BEYOND OMNIPOTENT ROBOTS

Gary G. Hendrix

Technical Report NL 14

March 1973

Natural Language Research for CAI
Supported by
The National Science Foundation

Grant GJ 509X

The Department of Computer Sciences
and CAI Laboratory

The University of Texas

Austin, Texas 78712

ABSTRACT

A new methodology for the construction of world models is presented.
The central feature of this methodology is a mechanism which makes possible
the modeling of 1) simultaneous, interactive processes, 2) processes
characterized by a continuum of gradual change, 3) involuntarily activated
processes (such as the growing of grass) and 4) time as a continuous

phenomenon.

BEYOND OMNIPOTENT ROBOTS

1.0 Introduction: The omnipotent robots

Several artificially intelligent entities have been constructed in
the last few years which employ what might be called "robot minds.'" A
robot mind is an artificial system capable of some (perhaps very limited)
understanding of the world. Examples of such entities include the STRIPS
robot (2), the Siklossy-Dreussi robot (6), the Winograd system (9) and the
Hendrix question answerer (3).

In some form, all of these systems contain a "robot" which uses a
model of the world to do reasoning. In each robot's model of the wor1ld
there are a collection of objects, a collection of relationships between
objects and a collection of operators. The operators describe how objects
and relationships between objects may be changed. 1In these systems, the
robot is a necessary participant in each operation. Since the robot may
pick and choose the operations in which it wishes to participate, it has
complete control over all changes in objects and relationships between
objects.

Such omnipotence on the part of the robot has allowed the systems
under discussion to conveniently model certain micro-worlds. However,
in a world containing many intelligent entities, each entity may exercise
its own will and no one entity need be omnipotent. Further, there exists
a multitude of processes (e.g., the melting of a cube of ice, the growing
of the grass, the falling of a rain drop) which transpire without the

aid of robots or humanoids.

Page 2

If an intelligent system is ever to understand a dynamic world
containing numerous intelligent entities and a variety of simultaneous
processes, the omnipotent approach to modeling must be abandoned. The
robot must understand that its own actions are only a part of a larger
whole. To do this, it seems reasonable for the robot to adopt the
philosophy that the world is a collection of on-going processes. Some
of the processes are controlled by the robot, some are controlled by other
intelligent entities and others are simply natural phenomena. With the
passage of time, old processes are brought to completion and new processes
are initiated. At all times, objects and relationships between objects
are defined by (and have their meaning through) the processes which

sustain or transform them from instant to instant.

2,0 The post ommnipotent robot

In harmony with the philosophy just presented, it seems necessary
to provide a robot (or other intelligent entity) with a mechanism for
the basic understanding of processes. Such a mechanism must surmount
such fundamental problems as the modeling of time, the modeling of
continuous, gradual change and the modeling of multiple, interactive
processes. Further, the mechanism must not view the robot as the
omnipotent master of the world, but must consider all processes on an
equal basis.

In the opinion of the author, a central ccmponent of such a
mechanism is a process monitor which maintains a set of process models
and some concept of time. This monitor is the part of the robot's

brain which allows the robot to think about simultaneous processes.

Page 3

At any moment in actual (real world) time, the monitor has a set of
process models describing the simultaneous processes occurring in the
model world at some particular model time. With model time frozen, the
monitor may (sequentially) ponder each process modeled by members of the
set of process models. Through this examination, the monitor may determine
the earliest moment (in model time) at which one of the processes will
"do something interesting.” The "something interesting' is usually the
causing of some effect which will in turn cause new processes to be
initiated, old processes to be terminated, or goals to be met. To model
the propagation of the various processes, the monitor increments the
model time to the "interesting time" and creates a new model world (or
modifies the old world) to reflect changes which would have occurred in
the time interval. Then the monitor looks for the next interesting

time and the cycle repeats.

In order to add some substance to the discussion above, a more
complete description of a particular multi-process model will be given
shortly. It is important to emphasize that this model is only a rcugh
first attempt to design the more general concept of a robot which views
the world as a collection of processes. The model borrows freely from
its omnipotent robot predecessors, especially from STRIPS. To put the
new mechanism into perspective, it will be helpful to first review the
systems supporting omnipotent robots and to reconsider the véry nature

of processes.

Page 4

3.0 Omnipotent robot systems

(Readers familiar with STRIPS may skip this section.)

The omnipotent robot systems attack the modeling of the world by
dividing knowledge of the world into two categories: process knowledge
and state knowledge. State knowledge relates to knowledge about the
world at certain instants in time. Knowledge relating to a particular
instant is represented by a state of the world model (SWM). An SWM
is like a still photograph of a dynamic situation, representing objects
and relationships among objects as they exist at the moment the photo-
graph is taken. Process knowledge is a body of information describing
how one state may be transformed into another. By combining these two
types of knowledge, a space of states of the world is defined. Connections
between points in the state space correspond to processes which take one
state into another.

The SWM used to represent an omnipotent robot's state knowledge is
typically a set of well-formed formulas in the first order predicate
calculus which are true for the world state being modeled. However,
objects and relationships between objects may just as easily be depicted
by other means. (For example, by semantic nets. Simmons (7).) Process
knowledge is represented by a collection of operators which model process-
es in the real world. These operators may either be programs (Winograd (9))
or data structures which may be interpreted as programs (STRIPS (2),
Hendrix (3)), or both (Siklossy and Dreussi (6)). (The line between
program and data structure is often thin and arbitrary.)

Each operator is characterized by two principal components. The

first component is a set of (sometimes explicit) preconditions which

Page 5

must hold in the state of the world before the operator may be applied.
Typically, the preconditions are a collection of well-formed formulas
containing variables which partially specify a state of the world.

