SOME EXPERIMENTS WITH AN ADAPTIVE
SELF-IMPROVING TEACHING SYSTEM

Tim O'Shea*

Technical Report NL 18

August 1973

Natural Language Research for CAI
Supported by
The National Science Foundation

Grant GJ 509X

The Department of Computer Sciences
and CAI Laboratory
The University of Texas

Austin, Texas 78712

#Currently visiting from the University of Leeds, U. K.

ABSTRACT

An adaptive self-improving teaching system is described. The teaching
strategy is expressed in terms of production rules. These rules are manipu-
lated by a deduction system which uses a set of modally qualified assertions
to select changes in the teaching strategy and statistical inference to evalu-
ate these changes. Experiments with the system are described. These demon-
strate that the system is an effective teacher and that the system can improve

itgelf in a goal directed fashion.,

ACKNOWLEDGMENTS

I am particularly indebted to my dissertation supervisor, Dr. Derek
Sleeman, for the advice, encouragement and assisténce he has given me
throughout this project. The implementation of the program would not have
been possible without the support of Professor Robert Simmons and the techni-
cal assistance and advice of Robert Amsler and Mabry Tyson.

Thanks are due to the administrative officers of the Austin Indepen-
dent School District, in particular Mr. Schilhab. Much kind assistance was
provided by Mrs. Shelton, Mrs. Waggoner and Mrs, Conway, mathematics faculty
of Austin High Schools.

I would also like to thank Martha Stone, Michael K. Smith and Cathy
Eckert for their patient editorial assistance and perceptive comments during

the production of this report.

INTRODUCTION

Contemporary Intelligent CATI.

Compared with a teacher in a one to one teaching gituation, existing
tutorial CAI programs (see Lekan [1]) are severely 1imited. Among the limita-
tions are the inability to allow students to make freely constructed responses
in English and inadequate modelling of the student resulting in ineffective
teaching (see Atkinson [2]). Another limitation is inadequate task representa-
tion with the result that the program cannot ‘understand' the task at an
appropriate level and cannot accept alternative correct or interesting respomnses
(see Sikldssy [3]). CAI programs also lack the ability to profit from experi-
ence or to experiment with the teaching strategy.

Work has been carried out on all of these problems, some of the work
indirectly in Artificial Intelligence and Educational Psychology and some
directly in CAI (see Hartley & Sleeman [4], RKoffman [5]). Work on the Natural
Language Question Answering problem falls in the area of Artificial Intelligence
and is being pursued by Simmons [6,7] and many others (see Walker [8]). Good
student models have been produced for some task domains including work by Woods,
Tait, et. al., (9, 10, 11] and Suppes [12] on arithmetic. Programs which have
reasonable task representations include Sleeman's work on NMR spectra [13] and
Brown's on metereology [14].

The only attempt with which I am familiar, to build a teaching program
with a 'self-improving' capability is that of Smallwood [15]. Smallwood's
approach (discussed further in 0'Shea [16]) is limited in a number of ways and
is only applicable if the teaching strategy is represented entirely as a branch-

ing logic. Branching logics alone are usually not sufficient to represent the

Page 2

teaching strategy of an adaptive teaching program for a complex task

A certain amount of work however, has been done in Artificial Intelligence
on the problem of constructing programs with some sort of learning or problem-
solving capability. The attempts to tackle this in.general such as Newell,
Simon & Shaw's GPS [17] or the Graph Traverser [18] have proved rather dis-
appointing. However, more recent attempts to comstruct such programs for highly
specific subject areas, for example by Waterman [19] and Winston [20],have had a
fair degree of success.

The system described in this report is a development of Waterman's work on
the machine learning of heuristics. Waterman implemented a program to play
poker, where the playing strategy was expressed in production rules which were
automatically manipulated to maximize the prograﬁ% winnings. There are a num-
ber of parallels between a game of imperfect information (see Rapoport [21]) such
as poker and the teaching situation. Furthermore, production rules provide an

excellent means of representing teaching strategies.

Overview of System

For clarity it is best to consider the system as Two completely separate
and distinct programs which happen to interact. First, there is an adaptive
teaching program which attempts to model a teacher teaching an individual
student how to solve quadratic equations by the discovery method [22]. Sec-
ondly, there is a gelf-improving program which bears a similar relation to an
educational psychologist observing the teacher and occasionally changing his
teaching strategy in an attempt to improve his teaching performance.

The teaching program conforms to the structure for adaptive teaching pro-
grams put forward by Hartley [23]. It comprises of a vocabulary of teaching

operations, a model of the student, a representation of the task and a set of

Page 3

means-end guidance rules. Both the model of the student and the means-end
guidance rules are expressed as sets of production rules, The teaching pro-
gram keeps a record of the individual student during a teaching session, which
it passes to the self-improving program at the end of the session.

Improvement is defimed for the self-improving program with respect to four
goals. The goals are: decrease the time taken by a student to complete the
session, decrease the amount of computer time used, increase the number of
students successfully completing the teaching session and increase the scores
of students on a post-test., In order to select actions facilitating these goals
the system utilizes a deduction system rather like that of Black [24]. The
deduction system operates on a set of modally qualified assertions relating
actions (changes executable on the set of production rules) to the goal states.

The use of modal operators (see Hughes & Creswell [25]) makes it possible
to distinguish consequences which will certainly follow actions from consequen-
ces which will probably follow actioms. Given the nature of the task domain it
is reasonable to interpret these operators in a probabilistic fashion in order
to select actions most likely to facilitate a chosen goal whilst least likely to
operate to the detriment of the other goals. The system having made an actiom,
adds assertions to its set of assertions as a result of statistical inference on
the student records subsequent to the action. As this action is a change which
was executed on the teaching strategy, if it results in overall improvement the
changed production rules are kept. Overall improvement is defined in terms of
weights associated with the goals. Thus, the system attempts to improve the
teaching strategy and at the same time adds to the set of assertioms which comn-
stitute its knowledge of the teaching domain.

The implementation of the system and the experiments carried out with it are

discussed below. The overall design and further rationale and justification of

the techniques used are discussed elsewhere [16, 267.

Page &

THE ADAPTIVE TEACHING PROGRAM

Subject Area

A preliminary study was carried out in which twenty students were
taught, without the aid of a computer, how to solvé quadratic equations
by the discovery method., From this and other work in the area [227, it
became apparent that this pafticular subject matter and teaching style
could be incorporated in an adaptive teaching program.

The objectives of a lesson are rwofold. First to teach the student
how to solve simple quadratic equatioms. Second to develop the student's
problem-solving and reasoning skills., The student is presented with equa-

tions of the form
x2 4+ c=Dbex

and has completely solved the problem when he has discovered that x1 + x2 =D
("ADD" rule) and x1 ¢ %2 = ¢ ("TIMES" rule) where x1 and %2 are solutions
to the equation. Subsidiary rules which assist in the solution of the
problem are that x, divides ¢, and that if b = ¢ + 1, x1 = 1 and x2 = ¢
("ONE' rule). The teaching strategy involves giving the student carefully
chosen examples which increase the likelihood of a student discovering a
particular rule. After the student has mastered a rule he is presented
with examples for which his rule is not sufficient, interspersed with
examples for which his rule is adequate. This represents an attempt to
discourage him from rejecting his rule, while at the same time encouraging
him to try to discover other rules.

Student performance varies greatly, but most students eventually start
developing hypotheses about ways in which the problem can be solved and

testing them out. Whether the student finally succeeds depends primarily

Page 5

on his arithmetic skills and his ability to attend to the problem.

A number of factors make this a fairly demanding teaching task. The
student may have a fair degree of success on the basis of a completely
spurious rule. Students discover, lose and rediscover rules with great
frgquency. Students reject correct rules as a result of incorrect arith-
metic or faulty logic.

Also the. range of ability in students is very great, some 'see' the
rules almost instantly, others need to be exposed to twenty examples before
they develop an idea of what sort of rule is needed to solve the problem.

Consideration of these factors indicate that for a teaching program to
be effective it should be able to adapt to individual students. Also, it
is very hard to determine what would consitute an optimum teaching strategy.
Therefore, it is very appropriate to attempt to build an adaptive self-

improving teaching system for this subject area.

A Teaching Session

Initially, the program administers a pretest. This tests whether the
student has the basic arithmetic skills necessary to master the task. Depend-
ing on the students' performance the program selects one of two modes of
presentation, either algebraic equatioms or an equivalent word problem. Pre-
test protocols for a fast and slow student are given in Appendix I. The
difficulty of the problems generated in the prete;t depend on the students
progress, 1f the student is unable to correctly answer simple problems
after some coaching, the lesson is terminated. The pretest program uses
a simple adaptive presentation strategy (expressed in production rules) and

a simple task difficulty model (number of ‘carries’ to solve problem).

Having passed the pretest a simple quadratic equation is presented to

Page 6

the student and both solutions demonstrated. The student then procceds to
guess solutions to a series of quadratic equations. A protocol is given in
Appendix II. The program gives encouragement - ‘try again,' 'well done, etc. -
and the student is presented with a different example if he makes an excessive
number of guesses or makes absurd guesses on any particular example. The
order, duration and type of examples are determined by the teaching strategy.
Depending on how the student progresses he is either tested on some hard
examples and if successful congratulated on successfully mastering the

problem, or he is told the session is taking too long and stopped.

Teaching Strategy

At one level the teaching strategy may be said to consist of all the
decisions made in the comstruction of the program, from the format of the
questions to the order of examples generated. What is described here is
essentially the set of means-end guidance rules which relate the student
model to the task representation. These rules form a presentation strategy
for the different example types and co-ordinate the other components of the
program, which are the example administrator, the example generator and the
hypothesis tester., This is illustrated in Figure 1.

The presentation strategy is expressed as a set of production rules
with associated partitions and statevectors, The initial set used is given
in Appendix IIL The 19 elements of the statevectors are variables associated
with teaching strategy such as the current subgoal, the reason for the last
action executed and estimates of the student's ability on the various sub-
goals. 1In a complete cycle of operation the existing statevector is parsed
using the partitions (for more detailed examples see Appendix 3 and (16, 261).

The left hand side of the rules are then searched for the first match with

Schematic Diagram of Teaching Program

Teaching
Strategy =
Restilt
Example . A
Properties Hypothesis
\/F G
A
Result
Example Hypothesis
Generator /N Tester
E
Example Trates
/N
B U2
>~
Example < Student
Administrator ~ Trace Record
-
QueS:lonResp>nse
¢ W /N D
!
Student
Figure 1
Note: i A -G indicates flow of control

ii)y Ul, Uz
respectively

Page 7

indicates updating and accessing of student record

Page 8

the parsed vector. The corresponding right hand side which is in fact a
1ist of LISP [27] function calls, is then executed and the statevector is
updated as a result.

