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Introduction

The Linguistics Research Center of the University of Texas has been working on
Machine Translation (MT) since its founding in 1961. Unlike some centers of
MT research, its early focus was largely theoretical. Most U.S. groups which
developed first- and second-generation systems for MT were eliminated through
the impact of the National Academy of Sciences report, "Languages and
Machines,"” released in 1966. Limited funding continued, with some lapses, at
the LRC. In 1978, Rome Air Development Center provided the means to apply the
Center”s theoretical findings; this was augmented in 1979 by support from
Siemens AG, Munich. In 1980, Siemens became the sole project sponsor.

We will describe here the prototype MT system developed by the LRC. With the
exception of the text-processing programs, which are written in SNOBOL, the
LRC MT system is written in LISP and runs on a Symbolics Lisp Machine. The
system includes a translation program, METAL, as part of a suite of programs
designed to automate the complete process of translating technical texts.
Sections of this paper will deal with our domain of application, a general
description of the MT system, an overview of some of our key linguistic and
computational techniques, a more detailed description of METAL, notes on the
METAL parser, the results of some extensive experiments in tramslating German
telecommunication and data processing texts into English, and conclusions
regarding our contribution to the science of Computational Linguistics.

The Domain of Application

Natural language texts range in "complexity" from edited abstracts through
technical documentation and scientific reports to newspaper articles and
literary materials. As far as MT is concerned, the former portion of this
spectrum is less complex than the latter because it is characterized by
relatively less syntactic and semantic variety. Paradoxically, the order of
complexity for human translators is essentially reversed due to a dramatic
increase in the size of the vocabulary: no qualified human translator has much
difficulty with straightforward syntax or normal idiomatic usage, but the
prevalence and volatility of technical terms and jargon poses a comsiderable
problem. Time pressures impose another set of problems, for which there
appear to be no solutions in the realm of unaided human translation, and few
if any good omes in the realm of machine-aided human translation as commonly
interpreted (e.g., a text editor coupled with automated dictionary look-up).
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In terms of the demand for MI, then, the market is in technical translation.
There is no significant demand for machine tramslation of folklore, literary
materials, and the like, but there is a substantial and growing demand for
machine translation of techmical texts.

Advantages of Translating Technical Texts

There are several advantages in translating technical texts as opposed to more
general texts. One of these concerns vocabulary: technical texts tend to
concentrate on one subject area at a time, wherein the terminology (lexical
semantics) is relatively consistent, and where the vocabulary is relatively
unambiguous, even though it may be quite large. (This is not to say that
lexical problems disappear!) Another advantage is that there is typically
little problematic anaphora, and little or no "discourse structure’ as usually
defined. Third, in accordance with current practice for high-quality human
translation, revision is to be expected. That is, there is no a priori reason
why machine translations must be "perfect" when human translations are not
expected to be so: it is sufficient that they be acceptable to the humans who
revise them, and that they prove cost-effective overall (including revision).

Problems in Translating Technical Texts

Notwithstanding the advantages of translating technical texts, there are
definite problems to be confronted. First of all, the volume of such material
is staggering: potentially tems or hundreds of millions of pages per Yyear.
Even ignoring all cost-effectiveness considerations, the existence of this
much candidate material demands a serious concern for efficiency in the
implementation. Second, the emphasis in Machine Tramslation is changing from
information acquisition to information dissemination. The demand is not so
much for loosely approximate translations from which someone knowledgeable
about the subject can infer the import of the text (perhaps with a view toward
determining whether a human tramslation is desired); rather, the real demand
is for high-quality translations of, e.g., operating and/or maintenance
manuals =- for instructing someone not necessarily knowledgeable about the
vendor’s equipment in precisely what must (and must not) be done, in any given
situation. Fidelity, therefore, is essential.

In addition to the problems of size and fidelity, there are problems regarding
the text itself: the format and writing style. For example, it is not unusual
to be confronted with a text which has been "typeset”" by a computer, but for
which the typesetting commands are no longer available. This can be true even
when the text was originally produced, or later transcribed, in machine-
readable form. The format may include charts, diagrams, multi-column tables,
section headings, paragraphs, etc. Misspellings, typographical errors, and
grammatical errors can and do appear. Technical texts are notable for their
frequency of "ynusual” syntax such as phrase- and sentence—fragments, a high
incidence of acronyms and formulas, plus a plethora of parenthetical
expressions. The "discourse structure,” if it can be argued to exist, may be
decidedly unusual —- as exemplified by a flowchart. Unknown words will appear
in the text. Sentences can be long and complicated, notwithstanding the
earlier statement about reduced complexity. Technically-oriented individuals
are renowned for abusing natural language. The sucessful MT system will

address these problems as well as those more commonly anticipated.




General System Description

In this section we discuss the facilities of the LRC MT system which
substantially asutomate the overall translation process, including the
production and maintenance of the lexical databases along with several
text—processing programs and METAL s place among them.

Lexical Database Management

In any large software system, the problem of producing and maintaining the
data sets on which the programs operate becomes important, if mnot critical.
First of all, when there is a large volume of such material the data entry
process itself can consume a significant amount of time; second, the task of
insuring data integrity becomes an even larger time sink. We will briefly
expand on these two problems, and indicate how the LRC MT system provides
software tools to help cope with them.

There are two problems associated with data entry: creating the data in the
first place, and getting it entered in machine-readable form. In most
applications of database management systems, the creation of data is
relatively straightforward: such data items as personal name, identification
number(s), age, job title, salary, etc., serve as examples to illustrate the
point that the data items wusually pre-exist, thus data entry becomes
relatively more important. In an application such as MT represents, however,
creating the original data is the major bottleneck: one must decide, for each
of thousands of words, many details of behavior in a complicated linguistic
enviromment. Certainly these details may be said to "pre-exist,” but a real
problem arises when humans attempt to identify them. In general, the more
sophisticated the MT system, the more of these details there are. Data entry,
relatively speaking, becomes a small or insignificant issue == although it
remains a significant issue in absolute terms.

As part of the LRC MT system, we have developed a sophisticated "lexical
default” program that accepts minimal information (the root form of the word,
and its category) and automatically encodes almost all of the features and
values that, for METAL, specify the details of linguistic behavior. This is
accomplished by a combination of morphological analysis of the root form of
the input word, and search of the existing lexical database for "similar"
entries. Defaulted lexical entries are created in machine-readable form to
begin with, and are available for human review/revision using standard on-line
editing facilities. This greatly reduces both coding time and coding errors.

A potentially harder problem, however, 1is the maintenance of data integrity.
Humans will make mental errors in creating lexical entries, and will aggravate
these by making typographical errors during data entry. Even assuming a
lexical default program (which, of course, does not make such mistakes), the
process of human revision of the defaulted entries may introduce errors.
Therefore, the LRC MT system includes a validation program that, working from
a formal specification of what is 1legal in lexical entries, identifies any
errors of format and/or syntax within each submitted entry. The formal
specification is organized by language, by lexical category within language,
and by feature within category. The incidence of semantic errors == which our
validation program could not detect —- has not been found to be significantly
high. As & result, the use of this program has virtually eliminated incorrect
coding of monolingual lexical entries, which used to be & major source of
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error in METAL translations. (Related programs employ similar technigques to
identify errors in the phrase-structure grammar rules and transformations that
constitute the remainder of our linguistic rule base.)

