MODELING SIMULTANEOUS ACTIONS
AND CONTINUOUS PROCESSES

Gary G. Hendrix

Technical Report NI 19

September 1973

A Revised and Extended Version of
BEYOND OMNIPOTENT ROBOTS
Technical Report NL 14

March 1973

Natural Language Research for CAI
Supported by
The National Science Foundetion

Grant GJ 509X

The Department of Computer Sciences
and CAI Laboratory

The University of Texas

Austin, Texas 78712

ABSTRACT

A new methodology for the construction of world models is presented.
The central feature of this methodology is a mechanism which makes possible
the modeling of 1) simultaneous, interactive processes, 2) processes charac-
terized by a continuum of gradual change, 3) involuntarily activated processes
{(such as the growing of grass) and 4) time as a continuous phenomenon. Con-
siderable attention is given to the application of this methodology in

robotics.

ACKNOWLEDGMENT

The author gratefully acknowledges the advice and guildance
of Professor Robert F. Simmons and the programming and debugging

help provided by Dr. Daniel Friedman.

The work reported herein was supported in part by National
Science Foundation grant GJ 509 X.

MODELING SIMULTANECUS ACTIONS AND CONTINUOUS PROCESSES+*

1.0 Introduction: World modeling

Several artificially intelligent entities have been constructed in the
last few years which employ what might be called "world modeling” (or '"robot
modeling') to gain some (perhaps very limited) understanding of the world.
To date, the primary application of world modeling has been in the construc-
tion of such robot systems as STRIPS (1), the Siklossy-Dreussi-Roach robot
(8,9) and the Winograd system (13). (Non-robotic applications of world
modeling have also been pursued by Hendrix (5).)

A typical world model contains a collection of objects, a collection of
relationships between objects and a collection of operators. The operators
describe how objects and relationships between objects may be changed. 1In
general, systems using world modeling contain some construct for describing
the state of the world at any given point in (model) time and a mechanism
for describing (or simulating) changes in the world brought about by the
application of operators.

The success of world modeling techniques in enabling robot systems to
partially understand and manipulate certain micro-worlds has clearly been
demonstrated, the Winograd system being the paramount example. However, the
world modeling schemes used by the robot systems cited above suffer from a
number of limitations. 1In each of these systems the robot is a necessary
participant in every operation. Since the robot may pick and choose the
operations in which it wishes to participate, it appears to have complete
control over all changes in objects and relationships between objects, Clearly,

in a larger world there may be many intelligent entities, each capable of

*Supported in part by Vational Science Foundation Grant OJ 509%.

causing changes in the state of the world. Further, there exist a multitude
of processges (e.g., the melting of a cube of ice, the growing of the grass,
the falling of a rain drop) which transpire without the aid of robots or
other intelligent entities.

Conventional world modeling systems are also greatly limited by their
notion of time. The systems allow only one operation to be performed in any
one instant. Moreover, there is no notion of time duration associated with
their operations.

If an intelligent system is ever to understand a dynamic world contain-
ing numerous intelligent entities and a variety of simultaneous processes,
the techniques of world modeling must be expanded. To do this, it seems
reasonable to build artificially intelligent entities around the philosophy
that the world is a collection of ongoing processes. Some of the processes
are controlled by the intelligent entity itself, some are controlled by other
entities and still other processes are simply natural phenomena. With the
passage of time, old processes are brought to completion and new processes
are initiated. At all times, objects are defined by (and have their meaning
through) the processes which sustain or transform them from instant to
instant.

The purpose of this paper is to show how this process philosophy may be
captured in a world modeling system. While the discussion will be given in
terms of robotics, hopefully, it is clear that a world modeler has other
applications. 1In particular, the system to be presented may be used as a
process simulator or, in conjunction with other devices, as a dynamic model

of a narrative text.

2.0 Realizing the philosophy of processes

In harmony with the philosophy presented above it seems necessary to

provide a robot (or other intelligent entity) with a mechanism for the basic
understanding of processes. Such a mechanism must surmount such fundamental
problems as the modeling of time, the modeling of continuous, gradual change
and the modeling of multiple, interactive processes. Further. the mechanism
must not view any one entity as the master of the world, but must consider
all processes on an equal basis.

In the opinion of the author, a central component of such a mechanism
is a process monitor which maintains a set of process models and some concept
of time. This monitor is the part of a robot's brain which allows the robot
to think about simultaneous processes. At any moment in actual (real world)
time, the monitor has a set of process models describing the simultaneous
processes occurring in the model world at some particular model time. With
model time frozen, the monitor may (sequentially) ponder each process modeled
by members of the set of process models. Through this examination, the moni-
tor may determine the earliest moment (in model time) at which one of the
processes will "do something interesting.' The "something interesting" is
usually the causing of some effect which will in turn cause new processes to
be initiated, old processes to be terminated, or goals to be met. To model
the propagation of the various processes, the monitor increments the model
time to the "interesting time' and creates a new model world (or modifies
the old world) to reflect changes which would have occurred in the time
interval. Then the monitor looks for the next interesting time and the
cycle repeats.

In order to add some substance to the discussion above, a more complete
description of a particular multi-process model will be given shortly. It
is important to emphasize that this model is only a rough first attempt to

design the more general concept of a system which views the world as a

collection of processes. The model borrows freely from its predecessors,
egpecially from STRIPS. To put the new mechanism into perspective, it will
be helpful to first review the systems supporting conventional robots and to

reconsider the very nature of processes.

3.0 World modeling in conventional robot systems

(Readers familiar with STRIPS may skip this section.)

Conventional robot systems attack the modeling of the world by dividing
knowledge of the world into two categories: process knowledge and state
knowledge. State knowledge relates to knowledge about the world at certain
instants in time. Knowledge relating to a particular instant is represented
by a state of the world model (SWM). An SWM is like a still photograph of a
dynamic situation, representing objects and relationships among objects as
they exist at the moment the photograph is taken. Process knowledge is a
body of information describing how one state may be transformed into another.
By combining these two types of knowledge, a space of states of the world
is defined. Connections between points in the state space correspond to
processes which take one state into another.

The SWM used to represent a conventional robot's state knowledge is
typically a set of well-formed formulas in the first order predicate calcu-
lus which are true for the world state being modeled. However, objects and
relationships between objects may just as easily be depicted by other means.
(For example, by semantic nets. Simmons (10).) Process knowledge is
represented by a collection of operators which model processes in the real
world. These operators may either be programs (Winograd (13)) or data
structures which may be interpreted as programs (STRIPS (1)), or both

(Siklossy and Dreussi (8)). (The line between program and data structure

is often thin and arbitrary.)

Each operator is characterized by two principal components. The first
component is a set of (sometimes explicit) preconditions which must hold in
the state of the world before the operator may be ‘applied. Typically, the
preconditions are a collection of well-formed formulas containing variables
which partially specify a state of the world. This partial state specifica-
tion defines a family of world states comprising the domain {(or the context)
of the operator. The second component characterizing an operator is a set of
effects produced by the operation. Given an SWM) depicting a real world
state S1 in the domain of some operator, the operator's effects define a new
(perhaps partially specified) SWM s, which depicts a world state 82 that
would result if the process modeled by the operator were performed on the
world state Sl' Some decision process (e.g., a robot's planner) dictates a
particular order in which operations are applied. The first operator selec-
ted is applied to the initial state of the world, the next operator selected
is applied to the resulting state and so forth.

The ideas of the preceding paragraph are best clarified by an example
(Simmons (11)) presented in an explicit representation similar to that used
by the STRIPS system. Imagine a very simple world congisting of a robot
(named ROBOT), two boxes (called Bl and B2) and a room. Tmagine further that
the robot and boxes may either be in the room or outside the room. An SWM
for one possible state of such a world is

((BOX BL)

(BOX B2)
(INSIDEROOM ROBOT)
(INSIDERCOM B1)

(OUTSIDEROOM B2))

Operations in this simple world may include GOINTOROOM. GOOUTSIDEROOM,

PUSHBOXIN, PUSHBOXOUT and perhaps some others. The operator GOINTOROOM may

be defined as follows:

Operation name: GOINTOROOM
Parameters:]

] Robot moves from out-
Preconditions: ((OUTSIDEROOM ROBOT)) side to inside.
Effects:

delete list: {(OUTSIDEROOM ROBOT))

add list: ((INSIDERCOM ROBOT))
The operator may be applied in any state satisfying the precondition. (The
precondition defines a family of states, the set of all states in which
(OUTSIDEROOM ROBOT) is true. The operator may be applied to any member of
the family.) When the operator is applied, the relationship (OUTSIDEROOM
ROBOT) is removed from the SWM and (INSIDEROOM ROBOT) is added.

Variables may be used in the definition of operators. For example,

consider the following:

Operation name: PUSHBOXIN

Robot pushes box b
Parameters: ¢)) into the room,
Preconditions: ((OUTSIDEROOM ROBOT) (BOX b) (OUTSIDEROOM b))
Effects:

delete list: ((OUTSIDEROOM ROBOT) (OUTSIDEROOM b))

add list ((INSIDEROOM ROBOT) (INSIDEROOM b))
The operator PUSHBOX may be applied if some b can be found which satisfies
the preconditions. The preconditions state that the value of b must be a
box and that that box must be outside the room. Note that the same b is
used to describe the effects of the operation.

The reader who is not familiar with SWMs and operators such as those

just presented is encouraged to read the STRIPS paper and to construct

various SWMs and operators for himself. In the remainder of this paper, a

complete familiarity with such SWMs and operators is assumed.

It is hopefully clear that operations such as those just presented are
completely under the control of the robot. Since the robot must actively
participate in each operation, simultaneous operafions are not possible. The
necessity of robot participation and the inability to model simultaneous pro-
cesses lead to certain difficulties in modeling even ordinary situations.
Consider the simple process of filling a bucket with water (suggested by
L. Siklossy (8)). Through various sequential operations the robot should place
the bucket beneath a water tap and turn the tap on. Once the water has been
turned on, the process which actually fills the bucket begins. Since, once
the tap is turned on, the water flows into the bucket without the robot's
help, the robot should be free to perform other tasks while the bucket fills.
Unfortunately, it is impossible to model this situation by using the kinds
of operators found in conventional world modeling systems. The main diffi-
culty, of course, is that there is no provision for processes (such as the
filling of the bucket) which take place without the active participation of
the robot.

