THE GRAPH-PROCESSING LANGUAGE GROPE

Technical Report NL-22
Jonathan Slocum

August, 1974

NATURAL LANGUAGE RESEARCH FOR CAI
Sponsored by

THE NATIONAL SCIENCE FOUNDATION
Grant GJ 509X

This report constituted the author's M.A. Thesis in Computer

Sciences at The University of Texas at Austin.

Department of Computer Sciences

The University of Texas at Austin

Table of Contents

Another Programming Language?.........c.cvvmenennnnnnnn. 1
Introduction. «. o i e e e 5
Graph data structures....... ...t innnnnnn.. 6
Graph representation methods..............c0ovun.... 6
THE GRAPH-PROCESSING LANGUAGE GROPE Graph-processing languages................c.uuon... 10
GROPE . e e e e 12
by The Data Structures. ... oo 16
AL OIS L e e e e 16
L 17
S S e e e e 18
JONATHAN SLOCUM, B.A. Graphs . .. 18
g . o e e e, 19
A S e e e e 19
ALOmMSel . L e e e 24
Graphset. .. e e e e 24
Nodesets. ... i i i 25
RS B 0S o e e, 25
THESIS RSBt i s e e, z
Presented to the Faculty of the Graduate School of NS S 26
G LS e 26
The University of Texas at Austin Pseudo Integers. e, 30
in Partial Fulfillment Readers 30
of the Requirements BT 31
for the degree of Processing Linear Structures..............c.ouuuuununn.... 36
MASTER OF ARTS GeneralizalionS . oot 44
Complex graph-based structures..................... 44
OB -WaY BIES . . it i e e 48
SYSem SeES Lt e e e e 50
Graph readers........ e 53
Graph modification operations..............coouv... 57

THE UNIVERSITY OF TEXAS AT AUSTIN i

The Data Language.o.oeouvreunenininnreneanneaanonenans 62
ALOM. .o ivveesnnennrnionrancsneas RN RN 11
List i it re e e 65
Lo e eesesaci e 65
Node........... e N 66
Graph.......c.... fteerrae et ie e 67
8 o 67

The Programming Language Statements...................... 72
PrOgram. v s eee s onsooosnonenonsneonnonesanasenneces 73
Main Procedure.c.ouiinivnrernreonsosarcnenceennas 74
PrOCRAUIE . .t vt te c i in sttt e e 75
Declaration statement. ot ninnnnnnnn 77
Compound statement.........cciitiiiinnneenennnnenns 87
IF statement. et it eineeiannnonanaeeosonns 87
GO SEAatement. .. oo vrerruiononenonreossrnnnssanesanas 92
NULL statement.....ceeueuireinnrernnananosnvsnnnenans 92
CASE statement. ... veueeminonnneareorsanenannnennnas g2
INCR statement....o.ur i rininereneeinennnnnnrosenan 96
WHILE statement.. ... oo iiiiiinineninnnnnnns 99
REPEAT statement..........covvvvnne.n, e 99
FOR statement. .. .ovietivirieninneiinnennnnneennnn 101
SELECT statement.t iiniinnniniotononanans 104
170 STatement. . ..t roeroruennneennonsonnnnnns 108

The Programming Language Expressions..........oceueueunn. 112
Boolean expression. ouiiiiiannnenernnnss 112
Assignment expression. iy 116
Catenation expression.........ccoeenvinnncanconnnan 117
Addition eXpPression. ...t rneennnnneereneennns 118
Multiplication expression....... Ceee st 119
Exponentiation expression........cvoivunn. eeee e 120
Primary expression.uuu e iinierinnnnnnrannons 121
Pattern-directed search expression................ 121

ii

atom descriptor........ i 12l

graph descriptor....... e P 44

node descriptor......... i, N 122

arc desScCriplor. ..ttt ittt 123
List-building expression........c.ieeiiieevonnnnon 125
Set-building expression.......cooiieriviiiiieennnn 125
Procedure invocation.......c.ciiuerenennnnncannsnnn 126
Extended variable.t nnnnn 127
Location. ... i i i i e e 128
RETURN, EXIT, STOP, ABORT 0o ierrenennanns 130
ConCIUSTONS . e e e 133
The GROPE functions.......... Ceeeees e eseaseas e A-1
The GLOBAL varfables........icievoncnonnos Ceseeesaaceaen B-1

iti

PREFACE

Another programming language?

A iittle over four years ago the author and another researcher,
Oaniet ¥. friedman, initiated the design of a FORTRAN-based package
of routines for efficient processing of general-purpose directed
graph data structures. The developers of GROPE 1, as the "language”
came to be called, felt some justification in at least delaying
the full design of a programming lanquage complete with its own
syntax. The first consideration was purely historical accident:
GROPE was initially conceived and developed as a graph-processing
extension to SLIP, which is itself a list-processing extensioun to
FORTRAN; thus the maintenance of FORTRAN as a host]anguége, even
after the inevitable divorce from SLIP, was natural. Second, there
was the problem of portability: as the data structures and associa-
ted operations evolved into what was obviously becoming a very
powerful tool, it was felt that any installation should be able
to implement and use this tool with minimum aggravation. FORTRAN
is, and seems likely to remain for some time, the most widely
spread and frequently used scientific programming language in the
world today. GROPE was therefore carefully designed so that any
machine-dependent properties existed solely in the few "primitives"
which could be hand-coded in (FORTRAN-callable) assembly language
by the local implementer. Third, though in some sense related to
the second reason, is the consideration that there are many utility
packages in existence ({statistical, graphic display, plotting, 1/0,

communication, etc.) which are written in FORTRAN, or are at least

2.

FORTRAN callable, and we had no desire whatsoever to isolate the
prospective user from these carefully-developed programs. A fourth
consideration, which has obviously been overrujed in liaht of this
thesis, was that we had no desire to add yet another member to the
already populous field of programming lanquages: it was felt that
the FORTRAN version served well enough, since the manipulatipn of
graph structures, rather than the invention of a progranming
language, was the goal of the project. The fifth and final con-
sideration was that we wished to devote our efforts to the proper
development of a graph-processing tool, rather than divide thenm

in some confusing manner between that and some proper svntax for

a new language,

After well over three years of intensive develonment which
resulted in two implementations [1] and a doctoral “hesis 3817,
we reached the point where we could decfare the project "comnlete",
But now we had to face the growing and persuasive criticism that
FORTRAN as a host lanquage was a limiting factor in using‘the tool.
There are features lacking in the control structure of FORTRAN
which constrained programmers from "natural® imolementation of
their ideas; GROPE was imbedded in an artificial intelligence
research envjronment where LISP was the accepted tool. Although
all the programmers knew FORTRAN, they complained cof its various
weaknesses -- lack of recursion, for example. On the other hand,
they were not unimpressed with the phenomenal processing speeds

obtained frow GROPE programs, nor with the re-discovered wealth

-3

of operating system support software, etc., that had been un-

available in LISP.

In effect, the development of the language advanced in this
thesis has been goaded by popular demand. The effort has been to
provide the programmer the best of both worlds: the system support
features and processing speed available in FORTRAN, and also the
flexibility and natural usefulness which should be in every program-
ming language. The author studied other programming languages,
looking for syntactic features, control structures, etc., that
seem to make a language "natural and useful". Some of the ideas
in GROPE 2 (the complete-with-syntax version of GROPE 1) are there-
fore admittedly borrowed from other languages, sometimes with
special adaptations, yet there is still a sizeable measure of
originality in the design. The author also instigated many con-
versations with several individuals concerned with programming
language theory and design -- especially the major adviser. The
opinions and reflections of these people constituted a strong
influence on the final design, and their ideas have been deeply
appreciated during the course of the last two years. There is
likely not a single facet of this design which has not been “tested"
on at least one of these individuals, if not actually proposed by
one of them, and needless to say this language would not be what

it 1s without their help.

-4 -

.

It would not be possible to present the Data language and
Programming language (GROPE 2, as it is called) in a meaningful
way without describing the data structures and operations {GROPE 1)
which are subsumed; however, the research and development of the
latter does not consitute material actually being presented for
the thesis. With Dan Friedman's encouragement, ! have included,
in the introduction and first three chapters, some material drawn
from his doctoral thesis -- as good an introduction to the GROPE
theory of graph-processing as any. Its presence is for the purpose
of conveying the meaning of graph processing in GROPE, so that the
structure and operations ofAthe thesis language(s) might become
meaningful. I am grateful for his permission to include this

material.

Finally, the language has been carefully designed to be
compatible with FORTRAN, although to my mind it lacks almost any
characteristic which would lead the user to realize this, if left
to his own devices. It is certainly hoped that the user will
find GROPE 2 as easy to learn, and as natural to use, as the

author intended to render it.

