QUESTION ANSWERING VIA CANONICAL VERBS
AND SEMANTIC MODELS:
A MODEL OF TEXTUAL MEANING

Gary G. Hendrix

Technical Report NL 12

January 1973

Natural Language Research for CAIL
Supported by
The National Science Foundation

Grant GJ 509X

The Department of Computer Sciences
and CAI Laboratory
The University of Texas

Austin, Texas 78712

ABSTRACT

A natural language question answering system is presented with
special emphasis on the scheme used to model the meaning of a body of
text. The principle components of this scheme are a state of the world
graph (SWG) and a time line. The SWG encodes objects and relationships,
as they appear in a brief instant, in a representation similar to that
used by the STRIPS robot. The time line encodes the nature and sequence
of events characterizing the changes in the state of the world with the
passage of time. Mechanisms coupling the modeling scheme to natural

language input and output are discussed and illustrated by examples.

Key Words and Phrases: Semantic model, question answerer, time frame,

event scenario, canonical verb, semantic paradigm, robot.

QUESTION ANSWERING VIA CANONICAL VERBS AND SEMANTIC MODELS:

A MODEL OF TEXTUAL MEANING

Introduction: The question answering system

One of the major obstacles confronting the builders of a natural
language question answering system is the problem of adequately repre-
senting the meaning contained in the piece of text over which questions
are asked. The goal of this report is to present a two pronged approach
for surmounting this obstacle. First, English input sentences are parsed
into a form of semantic net (7). In the net the event described by the
English sentence is depicted by a canonical verb (6) and a set of event
parameters associated with that verb. This parsing system, presented fully
in a companion paper. (10), provides the mechanism by which widely diverse
surface structures with identical meaning may be transformed into a unique
conceptual structure. Second, a STRIPS (3) robot-like model of the world
is used to weave the sequence of events presented to the question answerer
over several sentences into a unified whole.

A diagram of the overall system is shown in Figure 1. English
statements or questions are given to the parser which produces a semantic
net representation of the sentence employing canonical verb forms. The
output from the parser is fed to an interface which determines what facts
are to be recorded in the model or, in the case of a question, what
information must be retrieved. The model acts as an information store-
house. After retrieval from the model, appropriate responses to input
strings are fed to the generator from the interface. The generator (8,9)

in turn produces English output.

Page 2

English statements and 5 PARSER I
questions - N
| T
| B
| R
i F
* A
LEXICON C MODEL
™ %
|
i
v
English responses & —GENERATOR

Diagram of Question Answering System

FIGURE 1

Page 3

In practice, a chronological sequence of events constituting a story
is given to the system as input. As the story unfolds, a model encoding
the actors, props and events of the story is constructed. The system
behaves as though it were recording the story on motion picture film.

The input sequence also may include questions which query portions
of the story already told. To help answer such questions, the "film"

produced by declarative sentences is reviewed.

Models and question answering

When asked a question, an intelligent entity has two alternatives
for arriving at an answer. The entity may perform an experiment or it
may use some theory or model. Many (perhaps all) questions about the
past must be answered by models since it is impossible to actually turn
back the clock to perform an experiment in the past. (The memory of a
past experiment is a model, not an actual experiment.) By a similar
argument, questions about the future must be answered by models if
they are to be answered at all.

Experiments, of course, may be used to answer questions about the
present. However, some use of a theory of model must be made to determine
what set of experiments must be performed and how the results of the
experiments are to be interpreted.

Hence, it is necessary to conclude that models in some form are
necessary for most if not all question answering. The need for good
models in answering questions by computer is particularly acute since
the computer does not have (or at least is not often given) the ability
to perform experiments in the real world.

Until recently, the use of semantic models has been only an

Page &

implicit part of natural language systems. (According to the above,
previous systems must have contained models, if only implicitly, since
they lacked the ability to perform experiments:) More recent works
such as Winograd's (11) and John Brown's (1) do use explicit models
although their models are rather specific in nature. (i.e., Winograd's
model is confined to the block's world and Brown's to some well defined

physical systems.)