Other difficulties, caused by an inadequate representation of time, are
also apparent. Notice that operators have no notion of elapsed time asso-
ciated with them., Further, there is no provision for specifying the infi-
nite number of intermediate states of the world which exist, changing from
instant to instant, over the duration of a process. These deficiencies make
it appear as if the process modeled by an operator were initiated and brought
to completion in a single instant. Thus, it becomes impossible to adequately
model the gradual changes, such as the slow filling of the bucket, which so

often characterize a process.

4.0 A closer look at the nature of processes

Since the representation of process knowledge has led to difficulties in
previous modeling systems, it is no doubt worthwhile to reconsider the very
nature of processes. For purposes of this paper, a process is a bringing
about of a set of changes through a continuum of alterations. Thus, a
process brings about a continuous, uninterrupted, time ordered sequence of
changes over some time interval.

Although it is tempting to believe that some changes are not brought
about through a continuum of alterations, a more microscopic view of a situ-
ation seems always to reveal an ongoing of gradual modifications. Even
such flip-flop changes as the throwing of a switch, the changing of a compu-
ter bit or the changing of one's own mind are brought about by continuums of
alterations. Seemingly sudden gross changes in the state of the world as
seen from the macro point of view (apparently) are always explainable from
the micro vantage as the reaching of certain thresholds through gradual alter-
ations.

Clearly, from the standpoint of a robot or a human being, many processes
occur so quickly that for all practical purposes the corresponding changes
are effectively instantaneous. For such processes some construct similar to
the operation prototype is useful and merits inclusion in a new system. How-
ever, since there are processes which do not occur quickly, a new construct
must be found for modeling them. One possibility for such a new construct is
to depict certain aspects of the world by real variables whose values are
defined by numerical equations involving time. Since such equations would be
valid only during the duration of a process, before pursuing this new congtruct
further, it will be necessary to take a closer look at the mechanisms involved

in initiating and terminating processes.

4.1 Necessary and sufficient conditiong for process initiation

In the STRIPS robot and similar systems, an operation may be applied
when its preconditions are met. A robot usually must choose (by using a robot
planner) among a variety of possible alternatives: Only the operation selec-
ted by the robot is actually carried out. Hence the preconditions are
necessary conditions for operatof application, but they are not sufficient.
Operators are applied only when the preconditions are met and the robot
dictates that the operation indeed be performed.

Now consider a world in which an empty bucket is positioned below a
water tap and the tap is on. Given these preconditions (without tricks)
it is obvious that the bucket will begin filling with water no matter what
the robot dictates.

Thus there appear to be two types of processes. One type is initiated
involuntarily as soon as its preconditions are met. The other type is sub-
ject to the choice of some intelligent entity which performs a part of the
work required to carry out the process. These two types become confounded
in worlds containing more than one intelligent entity, since each entity may
choose work only for itself but must somehow take into account not only
involuntarily initiated processes, but also those processes which may be
voluntarily engaged in by the other entities.

To simplify this situation it may be argued that the selection of a
single choice from among many alternatives is itself a process. Further, an
entity's selection at any moment may be modeled in the SWM. For example, if
the robot has currently selected to (PUSHBOXIN B2), then a relation such as
(SELECTED ROBOT PUSHBOXIN B2) could appear in the SWM. If (SELECTED ROBOT
' PUSHBOXIN b) is made & precondition of PUSHBOXIN, then PUSHBOXIN should be

initiated as soon as its preconditions are met. Under this scheme, the pre-

10

conditions of all processes define the necessary and sufficient conditions
for process initiation.

When necessary and sufficient preconditions are employed in modeling
worlds in which simultaneous processes are allowed, in mid course some process
A may cause the preconditions of a process B to be met. Immediately B is
initiated while A continues,

Consider now the selection of a single choice from among alternatives.
Since the selection of a choice involves a process, there is no reason why
the selection process itself may not be modeled. 1Indeed, if a robot is to
be able to predict the actions of other robots, then the predicting robot
must contain some model of the selection process (i.e., the robot planner)
used by other robots.

A robot with multiple environment affecting devices (e.g., two legs,
three arms, a mouth and a stinger) might select to participate in multiple
(compatible) activities simultaneously. For example, a robot musician might
simultaneously select to play the guitar with its arms and hands, sing with
its mouth, tap one of its feet to the music and wink at spectators. To more
accurately convey the flavor of the simultaneous allocation of various
environment affecting resources to sundry tasks, SELECTED relationships may
be replaced by relations of the form (ALLOCATED-ACTIVATED r p t), meaning
that robot r has selected to allocate its enviromment affecting subpart p to
the accomplishment of task t. Further, because of its selection, robot r has
activated p to perform task t. TFor example, (ALLOCATED-ACTIVATED ROBERT-ROBOT
ROBERTS-RIGHT-WRIST ROTATE +60) indicates that Robert the robot has selected
to allocate the resource of its right wrist to the task of rotating 60° (as
opposed, say, to the task of bending) and has activated the task by, say,

setting a certain bit combination in the wrist operation register,

11

4,2 The termination of a process

Since a process is not instantaneous, once a procesz has begun it is
necegssary to consider how long the process will remain operative. A pro-
cess, once initiated, remains in progress as long és a certain set of con-
ditions are met. For example, a man may continue to walk toward a point X
so long as the man exists, is able to walk, wishes to walk to X and is not
yet at X. Further, the point X must continue to exist and there must always
be some step which the man can take which will bring him closer to X. This
process has a natural completion. When the man reaches ¥, the condition
that he be not yet at X is broken and the process stops. The breaking of any
of the other conditions will also interrupt (and thus terminate at least
temporarily) the process, For example, if the man becomes tired and decides
that he no longer wishes to walk (just now) but wishes to rest, then the
process is interrupted.

In building a construct for the modeling of processes, it will be
necessary to take these conditions for the continuation of a process into
account. Thus, in addition to process initiation conditions there must also

be process continuation conditions.

5.0 The process model: An overview

A world modeling system based on the process philosophy outlined in
gsection 1.0 has recently been devised to correct several deficiencies suf-
fered by conventional world modeling systems. The new system is composed of
three basic parts: a process monitor (outlined earlier), a set of process
scenarios and an SWM. The process scenario is analogous to the operator in
previous systems. The control portion of previous systems which keeps track

of the sequential application of operators is somewhat analogous to the moni-

12

tor. (The new modeling system, like the modeling portions of conventional
robots, does not address itself to robot planning.)

Each type of process allowable in the world being modeled is characterized
by one of the process scenarios. The scenario in&icates the process’'s initia-
tion conditions (the necessary and sufficient conditions for process initiation)
and the process’'s effects. For those processes which occur so rapidly as to be
effectively instantaneous, the effects are specified simply by add énd delete
lists. (Such processes were well modeled by the operators of previous systems.)
However, if a process is sustained for more than a brief instant, equations are
included to describe how the process alters the world with the passage of time.
These equations constitute one of two methods employed in representing facts
in the SWM.

The process monitor is a control program which keeps track of the SWM and
the various processes which are in operation at any given time. A major
feature of the process monitor is an elastic set of process control blocks
which grows or diminishes with the number of active processes. FEach control
block is characterized by a reference to some process scenario and a set of
process parameter bindings. If several similar processes occur simultaneously,
then several control blocks are set up, each réferencing a common scenario., Of
course, such similar processes will be distinguished one from the other by
differences in their sets of bindings. (These control blocks are very similar
to the control blocks used in time sharing environments to support multiple
users, any number of whom may actually be using the ssme reenterable program.)

Although control of the system is in fact centered in a monitor executive,
the system performs in such a way that each process modeled by the various
control blocks seems to alter the SWM with the passage of time in accordance

with the rules of the associated scenmario. TFrom a vantage point external to

13

the system, it appears as if all the processes modeled by the control blocks
.are modifying the world simultaneously. In a sense, this is actually what
does happen. Unlike simulation models which update themselves at small regu-
lar intervals, the process monitor solves sets of simultaneous equations to
determine critical times in the set of ongoing processes. These simultaneous
equations, of course, come from the definitions of the various processes. But
more of this later.

Intuitively, the process monitor behaves as if it were a demon in charge
of carrying out all the processes in the modeled world. Given an initial
state of the world and a set of process scenarios, the demon determines all
processes which would be initiated. For each process to be initiated, the
demon selects an imp (a control block) and charges the imp with the realiza-
tion of the process. As the various imps make changes in the state of the
world, the demon watches for new opportunities to start other processes,
assigning more imps as needed. When an imp's process is completed or inter-
rupted, the imp notifies the demon who in turn releases the imp from its
charge.

In performing its task, the monitor is constantly referring to and
altering the system’'s representation of the state of the world. The system
has two types of data structures for storing state knowledge. One data struc-
ture is a set of explicit relations such as (TYPE BOX1 BOX). This data type
is very much like that used by STRIPS. To record relations which are under-
going gradual change, a different construct is needed. All gradual changes
are modeled in the system by employing resal variables. Thus, to model the
altitude of a slowly rising balloon, BALLOON, the altitude, Yaltitude, is a
real number. An entity such as (ALTITUDE BALLOON Yaltitude) is called a rels-

tion skeleton since the relation term VYaltitude is really a variable. If at

14

some moment Yaltitude = 1000, then the relation skeleton and numeric equation
serve to define the explicit relationship (ALTITUDE BALLOON 1000). A numeric
variable such as Yaltitude is most often defined by systems of equations asso-
ciated with some process which is changing the relationship indicated by the
skeleton in which the variable appears.,

Symbols for real variables are formed by conjoining the capital letters C
and Y with a string of lower case letters and numbers. (e.g., Clength2, Yaltitude)
The definitions of process scenarios which follow make extensive use of such
variable names. Variables whose names begin with C, C-variables, are bound
when a process's initiation conditions are met and hence remain constant for
the duration of the process. Y-variables are variables which a process itself
defines. The definition is in terms of a system of equations involving C-
variables and time variables.