INTRODUCTION

The purpose of this document is to introduce the reader to
GROPE 2, a modular programming language with hierarchical control
structures and recursion. The GROPE 2 translator (written in GROPE)
generates GROPE-FORTRAN code and thus serves as a very sophisticated
FORTRAN preprocessor. With this tool the user may perform exten-
sive list- and graph-processing in a FORTRAN-compatible environment.
The assumption is made that the reader knows FORTRAN and has some
knowledge of list- and graph-processing techniques -- in particular
LISP. Following an overview of graph processing and programming
Tanguages, this thesis will address in chapters: (1) the abstract
data structures provided by GROPE, with conventions for drawing
them; (2) list and graph processing by searching linear structuras
(lists, and structures much like lists); (3) some important
generalizations, including capabilities and operations which make
GROPE truly unique and exciting; (4) the Data Language, which offers
a method for the linear description of the primary data structures --
much like the S-expressions of LISP; (5-6) the Programming Language,
with complete syntax, English descriptions, and numerous diagrams,
tables and flow-charts to illustrate its capabilities; and (7} some
concluding remarks with notations about some programs currently
running in GROPE). Appendix A provides a concise description of
every available GROPE procedure -- the arguments, operational
effect; and returned values. Appendix B is a quide to the special

GLOBAL variables: these provide the programmer considerable control

-6

over the free-field 1/0 operations. The user may specify two active
input files, two active output files, an echo-print file, an errov

message file, and a file for trace messages, and effect other controls.

Graph data structures

Graphs are important data representations in many fields:
bonding structures in chemistry, Feynman diagrams in physics,
sociograms in socielogy, circuit diagrams in electrical engineering,
and flow networks in operations research are all instances of
graph structures. The determinations of maximal network flow,
the shortest path between two nodes, a Hamiltonian path, or op-
timal line balance are all usually formulated in terms of graph
processing algorithms. There are graph algorithms for the well-
known “Traveling Salesman Problem", for finding the maximal
spanning tree, and for information retrieval and natural language
processing. Graph algorithms have been applied to the "Four Color
Problem”, the solution of the "Knight's tour", and the determination

of transitive closures.

Graph representation methods

“Incidence arrays" are a well-known means of representing
graphs using very primitive data structures: a graph is represen-
ted by a square matrix (two-dimensional array) A, having one row
and one column for each node. An arc from node i to node j with
tabel (or value) v is denoted by the storage of vy in array location

Afi,3). The main problem with this representation is its lack

-7-

of flexibility: it simply cannot represent complex data structures --
such as nodes or arcs which are graphs. Associating additional
values with nodes and arcs (which, incidentally, must almost al-
ways be of the same scalar type) or allowing parallel arcs (between
the same two nodes) requires much additional storage or leads to

ad hoc solutions. Another significant problem with this represen-
tation is the relative inability to do dynamic processing: it is
difficult to allow a graph to grow through the addition of nodes,
since few programming languages allow an array to grow by adding
rows and columns; it is even more difficult to allow the number

of graphs to increase dynamically, since arrays are almost always
required to be declared at compile-time. Another problem is the
deletion of arbitrary nodes (as opposed to arcs) in such a repre-

sentation.

An example of simulating graph structures through less-primitive
structures involves the use of property Jists (attribute-value pairs).
Typically in LISP [21], nodes are represented by “"atoms", and theif
associated property lists indicate arcs to other nodes; in languages
such as SLIP [38] and IPL-V [23], a similar method represents nodes
as lists, and their associated "description lists" indicate the
arcs. This property-list representation forces graph algorithms
to be inefficient in terms of time due to the necessity for searching
these property lists for each arc access. In addition, this re-

presentation makes arc traversal in both directions difficult -- a

property required in many graph algorithms (such as finding a critical

path in a PERT network).

When simulating graphs by using extensible data structures,
the user defines {at compile time, again) blocks of core as
nodes -- records in COBOL [37], based variables in PL/I [19], or
plexes in AED [30], L6 [18], and PASCAL [41]. Arcs are represen-
ted by pointers from one block to another. The specified fields
within a node store the information associated with that node and
with the arcs leaving that node. The problem here is that the bur-
den of defining accessing primitives and higher-level operations
is on the programmer. In addition, the programmer is responsible
for storage management and I1/0. Using the programmer-defined data
type feature of SNGBOL 4 [11], the user is not responsible for
storage management or some of the basic accessing primitives, but
the high-level operations and I/0 problems remain. The plex
representation also tends to constrain the dynamic properties of

(the number of) arcs in some of these systems.

In short, user-supplied software packages for graph processing
tend to be restrictive and error-prone; even so, much effo(t is
expended in implementing such a system before the programmer can
seriously consider the algorithm which he is actually trying to
program. And when he tries to apply his costly package to the
solution of new problems, he typically finds that at least a
partial redesign is necessary, due to the lack of generality in the
original system. The existence of a powerful, efficient, general-

purpose graph-processing language should solve all these problems.

9.
We feel that GROPE is such a language.

The general class of graph processing problems for which
GROPE was designed is characterized by two aspects: they deal
with graph structures which are interrelated in complex ways
and contain symbolic as well as numeric data, and whose solutions
require graph structures to grow, shrink, and be modified both
dynamically and irregularly. These problems are precisely those
for which the simplistic simulations described above are most
inadequate. There were three major design criteria for the

development of GROPE: flexibility, mutability, and efficiency.

There should be a means for representing a variety of forms
of data. There should be labelled graphs, nodes, and arcs; mul-
tiple arcs between the same two nodes should be allowed. There
should be a provision for the natural representation of hierar-
chical granhs (nodes with values that are graphs) and other complex
graph relationships. There should be supporting structures such
as lists and sets for “temporary" deposit of information during
graph processing. There should be special mechanisms for searching
and processing graphs. True flexibility demands most if not all

of these features.

There must be (preferably high—lével) operations for dyunamic
modification of graphs -- operations that create, destroy, and
change features (such as labels and values) of graphs, nodes and

arcs. Programming convenience is greatly enhanced if the programmer

~10-
does not have to "push pointers” in order to accomplish this task.

Finally, these operations and the associated storage manage-
ment must be handled efficiently; this requirement is dictated by
the combinatorial ﬁature of many algorithms for graph processing.
For programmer convenience and safety, the storage management must
include automatic bookkeeping for the dynamic allocation and
recovery of storage -- like the free space list and garbage

collector of LISP,

Graph-processing languages

Since directed graphs are often used for informal description
and analysis of data structures, and since being able to progranm
directly in terms of the structures which are natural to an appli-
cations area is a well-known advantage, it is surprising that
directed graphs have not been accepted ag a "primitive" data struc-
ture in any major programming language. There are, however, some
minor languages which have included directed graphs. HINT [12],
GRASPE [6], GEA [4], and LINKNET [3] are the dominant examples

of this philosophy.

HINT and GRASPE, each associated with an already-developed
programming language, were designed for symbolic structure manip-
ulations. HINT is compi]ed‘inté IPL-V. GRASPE is a library of
LISP functions. GEA and LINKNET were designed to perform numerical
data analysis within a complex but refatively static data struc-

ture, and each is associated with an algebraic language: GEA being

11~

" a syntactic extension of ALGOL [22] which is pre-processed into
ALGOL, and LINKNET being a Tibrary of FORTRAN functions. We
shall compare and contrast these four languages with GROPE in

light of the design criteria discussed in the preceding section.

In terms of representational flexibility, GEA and LINKNET
deal only with numeric scalars as values of nodes and arcs, where-
as HINT, GRASPE and GROPE provide for symbolic node and arc
values; only these three allow hierarchical structures. Only
GROPE allows more than one type of node and one type of arc.

HINT, GRASPE, and GROPE have list processing as a support feature.

In terms of dynamic operations, only HINT, GRASPE and GROPE
allow creation and destruction of graphs. LINKNET does not even
provide for the dynamic creation and destruction of nodes and
arcs, but rather the programmer must produce code to effect these

capabilities.

In terms of efficiency, GRASPE and HINT are tied to their
respective hosts for the representation of graphs -- via property
lists, Efficiency here is poor due to the implied requirement
for property list searches for every arc access. GFA uses lists
to represent graphs; although little can be said about the
efficiency of GEA since details of the preprocessor are unavail-
able, is may be presumed that arc accesses in this case also
require list searches. LINKNET and GROPE use plex structures for

graph representation, which likely aids the cause of efficiency;

-12-

however, programmer efficiency in LINKNET is reduced since no
high-level graph-processing primitives are available -- only
primitives to change the contents of a field in a plex. The
GROPE operations are indeed high-level, and very efficient.
GRASPE, GEA, and GROPE have garbage collectors. HINT uses the

storage manager of IPL-V, and LINKNET has no storage management.

