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ABSTRACT

A system 1s described for generating English from a semantic net
model of the world composed of nodes which represent objects, events,
or properties of objects or events, and directed labelled arcs which
represent static relationships among the objects, events and properties.
The generative grammar is an Augmented Finite State Transition Network
which "parses' syntactic patterns retrieved from the lexicon and produces
as a side effect English expressions. Some theoretical and practical
considerations are advanced.

The system is in use as part of a natural language question-
answering system programmed in GROPE. Preliminary findings involve
methods for determining the surface structure of the expressions

(sentences and noun phrases) to be generated.



PREFACE

This document is the third in a group of three which discuss
aspects of a particular natural language question-answering machine.

The device is programmed as three independent modules ~-- of which the
third is our concern.

(1) The parser takes as input an English sentence and produces
as output a primitive (list) form of a semantic net (Thompson, 11).

(2) The data base manager maps this net onto the network model
of the world, and produces as output some node -- perhaps from the data
base -- to be generated as a response (Hendrix 2).

(3) The generator operates on this node to produce natural language
output -- which may vary from a short "pat” response such as OK, or
I-DO-NOT-UNDERSTAND, to complete English sentences =-- whereupon the
cycle is repeated.

For a more complete description of the first two modules, the reader

is referred to the papers by Thompson and Hendrix.



QUESTION ANSWERING VIA CANONICAL VERBS AND SEMANTIC MODELS:

GENERATING ENGLISH FROM THE MODEL

Introduction

One important problem confronting the natural language question-
answering system designer is that of presenting answers in some form
easily comprehended by the user. For text-based systems such as we are
discussing, natural language would seem to be the most appropriate
medium, if not the simplest to implement. Several systems have attacked
this response-mode problem with forms of English generators -- notably
those of Simmons, Burger and Schwarcz (8), Quillian (4), Carbonnel (1),
Simmons and Slocum (9), and Winograd (12). Generally speaking, the
approaches have all involved ordered transformations upon the "deep"
semantic net structures to derive surface structures more-or-less
resembling English. Concerning the discourse generation system of
Simmons and Slocum in particular, two main points emerge with respect
to single-sentence generation: (1) the grammar comprised one set of
(surface pattern) rules which was intended to serve all classes of
surface structures, and (2) the transformations modified (destroyed)
the data base, so that the maintenance of a copy was necessary. This
paper will indicate our solutions to these problems in the context of
our introduction to recent work by Woods (13) and (14), Schoene and

Celce (6), and Schank (5).

Background

The reports by Schoene, Celce and Schank showed our earliier notiom
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of a generative grammar (9) to be weak in that it could not take advantage
of the patterns of case relationships peculiar to particular verb types.
That is, a grammar should allow branching in some form, contingent upon
the choice of surface verb, rather than just the arguments present.
Furthermore, given the presence of, say, three (predicate) arguments,

our form of grammar allowed exactly one ordering of those arguments in

the surface structure, whereas English allows many -- up to six in this
example:

The papers were blown by the wind from the pier to the road.

The papers were blown by the wind to the road from the pier.

The papers were blown to the road from the pier by the wind.

The papers were blown from the pier to the road by the wind.

There are three PPs which are being generated, but they may appear in
six differerent orders -- although some persons might argue the acceptability
of a few of the six., Nevertheless, the fact remains that a generative
grammar must allow for these possibilities; our previous methods did not
do so.

Roughly coincidental with this 'revelation" was our first implementation
of Woods' Augmented Finite State Transition Network (AFSTN) automaton.
This system allows a grammar to have variables (registers) which can be
set, tested, and reset by certain operations; in essence a ”Woods grammar'’
is a program in graph form. Woods' original system was oriented toward
parsing (English) into tree-structures =-- as evidenced by his arc types

and other operations -- and the functions he admitted were somewhat
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restrictive. We first generalized the system to allow allow any function
available in the host language (LISP), and as a result induced a sizeable
increase in its flexibility. In a later (GROPE) implementation (Matuszek
and Slocum, 3), certain of the tree-building operations were considered
non~essential and hence discarded.