The notion of time is modeled in the system by real variables. The symbol
@ is used to denote the real variable expressing current model time. The value
of @ is not a time of day (such as 3:00 PM), but is a quantity expressing the
year, month, day, hour and fraction of the hour. Process scenarios make ex-
tensive use of the locally defined time variables ¢ and $. The local variable
¢ is always bound to the time at which the local process was initiated. The
local variable $ is defined to be @ - ¢, the age of the local process.

6.0 A Sample world

The sections which follow will further describe the process monitor,
scenario formalisms and the representation of the SWM. Since it appears
impossible to describe any one of these three components of the system indi-
vidually, a series of examples of scenario will be presented. Each new
scenario will introduce new complications in at least one of the three

system components.

15

In order to illustrate various facets of the system, it will be helpful
to have some simple world in mind. Consider the world shown in Figure 1. The
initial state of the world is expressed entirely by use of the set of explicit
relationships. The world consists of a single doorless room containing a
robot, a clock, a bucket, a water tap and a valve. The valve and water tap
are mounted on the ceiling. The robot may turn the valve if it stands beneath
it. Several areas, A through F, are indicated. These areas are large enough
to contain the clock, the robot and the bucket simultaneously. There is a
drain, not shown, in the floor beneath the tap. Thus, any water not caught
by the bucket simply disappears into the drain. The robot itself has two
environment affecting devices: a mobility unit (a set of legs or wheels) and

an arm.

7.0 Elementary examples of scenarios

Focusing attention now on the process scenarioc, each scenario consists
of two basic parts: process initiation conditions (ICs) and process effects.
Scenarios for instantaneous processes (processes that transpire so quickly
that their duration effectively consumes zero units of time) are almost

identical to STRIPS operators. Consider the scenario for setting an alarm

clock,
Scenario name: SETALARM Robot r uses its arm
a to set clock k
Parameterss: (a k Cstime / r n) (at place n) to

o o sound at time Cstime.
Initiation conditions:

gymbolic: ((ALLOCATED-ACTIVATED r & SETALARM a k Cstime)
(TYPE a ARM) (ALARM OFF k)
(AT r n) (AT k n))

numeric: ¢ £ Catime
12> Cstime - ¢

16

0o

RBT

uu

1S

TAP1

Initial SWM given by explicit relationships

(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE
(TYPE

e T > B w B o R o~ I

CLK

TAP1
(TYPE RBT-MU MOBILITYUNIT)

LOCATION)
LOCATION)
LOCATION)
LOCATION)
LOCATION)
LOCATTION)
CLOCK)
ROBOT)
BUCKET)
VALVE)
TAP)

(TYPE RBT-ARM ARM)

(HASASPART RBT RBT-MU)
(HASASPART RBT RBT-ARM)

(ALARM OFF CLK)
(PUSHABLE CLK)
(PUSHABLE BKT)

FIGURE 1

[

(AT CLK A)

(AT RBT B)

(AT BKT C)

(AT VLV E)

(AT TAP1 D)
(ONFLOOR CLK)
(ONFLOOR RBT)
(ONFLOOR BKT)
(ONCEILING VLV)
(ONCEILING TAP1)
(ORIENTATION BKT UP)
(CAPACITY BKT 100)
(CONTENT BKT 0)
(CONTROL VLV TAP1)
(MAXRATE VLV 10)
(RATE VLV 0)
(TURNRATE VLV 0)
(MAXTURNRATEABS VLV 5)

An Initisl State of a Sample Model World

Used only in
section 9.

17

Effects - 1
delete list: ((ALARM OFF k))
add list: ((ALARM SET k Cstime))

A process control block using this scenario will reference the scenario
by its name, SETALARM, and by a set of bindings for the parameters (a k
Cstime r n). The symbol Cstime is an example of the C-variables mentioned
earlier. The value of Cstime (written =Cstime when it is important to dig-
tinguish the value from the variable) may be any real number, However,
such variables as r, k and n must take on only digcreet values. (e.g.,
=n = Aor =n=38 .., or =n = F,) The slash in the parameter list is used
to divide the list into two parts. Parameters in the first portion of the
list are called '"primary" parameters, Those in the latter portion of the
list are called 'secondary" parameters. Given the bindings of the primary
parameters and the fact that the initiation conditions are met, the values of
the secondary parameters may be uniquely determined for that state of the
world meeting the initiation conditions. The usefulness of primary parameters
will be seen later when initiation inhibitors are discussed.

The ICs specify the necessary and sufficient conditions for the process
to be initiated. The conditions are divided into two categories: symbolic
and numeric. Since (if the alarm is indeed to be set) the robot must choose
to actively participate in the alarm setting process, the first symbolic IC
guarantees that the robot =r has elected to allocate the environment affecting
resource =a to the task of setting the clock =k to sound at time =Cstime,
Since only arms may set alarm clocks, the second symbolic IC guarantees that
resource =a indeed is an arm, The third symbolic IC states that the alarm of
clock =k must be off (not SOUNDING and not SET) before the alarm may be set.

The last two ICs guarantee that the robot ig close enocugh to the clock to set

18

the alarm.

Several other symbolic conditions might be included in the ICs but are
not necessary, being given implicitly by those actually stated. For example,
(TYPE k CLOCK) is not needed since =k must be a clock if (ALARM OFF =k) is
true. Also, (HASASPART r a) is not needed since =a must be a part of =r if
=r ALLOCATED-ACTIVATED =a. In the numeric equations, ¢ represents the time at
which the process begins (in model time). Since the SETALARM process takes
place so quickly, the entire process may be thought of as transpiring in the
single instant indicated by ¢. The first numeric condition is written in the
scenario as

¢ Cstime,
This constraint indicates that the alarm may only be set to sound in the
future. That is, the set time, Cstime, must be greater than the current
time, ¢. In an actual computer implementation, the condition would be pre-
sented in some more convenient form such as (GREATERP Cstime ¢). Since all
clocks in the robot world have a twelve hour cycle, the robot cannot set the
alarm to go off after more than twelve hours. This restriction is specified
by the second equation.

The effects portion of the scenario is headed by "Effects - I" which
indicates that the effects of the process are instantaneous. The add and
delete lists indicate that (ALARM OFF =k) is to be deleted from the SWM and
(ALARM SET =k =Cstime) is to be added. Although (ALLOCATED-ACTIVATED =r =a
SETALARM =a =k =Cstime) will not be deleted by SETALARM, it will be deleted
by the process which determines the robot's resource allocations.

Setting the alarm is worthless unless there is a process for gounding
the alarm at the proper time. Hence

Scenario name: SOUNDALARM An alarm clock k sounds

at time Cstime and
Parameters: (k Cstime /) continues to sound.

19

Initiation conditions:

gsymbolic: ((ALARM SET k Cstime))
numeric: ¢ = Cstime

Effects - I:

delete list: ((ALARM SET k Cstime))
add list: ((ALARM SOUNDING k))

The important thing to notice in this scenario is the absence of an
ALLOCATED-ACTIVATED condition in the ICs. Once set, the clock does not
need the robot's help to sound at the proper time and keep sounding until
some other process (such as OFFALARM) stops it. Note that the numeric IC
allows the alarm to begin sounding only at the proper moment, (That is,
when the process jinitiation time, ¢, is equal to the time at which the
alarm is set to begin sounding, Cstime.) The mechanism which initiates
this scenario at the proper moment is the subject of the next subsection.

The reader is encouraged to try his hand at writing & few scenarios
for instantaneous processes. Scenarios for such processes as OFFALARM,
SLEEPROBOT, and AWAKENROBOT (robot is awakened when an alarm clock sounds)

are very similar to those just described.

7.1 How the process monitor keeps track of time

To evaluate the numeric initiation condition of the process scenario
just presented, it is obvious that the process monitor must have some model
of time. The system's notion of time is described by a real variable which
is manipulated by the process monitor. Through the use of this model time,
the process monitor keeps track of the sequence of glterations in the model
world.

The principal components of the process monitor are a set of process

control blocks (which are data structures modeling individual processes),

20

and a monitor executive., The job of the monitor executive is to determine
when (in model time) new processes should be initiated and when old processes
‘should be interrupted. To perform this task, the process monitor uses infor-
mation associated with the control blocks. Process control blocks are main-
tained only for duration processes. (Blocks are temporarily created for
instantaneous processes, but are destroyed almost immediately.) Associated
with each of the duration process control blocks is an interrupt time, a
number (or infinity) which indicates the earliest model time at which the pro-
cess is certain to be interrupted. The monitor executive determines the
earliest model time at which any existing process is certain to be interrupted.
Call this time TI' To determine what to do next, the monitor executive

searches through the process scenarios looking for a scenario which, for some

binding of its variables, may be initiated before model time T If no such

I’
scenario is found, the monitor executive sets the current model time to TI
and performs the indicated interruption. TIf more than one scenario is found
which can Be initiated before model time TI’ then the monitor determines the
process which can be initiated at the earliest model time, sets the current
model time to that time and creates a new control block to model the new
process.

Thus, the monitor executive skips the current model time from one
critical point to another, initiating or interrupting the model processes
associated with the critical points. (At any critical point in model time,
an initiation or interruption of one process may cause a cascading effect.
That is, an initiation or interruption may precipitate a series of other
initiations and interruptions.)

Consider now how the procedures just discussed may be used to model the

initiation of the SOUNDALARM process. Suppose the current model time is

21

@ = 1572.3 and (ALARM SET CLK 1580.0) is true in the SWM. Suppose further
that the robot is asleep, that some duration processes are being modeled and
that the earliest interruption time for any duration process is TI = 1583.7.
Using the SOUNDALARM scenario and SWM, the procesé monitor determinesg that the
next critical model time is model time 1580.0. The monitor sets @ to 1580.0
and creates a control block for SOUNDALARM. Using the control block, the
monitor builds up a new SWM by making the appropriate deletions and additions.
Once the update is made, the control block is abandoned.