What may be regarded as statements of deficiencies regarding
the above languages must be qualified: such remarks pertain to
our design criteria; each language would appear to be a useful
model for the class of problems with which it is concerned, al-
though in many cases their efficiency is poor. Our judgements
are concerned with the qualities we feel should be inherent in
any graph-processor intended for wide use, rather than for special

purposes,

GROPE

GROPE 1 is a successfully-implemented graph processing ex-
tension to FORTRAN; in the sense that it is a Tibrary of functions,
it parallels SLIP. GROPE not only provides high-level graph
processing primitives, but also provides a number of other data
structures, including a complete list-processing package which en-
hances and supports graph processing. There are a number of major
new ideas embodied in the GROPE data structures and operations;
GROPE provides a set of building blocks (atoms, arcs, nodes,

graphs, lists and sets) and operations for building arbitrarily

13-

complex graphs. In addition, there are a number of primitives

that perform unusual operations (such as moving a node from one
graph to another). Although the programmer can create quite

complex structures, experience has shown that their manipulation
remains straightforward. Support operations are equally important
to the efficient development of graph algorithms: GROPE allows

list, set, and array processing; there is an extensive I/0 facility,
and a garbage collector. For the user with a large application

in mind, there is a built-in (but optional) software "associative"
virtual memory (hopefully more efficient than paged virtual

memory for GROPE applications), embodying a scheme for the permanent
maintenancevof a large data base. Throughout the design and im-
plementation of GROPE there has been a fanatical concern with
efficiency and an almost equally-serious endeavor to maintain

generality.

The GROPE 2 programming language design has emerged over a
period of time during which the author studied perhaps twenty
“major” programming languages, looking for "natural" features
which tend to render a language easy to learn, easy to use, and
largely self-documenting. Ease of implementation was not con-
sidered where programmer convenience was involved. However, many
features which could have been included (say, pointer variables)
were not, for the simple reason that the language was being designed
to simpiify GROPE programming -- rather than to be the "ultimate®

programming language.

~14-

GROPE 2 has been most strongly influenced by BLISS [43]
Some remnants of FORTRAN may be observed, notably the availability
of formatted 170 and labelled COMMON blocks, but this is intended
to allow communiction with FORTRAN routines. There are five
variable types: ALPHAnumeric, GROPE, INTEGER, LOGICAL (Boolean)
and REAL. Identifiers may have any one of five scopes: EXTERNAL
{procedures), GLOBAL, LOCAL, OWN, and (labelled) COMMON. There is
no block structure per se, but the control structures (statements)
are highly structured and of quite sufficient power to allow and
encourage GOT0-less programming. (Thefe is, however, a somewhat
weak GOTO.) As in LISP, any readable GROPE data structure may be
"quoted®” in the programming language; in addition, there are other
syntactic constructs which resemble the above (without the guotes)
that key the automatic creation of GROPE structures, with and
without a prior search. ({There is an automatic “"pattern-matching”

search facility.)

GROPE 2 does not follow the lead of LISP and BLISS in allowing
statements to have values -- making them, in effect, expressions.
This was considered, but abandoned because it might encourage
programmers to construct indeciperable code sequences. (In this
respect LISP nas & unique notational advantage; on the other hand,
no one has accused LISP of being self-documenting -- readable to
the novice.) The assignment operation, however, is an expression
rather than a statement: this satisfies much of the demand for

statements with values while retaining readability. Also, any

-15-

expression may appear in a context normally (in other languages)

requiring a statement.

With this brief overview of some of the salient features of
GROPE, we proceed with the development of GROPE 1 in chapters 1-3,
followed by the Data language in chapter 4, then the Programming
language in chapters 5-6. The Programming language in particular
is developed top-down; it is hoped that by having a “global” view
of the language while learning it, the reader will find the task
easier. It is expected that the reader has some notion of what
an identifier is, what a procedure call is, etc., so that this
organization will not be too disruptive by mentioning constructs

yet undefined.

CHAPTER |

The Data Structures

In this chapfer the GROPE data structures are introduced.
These structures are viewed as abstract entities; in order to
aid the user in visualizing the structures and operations upon
them, a graphic orthodoxy is presented which encompasses the primary

structures and the important relationships among them. The opera-

" tions introduced are those necessary for the creation and accessing

of the structures. Figures and charts are provided in explication

of the major concepts involved.
Atoms

Atoms are the "data constants" of GROPE; for the most part,
they are like LISP atoms -- they are words or numbers. (For simpli-
city, arrays and procedures as atoms will be temporarily ignored.)
"Words" are alphameric character strings: GROPE-2, HALLEY, ZEBRA,
and This-Is-An-Atom are examples of alphameric atoms. Any integer
or real number which is legal in FORTRAN may also be an atom:

258, 2.71828, aﬁd 6.660E18 are examples of numeric atoms. Unlike
LISP's numeric atoms, those of GROPE enjoy every privilege allotted
to alphameric atoms; also, the alphameric atoms of GROPE may be
arbitrarily long -~ there is no limit on the number of characters

such an atom may contain other than that imposed by machine memory.

~16-

“17-
Lists

The list is a basic GROPE data structure; as in LISP, a list
is represented as a left parenthesis, (, followed by the elements
of the list in their appropriate (user-controlled) order, followed
by a matching right parenthesis, } . A newly-created list is
empty, so it is represented by nothing more than a matched pair
of parentheses: () . The user may add elements to a list by
stacking them (putting them “in front", or to the left, of every
other item in the list), or by queuing them (putting them “behind"
all other items in the list). Unlike LISP, these operations are
equally (in-) expensive.; Using another mechanism to be discussed
Tater, the user may also insert an item anywhere in a list, or
substitute one item for any item in a list, or delete any item
from a list. Some examples of lists are: (A 2 s), (This is a
LIST) , and (W (X Y) Z) . Note that one element of the last
exampie is itself a list -- commonly called a sublist. The last
list contains three items (the sublist counts as one, even though
it contains two items); the first list also contains three items.
Thus we speak of the length of a list as being the number of
elements it contains -- there is a GROPE function LENGTH which
if called with a list as an argument will return the number of
items in the list. 1In the examples above, A, 2, s, This, is, a,

LIST, W, X, Y, and 7 are atoms. An empty list has length zero.

~18-

A third basic data structure, itself much like a list, is
the set; rather than being delimited by parentheses pairs, “cwever,
sets are delimited by matched pairs of braces: { and }. As in
lists, the elements of sets are said to be ordered. Sets usually
contain atoms, though there is no reason why they cannot contain
Tists or other sets (not necessarily subsets in the mathematical
sense), or indeed any other GROPE structures. Thus Tists and
sets both may contain any structure as an element. While the user
may order the elements of lists in any way he chooses, the order

of the elements in sets is entirely controlled by GROPE -- allowing

efficient operation of the member, union, intersection, and difference

procedures. And while the user may include any given item any number

of times in the same list, each item in a set will be represented
only once. It is still true, however, that any given item may
appear in any number of different sets -- and of course in any

nuimber of lists. There may be an arbitrary number of sets and

lists.
Graphs

Graphs are of course a major GROPE structure; we visualize

them as being planes, and draw them as parallelograms:

Graphexample

-19- -20-

Every graph must have a label {which is written in the upper right- The arc pictured above, labelled with the atom isa, is directed
hand corner); atoms serve as useful labels. The graph above may from the node labelled John to tﬁe node labelled MAN. Arcs
not seem very exciting because there is nothing on it -- it is generally represent relationships between nodes, and their labels
empty. serve to name the particular relationship involved. There may
be any number of arcs leaving any particular node, and any number
Nodes arriving at any node; each arc "knows" the node from which it
Nodes are the structures that go on graphs and begin to make emanates, and the one to which it points. Each node "knows"

them worthwhile. We draw nodes as circles within the bounds of every arc that leaves it, and every one that terminates at it.

some graph; nodes, too, have labels (inscribed): Operations
Jperations

Graph?
ap An atom is created by one of the GROPE operations; the user

specifies a number, or character string, etc., which will be the
print-image of the atom (that which appears when the atom is
Every node must be on some graph; there may be any number of nodes

“printed"); this bit-string may be retrieved {for arithmetic
on any one graph, and any number of graphs. Every node must have

label ¢ as d labels here. too Every graph "knows" interpretation, for example) via the function IMAGE. When the user
a label -- atoms serve goo . .

o o creates a list or set, it is empty -- it has no elements.‘ When a
what nodes are on it, and every node similarly "knows” which graph

. graph is created, the user must specify a label (any atom he desires)
t is on.

for that graph; the GROPE function which creates a node requires a

Arcs Tabel (for the node) and a graph {on which the node is to reside).

