, Ch., P. Chatelin, and P. Daun Fraga, "Present and Future Paradigms in
the Automatized Tramslation of Languages," Proceedings of the 8th International
Conference on Computational Linguistics, Tokyo, Sept. 30 - Oct. 4, 1980[al.

Boitet, Ch., and N. Nedobejkine, "Russian~French at GETA: Qutline of the

" Method and Detailed Example,"” Proceedings of the 8th International Conference
on Computational Linguistics, Tokyo, Sept. 30 - Oct. 4, 1980([b].

Bresnan, J. W.. YA Realistic Transformations Grammar,” in Halle, Bresnan, and
filler (eds.), Linguistic Theory and Psychological Reality. MIT Press,
Cambridge, Mass., 1977.

Carbonnel, J., R. E. Cullingford, and A. V. Gershman, "Knowledge-Eased Machine
Translation,' Research Report #146, Dept. of Computer Science, Yale
University, Dec. 1978.

?

Gazdar, G., "Unbounded Dependencies and Coordinate Structure,' in Linguistic

Inquiry, 12 (2), Spring 1981, pp. 155-18%4.

Hayes, P. J., and G. V. Mouradian, "Flexible Parsing," American Jourmal of
Computational Linguistics, Vol. 7, No. 4, (Oct-Dec) 198l, pp. 232-242.

Hendrix, G. G., E. D. Sacerdoti, D. Sagalowicz, and J. Slocum, "Developing a
Natural Language Interface to Complex Data,'" ACM Transactions cn Database
Systems, Vol. 3, No. 2, (June) 1978, pp. 105-147.

Pratt, V. R., "LINGOL - A Progress Report,' Advance Papers of the Fourth
Internationsal Joint Conference on Artificial Intelligence, Tbilisi, Georgia,
USSR, 3-8 Sept. 1975, pp. 422-28.

Robinson, J. J., "DIAGRAM: a Grammar for Dialogues," Tech. Note 205, SRI
International, Menlo Park, Calif., Feb. 198&0. .

Sager, N. Natural Language Information Processing. Addison-Wesley, Reading,
Massachusetts, 1981.

Slocum, J., "An Experiment in Machine Translation,' Proceedings of the 18th
Annual Meeting of the Association for Computational Linguistics, Philadelphia,
19-22 June 1980, pp. 163-167.

Slocum, J., "A Practical Comparison of Parsing Strategies for Machine
Translation and Other MNatural Language Processing Purposes,' University
Microfilms Intermational, Ann Arbor, Mich., 198l.

Further Reading

Bruderer, H. E. Handbuch der maschinellen und maschinenunterstuetzten
Sprachuebersetzung: automatische Uebersetzung natuerlicher Sprachen und
mehrsprachige Terminologiedatenbanken. V1g. Dokumentation, Munich, 1978.

Hutchins, W. J., "Progress in Documentation: Machine Tranmslation and
{achine—aided Translation," Journal of Documentation, 34 (2), June 1978, pp.
119-159.

Lehmann, W. P., W. S. Bennett, J. Slocum, et al., "The METAL System," Final
Technical Report RADC-TR-80-374, Rome Air Development Center, Griffiss AFB,
New York, January 198l. Available as Report A0-97896, National Techmnical
Information Service, U.S. Department of Commerce, Springfield, Va.

Vauquois, B. La Traduction Automatique a Grenoble. Dunod, Paris, 1975.

Languages and Machines: Computers in Translation and Linguistics. A report by
the Automatic Language Processing Advisory Committee [ALPAC], Division of
Behavioral Sciences, National Academy of Sciences, National Research Council,
Publication 1416, Washington, D.C., 1966.