The following functions are used on the right hand side.

i) (SETQ NAME X) - used to set parameters such as GUESSLIM: the

maximum number of incorrect guesses permitted on any one example.

ii) (HYP RULE) - test the hypothesis that the student has mastered
the rule in question. (see following section on Student Model) .

iii) (GEN ((RULEL, HELP), (RULE2, HIN)) (PROPERTY)) - generate an
example which will help the student acquire or apply RULEL, which
will hinder application of RULE2 and for which PROPERTY is true.

iv) (CONTINUE N) - generate and administer 'N' more examples with the

same properties as the previous one.

v) (GOAL NAME) - sets a flag in the statevector indicating the current

subgoal.
vi) (DPRINTER NAME) - output the text labelled NAME.

The production rules can mostly be divided into those relating to the
testing of hypothesis and those concerned with example generation. An
example of the former is: ((1 A3 19 K1) ((HYP =ONE))).* This reads "if
the program is in the hypothesis testing cycle and the current subgoal is
the ONE rule, only test whether the student has acquired this rule,”" The
rationale behind this rule is that testing the other hypotheses would be a
waste of computer time. However, continual checking of all hypotheses
would result in the program detecting incidental learning of other rules
sooner. This is the kind of trade-off problem which the self-improving

program tries to resolve.

#1ISP notation is used throughout. The prefix=indicates a literal atom,
its absence indicates a variable name.

Page 9

The rules relating to example generation may be considered as describing
a partially ordered set of goals. The goals fall into four classes:
i) ADD, TIMES & ONE - get the student to master the rule named.
ii) ONETOADD, ONETOTIMES, ADDTOONE - get the student to master the
second named rule without losing the first named rule.
iii) EASY - give the student problems solvable by inspection.
iv) HARD - give the student examples only solvable with complete
mastery of the task.
The interrelation of the goals is illustrated by the directed graph given
in Figure 2., Each node represents a goal, the outgoing arcs correspond to
the production rules associated with the goal. For example GOAL TIMES may
be left if conditions expressed by the right hand sides of any of the
rules labelled Tl through T6 are met. (see Appendix 3) The conditions
these correspond to are:
i) T1 - 'has the student mastered and successfully applied both the
ADD and TIMES rule for the last three examples?'
ii) T2 - 'has the student mastered the TIMES rule but not the ADD
rule?’
iii) T3 - 'is incidental learning on the ADD rule greater than learning
on the TIMES rule?’
iv) T4 - 'is it "wery possible’ or "certain! that the student has
mastered the TIMES rule?'
v) T5, T6 - check for incidental learning on ADD and ONE rules respec-
tively.
In the event of none of these conditions being fulfilled, rule T7 insures

that example generation for this goal continues.

$530008

AN
7 TEvH
< V09
\
, < P
aay 0l SHEWIL SAWIIL 01 adv
V09 V09
N aay ol 3NO
. TVOD *wu/
/ A g ¥
V4
NH\ #Mm;
C1Le¢el N —/- >
s P
a\/. e LY aav
o V09
SIIL | T o1

L 09 a::::;::AM;:::::“HHHH NO _
T V0D rwu

L1491
! kA
>
N
ASVd
TV09
s
LYUVIS
SIVOD 40 NOTIVIHIYHINI HNIMOHS HAVED JHLOHI1Id Z mm:wﬁm

01 °%ed

Page 11

The complete set of production rules expresses the presentation
strategy in a completely explicit fashion amenable to automatic manipula-
tion.

Student Model,

Whilst some assumptions about the student are implicit in the presen-
tation strategy, inferences about the student's current state of knowledge
are made in the hypothesis tester and this accordingly constitutes the
major part of the student model.

The hypotheses that may be tested are as follows:

i) WORULE - that the student has no rule at all.

ii) WRULE - that the student has completely mastered all the rules,

iii) TIMES, ADD or ONE - that the student has mastered the particular
rule in question.

Evaluating these hypotheses presents certain difficulties. In particu-
lar there is often not Sufficient evidence in the students responses to
enable the hypothesis tester to accept or reject the hypothesis,

This is partly resolved by returning one of tﬁe range of values: CER-
TAIN, VERY POSSIBLE, POSSIBLE, DON'T KNOW, POSSIBLY NOT, CERTAINLY NOT.
This is very reasonable as there are many occasions in which it is not
possible to distinguish which rule is being applied.

In addition some other factors such as the size of the problem space
and previous extimated performance are used as well as the student's most
recent responses.

Associated with each hypothesis is a set of production rules. These
express a simple explicit decision procedure for each hypothesis. The

elements of the statevectors include the number of guesses, the gap between

Page 12

the correct solutions, the value of the previous hypothesis with respect to
the rule in question and a measure of the size of the problem space. Fur-
ther, each statevector has variables associated with the presence of particu-
lar key features in the student responses related to the hypothesis being
evaluated. For example, the statevector for the TIMES rule includes a
variable reflecting the proportion of guesses at the last example which were
factors of C, where the equation is x2 4+ ¢ = b.x. The complete set of
rules for evaluating the hypothesis that the student has the TIMES rule is
given in Appendix IV.

Task Representation

The program incorporates a model of task difficulty expressed in terms
of a task difficulty matrix which relates teaching goals to example features,

These features are weighted relative to each other as to how much they
help or hinder acquisition of the various subgoals. The task difficulty
matrix is given in Appendix V.

The example generation procedure operates as follows. Using the task
difficulty matrix, the example features are ordered with respect to their
relation to the current subgoals.

The features are then sorted according to two criteria. Firstly,
incompatible features are eliminated, an example of a pair of incompatible
features is 'that one of the solutions to the problem be 1' and that 'none
of the solutions be 1.' Then currently impossible features are eliminated.
Consider the pair of features 'that the examples have not been previously
generated' and 'that both solutions have numerical values less than 5."
After a number of problems have been generated it may be impossible to find

an example with these features. The table of examples is then searched for

Page 13

the best fit to the remaining set of features; if no fit is found, the set
of features is added to the list of sets of features now impossible to
obtain. Then, the feature with the smallest relative weight is dropped
and the search repeated.

In an earlier version of the program a non-deterministic select
function (see Floyd [28]), was used to generate examples. This proved to
be very inefficient and table look-up was found to yield equally effective

examples for considerably less computer time.

Page 14

THE SELF-IMPROVING PROGRAM

Changing Production Rules

The number of possible changes which may be executed on a non-trivial
set of production rules is very large. However, the changes which are
meaningful within the context of changing the strategy of a teaching program
are few and can be defined without too much difficulty.

The self-improving program incorporates an amender which takes as
arguments a list of function calls. These define a change or changes to
be executed on the set of production rules., Changes may be executed on the
condition or action part of a production rule, or on the ordering of the
goals explicitly represented in the production rules.

There are two types of functions: aj those which identify the produc-
tion rules to be changed, and b) those which identify the changes. The
functions are:

a) i) PRESENT, ABSENT. (PRESENT X) returmns {rue for a given production
rule if X in an element of the condition side on which a restrictiom is
placed or if X is a member of the list of actions on the right hand side.
ABSENT is similarly defined.

1i) LESS, GREATER, EQUAL, NOTEQUAL. (LESS X Y) returns true for a
given production rule if (PRESENT X) is true and if the restriction on X is
such that it is less than Y numerically. Where X is a variable associated
with a certainty value from the student model it returns true if X is less
certain than Y. GREATER, EQUAL, NOTEQUAL are gimilarly defined.
b) i) RAISE, LOWER. (RAISE X) is interpreted as raise the threshold or
parameter identified by X. The magnitude of the increase is determined by

a parameter associated with the running of experiments (see following

Page 15

section). LOWER is similarly defined.

ii) BEFORE, AFTER. (BEFORE X) may be interpreted in two ways. 1f X
identifies a goal, (BEFORE X) identifies the production rules which corres-
pond to the incoming arcs of the node corresponding to the goal. (See
Figure 2). If X identifies an action, (BEFORE X) identifies the position
immediately before X in the sequence of actions on the right hand side of
the production rule., AFTER is similarly defined.

iii) INSERT, REMOVE, REPLACE. (INSERT X) is defined as adding the
appropriate condition, as defined by X, to the left hand side, or adding
the action X to the right hand side. REMOVE and REPLACE are defined simi-
larly, When X is a goal the interpretation of these functions is illustrated
in Figure 3.

The arguments of the functions in the list of functiomn calls for the
amender must be either all related to conditions and actioms or all related
to goals. This restriction was imposed solely for ease of implementationm,
and could be removed in a subsequent implementation.

Where the arguments are related to conditions and actions the amender
operates by using the functions listed under a) and interpreting them as
PRESENT to identify the rules to be changed. Then, using the commands
listed under b), the changes are executed.

1f the arguments are goals, the production rules to be changed are
identified by interpreting BEFORE and AFTER as described and by interpreting
any of (REMOVE X), (REPLACE X Y), or (INSERT X) as both (BEFORE X) and
(AFTER X). The changes are then executed,

It is possible to express changes to be executed on the set of produc-

tion rules succinctly and without undue difficulty.

Figure 3

Page 16

Note Gi are goals. Ci are conditions on the goals and correspond to the

left hand sides of production rules.

i)
¢, ¢ 6, (INSERT G3) 6, ¢ 6 ¢ ¢
— > N R —
ii) A
SR v G
N,
L o / 4
¢, NGy G
(REMOVE G3) >
..__> . %*
G2 CZ/\ 4 G4
- N
S ,
€, N Cy Gy
s
> .
111)
G, ¢ 6 C, G, (REPLACE G2 G4) G, C .S,
& > * ® — > >, =

*CiA Cj stands for the condition (Ci AND Cj) with the restriction that if

Ci/\Cj is impossible, Ci takes precedence over Cj'

Page 17

Selecting Changes

In order to identify which changes should be executed on the set of pro-
duction rules, a deduction system, rather like that of Black [24], is used.
The deduction system operates in the following fashion:

i) Given a desired goal such as 'decrease computer time,' it returns
a list of sets of actions which may achieve this goal.

ii) Given a list of actions it returns a list of possible comsequences
of these actioms.
Thus the system behaves like a set of PLANNER antecedent and comseguent
theorems., (See Hewitt [29]). The actions referred to above will be changes
executable on the set of production rules.