There is also the problem of maintaining an existing lexical database. In any
MT system, there will be & need for changing existing entries in the light of
experience; in a system like ours, which serves as 2 vehicle for research im
MT, this problem is magnified by the occcasional need for large—scale changes

in lexical entries to accommodate new system features, or even theories of
translation. As part of the LRC MT system, then, we have incorporated a
general relational Data Base Management System (DBMS) along with a group of
interface routines that transform, upon entry, both monolingual and transfer
lexical entries from a format optimized for human use into a format more
suitable for storage by the DBMS, and which reverse the transformation when
retrieving the entries. Not only do the interface routines facilitate the
entry, retrieval, and revision of lexical entries, but they also are
integrated with the validation program so that a lexicographer may not, while
using the DBMS, introduce errors in the format and/or syntax of a lexical
entry. This same on-line DBMS is accessed directly by METAL during
translation; therefore, changes made in the database are instantly reflected
in translations, resulting in rapid turnaround that both encourages and
enhances research and development.

Finally, there is the problem of tying all these modules together with a
powerful, high-level wuser interface which optimizes the task of entry
acquisition and maintenance. The LRC has developed an “"Interactive Coder®™
that uses a menu-selection scheme as the interface mechanism for acquiring and
maintaining lexical entries. Starting with words typed in, or drawn from a
concordance of unknown words resulting from the dictionary analysis of a new
text, or appearing in an abbreviated transfer entry input file created by a
text editor or perhaps a formatted dump from an existing on-line database, the
Interactive Coder will use the database interface, the default program, the
formal specifications governing lexical entries, and the validator, to
facilitate the process of lexical entry acquisition and maintenance. The
METAL system runs on a Lisp Machine with a high-resolution bit-mapped display
and a "mouse" pointing device, and the Interactive Coder takes great advantage
of this sophisticated, powerful menu interface medium to optimize the overall
dictionary maintenance task. Figurel outlines the process of semi-automatic
terminology acquisition and subsequent "linguistic coding" supported by the
lexical database management system.

Text-processing Programs

As a glance at any technical manual will show, it is not always the case that
all material in a document must or can be translated. Large portioms of a
text (up to 50% of the characters, in our experience) may not be tramslatable
material; the bulk of this may fall outside sentence boundaries, but some will
fall within them. Thus it is necessary for a text to be marked, or snnotated,
to distinguish that which is to be translated (e.g., tables of contents,
instructions, prose paragraphs) from that which is not (e.g., text formatting
information, flowchart box boundaries, acronyms, and various attention-—
focusing devices). In the LRC MI system, a program determines which members
of the machine’s character set are unused in the text at hand, and & few of
these are used to mark the text.
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Coding Lexical Entries
using the Interactive Coder



—————-—-‘

6

Within multi-column tables, different sentences would intermingle if the MT
system were to read the text in the usual computer fashion (i.e., horizontally
across the 1ine). Our text—processing compomnent currently detects most such
situations, and makes annotations that, after further automatic processing,
will allow the translation component to "cee” the sentences as humans would:
reading vertically down the page. Another annotation program attempts to
jdentify translatable units (isolated words, phrases, and sentences) and
brackets them. Some untranslatable material (e.g., flowchart box labels) may
appear to fall within sentence boundaries, but plays no grammatical role in &
sentence: therefore we introduced a "toggle” convention for excluding such
material so that it is invisible to the analyzer. On the other hand, some
untranslatable material within a sentence (e.g., equations and formulas) may
indeed play a grammatical role: the annotation program marks such strings to
be analyzed, but carried through to the target language without translation.
Human verification and emendation of the annotation component’s output is
necessary, as might be expected, but this task does not require significant
training, and in particular it requires no knowledge of the Target Language(s)
or the MT system; it does require knowledge of what is to be translated.

Once the text has been annotated, another program extracts the sentences to be
translated and prepares them for input to the MT system. Essentially, this
entails copying any bracketed units into a new file, excluding toggled-out
material. Anything outside of brackets is ignored completely. Complicating
this process is the fact that, in order to minimize human intervention in
reformatting the text after translation, the extraction program must record
the location of the original sentences copied into the MI input file, so that
the results of translation may be formatted just like the originmal document.

The next (optional) step is dictionary pre-—analysis of the text. The MT input
file is scanned, and the unique word occurrences are identified; each is then
submitted to lexical analysis. This step offers the potential advantage of
detecting dictionary shortages (i.e., unknown words) before they have a chance
to affect the translation process; also, METAL s proposed spelling corrections
can be noted for human review, and suspected acronyms can be verified. A
concordance of the unknown and misspelled words is constructed; this may be
accessed, for example, by the menu-driven Interactive Coder, if the wuser
decides to create dictionary entries for unknown words before proceeding with
the translation. After the user has checked (and, if desired, corrected) amny
textual errors noted during dictiomary pre—analysis, translation may proceed.

Translation, briefly stated, imvolves reading in the Source Language (SL) file
of sentences and printing out the corresponding Target Language (TL) file.
This step —— performed by METAL itself -~ is detailed below. The process of
text reformatting is an important component of the overall process of
translation. If an MT system provides only a sequence of translated
sentences, then a human revisor must manually reformat the entire document,
' producing charts, figures, etc. This can be a source of substantial and
unnecessary frustration, and can constitute a significant cost factor in
translation. The alternative of providing unformatted translations to the
end-user is distinctly unattractive. In the LRC MT system, & special
reconstitution program automatically formats translated text as much like the
original text as is possible: marginms, indentation, and blank lines are all

observed, and special forms (e.g., multi-column tables) are all recomstructed.
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The last step involves human revision of the machine”s translations. (This
step may actually take place before reconstitution, using the MT input and MT
output files separately, or an interlinear version of these two that is also
available; but some small text format problems may remain that require human
attention after recomstitution.) The linguistic and computational research
behind METAL has always had as its goal & comprehensive analysis and
translation of whole sentences in their context; the work of the revisor,
then, should be mostly a matter of review. Where METAL fails to achieve a
unified analysis of a sentence, a translation by phrases is provided which the
revisor must render into a well-formed translation. Figure 2 depicts the
steps in "production” machine translation using the LRC MT system.
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Linguistic Techniques Employed

Our distinction between "linguistic techniques” and "computational techniques"
(discussed in the next major section) is somewhat artificial, but it has some
validity in a broad sense, as should become clear from an overview of the
points considered. In this section we present the reasons for our use of the
following linguistic techniques: (a) a phrase-structure grammar; (b) syntactic
features; (c) semantic features; (d) scored interpretations; (e)
transformations indexed to specific rules; (f) a transfer component; and (g)
attached procedures to effect translation.

Phrase—~Structure Grammar

In the LRC MT system we employ & phrase-structure grammar, augmented Dby
sufficient lexical controls to make it resemble lexical-functional grammar
[Bresnan, 1977]. Of all our linguistic decisions, this is surely the most
controversial, and consequently will receive the most attention. Generally
speaking, there are two competing claims: first, that syntax rules per se are
inadequate and wasteful (e.g., [Cullingford, 1978]); and second, that other
forms of grammar (ATNs [Woods, 1970], tramsformational [Petrick, 1973},
procedural [Winograd, 1972], word-experts [Small, 1980], etc.) are superior.
We will deal with these in turm.

There are schools of thought that claim that syntax rules per se are
inappropriate models of language. Language should, according to this mnotion,
be treated [almost] entirely on the basis of semantics, guided by a strong
underlying model of the current situational context, and the expectations that
may be derived therefrom. We cannot argue against the claim that semantics is
of critical concern in Natural Language Processing. However, as yet no strong
case has been advanced for the abandonment of syntax. Moreover, no system has
been deleloped by any of the adherents of the "semantics only" school of
thought that has more-or-less successfully dealt with ALL of a wide range =--
or at least large volume —— of material. A more damaging argument against
this school is that every NLP system to date that HAS been applied to large
volumes of text (in the attempt to process ALL of it some significant sense)
has been based on a strong syntactic model of language (see, e.g., [Boitet et
al., 1980b], [Damerau, 1981], [Hendrix et al., 1978], [Lehmann et al., 1981},
[Martin et al., 19811, [Robinson, 1982], and [Sager, 1981]).

