MAPPING ENGLISH STRINGS
INTO MEANINGS

Robert F. Simmons

Technical Report NL 10

January 1973

Natural Language Research for CAI
Supported by
The National Science Foundation

Grant GJ 509X

The Department of Computer Sciences

and CAI Laboratory

The University of Texas

Austin, Texas 78712

ABSTRACT

The meaning of an English string is taken to be the portion of a
dynamic model into which it maps or from which it is generated. A
stepwise continuity of linguistic models is shown from a keyword
scanner with arbitrary structure building capability to the complexity
of an interpreter that can accept a program containing predicates, variables,
functions and subroutines to accomplish deep semantic or conceptual

analysis.

Keywords: models, meaning, English strings, syntactic analysis,

linguistic models, keyword scanmners.

ACKNOWLEDGEMENTS

I am grateful to Robert A. Amsler for his unpublished experiments
showing the simplicity and power of the keyword approach and to Gary
Hendrix and others for helping me to understand set-theoretic modelling

techniques.

MAPPING ENGLISH STRINGS INTO MEANINGS*

Meaning - la.the thing one intends to convey esp. by language:
import
1b. the thing conveyed esp. by language: purport

This is the first sense defining "meaning' in Webster's 7th New

Collegiate Dictionary. In terms of our computational understanding

of English, the definition is perfectly valid if we simply change the
word, '"thing'" to 'model'. Two systems that communicate in English are
conveying portions of their models of the world relevant to a discourse
by mapping the model into English and mapping English strings into a
model. The import of an English string is the model from which it is
generated; the purport of the string is the model into which it is
semantically parsed.
Following Minsky 'We use the term ""model" in the following sense:
To an observer B, an object A% is a model of A to the extent that B
can use A* to answer questions that interest him about A." {Mias ¥y (63
From a psychological viewpoint such as that taken by Lindsay
and Norman (1972, by Quillian (1968 or by Simmons (1972 the meanings
of language strings are structures of objects, relations and processes
in a model of human memory or cognitive structure. From the artificial
intelligence viewpoint models of human cognitive structure are computa-
tional representations of mathematical models of what the person knows,
and are not essentially different in kind from models of the micro-

worlds of robots such as the one developed by Winograd (1972).

%* Supported by National Science Foundation Grant GJ 509K
Natural Language Research for CAIL.

Page 2

All of these models have a dynamic quality. Although a meaning
is a portion of a model it is not to be construed as a static data
structure; it is, instead, the operation of certain processes that
are modelled. For example a simple declarative sentence requires that
its words be identified and mapped into objects in the world-model., TIf
it adds new information, new relational connections must be constructed
between objects. Additiomal processes such as checking for contradictions,
generating implications, etc. may also be part of the meaning. For an
imperative statement the model into which it is mapped may be operated
as a program that can affect both the model and the world that is
modelled. The model representing the meaning of a question is a program
that actively seeks a certain relatiomal path through the model of the
world.

The models that have been most satisfactory for language understanding

systems are set theoretic in nature. They are mathematically characterized
as a set of objects, a set of relations among these objects, and sets of
predicates and operations defined over the objects and relations. Models
can be trivially simple or immensely complicated. A simple model with
which we will deal at some length includes a robot, R, a room, RIl, the
rest of space, R2, the relations, INSIDE and OUTSIDE with corresponding
predicates INSIDE (R,R1), OUTSIDE(R,R1), and the operation GO(R,R1).
Such a model can be used to represent the position of robot, R, inside
or outside of Rl, can change that position and can determine with the
use of predicates the present location of R.