The deduction system operates on a set of assertions. Two types of
assertions are distinguished; causal assertions and definitional assertioms.
The assertions used by the system are given in Appendix VI. Causal asser-
tions are qualified by the operators "CERT" or "POSS." Two examples of causal
assertions are:

i) (CERT (REMOVE MINOR) (DECREASE (STUDENT TIME)))

ii) (POSS (LOWER EXLIMIT) (DECREASE SCORES))

The first assertion may be interpreted as 'for any set of production
rules relating to the adaptive teaching program, executing (REMOVE MINOR)
will result in the decrease of student time.' The second assertion may be
interpreted as 'for some set of production rules relating to the adaptive
teaching program, executing (LOWER EXLIMIT) will result in the decrease of
scores. '

Causal assertions are of the general form (OPERATOR LSIDE RSIDE) and

have the following restrictions. 1SIDE may be of the form (AND T, ... Tn).

1

Page 18

Ti must be a predicate applied to arguments which are not predicates, i.e.,

the arguments must be names. RSIDE may be of the form (OR T1 s Tn). Note

that (OPERATOR (OR X1 XZ) Y), which is excluded, may be rewritten (OPERATOR X1),
(OPERATOR XZ Y). Similarly, we may rewrite (OPERATOR X (AND Yl Yz)) as

(OPERATOR X Yl)’ (OPERATOR X YZ)'

The definitional assertions are qualified by the operator EQUIV. Two
examples of definitional assertioms are:

i) (EQUIV (OR (GOAL =EASY) (GOAL =HARD)) MINOR)

ii) (EQUIV (AND (STUDENT SCORE) (POST SCORE)) SCORES)

The first assertion states that anything which is true for MINOR is
also true for (GOAL =EASY) or (GOAL =HARD) and vice versa. The second asser-
tion states that anything which is true for (STUDENT SCORE) and (POST SCORE)
is true for SCORES and vice versa.

The definitional assertions reduce the number of causal assertions needed.
Where a causal assertion is true in a number of instances, a name such as
MINOR can be defined.

The use of definitional assertions removes the possibility of endless
deductions as a result of repeated substitution. Definitional assertions
are used in the deduction procedure to match the predicates of causal asser-
tions but are not substituted for them. As in our context there could be no
possibility of having both the causal assertions (OPERATOR X Y) and (OPERATOR Y X)
repeated substitution cammot occur.

Given a goal such as (DECREASE (COMPUTER TIME)), the deduction procedure
is as follows:

1. Perform a search for matches on the right hand sides of the causal

assertions with the goals. The definitional assertions are used to check for

Page 19

matches., For example, MINOR will match (GOAL =EASY) if we have the defini-
tional assertion (EQUIV (OR ((GOAL =FEASY) (GOALZ=HARD)) MINOR).

2. The corresponding left hand sides are detached and step 1 is re-
peated on them for non-executable predicates, Executable predicates corres-
pond to the functions listed in the previous subsection such as REMOVE and
BEFORE,

3. The lists of executable predicates thus obtained are compared to
find those lists {Lég which used the least number of causal assertions
involving the POSS operator,

4, TFor each list of executable predicates, Li’ left to right matches
are then carried out and all the predicates, {h%%, operating on 'goal' vari-
ables, such as (COMPUTER TIME), are detached.

5. The predicates {Mjg identified in 4 are divided into those result-
ing in the achievement of goals {ng , such as (INCREASE (STUDENT SCORE)),
and those resulting in the deterioration in the progress towards goals {hig,
such as (INCREASE (COMPUTER TIME)). A measure mu relating to the likelihood

of the overall achievement of goals is computed in each instance.
n m
mu = Z P(Gk) - P(B1>
k=1 {=1

P(Mj) is computed as O.75¢POSS(Mj) where POSS(Mj) is the number of causal
assertions involving the POSS operator used in the deduction of Mj from Li'
6. The set of executable predicates, Li’ associated with the maximum
value of mu is then selected.
7. The arguments of the executable predicates, Li’ are then tested

against a list of primitive arguments. These primitive arguments are the

Page 20

names of the variables of the state vector and the names of function calls
which may be on the right hand side of a production rule. Where a primitive
argument is not found, the definitional assertions are used to instantiate
one. For example, (REMOVE MINOR) is changed to (REMOVE (GOAL ZEASY)).

8. The set of executable predicates are then executed.

The operation described in step 3 and the measure mu defined and used
in steps 5 and 6 are heuristics used to identify sets of executable actions
likely to result in the achievement of goals. For a given assertion, (POSS X Y),
and a given set of production rules, there may well be a probability value
which could be associated with the occurrence of Y given the execution of X.
However, this is not known prior to executing X, and this probability value
will vary with the set of production rules X is executed on., Further, we do
not have a measure for the magnitude of Y. But we must choose between actions
with possible or certain 'good' or 'bad’' effects. Also, examining the asser-
tions, it seems desirable that 'possibly possibly' be weaker than 'possibly.'
Accordingly, (POSS X Y) has been arbitrarily assigned the probability 0.75 in
the evaluation of mu. As will be discussed below, this procedure does not
eliminate the possibility of executing various executable predicates, but
determines the order in which they are executed.

Whilst some aspects of the formulation described above, such as the CERT
and POSS operators are adapted from modal logic, (See Hughes & Cresswell [25],
McCarthy & Hayes [30]), the formulation cannot be identified with any of the
recognized modal calculi, It is essentially a ‘common sense’ approach to
the problem of reasoning about actions, restricted to the particular context

of selecting changes to be executed on a set of production rules.

Page 21

Evaluating Changes

The changes executed on the set of production rules are evaluated by
statistical inference on the resulting changes in student performance. A
variable is associated with each of the four goals of the program. The
variables are: whether a student successfully completes the teaching ses-
sion - SS, the score on post test - PS, the amount of student time used - ST,
and the amount of computer time used - CT. The goals are to increase SS and
PS and to decrease ST and CT. These goals conflict, and a further variable
which is a measure of overall improvement is defined as:

01 = Wl- SS + WZ- PS - W3- CT - WL: ST
The weights Wi are fixed according to the relative values of the goals.,

T - tests are carried out after each additional student has been taught.
The T-test is used to compare the mean score for the variable prior to the
change in production rules to the mean score after the change. If there is
a significant change using a 90% confidence interval in any of the variables,
the change is then evaluated to determine if it should be permanently incor-
porated in the set of production rules. If the mean score of OI has increased,
the change in the set of production rules is kept. If there has been a decrease
in OI, the set of production rules prior to the change is restored and the
student records subsequent to the change are deleted. The latter operation
insures that after a series of changes resulting in decreases in 0OI the mean
for 0T is not depressed. If this was not done, after a series of bad changes,
a change with a small bad effect might be incorporated into the set of rules.

Small sample statistics and evaluation after each student were necessary
in view of the number of students on which it was expected to run the program.

If the program were run on a large number of students it would be possible to

Page 22

use more sensitive statistical tests.

Before any changes may be executed, the teaching program must be run on
sufficient students to provide a data base with respect to which the changes
may be evaluated,

After a change is evaluated, causal assertions are added to the set of
assertions operated on by the deduction system.

Adding Assertions

Suppose at step & of the deductive procedure we have isolated the exec-
utable predicate, (REMOVE (MINOR)), and then after applying (EQUIV (OR
(GOAL*=EASY) (GOAL=HARD)) we execute the action (REMOVE (GOAL=EASY)). If,
for example, the consequence is an increase in computer time, then the fol-
lowing assertion is added to the set of causal assertions:

(CERT (REMOVE (GOAL==EASY)) (INCREASE (COMPUTER TIME))). In addition,
the generalization:

(POSS (REMOVE MINOR) (INCREASE (COMPUTER TIME)))
is added to the set of causal assertions.

Adding assertions in this manner has the effect of inhibiting the use of
changes found experimentally to result in the deterioration of the teaching
performance and of making more likely the use of changes found experimentally
to result in the improvement of teaching performance.

An attempt may be made to execute an executable predicate which is in
fact impossible to execute. For example, there may be no (GOAL=EASY) for
the command (REMOVE (GOALZ=EASY)) to operate on. In this instance, the asser-
tion:

(CERT (REMOVE (MINOR)) IMPOSSIBLE) is added to the set of assertions.

Assertions may alsoc be added to the set of assertions at any time by a

Page 23

person observing the program and wishing to give it some 'advice.'
Limitations

There are a number of severe limitations in the deduction schema described.
Consider the causal assertion (CAUSE X Y) which could be interpreted as "for
the current set of production rules, executing change X will result in the
occurrence of event Y.' In many cases, particularly when assertions are being
added, assertions of this form would seem to be more natural and more useful
than assertions of the form (POSS X Y). The difficulty arises because of what
is known as the 'frame problem' (See McCarthy & Hayes [30]). In our case,

while (CAUSE X, Y) may be true for a given set of production rules, we have

1
no way, apart from experiment, of determining if it is still true after the
execution of say, change XZ' Accordingly, the weaker (POSS Xl Y) is used.

However, in some instances, for example, if with the current set of
production rules, a change has a statistically significant effect on a
variable, we wish to disﬁinguish that change. In this circumstance an
assertion of the form (CERT X Y) is added. This solution is very unsatis-
factory in that this use of CERT does not strictly conform to the interpre-
tation of CERT given earlier.

A related difficulty arises with 'impossible' changes. In our current

formulation, a change X, executed upon the set of rules may result in the

1
impossibility of applying change Xz. XZ may then be tagged IMPOSSIBLE to

prevent the deduction system from repeatedly deducing that this is the best
may result in X

candidate for execution. But a further change X now being

3 2

possible and in fact the best candidate. In our existing implementation it
is not possible to remove the tag IMPOSSIBLE from Xz.

The program is also liable to 'hill-climbing' problems in that at any

Page 24

time it always executes the most likely change. It may be the case, however,
that the execution of some change with a small 'bad' effect will make pos-
sible the execution of a sequence of changes with very 'good’' effects., The
program may, therefore, never carry out some optimum sequence or combination
of changes even though each particular change may be described in some causal
assertion. Work is in progress on the possibility of introducing the CAUSE
operator and on the use of a simple planning algorithm to estimate the con-
sequences of sequences of changes,

Despite its limitations, the deduction system has proved adequate for
representing and performing deductions with simple causal assertions relating
to the changes in the teaching strategy. For example, the assertions given
in Appendix VI include very general statements such as:

(POSS (REPLACE MAIN MAIN) (CHANGE SOMEGOAL))
which indicates the changing of the order of main goals may have some effect,
and highly specific statements such as:

(POSS (RAISE ENCRATE) (INCREASE (POST SCORE)))
which indicates that increasing the rate of encouragement may possibly in-
crease the post score.