With the SOUNDALARM process out of the way, the monitor recycles and
again determines the next critical model time. The next interrupt is still

pending at T. = 1583.7, but, because of the SOUNDALARM process, the initiation

1
conditions for AWAKENROBOT are now met. Hence, the next critical time is the
current model time. Keeping @ frozen, the monitor models the awakening of the
robot,

Cycling again, the monitor may find that no other processes may be initi-

ated before TI = 1583.7. Hence, the monitor resets @ to 1583.7 and performs

the interruption of the duration process.

8.0 More complex scenarios: The filling of a bucket

The power of the process scenarios does not begin to become apparent
until processes involving a continuum of gradual change are considered.
Consider the filling of a bucket with water, A push process may easily be
defined which places the bucket BKT under the tap TAPl. The following

scenario describes the process of turning the controlling valve.

Scenario name: TURNVALVE
Robot r turns valve v
Parameters: (a v Crate / r Cmaxrate n) with arm a to rate

Crate,.

22

Initiation conditions:

symbolic: ((ALLOCATED~ACTIVATED r a TURNVALVE a v Crate)
(TYPE a ARM) (MAXRATE v Cmaxrate)
(AT r n) (AT v n))

numeric: 0 #£ Cmaxrate -~ Crate
0 %< Crate

Effects - I:
delete list: ({RATE v *))
add list: ((RATE v Crate))

For purposes of the model, TURNVALVE is an instantaneous process. Note
the use of * in the delete list. All relationships of the form (RATE =v =-=-)
are deleted from the SWM. Thus, the flow rate before the valve is turned is
unimportant and is left unspecified. The flow rate after the valve is turned
(Crate) is constrained to be between zero and the maximum rate. (Turning the
valve to a zero flow rate turns the valve off.)

Once the control valve has been set to some non~zero flow rate. the
process of filling the bucket begins immediately. "The scenario for FILLBUCKET

is as follows:

Scenario name: FILLBUCKET Bucket b is filled by water
from tap t.
Parameters: (b t / v n Crate Ccapacity Cinitialcontent)

Initiation conditions:

symbolic: ((CONTROL v t) (RATE v Crate) (AT t n) (AT b n)
(ORIENTATION b UP) (CAPACITY b Ccapacity)
(CONTENT b Cinitialcontent))

numeric: 0 < Crate
0 < Ccapacity - Cinitialcontent

Effects - G:
symbolic: ({CONTENT b Ycontent))

numeric: Yecontent = Cinitialcontent + Crate . §

23

Continuance conditions:

symbolic: ((RATE v Crate) (AT b n)
(ORIENTATION b UP))

numeric: 0 < Ccapacity - Ycontent

This scenario differs markedly from those presented earlier becausé
its effects are continuous and gradual rather than instantaneous. (Instan-
taneous effects are indicated in the scenario by "Effects - I." Gradually
changing effects are indicated by "Effects - G.'") The initiation condi-
tions are stated in exactly the same way as the ICs of previous scenarios.
Notice that the flow rate must be positive and there must be room for more
water in the bucket. Further, there is no ALLOCATED-ACTIVATED relationship
needed for the initiation of the process since, given the preconditions, the
initiation of the filling of the bucket is independent of the robot's will.
Note also that (ONFLOOR b) and (ONCEILING t) are omitted from the ICs. This
may be done if it is assumed that there is no process for moving a tap or

removing a bucket from the floor.

8.1 Gradual effects

Unlike previous scenarios, the effects of this process are not given by
a delete list and an add list. Rather, a formalism is presented which states
how conditions will gradually change with the passage of time. The symbolic
portion of an "Effects - G" formalism uses relation skeletons with Y-variables
to indicate which relationships will be gradually altered by the process. 1In
the present example, the only relationship skeleton given is (CONTENT b Ycontent).
This skeleton indicates that the relationship (CONTENT =b --) will be altered.
The skeleton further indicates that gradual alteration will be accomplished
by variations in Ycontent with respect to time. The precise relationship

between Ycontent and the various process parameters is indicated by the numeric

24

portion of the formalism which states that Ycontent is equal to the content
of the bucket when the process began, Cinitialcontent, plus the product of

the flow rate, Crate, and elapsed process time, §$.

8.2 The changing of the SWM via the process monitor

Consider now how the process monitor uses the FILLBUCKET scenario to
change the SWM. As was discussed earlier, state knowledge is represented
by two distinct data types. One of these types is a set of explicit rela-
tionships. The effects of all processes heretofore considered have simply
been to add or delete relationships from this set. The other data type,
which uses real variables and relation skeletons, is needed for the modeling
of gradual change. At the time when the ICs of FILLBUCKET are met, (CONTENT
=b =Cinitialcontent) is an explicit relationship in the set of explicit
relationships. When the process monitor executive determines that the ICs
of FILLBUCKET have been satisfied, a process control block is created to
model the process. 1In the process control block a pointer is set up which
points to the FILLBUCKET scenario. Further, the bindings of all the scenario's
parameters are recorded in the block, The time at which the précess is
initiated is also recorded (as the binding for ¢). By using the parameter

bindings and the scenario, the monitor determines that the relationship

(CONTENT =b --) will be altered by the(;izfiii;:D
Hence, the explicit relation

(CONTENT =b =Cinitialcontent) is removed from the set of explicit relation-
ships. At the same time, the relation skeleton (CONTENT =b Ycontent) is
added to a new set, the set of relation skeletons. Associated with each
skeleton in the set is a pointer to the control block which models the

process defining the variables in the skeleton. (All variables of a skeleton

25

must be defined by a unique process. Further, no two skeletons on the skele-
ton list may differ only in the names of variables. TFor example (CONTENT =b Y1)
and (CONTENT =b Y2) are not both allowed since such a situation would indicate
a conflict in the definition of the content of bucket =b,)

If at gsome instant it is important for the system to know the congent of
some bucket, say BKT, then a search is made in the SWM for an element of data
matching the pattern (CONTENT BKT'--). A datum matching this pattern might
appear either in the set of explicit relations or ("exclusive or") in the set
of relation skeletons just introduced. If the matching datum is found in the
set of explicit relations, then the third component of the datum is an expli-
cit value for the content of the bucket. If the matching datum is found in
the set of relation skeletons, then the third component of the datum is a
variable. Further, there is associated with the datum {which is a relation
skeleton) a pointer to a process control block whose modeled process defines
the value of the variable. To evaluate the variable, and thus to determine
the content of the bucket, the system has only to use the equations in that
scenario which is pointed to by the control block. All pertinent equation
parameters have been dutifully recorded in the process control block for use

at this time.

8.3 On continuance conditions

In addition to a description of the continuing effects, the scenario also
indicates conditions which must hold if the process is to continue. The
symbolic continuance conditions indicate that the rate of water flow must
remain constant at Crate, the bucket must remain beneath the tap and its
orientation must remain UP (i.e., it must not be tipped over). Further, the

numeric portion of the continuance conditions states thatr the content of the

26

bucket must not surpass the bucket's capacity. Additional conditions such as
(CONTROL v t) and (CAPACITY b Ccapacity) might also be included in the con-
tinuance conditions. However, since neither the controlling of tap =t by
valve =v nor the capacity of bucket =b is subject to change, devices guaran-

teeing the continuance of these relationships are unnecessary.

8.4 How the process monitor handles continuance conditions

When a process control block is set up, provisions are made for the
eventual interruption of the process being modeled. Associated with each
relation in the set of explicit relations is a list of pointers known as the
"sustains list." Each pointer on this list points to a process control block
which is modeling some process whose continuation depends on the associated
relationship. If the relationship is ever deleted from the set of explicit
relationships, all processes whose control blocks are pointed to by members
of the relationship’'s associated sustains list will be interrupted. Thus,
when a process control block is set up for a FILLBUCKET process, pointers to
the block are added to the sustains lists of (RATE =v =Crate), (AT =b =n)
and (ORIENTATION =b UP).

(The symbolic continuance condition (RATE v Crate) is technically a
relation skeleton since it contains a real variable, Crate. However, all
C-variables are bound when the ICs are met. Thus, within the effects por-
tion of the scenario, C-variables are correctly interpreted as constants.
This means that a relation skeleton such as (RATE v Crate) becomes
equivalent to the explicit relation (RATE =v =Crate).)

The interrupt provisions just discussed are used to monitor the sym-
bolic continuance conditions. The numeric conditions are monitored by
another mechanism. When the control block is set up, a system of simul-

taneous equations is constructed from the numeric portion of the effects

27

formalism and the numeric portion of the continuance constraints. Assuming
that the symbolic continuance constraints are not broken, this system defines
a feasibility space for the process, the dimensions of which are model time
and the quantities represented by Y-variables. Fér the FILLBUCKET process,
the system of equations is

Ycontent = Cinitialcontent + Crate . $

Ycontent < Ccapacity
Using variations of a process’'s system of equations, the monitor finds cer-
tain points in time which are critical to the process. For example, by solving
the system

Ycontent = (Cinitialcontent + Crate - §

Ycontent = Ccapacity
for §, a critical point is determined for FILLBUCKET which indicates that the
numeric continuance condition will be broken when $ = (Ccapacity - Cinitial-
content)/Crate. Now the variable $ is local to rhe process, Using @ = $ + ¢,
the time (in terms of the global, monitor system model time) at which the con-
straint will be broken is computed. This interruption time is recorded in
the control block where it may be used by the monitor executive. As described
earlier (Section 7.1), this time may eventually be used to interrupt the pro-

cess.,

8.5 Examples of interruption

Consider now the interruption of the filling process by the breaking
of some continuance condition. The first continuance condition (RATE v Crate)
may be broken by the process TURNVALVE. Suppose the flow rate through the
valve is changed from =Crate to 0. Since the rate changes, FILLBUCKET is
interrupted. The content of the bucket remains as defined by the value of

Ycontent computed at the time of interruption. Further, this content remains

28

(at least temporarily) constant since the initiation conditions needed to
restart FILLBUCKET are not present. Specifically, the flow rate is not
positive as demanded by the first numeric precondition.