The Modeling system

The purpose of the modeling portion of the question answering
system 1s to encode a collection of facts or concepts. Three distinct
types of concepts must be encoded:

1) Objects

2) Relationships between objects

3) Changes in relationships with respect to time
The modeling system uses an encoding procedure analogous to that used
in motion pictures. Motion picture film is actually a sequence of still
photos. Objects are recorded in the still photographs by their images.
Physical relationships between objects are recorded by the physical
arrangement of images in the still photos. Changes in relationships
with respect to time are recorded by the sequence of still photographs.

The "still photos" of the modeling system are graphs representing the
state of the world at am instant in time. Nodes in the graph stand for
objects, and arcs represent (binary) relationships between objects.

No time relationships are included since time is effectively eliminated

as a variable by considering only a brief instant in each graph. Figure 2

Page 5

¢ HH0otd

ydean praoMm syl jo 23elg v

HHOL SHY VAU VH

HAOLSATID0UD

pRIKRA L
919 TIVL & A
pow HI200D
MAN o
7 WIA0D HAVD
PN]
T 4
e a\M\\\\\\‘U kS M Uxﬁ X
s s
— P\ 2
amy a0 1vd 5
S . .ma AMAvL
e — E ™
Tt — & 2
qyo * Tum P 9V \
Ty e NV =<3 NYROU
SUMT ™., NHOT S nHOr xxa\\oﬂmn\ow SEELRE
ISt T4 A ¢ N
qASNOH & «ASNOHLy €2 e Tdowsie ¢ ;
Juswal 2 kol R i e %Mrf/
: . 1., & A 0T i
Lvod & BSr— %L VO SN *HOL% TuEweTs WOL
‘ TV~
13w

QJJW/‘?

\J TYRINY
“
Y

Page 6
is an example of a state of the world graph (SWG). Node names beginning
and ending with asterisks represent names which have been GENSYMed by
the system. Other node names are words in the. system's lexicon,

Consider the node labeled *JOHN*. *JOHN* is an element of JOHN
and GROCER. JOHN is the set of all Johns, a subset of MAN, the set of
all men. GROCER is the set of all grocers. Hence, *JOHN* is a node
representing a particular man who is a John who is a grocer. This
John owns a particular house, *JHOUSE*. Further, John is at that house,
owns an old, red car and 1is fat.

To model changes in relationships with respect to time, a sequence
of SWGs, analogous to the sequence of still photographs of motion pictures,
is defined. The sequence of events causing changes in the state of the
world is recorded on a time line (see Figure 3). Each node on the time line
corresponds to an event. Beginning with some initial state, the state
of the world following any event may be determined by considering the
sequence of ewents along the time line. Associated with each event are
a list of relationships which held before the event took place but which
are no longer valid after the event (the delete list) and a list of
relationships which did not hold (or at least were not known to hold)
before the event took place but which are valid after the event (the
add list). Thus, each node on the time line models a set of changes
in the state of the world produced by the occurrence of some event,

To specify the event causing the changes, an event class name and a
list of parameters are also associated with each time line node.

When the question answering system first begins to operate, it

begins with a SWG representing conditions before the first event. As

Page 7
descriptions of events are given as inputs, new nodes are added to the
time line. With each new event, certain relations (those on the event's
delete 1list) are deleted from the current SWG and new relationships
(those on the add list) are added. Thus, the old picture of the state
of the world is transformed into a new picture showing conditions after
the event. To answer questions about relationships in the past, the movie
may be run baékwards by considering the sequence of events in reverse
order and deleting the adds and adding the deletes. Once a question is
answered, an analogous forward process resets the SWG to reflect current
conditions. Thus, only one SWG need be kept.

Questions regarding the nature of events themselves (as opposed to
questions concerning relationships which are altered by events) are
answered by consulting the record of events on the time line.

Most ordinary events may be specified by a variety of verbs.

For example, the event of buying may also be specified as a selling or

a trading. Clearly, '"John sold the car to Tom" means the same as "Tom
bought the car from John.' To simplify the modeling system, each class

of events is allowed to have only one name. Hence, the verbs "buy",
"sell", "trade", etc., are all recorded under the event name EXCHANGE.