There are other schools of thought that hold context—free phrase-structure
(PS) rules in disrespect, while admitting the utility (necessity) of syntax.
It is claimed that the phrase-structure formalism is inadequate, and that
other forms of grammar are necessary. (This has been a long-standing position
in the linguistics community; but this view is now being challenged by some,
who are once again supporting PS rules as & model of natural language use
[Gazdar, 1981, 1983].) The anti-PS positions in the Ratural Language
Processing community are all, of mnecessity, based on practical consideratioms,
since the models advanced to replace PS rules are formally equivalent in
generative power (assuming the PS rules to be augmented, which is always the
case in modern NLP systems employing them). But cascaded ATNs [Woods, 1980},
for example, sare only marginally different from PS rule systems. It is
curious to note that only one of the remaining contenders (a transformational
grammar [Damersu, 1981]) has been demonstrated in large-scale application =-
and even this system employs PS rules in the initial stages of parsing. Other
formal systems (e.g., procedural grammars [Winograd, 1972]) bave been applied
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to semantically deep (but 1linguistically impoverished) domains == or to
excessively limited domains (e.g., Small’s [1980] "word expert” parser seems
to have encompassed a vocabulary of well under 20 items).

For practical application, it is necessary that a system be able to accumulate
grammar rules, and especially lexical items, at a prodigious rate by current
NLP standards. The formalisms competing with PS rules and dictiomary entries
of modest size seem to be universally characterizable as requiring enormous
human tesources for their implementation in even a moderately large
enviromment. This should not be surprising: it 1is precisely the claim of
these competing methodologies (those that are other than slight variations on
PS rules) that 1language 1is an exceedingly complex phenomenon, requiring
correspondingly complex techniques to model. For '"deep understanding”
applications, we do not contest this claim. But we do maintain that there are
some applications that do not seem to require this 1level of effort for
adequate results in a practical setting. Our particular application =--
automated translation of technical texts —- seems to fall in this category, as
does, e.g., the EPISTLE text-critiquing system [Heidorn et al., 1982].

The LRC MT system is currently equipped with approximately 550 PS8 rules
describing the best-developed Source Language (German), and around 10,000
lexical entries in each of the two main languages (German, and the
best-developed Target Language: English). The current state of our coverage
of the SL is that the system is able to parse and acceptably translate the
majority of sentences in previously-unseen texts, within the subject areas
bounded by our dictionaries. We have recently begun the process of adding to
the system an analysis grammar of the current TL (English), so that the
direction of translation may be reversed; we anticipate bringing the English
grammar up to the level of the German grammar in about two years® time. Qur
expectations for eventual coverage are that, for each SL, around 1,000 PS
vules will be adequate to account for almost &all sentence forms actually
encountered in technical texts. We do not feel constrained to account for
every possible sentence form in such texts —— nor for sentence forms not found
in such texts (as in the case of poetry) —— since the required effort would
not be cost-effective whether measured in financial or human terms, even if it
were possible using current techniques (which we doubt).

Syntactic Features

Our use of syntactic features is relatively noncontroversial, given our choice
of the PS rule formalism. We employ syntactic features for two purposes. Ome
is the usual practice of using such features to restrict the application of PS
rules (e.g., by enforcing subject-verb number agreement). The other use is
perhaps peculiar to our type of application: once an apalysis is achieved,
certain syntactic features are employed to control the course (and outcome) of
translation =- i.e., generation of the TL sentence. The "augmentations"” to
our PS rules include procedures written in a formal language (so that our
linguists do not have to learn LISP) that manipulate features by restricting
their presence, their values if present, etc., and by moving them from node to
node in the "parse tree"” during the course of the analysis. As is the case
with other researchers employing such techniques, we have found this to be an
extremely powerful (and of course mnecessary) means of restricting the

activities of the parser.
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Semantic Features

We employ simple semantic features, as opposed to complex models of the
domain. Our reasons are primarily practical. First, features seem sufficient
for at least the initial stage of our application. Second, the thought of
writing complex models of even one complete technical domain is staggering:
the operation and maintenance manuals we have worked with (describing a
digital telephone switching system) are part of a document collection that 1is
expected to comprise some 100,000 pages of text when complete. A research
group the size of ours would not even be able to read that volume of material,
much less write the "necessary” semantic models subsumed by it, in any
reasonable amount of time. (The group members would also have to become
electronics engineers, in all likelihood.) 1If such models are indeed required
for our application, we will never succeed.

As it turns out, we are doing surprisingly well without such models. In fact,
our semantic feature system is not yet being employed to restrict the analysis
effort at all; instead, it is used at "transfer time" (described later) to
improve the quality of the translations, primarily of prepositions. We look
forward to extending the use of semantic features to other parts of speech,
and to substantive utilization during analysis; but even we were pleased at
the results we achieved using only syntactic features.

Scored Interpretations

It is a2 well-known fact that NLP systems tend to produce many readings of
their input sentences (unless, of course, constrained to produce the first
reading only -- which can result in the "right" interpretation being
overlooked). The LRC MT system may produce multiple interpretations of the
input "sentence,” assigning each of them a score, or plausibility factor
[Robinson, 1982]. This technique can be used, in theory, to select a ‘best"
interpretation from the available readings of an ambiguous sentence. We Dbase
our scores on both lexical and grammatical phenomena —- plus the types of any
spelling/typographical errors, which can sometimes be "corrected" in more than
one way.

Our experiences relating to the reliability and stability of heuristics based
on this technique are decidedly positive: we employ only the (or a)
highest—scoring reading for translation (the others being discarded), and our
informal experiments indicate that it is rarely true that a better translation
results from a lower—scoring analysis. (Surprisingly often, a number of the
higher-scoring interpretations will be translated identically. But poorer
translations are frequently seen from the lower-scoring interpretations,
demonstrating that the technique is indeed effective.)

Indexed Transformations

We employ & transformational component, during both the analysis phase and the
translation phase. The transformations, however, are indexed to specific
syntax rules rather than loosely keyed to syntactic conmstructs. (Actually,
both styles are available, but our linguists have mnever seen the need or
practicality of employing the open-ended wvariety). It is clearly more
efficient to index transformations to specific rules when possible; the import
of our findings is that it seems to be unnecessary to have open-ended
transformations -~ even during analysis, when one might intuitively expect

them to be useful.
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Transfer Component

It is frequently argued that translation should be a process of analyzing the
Source Language (SL) into a "deep representation” of some sort, then directly
synthesizing the Target Language (TL) (e.g., [Carbonmel, 1978}). We and
others [King, 1981] contest this claim -- especially with regard to "similar
languages" (e.g., those in the Indo-European family). One objection is based
on large-scale, long-term trials of the "deep representation” (in MT, called
the "pivot language") technique by the MT group at Grenoble [Boitet, 1980al.
After an enormous investment in time and energy, includirg experiments with
massive amounts of text, it was decided that the development of a suitable
pivot language (for use in Russian-French translation) was probably
impossible. Another objection is based on practical considerations: since it
is mot 1likely that any NLP system will in the foreseeable future- become
capable of handling unrestricted input -- even in the technical area(s) for
which it might be designed — it is clear that a "fail-soft" technique 1is
necessary. It is not obvious that such is possible in a system based solely
on a pivot language; a hybrid system capable of dealing with shallower levels
of understanding is necessary in a practical setting. This being the case, it
seems better in near-term applications to start off with a system employing &
"shallow” but usable level of analysis, and deepen the level of analysis as
experience dictates, and theory plus project resources permit.