On a more technical level, the process TURNVALVE causes (RATE VLV =Crate)
to be deleted from the set of explicit relationships. When the process con-
trol monitor makes this deletion, it checks the associated sustains list.
Because a pointer to the FILLBUCKET process's control block is found on the
list, the process is interrupted. Since the process will (sometimes) no
longer be operative, state information which was being represented by
skeletons and equations must be moved to the set of explicit relationships.
Specifically, the numeric equation is solved for Ycontent using the model
time of the interrupt to compute $. With Ycontent computed, (CONTENT =b
=Ycontent) becomes explicit and is entered into the set of explicit relation-
ships. Once this critical information has been salvaged, the process control
block is abandoned for garbage collection,

Suppose the rate were changed from =Crate to some new positive value.

The change in Crate would again interrupt the FILLBUCKET process, but in this
instance, FILLBUCKET would restart immediately with the new flow rate (and a
new initial bucket content reflecting the increase in volume accomplished at
the old rate).

Suppose the bucket is moved. This too interrupts the FILLBUCKET process
leaving the content of the bucket as defined at the time of the interruption.
Of course, moving the bucket does not change the flow rate. The valve stays
open, but the water from the tap simply disappears into the drain in the floor.

If the bucket is turned over during filling, FILLBUCKET is interrupted.
Some new process (EMPTYBUCKET) must exist in the process set to define how the

water gpills from the overturned bucket.

29

[f the FILLBUCKET process is left undisturbed, the numeric continuance
condition causes the process to 'self-interrupt” or "come to normal comple-
tion" when the bucket is full. The content of the bucket remains at
=Ycontent = =Ccapacity and water continues to flow through the tap, spill
over the bucket and go down the drain. (This interruption is realized when
the FILLBUCKET process's critical time is the earliest interrupt time of all
the currently active processes.)

Of course, a combination of interrupts could occur simultaneously. In
such cases, (in a consistent model) the resulting state of the world will
cause various processes or combinations of processes to be initiated which

describe the situation.

8.6 Inhibiting extraneous processes

Before moving on to a more complex scenario, an important aspect of
the monitor must be discussed. It has been pointed out that the process
monitor is continually attempting to start up new processes by finding
scenarios whose initiation conditions are met. Clearly, the FILLBUCKET
scenario's initiation conditions will be satisfied at all times during the
continuance of a FILLBUCKET process. Unless gsome special inhibiting mechanism
is provided, the monitor will attempt to set up a multiplicity of process
blocks, all attempting to model the filling of the same bucket from the same
tap. Such process blocks would differ only with respect to process initia-
tion time and the value for the initial content of the bucket. To avoid this
situation, no two process blocks are allowed to use the same scenarioc with
identical bindings for all primary variables. Thus, no two FILLBUCKET pro-
cesses may simultaneously be filling the same bucket from the same tap. Of

course, multiple FILLBUCKET processes may still occur simultaneously so long

30

as each process fills a different bucket and uses a different tap. (Diffi-
culties begin to arise if a bucket may simultaneously be beneath two taps

or if multiple buckets are beneath a single tap. Such situations may still
be modeled, but a more microscopic analysis would be required. The simple
FILLBUCKET scenario presented here assumes that if a bucket is below a tap
then there is exactly one bucket below the tap and exactly one tap above the

bucket.)

9.0 Scenarios with effects sandwiches

Many processes are best characterized by sandwiching a set of continuing
effects between two sets of immediate effects. For example, suppose TURNVALVE
is redefined to mean '"robot r turns valve v at turn rate Cturnrate until a
flow rate of Cdesiredflowrate is achieved." (That is, Cturnrate is the rate
at which the flow rate is to be changed. It is helpful to think of Cturn-
rate as an 'acceleration' applied to a "velocity," the flow rate.) The
immediate effect of this process is to redefine the turnrate to be Cturnrate.
With the turn rate established, the flow rate itself undergoes gradual change
until the process is interrupted. Upon interruption, the valve is no ionger
being turned and hence the turn rate is immediately set to zero. The scenario

for this process is as follows:

Scenario name: TURNVALVE Robot r uses arm a to
turn valve v at turn-
Parameters: (a v Cturnrate rate Cturnrate until
Cdesiredflowrate / flow rate Cdesired-
r Cinitialflowrate flowrate is achieved.

Cmaxflowrate Cmaxturnrate n)
Initiation conditions:

symbolic: ((ALLOCATED-ACTIVATED r a TURNVALVE a
v Cturnrate Cdesiredflowrate)
(TYPE a ARM) (RATE v Cinitialflowrate)
(MAXRATE v Cmaxflowrate) (MAXTURNRATEABS
v Cmaxturnrate) (AT r n) (AT v n))

numeric:

Effects - I:

delete list:

add list:

Effects - G:

symbolic:

numeric:

Montinuation conditions:

symbolic:

numeric:

Effects - P:

delete list:

add list:

31

Cdesiredflowrate £ Cmaxflowrate

Cdesiredflowrate2 0

Cturnrate £ Cmaxturnrate

Cturnrate 2 -Cmaxturnrate

0 < (Cdesiredflowrate - Cinitialflowrate) -
Cturnrate

((TURNRATE v *))

((TURNRATE v Cturnrate))

((RATE v Yflowrate))

Yflowrate = Cinitialflowrate + Cturnrate

- $

((ALLOCATED~-ACTIVATED r a TURNVALVE a v
Cturnrate Cdesiredflowrate) (AT r n))

Yflowrate # Cdesiredflowrate

((TURNRATE v Cturnrate))

((TURNRATE v 0))

The initiation conditions of this scenario should be self-explanatory

with the possible exception of the fourth and fifth numeric constraints.

Since the flow rate may be either increased or decreased, the turn rate may

be either positive or negative.
guarantee that
the current rate, Cinitialflowrate, then Cturnrate must be positive.

(Cdesiredflowrate - Cinitialflowrate) « Cturnrate must be posgitive.

{Cturnrate| £ Cmaxturnrate.

Hence,

1f

Cdesiredflowrate is less than Cinitialflowrate, then Cturnrate must be nega-

tive.

duct of two negative numbers and is again positive.

Hence, (Cdesiredflowrate - Cinitialflowrate) - Cturnrate is the pro-

Taken together, the third and fourth equations

If the desired rate is greater than

Thus, 0 < (Cdesiredflowrate -

32

Cinitialflowrate) . Cturnrate guarantees that the valve will be turned in the
proper direction for achieving Cdesiredflowrate. Further, if Cdesiredflowrate =
Cinitialflowrate, then the process is mcaningless. But in such a case (Cdesired-
flowrate - Cinitialflowrate) e Cturnrate = 0 and éhe fifth numeric constraint
is not met.

The effects portion of the scenario indicates that the process proceeds in
three stages, As soon as the process is initiated, all relations of the form
(TURNRATE %v --) are deleted from the SWM and the explicit relation (TURNRATE
=v =Cturnrate) is added. The mechanisms used to achieve such immediate effects
have already been discussed.

The continuing effects are also set in motion when the process is
initiated. (The process monitor executive handles the instantaneous effects
first, but model time is frozen untiliconstructs for the continuance condi-
tions are set up exactly as before. Note that the condition (AT t n)
probably could be omitted since the robot r will not wish to move from n so
long as its arm is ALLOCATED-ACTIVATED to turning the valve. However, if
a second robot is introduced, the second might forcibly push the first robot
away from the valve and stop the turning process.

When the TURNVALVE process is eventually interrupted (by exactly the
same procedures described earlier), the valve flow rate is saved by adding
(RATE =v =YI) to the set of explicit relations, where =YI is the value of
Vflowrate at interruption time. As soon as the bookkeeping accompanying the
interrupt has been completed by the process monitor, the monitor deletes
(TURNRATE =v =Cturnrate) from the set of explicit relations and adds (TURN-
RATE =v 0). This immediate post-process effect is handled by the usual
immediate effect mechanisms.

It is of some interest to note what happens if, while turning the valve,

33

the robot decides to change the turn rate and/or the desired final flow rate.
When the robot makes its decision, (ALLOCATED-ACTIVATED =r =a TURNVALVE =a =v
=Cturnrate =Cdesiredflowrate) is deleted from the SWM, causing the interrup-
tion of the TURNVALVE process, When this happens, the turn rate is set to
zero even if the interrupt was precipitated by the robot's desire to increase
the turn rate. As soon as tﬁe robot's new selection of values for Cdesired-
flowrate and/or Cturnrate are entered in the SWM (by adding (ALLOCATED-
ACTIVATED =r =a TURNVALVE =a =v =Cturnrate' =Cdesiredflowrate')) the TURN-
VALVE process is reinitiated., Since all of these procedures are accomplished
while the process monitor executive keeps model time frozen, it appears as if

the turn rate never had been set to zero.

9.1 A new definition for FILLBUCKET

The new scenario for TURNVALVE makes necessary a new formulation of the
FILLBUCKET scenario which will allow the rate to change. One possible new

scenario is the following:

Scenario name: FILLBUCKET Bucket b is filled
by water from tap t.
Parameters: (bt / v n Cinitialflowrate
Ccapacity Cinitialcontent
Cturnrate)

Initiation conditions:

symbolic: ((CONTROL v t) (RATE v Cinitialflowrate)
(TURNRATE v Cturnrate) (CAPACITY b Ccapacity)
(CONTENT b Cinitialcontent) (AT t n) (AT b n)
(ORIENTATION b UP))

numeric: 0 < Cinitialflowrate2 + Cturnratez
Cinitialcontent < Ccapacity

Effects - G:
symbolic: ((CONTENT b Ycontent))

numeric: Ycontent = Cinitialcontent + rinitialflowrate < §
+ 1« Cturnrate - $2

34

Continuance conditions:

symbolic: ({TURNRATE v Cturnrate)
(AT b n)
(ORIENTATION b UP))
numeric: Yecontent < Ccapaciﬁy
The equation given for the computation of the content of the bucket
(Ycontent) may be unfamiliar. Compare the equation to the well-known
formula
2

= 1
dt dO + vot + zat

where dt is displacement at time t, d0 is displacement at time 0, Yo is
initial velocity and a is acceleration.