That is, any node on the time line modeling a buying or a selling will have
associated with it the event class name EXCHANGE. The transformation of
various English verbs into the canonical form used in the modeling system
is.performed by the parser section of the question answering system
described in the companion paper.

An event is not adequately specified by its name alonme. A list
of event parameters is also needed. For example, EXCHANGE means very

1ittle unless it is accompanied by a list of parameters specifying the

Page 3

B i o Future

add list

. . .th
/%E:) is the node representing the j event
‘\ 1

_ . .th - .
j S, is the graph representing the j state of the world

pob
w

L J
Abstract Diagram of the Timo Line
FLIGURE 3
Q*TOM* *JOHN* *BOAT* *CAR* NIL)

State of the

e

=1
X
:
—
(D]
tx1

/G New state

H
]
i
of the world |

r

i

| world shown in| \ /i

| . i \ !

§ Figure 2 | \/ﬁﬁ< i |

Past { | Future

{(OWNS *JOHN* *CAR¥) ((OWNS *JOHN* *BOAT)
{OWNS *TOM* *BOAT*)) (OWNS #TOM* *CAR*))

Time Line Record of an EXCHANGE Event

FIGURE &

Page 9

seller, the buyer, the thing bought, etc. Clearly, not all the para-
meters need be known ('"John bought something at the bakery'), but the
more parameters which are known, the better the event is specified,
Hence, with each time line node there is associated a list of para-
meters the length and order of which is determined by the associated
event class.

As an example of a time line node, consider how the event "John
traded his car to Tom for Tom's boat' would change the SWG of Figure 2.
The relationships (OWNS *JOHN* *CARW) and (OWNS *TOM* *BOAT*) would no
longer be true. (OWNS *JOHN* *BOAT*) and (OWNS *TOM* *CAR*) would become
true. Hence, a time line node like the ome shown in Figure 4 would be
produced.

Sometimes the cause of a change in the state of the world is not
known. In such instances the event class and parameter lists associated

with the time line node are marked NIL.

A basic manipulation function

The basic operations used to manipulate the model’'s data base is
ADVFRM (advance frame). ADVFRM is a function of four arguments, the
name of an event class, the parameters associated with the event, a list
of relationships which are to be deleted from the SWG as a result of the
event, and a list of relationships which are to be added. ADVFRM creates
a new node on the time line and associates the arguments with that node.

Further, for each relation (r e ez) on the delete list, ADVFRM removes

1

the arc r which joins the nodes ey and e, in the SWG, if such an arc

exists. If such an arc does not exist, (r e ez) is deleted from the

1

Page 10

delete list associated with the time line node. (This prevents the arc
from being erroneously created when the model is backed up.) For each

relation (r e ez) on the add list, nodes with .labels e, and e, are

1 1

created if need be and an arc labeled r is created to join them. (If

such an arc already exists, (r e ez) is deleted from the add list

1
associated with the time line node.)
If the first two arguments of ADVFRM are NIL, then no reason is given

for the change in the state of the world. By use of this feature, initial

conditions may be set up.

Events as operators

Since an event transforms one state of the world into another, it
is reasonable to think of events as operators. Pursuing this notion,
an event class name becomes the name of an operation which transforms
the state of the world (an implicit parameter) and a set of explicit
event parameters into a new state of the world. In terms of the model,

the event class name becomes the name of a procedure (an event procedure)

which transforms the SWG and a list of explicit parameter wvalues into
a new SWG.

Such event procedures with all the power of Turing machines could
be written for each verb class. However, in the present work a much
more restricted view of these event procedures has been takén, parallel-
ing the definitions of operators for the STRIPS robot. In the STRIPS
robot, an operation is defined in terms of a set of preconditions (a
list of relationships) which must hold in the state of the world before

the operation may be applied, and both a list of relationships which must

Page 11

be deleted as a result of the operation and a list of relatiomnships
which must be added.

Several features of the STRIPS robot operators appear to be
immediately applicable to event procedures. The operators are called
by the operation name and a list of explicit parameters with the STRIPS
state of the world model as an implicit parameter. In parallel, event
procedures are to be called by the event class name and a list of explicit
event parameters with the SWG as an implicit parameter. Further, there
is an unmistakable correspondence between the add and delete lists of
the STRIPS robot and the add and delete lists which are associated with
time line nodes. Thus, the only component of a STRIPS operator which
does not appear immediately useful is the precondition list.