Our current generator is written as an AFSTN grammar. The use of
grammar-program registers to contain temporary values has enabled us to
generate English without modifying the data base: our earlier system (9)
stored temporary values in the data base. The lexicon maintains (in list
form) the argument ordering possibilities allowed for each surface verb.
In terms of the AFSTN system, an ordering (herein called a syntactic
pattern, or rule) is a "sentence" to be 'parsed'. That is, both natural
language sentences and these patterns may be viewed as control strings
for the parsing and generative grammars, respectively, which (grammars)
produce as their side-effects semantic nets or English sentences.

We should pause here for a moment and define the concept ''surface
verb." Simply stated, a surface verb is (the root form of) any verb
one normally utters in the course of a natural language expression.

This terminology is to distinguish such forms from what we call "canonical
verbs', Schank (5) and others have posited the existence of 'deep"

verbs, which unify in the deep structure the meaning common to possibly
many of the verbs with which we are ordinarily acquainted. For instance,
the verbs BUY, SELL, COST and PAY (amcng others) are different (surface)
ways of expressing what is essentially one concept: a transfer or exchange
of ownership of (two) items by (two) persons. Therefore, sentences with

various surface verbs will be parsed into semantic nets appropriate to
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their canonical base, and sentences generated from such a base might
employ any of the surface verbs allowed by the canonical event name.
{(Thus if we forget question-answering for the moment, we see that we
have a device capable of producing all legal syntactic and semantic
paraphrases -- excepting noun synonyms -- of an input sentence.) In

our system, the particular verbs mentioned above are unified in the data
base under the canonical verb EXCH (for EXCHANGE), and do not themselves

appear anywhere in the model of the world.

Sentence Generation

Once the lexicon assumes the burden of defining the allowable
syntactic patterns for each surface verb, the generative grammar writer
is free to concentrate on (1) the over-all grammar control structure,
(2) the noun (and prepositional) phrase generation problems, and (3)
the verb-string generation problem. The major function of (1) is to
cause the proper execution of (2) and (3), then to concatenate the
partial results and return the newly-generated S. These are relatively
straightforward matters, especially when one ignores (disallows) embedded
sentences and full discourse generation. (In view of the fact that this is
intended to be a simple answer-generating device, rather tham a truly
conversational machine, these restrictions are not unwarranted.) But
there exists the problem of choosing the appropriate syntactic pattern.

The sample semantic net based on the canonical verb EXCH (see Figure 1)
may be expressed using the surface verbs BUY, SELL, COST, etc. Depending
on the particular surface verb chosen, some rule (see Table I) may be

chosen as the ''control string,” or input sentence, for the generative
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FIGURE 1

A sample semantic (data base) net produced as a consequence
of the input sentence:

"John sold the boat to Mary for fifty dollars.”
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100001 PAY v
100001 PAYS \
L00001 PAID \Y
100001 PAYING v
100002 SELL v
L.00002 SELLS v
100002 SOLD v

SELLING V

(L00001 LO0C02 LOCO04 LO0003)

( [ B VACT C (from A) (for D)]

[ C VPAS (from A (for D) ])
EXCH
BUY
BUYS
BOUGHT
BOUGHT
BUYING

( [CVACT (B) D7)

EXCH
COST
COSTS
COST
cosT
COSTING

( [ B VACT (A) (D) (for C) 1)

EXCH
PAY
PAYS
PAID
PAID
PAYING

[ A VACT € (to B) (for C) ]

[ A VACT B C (for D) ]