Vastly more complex models of the world may still have this same

logical structure of objects, relations and operations but the numbers

Page 3

of objects and relations may become very large, the relations may become
many-valued and the operations may become heuristic, goal-seeking, advice-
taking, etc. and even become unpredictable in their interaction. Such
complex models are typical of those constructed in PLANNER, QA4, CODER,
CONNIVER, etc. (See Baltzer 1972 for a review in this area.)
Qur tiny one room, one robot model can easily represent the meaning
of such natural language statements as the following:
Where 1is the robot?
Is the robot in the room?
Go inside the room.
Go outside the room.
In order to understand such strings, the micro-world model must be
augmented by a model of the linguistic structures used in the English
subset.
The linguistic model also can range from the very simple to the
very complex. Perhaps the simplest model takes literal words as its
objects, sequences of words as relations and predicates, and transformations
into operations on the world-model as its operations. Such a linguistic
model can be written as follows for the four statements above.
(SEQUENCE Where, robot)—> (Get R,INSIDE)

(SEQUENCE Is, robot, in, room) —> (((EQ (GET R INSIDE)RI)—> "YES)
(T ="N0))

(SEQUENCE Go, Inside, room)-—= (GO R R1)

(SEQUENCE Go, Qutside, room) —» (GO R R2)

This linguistic model assumes a LISP interpreter, the use of a
property list structure to show the relations that hold between pairs

of objects, the functions PUT and GET which operate on the property list

Page 4

to form and retrieve relations, and a function, SEQUENCE, which determines
whether the ordering of its arguments is true for the input sentence.
SEQUENCE is not concerned if other elements intervene between its
arguments. The right-pointing arrow indicates a conditional such that

if the left part is satisfied the LISP program on the right is operated.
In this linguistic model, words are LISP atoms, the sequential relations
are explicitly shown in the left half of the rules, SEQUENCE acts like a
predicate on the ordering of words in the input string, and the right

half of the rule is the transformation into a meaningful operation on the
world model.

The world model is a few programmed operations and a list of objects
and relations represented on the property list.

Such keyword based linguistic models have found wide utility in
question answering research starting with Bobrow (1968, in natural
language conversational systems such as ELIZA (Weizenbaum 1966) and
PARRY (Colby 1971), and are basic to most Computer Aided Instruction
programs. They are very useful for dealing with small subsets of natural
language where only a few meanings need be extracted. They require little
in programming complexity, but in their simplest form they must have a
rule for every varying sequence of significant words. For example if
the model above is to understand the following additional sentences,

Go into the room.
Go to the room.
Go outside the room.
either three more rules must be written or additional programs must be

added to allow more general statements of the rules.

Jage 5

This paper is primarily concerned to outline a step-by-step
progression of program requirements that will show a conceptual
continuity from keyword parsers with simple models to deep structure
analyzers with complex goal-seeking medels. Tﬁere will be little attempt
to treat the world-models in full detail as is done by Winograd or
Balzer; instead emphasis will be placed on the varying forms and
structures of the linguistic models.

1I. Escalating the Keyword Model

In this section the linguistic model is generalized by the intro-
duction of predicates, variables, subroutines and data structures to
show how its power can be increased to that of a full programming
language with the capability of deriving deep semantic or conceptual
structures as the meanings of language strings.

Svnonymous Forms. In unrestricted English the problem of defining

when two or more forms are synonymous is a very difficult one that depends
on linguistic and environmental contexts. In computational subsets,
however, two or more forms can be defined as synonymous it it is desired
that they have the same effect and if that definition does not introduce
confusions with other meaningful statements in the formal subset. Thus
in the elementary model introduced earlier, we would probably wish to
consider the following strings to be synonymous.

Go to the room

Go into the room

Go to Rl

Go into R1

Go inside R1

Go in the room

Page 6

By substituting ''the room" for Rl and vice versa in each example, a
total of eight pragmatically equivalent paraphrases results. The
simplest linguistic model described earlier would require eight rules to
recognize these variations although they all map onto the same meaning.
Introduction to the rule system of the Boolian predicate, OR,
allows us to write a single rule for all the wvariations as follows:
{SEQUENCE Go, {(OR to, into, inside, in), (OR R1l, room)) = (GO R R1)
This approach does not require the introduction of a lexicon, but although
it reduces the number of rules to be written, each element of a synonym
group must be explicitly listed in the predicate.
A slight change in the form and interpretation of the rules provides
the use of variables for additiomal generalization. We might desire,
for example, to write one rule covering the following statements:
Go outside the room
Go inside the room
Go outside
Go inside
Go to the room
Go to Rl
Go to R2
By using variables as references to elements in the left part of the
rule, the right half can generalize from the representation of a single
meaning to representing a whole family of meanings. One rule covering
the set of statements above is as follows:
(SEQUENCE Go, (OR inside, outside, to), (OR Rl, R2, room))