Notice that there is no reference to flow rate in the continuance con-
ditions. This omission is due to the fact that Ycontent is defined in terms
of the initial flow rate and the valve turn rate rather than in terms of the
varying flow rate. This formulation of Vcontent does, of course, reflect the
varying flow rate.

It is clear that the FILLBUCKET process must be interrupted if the flow
rate ever changes to zero. Although no explicit mention of this is made in
the continuance conditions, provisions for such an occurrence are implicitly
included. 1If the flow rate changes to zero while FILLBUCKET is operative,
then a TURNVALVE process must be at work. But careful examination of the
TURNVALVE scenario shows that if the flow rate is ever changed to zero, then
TURNVALVE will be interrupted. (To change the rate to zero, Cdesiredflowrate
of TURNVALVE must be zero.,) The interruption of TURNVALVE will cause the

turn rate to be changed from some negative quantity to zero. This in turn

will cause the desired interruption in FILLBUCKET.

10.0 Scenarios for conventional robot operations

The example scenarios presented in sections 7 through 9 have modeled

35

processes which are rather foreign to conventional robot worlds. This section
considers how such conventional operations as GOTO and PUSH may be modeled in
the scenario formalism.

The sample world used in the preceding sectidns faithfully treated
time as a continuous phenomenon. However, since the sample world was depic-
ted as having only six discrete locations (A through F), space has not received
a realistic, continuous treatment. This situation may, of course, be remedied
by describing locations in terms of a spatial coordinate system.

Generally speaking, the inclusion of a coordinate system in a world model
can lead to a variety of complications. For example, since objects in the
world may have quite curious shapes, equations describing the space occupied
by an object may be incredibly complex. T.est the focus of the discussion
become diffused in a clutter of engineering difficulties, such problems will
be ignored here by assuming

1) all objects in the model world occupy only a single point, and

2) any number of objects may occupy the same point at the same time.

In constructing a model for a real robot, several compromises may be struck
between these oversimplifying assumptions and the rigors of an exact system.
For example, each object, no matter what its shape, might have associated with
it a "sphere of influence."” Thus, the location of an object with unknown or
irregular shape might be represented as the smallest cube or sphere containing
the object. The robot would be able to grasp or push another object when its

"sphere' intersects (tangentially) the "sphere” of the object.

10,1 A new description of the sample world

A new description of the initial state of the sample world is given in

Figure 2. Note particularly that AT relationships are now expressed in the

(0,100)

(200,100)

CLK (20, 80)

RBT (20, 50)

BKT ﬁ (20, 20)

(180, 80) 7 VLV

(180, 20) % TAPL

(0,0)

(TYPE CLK CLOCK)

(TYPE RBT ROBOT)

(TYPE BKT BUCKET)

(TYPE VLV VALVE)

(TYPE TAP1 TAP)

(TYPE RBT-MU MOBILITYUNIT)
(TYPE RBT-ARM ARM)
(HASASPART RBT RBT-MU)
(HASASPART RBT RBT-ARM)
(MOVABLE CLK)

(MOVABLE RBT)

(MOVABLE BKT)
(IMMOVABLE VLV)
(IMMOVABLE TAP1)

(ALARM OFF CLK)
(ORIENTATION BKT UP)
(CAPACITY BKT 100)
(CONTENT BKT 0)

(FREE RBT-MU)

(FREE RBT-ARM)

FIGURE 2

(200,0)

(CONTROL VLV TAP1)
(MAXRATE VLV 10)
(RATE VLV 0)

(AT CLK 20 80)

(AT RBT 20 50)

(AT BKT 20 20)

(AT VLV 180 80)
(AT TAP1 180 20)
(SPEEDLIMIT RBT 100)
(GRASPABLE CLK)
(GRASPABLE BKT)
(GRASPABLE VLV)
(GRASPABLE TAP1)
(NOTGRASPED CLK)
(NOTGRASPED BKT)
(NOTGRASPED VLV)
(NOTGRASPED TAP1)

Revised Initial State of Model World

37

form (AT object x v), where (x,y) is a point in the coordinate system occupied
by "object." (The third dimension has been omitted for simplicity. 1If a
bucket and tap occupy the same position, assume the tap may fill the bucket.)
In anticipation of movement by the robot, the relétionship (SPEEDLIMIT RBT 100)
has been included to indicate that the robot RBT may move at a maximum speed of
100 length units per time unit.

Since the coordinate system is being introduced under the assumption (only
for simplicity) that two objects may occupy the same point at the same time,
it follows that one object (e.g., the robot) may pass through another object
without pushing or otherwise affecting it. So that the robot may interact
with other objects, assume that if the robot and another object occupy the
sane point then the robot may 'grasp' the object. If the robot is grasping
an immovable object, then the robot itself cannot move. If the robot is
grasping a movable object, then that object will move with the robot if the

robot moves.

10.2 GRASPING and RELEASING scenarios
To model the grasping and releasing of objects, two new scenarios may be

defined as follows:

Scenario name: GRASP Robot r grasps object b
with its arm a while
Parameters: (ab/ rcCxcCy) at point (Cx, Cy).

Tnitiation conditions:

symbolic: ((ALLOCATED-ACTIVATED r a GRASP 3 b)
(TYPE a ARM) (GRASPABLE b) (NOTGRASPED b
(AT r Cx Cy) (AT b Cx CY))
numeric: @
Effects - I:
delete list: { (NOTGRASPED b))
add list: ((GRASPING r a b))

ek Yeve Wk

38

Scenario name: RELEASE Robot r releases object b
held by arm a.

Parameters: (ab/

Initiation conditions:

symbolic: ((ALLOCATE-ACTIVATE r a RELEASE a b)
(TYPE a ARM) (GRASPING r a b))

numeric: 9

Effects - 1:
delete list: ((GRASPING r a b))
add list: ((NOTGRASPED b))

According to these scenarios, a robot arm may grasp any number of objects
but an object may be grasped by at most one robot arm. Of course, other
scenarios may be written to describe other situations. A scenario which
limits both the total number of objects and the total weight of the objects
which a robot may grasp may easily be written and is recommended as an exercise.

(Very interesting problems begin to arise if robots are allowed to grasp
robots or if two robots are allowed to grasp the same object at the same time.
For example, if two or more robots become physically united by grasping one
another or common objects, what will happen if they attempt to move in differ-
ent directions? Several outcomes are possible. One possibility is that some
robot or object will be broken. Another possibility is that the entangled
robots and objects will follow a path representing the vector sum of the

paths which the robots would have followed individually.)

10.3 Scenarios of dynamic inference

Since, in the sample world, a robot's ability to move is determined
by whether or not it is grasping an immovable object, it seems reasonable
to set up the following special scenario whose job it will be to determine

dynamically whether a robot is itself movable or immovable in a particular

39

world state.

Scenario name: MOVABILITY The movability of robot b is
determined dynamically,

Parameters: (r/ ab)

Initiation conditions:

symbolic: ({GRASPING r a b) (IMMOVABLE b))
numeric: ®

Effects - I1:

delete list: ((MOVABLE 1))
add list: ((IMMOVARLE 1))
Effects - G: 8

Continuation conditions:

symbolic: ((GRASPING r a b) (IMMOVABLE b))
numeric: @
Effects - P:
delete list: ((IMMOVABLE 1))
add list: ((MOVABLE 1))
Because of the rule concerning identical bindings of primary variables (see
section 8.6), only one MOVABILITY process block will be set up to prevent the
movement of any one robot. This will be true no matter how many immovable
objects the robot may be grasping. However, if the robot releases the object =b,
other immovable objects grasped by the robot are no longer inhibited from acti-
vating MOVABILITY and one of them will succeed in restoring the IMMOVABLE con-
dition.
A close look at the MOVABILITY scenario reveals a rather peculiar struc-
ture. The initiation conditions and continuation conditions are identical.

The post effects are the inverse of the instantaneous effects. Further, there

40

are no gradual effects.

Hence, MOVABILITY acts simply as a binary switch, Whenever there exists
a =b for which (CGRASPING =r =a =b) and (IMMOVABLE =b) are true, the switch is
in the (IMMOVABLE =r) position, Whenever no such~=b can be found, the switch

is in the (MOVABLE =r) position.

10.4 The definition of GOTO

Mow that a simplified coordinate system and the notions of MOVABLE and
TMMOVABLE as applied to robots have been introduced, a scenario for GOTO may

be presented.

Scenario name: GOTO Robot r goes to point (Cxto, Cyto) from
point (Cxfrom, Cyfrom) at speed Cspeed.
Parameters: {r Cxto Cyto Cspeed / m Cxfrom
Cyfrom Cspeedlimit Ehyp Exrate
Eyrate)

Initiation conditions:

symbolic: ((MOVABLE r) (ALLOCATED-ACTIVATED
r m GOTO r “xto Cyto Cspeed)
(TYPE m MOBILITYUNIT)
(SPEEDLIMIT r Cspeedlimit)
(AT r Cxfrom Cyfrom))

numeric: 0 £ Cxto
0 £ Cyto
0 £ 200 - Cxto
0 = 100 - Cyto
0 <« Cspeed
0 < Cspeedlimit - Capeed

Ehyp = SQRT{((Cxto - forom)2 +
(Cyto - Cyfrom)™)
Exrate= (Cxto - Cxfrom) ¢+ Cspeed / Ehyp
Eyrate= (Cyto - Cyfrom) - Cspeed / Ehyp
Effects ~ 1:
delete list: ((XRATE r *) (YRATE r *))

add list: ({XRATE r Exrate) (YRATE r Eyrate))

41

Effects - C:
symbolic: ((AT r Vx Yy))

numeric: Yx = Cxfrom + Exrate - $
Yy = Cyfrom + Eyrate . $

Continuation conditions:

symbolic: ((ALLOCATED-ACTIVATED r m GOTO r
Cxto Cyto Cspeed) (MOVABLE 1))

numeric: 0 # Yx - Cxto

Effects - P:
delete list: ((XRATE r *) (YRATE t *))
add list: ((XRATE r 0) (YRATE r 0))

The GOTO scenario introduces the E-variable, E-variables, like C-variables,
are bound to constants at initiation time. However, E-variables are derived
from C-variables rather than being gleaned from symbolic relations.