[ C VPAS (to B) (by A) (for D) 1)
EXCH

SELL

SELLS

SOLD

SOLD

SELLING

(

TABLE 1

Some lexical structure with optional rule elements
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grammar. In any desired fashion (say, by random choice) one may choose
a surface verb -- we will choose L0000l as our first example. We now
have a choice of two patterns for our verb -- wé shall choose the rule
[ B VACT C (from A) (for D)] . (For the moment we shall not concern
ourselves with the mechanics of NP, PP, and Verb String generation,
but instead concentrate on flow-of-control.) The first element in the
rule, B, indicates that an NP is to be generated (as what is commonly
called the subject of the sentence) from the node satisfying case
relationship B of the node labelled EXCH in Figure 1l: *MARY*. This NP
generation produces the result MARY. The second element in the rule,
VACT, indicates the voice (here, active) in which the sentence is to be
generated. The Verb String generation produces (for instance) BOUGHT,
The next (third) element in the rule, C, indicates that an NP is to be
generated from the node satisfying case relationship C: *BOAT*. The
result might be THE BOAT. The next element, (from A), indicates that
the node *JOHN* is to be generated as a PP, using the preposition from --
resulting in FROM JOHN. The last element in the rule, (for D), indicates
that the node *DOLLAR* is to be generated as a PP, using the prepositionm
for -- resulting in FOR 50 DOLLARS. Since the entire rule has now been
"parsed," the final function of the grammar is to string-together all
these intermediate results and return the sentence:

MARY BOUGHT THE BOAT FROM JOHN FOR 50 DOLLARS.
Without going into detail, we can see that the choice of PAY and the rule
[ B VACT (A) (D) (for C) ], when applied to the identical deep structure,
would result in the output sentence:

MARY PAID JOHN 50 DOLLARS FOR THE BOAT,
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It is worth pointing out here that the choices COST and [C VACT (B) D]

would produce the sentence:

THE BOAT COST MARY 50 DOLLARS
This obviously contains less information than the underlying structure
as seen in Figure 1, but note the verb COST does not allow us to include
the NP JOHN, or the PP FROM JOHN, etc. Thus we are justified in associating
these syntactic patterns with surface verbs (as shown in Table I) rather
than with their canonical form (EXCH). Also, non-generation of known
material is shown to be possible -- even necessary, in some cases.

Now consider the problem of generating a sentence from an incomplete
structure, as in Figure 2. 1If generation is attempted with the same verb
and rule choice as in the last example, a non-sentence would be returned:

THE BOAT COST MARY
Thus the choice of surface verbs and patterns cannot be truly random:
it is necessary that some mechanism test a tentative pattern against
the data base net to insure that the required arguments (case relation-
ships) are present in the net. In this example, the last rule element --
D -- which is not optional, is missing from the net. The testing mechanism
must be responsible for rejecting bad choices, so that another choice can
be made. Note that any of the other rules in Table I would be acceptable,
since in all these cases the presence of argument D in the output string
is defingd to be optional.

It is possible that one might not wish the system to comnsistently
generate the maximally informative sentence allowed by a rule, even though
all elements be present in the data base. For instance, since several of

the rules indicate the optionality of case relations A and D, one might
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*BOAT*

FIGURE 2

A sample net produced as the consequence of the input:

"John sold Mary the boat.”
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wish to allow their deletion from the surface structures produced --
or, better yet, allow their non-generation. A sentence example (from
Figure 1) is:

MARY BOUGHT THE BOAT FOR 50 DOLLARS
This "deletion" could be handled through explicit storage of all of the
variants of a rule, with some optional element(s) deleted from each rule;
however, this is unnecessarily redundant. (The rule of this type correspond-
ing to the above example is [B VACT C (for D) ].) Instead, the grammar
itself may be constructed so as to allow for this possibility =-- perhaps
by random omission of optional NP or PP generations, or by any other
heuristic which the grammar writer may wish to employ. The problem to
be recognized here is that one would prefer not to allow the possibility
of generating a response to a question, in which the desired information
{the answer) has been "optionally deleted.” But thereis an additional
possibility for answer generation which solves this problem: "answer-

only'" generation.