This partial state specification defines a family of world states
comprising the domain (or the context) of the operator. The second
component characterizing an operator is a set of effects produced by
the operation. Given an SWM 1 depicting a real world state S1 in

the domain of some operator, the operator's effects define a new
(perhaps partially specified) SWM Sy which depicts a world state 82
that would result if the process modeled by the operator were performed

on the world state S Some decision process (e.g., means-end analysis

1
in the case of robots, or the input sentence in question answering)
dictates a particular order in which operations are applied. The first
operator selected is applied to the initial state of the world, the
next operator selected is applied to the resulting state and so forth.
The ideas of the preceding paragraph are best clarified by an

example (Simmons(8))presented in the explicit representation of the
STRIPS system. Imagine a very simple world consisting of a robot
(named ROBOT), two boxes (called Bl and B2) and a room. Suppose
further that the robot and boxes may either be in the room or outside
the room. An SWM for one possible state of such a world is

((BOX B1)

(ROX B2)

(INROOM ROBOT)

(INROOM B1)

(OUTSIDERCOM B2))

Operations in this simple world may include GOINTOROOM, GOOUTSIDEROOM,

PUSHBOXIN, PUSHBOXOUT and perhaps some others. The operator GOINTOROOM

Page 6

may be defined as follows:

Operation name: GOINTOROOM

Robot moves from outside
Parameters:) to inside.
Preconditions: ((OUTSIDEROOM ROBOT))
Effects:

delete list: ((OUTSIDEROOM ROBOT))

add list: ((INSIDEROOM ROBOT))
The operator may be applied in any state satisfying the precondition.
(The precondition defines a family of states, the set of all states in
which (OUTSIDEROOM ROBOT) is true. The operator may be applied to any
member of the family.) When the operator is applied, the relatiomship
(OUTSIDEROOM ROBOT) is removed from the SWM and (INSIDEROOM ROBOT) is
added.

Variables may be used in the definition of operators. For example,

consider the following:

Operation name: PUSHBOXIN

Robot pushes box b
Parameters: (b) into the room
Preconditions: ((OUTSIDEROOM ROBOT) (BOX b) (OUTSIDEROOM b))
Effects:

delete list: ({OUTSIDEROOM ROBOT) (OUTSIDEROOM b))

add list: { (INSIDEROOM ROBOT) (INSIDEROOM b))
The operator PUSHBOX may be applied if some b can be found which satisfies
the preconditions. The preconditions state that the value of b must be
a box and that that box must be outside the room. Note that the same b

is used to describe the effects of the operation.

Page 7

The reader who is not familiar with SWMs and operators such as
those just presented is encouraged to read the STRIPS paper and to
construct various SWMs and operators for himself. In the remainder of
this paper, & complete familiarity with such SWMs and operators is
assumed.

It is hopefully clear that operations such as those just presented
are completely under the control of the robot., Since the robot must
actively participate in each operation, simultaneous operations are not
possible. The necessity of robot participation and the inability to
model simultaneous processes lead to certain difficulties in modeling
even ordinary situations. Considering the simple process of filling a
bucket with water (suggested by L. Siklossy(6)). Through various
sequential operations the robot should place the bucket beneath a water
tap and turn the tap on. Once the water has been turned on, the process
which actually fills the bucket begins. Sisce, once the tap is turned
on, the water flows into the bucket without the robot's help, the robot
should be free to perform other tasks while the bucket fills. Unfortu-
nately, it is impossible to model this situation by using the kinds of
operators found in omnipotent robot systems. The main difficulty, of
course, is that there is mno provision for processes (such as the filling
of the bucket) which take place without the active participation of the
robot.

ther difficulties, caused by an inadequate representation of time,
are also apparent. Notice that operators have no notion of elapsed time
associated with them. Further, there is noc provision for specifying the

infinite number of intermediate states of the world which exist, changing

Page 8

from instant to instant, over the duration of a process. These deficiencies
make it appear as if the process modeled by an operator were initiated

and brought to completion in a single instant. Thus, it becomes impossible
to adequately model the gradual changes, such as the slow filling of the

bucket, which so often characterize a process.

4.0 A closer look at the nature of processes.

Since the representation of process knowledge has led to difficulties
in previous modeling systems, it is no doubt worthwhile to reconsider the
very nature of processes. For purposes of this paper, a process is a
bringing about of a set of changes through a continuum of alterations.
Thus, a process brings about a continuous, uninterrupted, time ordered
sequence of changes over some time interval.

Although it is tempting to believe that some changes are not brought
about through a continuum of alterations, a more microscopic view of a
situation seems always to reveal an ongoing of graduate modificationms.
Even such flip-flop changes as the throwing of a switch, the changing
of a computer bit or the changing of one’'s own mind are brought about
by continuums of alterations. Seemingly sudden gross changes in the
state of the world as seen from the macro point of view (apparently)
are always explainable from the micro vantage as the reaching of certain
thresholds through gradual alterationms.

Clearly, from the standpoint of a robot or a human being, many
processes occur so quickly that for all practical purposes the corres-
ponding changes are effectively instantaneous. For such processes

some construct similar to the operation prototype is useful and merits

Page 9

inclusion in a new system. However, since there are processes which
do not occur quickly, a new comnstruct must be found for modeling them.
One possibility for such a new construct is to depict certain aspects
of the world by real variables whose values are defined by numerical
equations involving time. Since such equations would be wvalid only
during the duration of a process, before pursuing this new construct
further, it will be necessary to take a closer look at the mechanisms

involved in initiating and terminating processes.

4.1 Necessary and sufficient conditions for process initiation

In the STRIPS robot and similar systems, an operation may be
applied when its preconditions are met. A robot usually must choose
among a variety of possible altermatives. Only the operation selected
by the robot is actually carried out. Hence the preconditions are
necessary conditions for operator application, but they are not sufficient.
Operators are applied only when the preconditions are met and the robot
dictates that the operation indeed be performed.

Now consider a world in which an empty bucket is positioned below
a water tap and the tap is on. Given these preconditions (without tricks)
it is obvious that the bucket will begin filling with water no matter
what the robot dictates.

Thus there appear to be two types of processes. One type is lnitiated
involuntarily as soon as»its preconditions are met. The other type is
subject to the choice of some intellignet entity which performs a part of
the work required to carry out the process. These two types become con-

founded in worlds containing more than one intelligent entity, since

Page 10

each entity may choose work only for itself but must somehow take into
account not only involuntarily initiated processes, but also those
processes which may be voluntarily engaged in by the other entities.