—3> (Go R, 2nd, 3rd)

Page 7

The terms "'2nd" and "3rd" are variables that refer to the position of
elements in the left half of the rule. For the operation GO (now
programmed for 3 arguments) the values of these variables will be the
actual terms that occurred in the left-half positioms that are referenced
by '"2nd" and '"3rd". Thus the call to GO is derived with different
argument values as follows for the several sentences above:

(GO R, outside, room)

(GO R, inside, room)

(GO R, outside, NIL)

(GO R, inside, NIL)

(GO R, to, room)

(GO R, to, RL)

(GO R, to, R2)
The operation, GO, can be programmed to accomplish the desired changes
in relations among objects for each sequence of arguments.

The use of variables is accomplished quite easily since it is a
central feature of all programming languages. In LISP, a rule interpreter
called RI is written so that it binds the arguments of SEQUENCE to a
fixed 1list of variable names; lst, 2nd, 3rd,...nth, where n is some
definite number that limits the total number of arguments that can be
dealt with. As RI interprets the right half of the rule, references to
1st, 2nd, etc. are in fact references to the bindings of those variables.

A comsequence of introducing Boolian predicates and varilables is
that a single rule can map a large set of language strings into a large
set of meanings -- i.e. operations with particular sets of arguments.
This power 1is not wholly desirable in that if used to minimize the number

of linguistic rules, the complexity of the logic programmed into the

Page 8

the operations must increase to include conditions identifying the
linguistic forms of arguments. In the example above, the operation,
GO, must recognize that "to R1'", '"to, room", "inside room', '"inside
NIL' etc. result in the same changes in the world-model.

For most purposes it is obviously undesirable to include this much
linguistic information in the definitions of operations on the model,
One solution is to transform synonymous linguistic forms that occur
in the left half of the rule into a canonical form recognized in the
definition of the operations. Thus '"room" or Rl would always transform
to Rl, and "in", "into'", or 'inside' can all have the canonical form
IN1 for the particular model. This effect can be accomplished without
introducing a dictionary by adding a transformational logic to the
interpreter, RI. The form of the rule changes slightly as a consequence
to allow for the pairing of synonymous forms with a canonical form in
a manner such as the following:

(SEQUENCE (Go GO) (OR{(in,inside,into)IN1)),

(OR((room,R1) R1)))~-> (lst, 2nd, 3rd)
The operation GO has now been redefined to drop the argument R and to
accept the argument IN1 or OUTl. For dealing with synonymies this rule
using variables adds nothing but unnecessary complexity. The earlier
form without variables can be used to map the synonymous strings onto,
(GO IN1 R1) with less programmed machinery.

The form with variables however, allows the writing of the following
complex rule to deal with most of the variations in strings that map into

GO and its various arguments:

Page 9

(SEQUENCE (Go GO), (OR((in, into, inside) IN1) ((out, outside,

from) OUTL)), (OR{(room,R1I)R1)(R2 R2)))

~= (1st, 2nd, 3rd)
But attempting to account in one rule for all the variations in the
arguments for an operation makes each rule long and quite difficult
to write. We can either restrict ourselves to the relatively easy form
of rules without variables, or introduce a lexicon that can serve as the
basis for substituting canonical for linguistic forms. It will be seen
that adding a lexicon greatly increases the power of the system and
integrates the linguistic model with the model of the world.