The function which creates an arc requires three arguments: the
Any two nodes may be connected with a labelled, directed 4 9

node from which the arc is to emanate, a label for the arc, and the
structure known as an arc; we draw an arc as an arrow pointing

node at which the arc terminates. Given a graph, node, or arc,
from one node to another, with its (necessary) label written in grap re

the function LABEL will retrieve its label; given any node, the
close proximity:

function GRAPH will retrieve the graph on which that node resides;

Graph3 given any arc, the function FRNODE will retrieve the node from

.21~

which that arc oriqginates, and the function TONODE will retrieve
the node to which that arc points. There is another attribute
available to the user: each of the items mentioned above (atom,
Yist, set, graph, node, arc) may have a value associated with it.
The function VALUE retrieves the value of its argument structure.
We draw the value relationship by means of a dotted arrow (not

an arc) from the structure with a value to the structure which is
the value. Table 1.1 illustrates the successive operations, and
their arguments, that construct the graph data structure iq
Figure 1.1; Table 1.2 illustrates the arguments and values re-
turned by various retrieval functions. The reader is urged to
study these examples until he is quite certain "how" these operations

have the claimed effects.

.22~

Operation Arguments Result
create
EUROPE g

graph
create

node LONDON g X
create

node PARIS g y
create

node ROME g z
create

arc z SOUTH 2
create

arc X NORTH b
create

arc y NORTH c
Ccreate

arc z SOUTH d
change

value b CROSSED
change

value y VISITED

Table 1.1 Creation of a Graph Data Structure

“23-

EUROPE

b: NORTH y:

v
CROSSED

Figure 1.1 A Graph Data Structure

g X Yy z a b c d
graph g g g
frnode z X y z
tonode X y z y
label | EUROPE JLONDON|PARIS | ROME | SOUTH | NORTH{NORTH }SOUTH

value VISI- CROS -
TED SED
Table 1.2 Retrieval from a Graph Data Structure

-24-

System Sets

There is another group of GROPE structures which the programmer
will come to find useful -- the system sets. A system set {s an
ordered collection of elementary structures, each of which satisfies
some predetermined property. It is like a user set in that no
item is represented more than once in the set (there is no redun-
dancy); however, except for the atomset (which is hashed), the
order of the items may be controlled by the user. There are seven
types of these sets: each may contain only one specific type of
structure. Many graph algorithms will need to search these sets

as part of their operational requirement.
The atomset

There is one universal atomset in GROPE; only atoms appear in
the atomset. The order of this particular system set is controlled
by GROPE, since items are entered by means of a hash algorithm; but'
the user may search the set, and add and delete atoms at will.

Every atom in this set is aid to be "related", hence this is called

a "relate set", or relset.

The graphset

There is one universal graphset; only graphs appear in the
graphset. The programmer may control order within the set, search
it, and add and delete graphs at will. Every graph in the set is

also said to be related, therefore this too is a relset.

-25-
The nodeset

Each graph has its own nodeset -- the set of nodes on that
graph. (This is how a graph "knows" its nodes, as mentioned
earlier.) The order is user-controlled, and the set may be
searched and modified by the user. A node must "know" it is on a
graph before it will allow itself to appear in that graph's node-
set. (Recall that the GRAPH of a node is available.) A node in

any nodeset is “"related", therefore every nodeset is also a relset,.
The rseto

Each node has its own rseto -- the set of arcs pointing out
from that node. (This is how a node “"knows" its outgoing arcs.)
Every arc in the set must have the same FRNODE, and the frnode
must be the node for which this set is the rseto. Every arc in
the set is "related"; this set type is the fourth and final relset.
The user may control the order of the arcs in the set, and may

search and modify the set.
The rseti

Every node also has its rseti -- the set of incoming arcs.
The TONODE of every arc in the rseti of some node is that node.
The arcs in the rseti are said to be "attached"; therefore this
type of set is an "attach set”, or attset. Its ordering is also

user-controlled, and he may search it to modify it as desired.

06~
The nset

Every GROPE structure which is the label of any node has an
nset -- the set of nodes with that label. No node with a different
label may be in the nset. The user controls the order and as
usual has modification priviledges. The nodes iﬁ this set are

also called “attached", so this is another attset.

The gset

The last of the system sets is the gset; every graph label
has its own gset -~ the set of graphs which share that label.
The graphs in the gset are "attached”; this rounds out the class
of sets called attset. The usual ordering, searching, and modi-

fying facilities are available.

Operations

Lists, sets, and the system sets comprise the class of struc-

tures known as linear structures. Strict ordering of elements is

inherent in linear structures: in the case of lists, order is
established only by the user; in the case of sets, order is estab-
lished by GROPE only; the system sets are slightly different. When
the user causes the creation of a new atom, graph, node or arc,
GROPE will automatically add it to the appropriate relset, and ex-
cept for atoms {(for which there is no attset) will add it to the
appropriate attset. Thus the user is relieved of the burden of

constantly finding these sets. However, when the new item is

~27-

added, it will be either stacked or queued into the set{s) --
according to the position of a stack-queue mode switch QSMODE
{(which may be changed as often as desired by the user). In this
way, the programmer “"controls" the order of items in the system
sets -- except, of course, for the atomset., Later, mechanisms will
be discussed by which the programmer may further control the ordering
within these six system sets. Figure 1.2 shows some example graph
structures, and Table 1.3 illustrates the system sets which are
implied by the drawings. Given a graph, the GROPE function NODESET
will return its nodeset; similarly, RSETI and RSETO are defined
over nodes, and HSET and GSET are defined over atoms. ATOMSET and
GRAPHSET are "global" variables which are bound to the appropriate

two sets.

28

NORTH EUROPE

¥
CROSSED

AMERICA
e: NORTH

<
z

NEW YORK TEXAS

Figure 1.2 Structures which emphasize the nset and graphset

-29-

-~
© -~
~N - [}
o ot
e
P
o~ w
> N -
hnel Fel
—
o~ -~
» £L LM
- -
-
x -~ @
A vt
~ -~
> @ et
o
-~
£ =
>
et
N
o >
*
e
.
tad >
= -
<
o e
%3 _~—~
— ES
o -
<X >
[+% et
=
o
fon —
= >
o -
et
-
£
o
+
@ e} o e
v +2 [- 4+
= @ v @ @
o v @ v i
el «= o 5 -
[o
o £

System-set Retrievals for the Structure in Figure 1.2

Table 1.3

-30-
The objects
There are just two more GROPE data structures -- one of which

is not actually structured, since it consumes no core space of its
own. This one is the “pseudo integer". There are many occasions
for using integers as values of other structures; sometimes it is
desirable to employ lots of different integers, and if this is the
case then it would be nice if they required as little space of

their own as possible -- especially when there is no need for them
to have any structural capabilities (such as values). GROPE
provides a large set of integers which "look" like GROPE atoms with
integer IMAGEs. These pseudo integers are not atoms; they may not
serve as labels. The only piece of information they embody is their
IMAGE, and they require no data space of their own. But they make
very nice values. Their allowable range is restricted and implemen-
tation-dependent, but in general it will be on the order of i64,0003
The function PSEUDO will take a small {absolute value) integer as
its argument and return a pseudo integer whose IMAGE is that integer;
this pseudo integer may be used as the programmer desires -- within

the prescribed limits.

The last data structure to be defined is the reader. Actually,
readers are among the more important structures in GROPE, but they
are also among the more complicated. Since Chapter Il is entirely
concerned with searching linear structures with readers, little

will appear here. Essentially, readers are the only search mechanism

-31-

in GROPE. They may be considered somewhat like pointers (they are
not), since we will draw them that way: they are pictured as short,
stubby arrows pointing at the place where they are "currently

stationed”. There are high-level operations for moving them about

in a controlled manner.

Atoms, lists, sets, graphs, nodes, arcs, pseudo integers and
readers make up the class of structures known as gbjects. The sole
reason for this classification is that there is another attribute
of graphs, nodes and arcs: they each may have an object. The
function OBJECT, given a graph, node or arc, will return the ob-
ject which the programmer earlier associated with that graph, node
or arc. The association is established, and changed as desired,
by the user. Initially, no arc, node or graph has an object, so,
Tike VALUE, OBJECT will return the “"false value" (zero) if no
object has been associated with that structure. We draw the struc-
ture-object relationship by means of a dashed (not dotted) arrow

from a structure to its object.

In summary

At atom is a "data constant” with a printable image which
the user specifies., There may be any number of atoms; each may
appear in the atomset, and may have a value. Each may have an

nset and a gset.

A list is an ordered sequence of GROPE structures; there may

be any number of lists, each of which may contain any number of

32

elements. fach may have a value (which is not considered to be in
the list). The user controls which and in what order items will

appear in the list.

A set is an ordered sequence of GROPE structures; there may
be any number of sets, and any number of distincf elements in any
set. [Lach set may have a value (which is not considered to be
in the set). The user controls which items appear in the set
{though none may appear more than once), and GROPE controls the

ordering of those items within the set.

A graph is a labelled structure on which a (possibly empty)
collection of nodes may reside; only these nodes may appear in
its nodeset. The graph may appear at most once in the graphset.