Most of the numerical portions of the scenario come from a straight-
forward application of the Pythagorean theorem. The constants 100 and 200 are
the dimension of the model world. Upon reflection, it should be clear that
the Effects - I and Effects - P sections of the scenario could have been
omitted. However, as will be seen in the next section, this information will
be useful in determining what happens to movable objects the robot may be

grasping.

10.5 The notion of subordinate actions

The STRIPS robot effectively has two GOTO operators. The first, called
GOTO, models the solo movement of the robot. The second, called PUSH, models
the joint movement of the robot and a box or wedge. WNow the STRIPS robot can
only push one object at a time so these two GOTO operations are adequate for
the STRIPS world. However, if the robot could push from 0 to n objects, ihen

n + 1 distinct operators would be necessary. In addition to pushing, the robot

42

might carry a variety of objects in its pockets or in its hands. Turther, the
robot might be wearing clothes, false teeth, contact lenses and a toupee.

Since all these objects must move along with the robot, the number of necessary
operators would quickly proliferate.

This proliferation of operators may be curbed by thinking of the robot's
solo movement as a central process with numerous subordinate processes (based
on a very small number of scenarios) accounting for the movement of objects
which are somehow swept along with the robot. That is, the central process
is the solo movement of the robot. If a box is in the path of the robot, then
the box is pushed. If an object is held in the robot's hand or is in the
robot's pocket, then the object is carried along.

In the description of the revised sample world, the robot carries along
with it those movable objects which it is GRASPING. (In an expanded world,
the robot might also be WEARING clothes and CARRYING objects in its pockets.
The model of such an expanded world could use inference scenarios (section 10.3)
to predicate (MOVEWITH object robot) whenever the robot was grasping, wearing
or carrying an object. 1In such a case, MOVEWITH would take the place of
GRASPING in the scenario which follows.) Thus, the location of an object
grasped by the robot is a function of the movements of the robot. Hence the
L.OC scenario:

Scenario name: LoC Object b, being grasped by

robot r, is moved from
point (Cxfrom, Cyfrom).

Parameters: (b / r a Cxfrom Cyfrom Cxrate Cyrate)

Tnitiation conditions:

symbolic: ((GRASPING r a b) (MOVABLE b)
(AT b Cxfrom Cyfrom)
(XRATE r Cxrate) (YRATE r Cyrate))

, 2
numeric: 0 < Cxrate” + Cyrate2

43

Effects ~ G:

symbolic: (AT b ¥x Yy)
numeric: Yx = Cxfrom + (xrate - $
Yy = Cyfrom + Cyrate - $
Continuation conditions:
symbolic: ((GRASPING r a b)

(XRATE r Cxrate) (YRATE r Cyrate))
numeric: @

In this scenario the movement of an‘object grasped by a robot is computed
in terms of the robot's rates of displacement with respect to the X and Y
coordinates. These rates of robot displacement are, of course, computed by
the [OTO scenario, which models the solo movement of the robot. (Indeed, the
only reason rates were introduced into the GOTO scenario was for use in LOC.)
It is important to note that the starting point ("from'" position) of the move-
ment of an object is not necessarily the starting point of the movement of the
robot. 1t is quite possible for the robot to grasp and subsequently release
an object with the robot in motion all the while. The reader is invited to
consider how the motion of an object grasped by a robot is affected by changes

in the robot's speed or course.

11.0 Modeling the execution of plans

Sections 5 through 10 have discussed a methodology for medeling a world
containing simultaneous actions and continuous processes in terms of an SWM-
maintenance procedure (or world simulator). Conspicuously absent from the
discussion has been any mention of procedures which allow a robot to plan
interactions with its environment. While no robot planner has yet been designed
to operate over worlds containing simultaneocus actions and continuous processes,

the scenario formalism is itself adequate to model the execution of a preformu-

44

lated plan. However, before considering the actugl execution of plans, it

will be necessarv to gain some notion of what constitutes a plan.

11.1 Robot plans as resource utilization schedule;

As has been stated previously, a robot engages itself in an activity
(and hence precipitates changes in its world) by allocating and activating
certain of its resources to the accomplishment of the activity at a time when
it is physically possible (given the environmental conditions) for the acti-
vity to be set in motion. In attempting to accomplish its goals, it is neces-
sary for a robot to carefully coordinate its environment affecting resources.
This coordination is realized through the adoption of a comprehensive resource
utilization schedule. Such a schedule is known as a robot plan.

(In conventional robots, all the robot's resources (i.e., the total robot)
must (effectively) be allocated to the performance of each operation. Hence,
the sequence of desired operations is enough to specify the sequence of

resource allocation.)

11.2 The representation of a plan

As an example of a robot plan, suppose that the robot is to move from
point (20, 50) to point (20, 10), grasping the bucket as it passes through
point (20, 20), and releasing the bucket as it passes through point (20, 15).
(See Figure 2.) One possible plan for this sequence of events is the following:
Step 1 Allocate and activate the resources of the robot's mobility unit to

the task of moving to point (20, 10). Plan to withdraw the resources
when the robot reaches the point.

Step 2 When the robot is at point (20, 20) allocate the resources of the
arm to the grasping of the bucket., Withdraw the resources once the
bucket is grasped.

Step 3 When the robot is at point (20, 15) allocate the resources of the
arm to the releasing of the bucket. Withdraw the resources once

the bucket is released.

. Notice that steps 2 and 3 have three basic parts. First, wait for the

55

proper conditions. Second, make an allocation and activation of resources.
Third, make arrangements for withdrawing the resources. Tlan step 1 may also
be given in three parts by adding a dummy wait condition such as '"Wait for the
robot to be a robot.”

Recognizing each step to be a triple, the plan for a particular robot,

RBT, may be formalized as follows.

(DOWHEN RBT 1 TYPE RBT ROBOT) ~

(DOWHAT RBT 1 RBT-MU GOTO RBT 20 10 50) Step 1
(DOUNTIL RBT 1 AT RBT 20 10)]

(DOWHEN RBT 2 AT RBT 20 20) 7

(DOWHAT RBT 2 RBT-ARM GRASP RBT-ARM BKT) Step 2
(DOUNTIL RBT 2 GRASPING RBT RBT-ARM BKT)

(DOWHEN RBT 3 AT RBT 20 15) ' 7

(DOWHAT ~ RBT 3 RBT-ARM RELEASE RBT-ARM BKT) Step 3
(DOUNTIL RBT 3 NOTGRASPED BKT) |

The first three relations indicate that the first step in RBT's plan is to
make (ALLOCATED-ACTIVATED RBT RBT-MU GOTO RBT 20 10 50) true as soon as
(TYPE RBT ROBOT) becomes true. (ALLOCATED-ACTIVATED RBT RBT-MU GOTO RBT

20 10 50) is to be withdrawn when (AT RBT 20 10) becomes true. Other steps
in the plan may be interpreted analogously.

Hopefully, it is clear that if a robot's plan has been completely
determined before it is set in operation, then the plan is itself a part of
the state of the world preceding the execution of the plan. Thus, for simu-
lation purposes, a plan may be represented by a set of initial explicit rela-
tions such as those above. To indicate that RBT's plan is to start with step 1,
an additional relation such as (PLANSTEP RBT 1) may be included in the set of

initial explicit relations.

11.3 Scenarios for the execution of a plan

The following two scenarios may be used to model the allocation and

46

activation of a robot's resources during the execution of a plan.

Scenario name:

Parameters:

Initiation conditions:

symbolic:

numeric:

Effects - I:
delete list:

add list:

Scenario name:

Parameters:

Initiation conditions:

symbolic:

numeric:
Effects -~ I:

delete list:

add list:

NEXTSTEP Robot r allocates and
activates resources
for the next step in
its plan.

(r / resource Cstepnumber »1 *2 *3)

((PLANSTEP r Cstepnumber)

(DOWHEN r Cstepnumber *1) (*1)
(DOWHAT r Cstepnumber resource *2)
(FREE resource))

no C-variable restrictions

Enextstep = Cstepnumber + 1

((PLANSTEP r (stepnumber) (FREE resource))

((ALLOCATED-ACTIVATED r resource *2)
(PLANSTEP r Enextstep)
(INPROGRESS r Cstepnumber))

*%k Kk k%

WITHDRAWRESCURCE The allocation and acti-
vation of a resource
is withdrawn.

(resource / r Cstepnumber *1 *2)

({INPROGRESS r Cstepnumber)
(DOUNTIL r Cstepnumber *1) (*1)
(DOWHAT r Cstepnumber resource *2))

2

((INPROGRESS r Cstepnumber)
(ALLOCATED-ACTIVATED r resocurce *2%)

((FREE resource))

47

"¥n" (where n is an integer) are used

In these scenarios, svmbols of the form
as variables which can match a string of relation terms of arbitrary length.
Thus (DOWHEN r Cstepnumber *1) will match the relation (DOWHEN RBT 2 AT RBT

20 20) with string variable *1 bound to the string‘”AT RBT 20 20." With this
convention in mind the scenarios may be examined more closely.