Our alternative is to have a “transfer” component which maps "shallow analyses
of sentences" in the SL into "shallow analyses of equivalent sentences” in the
TL, from which synthesis then takes place. While we and the rest of the NLP
community continue to explore the nature of an adequate pivot language (i.e.,
the nature of deep semantic models and the processing they entail), we can
hopefully proceed to comstruct a usable system capable of progressive
enhancement as linguistic theory becomes able to support deeper models.

Attached Translation Procedures

Our Transfer procedures (which effect the actual translation of SL imto TL)
are tightly bound to nodes in the analysis (parse tree) structure [Paxton,
1977]. They are, in effect, suspended procedures =—— parts of the same
procedures that constructed the corresponding parse tree nodes to begin with.
We prefer this over a more general, loose association based on, e€.8.;
syntactic structure because, aside from its advantage in sheer computational
efficiency (search for structural transfer rules is eliminated), it eliminates
the possibility that the "yrong" procedure can be applied to a comstruct. The
only real argument against this technique, as we see it, is based on space
considerations: to the extent that different constructs share the same
transfer operations, wasteful replication of the procedures that implement
said operations (and editing effort to modify them) is possible. We have mnot
poticed this to be & problem. For a while, our system load-up procedure
searched for duplicates of this nature and automatically eliminated them;
however, the gains turned out to be minimal: different structures typically do
require different operationms.
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Computational Techniques Employed

Again, our separation of "linguistic” from "computational™ techniques 1is
somewhat artificial, but nevertheless useful. In this section we present the
reasons for our use of the following computational techniques: (a) a
"some-paths,” parallel, bottom—up parser; (b) associated rule-body procedures;
(¢) spelling correction; (d) another fail-soft analysis technique; and (e)
recursive parsing of parenthetical expressions.

Some-paths, Parallel, Bottom-up Parser

Among all our choices of computational techniques, the use of a "some-paths,”
parallel, bottom—up parser is probably the most controversial. Our current
parser operates on the sentence in & well-understood parallel, bottom-up
fashion; however, the mnotion of "some-paths" will require some explanation.
In the METAL system, the grammar rules are grouped into "levels" indexed
numerically (0, 1, 2...), and the parser always applies rules at a lower level
(e.g., 0) before applying any rules at a higher 1level (e.g., 1). Thus, the
application of rules is partially ordered. Furthermore, once the parser has
applied all rules at a given level it halts if there exist one oOr moTe
"gentence" interpretations of the input; only if there are none does it apply
more rules —— and then, it always starts back at level 0 (in case any rules at
that level have been activated through the application of rules at a higher
level, as can happen with a recursive grammar). Thus, the rule-application
algorithm is Markov-like, and the system will not necessarily produce all
interpretations of an input possible with the given rule base. Generally
speaking, the lower—level rules are those most likely to lead to readings of
an input sentence, and the higher-level rules are those least likely to be
relevant (though they may be necessary for particular input sentences, in
which case they will eventually be applied). As a result, the readings
derived by our parser are the "nost likely" readings (as judged by the
linguists, who assign the rules to levels). This works very well in practice.

Our evolving choices of parsing methodologies have received our greatest
experimental scrutiny. We have collected a substantial body of empirical
evidence relating to parsing techniques and strategy variations. Since our
evidence and conclusions would require lengthy discussion, and have received
some attention elsewhere [Slocum, 1981], we will only state for the record
that our use of a some-paths, parallel, bottom-up parser is justified based on
our findings. First of all, all-paths parsers have certain desirable
advantages over first-path parsers (discussed below); second, our some-paths
parser (which is a variation on an all-paths technique) has displayed clear
performance advantages Over its predecessor technique: doubling the throughput
rate while increasing the accuracy of the resulting translations. We justify
our choice of technique as follows: first, the dreaded "exponential explosion”
of processing time has not appeared, on the average (and our grammar and test
texts are among the largest in the world), but instead processing time appears
to be linear with sentence length —— even though our system may produce all
possible readings; second, top-down parsing methods suffer inherent
disadvantages in efficiency, and bottom-up parsers can be and have been
sugmented with "top-down filtering” to restrict the syntax rules applied to
those that an all-paths top—down parser would apply; third, it is difficult to
persuade a top—down parser to continue the analysis effort to the end of the
sentence, when it blocks somewhere in the middle =-- which makes the
implementation of "fail-soft" techniques having production utility that much
more difficult; and lastly, the lack of any strong notion of how to comstruct
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a "best-path™ parser, coupled with the raw speed of well-implemented parsers,
implies that a some—paths parser which scores interpretations and can continue
the analysis to the end of the sentence, come what may, may be best in a
contemporary application such as ours.

Associated Rule-body Procedures

We associate a procedure directly with each individual syntax rule, and
evaluate it as soon as the parser determines the rule to be (seemingly)
applicable [Pratt, 1973; Hendrix, 1978] -— hence the term "rule-body
procedure”. This practice is equivalent to what is done in ATN systems. From
the linguist’s point of view, the contents of our rule-body procedures appear
to constitute a formal language dealing with syntactic and semantic
features/values of nodes in the tree -- i.e., no knowledge of LISP is
necessary to code effective procedures. Since these procedures are compiled
into LISP, all the power of LISP is available as necessary. The chief
linguist on our project, who has a vague knowledge of LISP, has employed OR
and AND operators to a significant extent (we didn“t bother to include them in
the specifications of the formal language, though we obviously could have),
and on rare occasions has resorted to using COND. No other calls to true LISP
functions (as opposed to our formal operators, which are few and typically
quite primitive) have seemed mnecessary, mnor has this capability been
requested, to date. The power of our rule-body procedures seems to lie in the
choice of features/values that decorate the nodes, rather than the processing
capabilities of the procedures themselves.

Spelling Correction

There are limitations and dangers to spelling correction in general, but we
have found it to be an indispensable component of an applied system. People
do make spelling and typographical errors, as is well known; even in
"polished" documents they appear with surprising frequency (about every page
or two, in our experience). Arguments by LISP programmers [re: INTERLISP s
DWIM] aside, users of applied NLP systems distinctly dislike being confronted
with requests for clarification -—- or, worse, unnecessary failure -- in 1lieu
of automated spelling correction. Spelling correction, therefore, is
necessary.

Luckily, almost all such errors are treatable with simple techniques:
single~letter additions, omissions, and mistakes, plus two- or three-letter
transpositions account for almost all mistakes. Unfortunately, it is not
infrequently the case that there is more than one way to "correct” a mistake
(i.e., resulting in different corrected versions). Even a human cannot always
determine the correct form in isolation, and for NLP systems it is even more
difficult. There is yet another problem with automatic spelling correction:
how much to correct. Given unlimited rein, any word can be "corrected” to amy
other. Clearly there must be limits, but what are they?

Our informal findings concerning how much one may safely "correct” in an
application such as ours are these: the few errors that simple techniques have
not handled are almost always bizarre (e.g., repeated syllables or larger
portions of words) or highly unusual (e.g., blanks inserted within words);
correction of more than a single error in a word is dangerous (it is better to
treat the word as unknown, hence a noun); and "correction" of errors which
have comverted ome word into amother (valid in isolatiom) should not be tried.
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Fail-soft Grammatical Analysis

In the event of failure to achieve a comprehensive analysis of the sentence, a
system such as ours -- which 1is to be applied to hundreds of thousands of
pages of text —- cannot indulge in the luxury of simply replying with an error
message stating that the sentence cannot be interpreted. Such behavior is a
significant problem, one which the NLP community has failed to come to grips
with in any coherent fashion. There have, at least, been some forays.
Weishedel and Black [1980] discuss techniques for interacting with the
linguist/developer to identify insufficiencies in the grammar. This is fine
for system development purposes. But, of course, in an applied system the
user will be neither the developer nor a linguist, so this approach has mno
value in the field. Hayes and Mouradian [1981] discuss ways of allowing the
parser to cope with ungrammatical utterances; such work is in its infancy, but
it is stimulating nonetheless. We look forward to experimenting with similar
techniques in our system.