The precondition lists of operators are used by the STRIPS robot
in determining a workable sequence of operations for achieving the robot's
goal. 1In contrast, a question answerer which receives a chronological
accounting of events has no need to determine the event sequence since
it is given. There is, however, an analogous problem which may be seen
in the following example. Suppose that part of the input to the question
answerer is "John bought a clock at the hardware store. Then John bought

' Note that John was at the hardware store when

a cake at the new bakery.'
he bought the clock. The next event has him buying a cake at the new
bakery. Before the event at the bakery could take place (as a precondition
to the bakery event), John must have gone (perhaps by a complex route)

from the hardware store to the bakery. Thus, the necessity of satisfying

preconditions clearly remains a problem even when the event sequence is

given. In the question answering system, the precondition problem is the

Page 12

problem of determining the nature of unspecified intermediate events
which set the stage for the accomplishment of specified events.

The nature of these unspecified intermediate events may, to a large
extent, be determined by the preconditions of the specified events.
Returning to the example, before "John bought a cake at the new bakery"”
some event must have occurred which deleted the relation that he was
at the hardware store and added the relation that he was at the bakery.
In general, EXCHANGE events must be preceded by events which bring the
participants in the event to the place of exchange, etc.

In the place of the preconditions used by STRIPS robot operators,
an event procedure substitutes the add and delete lists of an unspecified
intermediate event which transforms any state of the world into a state
satisfying the preconditions of the main event. That such an event must
have occurred is implied by the sequence of specified events. Thus, a
call to an event procedure causes two events to be incorporated into the
model, creating two nodes on the time line.

An example of an event procedure, a simplified version of EXCHANGE,
is shown below.

procedure call

EXCHANGE (seller buyer thingbought thinggiveninexch place)

intermediate delete list

((AT seller *) (AT buyer *) (AT thingbought *) (AT thinggiveninexch *)
(OWNS * thingbought) (OWNS * thinggiveninexch})

intermediate add list

((AT seller place) (AT buyer place) (AT thingbought place)
(AT thinggiveninexch place) (OWNS seller thingbought)
(OWNS buyer thinggiveninexch))

Page 13

main delete list

((OWNS buyer thinggiveninexch) (UWNS seller thingbought))

main add list

((OWNS buyer thingbought) (OWNS seller thinggiveninexch))

Consider the actions performed by the event procedure EXCHANGE if
the system is presented with the event At the new bakery John bought
a cake from the baker" while in the state shown in Figure 2. By a
mechanism to be discussed shortly, the system finds the SWG node *JOHN%*
which represents the particular John under discussion and creates nodes
BAKERY, *CAKE* and *BAKER* to represent the bakery, the cake and the
baker. Relationships integrating these new nodes into the original graph
are also produced. With these nodes (node names) as arguments, procedure
EXCHANGE is entered by the call

EXCHANGE (*BAKER* *JOHN* *CAKE* NIL *BAKERY*)

where NIL represents the unspecified parameter thinggiveninexch. The
effect of the call on the time line is shown in Figure 5. Stepping
through the procedure:

1) A time line node is created for the intermediate event with
event class name and parameter list set to NIL,

2) Working down the intermediate delete list of the event procedure
(AT seller *) is considered first. An attempt is made to match this
relationship against those encoded in the SWG. The asterisk is allowed
to match anything, but "seller' is bound to *BAKER*, Thus a matching
relation must be of the form (AT *BAKER* ~-). Since no such relation
exists in the SWG, no action is taken. The next relationship on the
delete list is (AT buyer *) which matches (AT *JOHN* *JHOUSE*) in the

SWG. Hence, (AT *JOHN* *JHOUSE*) is deleted from the SWG and the relation

Page 14

S H4Ao14

2INPad01g JUBAY Ue Ag PP31e8lI) SOpON oulf WLl

((+DIVOy. »ADIVLy SNMO)
(229MAVdy »MDIVIx 1Y)
(xXIMIVEx 2NHOCx 1V)
((2 DIVD% (x2IMAVEr ADYE: 1V)) ((+HSNOHC

v xNHOT: 1V))
2NHOL% SNMO)) (GDIVOs »4MIVEx SNMO))
ANINJ & 3sed
(2 X4DIVLx
TIN #@IVOx /// \\
%NHOLx »¥IIVds) TONVHI XA

TIN TIN

Page 15

put on the delete list of the time line node. The relationships (AT
thingbought *), (AT thinggiveninexch *), (OWNS * thingbought) and
(OWNS * thinggiveninexch) match nothing in the SWG and hence cause
no action.