Noun Phrase Generation

So far we have been concerned with the generation of necessarily whole
sentences. However, in the particular case of humans, probably most
(spoken) answers are not sentences, but rather (noun) phrases. There
would seem to be no reason why a mechanical answer generator must be

"

constrained to the production of "complete' sentences. The AFSTN system
allows one to pass initial control to any node in the grammar: this

facility is employed in our answering system, as we sometimes choose

to generate an NP rather than an 5.
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Consider Figure 1. The simplest answer to the question "Who sold
the boat?'" is the NP "John." 'Mary" is the answer to the question '"Who
bought the boat?" Now if the output node from stage (2) of our system
is an event node (for example, EXCH), then the generator should produce
a sentence. But most often the answer is an entity node (such as *JOHN#*),
in which case an NP is to be generated. Since the generation of JOHN
from the node labelled *JOHN* would not particularly clarify the problems
in NP generation, we shall consider the example network in Figure 3 and
see how an NP is produced in this "worst case."

The nodes labelled *MAN*, *WAGON* and *GIRL* (Figure 3) are entity
nodes: they correspond on a one-to-one basis with particular objects
(or in the case of *WAGON*, a particular set of objects) in the real
world. OLD, 15, RICKETY, RED, and LITTLE are predicates about the entity
(set) *WAGON*; thus this entity has the attributes AGE, NUMBER, CONDITION,
COLOR and SIZE, whose values are the respective predicates. While all of
these predicates may be thought of as MODifiers, we shall see that there
is a good reason for being more precise. Upon inspection of Figure 3,
we note that these propositions look much like event nodes -- they both

have directed, labelled arcs which point to entity nodes. These labels

might even be considered to be '"case relationships.'" But there is one
important distinction: events are by nature one-time objects -- they

happen, then they are over; a proposition, on the other hand, is static --
it goes on and on, until something {(an event) happens which changes its
"truth value."

If one were to randomly generate the modifiers of *WAGON* in the

course of generating that node as an NP, the result might be:
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FIGURE 3

A net encompassing three entities and five properties
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THE OLD RICKETY 15 RED LITTLE WAGONS
or, THE RED LITTLE 15 RICKETY OLD WAGONS
or, THE 15 LITTLE OLD RICKETY RED WAGONS
We recognize only the last as being acceptable. What makes it different
from the others, obviously, is the ordering of the modifiers; but if
all modifiers were only MODifiers -- as in our earlier system -- how
could one determine the surface ordering? This is our justification
for the classification of allrmodifiers into categories, and the ordering
of the categories to control the ordering of the surface modifiers.
(Winograd (12) also ordered his modifiers.) We loosely refer to these
categories as attributes. Now we might posit another "control string"
which is used when generating NPs. The acceptable (3rd) example above
would indicate that a proper control string is: NUMBER SIZE AGE CONDITION
COLOR . (No claim is being made for the completeness of this example --
rather, the system designer establishes his own categories through his
particular vocabulary subset, backed-up with a suitable NP grammar. )
Now the NP grammar has the relatively simple task of generating the
modifiers as the control string leads it to find them, then generating
the surface noun in the singular or plural as indicated by the NUMBER
modifier. (Naturally, if the value of NUMBER is § or PL -~ rather thanm a
numeral -- it is not included in the surface string.) For simplicity,
proper nouns and certain others (like "dollar™) do not take determiners;
other nouns take the determiner '"the'' by default.
As one example, the control string above orders the generation of
NUMBER (15), SIZE (little), AGE (old), CONDITION (rickety), and COLOR
(red), to produce the adjective string:

15 LITTLE OLD RICKETY RED
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When this is preceded by the determiner '"the' and followed by the
(plural, due to 15} noun ''wagons," the resultant NP is:

THE 15 LITTLE OLD RICKETY RED WAGONS
Similarly, and since all categories are optional by fiat, this same
control string would cause the grammar to produce the ordered adjectives
"little' (SIZE) and "old" (AGE), in the course of generating

THE LITTLE OLD MAN
from the node *MAN* in Figure 3.

As a result of this discussion we have seen that the necessary

control structure for an NP generation grammar is relatively simple
and that it resembles the top-level control structure; furthermore it
rmay be noted that, due to the properties of the AFSTN system, it is
not necessary for the NP grammar subset to 'know' whether it is generating
an NP in isolation, or in the context of a complete sentence. In either
case it merely produces the surface string NP and '"POPs it up' to the
next higher level. In the case of the isolated NP this POPping will
exit the grammar, returning the string to the function which called for
the generation of the NP, while in the case of complete sentence generation
the POP will return the string to the place in the grammar where the PUSH

NP was executed =-- to be incorporated into the overall S being generated.
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Verb String Generation¥®

One might expect that there is a ''control string' for guiding VS

generation -- and there is: [VOICE FORM ASPECT TENSE CASE MOOD 1.