A Simple Lexicon. For some purposes a very elementary form of

lexicon can be used to map each canonical form used in an operation
into elements from a set of words as follows:

IN1 - CF - (in inside into)

QUT1 - CF - (out outside from)

Rl « CF - {room R1

R2 - CF - R2

GO - CF - (go proceed travel)
The rule form now appears as follows:

(SEQUENCE GO, (OR (IN1, OUT1)), (OR, R1l, R2)))~> (lst,2nd,3rd)

This rule and the example lexicon can translate such statements as
the following:

Go into the room —=> (GO IN1 R1)

Go from the room —» (GO OUT1 R1)

Go inside R2 —= (GO IN1 R2)

Proceed outside R1-> (GO OUT1 R1)

etc.

Page 10

In order to use a lexicon the interpreter RI, must have been augmented
with a logic that looks up each element of its rule in the lexicon, and
tests the current word in the input sentence as a member of the CF set
associated with that canonical form. The canonical form can now be
seen to be an object in the world model and its CF set contains words
which are objects in the linguistic part of the model.

The canonical form can also be seen to be a class name for a set
of words. The lexicon can be generalized so that any word may belong to
various classes -- such as part of speech and feature -value classes such
as gender, number etc. If we change the orientation of the lexicon so
that each English word is an entry, then rules for recognizing
sequences of words or idioms to map them onto canonical forms may be
included as Woods shows in his lexical structure, (Woods 1972); or verbs
may have sequence rules associated with them as in Thompson (1973), to
identify a particular set of arguments.

In short, the addition of a lexicon, usually in the form of an
attribute value structure, lifts words to the full status of objects
in the model and numerous relations between them and other objects may
be encoded to greatly increase the complexity of the language strings
that can be understood.

A More Complex Model. To carry our generalization of keyword

grammars its last few steps it is convenient to set up a more complex
world-model to make worthwhile the additional linguistic machinery

that is introduced. The model is expanded as shown in Figure 1 to a
world of three rooms, objects Rl, R2 and R3. Three boxes, Bl, BZ, and

B3 are added. The robot, R, and the boxes may be in the relation INSIDE™*

to a room; the rooms may have the relation CONTAIN* to the robot and the

Bl

B2

B3

NAME
COLOR®
INSIDE*
ONTOP*
UNDER*

NAME
COLOR>*
INSIDE*
ONTOP*
UNDER¥*

NAME
COLOR*
INSIDE*
ONTOP*
UNDER*

BOX R1

R1
NIL
NIL

BOX R2
BLUE

R1

NIL

NIL

BOX R3
GREEN

R1

NIL

NIL

PUSH* (OBJ,REL,GOAL)
STACK* (OBJ, REL,OBJ, PLACE)
UNSTACK* (OBJ ,REL, OBJ, PLACE)
GO* (PLACE

0BJ)

NAME
COLOR*
CONTAIN*
DOORWAY*

NAME
COLOR*
CONTAIN*
DOORWAY™*

NAME
COLOR*
CONTAIN*
DOORWAY*

NAME
INSIDE*

Page 11

ROOM
GREEN

(B1 B2 B3)
R2

ROOM
BLUE
NIL

(R1 R3)

ROOM
RED
NIL
R2

ROBOT

Figure 1. Objects, Relations and Operations

of a Micro-world Model

Page 12

boxes. Boxes may be in the relation ONTOP* and UNDER* to each other.

Rooms have a relation DOORWAY* to other rooms. The robot participates
in the operations PUSH*, STACK*, UNSTACK*, and GO*. The rooms and the
boxes each have a relation COLOR* to the verbal objects red, green or

blue.

Although it is not pa;ticularly relevant to our linguistic consid-
erations, the operations are goal-oriented. For example if the robot
is in R1, the blue box is om top of the green one, and they are both
in R3; when the robot is told to push the blue box into R2, PUSH* is
programmed so that it will call GO* to take the robot into R3, unstack
the boxes, then push the blue box into R2, possibly going back through
Rl if the doorways require it. A method of programming goal-oriented
functions in MICROPLANNER that is equally suitable for LISP is clearly
described by Winograd.