What we require now, however, is a means of dealing with "wngrammatical® input
(whether through the human”s error or the shortcomings of our own rules) that
is highly efficient, sufficiently general to account for a large, unknown
range of such errors on its first and subsequent outings, and which can be
implemented in a short period of time. We found just such a technique several
years ago: a special procedure (invoked when the analysis effort has been
carried through to the end of the sentence) searches through the parser’s
chart to find the shortest path from one end to the other; this path
represents the fewest, longest-spanning phrases which were constructed during
the analysis. Ties are brokem by use of the standard scoring mechanism that
provides each phrase in the analysis with a score, or plausibility measure
(discussed earlier). We call this procedure “phrasal analysis”.

Our phrasal analysis technique has proven to be useful for both the developers
and the end-users, in our application: the system translates each phrase
individually, when a comprehensive sentence analysis 1is not available. The
linguists use the results to pin-point missing (or faulty) rules. The users
(who are professional translators, editing the MT system”s output) have
available the best translation possible under the circumstances, rather than -
no usable output of any kind. Phrasal snalysis == which is simple and
independent of both language and grammar -- should prove useful in other
applications of NLP technology; indeed, IBM"s EPISTLE system [Miller et al.,
1980] employs an almost identical technique [Jensen and Heidornm, 1982] .

Recursive Parsing of Parenthetical Expressions

Few NLP systems have ever dealt with parenthetical expressions; but MT
researchers know well that these constructs appear in abundance in = techmnical
texts. We deal with this phenomenon in the following way: rather than
treating parentheses as lexical items, we make use of 1LI1SP s natural treatment
of them as 1list delimiters, and treat the resulting sublists as individual
“oords" in the sentence; these "words" are "lexically analyzed” via recursive
calls to the parser. Aside from the elegance of the treatment, this has the
advantage that "ungrammatical™ parenthetical expressions may undergo phrasal
analysis and thus become single-phrase entities as far as the analysis of the
encompassing sentence is concerned; thus, ungrammatical parenthetical
expressions need mot result in ungrammatical (hence poorly handled) sentences.
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The Tranmslation Component: METAL

This section presents a more detailed description of METAL -- the actual
translation component of the LRC MT system. The top-level control structure
is quite simple: the function TRANSLATE is invoked with a sentence in the SL
{currently, German) and returns as its value an equivalent sentence in the TL
(currently, English). TRANSLATE invokes three functions in succession: PARSE
(for sentence analysis), TRANSFER (for structural translation), and GENERATE
(for sentence synthesis). After sketching the format and content of
dictionary entries, we will briefly discuss how the linguistic rules (lexicons
and grammars) govern analysis, transfer, and synthesis, illustrating this
three-step process using example sentences.

Dictionary Entries

METAL lexicons are divided into two types: monolingual, and bilingual (called
"eransfer"). A monolingual lexicon must be created for each of the languages
jnvolved in the translation process; transfer lexicons link the source- and
target-language monolingual lexicoms. Monolingual lexicons consist of entries
for each lexical item. Each entry begins with a left parenthesis followed
immediately by the canonical or "dictionary" form of the entry, then a series
of feature labels, each with a sequence of zero or more values enclosed within
parentheses. The entry is terminated by a right parenthesis. The entries for
the German mnoun stem (NST) “Ausgabe” and the corresponding English NST
“output” will serve as examples (see Figure 3).

Space contraints do not allow a full analysis of the entries; simply stated,
each monolingual entry provides METAL with the information mnecessary for
analysis and synthesis of the lexical items. In addition to entries for
distinct word stems, the METAL monolingual lexicons contain separate lexical
entries for such morphemes as prefixes, infixes, suffixes, and punctuation.

Transfer lexicons consist essentially of canonical word pairs which indicate
the many-many correspondence between the SL and TL word stems. Each pair may
be augmented by an arbitrary collection of context restrictions that must be
met in order for the indicated tramnslation to take place. A sample transfer
entry for the pair "Ausgabe - output” is included inm Figure 3; there are no
restrictions (conditions) placed on this transfer [indicating the translation
of “Ausgabe” into “output”, or vice versal], other than the Subject Area tag
[DP = Data Processing].

As an example of transfer restriction, it is possible to specify that a given
German preposition corresponds to any of several English prepositions
depending on the semantic type of its object mnoun. Four entries for the
German preposition “vor”, shown in Figure 4, will illustrate. In these
entries the appropriate English translation is defined by a restriction on
semantic type (TY) and sometimes Grammatical Case (GC). These transfer
entries are valid for ALL subject areas, but must be tried in a particular
order (as evidenced by numeric "preferemce factors" in the entries). Thus the
presence in context of an object noun of semantic TYpe other than ABStract,
DURative, or PuNcTual results in the English translation “in front of": else
the presence of a Dative object noun of type ABStract or PuNcTual will Tresult
in the English translation “before”; else the presence of a Dative object noun

of type DURative will result in the English tramnslation ‘“ago” [which will
later be postposed]; otherwise, the translation “in front of” is chosen.
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GERMAN monolingual

(Ausgabe

ALO
PLC
SNS
TAG
CL
DR
FC
GD
sX
TY

(Ausgabe)
(W1)

(D

(pp)

(p=N 8§-0)
(NP RD)
(rp)

(r)

(¥

(ABS DUR)

entry:

CAT (NST)

English monolingual entry:

(output

ALO
PLC
SNS
TAG
CL
DR
FC
ON
sX

(output)
(W1)

(1

(pp)

(p-s §-01)
(NP RD)
(pP)

(vo)

(W)

CAT (NST)

German-English Transfer entry:

(Ausgabe (NST DP) O

(

] output (NST DP) O
+

Figure 3

German monolingual,

English monolingual,
and Transfer entries
for Ausgabe = output
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(vor (PREP ALL) 30

( OPT TY * ABS DUR PNT

(

{vor (PREP ALL) 20

{ 6CD

( TY ABS PNT

(

(vor (PREP ALL) 10
( GCD

( TY DUR

(

(vor (PREP ALL) O
(

! in_front_of (PREP ALL) O

before (PREP ALL) 0

ago (PREP ALL) 0

Ve

in_front_of (PREP ALL) 0

+

Figure 4

German—-English Transfer entries
for vor = in front of, before, or ago

NN
0

(LVL 0)
TEST

CONSTR

ENGLISH

SPANISH

NST N~-FLEX
1 2
(REQ WI) (REQ WF)

(INT 1 CL 2 CL)
(CPX 1 ALO CL)
(CPY 2 NU CA)
(CPY 1 WI)

(XFR 1)

(ADF 1 ON)
(CPY 1 MC DR)

9 9

Figure 5

A German Context—free PS rule
for building a Noun S5Tem + an
inflectional ending into & NouRN
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Analysis

For human-engineering reasons, omne of the most convenient forms for expressing
a grammar is via context-free phrase-structure rules. Context-free rules
alone may or may not fully describe human language (see [Gazdar, 1983] for
arguments that CF grammars are indeed sufficient), but, in any case, more
general phrase-structure rules preclude efficient computational treatment, and
CF rule-based systems seem to function as well as or better than any other
technique, in practice. It has become traditional to augment the context-free
rules by associating with them procedures in some programming language im
order to provide more generative power, while maintaining computational
tractability. In METAL, these "rule-body procedures" are invoked as soon as
the parser finds a phrase matching their constituent phrase structure.