3) Working down the intermediate add list, (AT seller place)
causes (AT *BAKER* *BAKERY*) to be added both to the SWG and to the
intermediate time line node add list. Likewise, (AT *JOHN* *BAKERY*)
and (AT *CAKE* *BAKERY*) are added. Since thinggiveninexch is bound to
NIL, (AT thinggiveninexch place) causes no action. Proceeding down the
add list, (OWNS *BAKER* *CAKE*) is added while the relation (OWNS buyer
thinggiveninexch) causes no action.

4 A time line node is set up for the main event with the event
class name set to EXCHANGE and the parameter list set to (*BAKER* *JOHN¥
CAKE NIL *BAKERY*).

5) By working down the main delete list of the event procedure,
(OWNS *BAKER* *CAKE*) is deleted.

6) By working down the add list (OWNS *JOHN* *CAKE*) is added.

Steps 1 - 3 and 4 - 6 are accomplished by calls to ADVFRM.

By this procedure the original state of the world (as shown by
the model) is transformed into an intermediate state in which John and
the baker are at the bakery and the baker owns the cake. This intermediate
state is then transformed into a state in which John and the baker are
still at the bakery, but John owns the cake. The reader is encouraged
to step through the EXCHANGE procedure starting with various states of

the world and using variations of the event parameters.

Page 16

Preparing English input for use in the modeling system

Left unexplained in the last section was the mechanism by which
English sentences are transformed into event procedure names and lists
of explicit parameters naming nodes in the SWG. Rather than define this
rather subtle mechanism in detail, an example showing how the mechanism
transforms indicative affirmative sentences will be presented. (The
mechanism differs somewhat for interrogative sentences.)

The input sentence

"At the new bakery John bought a cake from the baker"
is transformed by the parser into a semantic net. A simplified represent-
ation of that net is as follows.

(SENTENCEx (CANONICAL-VERB-FORM EXCHANGE)

(SELLER (PRINTIMAGE BAKER DETERMINER DEFINITE))
(BUYER (PRINTIMAGE JOHN DETERMINER DEFINITE))
(THINGBOUGHT (PRINTIMAGE CAKE DETERMINER INDEFINITE))
(PLACE (PRINTIMAGE BAKERY DETERMINER DEFINITE
MOD (PRINTIMAGE NEW DEGREE POSITIVE)))
(MODAL (PAST INDICATIVE AFFIRMATIVE)))
The procedure name, EXCHANGE, is indicated as the CANONICAL-VERB-FORM.
Information relating to event parameters is contained in property lists
preceded by such parameter names as SELLER, BUYER, etc. Any parameter
not defined by a property list in the net structure is set of NIL.

Each parameter defined explicitly by the parser output must be
bound to the name of some node in the SWG. 1If no appropriate node exists
in the SWG, one must be created. To do this a routine, FOC (find or create),

is called with a parameter's property list as its argument. If the

parameter’'s determiner is indefinite, then FOC simply creates a new

Page 17

node in the SWG satisfyving the other properties on the property list.
Thus, when "a cake' is mentioned, FOC creates a new cake and does not
concern itself with whether or not this new cake is some cake already
modeled in the system. (Should it later be determined that two nodes
actually model the same entity, a special COLLAPSE function is used to
merge them.) If the parameter's determiner is definite, then FOC
attempts to find an existing node in the graph satisfying the description
of the noun. Thus, when FOC is to return the name of a node corresponding
to "the new bakery' it assumes that a new bakery has been talked about before
and it looks for a node in the SWG which could be modeling that bakery.
If more than one such node is found, the last one mentioned is returned.
(Fach time a node is used a use-time is associated with it.) If no such
node is found, one is created,