Using the system described, it proved possible to select, execute, and

evaluate a number of non-trivial changes in the set of production rules.

Page 25

EXPERIMENTS WITH THE SYSTEM

Implementation Details

The system used for the experiments was implemented in LISP (277 and
run interactively under TAURUS, a time-sharing system on the CDC 6600/6400
at the University of Texas at Austin,

The system comprised five overlays each occupying 33K and four disc
resident files. The operation of the system is illustrated in Figure 4.
Wherever possible the LISP code had been compiled (See Greenawalt [31] for
speed. An entire lesson used on average about 50 seconds of processor time.
When the deduction system and amender were used, a further 60 to 90 seconds
of processor time were used.

The response time of the teaching program ranged from two to five sec-
onds when the program was run between 8:00 a.m, and 10:00 a.m. Occasionally,
teaching sessions were held later in the day, when there were many more users
on the time-sharing system. The response time could then be as poor as one
to two minutes,

Experimental Procedure

The subjects for the experiments were fifty-one high school students
aged between thirteen and fifteen years. Although these students did not
belong to the age group (nine to eleven years) for which the teaching pro-
gram had been designed, they could all be identified as having difficulty
with mathematics. The students had 2ll failed at least one high school
mathematics course. None of the students were able to solve quadratic equa-
tions at the start of the lesson.

The lesson was presented to the students on an interactive terminal

located at the school., The lessons lasted on average about an hour, during

Figure 4

Operation of System

Page 26

N

01 \
> / ADMINISTER £
\ PRETEST /
AN
TEACthllG STRA- 02 F2
S ADMINISTER WRITE CURRENT
gggﬁzlgxggl)- LESSON STUDENT
RULES : y RECORD
D
4 Rﬁﬁ
| 4
‘ F3
wrireh Y/ 03 —FEAD TS TTCAL
NEW READ PERFORM WRITE | prcoRDs OF AL
RULES | | T-TESTS % |PAST STUDENTS
C SIGNIFICANT \}/ RECORD
P CHANGE
IN TEACHING
[PERFORMANCE
05 04 READ, F4
EXECUTE MAKE WRITE | CAUSAL AND
CHANGES DEDUCTIONS — NEw] DEFINITIONAL
ASSERTTONG—ASSERTIONS

i) 01 - 05 are overlays.
ii) Fl - F4 are disc resident files.

iii)

—>—— represents transfer of control.

iv) — BFAP represents reading a file,
v) — ¥ represents writing a file,

NO SIGNIFI-
CANT CHANGE 1IN
TEACHING
PERFORMANCE

Page 27

which time the student attempted an average of 24 problems. The day after
the lesson the students completed a written post-fest compriging 6 problems
to be completed within ten minutes.

The teaching program without the self-improving program was qsed to give
lessons to the first twenty students. The students records so collected,
provided the basis for evaluating the effects of subsequent changes in the
teaching strategy on teaching performance.

The self-improving program was initialized as follows:

i) The goals namely:increase student score, increase post-score, decrease
student time and decrease computer time were weighted 2:2:1:1.

ii) The magnitude of changes executed by the (RAISE X) and (LOWER X) func-
tion calls was set at 50% of the current value of X.

iii) The confidence interval for the T-tests was set at 90%.

iv) The maximum interval between changes in the teaching strategy was
set at seven lessons. That is if no statistically significant change had
occurred after seven students had been run a new change was selected and
executed, The previous change was to be incorporated if 01, (the measure of
overall improvement)had increased, otherwise it was to be removed,

Had a much larger number of students been available it would have been
possible to select a smaller magnitude of change in ii), a greater confidence
interval in iii) and dispense with iv). TFor the purposes of the experiment
i) - iv) were set to insure that the self-improving program made a reasonable
number of changes without being completely erratic.

The system incorporating the self-improving program was used to administer

lessong to the remaining thirty-one students.

Page 28

Results

'experiments.' These are

The self-improving program carried out five
briefly summarized below.

1) With the goal of decreasing the amount of student time the program
selected and executed (REMOVE (GOAL ZEASY)). The result of this change was
that the teaching program no longer presented two easy introductory problems.
No statistically significant change in teaching performance was detected,
but as the value of OI had increased the change in the teaching program was
kept.

ii) With the goal of increasing the post-test score (REPLACE HYPS (HYPALL))
was executed. This change resulted in the teaching program testing all its
hypotheses about the student after administering each example. Statisti-
cally significant increases in post-test score and decreases in computer
time were detected. Appropriate assertions were added to the set of asser-
tions and as the value of OI had increased the change in the teaching strategy
was kept.

iii) With the goal of increasing the student score, the program tried to
execute (REPLACE HYPS (HYPALL)). As a result of ii), this was not possible
and the assertion (CERT (REPLACE HYPS (HYPALL)) IMPOSSIBLE) was created. It
then executed (RAISE ENCRATE) which increased the amount of encouragement
given the student. This resulted in a significant decrease in post-test
score and a decrease in 0I. The program removed the change from the teaching
strategy.

iv) With the goal of decreasing computer time the program executeé
(LOWER TIMESCH). This was equivalent to lowering the criterion for deciding

that the TIMES rule had been completely mastered, A significant decrease in

Page 29

computer time was detected. As OI had increased, the change was kept.

v) With the goal of decreasing student time (LOWER ADDCH) was exe-
cuted. The effect and results were the same as in iv),.

In each case assertions were created and added to the set of asser-

tions. After being run on the thirty-one students the program had added
nine assertions to its set of assertions. Comparing the teaching performance
of the program over the first twenty students and the last ten there was a
decrease in mean computer time of 26% which is significant using a T-test
with a 99% confidence interval.

The mean student score, mean post-test and mean student-time all improved.
None of these changes, however, were statistically significant using a 95% con-
fidence interval.
Discussion

The system was a very effective teaching program., Before using the pro-
gram most of the students characterized themselves as very poor at mathe-
matics and expressed very low confidence in their ability to learn mathe-
matics. However, 807% of the students discovered the coefficient rules for
solving the equations and could solve equations such as XZ + 48 = x+ 19 by
inspection, after completing the lesson.

The scores on the post-test were mostly high, the mean score being 86%.
Most of the students enjoyed using the program and were very enthusiastic
about both using the terminal and the teaching style of the program. A
selection of student comments is given in Appendix VII.

With respect to the four goals set for the system, an improvement in
teaching performance was obtained. This improvement was mostly in terms of

a decrease in computer time, The main reason for this was that with the

Fage 30

number of students available it was difficult to detect improvement in the
other three variables. The post-test score and student score were near
their maximum values and the variable student time had a large standard
deviation.

In addition to the improvement in teaching strategy the program's set of
causal assertions had been refined. An incorrect assertion had been selec-
ted, evaluated and corrected. Several other assertions relating to the
results of experiments had been created. 1In fact the fifth experiment was
partly a result of the assertions created after the fourth experiment. Given
the general nature of some of the assertions the system could probably have
indefinitely executed changes in the teaching strategy.

There are a number of weaknesses in the existing system which would
become apparent if large numbers of students had been taught. The set of
assertions would continue to grow and become unwieldy and expensive in com-
puter time to evaluate., Also the system having tried out all its 'likely’
changes would start trying out the 'unlikely' omes. This would result in
frequent short-term deteriorationsin teaching performance.

If a large number of students were to be taught it would be necessary
to find ways of removing redundant assertions from the set of assertions.
Constraints could be applied to the set of teaching strategies experimented
with to prevent severe deteriocration in teaching performance (See 0'Shea [26]).

The system described is capable of improving its teaching performance.
The potential for improvement is dependent on the set of assertions used
initially and the limitations of the teaching style. Further possible

extensions of the system are discussed elsewhere [16],

Page 31

CONCLUSIONS

It is possible to construct an adaptive self-improving teaching system
for a complex teaching task. The essential featufes of the system are the
use of production rules as a means of representing the teaching strategy,
the use of modally qualified assertions which express possible changes and
their relation to the overall goals of the system and the use of statisti-
cal inference to evaluate the changes carried out. The approach described
is applicable to any teaching task where the teaching strategy may be formu-
lated as a set of production rules and where observable measures for the
overall goals can be defined. Work is currently in progress to identify the
classes of teaching tasks whose associated teaching strategies may be
amenable to expression as sets of production rules and into ways of strength-

ening the deduction procedure.

Page 32

REFERENCES

A. Lekan, "Index to computer assisted instruction.' Harcourt Brace

Inc., New York. 1971.

C. Atkinson, '""Ingredients for a theory of instruction.” American

Psychologist, October, 1972, p, 921-931,

Siklbssy, 'Computer tutors that know what they teach.'" Proc. FJCC,
1970, p.251-255.
R. Hartley and D. H. Sleeman, ""Towards more intelligent teaching

systems." International Journal of Man-Machine Studies, 1973,

Koffman, "Artificial intelligence and automatic programming in CAI."

F. Simmons, '"Linguistic analysis of constructed student responses
in CAI." Technical report TNN-86, University of Texas at Austin,
1968,

F. Simmons, '"Integrated systems for natural language processing.”
Technical report NL-8, University of Texas at Austin, 1972,

i)

E. Walker, "Automated language processing. Annual Review of Infor-

mation Science and Technology, Volume 8. Carlos A. Cuadra, editor,

1973,
Woods, J. R, Hartley, K. Lovell, and D. H. Sleeman, ''The teaching of
arithmetic using a computer based system.'” 1In Mann and Brunstrom's

Aspects of Educational Techmology, III. Pitman, London, 1969,

Woods, and J. R. Hartley, "Some learning models for arithmetic tasks

and their use in computer based learning." 3British Journal of

Educational Psychology, Vol 41, Part I, 1971.

11,

12.

13.

14,

15.

16,

17,

18,

19.

20.

Page 33

Tait, J. R. Hartley, & R. C. Anderson, ''Feedback procedures in

computer assisted arithmetic.' British Journal of Educational

Psychology (in press).

Suppes, M. Jerman & D. Brian, "Computer assisted instruction.”
Stanford’'s 1963-1966 Arithmetic Programs, Academic Press, New

York, 1968.

. H. Sleeman, "A problem solving monitor for a deductive reasoning

task.' Technical report NL-17, University of Texas at Austin,
1973,

C. Browne & R. R. Burton, "A model driven question answering system
for a CAI enviromment.” Technical report 13, University of
California at Irvine, 1972.