An immediate consequence of this more complicated world model is
that a single word may now stand for several similar objects -- e.g. B1,
B2, and B3 are all named "box" and R1, R2 and R3 are all named Yroom'.
The concepts of number -- one, two or three boxes -- and of distinguishing
features -- red box, green room -- are introduced. We may also use
indirect reference as in "Stack the box in the blue room on the one in
the red room". The linguistic model must have enough power to translate
the above sentence into

(STACK* BLi ONTOP* Bj Rj)

First a simpler example: 'Put the red box in the blue room'. We

can use the interpreter RI that we have so far developed if we augment

it with a function, SELECT, that takes a determiner, a color and an

Page 13

object name as arguments and returns the set of objects in the world
model that they designate. A rule to translate the example sentence
into the operation indicated is as follows:
(SEQUENCE (AND OP (D PUSH*)), DET, COLOR, OBJECT, REL, COLOR, PLACE)
=>» (1st, (SELECT 2nd, 3rd, &4th), Sth)(SELECT 6th, 7th))
The arguments of the left half of the rule are word classes and predicates.
The first argument, AND(OP, (D PUSH¥*)) requires that the first word, "Put",
be an operator that has the denotation PUSH*., Figure 2 shows the necessity
for this predicate in that the lexical entry for "put" has two DENOTE
values, PUSH* and STACK*. The right half of the rule contains the variables
lst, 2nd, etc. referring to arguments of the left half. The interpreter
RI has the task of taking each word class name as an implicit predicate
on the word in the string and binding to 1lst, 2nd, etc. the value of
DENOTE in its lexical entry. Other predicates such as (D PUSH*) can be
programmed as functioms that return NIL or a value -- such as PUSH¥ --
to be bound by RI to the current variable.
By consulting Figure 2 we can see that RI will bind the DENOTE
values for the arguments in the left half of the rule to result in the
following right half:
(PUSH* (SELECT DEF*, RED, (Bl B2 B3)), INSIDE¥,
(SELECT DEF*, BLUE, (R1 R2 R3)))
When SELECT evaluates its arguments, the right half appears as follows:
(PUSH* B1l, INSIDE®*, RZ)
These are acceptable arguments for the operator PUSH* and the result
of its operation is to change the model of Figure 1 in the following

respects:

BOX

ROOM

PUT

STACK

IN

INSIDE

ON

CLASS
DENOTE

CLASS
DENOTE

CLASS
DENOTE

CLASS
DENOTE

CLASS
DENOTE

CLASS
DENOTE

CLASS
DENOTE
IDIOM

Figure 2.

OBJECT
(B1 B2

PLACE
(R1 R2

OoP
(PUSH*

0)3
STACK*

REL
INSIDE*

REL
INSIDE*

REL
ONTOP*
(SEQUEN

RED
B3)

GREEN
R3)

BLUE
STACK¥*)

THE

ONE

WO

COLOR

CE ((ON TOP)ONTOP*)
((ON TOP OF) ONTOP¥*)
((ON BOTTOM) UNDER*)

CLASS
DENOTE

CLASS
DENOTE

CLASS
DENOTE

CLASS
NBR
DENOTE

CLASS
NBR
DENOTE

CLASS
NBR
DENOTE

CLASS
DENOTE

((ON BOTTOM OF) UNDER%*))

Page 14

COLOR*
RED

COLOR*
GREEN

COLOR*
BLUE

DETERMINER
S/PL
DET*

DET
1
DET¥

DET
2
DET*

OBJECT
(RED GREEN BLUE)

Portion of Lexicon for a Linguistic Model

Page 15

Bl INSIDE* RZ
R2 CONTAIN* Bl
R1 CONTAIN*(B2 B3)

We have now generalized the original keyword machinery to include
Boolian predicates, generalized predicates, (i.e. word classes and
features), variables, and functions. The reader will have noticed that
about all that is left to make the system a complete programming language
is the addition of subroutines and labels for the rules. The nature of
this addition can be seen by considering the following example:

“put the red box in the blue room in the red room."