The traditional purpose of such procedures is to restrict the application of a
rule by tests on syntax (e.g., number agreement between noun and verb) and/or
semantics (e.g., whether the proposed syntactic subject can be interpreted as
an agent); if such tests fail, the syntactic phrase is not built. 1In METAL,
these procedures not only accept or reject rule application, but they also
construct an interpretation of the phrase. Traditional parsers automatically
build a "parse tree” and may add the output of such procedures as semantic
information; in METAL, the parser (i.e., the LISP program) makes no commitment
to a syntactic structure, but instead, linguistic procedures comstruct the
interpretation (phrase) and compute its weight, or plausibility measure. The
weight of a phrase is used when comparing it with any others that span the
same sequence of words in order to identify the most likely reading.

A rule-body procedure in our system has several components: a constituent test
part that checks the sons to ensure their utility in the current rule; an
agreement TEST part to enforce syntactic and/or semantic correspondence among
constituents; a phrase CONSTRuctor, which formulates the interpretation
(phrase) defined by the current rule; and one or more Target-Language-specific
transfer parts which operate during the second stage of translation (following
complete sentence analysis). The inter—constituent test, the phrase
constructor, and the transfer procedures may include ¢alls to case frame
procedures and/or transformations, as well as simpler routines to test and set
syntactic and semantic features/values.

Case frames may apply semantic and syntactic agreement restrictions to the
predicate (verb structure) and its arguments (noun and prepositional phrases)
when comstructing a clause. Each predicate’s lexical entry specifies its
possible "central arguments.” For German, the case frame will identify the
case role-players according to voice (e.g., active) and mood (e.g.,
indicative) of the clause, and information about each potential argument such
as its semantic type, form (noun phrase or prepositional phrase), and
grammatical case (e.g., accusative) or prepositional marker. The restrictions
can be general, or specific to the individual verb, preposition, and/or noun.
The frame will fail, causing application of the clause rule to be rejected, if
any of the restrictions are not met. Otherwise, case roles are assigned to
the central arguments and the "peripheral arguments” are then identified.

The geometry of interpretations typically (though not always) parallels their
original phrase structure. In other words, they are usually topologically
equivalent to what the parser would produce if it were automatically
constructing a tree. Some rules, however, incorporate transformations which
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may arbitrarily alter the phrase being constructed. The transformation module
allows a linguist to specify a structural descriptor to any depth, to perform
syntactic and/or semantic tests as in rule body procedures, and to specify a
new structure into which the old is transformed. The transformation program
attempts to match the "old" pattern descriptor with the currently instantiated
phrase. If the match is successful, and the specified conditions are met, a
new phrase is constructed using the 'new" patterm descriptor, with the (old)
matched phrase usually providing (most of) the structural contents, and
constructor operations may further annotate the phrase with mnew features
and/or values. The transformation module can have no effect on the parsing
algorithm, whatever the outcome of its application, unless the rule is written
so that failure to complete a transformation causes the interpretation to be
rejected; in such a case, only the fact of the rejection has an effect on the
parser: it abandons that search path, just as it would if any other condition
in the rule-body procedure were unsatisfied.

A grammar in METAL consists of a number of partially-ordered (LeVelled),
augmented phrase-structure syntax rules, plus a collection of indexed
transformations. A relatively simple PS rule for building nouns will be wused
to illustrate the parts and format of METAL grammar rules (see Figure 5).

The first line consists of a left-hand element, the "father™ node (here, NN),
and one or more right-hand elements -—- the "sons" (here, NST and N-FLEX). In
the example rule, the left-hand element is the noun (NN) node and the
right-hand elements are the noun stem (NST) and the nominal ending (N-FLEX)
nodes. The second line enumerates the elements (from 0 to n) for reference in
the rule-body procedure. Each constituent may have individual conditions,
called “column tests”, to restrict exactly what elements fit the rule. If amny
column test fails, the grammar rule will fail -- i.e., the parser will abandon
its attempt to apply this rule. In this example, the column test for the
first element (NST) requires it to be word-initial (WI) -- i.e., preceded by a
blank space in the matrix sentence; the column test for the second element
(N-FLEX) requires it to be word-final (WF) -- i.e., followed by a blank space.

In addition to the column tests, which apply only to single elements, each
rule has a TEST part that states agreement restrictions between the right—hand
elements. Failure of any agreement test will also result in failure of the
entire rule. In the example rule, the single agreement test states that there
must be an intersection (INT) of the inflectional «class (CL) values for the
two conmstituents; i.e., the values for the feature CL coded on the NST and the
N-FLEX are compared to insure that they have at least one value in common.

Only after all conditions have been satisfied is it possible for METAL to
build the appropriate syntax tree. This is done in the CONSTR part of the
rule, which can also add or copy information in the form of features and
values from the sons to the father. In the example rule, the CONSTRuctor (by
not applying a transformation) would produce the tree represented below:
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In the example rule-body procedure, the CONSTRuctor will copy 2ll features
with their associated values from the first element (i.e., the NST), except
for the allomorph (ALO) and inflectional class (CL) features, wusing the
operation CPX, CONSTR in this rule will also copy (CPY) the grammatical
number (NU) and case (CA) features from the second constituent (the N-FLEX),
and the word initial (WI) feature from the first constituent (the KST).

Transformations may be applied in the TEST, CONSTR, and/or Transfer portions
of grammar rules. These range from simple movement and deletion operations to
highly complex transformations which add structure, perform tests, etc. The
following exemplifies a simple movement transformation:

(XFM (&:1 (&:2 &:3))
(&:1 (&:3 &:2)))
This transformation simply exchanges the two sons (#2 and #3) of the current
node (#1): each ampersand represents one and ‘only one constituent, or node.

Determining whether a sequence of words constitutes a clause is handled by a
case frame, which is invoked in the TEST portion of clause-level rules.
Simply stated, the case frame uses the argument information coded on the verb
stem”s lexical entry to identify its arguments, perform agreement tests, and
label those arguments. In METAL, an argument may be a mnoun phrase,
prepositional phrase, or adverbial phrase, depending on the verb. For a more
detailed discussion of the grammar or lexicon, see [Bennett, 1982].

Transfer

The purpose of the TRANSFER module is to restructure the most plausible
interpretation of the SL sentence into an interpretation of an equivalent
sentence in the TL(s). Every non—terminal node (phrase) in every sentence
interpretation has attached to it the "suspended" rule-body procedure that
originally created it; this eliminates the need to search through a monolithic
“"transfer grammar" for a matching pattern or routine -- and also eliminates
the danger of inadvertently applying an inappropriate pattern or routine that
happened to match (part of) the same structure. The suspended procedure
associated with the root phrase in the most plausible interpretation is
(re)invoked by TRANSFER. The appropriate Target-Language-specific Transfer
part of a rule-body procedure can recursively transfer all or some of the
node”s sons (i.e., its non-terminal constituents) in any order, apply
transformations, and/or lexically transfer a terminal son. Lexical transfer
replaces a SL canonical form with a TL canonical form using the appropriate
transfer lexicon; this process may be sensitive to sentential context. The TL
stem is created and appropriate suffixes are added to create the proper TL
word. Features in TL lexical entries may be used to help select the proper
sense (i.e., word).

The final parts of a grammar rule are the Transfer sections [in Figure 5,
ENGLISE and SPANISH]. In the multi-lingual METAL system, there is a separate
transfer section for each Target Language. (In our English analysis grammar,
there are, e.g., GERMAN and CHINESE sections, which means that METAL can
translate bi-directionally as well as into multiple languages.) The
appropriate Transfer section(s) are individually invoked only after a sentence
[S] has been analyzed, at which point the system will perform the Transfer
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operations specified, generally moving down the tree to the terminal mnodes
where lexical substitution takes place. In our example rule (Figure 5), the
first operation is

(XFR 1)

which causes the system to recursively invoke TRANSFER on the first son (i.e.,
the NST). Because the NST happens to be a terminal (lexical) node, it will be
translated using the appropriate Tramsfer entry. The remaining two operations
(ADF and CPY) are performed as the system ascends the tree. Thus, while
analysis generally proceeds bottom-up, transfer proceeds top-down. At each
node in the tree, all nodes below are accessable for reading (to determine
context) and writing (to pass down information necessary for proper transfer).