The value of the attribute PRINTIMAGE on a parameter's property
list is assumed to be the name of a node representing a set of entities
of which the value of the parameter is an element. In the case of the
parameter SELLER, BAKER is the name of a set of which the value of
SELLER must be a member. Words such as BAKER, JOHN, CAKE, etc., are
entered in both the system's lexicon (for use by the parser) and the
SWG before processing begins. Certain primitive relationships among the
sets named by these words are also preset. TFor example, the relation
(SUBSET JOHN MAN) 1is preset in the SWG. Thus, whenever a John is
mentioned he becomes an element of JOHN, a subset of MAN, and is
therefore known to be a man.

The parameters for "At the new bakery John bought a cake from the

baker" are processed from the semantic net as follows.

Page 18

9] The SELLER is determined. FOC looks for an x in the SWG such
that (ELEMENT x BAKER). Finding no such x, one is created (call it *BAKER¥)
and it becomes the value of SELLER. (During this process (ELEMENT *BAKER*
BAKER) is encoded in the SWG.)

2) The BUYER is determined. FOC looks for an x such that
(ELEMENT x JOHN). It finds *JOHN* which becomes the value of BUYER.

3) THINGBOUGHT is determined. Since the determiner is indefinite,
FOC creates a new node x such that (ELEMENT x CAKE). Assume x is named
CAKE%,

4) PLACE is determined. In this instance the job of FOC is
complicated by the presence of the modification. FOC looks for am x
such that (ELEMENT x BAKERY) and (MOD x NEW). Finding none, FOC creates
such an x and makes it the value of PLACE.

Once the values of parameters have been determined, the system calls
EXCHANGE to encode the event. It is important to note that relatiomships
encoded in the SWG during the process of defining new nodes to serve as
parameters are not entered on the add of delete lists of the event's
time line nodes. Thus, the new nodes are not eradicated if the model’s
time frame is backed up over the event., For example, the model will

always know who the baker is.

Processing interrogative sentences

The processing of interrogative sentences closely parallels that
of declarative sentences so far as the determination of parameters is
concerned. Of course, rather than direct the system to change the SWG

and extend the time line, questions cause the SWG and time line to be

Page 19

examined. There are three basic types of questions the system is capable
of accommodating.

An example of the first type is 'What man'bought a cake at the
bakery?" Questions of this type are answered by examination of the
time line. For the current example, a search down the time line {(toward
the past) is conducted until an event is found whose event class is
EXCHANGE and whose PLACE parameter has the value *BAKERY*. When such
a node is found a test is made to see if the value of the THINGBOUGHT
parameter is an element of CAKE. This test being passad another test
is performed to determine if the value of BUYER is an element of MAN.
I1f this test is passed then the value of BUYER is the answer to the
question. This answer is used to create a property list for the parameter
BUYER in the semantic net which posed the question. After some slight
alterations, this semantic net is given to the generator which produces
any one of a number of paraphrases of "John bought a cake at the bakery."

An example of the second type of question is "What did the baker

own before John bought something at the bakery?"” The parser splits the
question into two parts. A search similar to the one just described
is used to find a node on the time line corresponding to the event
"John bought something at the bakery.' The SWG is then backed up to
just before that event and the system investigates the SWG for an x
such that (OWNS *BAKER* x). If such an x 1s found, it is the answer
to the question.

An example of the third type of question is '"What did the baker
own before John owned a cake?” To answer this question the SWG is stepped

back until a state is found in which (OWNS *JOHN* x) and (ELEMENT x CAKE)

Page 20

are true. Then the SWG is stepped back until one of these relationships
is no longer true. Finally, the SWG is stepped back until (OWNS *BAKER* z)
is true for some z. If such a z can be found,-it is the answer to the

question.

Implementation

The semantic modeling system and other parts of the question answer
have been implemented in GROPE, a graph processing language embedded in
FORTRAN, on the CDC 6600 at the University of Texas. A number of experiments
have been conducted using various versions of event procedures for the event
classes EXCHANGE and GO-CARRY. (A special procedure was also written for
BE. Since BE does not express action, it causes no nodes to be added
to the time line but simply changes the SWG. Sentences such as "John
is at Tom's house', "John is a grocer', and "John owns the car', are all
handled through BE by various mechanisms.)