To simplify this situation it may be argued that the selection of
a single choice from among many alternatives is itself a process. Further,
an entity's selection at any moment may be modeled in the SWM. For
example, if the robot has currently selected to (PUSHBOXIN B2), then
a relation such as (SELECTED ROBOT PUSHBOXIN B2) could appear in the
SWM. 1If (SELECTED ROBOT PUSHBOXIN b) is made a precondition of PUSHBOXIN,
tten PUSHBOXIN should be initiated as soon as its preconditions are met.
Under this scheme, the preconditions of all processes define the necessary
and sufficient conditions for process initiation.

(Since the selection of a choice involves a process, there is no
reason why the selection process itself may not be modeled. Indeed,
if a robot is to be able to predict the actions of other robots, then
the predicting robot must contain some model of the selection process

used by other robots.)

T
£

Fh

simultaneous processes are allowed, then in mid course some
process A may cause the preconditions of a process B to be met.

Immediately B is initiated while A continues.

4.2 The termination of a process

Since a process is not instantaneous, once a process has begun it is
necessary to consider how long the process will remain operative. A
process, once initiated, remains in progress as long as a certain set

of conditions are met. For example, a man may continue to walk toward

Page 11

a point X so long as the man exists, is able to walk, wishes to walk to
X and is not yet at X. Further, the point X must continue to exist and
there must always be some step which the man can take which will bring
him closer to X. This process has a natural completion. When the man
reaches X, the condition that he be not yet at X is broken and the
process stops. The breaking of any of the other conditions will also
interrupt (and thus terminate at least temporarily) the process. For
example, if the man becomes tired and decides that he no longer wishes
to walk (just now) but wishes to rest, then the process is interrupted.
In building a construct for the modeling of processes, it will be
necessary to take these conditions for the continuation of a process into
account. Thus, in addition to process initiation conditions there must

also be process continuation conditions.

5,0 A process model for non-omnipotent robots: an overview

Although not yet implemented on a large scale, a schemata which
corrects many of the deficiencies suffered by omnipotent robot systems
has been devised. The schemata calls for a new system composed of three
basic parts: a process monitor (outlined earlier), a set of process
scenarios and an SWM. The process scenario is amalogous to the operator
in previous systems. The control portion of previous systems which keeps
track of the sequential application of operators is somewhat analogous
to the monitor.

Each type of process allowable in the world being modeled is

characterized by one of the process scenarios. The scenario indicates

Page 12

the process's initiation conditions (the necessary and sufficient
conditions for process initiation) and the process's effects. For
those processes which occur so rapidly as to be effectively instant-
aneous, the effects are specified simply by add and delete lists.
(Such procesées were well modeled by the operators of previous systems.)
However, i1f a process is sustained for more than a brief instant, equations
are included to describe how the process alters the world with the
passage of time. These equations constitute one of two methods employed
in representing facts in the SWM.

The process monitor is a control program which keeps track of the
SWM and the various processes which are in operation at any given time.
A major feature of the process monitor is an elastic set of process
control blocks which grows or diminishes with the number of active
processes. Each control block is characterized by a reference to some
process scenario and a set of process parameter bindings. 1If several
similar processes occur simultaneously, then several control blocks are
set up, each referencing a common scenario., Of course such similar
processes will be distinguished one from the other by differences in
their sets of bindings. (These control blocks are very similar to the
control blocks used in multi-processing environments to support multiple
users, any number of whom may actually be using the same reenterable
program.)

Although control of the system is in fact centered in a monitor
executive, the system performs in such a way that each process modeled
by the various control blocks seems to alter the SWM with the passage

of time in accordance with the rules of the associated scenarioc. From

Page 13

a vantage point external to the system, it appears as if all the processes
modeled by the control blocks are modifying the world simultaneously.

In a sense, this is actually what does happen. Unlike simulation models
which update themselves at small regular intervals, the process monitor
solves sets of simultaneous equations to determine critical times in the
set of ongoing processes. These simultaneous equations, of course, come
from the definitions of the wvarious processes. But more of this later.

Intuitively, the process monitor behaves as if it were a demon in
charge of carrying out all the processes in the modeled world. Given
an initial state of the world and a set of process scenarios, the demon
determines all processes which would be initiated. For each process to
be initiated, the demon selects an imp (a control block) and charges
the imp with the realization of the process. As the various imps make
changes in the state of the world, the demon watches for new opportunities
to start other processes, assigning more imps as needed. When an imp's
process is completed or interrupted, the imp notifies the demon who in
turn releases the imp from its charge.

In performing its task, the monitor is constantly referring to and
altering the system's representation of the state of the world. The
system has two types of data structures for storing state knowledge.

One data structure is a set of explicit relations such as (TYPE BOX1
BOX). This data type is very much like that used by STRIPS. To record
relations which are undergoing gradual change, a different comstruct is
needed. All gradual changes are modeled in the system by employing real
variables. Thus, to model the altitude of a slowly rising balloon,

BALLOON, the altitude, Yaltitude, is a real number. An entity such as

Page 14

(ALTITUDE BALLOON ¥altitude) is called a relation skeleton since the
relation term Yaltitude is really a variable. If at some moment
Yaltitude = 1000, then the relation skeleton and numeric equation
serve to define the explicit relatiomship (ALTITUDE BALLOON 1000).
A numeric variable such as Yaltitude is most often defined by systems
of equations associated with some process which is changing the
relationship indicated by the skeleton in which the variable appears.
Symbols for real variables are formed by conjoining the capital
letters C and Y with a string of lower case letters and numbers.
(e.g., Clength2, Yaltitude) The definitions of process scenarios
which follow make extensive use of such variable names. Variables
whose names begin with C, C-variables, are bound when a process's
initiation conditions are met and hence remain constant for the duration
of the process. Y-variables are variables which a process itself defines.
The definition is in terms of a system of equations involving C-variables
and time variables.
The notion of time is modeled in the system by real variables.
The symbol @ is used to denote the real variable expressing current
model time. The value of @ is pot a time of day (such as 3:00 PM), but
is a quantity expressing the year, month, day, hour and fraction of the
hour. Process scenarios make extensive use of the locally defined time
variables ¢ and $. The local variable ¢ is always bound to the time at
which the local process was initiated. The local variable $ is defined

to be @ - ¢, the age of the local process.

Page 15

6.0 A sample wor 14

The sections which follow will further describe the process monitor,
scenario formalisms and the representation of the SWM. Since it appears
impossible to describe any one of these three components of the system
individually, & series of examples of scenarios will be presented. Each
new scenario will introduce nevw complications in at least one of the
three system components.