Table II indicates the possible values for each of these properties,

and the action to be taken for each value. Not all combimations of
values are allowed in English: when this 'form determination algorithm
is entered, it is assumed that some mechanism (a still unknown 'conversa-
tional controller") has indicated the desired values for each of these
properties. It is this mechanism that must insure the values form a
legal combination.

The actions taken by the algorithm involve pushing a new (FIRST)
surface form onto the string, popping the FIRST element (the last one
pushed) and remembering it, and (by means of a pop and push) changing
the FIRST element to some other surface form. The lexicon may of course
be freely consulted during this process. Initially, the string is composed
of the root form of the (main) surface verb, in FIRST position. In our
example (see Table II) the PASSIVE transformation changes "SELL" into
its past participle form and adds "BE'; the PERFECT transformation
changes "BE'" to its past participle form and adds "HAVE'; the FUTURE
transformation adds "WILL'"; and the NEGATIVE transformation pops "WILL",
adds '"NOT", then replaces '"WILL", resulting in the verb string:

"WILL NOT HAVE BEEN SOLD."

Simmons and Slocum (9) advanced a VS generation algorithm; our only
modifications to that algorithm are (1) the VOICE section is no longer
responsible for setting-up SUBJECT and OBJECT values -- since these are
explicit in our syntactic patterns, and (2) the negation and emphatic
transformations are introduced. However, for completeness' sake, we

include a short tabular description of that algorithm and a clarifying

example.



Possible
Property Values
VOICE ACTIVE
PASSIVE
FORM (simple)
PROGRESSIVE
EMPHATIC
ASPECT (simple)
PERFECT
TENSE PRESENT
PAST
FUTURE
CASE AFFIRMATIVE
NEGATIVE
MOOD INDICATIVE

Example
Action Value
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Example
String

enter
none

change FIRST to -EN form X
push "BE" .

none x
change FIRST to -ING form

push "BE"

push 'DO"

none

change FIRST to -EN form X
push "HAVE"

change FIRST to agree in

person and number with

the SUBJECT

change FIRST to PAST form

(insure person and number
agreement if FIRST was "BE')

push "WILL" x

none
pop FIRST X
push "NOT"

push (o0ld) FIRST

none X

INTERROGATIVE pop FIRST and front it

(place before already-

generated SUBJECT)

exit

TABLE II

The verb string generation algorithm

SELL

SOLD
BE SOLD

BEEN SOLD
HAVE BEEN SOLD

WILL HAVE BEEN SOLD

HAVE BEEN SOLD .
NOT HAVE BEEN SOLD
WILL NOT HAVE BEEN SOLD



Conclusions

The approach taken shows generation of some English expressions
(answers) to be a relatively simple task. The AFSTN system has all the
power necessary, while at the same time incorporating a control structure
which greatly reduces the complexity of thé demands on the grammar writer.
The overall structure of simple (as opposed to compound) English sentences
can be modelled with syntactic patterns associated (via the lexicon)
with the surface verbs in the vocabulary. Similarly, noun phrases are
constrained with respect to the ordering of their adjectives (if any)
through the use of a single rule. Prepositional phrases are obviously
just (appropriate) prepositions concatenated to NPs: the rules and/or
data base conspire to determine the "appropriate' prepositions. Fimnally,
there-is alsoc a control string suitable for guiding the generation of
the verb (and its auxiliaries) provided the appropriate event node has
attributes (TENSE, ASPECT, etc.) whose values will key the generation
in an acceptable manner. We have intentionally avoided saying anything
about the nature of the '"conversational controller' which can cause this
device to be fully conversant, since we have not yet followed-up this

advance with research along those lines.
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