We could simply
write a longer rule of the form already described -- ome with 12 arguments
in its left half. This approach would make rule writing a fairly tedious
process since all variations of English strings of word-classes for the
subset would have to be explicitly specified. The introduction of
subroutines offers an obvious saving. We can at this point introduce
the notion of a Noun Phrase or NP rule and refer to it in the following
manner:
(P1 (SEQUENCE (AND OP (D PUSH*)), (CALL NP1), REL, (CALL NP2})
= (1st 2nd, 3rd, 4th))
(NP1 (SEQUENCE DET, COLOR, OBJECT, REL, COLOR, PLACE)
—> (RETURN(SELECT lst, 2nd, 3rd, 4&th, 5th, 6th)))
(NP2 (SEQUENCE DET, COLOR, PLACE) —> (RETURN (SELECT lst Znd 3rd)))
Notice that SELECT has been generalized to n arguments and that
the functions CALL and RETURN have been introduced to deal with sub-

routines.

At this stage we can skip the detailing of further changes to the

Page 16

interpreter, RI, since it is now required to be roughly equivalent to

such early string processing languages as Yngve's COMIT (1961) and
Bobrow's METEOR (1968). It is more to the point of the present discussion
to show how it relates to such recent systems as Winograd's PROGRAMMER

and Wood's augmented finite state transition parser.

The graph of Figure 3 shows a network representation similar to the
last example rule. The circles are states and the arcs are characterized
by predicate tests printed above and operations printed below. The left
pointing arrow stands for an assignment operation. The function, GETF
returns for the current word in the string,the value of the feature
which is its argument -- thus, (GETF DENOTE) for 'box' returns (Bl B2 B3).
The arcs such as (POP(SELECT 1st, 2nd, 3rd)) assign the value of the
SELECT function to a register named * and pass it back to a PUSH arc
which called a particular subnet such as NP2 as a subroutine.

The essential similarity between what is accomplished in the example
rule and an equivalent Woods net is emphasized by the introduction of
Woods' functions GETF, PUSH and POP. Winograd has already discussed
the programming equivalence of Woods' network representation and his
own PROGRAMMER system (1972, p 201). Since both of these systems have
been shown effective to handle complex grammars for important subsets of
English, we need not attempt to develop our METEOR-like generalization
of keyword grammars further. The point has been made that starting
with a keyword scanner that has arbitrary structure building capabilities,
we can generalize that scanner into an interpreter that can accept a
program containing arbitrary predicate conditions and operations on the

elements of a string, and can use variables and subroutines. Both Woods

17

Page

so[ny Jewweln Jo uoljeiussaidey 38N @3vlg 93TuLj peijuswdny ¢ 2and14g

((AIONEQ A1TAD) - PIg)

T ——

et e

((4IONHd A1LED) ~» puy)
(pig pug 351 LOATAS)d0d)

e \\\\\\ B —
Io4argo B (¢)5 (o))

((JIONHG A1ED) - IST)

(% »43y)

((HLONEQ 4199) -»Pig)

(x - puy)

/‘l\i\t\‘\\.\.\
((uay pag puz 3s8T1)dod)

(zdN HSNd)

149

\\\\

(14N HSNdA) (((sHSNd @) -»13I5T)d

0 aNvy)

Page 18

and Winograd have shown that such a system is powerful enough to construct

deep semantic structures to represent the meanings of English sentences.

III. Discussion and Conclusions

A step-wise continuity has been outlined between elementary keyword
analyzers and those very sophisticated parsers that provide deep structure
analyses of English strings. The essential feature in common is that a
keyword string set up as a rule, is predictive in nature. Such a rule,
if matched by its first element to a language string, predicts that the
rest of the string will be bound by the constraints of the rule. 1If the
constraints on the string fail at any point, another rule is tried. 1If
all constraints are met, transformations may be applied to the string,
or any desired program may be operated to construct a representation of
the string's meaning. When such rules are generalized to use variables,
predicates and subroutines, they can be arranged either as a program in
a pattern-operation language such as COMIT, as a LISP program as in
PROGRAMMER, or as an augmented network of conditions and operations
as in a Woods network,