Transfer in METAL is not a particularly simple process. Consider the
following sentence pair:

German: die auszugebenden Resultate
gloss: the to-be-output Tresults
English: the results to be output

Here, the German participial verb form must be post-posed in English; a
transformation (conditioned on the form of the participial phrase) must be
employed in cases like these. Prepositions present notorious problems; they
must be translated and positioned with respect to their object NPs at least:

German: vVvoOT diesem Haus
English: in front of this  house

German: vor dieser Woche
English: before this  week

German: vor einer Woche
gloss: ago one  week
English: one week ago

Clearly the relationship is complex: both the German noun (i.e., its semantic
type) and its determiner (if any) influence the selection of a suitable
English translation, as well as its position in the phrase.

A TL verb case frame, when applied during the transfer phase, will order the
case role-fillers as required by the verb based on voice, mood, etc. The
syntactic form of the central arguments is chosen and, if m©necessary,
prepositions are introduced as specified in the Transfer verb entry. Consider
the following examples:

GCerman: aus Gold besteht die Tuer
gloss: of gold comsists the door
English: the door comsists of gold

German: auf Gold besteht der Mann
gloss: on gold insists the man
English: the man insists om gold



23

Here, it is not only true that the complements must be re-ordered in English,
but it is also necessary to translate the verb-preposition combination as a
unit. This, in turn, may reflect on [help disambiguate] the semantic type of
the matrix-subject, as the following examples illustrate:

German: aus Gold besteht er
gloss: of gold comsists [it]
English: it consists of gold

German: auf Gold besteht er
gloss: on gold insists [he]
English: he insists on gold

Various of these factors can and do interact, as illustrated by the following
example:

German: die aus Gold bestehende Tuer
gloss: the of gold consisting door
English: the door consisting of Gold

In the METAL system, the Transfer procedures attached to analysis rules
interact with complex Transfer lexical entries to determine the proper form
and wording of the Target-Language structures. Generally speaking, each node
appearing in an analysis tree is responsible for producing its appropriate
translation, in context. (This is not always true, since a higher-level node
can usurp the function of one or more of its sons -- either performing
transfer directly, or assigning a new transfer procedure to be executed in
place of the original.) We have found this combination of techniques (lexical
transfer interacting with grammatical structural transfer procedures) to be a
flexible and powerful tool that facilitates high-quality translation.

The top-level node (phrase) in the mnewly constructed TL tree is eventually
returned by TRANSFER as its functional value, and this in turn is used for
synthesis.

Synthesis

The GENERATE function synthesizes the translation by simply taking the TL tree
produced by TRANSFER, and inflecting and appending together all of the lexical
allomorphs (words and their inflections) located in its terminal nodes. The
value of the function GENERATE is a sentence; it is returned to the function
TRANSLATE, which returns that sentence as its functional value. For synthesis
into multiple Target Languages, transfer and synthesis (but not analysis) may
be invoked multiple times.
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The METAL Parser

The parser —— the LISP program that interprets a sentence according to the
linguistic rules -— is the heart of METAL. If the parser is inefficient, the
analysis effort will consume far too much space and time to be of practical
benefit. The current METAL parser is a variation om the Left-Corner parallel,
bottom—up parsing algorithm [Chester, 1980]. During an extensive series of
experiments comparing a dozen parsers on the basis of their practical
performance characteristice [Slocum, 1981], & Left~Corner parser augmented by
top-down filtering [Pratt, 1973], which closely resembles an Earley parser,
was determined to be the most efficient, and soon replaced the previous METAL
parser based on the Cocke-Kasami-Younger algorithm [Aho and Ullman, 1972].
However, the newest, "some-paths" implementation of the Left-Corner parser has
since proven to be even more efficient than the fast Left-Corner parser.

The LRC parsers work with a special data structure called a "chart" that
records the complete state of an analysis at every point in that analysis.
Roughly speaking, the parser starts by adding every word in the sentence to
the chart; it then draws grammatical inferences from those additions. The
grammatical inferences are of two varieties: (1) interpretations of the syntax
rules found to apply to the current portion of the input, referred to as
instantiated phrases; and (2) predictions about what types of phrases (what
grammatical categories) may appear mnext in the input. After the parser has
drawn all possible grammatical inferences on a given "level,", the chart is
examined for phrases which span the sentence, and whose syntactic categories
appear in the user—definable list of acceptable ROOTCATEGORIES: usually “(8)7.
These phrases constitute the interpretations of the input sentence; if there
are none, the parser reverts to the Ilowest LeVel for which there are pending
rules, and continues.

In order for the parser to add a word to the chart, the word must be lexically
analyzed. There are three ways to do this: (1) the word may appear in the
dictionary as an entry; (2) the word may be decomposed into a sequence of
morphemes, each of which appears in the dictionary; or (3) the word may have a
lexical entry generated on-the-fly. In METAL, any combination of the three is
possible. Words, or sequences of letters that appear to be words, are looked
up in the dictionary; independently, an attempt is made to decompose each word
into an acceptable sequence of morphemes, each of which appears in the
dictionary. (In METAL, the dictionary is composed of lexical entries in the
usual sense, plus any literals appearing in phrase-structure grammar rules.)
Lexical entries for numbers are automatically generated. Definitions for
unknown words and non-words are also generated. Parenthetical expressions are
"lexically analyzed” via a recursive call to the parser: each is parsed as if
it were a complete sentence, then its interpretations are automatically
transformed into "lexical entries” for incorporation into the analysis of the
encompassing sentence. Uoknown words may be decomposed into sequences of
known words and other lexical items (numbers, acronyms, etc.), especially if
these are flagged by punctuation marks (e.g., hyphens, slashes) in the input.
For example, the German 'word" “10mal” may be decomposed into ~10° and “mal”
[in English, “times”].

Morphological analysis is a relatively simple process, relying omn a letter
tree [discrimination net] to indicate the legal tramsitions from character to
character in known morphemes (defined via lexical entries or as literals im
syntax rules). For & highly synthetic language 1like German, this tree is
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searched recursively to discover successive morphemes in a word. As a bonus,
METAL includes a program capable of correcting the most common spelling and
typographic errors (deletion, substitutionm, addition, wrong case, and
transposition); thus typical transcription errors pose mno problem. The
results of morphological analysis can be ambiguous in many ways: morph semnse,
morph category, and even morph boundaries may be indeterminate. The parser
(using the phrase structure rules) sorts out the ambiguities accordinmg to word

and sentential context, as a natural part of its operation -- i.e., lexical
disambiguation (including homograph resolution) is not a process distinct from
other forms of disambiguation (e.g., syntactic).

As PARSE finds phrase-structure rules that are applicable to a current
sequence of morphs, words, and/or phrases in the ongoing analysis, it does not
automatically build a syntactic structure expressing this fact; instead, it
invokes a special routine which is responsible for determining (through the
invocation of the rule-body procedure) the applicability of the rule, and for
constructing and scoring the interpretation. This special routine constructs
a preliminary parse tree, invokes the rule-body procedure to determine if the
rule is applicable (and possibly to annotate the tree and/or tramsform it),
and if the resulting interpretation is acceptable it scores the phrase based
on the scores of its constituents and any preference assigned by the rule-body
procedure; it rejects the interpretation if its score falls below cutoff, else
attaches the "suspended” rule-body procedure to the phrase (important in the
transfer phase, as explained elsewhere). The scores of the root nodes in the
sentence analyses will be used later to determine the "most plausible
analysis” for transfer and synthesis.