D. Smallwood, "A decision structure for teaching machines.’ MIT
Ph.D. Thesis, MIT Press, 1962,

0'Shea, "Self-improving teaching systems,”

Dissertation (in prepar-
ation) to be submitted to University of Leeds.

Ernst and A. Newell, "GPS, a case study in generality and problem

solving." ACM Monograph Series, Academic Press, New York, 1969,

. Michie & R. Ross, "Experiments with the adaptive graph traverser,”

in B, Meltzer & D. Michie (eds.) Machine Intelligence 5, p. 301-

318, New York, 1970.
A. Waterman, '"Generalization learning techniques for automating the

learning of heuristies.” Artificial Intelligence, Vols. 1,2, 1970.

. E. Winston, "Learning sturctural descriptions from examples.”™ Ph.D.

Thesis, Project Mac TR-76, 1970.

21.

22,

23.

24,

25,

26,

27.

28,

29.

30.

31.

Page 34

A, Rapoport, "Two person game theory." University of Michigan Press, 1966.

L. S. Schulman, and E, R, Keisler, '"Learning by discovery." Rand McNally
and Co., Chicago, 1966.

J. R. Hartley, '"The adaptive control of 1earﬁing tasks,’” Internal Paper
Computer Based Learning Project, University of Leeds, 1972,

F. Black, "A deductive question-answering system.'" In M. Minsky (ed.)

Semantic Information Processing, MIT press, 1968.

C. E. Hughes & M. S. Cresswell, 'Introduction to modal logic.” Methuen,
London, 1972,
T. O'Shea & D. H. Sleeman, "A design for an adaptive self-improving

teaching system.,” in Advances in Cybernetics, Gordon & Breach., 1973,
v L

C.Weissman, "A LISP 1.5 primer," Publishers Dickenson, 1967.
R. W. Floyd, "Nondeterministic algorithms.," JACM, Vol. 14, No. 4, 1967.
C. Hewitt, "Procedural embedding of knowledge in planner." 1In Proceedings

of Second International Joint Conference on Artificial Intelli-

gence, London, 1971,
J. McCarthy & P. Hayes, "Some philosophical problems from the standpoint
of artificial intelligence.” 1In B, Meltzer & D. Michie (eds.) Machine

Inteiligence 4, p. 463-502, 1969,

M. Greenawalt, "U.T. LISP manual.™ Report (in preparation), University of

Texas at Austin, 1973.

Page 35

APPENDIX T

Two protocols for the pretest are given. Student responses are

indicated by "S:"

a) Student familiar with algebraic equatioms.

HULLO I AM GOING TO TEACH YOU SOME MATH
EVERY TIME I ASK YOU A QUESTION

AFTER YOU HAVE FINISHED TYPING YOUR ANSWER
PLEASE REMEMBER TO PRESS THE RETURN KEY

ON THE RIGHT SIDE OF THE CONSOLE

WHAT IS YOUR CHRISTIAN NAME?

S: JOHN

DO YOU UNDERSTAND EQUATIONS OF THE FORM
X=-B=C

S: YES

FINE

SOLVE FOR X IN THE EQUATION
X -4 =7

S: 3

WRONG TRY AGAIN

S: 11

RIGHT

SQOLVE FOR X IN THE EQUATION
X - 5=10

S: 15

RIGHT

SOLVE FOR X IN THE EQUATION
X -7 =14

S: 21

RIGHT

DO YOU UNDERSTAND EQUATIONS OF THE FORM
X+ B=C

S: YES

FINE

SOLVE FOR X IN THE EQUATION
X+ 3 =656

S: 3

RIGHT

Page 36

SOLVE FOR X IN THE EQUATION
X+ 5=10

S: 5
RIGHT

SOLVE FOR X IN THE EQUATION
X+ 8 =15

S: 7
RIGHT

DO YOU UNDERSTAND EQUATIONS OF THE FORM
X TIMES X = B

S: YES

FINE

SOLVE FOR X IN THE EQUATION
X TIMES X = 64

S: 6
WRONG TRY AGAIN

5: 8
RIGHT

CONSIDER THE EQUATION

X TIMES X + 6 = X TIMES 5
Feddoddoddedodokodeddodon ok dolokekeiokokdododokdok

FIND VALUES FOR X WHICH MAKE THIS EQUATION TRUE

S: 5
WRONG TRY AGAIN

S: 3

RIGHT

YES THATS RIGHT BECAUSE

3 TIMES 3 EQUALS 9

IF WE ADD 6 THAT EQUALS 15
WHICH IS EQUAL TO 3 TIMES 5
WHICH IS 15

THERE IS ANOTHER SOLUTION SEE IF YOU CAN GUESS IT

S: 9
WRONG TRY AGAIN

S: 1

NO SORRY STILL WRONG

NO THE OTHER ANSWER IS 2 BECAUSE
2 TIMES 2 EQUALS 4

IF WE ADD 6 THAT EQUALS 10

WHICH IS EQUAL TO 2 TIMES 5

WHICH 15 10
dedok

NOW LOOK OUT FOR RULES WHICH WILL HELP YOU SOLVE THE EQUATIONS IN

GENERAL et

b) Student unfamiliar with algebraic equations

DO YOU UNDERSTAND EQUATIONS OF THE FORM

X -B=C

S: ‘{ES

FINE

SOLVE FOR X IN THE EQUATION
X -4=7

s: 3

WRONG TRY AGAIN

S. 2
NO SORRY STILI WRONG

LETS LOOK AT THE QUESTION ANOTHER WAY

SUPPOSE WE HAVE A BAG WITH SOME MARBLES IN
AND WE TAKE FROM THE BAG 4 MARBLES

AND THEN TIP OUT THE BAG AND FIND 7 MARBLES
HOW MANY MARBLES WERE IN THE BAG TO START WITH

S: 1
WRONG TRY AGAIN

S: 2
NO SORRY STILI WRONG

NO WHEN WE EMPTIED THE BAG WE FOUND 7 MARBLES
NOW FROM THE BAG WE HAD TAKEN 4 MARBLES

AND SO TO START WITH WE HAD 7 PLUS 4 MARBLES
MAKING THE RIGHT ANSWER 11 MARBLES

NOW SUPPOSE WE TAXKE FROM THE BAG 2 MARBLES
AND THEN FIND 4
HOW MANY MARBLES WERE IN THE BAG

S: 6
RIGHT
NOW SUPPOSE WE TAKE FROM THE BAG 3 MARBLES

AND THEN FIND 7
HOW MANY MARBLES WERE IN THE BAG

S: 10
RIGHT

NOW SUPPOSE WE TAKE FROM THE BAG & MARBLES
AND THEN FIND 11
HOW MANY MARBLES WERE IN THE BAG

S: 17
RIGHT

Page 37

NOW SUPPOSE WE TAKE FROM THE BAG 7 MARBLES
AND THEN FIND 14
HOW MANY MARBLES WERE IN THE BAG

s 21
RIGHT

SUPPOSE WE HAVE A BAG WITH SOME MARBLES IN
AND WE ADD TO THE BAG 3 MARBLES

AND THEN TIP OUT THE BAG AND FIND 6 MARBIES
HOW MANY MARBLES WERE IN THE BAG TO START WITH

S: 3
RIGHT

NOW SUPPOSE WE ADD TO THE BAG 6 MARBLES
AND THEN FIND 11
HOW MANY MARBLES WERE IN THE BAG

S: 5
RIGHT

NOW SUPPOSE WE ADD TO THE BAG 8 MARBILES
AND THEN FIND 15
HOW MANY MARBLES WERE IN THE BAG

S: 7
RIGHT

SUPPOSE WE HAVE SOME BOYS IN A ROOM

AND EACH BOY HAS AS MANY MARBLES AS THERE ARE

BOYS IN THE ROOM AND THEY PUT ALL THEIR MARBLES TOGETHER
AND FIND THEY HAVE 64 MARBLES

HOW MANY BOYS WERE IN THE ROOM

S: 64
WRONG TRY AGAIN

S: 12
NO SORRY STILL WRONG

NO WE FOUND 64 MARBLES IN THE ROOM

SO AS THERE WERE AS MANY BOYS AS THERE WERE MARBLES
THERE MUST HAVE BEEN 8 BOYS WITH 8 MARBLES

MAKING ALTOGETHER 8 TIMES 8 MARBLES WHICH IS 64

NOW SUPPOSE WE FIND 36 MARBLES
HOW MANY BOYS WERE THERE

S: 6

RIGHT

NOW SUPPOSE WE FIND 49 MARBLES
HOW MANY BOYS WERE THERE

g: 7
RIGHT

Page 38

Page 39

SUPPOSE WE HAVE A GROUP OF BOYS WITH SOME MARBLES

EACH BOY HAVING AS MANY MARBLES AS THERE ARE BOYS IN THE GROUP

AND THEY ALL PUT ALL THEIR MARBLES IN A PILE

AND THEN SOMEBODY ADDS *%% 6 **%%* MARBLES TO THE PILE

THEY THEN SHARE OUT THE MARBLES AND FIND THERE ARE EXACTLY **% 5 #*%
MARBLES EACH WITH NONE LEFT OVER

CAN YOU GUESS HOW MANY BOYS WERE IN THE GROUP

s: 1
WRONG TRY AGAIN

S: 2
RIGHT
YES THATS RIGHT BECAUSE

2 TIMES 2 EQUALS &4

IF WE ADD 6 THAT EQUALS 10
WHICH IS EQUAL TO 2 TIMES 5
WHICH IS 10

THERE IS ANOTHER SOLUTION SEE IF YOU CAN GUESS IT
s: 3

RIGHT
FINE CHECK THAT IS RIGHT

FINE NOW WE WILL GO ON TO THE MAIN PROBLEM

NOW LOOK OUT FOR RULES WHICH WILL HELP YOU SOLVE THE EQUATIONS IN
GENERAL

Page 40
APPENDIX II

Protocol of Student After Completing Post-Test

Note: The first problem is in the actual format used for all the problems.
The subsequent problems have been edited in order to save space.