A few observations can be noted about models. In this paper the
view has been taken that underlying the meaning of natural language
strings there is a model of some world to be talked about. The models
used as examples have been trivialized robot worlds consisting of one
or three rooms and a few objects whose inter-relations can be manipulated.
Hendrix (1973) shows a generalization of the approach for modelling ordinary
textual event descriptions. Some psychologists such as Norman (1972)
extend this modelling approach to the description of more complicated

worlds such as an ordinary kitchen. What appears significant to me is that

Page 19

the modelling approach that was outlined is a very ordinary set-theoretic
description that appears to have no significant limiting features in its
applicability to any domain of discrete objects.®* The resulting models
are mapped easily into such computational structures as property lists,
predicates and programmed operations. One point is that the modelling
method and corresponding programs are easily teachable techniques.
Constructing actual detailed models of significant domains, in contrast,
is apparently a tedious task subject to many errors. Modelling the
domain of a single paragraph of text requires deep thought about the
meanings that the author expresses in his words and sentences.

The final observation is that corresponding to a model of the world
there is a model of a language for talking about it. For English, such
models include as objects, words, word classes and features, As relations
there are word sequences and set memberships. The operations of linguistic
models are generally transformations from a string of words into operations
that change the relations that exist among objects denoted by the words
in the relevant world-model.

A most important point that derives from this analysis is that
simple models of the world require only correspondingly simple models
of language. The keyword approach may be quite adequate for talking
about a world model whose objects are words, sentences, paragraphs, books,
etc. That is, indexing applications and many information retrieval
and CAI applications currently fit this limitation and may be adequately

treated with minimal linguistic machinery. If a robot were actually

% but is not easily applicable to such phenomena as waves passing through
fluids or wheels rolling along surfaces.

Page 20

limited to a few rooms, a few objects and a few operation, little

would be required of its language model. But the fact is that any deep
description of even a miniscule world gets intp such incredibly
complicated inter-relations among its elements, that the linguistic
model and its interpreter needs the full power of such systems as

PROGRAMMER and the Woods network.

Page 21
REFERENCES
Baltzer, R. Automatic Programming, Information Sciences Institute,
Item 1 ARPANET. :

Bobrow, D. G. ''Natural Language Input for a Problem Solving System”
in Minsky, M. (Ed.), Semantic Information Processing. 1968.

Colby, K. M., Weber, S., and Hilf, F. D. "Artificial Paranoia'
Artificial Intelligence Vol. 2, #1, Spring 1971.

Hendrix, G. G., "Question Answering Via Canonical Verbs and Semantic
Models: A Model of Textual Meaning'', The University of Texas,
Austin, Techmical Report NL 12, January 1973.

Lindsay, P. H. and Norman, D. A., Human Information Processing
Academic Press, New York, 1972.

Minsky, M. (Ed.), Semantic Information Processing, M.I.T. Press,
Cambridge Mass. 1968.

Quillian, R. ''Semantic Memory", in Minsky, M. (Ed.) Semantic Information

Processing, 1968.

Simmons, R.F., ''Semantic Networks: Their Computation and Use for
Understanding English Sentences' in Schank, R. and Colby, K.
(Eds.) Computer Simulation of Cognitive Processes, Prentice-
Hall, IN PRESS.

Thompson, C.W., '"Question Answering Via Canonical Verbs and Semantic
Models: Parsing to Canonical Verb Forms' The University of Texas
Technical Report NL 11, January 1973

Weizenbaum, J. "ELIZA" Comm. ACM Vol. 9, #1, January 1966, pp. 36-45.

Winograd, T. Understanding Natural Language Academic Press, New York,
1972,

Woods, W. A., Kaplan, R M., Nash-Webber, B., The Lunar Sciences Natural
Language Information System: Final Report, Bolt Beranek and
Newman Inc. Cambridge, Mass. Jume 15, 1972, BBN Report #2378.

Yngve, V. H., COMIT Programmers Reference Manual M.I.T. Press, Cambridge,
Mass., 1961.