Consider the NEXTSTEP scenario. The first symbolic initiation condition
determines that the next step in the plan of robot r is step number Cstep-
number, The second symbolic IC indicates that the step is to be taken when
the relation (*1) is true. The third IC guarantees that the relation (1)
is indeed true. The fourth IC indicates the resource allocation-activation
to be made in taking the step while the fifth IC determines whether or not
that resource is free for allocation. 1If the ICs are met, then the alloca-
tion and activation of the resource is made and the plan step number is advanced
by one.

Scenario WITHDRAWRESOURCE is used to return a resource when the resource

has accomplished its purpose with respect to the plan.

11.4 More general plans

The scenarios presented above are for use in a planning scheme in which
a robot allocates only one resource at each step. There is, of course, no
reason why a robot may not make multiple simultaneous allocations in a single
step. This is easily modeled by adding an extra variable, such as Cinterstep-
index, to the DOWHAT, DOWHEN, DOUNTIL and INPROGRESS relations. The plan
execution scenarios must be appropriately modified to insure agreement of
Cinterstepindex numbers.

Moving into another area of generality, it is conceivable that a robot

might impose a partition over its set of resources and have an independent

48

plan for each subset. (Thus, for example, each hand of a robot octopus might
perform its own task using its own plan.) This situation may be conveniently
modeled by including a Cpartitionindex in PLANSTEP, DOWHEN, DOWHAT, DOUNTIL
and INPROGRESS relations. For each robot, there ﬁust be as many PLANSTEP

relations as there are subsets in its resource partition.

11.5 Loops, jumps and decisions in a plan sequence

As indicated in section 11.3, the NEXTSTEP scenario is responsible for
advancing a plan's step number. There is, however, no reason to exclude other
processes from affecting the number. 1Indeed, it is quite easy to write a
scenario which changes a plan step number when an arbitrary set of conditions
hold. Such a scenario greatly resembles the conditional jumps familiar to
computer programmers,

The ability to model jumps in plan sequences opens up a galaxy of tan-
talizing possibilities. 1In particular, a robot may engage in plans contain-
ing loops, reusable subplans (subroutines), recursive subplans and interrupts.
In the light of the model's inherent parallelism, these abilities seem capable

of accomodating an infinite variety of robot plans.

11.6 Formulating plans

As stated earlier, no planner has yet been devised to operate over a
world containing simultaneous actions and continuous processes. However,
work in this area has just begun. Since the scenario formalisms and other
features of the modeling system were designed with planning in mind, it is
hoped that most of the experience gained from constructing conventional
robot planners will be applicable in multiple, continuous process planning,

The presence of real varisbles and numeric constraints, of course, adds

a new dimension of complexity to the task of planning over continuous processes.

49

To meet this challenge, conventional planning must be supplemented by such
activities as finding feasible solutions to systems of simultaneous equations.

The sophistication of numeric ability required for planning interactions
with the real world may very well turn out to be much less than that required
for simulation. To see this, consider the example of a man filling a bucket.
The man simply places the bucket beneath a tap and turns on the water. Per-
haps while performing other tasks, the man keeps an eye on the process and
eventually shuts off the water at the proper moment.

To simulate this scene it would be necessary to know the exact formula
for computing the content of the bucket with respect to time. 1In general,
this formula may be very complex. Obviously, the man in this example does
not perform a precise simulation to determine the instant at which to cut
off the water. Rather, he apparently makes a quick, conservative guess as
to when he should examine the progress of the filling process. Several
cycles of examination and reestimation later, he turns off the water as he
watches it reach the desired level.

The important thing to recognize in this example is that the man has
the ability to interact with an external world and hence can update and
refine his model. The fillbucket scenario used by a planning robot should
be kept simple. The robot might have some rough idea of the water flow
rate and the bucket's capacity. (These rough approximations could be given
by pairs of numbers expressing upper and lower limits. (See Fikes et al. (3
In turn, the scenario may provide a range of possible fill times. The robot
may plan to examine the state of the filling process at the earliest time.
From the inspection, information may be gained which will provide a better
second estimate, etc,

The interplay between action, perception and estimation is clearly an

50

important tool in real task performance. The ability to perceive and to
refine estimates removes a considerable burden from the numeric considera-

tions of planning.

12.0 Implementation

An experimental micro-world simulation system based on the ideas presen-
ted has been implemented in GROPE on the CDC 6660 at thé University of Texas.
GROPE (Friedman (4), Slocum (12)) is a graph processing language which pro-
vides very general data structures, including lists and graphs, and compati-
bility with FORTRAN.

All constructs presented in previous sections have been faithfully imple-
mented with two exceptions. First, the string variables (Section 11.3) have
not been implemented. The scenarios of Section 11.3 were realized by intro-
ducing dummy terms in some relations so that all relations referenced by
string variables were of the same length. The string variables were then
replaced by a fixed length sequence of ordinary variables. Second, the
monitor has no mechanism for finding the critical points of a system of
simultaneous equations. (Such mechanisms do exist for sufficiently well-
behaved systems. See Wagner (16) and Zangwill (17).) Rather, for each
scenario with Effects - G, a FORTRAN function must be supplied which com-
putes the earliest self-interruption time, given the bindings of parameters
stored in the process control block, Tailor-made FORTRAN functions are also

used in handling the numeric considerations of initiation conditions.

12.1 Interaction with the computer

In one mode of operation, a user may interact with the simulation system
by adding or deleting relations from the set of explicit relations whenever

model time is frozen at some interesting, critical time. By adding and

51

deleting ALLOCATED-ACTIVATED relations, the user may provide his own simu-
lation of a robot's mind while the system simulates other world components,

including the robot's brawn.

13.0 Summary

The preceding sections have outlined a new methodology for the construc-
tion of world models. The underlying philosophy of this methodology, the
philosophy which views the world as a collection of ongoing processes, has
been advanced. To support the new methodology, previous modeling schemes
have been reviewed, the nature of processes has been investigated and a rough
sketch of a SWM-maintenance program using the multiple, continuocus process
modeling scheme has been given.

The SWM-maintenance program is actually a simulation system, While
previous simulators and simulation languages (Gordon (14), Naylor (15))
have been designed primarily to simulate, the system presented in this
paper was designed as a theoretical basis for the understanding of a
dynamic world by artificially intelligent entities. Care has been taken
to represent both state and process knowledge by constructs which an intel-
ligent computer system may conveniently examine and manipulate.

Much attention has been paid to the use of multiple, continuous
process modeling in the area of robotics. 1In particular, the interplay
between a robot's brain and b;awn has been discussed.

The application of multiple process modeling is clearly not restric-
ted to robots., The ability to understand a dynamic world is an essential
skill in the repertoire of any intelligent entity. Specifically, the new
methodology should prove very useful to question answerers and to CAI,

Indeed, the system presented was actually developed in an attempt to broaden

52

the scope of the author's robot-like natural language system (Hendrix
et al. (5)). That system builds a model of a simple narrative text, using
a sequence of STRIPS robot-like operators to depict the sequence of events
given in the text.

The breadth of applicability of the new methodoliogy has been left
largely to the imagination of the reader. But clearly, the world of robots
has been brightened by the ability to model growing flowers, running streams

and a sun which wanders gradually across the heavens.

10.

11.

REFERENCES

Fikes, Richard E. and Nilsson, Nils J., "STRIPS: a
New Approach to the Application of Theorem Proving
to Problem Solving, " Artificial Intelligence, II
1971, 189-208.

Fikes, R. E., Hart, P. E. and Nilsson, N. J., "Learning
and Executing Generalized Robot Plans, " Artificial
Intelligence, III, 1972, 251-288.

Fikes, R. E., Hart, P. E. and Nilsson, N. J., "Some New
Directions in Robot Problem Solving," in Meltzer, B. and
Michie, D. (Eds.), Machine Intelligence 7, John Wiley and
Sons, New York, 1972.

Friedman, Daniel P., "GROPE: A Graph Processing Language
and its Formal Definition, " Technical Report TR-20,
August, 1973, Department of Computer Sciences, The
University of Texas at Austin.

Hendrix, G.G.,"Language Processing Via Canonical Verbs
and Semantic Models," Advance Papers of 3IJCAI, Stanford,
California, 1973, 262-269.

Raphael, B., ""The Frame Problem in Problem-Solving
Systems,"”_Proc. Adv. Study Inst. on Artificial
Intelligence and Heuristic Programming, Menaggio,
Italy, August, 1970.

Raphael, B., "The Relevance of Robot Research to AT,"
Formal System and Non-Numeric Problem Solving By
Computer, Springer-Verlag, Berlin, 1970.

Siklossy, L. and Dreussi, J., "An Efficient Robot
Planner which Generates its Own Procedures," Advance
Papers of 3IJCAI, Stanford, California, 1973, 423-430.

Siklossy, L. and Roach, J.,"Proving the Impossible
is Impossible is Possible: Disproofs Based on
Hereditary Partitions," Advance Papers of 3IJCAI,
Stanford, California, 1973, 383-387.

Simmons, R. F., "Semantic Networks: Their Computation

and Use for Understanding English Sentences," in Schank,
R. and Colby, K. (Eds.), Computer Simulation of Cognitive
Processes, Prentice Hall, IN PRESS.

Simmons, R. F., '"Mapping English Strings into Meanings,"
Technical Report NL-10, January, 1973, Dept. of Comp.
Sci., The University of Texas at Austin.

12.

13.

14.

15.

16.

17.

54

Slocum, J., "The Graph Processing Language GROPE 2.0,"
Masters's thesis in preparation, The University of
Texas at Austin.

Winograd, T., Understanding Natural Languége, Academic
Press, New York, 1972.

PERTPHERAL REFERENCES

Gordon, Geoffrey, System Simulation, Prentice-Hall,
Englewood Cliffs, New Jersey, 1969.

Naylor, Thomas H., "Bibliography 19. Simulation and
Gaming," Computing Reviews, X, 1 (January, 1969), 61-69.

Wagner, Harvey M., Principles of Operations Research,
Prentice-Hall, Englewood Cliffs, New Jersey, 1969.

Zangwill, Willard 1., Nonlinear Programming: A Unified
Approach, Prentice-Hall, Englewood Cliffsg, New Jersey,
1969.