NOW LOOK OUT FOR RULES WHICH WILL HELP YOU SOLVE THE EQUATIONS IN GENERAL.
CONSIDER THE EQUATION X TIMES X + 4 = X TIMES 5

FIND VALUES FOR X WHICH MAKE THIS EQUATION TRUE

TRY AND GUESS THE ANSWERS

S: 4
THATS RIGHT SEE IF YOU CAN GET THE OTHER ANSWER

S: 2
NOPE

S: 4
YES BRUT YOU HAVE GUESSED THAT CORRECTLY BEFORE

S: 11
NOPE

S: 12
NOPE

THAT WAS A LOT OF GUESSES
LETS TRY ANOTHER EXAMPLE

THE RIGHT ANSWERS ARE IN FACT 1 AND 4

CONSIDER THE EQUATION

s: 7 '
THATS RIGHT SEE IF YOU

s: 1

X TIMES X + 7 = X TIMES

CAN GET THE OTHER ANSWER

WELL DONE YOU HAVE GOT BOTH THE ANSWERS

CONSIDER THE EQUATION

S: 2
THATS RIGHT SEE IF YOU

S: 1
WELL DONE YOU HAVE GOT

CONSIDER THE EQUATION

S: 1
THATS RIGHT SEE IF YOU

S: 5
WELL DONE YOU HAVE GOT

CONSIDER THE EQUATION

S: 1
THATS RIGHT SEE IF YOU

S: 6
WELL DONE YOU HAVE GOT

X TIMES X + 2 = X TIMES

CAN GET THE OTHER ANSWER

BOTH THE ANSWERS

X TIMES X + 5 = X TIMES

CAN GET THE OTHER ANSWER

BOTH THE ANSWERS

X TIMES X + 6 = X TIMES

CAN GET THE OTHER ANSWER

BOTH THE ANSWERS

Page 41

GUESS THE ANSWERS

GUESS THE ANSWERS

GUESS THE ANSWERS

GUESS THE ANSWERS

Page 42

CONSIDER THE EQUATION X TIMES X + 8 = X TIMES 9 GUESS THE ANSWERS

S: 1
THATS RIGHT SEE IF YOU CAN GET THE OTHER ANSWER
S5: 8

WELL DONE YQU HAVE GOT BOTH THE ANSWERS

CONSIDER THE EQUATION X TIMES X + 18 = X TIMES 9 GUESS THE ANSWERS
S: WHAT HAPPENS IF I CANT :
PLEASE TYPE IN A NUMBER OR TYPE STOP IF YOU WISH TC STCFP

S: 1, 2

NOPE

S: 3

THATS RIGHT SEE IF YOU CAN GET THE OTHER ANSWER
S: 4, 5

NOPE

S: 6

WELL DONE YOU HAVE GOT BOTH THE ANSWERS
CONSIDER THE EQUATION X TIMES X + 18 = X TIMES 19 GUESS THE ANSWERS

S: 3

NOPE KEEP TRYING

$: 6, 12, 2, 3

NOPE KEEP TRYING

S: 4, 5,6, 7,8,9, 10

YOU ARE NOT TRYING TO THINK OF ANY RULES TO HELP YOU
WE WILL LOOK AT ANOTHER EXAMPLE

TRY TO FIND A RULE

THE RIGHT ANSWERS ARE IN FACT 1 AND 18

CONSIDER THE EQUATION X TIMES X + 48 = X TIMES 19 GUESS THE ANSWERS

s: 1, 18, 12, 48, 19, 64, 9, 2

NOPE

S: 3

THATS RIGHT SEE IF YOU CAN GET THE OTHER ANSWER
S: 6

NOPE KEEP TRYING

S: 3

YES BUT YOU HAVE GUESSED THAT CORRECTLY BEFORE
S: 15, 18, 9, 1

NOPE

THAT WAS A LOT OF GUESSES

LETS TRY ANOTHER EXAMPLE

THE RIGHT ANSWERS ARE IN FACT 3 AND 16

CONSIDER THE EQUATION X TIMES X + 48 = X TIMES 49 GUESS THE ANSWERS

S: 1
THATS RIGHT SEE IF YOU CAN GET THE OTHER ANSWER
S: 48

WELL DONE YOU HAVE GOT BOTH THE ANSWERS

Page 43

CONSIDER THE EQUATION X TIMES X + 9 = X TIMES 10 GUESS THE ANSWERS

S: 1
THATS RIGHT SEE IF YOU CAN GET THE OTHER ANSWER
S: 9

WELL DONE YOU HAVE GOT BOTH THE ANSWERS
CONSIDER THE EQUATION X TIMES X + 16 = X TIMES 10 GUESS THE ANSWERS

S: 6
NOPE KEEP TRYING
S: 2

THATS RIGHT SEE IF YOU CAN GET THE OTHER ANSWER

S: 20, 32, 4, 21, 12, 13, 9, 6, 14, 13, 19, 46, 13, 1000
THAT WAS A WILD GUESS

TRY AND BE MORE SENSIBLE SUNSHINE

THE RIGHT ANSWERS ARE IN FACT 2 AND 8

CONSIDER THE EQUATION X TIMES X + 21 = X TIMES 10 GUESS THE ANSWERS

S: 2, 8,1
NOPE KEEP TRYING
S: 3

THATS RIGHT SEE IF YOU CAN GET THE OTHER ANSWER
S: 9, 4, 5, 6

NOPE

S: 7

WELL DONE YOU HAVE GOT BOTH THE ANSWERS

CONSIDER THE EQUATION X TIMES X + 24 = X TIMES 10 GUESS THE ANSWERS

S: 4
THATS RIGHT SEE IF YOU CAN GET THE OTHER ANSWER
S: 6

WELL DONE YOU HAVE GOT BOTH THE ANSWERS
CONSIDER THE EQUATION X TIMES X+ 12 = ¥ TIMES 8 GUESS THE ANSWERS

S: 6

THATS RIGHT SEE IF YOU CAN GET THE OTHER ANSWER

S: 4, 12, 8, 9, 15, 12, 16, 13, 14,. 16, 17, 18, 19, 20, 21
THAT WAS A 1.OT OF GUESSES

LETS TRY ANOTHER EXAMPLE

THE RIGHT ANSWERS ARE IN FACT 2 AND 6

CONSIDER THE EQUATION X TIMES X + 15 =X TIMES & GUESS THE ANSWERS

s: 7, 0

NOPE KEEP TRYING

S: 3

THATS RIGHT SEE IF YOU CAN GET THE OTHER ANSWER
S: 5

WELL DONE YOU HAVE GOT BOTH THE ANSWERS

CONSIDER THE EQUATION X TIMES X + 8 = X TIMES 6 GUESS THE ANSWERS
S: 24

NOPE

S: 2

THATS RIGHT SEE IF YOU CAN GET THE OTHER ANSWER

S: 4

WELL DONE YOU HAVE GOT BOTH THE ANSWERS

CONSIDER THE EQUATION

S: 2
THATS RIGHT SEE IF YOU
S: 5
WELL DONE YOU HAVE GOT

CONSIDER THE EQUATION

S: 3
THATS RIGHT SEE IF YOU
S: 4
WELL DONE YOU HAVE GOT

CONSIDER THE EQUATION

S: 1

THATS RIGHT SEE IF YOU
S: 10

WELL DONE YOU HAVE GOT

CONSIDER THE EQUATION
s: 2
THATS RIGHT SEE IF YOU

S: 9
WELL DONE YOU HAVE GOT

CONSIDER THE EQUATION

S: 2,4, 1
NCPE
S: 3

THATS RIGHT SEE IF YOU
S: 6

NOPE KEEP TRYING

S: 8

WELL DONE YOU HAVE GOT

CONSIDER THE EQUATION

S: 7

THATS RIGHT SEE IF YOU
S: 4

WELL DONE YOU HAVE GOT

CONSIDER THE EQUATION

S 1
THATS RIGHT SEE IF YOU
s: 11
WELL DONE YOU HAVE GOT

CONSIDER THE EQUATION

S: 4
THATS RIGHT SEE IF YOU
S: 12
WELL DONE YOU HAVE GOT

Page 44

X TIMES X + 10 = X TIMES 7 GUESS THE ANSWERS

CAN GET THE OTHER ANSWER

BOTH THE ANSWERS

X TIMES X + 12 = X TIMES 7 GUESS THE ANSWERS

CAN GET THE OTHER ANSWER

BOTH THE ANSWERS

X TIMES X + 10 = X TIMES 11 GUESS THE ANSWERS

CAN GET THE OTHER ANSWER

BOTH THE ANSWERS

X TIMES X 4+ 18 = X TIMES 11 GUESS THE ANSWERS

CAN GET THE OTHER ANSWER

BOTH THE ANSWERS

X TIMES X + 24 = X TIMES 11 GUESS THE ANSWERS

CAN GET THE OTHER ANSWER

BOTH THE ANSWERS

X TIMES X + 28 = X TIMES 11 GUESS THE ANSWERS

CAN GET THE OTHER ANSWER

BOTH THE ANSWERS

X TIMES X + 11 = X TIMES 12 GUESS THE ANSWERS

CAN GET THE OTHER ANSWER

BOTH THE ANSWERS

X TIMES X + 48 = X TIMES 16 GUESS THE ANSWERS

CAN GET THE OTHER ANSWER

BOTH THE ANSWERS

CONSIDER THE EQUATION X TIMES X + 48 = X TIMES 26

S: b6
NOPE KEEP TRYING
S: 2

THATS RIGHT SEE IF YOU CAN GET THE OTHER ANSWER
S: 24
WELL DONE YOU HAVE GOT BOTH THE ANSWERS

CONSIDER THE EQUATION X TIMES X + 48 = X TIMES 14

S: 3, 4
NCOPE
S: 6

THATS RIGHT SEE IF YOU CAN GET THE OTHER ANSWER
S: 8
WELL DONE YOU HAVE GOT BOTH THE ANSWERS

CONSIDER THE EQUATION X TIMES X + 300 = X TIMES 103

S: 3

THATS RIGHT SEE IF YOU CAN GET THE OTHER ANSWER
S: 100

WELL DONE YOU HAVE GOT BOTH THE ANSWERS

WELL DONE I THINK YOU HAVE MASTERED THIS COMPLETELY
BYE BYE CHARLIE

Page 45
GUESS THE ANSWERS

GUESS THE ANSWERS

GUESS THE ANSWERS

Page 46

APPENDIX ITII

The Initial Set of Production Rules

a) The elements of the statevector

i) CYCLE - the operation last performed by teaching program.
ii) TIME - the number of examples administered.

iii) NUMG - the number of guesses made by the student on the last

example.,
iv) EXDETAILS - a list of the features of the last example.
v) EXIYPE - a list of the parameters for GEN for the last example generated.

vi) TIMES - the hypothesized current ability of the student with the

times rule,
vii) - x) ADD, ONE, WRULE, WORULE - as in vi) for the respective rules.

xi) TIMES - the time and direction of the last change in hypothesized
ability with the TIMES rule.

xii) - xv) ADDCH, ONECH, WRULECH, WORULECH - as in xi) for the respec-

tive rules.
xvi) PRETEST - the student score on the pretest.

xvii) REASON - the reason for termination of administration of last

example.

xviii) GOALTIME - the amount of time since the selection of the current

goal,

xix) GOAL - the current goal.