The system, while conceptually simply and easily programmable, has
proven to be quite satisfactory in answering questions relating to
sequences of events. Indeed, for long sequences which follow no
particular pattern, the system 1s almost always better able to keep
track of the order of events and the complete current state of the world
than a human competitor. Response time for most questions is in the
neighborhood of one or two seconds.

An interesting difficulty posed by the definition of the event
procedure EXCHANGE was discovered when the system was given the input
"John bought a clock at the hardware store. Then John bought a cake at

H

the new bakery." When asked the question '"Where is John's clock?', the

Page 21

system answered "John's clock is at the hardware store.”" A human
question answerer would probably assume that John carried the clock
with him and would answer "At the bakery." Had John gone from the
hardware store to his home and then to the bakery, a human would
probably assume that John's clock was at John's house.

Suppose the system knows that Tom owns a boat, a house and $100.
If the system is first told "Tom traded something for John's car', and
then asked '"What does Tom own?", the system replies that Tom owns a boat,
a house, a car and $100. Clearly, Tom does own the car, but the boat,
house and $100 are all questionable. The SWG needs to be generalized
to indicate which information is known to be factual and which is merely
speculative. Such a generalization might also help cure the problem
of the preceding paragraph.

As a final criticism, the strict chronological sequence demanded by
the system causes input texts to make very boring reading. Rather than
being restricted to time line growth on the right, event procedures using
tense (2) and other time clues provided by the input sentences might be
able to insert events into the history portion of the time line. Even
with such an extension, the system would still be unable to account for
the simultaneous occurrence of multiple events or the occurrence of events
in an unknown order. Both of the latter problems could conceivably be

solved by generalizing the time line to a directed graph.

Acknowledgements

I would like to acknowledge the advice and guidance which I received
from coworkers on the question answering system project. Many of the ideas

presented #n this paper were molded through interactions with Jonmathan

Page 22

Siocum, Craig Thompson, Henry Armus,Jr., and with our professor, Dr.

Robert Simmons.

10.

11.

Page 23

REFERENCES

Brown, John S., R. B. Burton and Frank Zdybel, "A Model Driven
Question-Answering System for a CAI Environment " University of
California, Irvine, Department of Information Science, Technical
Report #13, January 1972.

Bruce, Bertram C., "A Model for Temporal References and Its
Application in a Question Answering Program,” Artificial Intelligence,
111, 1972, 1-25.

Fikes, Richard E. and Nils J. Nilsson, "STRIPS: A New Approach
to the Application of Theorem Proving to Problem Solving," Artificial
Intelligence, II, 1971, 189-208,

Lindsay, P. H. and D. A. Norman, Human Information Processing,
Academic Press, New York, 1972,

Minsky, Marvin L., '"Matter, Mind, and Models,"” 1In Minsky, Marvin L.
(Ed.), Semantic Information Processing, MIT Press, Cambridge, Mass.,
1968.

Schank, Roger, "Identification of Conceptualizations Underlying
Natural Language ," In Schank, R. and K. Colby (Eds.) Computer
Cognition, Freeman Press, (In Press).

Simmons, R. F., "Semantic Networks: Their Computation and Use for
Understanding English Sentences ;" University of Texas, Austin,
Department of Computer Sciences, Technical Report #NL-6, May 1972,

Simmons, R. F., and J. Slocum, "Generating English Discourse from
Semantic Networks ™ CACM, XV, 1972, 891-905.

Slocum, Jonathan, "Question Answering via Canonical Verbs and
Semantic Models: Generating English from the Model ,' The University
of Texas, Austin, Technical Report #NL-13, January 1973.

Thompson, Craig W., "Question Answering via Canonical Verbs and
Semantic Models: Parsing to Canonical Verb Forms ,'" The University
of Texas, Austin, Technical Report #NL-11, January 1973.

Winograd, T., Understanding Natural Language, Academic Press,
New York, 1972.