1n order toO illustrate various facets of the system, it will be
helpful to have some simple world in mind. Consider the world shown
in Figure 1. The initial state of the world 1is expressed entirely by
use of the set of explicit relationships. The world consists of a single
doorless room containing & robot, & clock, a bucket, @ water tap and &
valve. The valve and water tap are mounted On the ceiling. The robot
may turn the valve if it stands beneath it. Several areas, A through F,
are indicated. These areas are large enough to contain the clock, the
robot and the bucket simultaneously. There is a drain, not shown, in
the floor beneath the tap. Thus, any water not caught by the bucket

simply disappears into the drain.

Page 16

\ ”—}
(a3 : (59)
- |

Initial SWM given by explicit relationships

(TYPE A LOCATION) (AT CLK A)

(TYPE B LOCATION) (AT RBT B)

({TYPE C LOCATION) (AT BKT C)

(TYPE D LOCATION) (AT VLV E)

(TYPE E LOCATION) (AT TAP1 D)

(TYPE F LOCATION) (ONFLOOR CLK)

(TYPE CLK CLOCK) (ONFLOOR RBT)

(TYPE RBT ROBOT) (ONFLOOR BKT)

(TYPE BKT BUCKET) (ONCEILING VLV)
(TYPE VLV VALVE) (ONCEILING TAP1)
(TYPE TAP1 TAP) (ORIENTATION BKT UP)
(ALARM OFF CLK) (CAPACITY BKT 100)
(PUSHABLE CLK) (CONTENT BKT 0)
{PUSHABLE BKT) (CONTROL VLV TAP1)

(MAXRATE VLV 10)
(RATE VLV 0)

FIGURE 1

An Initial State of a Sample Model World

Page 17

7.0 Elementary examples of scenarios. (Process scenarios for early risers)

Focusing attention now on the process scenario, each scenario consists
of two basic parts: process initiation conditioms (ICs) and process
effects. Scenarios for instantaneous processes (processes that transpire
so quickly that their duration effectively consumes zero units of time)
are almost identical to STRIPS operators. Consider the scenario for

setting an alarm clock.

Scenario name: SETALARM Robot r sets clock
k (at place n) to
Parameters: (r k Cstime / mn) sound at time Cstime.

Initiation conditions:
symbolic: ((SELECTED r SETALARM r k Cstime) (ALARM OFF k)
(AT r n) (AT k n))

numeric: ¢ < Cstime

12> Cstime - ¢

Effects - I:
delete list: ((ALARM OFF k))

add list: ((ALARM SET k Cstime))

A process control block using this scenario will reference the
scenario by its name, SETALARM, and by a set of bindings for the parameters
(r k Cstime n). 7the symbol Cstime is an example of the C-variables
mentioned earlier. The value of Cstime (written =Cstime) may be any
real number. However, such variables as r, k and n must take on only
discreet values. (e.g., =n = A or =n = B ... or =n = F.) The slash in
the parameter list is used to divide the list into two parts. Parameters
in the first portion of the list are called primary' parameters. Those
in the latter portion of the list are called ''secondary' parameters.

Given the bindings of the primary parameters and the fact that the

Page 18

initiation conditions are met, the values of the secondary parameters

may be uniquely determined for that state of the world meeting the initia-
tion conditioms. The usefulness of primary parameters will be seen later
when initiation i{nhibitors are discussed.

The 1Cs specify the necessary and sufficient conditions for the
process tO be initiated. The conditions are divided into twoO categories:
symbolic and numeric. Since the robot must choose to set the alarm before
the alarm may be set, the first symbolic condition guarantees that the
robot =r has indeed elected toO perform the task.

The SELECT relation is intended tO indicate what the robot plans
ro do in the next instant. 1t does not reflect long term goals. For
example, if the robot and the clock are not at the same 1ocation and the
robot's immediate goal is to set the alarm, then the robot must SELECT
to GOTO the ared containing the clock. The robot uses the processes of
goal oriented, means-end analysis to plan its sequence of selectiomns.

The second symbolic 1¢ states that the alarm of clock k must be
off (mot SOUNDING and not SET) before the alarm may be set. The last
two 1Cs guarantee that the robot is close enough toO the clock to set
the aiarm. Other conditions jpvolving the TYPE relation could be
included in the 1Cs, but are not necessary. For example, (TYPE k CLOCK)
ig not needed since =k must be 2 clock if (ALARM OFF =k) 1is true.

The symbolic initiation conditions are augmented by aumeric conditions.
In the numeric equations ¢ represents the time at which the process begins
(in model time). Since the SETALARM process rakes place SO quickly, the

entire process may be thought of as cransplring in the single instant

Page 19

indicated by ¢. The first numeric condition is written in the scenario as
¢ < Cstime.

This constraint indicates that the alarm may only be set to sound in the
future. That is, the set time, Cstime, must be greater than the current
time, ¢. In an actual computer implementation, the condition would be
presented in some more convenient form such as (GREATERP Cstime ¢).
Since all clocks in the robot world have a twelve hour cycle, the robot
cannot set the alarm to go off after more than twelve hours. This
restriction is specified by the second equation.

The effects portion of the scenario is headed by "Effects - I" which
indicates that the effects of the process are instantaneous. The add
and delete lists indicate that (ALARM OFF =k) is to be deleted from the
SWM and (ALARM SET =k =Cstime) is to be added. Although (SELECTED =t
SETALARM =r =k =Cstime) will not be deleted by SETALARM, it will be deleted
by the process which determines the robot's next selection.

Setting the alarm is worthless unless there is a process for sound-

ing the alarm at the proper time. Hence

Scenarioc name: SOUNDALARM An alarm clock k
sounds at time Cstime
Parameters: (k Cstime /) and continues to sound.