It may have an object and a value, and appear in the gset of its

label.

A node is a labelled structure that resides on a graph. It
may be linked to other nodes (as well as to itself) by directed
arcs. It has a (possibly empty) set of those arcs outgoing called
its rseto, and a (possibly empty) set of those arcs incoming called
its rseti. 1t may appear in the nset of its label, and in the

nodeset of its graph. It may have an object and a value.

An arc is a directed, labelled structure that links two nodes.
It may appear in the rseto of its frnode {the node where it
originates), and in the rseti of its tonode {the node where it

terminates). It may have an object and a value.

~-33- .34~
There is one atomset -- the ordered sequence of atoms. A value is an object or system set.
There is one graphset -- the ordered sequence of graphs. Atoms, graphs, nodes and arcs may be related.

The nodeset of a graph is the ordered sequence of nodes on

that graph.

The rseto of a node is the

from that node.

The rseti of a node is the

to that node.

The nset of an atom is the

graphs), each with that atom as

The gset of an atom is the

with that atom as its label.

ordered sequence

ordered sequence

ordered sequence

its label.

ordered sequence

of

of

of

of

Graphs, nodes and arcs may be attached.

Table 1.4 tabulates all the data structures and

arcs emanating attributes.

arcs pointing

nodes (on any

graphs, each

A relate set is the atomset, the graphset, a nodeset, or an

rseto.

An attach set is an rseti, an nset, or a gset.

A system set is a relset or an attset.

A linear structure is a list,

set, or system set.

An object is an atom, list, set, graph, node, arc, pseudo

integer, or reader.

their

-35-

=
©
- * x %
£
©
@
o
i * * x x
g w
$u
—
- o m -
oo w vi v
- > > B
& £ =3
.
o
v @
prare >y > P
oo T < <
= E] E £
@
v I3
& - >y >y b} > > >
e © - I a3y o Led acd
3 & B € £ € &
-
@
L
-:-’m = x x x = =
—
-
L
)
-
s x % x x x x x x
©
dud
wr
At > > x x *® x = x x x) x
ot
L
o
@ x x x
" e ® * > * x| =
-
ps
4
@
u
:2>, = x < ES x =<1 x
v
4
@
i
e = = = =
[N
S
o
@
wr N
e x x »
4
o
-
I~
o 2
+ © 42
[- W “n @
© o &= 0 s 0 o -
] o [© o 2 E o © 2 - ol e
@ o o %) © © n - o o o © [vl o
v [4+ 1 [=] I o L] - o o n I b4 i
jot 5. i)] o on — 1% o] o | -y $ 5. h~ o

The GROPE data structures and their attributes

Table 1.4

CHAPTER 11

Processing lLinear Structures

The most frequently employed method for graph processing is
accessing sequential elements of one or more of the system sets -~
such as the nodeset of a graph, or the rseto of a node. The reader
is the chief search and access mechanism provided by GROPE. The
reader, along with its associated manipulative operations, allows
the programmer to process a linear structure step-by-step. The
GROPE function READER(LS) will create and return as its value a
new reader for the text {linear structure) LS. Given any reader
R, the function TO(R) will traverie the reader out -- advance it
to the next item (to the right) in the linear Sstructure it is
reading -- and return as its functional value the element arrived
at. The first T0 of a reader which is yet unmoved will produce
the first element in the linear structure; the second traversal
will produce the second, etc. Thus Figure 2.1 illustrates an
algorithm for finding the nth component of any linear structure.
Normally, one searches a linear structure in this manner only once
for any particular process; therefore there must be a way of as-
certaining when the structure has been processed once. There are
two ways. One is to set up a loop which increments a variable by
one for each access, and terminates when the value of that variable

(initially set to one) equals the LENGTH of the linear structure;

Figure 2.2 illustrates this possibility. There is also a predicate

-36 -

-37- \L
[n e Lenatnp) |
[v = reaver(p) | [R <= renveR(p) |

1.n j:}»— FOR i <= 1,N ::)>—~

[v enm | v = toR) |

Figure 2.1 The nth Component of p Figure 2.2 The Last Component
of p

J

[® < reaver(p) |

R is at end?

Figure 2.3 The Last Component of p

-38-

which, given any reader, determines whether that reader is at the
end of the linear structure it is reading; Figure 2.3 illustrates
this possibility. Obviously, after the reader advances to a new
item, and before it advances to the next item, any algorithm may

operate. This is the usual processing method in GROPE.

In GROPE, all linear structures are symmetric -~ that is, one
may search them in either direction; one may even move forwards for
a while, then backup, then proceed again, etc. .Moreover, these
structures are "circularly linked", which means that, from the
last item, one may move a reader {with TO) directly around to
the first item; similarly, from the first item one may move a
reader {with TI) directly around to the last item. This traverse
in facility opens a new dimension in processing linear structures.
The programmer is in no way bound to perform a strictly linear,
sequential search. Using TO and TI, the‘user may move a reader
forwards and backwards through a linear structure as long as necessary

to satisfy any processing requirements.

-39~

The operations Tl and TO are only two of the many reader
operations available in GROPE. For instance, it is easily con-
ceivable that one might wish to process an entire list -- including
sublists -- in a single pass. There are three additional operations
which provide for this possibility: DESCEND, ASCEND, and a predicate
which answers whether a reader is "deep" inside a structure.

At any time the programmer may command a reader to descend to
another structure: DESCEND(R,LS) descends the reader R to the linear
structure LS. While in this descended state, the reader may be
traversed over the structure LS just as described before; the reader
may even descend to another structure (there is no limit on depth).
When a sub-structure has been processed completely, the programmer
may cause the reader to ascend back to the structure from which it
most recently descended. Since a reader does not "lose its place"
when it descends, one may continue processing from the point where
he descended, perhaps descending to another sub-structure. In this
way, entire lists may be searched in depth; the same is true, of
course, for any linear structure (such asa set). In general, such
searches are slightly complicated by the fact that the programmer
may not know when he is processing the "main" structure; it is
illegal to try to ascend out of the top-level structure. There-
fore there is the predicate to ascertain whether the reader is deep.
Usually, when the reader is at the end, and is deep answers false,
then the list (or whatever) has been searched completely. Figure 2.4
shows the algorithm for a complete search of a list, with the dotted
line indicating where any processing of a non-list element would

take place.

- 40~

y

R <= READER{list)

ITEM <= TO(R)

DESCEND{R,ITEM)

ITEM is Tist?

A 2NN

ASCEND(R)

Figure 2.4

R is at end?

R is deep?

An in-depth list search

-41-

There are other operations that are associated with the
reader: one may substitute a value (any GROPE structure) for the
list element whose position is being indicated by a reader:
SUBST(R,X) will store the value X in the list being read by the
reader R, at the position indicated by R. R is unaffected. The
user may retrieve the linear structure being read by a reader R
with the GROPE function TEXT(R); the value within that structure
which the reader is "pointing at" may be retrieved with TOKEN(R).
That is, after X <= TO{R) and Y <= TOKEN{R), X and Y name the
identical structure. SUBST(R,T) and X <= TOKEN({R) will cause X
and T to name the identical structure; R is unmoved, but the list
(the TEXT of R) has been affected in that T appears where another

element used to be. The length of the list is unaffected.

The programmer may delete arbitrary items from a linear struc-
ture: again using the reader to indicate which item, DELETE(R)
will remove that item from the linear structure. In order to
prevent the reader from "dangling", GROPE moves it back one position
(with T1}. The length of the list is of course decremented by
one. The programmer may also insert an item anywhere in a list.
With the reader marking the position with respect to which the
insertion is to be made, a new value may be inserted to the right
of the reader's current position with INSERT(R,X). Since the new
item is added to the list, the length of the list is incremented
by one; the reader is unaffected. Note that INSERT(R,X) and

Y <= TO(R) will cause X and Y to name the identical structure.

-42-

Two separate lists may be merged into one Yist, with the
reader marking the position where the merge is to take place:
MERGE{R,L) will not insert the list L to the right of the reader's
position, like INSERT{R,L) would do, but rather insert all the
elements of the list L to the right of the reader's position.

The Tist L will become empty, and the list which is the TEXT{R)
will grow by the number of elements originally in L. A list may
also be split into two 1ists: SPLIT(R) will produce a new list,
composed of the elements in the former TEXT(R) which were at and

to the right of the reader's position. The reader R will have

as its new text, the new list, and it will be stationed at the
first element of this new list -- the identical element at which

it was located in its former text. Thus the TOKEN(R) is unchanged,
but the TEXT(R) is. The old text is shortened by the number of

elements transferred to the new list,

The last major reader operationm is the function RESTART(R),
which resets the reader R to its "unmoved” state -- which it
occupied when first created. An unmoved reader has a text (the
structure it is reading), but no token: it is not pointing at any
element in the text structure. From this unmoved state it may
traverse out to the first element, or alternately traverse in to

the last element, and continue searching from there.