T1:

T2:

T3:
Tk :
T5:
T6:

b) The set of condition-action rules Page 47

((2 8.) { (DPRINZR START1) {GOAL ZONE) (GEN Z{(ONE HELP)) NIL)
(CONTINUE 1) ¥
17 16) ((DPRINER TERM) (STOP) 1))
2 83) ((DPRINER TIMETERM) (STOP) 1))
9 F1 18 J3 19 KB8) ((DOPRINER SUCCTERMY (STOP))}
18 J3 19 K&) ((GOAL =TIMES) (GEN Z((TIMES HELP)) NIL)))
19 K8) ((CONTINUE 1)))
13 J&) U (HYPALLY)
18 J3) (HYPALL)Y 1))
5 F1 11 G3 19 K3) (HYPALL))
(HYPALL))3
(HYPALL))

Pt Bt Bt Bt Pt ot Bl

a

7 F1 12 G3 19 K29
8 F1 13 G3 19 K1)
2 82) ((HYPALL))

2 82 10 F8) ((DPRINER TIMETERM) (STOP)))
19 K1) ((HYP =ZONE)))

19 K2) ((HYP ZADD) 32

19 K3) ({HYP ZTIMES) 1))

[N TN N JS I VSRR AVIR AV I AU UV)
P g e S

N e T e T T e S
Port ot Bod fod pond

P i PP I

L T i
[AC PSR VU PVl oV

e
P S
- s Bt Bd b
P > >
N

{
)
({1 A2 6 F1 11 G3 19 K3) ((GOAL STIMESTOADD) (GEN = ((TIMES HELP)
{ADD HELP)) NIL) 1))

~
-

LS WS
({1 Al Fg 19 K3) ((CONTINUE 1))
((1 A2 7 (F8 F7) 19 K3) ((GOAL ZADD)Y (GEN Z((ADD HELP)) NIL) 1))
((1 A2 8 (F8 F7) 19 K33 ({(GOAL ZONE) (GEN = ((ONE HELP)) NIL) 1))
{ (1 A2 7 F1 12 63 19 K2) { (GOAL ZADDTOTIMES) (GEN Z((ADD HELP)
(TIMES HELP)) NILDY)
((1 A2 6 F7 7 F4 18 J4 19 K2) ({GOAL =TIMES) (GEN Z((TIMES HELP)) NIL)
((1 A2 7 F8 19 K2) ((CONTINUE 1y M)
((1 A2 6 (F8 F7) 19 K2) ((GOAL STIMES) (GEN Z((TIMES HELP)) NIL))
((1 A2 8 (F8 F7) 19 K2) ((GOAL ZONE) (GEN Z((ONE HELP)) NIL) |
((1 A2 8 F1 13 G3 19 K1) ((GOAL ZONETOADD) (GEN Z ((ADD HELP)
(ONE HINY) NIL) 3D
((1 A2 7 F7 18 J& 19 K1) (GOAL ZADD) (GEN Z((ADD HELP)) NIL) 33
{ (1 A2 8 F8 19 K1) | {CONTINUE 1))}
((1 A2 6 (F8 F7) 19 K1) ((GOAL ZTIMES) (GEN Z((TIMES HELP)) NIL)))
(1 A2 7 (F8 FT7) 19 K1) (GOAL =ADD) (GEN = ((ADD HELP)) NIL)Y)
{ (1 A2 7 Fa 19 K6) ((GOAL ZADD) (GEN S ({(ADD HELP)) NIL))
((1 AZ 18 J3 19 Ke) ((GOAL ZTIMES) (GEN = ((TIMES HELP) (ADD HINI)
NILY)
(1 A2 1v K6) ((GEN S{(TIMES HELP) (ADD HIN)) NIL) (HYP ZTIMES)
GEN S ((ADD HELP) (TIMES HIN)) NIL) (HYP ZAaDD))
(1 A2 6 F4 19 K7) ((GOAL ZTIMES) (GEN Z((TIMES HELP)Y) NIL))9
(1 A2 18 J3 19 K7) | (GOAL =ADD) (GEN = ((ADD HELP) (TIMES HIN))
Ly 32
(1 A2 19 K7)({(GEN =Z((ADD HELP) (TIMES HIN)) NIL) (HYP =ADD)
GEN Z((TIMES HELP) (ADD HINI) NIL) (HYP =TIMES) 1))
(1 A2 8 Fa4 19 K4) ((GOAL ZONE) (GEN S ({(ONE HELP)) NIL)Y)
1 A2 18 J3 19 K&) ({(GOAL ZADD) (GEN = ((ADD HELP) (ONE HIN)) NIL)D

AN

(1 A2 19 x4) ((GEN = (({ONE HELP) (ADD HINY) NIL) (HYP ZONE)

GEN =((ADD HELP) {ONE HINJ) NIL)Y (HYP ZADD)Y)

(1 A2) ((CONTINUE 1D)
(1 A3) ((HYPALL))
))

((PRINI ZFAILY)

& F1 7 F1 11 63 12 G63) ((GOAL ZHARD) (GEN = ((WRULE HINJ)) NIL)

10 F7 19 K8) ((GOAL =ZTIMES) (GEN Z((WRULE HELP) (TIMES HELP)}) NIL)

A2 6 F4 7 F7 18 43 19 K3) ((GOAL ZADD) (GEN S ((ADD HELP)) NIL) 1))

c)

The set of partitions

(PUT =QUADPARTS =ZCYCLE =t
(Al EQUAL ELEMENT ZGEN)
(A2 EQUAL ELEMENT =ZnYP)
(A3 EQUAL ELEMENT ZADMIN) 1))
(PUT ZQUADPARTS ZTIME =|
(B1 EQUAL ELEMENT G
(52 EQUAL ELEMENT 10)
(83 GREATERP ELEMENT 30)))
(PUT ZQUADPARTS =NUMG =|{
(C1 EQUAL ELEMENT 2)
(C2 BETWEEN ELEMENT 11 1)
(C3 GREATERP ELEMENT 10) 1))
(PUT ZQUADPARTS ZEXDETAILS ={
(D1 MEMBER ENEW ELEMENT)
(D2 MEMBER ZOLD ELEMENT)))
(PUT ZQUADPARTS ZEXTYPE =H{
(E1 MEMBER = (TIMES HELP) ELEMENT)
(E2 MEMBER Z(ADD HELP) ELEMENT)
(E3 MEMBER Z(ONE HELP) ELEMENT)
(E4 MEMSER = (WRULE HIN) ELEMENT))
(PUT =ZQUADPARTS =TIMES =H
(F1 EQUAL ELEMENT ZCERT)

(F2 MEMRER ELEMENT Z(CERT VPOSS POSS))

(F3 EQUAL ELEMENT ZDUNNQO)

(F4 MEMRER ELEMENT = (POSSNOT CERTNOT))

(FS £QUAL ELEMENT ZCERTINOT)
(F6 EQUAL ELEMENT =P0OSS)
(F7 NEQ ELEMENT =CERT)
(F8 MEMBER ELEMENT Z(CERT VP0OS5S))
(F9 EQUAL ELEMENT ENOCHECK) 1))
(PUT SQUADPARTS =TIMESCH ={
(Gl EQUAL ELEMENT 0)
(G2 EQUAL ELEMENT 1)
(G3 GREATERP ELEMENT 2)
(G4 EQUAL ELEMENT =1)
(G5 LESSP ELEMENT 2) 1))
(PUT SQUADPARTS ZPRETEST NIL)
(PUT ZSQUADPARTS ZREASON ={
(11 EQUAL ELEMENT ZCORRECT)
(12 EQUAL ELEMENT ZGUESSLIM)
{13 EQUAL ELEMENT ZSYSLIM)
(14 EGUAL ELEMENT ZwWILDLIM)
(IS5 EQUAL ELEMENT =ZREPLIM)
(16 EQUAL ELEMENT ZSTCP) 1))
(PUT ZQUADPARTS ZGOALTIME =
(J1 EQUAL ELEMENT 1)

HINITNY]

(J2 BETWEEN ELEMENT 4 0)
(J3 EQUAL ELEMENT 4)

(J3 EQUAL ELEMENT 5)

(J& GREATERP ELEMENT 7) 1))

(PUT SQUADPARTS =GOAL =H

(K1 EQUAL ELEMENT ZONE)

(K2 EQUAL ELEMENT ZADD)

(K3 EQUAL ELEMENT =ZTIMES)

(K& EQUAL ELEMENT ZONETOADD)
(KS EQUAL ELEMENT ZONETOTIMES)
(K6 EQUAL ELEMENT ZADCTOT IMES)
(K7 EQUAL ELEMENT ZTIMESTOADD)
(K8 EQUAL ELEMENT ZHARD)

(KS EQUAL ELEMENT ZEASY))

Page 48

Page 49

Note: The initial partitions for ADD, ONE, WRULE, WORULE are set the same
as that for TIMES. Likewise the partitions for ADDCH, ONECH, WRULECH,
WORULECH are the same as that for TIMESCH.

d) Example of cycle of operation for set of production rules.

The statevector: (=HYP, 17, 8, =(NEW, EQl), =((ONE, HELP)), CERT,
CERT, VPOSS, VPOSS, CERTNOT, &4, 3, 1, 2, 7, 10,Z=CORRECT, 5,ZFADD) when
parsed with the set of partition gives the parsed vector: (A2, NIL, C2, D1,
£E3, (F1, F2, ¥8), (F1, F2, ¥8), (F2, F7, F8), (F2, F7/, F8), (F6, F5), G3, G3,
(62, G5), NIL, G3, NIL, I1, J3, K2). This matches the rule labelled T1 and

the right hand side is executed.