Initiation conditions:

symbolic: ((ALARM SET k Cstime))
numeric: ¢ = Cstime

Effects = 1:
delete list: ((ALARM SET k Cstime))
add list: ((ALARM SOUNDING k))

The important thing to notice in this scenario is the absence of a

SELECTED condition in the ICs. Once set, the clock does not need the

Page 21

instantaneous processes, but are destroved almost immediately.) Associated
with each of the duration process control blocks is an interrupt time, a
number (or infinity) which indicates the earliest model time at which the
process is certain to be interrupted. The monitor executive determines

the earliest model time at which any existing process 1s certain to be
interrupted. Call this time TI' To determine what to do next, the monitor
executive searches through the process scenarios looking for a scenario
which, for some binding of its variables, may be initiated before model
time T.. If no such scenario is found, the monitor executive sets the

I

current model time to 'I‘I and performs the indicated interruption. 1If
more than one scenario is found which can be initiated before model time
TI’ then the monitor determines the process which can be initiated at the
earliest model time, sets the current model time to that time and creates
a new control block to model the new process.

Thus, the monitor executive skips the current model time from one
critical point to another, initiating or interrupting the model processes
associated with the critical points. (At any critical point in model time,
an initiation or interruption of one process may cause a cascading effect.
That is, an initiation or interruption may precipitate a series of other
initiations and interruptions.)

Consider now how the procedures just discussed may be used to model
the initiation of the SOUNDALARM process. Suppose the current model time
is @ = 1572.3 and (ALARM SET CLK 1580.0) is true in the SWM. Suppose
further that the robot is asleep, that some duration processes are being

modeled and that the earliest interruption time for any duration process

is TI = 1583.7. Using the SOUNDALARM scenario and SWM, the process monitor

Page 22

determines that the next critical model time is model time 1580.0. The
monitor sets @ to 1580.0 and creates a control block for SOUNDALARM. Using
the control block, the monitor builds up a new SWM by making the appropriate
deletions and additiomns. Once the update is made, the control block is
abandoned.

With the SOUNDALARM process out of the way, the monitor recycles
and again determines the next critical model time. The next interrupt

is still pending at T

1 = 1583.7, but, because of the SOUNDALARM process,

the initiation conditions for AWAKENROBOT are now met. Hence, the next
critical time is the current model time. Keeping @ frozen, the monitor
models the awakening of the robot.

Cycling again, the monitor may find that no other processes may be
initiated before TI = 1583.7. Hence, the monitor resets @ to 1583.7 and

performs the interruption of the duration process.

8.0 More complex scenarios: The filling of a bucket

The power of the process scenarios does not begin to become apparent
until processes involving a continuum of gradual change are considered.
Consider the filling of a bucket with water. A push process may easily
be defined which places the bucket BKT under the tap TAP1l. The following
scenario describes the process of turning the controlling valve.

Scenaric name: TURNVALVE Robot r turns valve v
to rate Crate.

Parameters: {r v Crate / Cmaxrate n)

Initiation conditions:
symbolic: ((SELECTED r TURNVALVE r v Crate) (MAXRATE v
Cmaxrate) (AT r n) (AT v n))

numeric: 0 = Cmaxrate - Crate

0 =< Crate

Page 23

Effects - I:
delete list: ((RATE v *))
add list: ((RATE v Crate))

For purposes of the model, TURNVALVE is an instantaneous process,
Note the use of * in the delete list. All relationships of the form
(RATE =v =--) are deleted from the SWM. Thus, the flow rate before the
valve is turned is unimportant and is left unspecified. The flow rate
after the valve is turned (Crate) is constrained to be between zero and
the maximum rate. (Turning the valve to a zero flow rate turns the valve
off.)

Once the control valve has been set to some non-zero flow rate,
the process of £illing the bucket begins immediately. The scenario

for FILLBUCKET is as follows:

Scenario name: FILLBUCKET Bucket b is filled by
water from tap t.
Parameters: (b t / v n Crate Ccapacity Cinitialcontent)

Initiation conditions:
symbolic: - ((CONTROL v t) (RATE v Crate) (AT t n) (AT b n)

(ORIENTATION b UP) (CAPACITY b Ccapacity)
(CONTENT b Cinitialcontent))

numeric: 0 < Crate

0 <= Ccapacity - Cinitialcontent

Effects - G:
symbolic: ((CONTENT b Ycontent))
numeric: Ycontent = Cinitialcontent + Crate ° §

Continuance conditions:

symbolic: ((RATE v Crate) (AT b n)

(ORIENTATION b UP))

numeric: 0 < Ccapacity - Ycontent

Page 24

This scenario differs markedly from those presented earlier because
its effects are continuous and gradual rather than instantaneous.
(Instantaneous effects are indicated in the scenario by "Effects - I."
Gradually changing effects are indicated by "Effects - G".) The
initiation conditions are stated in exactly the same way as the ICs of
previous scenarios. Notice that the flow rate must be positive and there
must be room for more water in the bucket. Further, there is no SELECTED
relationship needed for the initiation of the process since, given the
preconditions, the initiation of the filling of the bucket is independent
of the robot's will. Note also that (ONFLOOR b) and (ONCEILING t) are
omitted from the ICs. This may be done if it is assumed that there is

no process for moving a tap or removing a bucket from the floor.

8.1 Gradual effects

Unlike previous scenarios, the effects of this process are not given
by a delete list and an add list. Rather, a formalism is presented which
states how conditions will gradually change with the passage of time.

The symbolic portion of an "Effects - G" formalism uses relation skeletons
with Y-variables to indicate which relationships will be gradually altered
by the process. In the present example, the only relationship skeleton
given is (CONTENT b Ycontent). This skeleton indicates that the relation-
ship (CONTENT =b --) will be altered. The skeleton further indicates that
gradual alteration will be accomplished by variations in Ycontent with
respect to time. The precise relationship between Ycontent and the various
process parameters is indicated by the numeric portion of the formalism
which states that Ycontent is equal to the content of the bucket when

the process began, Cinitialcontent, plus the product of the flow rate,

Page 25

and elapsed process time, $.