Given the list and reader mechanisms, the user has a complete
Vist processor: he can create and search Tists, add and delete

items, including sublists, and merge and split lists at any

-43-

desired location. The automatic “"stack" feature of the reader
mechanism allows complete in-depth processing of arbitrarily
complex list structures without resorting to procedural recursion
or user maintenance of a stack. Furthermore, the high-level
operations provide the programmer with a conceptually simple yet
elegant mechanism for the solution of list-processing problems.
But of course GROPE is intended to be a graph processing system;
the list feature is only for support. The next chapter returns
to graph processing with a vengeance. All manner of generality
is introduced, and a truly novel use for readers is presented:
searching graph structures -- in which the ordering conventions
are non-linear, leaving the reader with some element of choice as
to which path it will choose, given the command to "traverse out",

or “traverse in".

CHAPTER I11
Generalizations

The preceding two chapters have dealt with elementary relation-
ships. This chapter will present some of the more subtle aspects
of GROPE. Specifically, the notions of complex graph-based struc-
tures, one-way arcs, graph readers, and sophisticated graph modi-
fication operations will be developed. Many graph processing
algorithms can exist without these features; but then, many graph
processing algorithms require considerable execution time -- which
could likely be substantially reduced if the right data structures
and operations were available. There is evidence to support the
contention that GROPE is a good step in this direction. The
special features to be discussed make graph processing an exciting,
challenging, and rewarding experience, both conceptually and produc-
tively. A programmer can master the first two chapters {and indeed
other graph processing systems) and still not fully understand

what we mean by “graph processing®.

Complex graph-based structures

On the surface, nothing has been presented which directly
allows for truly sophisticated data structures. Arcs, nodes and
graphs have an object attribute and a value attribute {atoms, lists
and sets also have the latter): what has not been overtly mentioned
is that the object attribute may be any of those grope structures

known as objects -- atoms, graphs, nedes, arcs, lists, sets, pseudo

44

45

integers and readers; the value attribute may be any GROPE data
structure -- objects and system sets. (Table 1.4 might profitably
be studied again.) But the most significant restriction being
{conceptually) removed here is that labels of graphs, nodes and
arcs be atoms -- any graph, node, arc, list or set may also

serve as a label for a graph, node or arc. Figures 3.1 and 3.2
provide indicative illustrations of this generalization. 1In each
figure, g and h are graphs; n, m, w, X, y, ahd z are nodes; and a,

b, ¢, d, and e are arcs.

These complex graph-based structures have a number of potential

uses. for example, by allowing the labels of nodes to be graphs,
these structures simulate hierarchical graphs. Nested finite
automata {e.g., the Woods machine [42]) might be represented by
allowing the labels of arcs to be graphs. This could alse be
simulated by using graphs for the objects or values of nodes and
arcs, so GROPE might be criticized for providing overkill; but
needless to say, many applications have been posited which involve
heavy use of all three attributes -- even including simulating a
LISP-Tike property list feature (something not directly available
in GROPE) with an association list as the value of a structure $o
that more attributes might be available. The LABEL, OBJECT and
VALUE functions have the advantage of no]i§t searches: the
attributes are available for the cost of an address computation.

Since the label attribute is required at creation time, anyway,

~46-

Figure 3.1 A Complex Graph-based Data Structure

-47-

Figure 3.2

Another Complex Graph-based
Data Structure

-48-

while the others are “extra", the generalized label features is
also a matter of programmer convenience -- one of the more force-

ful arguments in the GROPE repertoire.

One-way arcs

The removal of restrictions is a natural way to incorporate
generality -- and inefficiency, to be sure, but every effort has
been made to win this particular battle; we feel we have done so.
This paradigm is one of the cornerstones of the GROPE design, and
one-way arcs is an example of this paradigm. The restriction being
removed is that an arc from node n to node m is necessarily in the
RSETO(n) and in the RSETI(m). For many algorithms, this restric-
tion creates no problem; but by removing it nevertheless, we ob-
tain a more complete and general class of structures. An arc
always "knows" its frnode (from which it emanates) and its tonode
(to which it points), as well as its label, object, and value.

But it is now possible to find an arc in the rseto of its frnode,
which is not in the rseti of its tonode. . Conceptually, such an
arc is "visible" from its frnode (we draw them touching}, but in-
visible at its tonode (drawn not touching -- consider arc a in
Figure 3.3). Such an arc is “one-way-out". Simitarly, there

may be "one-way-in" arcs, visible (touching) only at the tonode.
These capabilities are exceptionally useful for "non-destructive”
directed graph traversals in which re-traversal of arcs is un-

desirable: arcs can be disconnected {unrelated or detached, as

~50-

-49-

the case may be -- see Table 1.4), and yet not actually be

destroyed, allowing the graph to be trivially regenerated. In

extreme cases, arcs may be isolated ~- unrelated and detached;
but still they may be fully restored via the functions RELATE and
ATTACH. Considering that no storage is going to -be released
(transformed into “garbage” which must be collected), or required
at restoration time, and that no "list" searches are required

for the detach and unrelate operations, the advantages of this

scheme are obvious.

System sets

Need it be stated that the above capabilities extend to all

system sets? No atom must be in the atomset; no graph, in the

graphset; no node, in the nodeset of its graph (although it may
not be in any other graph's nodeset), efc. 1In effect, the presence

or absence of an arc, node or graph in its appropriate system set{s)

has become a piece of information in itself: the programmer may
desire to make something "invisible" for a period of time. The
reader is left to consider the possibilities offered by this
simple generalization, with the reminder that all these structures

still "remember" to which system set(s) they “"belong®.

Figure 3.3 UNRELATE(a)

g h W X% y z n m a b 4 d e 5 10
graph g h h h g g
frnode x X n m y
tonode ¥ z m w z
label 11 10 10 5 10 5 h 5 1 2 4 5 3
value o
graphsetlig,h}
nodeset n,m,w xy,z}
nset {n} {x,z,m{y,w)
rseto {} |{a} Hel {1} {c} {d}
rseti {dil 1} {} Hb,el} {1} {c}
Table 3.1 . Retrievals for Figure 3.1
g h W X y 2z n m a b c d e 5 10
grapn h g 9 g g h
frnode X n Yy X m
tonode Yy z z z w
label 5 5 5 5 5 5 5 5 n 1 h 1 1
value : d n
By
¢
graphsetiig,h}
{n.x, |[{m,w:
nodeset y.2}
nset {'w,x,y\,
Z,n,mj
rseto {} {la.d} {c) | {3} {b} | {e}
rseti {e) | (3 | {a) {bcddl iy 13
Table 3.2 Retrievals for Figure 3.2

-53-

The graph readers

Actually, there are two types of "graph" readers: one called
a graph reader, and the other, a node reader. What is the difference?
Consider the definition of an arc {(Chapter 1). Nothing says that
the frnode and the tonode of an arc must be on the same graphi There

is no reason in GROPE why this should be so, so it isn't. There-

fore graph readers are restricted to a particular graph -- their
text -- while node readers may traverse from node to node, heed-

less of any graph boundaries that may be crossed in the process.
Conceptually, arcs that cross graph boundaries are invisible to
graph readers. The function TO will move a node or graph reader
outwards along an arc to its tonode; TI, inwards, to the frnode.
However, the readers only see arcs in the rseto and rseti, respec-
tively. (And a graph reader might not even see all of these, as

explained above.)

The next question is: which arc will a reader cross? The
graph reader mechanism is a new idea in graph processing, so
naturally it must be coupled with another new idea for choosing
arcs: the concept of "current"” arc is hereby introduced. When a
node or graph reader crosses an arc going outwards, it makes that
arc the "current-arc-out" for that node. When some node or graph
reader next traverses out from that node, it will not choose the
current-arc-out (the curco) unless there is no other arc in the

rseto; instead, it chooses one of the others -- actually the one

~54-

following the curco in the rseto. Thus successive departures

from a node will choose different arcs in a cyclic fashion, each
time making the arc crossed the curco. A similar argument applies
to readers moving inwards along arcs: each node may also have a
curci -- one of the arcs in its rseti -- and traversals will auto-
matically cross different arcs among those available in the rseti.
The function CURCO(N) will retrieve the current-arc-out for the
node N, and CURCI(N) will retrieve its current-arc-in. The global
variable CURARC will be set to the arc most recently crossed in
any direction by any node or graph reader. Conceptually, a "+*"
may be placed on the tail of an arc (near its frnode) when it

is crossed outwards and made the curco of its frnode, and on

the head of an arc (near its tonode) when it is crossed inwards
and made the curci of its tonode. The algorithm in Figure 3.4
will thus operate to produce the second graph in Figure 3.5,

given that the graph g previously existed in the first state

shown. (Note that the reader is sometimes unable to move.)