If the METAL parser fails to achieve a unified interpretation of a sentence
(or of a parenthetical expression, which is recursively parsed as if it were 2
sentence), it attempts to '"fake” an analysis of the sentence. A phrasal
analysis is constructed from the fewest, largest, highest-scoring phrases that
together span the input sentence. An S phrase is built just as if there were
a grammar rule with the discovered phrases listed in its right-hand-side. A
default rule-body procedure is attached, to be invoked during the transfer
phase; this procedure will simply use the (XFR) operator to invoke TRANSFER on
the constituent phrases of the dummy S phrase just built.



IlII'lIlIllIlllllIllIlllIHi-lI------i------

26
Recent Experimental Results

In the last four years, METAL has been applied to the translation into English
of over 1,000 pages of German telecommunication and data processing texts. To
date, no definitive comparisons of METAL translations with human translations
have been attempted; this situation will soon be remedied. However, some
stimulating quantitative and qualitative statistics have been gathered.

Quantitative Results

On our Symbolics LM-2 Lisp Machine, with 256K words of physical memory,
preliminary measurements indicate an average performance of 5-6 seconds (real
time) per input word; this is already 6 times the speed of 2 human tramslator,
for like material. The paging rate indicates that, with added memory, we
could expect a significant boost in this performance ratio. With a faster,
second-generation Lisp Machine, we would expect another substantial reduction
of real-time processing requirements: preliminary measurements (before system
tuning) show a doubling of the throughput rate; further speed increases are
anticipated.

Qualitative Results

Measuring translation quality is a vexing problem ~- a problem not exclusive
to machine translation or technical texts, to be sure. In evalvating claims
of "high-quality" MT, one must carefully consider how “quality” is defined;
"percentage of words [or sentences] correct [or acceptablel", for example,
requires definition of the operative word, “correct”. A closely related
question is that of who determines correctmess. Acceptability is ultimately
defined by the user, according to his particular needs: what is acceptable to
one user in one situation may be quite unacceptable in another situatiom, or
to another user in the same situation. For example, some professional
post-editors have candidly informed us that they actually 1look forward to
editing MT output because they "can have more control over the result."” For
sociological reasons, there seems to be only so much that they dare change in
human translatioms; but as everyone knows (and our informants pointed out),
"the machine doesn’t care.” The clear implication here is that "correctness"”
has traditionally suffered where human translation 1s concerned; or,
alternately, that "acceptability" depends in part on the relationship between
the translator and the revisor. Either way, judgements of "correctness" or
"acceptability™ by translators and editors is likely to be more harsh when
directed toward MT than when directed toward human translation (HT). It is
not yet clear what the full implications of this situation are, but the
general import should be of some concern to the MI community.

For different (and obvious) reasons, qualitative assessments by MI system
vendors are subject to bias —- generally unintentional -- and must be treated
with caution. But one must also consider other circumstances under which the
measurement experiment is conducted: whether (and for how long, and in what
form) the text being translated, and/or its vocabulary, was made available to
the vendor before the experiment; whether the MT system was previously
exercised on that text, or similar texts; etc. At the LRC, we conduct two
kinds of measurement experiments: "blind"™, and "follow-up". When a new text
is acquired from the project sponsor, its vocabulary is extracted by various
lexical analysis procedures and given to the lexicographers. This may include
a partial or full concordance of the text, in which each word is displayed in
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a context that includes the full matrix sentence. The lexicographers then
write ("code”) entries for any novel words discovered in the text. The
linguistic staff never sees the text prior to & blind experiment. Once the
results of the blind translation are in, the project staff are free to update
the grammar rules and lexical entries according to what is learned from the
test, and may try out their revisions on sample sentences from the text. Some
time later the same text is translated again, so that some idea of the amount
of improvement can be obtained.

In addition to collecting some machine performance statistics, we count the
number of "correct” sentence translations and divide by the total number of
sentence units in the text, in order to arrive at a "correctmess" figure.
(For our purposes, ‘"correct™ is defined as "noted to be unchanged for
morphological, syntactic, or semantic reasons, with respect to the original
machine translation, after revision [by professional post-editors] is
complete." (Non-essential stylistic changes are not considered to be errors.)
In the course of experimenting with over 1,000 pages of text in the last four
years, our "correctness” figures have varied from 45% to 85% (of full-sentence
units) depending on the individual text and whether the experiment was of the
"blind" or "follow—up" variety.

Cost—-effectiveness

The single numerical assessment of greatest interest in the MT community is
almost certainly cost-effectiveness. Until METAL is evaluated by unbiased
third parties, taking into account the full costs of translation and revision
using METAL vs. conventional (human) techniques, the question of METAL”s cost-—
effectiveness cannot adequately be addressed. However, we have identified
some performance parameters that are interesting. Our sponsor has calculated
that METAL should prove cost-effective if it can be implemented on a
second—Generation Lisp Machine supporting 4~6 post-editors who can sustain an
average total output of about 60 revised pages/day. At 275 words/page, and 8
hours/day, this works out to 1.7 seconds/word, minimum real-time machine
performance. 1f the new second-generation Lisp Machines are, as generally
claimed, three times as fast as the current generation (represented by our
LM-2), then our immediate target is 5.2 seconds/word, minimum real-time
performance —— about what we now experienmce on our LM-2. If this level of
performance can be sustained while maintaining a high enough standard of
quality that an individual revisor can handle 10-15 pages/day, METAL will have
achieved cost-effectiveness.

We have also measured revision performance: the amount of time required to
edit texts translated by METAL. 1In the first such experiment, conducted late
in 1982, two Siemens post—editors revised METAL s translations at the rate of
15-17 pages/day (depending on the particular editor). In a second experiment,
conducted in mid-1983, the rates were only slightly higher (15-20 ‘pages/day),
but the revisors nevertheless reported a significant improvement in their
subjective impression of the quality of the output. In a third experiment,
conducted in early 1984, the revisors reported further improvement in their
subjective impression of the quality of the output, and their revision rates
were much higher: around 29 pages/day. Thus, our experimental performance
figures indicate that we may already have reached the goal of cost-

effectiveness.
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Conclusions

MT Research at the Linguistics Research Center involves the selection and
testing of Natural Language Processing techniques in a real-world environment.
With an efficient computational component such as we now have, it becomes
possible to empirically validate new linguistic theories as they are proposed.
Our research can therefore answer questions about their extensibility, and the
limits of their application.

Some "o0ld" Natural Language Processing techniques are producing surprisingly
good results, and new ones are being developed. Others have not proven to be
effective, and have been abandoned. METAL is capable of producing useful
English translations for a wide variety of German sentences; translation from
English into German has recently begun. However, further development is
currently underway to resolve a number of remaining problems. Two areas in
which the LRC is making improvements in the METAL linguistic component are the
treatment and placement of adverbials, and more extensive use of semantics.

In the future, we look forward to the development, phased introduction, and
empirical assessment of more advanced NLP techniques —- especially w.r.t.
anaphora resolution and the use of semantic models. We see no evidence that
today’s advanced but experimental NLP techniques will soon [in this decade, or
even century] be able to supplant the more primitive techniques that are
currently effective in & large-scale application such as ours. But we
nevertheless hope that such techniques can, even if in elementary form, be
effectively utilized within practical applications of current techniques to
further improve the overall quality and cost-effectiveness of translation. We
have tried to anticipate this eventuality in the design of the LRC MT system
by allowing for future evolutiom, possibly even revolution. In the process of
applying advanced NLP techniques to practical problems in real-world settings,
such as translation, we fully expect the feedback of experience to
substantially influence both the form and content of linguistic theories.
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