8.2 The changing of the SWM via the process monitor

Consider now how the process monitor uses tge FILLBUCKET scenario
to change the SWM. As was discussed earlier, state knowledge is
represented by two distinct data types. One of these types is a set of
explicit relationships. The effects of all processes heretofore considered
have simply been to add or delete relationships from this set. The other
data type, which uses real variables and relation skeletons, is needed
for the modeling of gradual change. At the time when the ICs of FILLBUCKET
are met, (CONTENT =b =Cinitialcontent) is an explicit relationship in
the set of explicit relationships. When the process monitor executive
determines that the ICs of FILLBUCKET have been satisfied, a process
control block is created to model the process. In the process control
block a pointer is set up which points to the FILLBUCKET scenario.
Further, the bindings of all the scenario's parameters are recorded in
the block. The time at which the process is initiated is also recorded
(as the binding for ¢). By using the parameter bindings and the scenario,
the monitor determines that the relationship (CONTENT =b --) will be
altered by the process. Since the relationship (CONTENT =b --) will
be altered by the process, the explicit relation (CONTENT =b =Cinitial-
content) is removed from the set of explicit relationships. At the same
time, the relation skeleton (CONIENT =b Ycontent) is added to a new
set, the set of relation skeletons. Associated with each skeleton in
the set is a pointer to the control block which models the process
defining the variables in the skeleton. (All variables of a skeletonm

must be defined by a unique process. Further, no two skeletons on the

Page 26

skeleton list may differ only in the names of variables. For example
(CONTENT =b Y1) and (CONTENT =b Y2) are not both allowed since such a
situation would indicate a conflict in the definition of the content of
bucket =b.)

If at some instant it is important for the system to know the content
of some bucket, say BKT, then a search is made in the SWM for an element
of data matching the pattern (CONTENT BKT --). A datum matching this
pattern might appear either in the set of explicit relations or ("exclusive
or') in the set of relation skeletons just introduced. If the matching
datum is found in the set of explicit relations, then the third component
of the datum is an explicit value for the content of the bucket. If the
matching datum is found in the set of relation skeletoms, then the third
component of the datum is a variable. Furthey, there is associated with the
datum (which is a relation skeleton) a pointer to a process control block
whose modeled process defines the value of the variable. To evaluate the
variable, and thus to determine the content of the bucket, the system has
only to use the equations in that scenario which is pointed to by the
control block. All pertinent equation parameters have been dutifully

recorded in the process control block for use at this time.

8.3 On continuance conditions

In addition to a description of the continuing effects, the scenario
also indicates conditions which must hold if the process is to continue.
The symbolic continuance conditions indicate that the rate of water flow
must remain constant at Crate, the bucket must remain beneath the tap and

its orientation must remain UP (i.e., it must not be tipped over). Further,

Page 27

the numeric portion of the continuance conditions states that the content

of the bucket must not surpass the bucket's capacity. Additional conditions
such as (CONTROL v t) and (CAPACITY b Ccapacity)-might also be included

in the continuance conditions. However, since neither the controlling of
tap =t by valve =v nor the capacity of bucket =b is subject to change,

devices guaranteeing the continuance of these relationships are unnecessary.

8.4 How the process monitor handles continuance conditions

When a process control block is set up, provisions are made for
the eventual interruption of the process being modeled. Associated with
each relation in the set of explicit relations is a list of pointers
known at the ''sustains list.'" Each pointer on the list points to a process
control block which is modeling some process whose continuation depends
on the associated relationship. TIf the relationship is ever deleted from
the set of explicit relationships, all processes whose control blocks are
pointed to by members of the relationship's associated sustains list will
be interrupted. Thus, when a process control block is set up for a
FILLBUCKET process, pointers to the block are added to the sustains lists
of (RATE =v =Crate), (AT =b =n) and (ORIENTATION =b UP),.

(The symbolic continuance condition (RATE v Crate) is technically
a relation skeleton since it contains a real variable, Crate. However,
all C-variables are bound when the ICs are met., Thus, within the effects
portion of. the scenario, C-variables are correctly interpreted as constants.
This means that a relation skeleton such as (RATE v Crate) becomes
equivalent to the explicit relation (RATE =v =Crate).)

The interrupt provisions just discussed are used to monitor the

Page 28

symbolic continuance conditions. The numeric conditions are monitored
by another mechanism. When the control block is set up, a system of
simultaneous equations is constructed from the numeric portion of the
effects formalism and the numeric portion of the continuance constraints.
Assuming that the symbolic continuance constraints are not broken, this
system defines a feasibility space for the process, the dimensions of
which are model time and the quantities represented by Y-variables.
For the FILLBUCKET process, the system of equations is

Ycontent = Cinitialcontent + Crate - $

Ycontent < Ccapacity
Using variations of a process's system of equations, the monitor finds
certain points in time which are critical to the process. For example,
by solving the system

Ycontent = Cinitialcontent + Crate - $

[

Ycontent = Ccapacity

for $, a critical point is determined for FILLBUCKET which indicates that

the numeric continuance condition will be broken when $ = (Ccapacity -
Cinitialcontent)/Crate. New the variable $ is local to the process.

Using @ = $ + ¢, the time (in terms of the global, monitor system model
time) at which the constraint will be broken is computed. This interruption
time is recorded in the control block where it may be used by the monitor
executive. As described earlier (Section 7.1), this time may eventually

be used to interrupt the process.

8.5 Examples of interruption

Consider now the interruption of the filling process by the breaking

Page 29

of some continuance condition. The first continuance condition (RATE v
Crate) may be broken by the process TURNVALVE. Suppose the flow rate
through the valve is changed from =Crate to 0. Since the rate changes,
FILLBUCKET is interrupted. The content of the bucket remains as defined
by the value of Ycontent computed at the time of interruption. Further,
this content remains (at least temporarily) constant since the initiation
conditions needed to restart FILLBUCKET are not present. Specifically,
the flow rate is not positive as demanded by the first numeric pre-
condition.

On a more technical level, the process TURNVALVE causes (RATE VLV
=Crate) to be deleted from the set of explicit relationships. When the
process control monitor makes this deletion, it checks the associated
sustains list. Because a pointer to the FILLBUCKET process's control
block is found on the list, the process is interrupted. Since the process
will (sometimes) no longer be operative, state information which was
being represented by skeletons and equations must be moved to the set
of explicit relationships. Specifically, the numeric equation is
solved for Ycontent using the model time of the interrupt to compute $.
With Ycontent computed, (CONTENT =b =Ycontent) becomes explicit and is
entered into the set of explicit relationships. Once this critical
information has been salvaged, the process control block is abandoned
for garbage collection.