At this point not much experience has been gained using the
graph reader mechanism due to its utter newness, and it would be
unreasonable to make any strong statements about it. Suffice it
to suggest that the curco and curci feature -- which is cheap in
terms of storage, and which eliminates "list" searches for graph
traversal with the reader mechanism -- appears to be a good means
for automatically remembering a path between nodes. We look

forward to some experimentation with graph readers to determire the

-55-

y

| ® <= reaver(v) |

”““;“< FOR 1 <= 1,7

<=TO(R)
<= CURARC
<=T1(R)
<= CURARC

Figure 3.4 Traversing with the Node Reader

1 2 3 4 5 6 7
A W X X y y false false
B a b c d f f
C false z W z u false false
D a C b e f f f

Figure 3.5 Data and Results of Algorithm 3.4

-57-

relative utility and flexibility of this tool within the context

of graph processing.

Graph modification operations

The structural modification operations introduce us to yet
another generalization aspect of GROPE. One may of course change
the values and objects of GROPE structures: OBJECT({X) <= Y will
make the (object) structure Y the object of (the graph, node, or
arc) X; VALUE{X) <= Y will make the GROPE structure Y the value
of the {label) structure X. The labels may be changed, also:
LABEL(X) <= Y will make Y the new label of (the graph, node, or
arc) X. HNote that this may force GROPE to {automatically) remove
{the graph or node) X from the gset or nset of its old label;
if X was indeed attached, then this will be the case, and X will
be added to the gset or nset of its new label Y. If, however, X
was detached, then it will not be attached to its new label Y.

Thus the truth of <is X attached?> is unchanged by this operation.

An even more interesting change operation involves changing
the tonode of an arc: TONODE(A) <= N will make the arc A point to
a different node -- N. The truth of <is A attached?> (is it in
the rseti of its tonode? is the same before and after the operation,
so this might involve moving the arc from one rseti to another --
automatically handied by GROPE, of course. 'Naturally, if one can
change the tonode, then one should be able to change the frnode:

FRNODE(A) <= N will perform this operation, and perform any

~h8-

unrelating and relating that might have to be performed in the
process -- rendering the logic of <is A related?> unchanged.

See Figure 3.6

Surely the most interesting change operation of all, though,
is changing the graph of a node: GRAPH{N) <= G will conceptually
rip the node N out of its old Qraph and deposit it in the graph G --
but its arcs are unaffected. (They “"stretch" like rubber bands!)
Since arcs are allowed to cross graph boundaries, this poses no
problem, other than perhaps deleting N from the nodeset of its
old graph and adding it to the nodeset of its new graph G.
{This is unnecessary if it was not related to begin with.) See

Figure 3.7.

Considering that none of these "change" operations involve
destroying any structures (leaving garbage), creating any struc-
tures {asking for more storage), or linear-structure searches
(to find items in order to delete them from sets), we believe that
the implied efficiency -- coupled with the other generalizations
mentioned in this chapter -- will play a major role in reducing
some of the combinatorial aspects of graph processing. The
programmer now has available a truly high-level graph processor,
encouraging the development of more and more sophisticated graph
processing algorithms and data representation technigues. See

Figure 3.8.

~60~

-59..

Figure 3.6 For each arc in RSETO(n), FRNODE(arc) <= w Figure 3.7 Changing the Graph of a Node
GRAPH(n) <= ¢

-61-

CHAPTER 1V

This facility allows a GROPE program to read “"S-expressions” {in
the LISP idiom) from data files, and to create or find the GROPE

structures which they represent. Within the capabilities of the

. The Data language
The Data language of GROPE 2 is the means of describing, in
‘ linear form, that subset of GROPE data structures known as labels.

language, the programmer need not resort to I/0 measures of his

own, but rather he encodes the structures he desires to input

in terms of Data language strings. LISP allows a programmer to

input lists and atoms; in GROPE the possibilities are extended to
include graphs, nodes, arcs, and sets as well. The Data language
has also been incorporated into the Programming language by means

of a powerful literal facility: a pair of quote (") symbols may

/ enclose any readable (Data language) label, producing a “constant”.
Thus the programmer may refer to labels from within the program,
/ ' with all the convenience of Data language expression.

The syntactic description of the Data language is in informal

BNF, augmented with the Kleene star (indicating zero or more
occurrences of an entity) and a superscript plus indicating one
Figure 3.8 Representation of a Graph by Subgraphs or more occurrences. Semantic descriptions are in English, augmen-
ted with GROPE-style pictures where necessary. (These pictures are

of the form described earlier.)

-62-

-54-

63~
<character>::= <letter> | <digit> | <special character> Any number of "insignificant” blanks is equivalent to one (delimiter).
Transitions from one line (card) to the next are of no special con-
lettersii= A|[B|CIBJEIFIGIH|T|ITKILIMINIO|PIQIR]
SITlulviuix|v|zlalb|cldle|flglhli]]] sequence.
k{tminjolplalrisit]ufviw|x|ylz] <string>::= ' <any character sequence not containing ‘s °
<break> <digit> | <break> <special character>
<identifier>::s <any character sequence not including delimiters
cdigits::= 0]1]2]3]415/6]7/8]9 which cannot be interpreted as anything else»
<special character>::= <delimiter> | <break> | ' | / | * | - <vector>::= < <scalar number>t >
<break>::s + ‘ <scalar number>::= + <unsigned number> | - <unsigned numbers
<unsigned number>
<delimiter>::= <punctuation mark> | <bracket> | <blank> | # { = | + |~
<unsigned number>::= <decimal number> <exponent> | <decimal numbers
<punctuation mark>::= " [§ | g | ¢ [& | 2]t] 5]],

<decimal number> K | <decimal number> M |
coracket>ii= (|3 [[111 (1) [<> <unsigned integer> / <unsigned in?ﬁger> |
<decimal number> % | <octal digit>" B
<blank>::s <the usual space character> .
<unsigned integer>::= «digit>
With the exception of the cent-mark (included only as a <decimal number>::= <unsigned integer> . <unsigned integer> |

punctuation mark), and the substitution of "™" for "\ ", the <unsigned integer> | <unsigned integer»

language is defined in terms of a subset of the ASCII character set.

<exponent>::= E <integer>
The usual Roman alphabet is available in upper and lower case; the) + + .
, <integer>::= + <digit>’ | - <digit>" | <unsigned integer»
usual Arabic digits are available. The punctuation marks are those
of English; brackets will always occur in the obvious pairs. HNote coctal digit-i:= 0 | 1]2 |3]4]5]|6]7

that the break character transforms the semantics of any subsequent : . e :
Y q Strings, identifiers, vectors and scalar numbers are self-

digit or special character into that of an unspecified letter; :
g p p B30 explanatory. Unsigned numbers are FORTRAN-type numbers (real and
the two are considered to be one (letter) character. :) .
integer), plus fractions, octal (base 8) integers, percentages,

Blanks may serve to separate lexical items and perhaps to and decimal numbers with a scaling factor of 1000 (K), or

enhance readability; they are significant only within strings. 1,000,000 (M). The latter two are sometimes encountered in

-65-

engineering applications.

<atom>::= <string> | <identifier> | <vector> | <scalar number> |
<punctuation mark>

Atoms are the basic building blocks in GROPE. Graphs, nodes,
and arcs usually have atoms as their labels. Atoms are composed
of strings, identifiers, vectors of scalar numbers, scalar numbers,
ov punctuation marks. The Data language is designed so that GROPE
may read English text directly, so punctuation marks are delimiters
except for their use in forming numbers; but note that the FORTRAN
real-number representation in which the real number is terminated
by its decimal point is illegal in GROPE. (The syntax is explicit

about this point.) The decimal point must be followed by a digit,

or else it will be interpreted as a period -- not part of the
number.

<tistri:= (<list-set value> <label>*)

<set>::= { <list-set value> <label>% }

<list-set value>::= =~ <label> =] <empty>

<empty>::=

Lists and sets are formed by the appropriate left delimiter,
then the value of the structure if one is desired, then the elements
of the structure, if any, then the closing delimiter. Remember that

in GROPE the user may not control the ordering of elements in sets!

w66

Therefore it is possible that the internal ordering of the elements
of a set will not be the same as indicated when the set was input

in the data stream.