APPENDIX IV Page 50

The Set of Rules for Evaluating the Hypothesis that the Student has the TIMES Rule

a) Statevector: (PAIRMULT, NUMFACT, NUMGUESSES, GAP, LASTC, HASTIMES)

b) Condition-action rules:

((ORINIL NIL 1 NIL NIL D
(NIL 2 NIL NIL NIL 1)
(3 NIL NIL 1 NIL 6)
(NIL 3 NIL 1 NIL 6)
(2 2 2 1 3 6)) =CERT)
((GR (3 NIL 4 2 3 2
(NIL 3 4 2 3 2)
(NIL NIL NIL 1 NIL ©)
(2 2 4 2 3 2)) =VPOSS)
{ (OR (2 NIL NIL 2 NIL NIL)
(NIL NIL NIL NIL NIL 6)
(NIL 2 NIL 2 NIL NIL)) =P0OSS)
{ (OR (NIL NIL NIL 4 NIL NIL)
(1 NIL NIL NIL NIL NIL)
{(NIL 1 NIL NIL NIL NIL)
(NIL NIL 3 1 NIL NIL)) =CERTNOT)
((OR (NIL NIL NIL 3 NIL NIL)
(NIL NIL NIL NIL NIL 4)
(NIL NIL 3 3 NIL NIL)) =POSSNOT)
((NIL NIL NIL NIL NIL NIL) =DUNNO) 1))

¢) Partitions:

(PUT ZHYPPARTS ZPAIRMULT =(

(1 LESSP ELEMENT S0)

(2 GREATERP ECLEMENT S50)

(3 EQUAL ELEMENT 1003)
(PUT ZHYPPARTS =NUMFACT =(

(1 LESSP ELEMENT S0)

(2 GREATERP ELEMENT 50)

(3 EQUAL ELEMENT 100)))
(PUT ZHYPPARTS =NUMGUESSES =

(1 EQUAL ELEMENT 29

(2 GREATERP ELEMENT 2)

(3 GREATERP ELEMENT 109

(¢ LESSP ELEMENT 6) 1)
(PUT ZHYPPARTS ZGAP ={

(1 EQUAL ELEMENT 0)

(2 BETWEEN ELEMENT S =1)

{4 GREATERP ELEMENT 1000)

(3 GREATERP ELEMENT 4) 1))
(PUT =HYPPARTS ZLASTC ={

(1 LESSP ELEMENT S)

(2 GREATERP ELEMENT 35)

(3 GREATERP ELEMENT 109

(4 GREATERP ELEMENT 207

(5 LESSP ELEMENT 10}))
(PUT SHYPPARTS ZHASTIMES =(

(1 EQUAL ELEMENT =zCERT)

{2 MEMBER ELEMENT Z(CERT VPOSS POSS))

{3 EQUAL ELEMENT =ZDUNNO)

(4 MEMBER ELEMENT Z(POSSNOT CERTNOT))

(5 EQUAL ELEMENT =ZCERTNOT)

(6 MEMBER ELEMENT =Z(VPOSS CERT)) 1))

Page 51
APPENDIX V

Task Difficulty Matrix for x2 + ¢ = bsx with Solutions x1, x2

NO RULE ALL RULES ONE TIMES ADD
b< 15 0 2 b 0 4
1£c<8 5 3 3 3 3
8Lc 13 3 2 2 2 2
13€ c <31 -3 1 1 1 o'
31 c< 51 -5 0 -1 0 0
b PRIME 0 0 0 0 2
x1 CONSTANT 0 2 0 3 3
x1 =1 0 0 5 0 0
b CONSTANT 0 0 0 -2 5
¢ CONSTANT 0 3 0 4 -3
c 2 FACTORS 0 5 0 0 0
c 4 FACTORS 0 2 0 A 0
¢ 6 FACTORS -1 -1 0 -1 0
c 8 FACTORS -2 -2 0 -3 0
¢ 10 FACTORS -3 -3 0 -4 0
x1 = 100 -1 1 0 0 1
x1, x2 # 1 0 0 -5 0 0

Note: b CONSTANT means b to be set equal to the value of b in the previous
example

Page 52

APPENDIX VI

Set of Assertions Used by the Deduction System

a) Causal assertions

(POSS (DECREASE (HYPOTHESIS TESTING)) (OR(DECREASE (COMPUTER TIME))
(INCREASE SCORES) (INCREASE (STUDENT TIME))))
(CERT (REMOVE HYPS) (DECREASE (HYPOTHESIS TESTING)))
(CERT (AND(EQUAL (VAR CYCLE) ADMIN) (RAISE CONTINUE))
(DECREASE (HYPOTHESIS TESTING)))
(CERT (AND(EQUAL SUBRULES CERT) (REPLACE (HYPALL) ((HYP ZONED
(HYP SADD) (HYP S=TIMES)))) (DECREASE (HYPOTHESIS TESTING)))
(POSS (INCREASE (HYPOTHESIS TESTING)) (OR(INCREASE (COMPUTER TIMED)
(INCREASE SCORES) (DECREASE (STUDENT TIME})))
(CERT (REPLACE HYPS (HYPALL)) (INCREASE (HYPOTHESIS TESTING)))
(POSS (REPLACE MAIN MAIN) (CHANGE SOMEGOAL))
(POSS (REMOVE MINOR) (DECREASE (STUDENT TIME)))
(POSS (REMOVE (GOAL ZEASY)) (DECREASE (COMPUTER TIME))
(POSS (REMOVE (GOAL IHARD)) (DECREASE (POST SCORE)))
{(POSS (AND(BEFORE (GOAL EZTIMES)) (AFTER (GOAL ZONE)) (INSERT
(GOAL ZSADD))) (CHANGE SCORES))
(POSS (AND (REMOVE (GOAL ZONE)) (REMOVE (GOAL ZONETOADD))
(REMOVE (GOAL ZONETOTIMES)) (OR (DECREASE SCORES) (DECREASE TIMES))
(POSS (LOWER EXLIMIT) (DECREASE (STUDENT TIMEY))
(POSS (AND(AFTER (GOAL ZEASY)) (REPLACE (GOAL ZONE) (GOAL EZTIMES)))
(SHORTEN SESSIONS))
(POSS (AND(LOWER PROGLIMIT) (PRESENT (STOP))) (SHORTEN SESSIONS))
(CERT (SHORTEN SESSIONS) (DECREASE TIMES))
(P0SS (SHORTEN SESSIONS) (DECREASE SCORES))
(CERT (KEEP BORED STUDENTS) (INCREASE TIMES))
(POSS (KEEP BORED STUDENTS) (OR (DECREASE (POST SCORE)) (INCREASE
{STUDENT SCORED D))
(CERT (AND(REPLACE (DPRINER STERM) (DPRINER =CONTINUE))
(REPLACE {(STOP) (CONTINUE 1))) (KEEP BORED STUDENTS))
(POSS (LOWER HYPTIME) (OR (DECREASE TIMES) (DECREASE (POST
SCORE})))
(POSS (LOWER (VAR GOALTIME)) (OR (DECREASE TIMES) (DECREASE (POST
SCORE) 1))
(P0SS (LOWER GUESSLIM) (DECREASE {STUDENT TIMED)))
(POSS (LOWER EXLIMIT) (DECREASE SCORES))
(POSS (AND (LOWER GUESSLIM) (INSERT (ADMIN RIGHTANS)))
(CHANGE SCORES))
(POSS (RAISE ENCRATE) (DECREASE (POST SCORE)))
{POSS (DECREASE WILDLIM) (OR(DECREASE SCORES) (DECREASE (STUDENT TIMEY)

j
(POSS (vYAISE SYSLIM) (INCVEASE (STUDENT SCOvVE)))

Page 53

b) Definitional Assertions

(EQUIV AFTER (NOT BEFORED)

(EQUIY ABSENT (NOT PRESENTI)

(EQUIV LOWER (NOT RAISE))

(EQUIV INCREASE (NOT DECREASE))

(EQUIV CHANGE (OR INCREASE DECREASED))

(EQUIV (AND TIMES SCORES) ALLGOALS)

(EQUIV (AND (STUDENT TIME) (COMPUTER TIME)) TIMES)

(EQUIV (AND (STUDENT SCORE) (POST SCORE)) SCORES)

(EQUIV (OR (COMPUTER TIME) (STUDENT TIME) (STUDENT SCORE)
(POST SCORE) SCORES TIMES ALLGOALS) SOMEGOAL?

(EQUIV (OR REPLIM SYSLIM GUESSLIM WILDLIM) EXLIMIT)

(EQUIV (OR (VAR TIME) (VAR PRETEST)) PROGLIMIT)

(EQUIV (OR (GOAL ZONETOADD) (GOAL ZADDTOTIMES)
(GOAL STIMESTOADD)) SWITCH)

(EQUIV (OR (GOAL ZADD) (GOAL STIMES) (GOAL ZONE)) MAIN)

(EQUIV (OR (GOAL ZHARD) (GOAL ZEASY)) MINOR)

(EQUIV (OR MAIN MINOR SWITCH) PROGGOALS)

(EQUIV (AND(HYP ZONE) (HYP ZADD) (HYP ETIMES) (HYP ZWRULE)
(HYP ZWORULE) (HYPALL)) HYPS)

(EQUIV (OR (VAR ADD) (VAR ONE) (VAR TIMES)) SUBRULES)

(EQUIV (OR (VAR TIMESCH) (VAR ADDCH) (VAR ONECH) (VAR WRULECH)
(VAR WORULECH)) HYPTIME)

Page 54

APPENDIX VII

Student Comments

The written post-test included a space for comments on the program. A

selection of these is given below:

'I caught onto the formula. It's easy and fun.'

'This is a really interesting program. 1 enjoyed working at the
computer a lot. 1 learned the pattern but it took me a long time.'

'I began to feel like a machine too. If I had to learn like this
all the time I would get bored. I prefer personal contact.

It's probably all right for science students but arts students need
more stimulation.’

"I enjoyed fooling with it. I wish I had one in my bedroom.’

"It would be better if it could talk to you.'

'It's a far-out machine,'

'T think learning by this method is a good brain exercise.'

"I enjoyed working on vour program.’

"This was a very good teaching method you have thought up.'

‘It was fun and I love the way you talk!’

'Why? What was the meaning of this?’

'Its really a great program, in time am sure it will help many
people who are now having trouble with math! But it will

take some time.’

"It makes you think of your own shortcuts to the problems.'

"At first I didn't realize that x times x was really x2, or that
in fact I was working a quadradic equasion. It really is a

good system because I have never really understood the quadradic
equasion or how to work it.'

"I think it was a fun and interesting way to learn.’

'This program is very effective and I hope when I have kids
they will be able to learn this way. I like it very much

Page 55

-it is a lot easier learning this way rather than a teacher.
The learning lasts a whole lot longer. Also, computers are

not prejudice!’

"The computer is real cool, I think it should be used in school.'