Suppose the rate were changed from =Crate to some new positive
value. The change in Crate would again interrupt the FILLBUCKET process,
but in this instance, FILLBUCKET would restart immediately with the
new flow rate (and a new initial bucket content reflecting the increase

in volume accomplished at the old rate).

Page 30

Suppose the bucket is moved. This too interrupts the FILLBUCKET
process leaving the content of the bucket as defined at the time of the
interruption. Of course, moving the bucket does not change the flow
rate. The valve stays opel, but the water from the tap simply disappears
into the drain in the floor.

1f the bucket 1is turned over during filling, FILLBUCKET is interrupted.
Some new process (EMPTYBUCKET) must exist in the process set to define
how the water spills from the overturned bucket.

1f the FILLBUCKET process is left undisturbed, the numeric continuance
condition causes the process tO ngelf-interrupt' or ''come to normal
completion' when the bucket is full. The content of the bucket remains
at =Ycontent = =Ccapacity and water continues to flow throught the tap,
spill over the bucket and go down the drain. (This interruption 1is
realized when the FILLBUCKET process's critical time is the earliest
interrupt time of all the currently active processes.)

Of course, a combination of interrupts could occur simultaneously.

Tn such cases, (in =2 consistent model) the resulting state of the world
will cause various processes OT combinations of processes tO be initiated

which describe the situation.

8.6 Inhibiting extraneous processes

Before moving on to a moTe complex scenario, an important aspect
of the monitor must be discussed. It has been pointed out that the process
monitor is continually attempting to start up new processes by finding
scenarios whose initiation conditions are met. Clearly, the FILLBUCKET

scenario’'s initiation conditions will be satisfied at all times during

Page 31

the continuance of a FILLBUCKET process. Unless some special inhibiting
mechanism 1is provided, the monitor will attempt tO set up a multiplicity
of process blocks, all attempting €O model the filling‘of the same bucket
from the same Tap- Such process blocks would differ only with respect

to process i{nitiation time and the value for the initial content of the
bucket. To avoid this situation, no two process blocks are allowed to
use the same scenario with identical bindings for primary variables.
Thus, no two FILLBUCKET processes WAy simultaneously be filling the

same bucket. Of courses multiple FILLBUCKET processes may still occur
simultaneously s© long as each process fills a different bucket and

uses & different tap-

9.0 Scenarios with effects sandwiches

Many processes are best characterized by sandwiching a set of
continuing effects between rwo sets of jmmediate effects. For example,
suppose TURNVALVE 1is redefined to mean "robot T turns valve v at turn
rate Cturnrate until a flow rate of Cflowrate 18 achieved." (That 1is,
Cturnrate is the rate at which the flow rate is to be changed. It is
helpful to think of Cturnrate as an ”acceleration” applied to 2 nyelocity”
Cflowrate.) The immediate effect of this process is to redefine the
rurnrate €O be Cturnrate. With the turm rate established, rhe flow rate
itself undergoes gradual change auntil the process is interrupted. Upon
interruption, the valve 1is no longer being turned and hence the turn
rate 18 jmmediately set to Zero. The scenario for this process is as

follows.

Page 32

Scenario name: TURNVALVE Robot r turns valve v
at turnrate Cturnrate
Parameters: (r v Cturnrate Cflowrate until flow rate Cflow-

/ Cinitialflowrate rate is achieved.

Cmaxflowrate Cmaxturnrate n)

Initiation conditions:

symbolic: ((SELECTED r TURNVALVE r v Cturnrate Cflowrate)
(RATE v Cinitialflowrate) (MAXRATE v Cmaxflowrate)
(MAXTURNRATEABS v Cmaxturnrate) (AT r n) (AT v n))

numeric: Cflowrate € Cmaxflowrate
Cflowrate = 0
Cturnrate Cmaxturnrate
Cturnrate = -~-Cmaxturnrate
0 < (Cflowrate - Cinitialflowrate) °~ Cturnrate

v OIA

Effects - 1:

delete list: ({TURNRATE v *))
add list: ((TURNRATE v Cturnrate))
Effects - G:
symbolic: ((RATE v Yflowrate))
numeric: Yflowrate = Cinitialflowrate + Cturnrate = $

Continuation conditions:

gymbolic: ((SELECTED r TURNVALVE r v Cflowrate Cturnrate)
(AT r n))
numeric: Yflowrate # Cflowrate

Effects - P:
delete list: ((TURNRATE v Cturnrate))
add list: ((TURNRATE v 0))

The initiation conditions of this scenario should be self-explanatory
with the possible exception of the fourth and fifth numeric constraints.
Since the flow rate may be either increased or decreased, the turn rate
may be either positive or negative. Taken together, the third and fourth

equations guarantee that |Cturnrate|=< Cmaxturnrate. 1f the desired rate

Page 33

is greater than the current rate, Cinitialflowrate, then Cturnrate must
be positive. Hence, (Cflowrate - Cinitialflowrate) ~ Cturnrate must be
positive. If Cflowrate is less than Cinitialflowrate, then Cturnrate
must be negative. Hence, (Cflowrate - Cinitialflowrate) °~ Cturnrate

is the product of two negative numbers and is again positive. Thus,

0< (Cflowrate - Cinitialflowrate) ' Cturnrate guarantees that the valve

will be turned in the proper direction for achieving Cflowrate. Further,

f

if Cflowrate = Cinitialflowrate, then the process is meaningless. But

if Cflowrate = Cinitialflowrate, then (Cflowrate - Cinitialflowrate)

Cturnrate = 0 and the fifth numeric constraint is not met.

The effects portion of the scenario indicates that the process
proceeds in three stages. As soon as the process is initiated, all
relations of the form (TURNRATE =v --) are deleted from the SWM and
the explicit relation (TURNRATE =v =Cturnrate) is added. The mechanisms
used to achieve such immediate effects have already been discussed.

The continuing effects are also set in motion when the process is
initiated. (The process monitor executive handles the instantaneous
effects first, but model time is frozen until constructs for the
continuing effects are set up in the control block.) Provisions for
the continuance conditions are set up exactly as before. Note that the
condition (AT r n) probably could be omitted since the robot r will not
wish to move from n so long as it continues to SELECT to turn the valve.
However, 1f a second robot is introduced, the second might forcedly push
the first robot away from the valve and stop the turning process.

When the TURNVALVE process is eventually interrupted (by exactly

the same procedures described earlier), the valve flow rate is saved by

Page 34

adding (RATE =v =YI) to the set of explicit relations, where BYI is the
value of Yflowrate at interruption time. As soon as the bookkeeping
accompanying the interrupt has been completed by the process monitor, the
monitor deletes (TURNRATE =v =Cturnrate) from the set of explicit relations
and adds (TURNRATE =v 0). This immediate post-process effect is handled
by the usual immediate effect mechanisms.

It is of some interest to note what happens if, while turning the
valve, the robot decides to change the turn rate and/or the desired
final flow rate. When the robot makes its decision, (SELECTED =r
TURNVALVE =r =v =Cflowrate =Cturnrate) is deleted from the SWM, causing
the interruption of the TURNVALVE process. When this happens, the
turn rate is set to zero even if the interrupt was precipitated by the
robot's desire to increase the turn rate. As soon as the robot's new
selection of values for Cflowrate and/or Cturnrate are entered in the
SWM (by adding (SELECTED =r TURNVALVE =r =v =Cflowrate’ =Cturnrate’))
the TURNVALVE process is reinitiated. Since all of these procedures are
accomplished while the process monitor executive keeps model time frozen,

it appears as if the turn rate never had been set to zero.

9.1 A new definition for FILLBUCKET

The new scenario for TURNVALVE makes necessary a new formulation
of the FILLBUCKET scenario which will allow the rate to change. One
possible new scenario is the following.

Scenario name: FILLBUCKET Bucket b is filled
by water from tap t.

Parameters: (b t / v n Cinitialflowrate
Ccapacity Cinitialcontent
Cturnrate)

Page 35

Initiation conditions:

symbolic: ((CONTROL v t) (RATE v Cinitialflowrate)
(TURNRATE v Cturnrate) (CAPACITY b Ccapacity)
(CONTENT b Cinitialcontent) (AT t n) (AT b n)
(ORIENTATION b UP))

numeric: 0 < Cinitialflowrate
Cinitialcontent < Ccapacity

Effects - G:
symbolic: ((CONTENT b Ycontent))

numeric: Ycontent = Cinitialcontent + Cinitialflowrate

. . W2
+ % ° Cturnrate $

Continuance conditions:

symbolic: ((TURNRATE v Cturnrate)
(AT b n)
(ORIENTATION b UP))

numeric: Ycontent < Ccapacity

The equation given for the computation of the content of the bucket
(Ycontent) may be unfamiliar. Compare the equation to the well known

formula

d =4d +vt+%at2

t 0 0 2
where dt is displacement at time ¢, dO is displacement at time O, Yo
is initial velocity and a is acceleration.

Notice that there is no reference to flow rate in the continuance
conditions. This omission is due to the fact that Ycontent is defined
in terms of the initial flow rate and the valve turn rate rather than in
terms of the varying flow rate. This formulation of Ycontent does, of
course, reflect the varying flow rate.

It is clear that the FILLBUCKET process must be interrupted if the

flow rate ever changes to zero. Although no explicit mention of this is

made in the continuance conditions, provisions for such an occurrence

Page 36

are implicitly included. If the flow rate changes to zero while FILLBUCKET
is operative, then a TURNVALVE process must be at work. But careful
examination of the TURNVALVE scenario shows that if the flow rate is

ever changed to zero, then TURNVALVE will be interrupted. (To change

the rate to zero, Cflowrate of TURNVALVE must be zero.) The interruption
of TURNVALVE will cause the turn rate to be changed from some negative
quantity to zero. This in turn will cause the desired interruption in

FILLBUCKET.

10.0 Summary

The preceding sectionms have outlined a new methodology for the
construction of world models. The underlying philosophy of this method-
ology, the philosophy which views the world as a collection of processes,
has been advanced. To support the new methodology, previous modeling
schemes have been reviewed, the nature of processes has been investigated
and a rough sketch of a system using the multiple process modeling scheme
has been given.

The application of multiple process modeling is clearly not restricted
to robots. The ability to understand a dynamic world is an essential
skill in the repertoire of any intelligent entity. In particular,
multiple process modeling should prove very useful to question answerers
and to CAL systems.

The breadth of applicability of the new methodology has been left
largely to the imagination of the reader. Such complex tasks as playing
baseball (in which the robot must coordinate the movement of this bat

with the movement of the pitched ball) and introspection (the robot

Page 37

thinks about the process he uses to solve problems) seem well within
the scope of the multiple process modeling scheme (if not within the

scope of the simple system outlined in sections 5 through 9).

Page 38

REFERENCES

Fikes, Richard E. and Nilsson, Nils J., "STRIPS: A New Approach
to the Application of Theorem Proving to Problem Solving,"
Artificial Intelligence, II, 1971, 189-208.

Fikes, R. E., Hart, P. E. and Nilsson, N. J., "Learning and
Executing Generalized Robot Plans," Artificial Intelligence,
111, 1972, 251-288.

Hendrix, G. G., "Question Answering via Canonical Verbs and
Semantic Models: A Model of Textual Meaning," The University
of Texas, Austin, Technical Report #NL-12, January 1973.

Raphael, B., "The Frame Problem in Problem-Solving Systems,"
Proc. Adv. Study Inst. On Artificial Intelligence and Heuristic
Programming, Menaggio, Italy, August 1970.

Raphael, B., "The Relevance of Robot Research to AIL," Formal
System and Non-Numeric Problem Solving by Computer, Springer-
Verlag, Berlimn, 1970.

Siklossy, L. and Dreussi, J., "A Hierarchy-Driven Robot Planner
Which Generates Its Own Procedures,'" The University of Texas,
Austin, Technical Report TR-10, February 1973.

Simmons, R. F., "Semantic Networks: Their Computation and Use
for Understanding English Sentences,’ in Schank, R. and Colby,
K. (Eds.), Computer Simulation of Cognitive Processes, Prentice
Hall, IN PRESS.

Simmons, R. F., "Mapping English Strings into Meanings,” The
University of Texas, Austin, Technical Report #NL-10, January 1973.

Winograd, T., Understanding Natural Language, Academic Press,
New York, 1972.