<node>::= # <attach> <label> <object> <value> <relate> <graph> §
<attach>::= 71| <empty>

<object>::= :: <label> | <empty>

<value>::= : <label> | <empty>

<relate>::= =y | <empty>

A node is delimited by number-sign (#) pairs. Its label and
graph must be specified; the object, the value, and the attach and
relate signs are optional. The node will be attached to its label
unless the “not" attach sign is present to indicate otherwise; the
node will be related to its graph unless‘the “not" relate sign is
present. If the node is to be attached, the input routine will
first search the nset of the label for a “like" node and return
it if it exists; only if such a node does not exist, or the node
is not to be attached, does the input routine create a new node
and return it. The test for a "like" node is: (1) the (nset)
candidate must be on the same graph as the input node; {2} if the
input node is to be related, then the candidate must be, and
vice-versa; (3) if the input node specifies its object, then the
object of the candidate node must be identical; and (4) if the

input node specifies its value, then the candidate node must

-69-
<g-element>::= <node-in-graph-context> | <arc-in-graph-context>
<node-in-graph-context>::= # <attach> <label> <object> <value> <relate> #
<arc-in-graph-context>::= = <fnigc> # <rel-co> <label> <object>

<value> <att-ci> # <tnigec> =
<fpigc>::= <attach> <label> <object> <value> <relate>

<tnigc-::= <cattach> <label> <object> <value» <relate>

A "graph element" is either a node or arc. In either case,
the graph obviously need not be specified -- since it encompasses
its elements. The syntactic description of <g-element> only serves
to formalize what one could assume: the <graph> constituent has
been deleted from the <node> and <arc> syntax to produce <node-in-
graph-context> and <arc-in-graph-context>. GROPE prints a graph
by printing its label, object, etc., then printing every arc in
the rseto of each node in its nodeset, plus printing any "isolated”
nodes (having no arcs). It is expected that graphs may be entered

in the same fashion.

The Data language is not comprehensive in several respects:
(1) some types of atoms are automatically hashed into the atomset,
while others are not -- with no means for indicating otherwise;
(2) only labels may be input -- no readers, pseudo integers (they
become integer atoms), nodesets, etc.; (3) input values for atoms
cannot be indicated as they may be for graphs, lists, etc.;

(4) within the context of a graph, arcs to or from nodes on other

~70~

graphs may not be input; (5) input of graphs and nodes with lists
(or sets, or non-integer numeric atoms, or arcs) as their labels

is unreiiable, since the automatic creation of the new label
guarantees the creation of a new graph or node; (6) some applica-
tions might require a search before creating an arc; and (7) input
of recursive structures is difficult or impossible, depending on
circumstances. On the other hand, it is not expected that masses
of data will be stored in Data language form -- GROPE provides

a mechanism for maintaining a permanent internal data base, coupled
with the virtual memory system. The Data langquage is rather inten-
ded to be a convenience item, with somewhat limited use: there is
no 1/0 device or medium that would allow display, storage, or

input of the more complicated GROPE structures in any “picture"
form. It is hoped that this representation will suit most applica-

tions.

-67-
have the identical value.
<graph>::= [<attach> <label> <object> <value> <relate> <g-element-¥]

A graph is delimited by square brackets. Its label must be
specified; its object, value, "elements", and the attach and re-
late signs are optional. The graph will be attached to its label
unless the “not" attach sign indicates otherwise;vthe graph will
be related (to the graphset) unless the "not" relate sign is
present. If the graph is to be attached, the input routine will
first search the gset of the label for a "like" graph and return
it if it exists; only if such a graph does not exist, or the graph
is not to be attached, does the input routine create a new graph
and return it. The test for a "like" graph is: {1) the (gset)
candidate must be related if the input graph is to be, and vice-
versa; (2) if the input graph specifies its object, then the object
of the candidate graph must be identical; and {(3) if the input graph
specifies its value, then the value of the candidate must be

identical.

Once a graph has been found or created, the graph elements
(if any) are entered, and the graph is returned by the input

routine.

carc>::s = <frnode> # <rel-co> <label> <object> <value> <att-ci> #
<tonode> =

<frnode>::= <attach> <label> <object> <value> <relate> <graph-

-68-

<rel-co>::= + | <relate>
<att-ci>::= + | <attach>
<tonode>::= <attach> <label> <object> <value> <relate> <graph>

An arc must specify at least its frnode, its label, and its

tonode; the object, the value, and the "relate-curco” and “"attach-

curci” signs are optional. If the <rel-co> is "+" then the arc
will become the curco of its frnode (which necessarily relates
the arc), else the arc will be related unless the "not" relate

sign indicates otherwise. If the <att-ci> is “+" then the arc

will become the curci of its tonode (which necessarily attaches

it), else the arc will be attached unless the "not" attach sign

is present. A new arc is always created and returned: no search

for a "like" arc takes place.

<label>::= <atomr | <graph> | <node> | <arc> | <list> | <set»

A label is either an atom, a graph, a node, an arc, a list, or

@ set. GROPE input insures unique atoms, except for those with
non-integer numeric images, through a hashed search of the atomset;
GROPE insures unique graphs and nodes within limits, as described.
Arcs, lists, and sets, on the other hand, are automatically created --
without any search -- as are atoms with {type) real and vector

images. Thus the input routine may duplicate arcs, lists, sets,

and some atoms. Non-integer numeric atoms will not be related;

all others will be.

CHAPTER V

The Programming lanquage statements

For clarity, we must depart from the traditional Backus-Naur

form grammar in this chapter: there are simply too many options

and choices to indicate with regards to the Programming lanquage.
[DATA:[Index~ #(a)#] =[xy]#SU#' A'= =' A'#{arb}#G= =G#{a b c)#[xy}=]

While the language certainly can be described in BNF, to do so

08J would render the description less concise and readable. The meta
language to be employed, however, will be seen to have some similar-

ities to BNF; it makes use of three new formalisms: (1) where the

rogrammer has a (single) choice among multiple alternatives, the
4TOY[0BJ1# pros

alternatives are listed vertically, enclosed within large brackets --

usually squave brackets, but occasionally parentheses; (2) large

CONJECTURE
1kes parentheses indicate the enclosed item(s) to be optional -~ it
(they) need not appear in tne statement to be generated; (3) super-
scripts are employed to indicate repetition of the bracket-enclosed
=Boy[{ CONJECTURE]#1ikes#Gir1[CONJECTURE]= item(s) -- the Kleene star has the traditional interpretation of

"zero or more consecutive occurrences,” the plus sign “+" indicates’

tonst at jeast one or more occurrences, and the minus sign “-" indicates
. 3. 1415927 .

that on the last occurrence, the last symbol within the brackets

typi t .
=PI[Const]é-reps3.1415927[Const]= (typically a comma) does not appear. {Commas serve to separate

items, rather than terminate them.)

1SA Lexicon The names of non-terminals will be enclosed within angle-
OBJECT brackets (the symbols " <" and “>") as in BNF, and terminal keywords

=TOY[Lexiconld+ISA-#0BIECT[Lexicon]= will be CAPITALIZED. The appearance of blanks is not accounted

for in the syntax; rather, the familiar programming language con-
Figure 4.1 A Graph, a node, and three arcs

-72-

-73-

ventions apply: blanks are used as delimiters, and to enhance
readability. Source statements of the language may be written

in free-field format, eighty (80) columns per line if desired.
Comments in the programming language are delimited by pairs of
ampersands (&). Occasional abbreviations of non-terminal names
may occur, such as "id" for “"identifier", and “var" for “variable".
Their interpretation should pose no problem to the reader, since

English names are invariably employed.

The development wiil proceed top-down, starting with what
constitutes a GROPE program, and ending with a description of the

available character set,
* : *
<program>::= <procedure> <main procedure» <procedure>

A complete GROPE 2 program is a collection of modular procedures,
including exactly one MAIN procedure to which control will be trans-
ferred by the operating system when execution of the program is
initiated. This MAIN procedure corresponds to the main procedure

in PL/I, the FORTRAN main program, etc.

Any number of procedures may be batched together and passed
to the compiler at any one time; however, the user must bear in
mind that the compiler is modular: no information wili be carried
over from one procedure to the next. The compiler is designed to
provide very good error diagnostics. Every attempt will be made

to correct an error, or if that is impossible, to recover with a

w76

"fatal” flag (supressing the production of object code for that
procedure) and continue compiling the procedure in order to inform
the programmer of any other syntactic errors. If a serious error

is encountered, though, the compiler may get completely lost and
generate a cascade of "errors”. In order to protect against this,
the compiler will cease compilation after the tenth error in a
procedure and scan ahead to the next procedure; this is accomplished
by scanning for the reserved word FIN, which marks the end of a
procedure. Compilation will then resume in normal mode. (Note:

when at any time the terminating FIN is encountered, the rest of

the line after the FIN is discarded -- meaning that each procedure

definition must begin on a new line.)

<main procedure>::= MAIN PROCEDURE <procedure identifiers

{ <<fi]e identifier> [<unsigned integer>];> Y o
+
<<statement» ;> FIN

The main procedure has a name (some identifier), and must list
all files which the user intends to employ in the program. FEach such
file has a designated “"record length" -- an unsigned integer in-
dicating the number of characters {columns) per line in the file.
Typically, this will be BO for “"data card" input files, and 132

or 136 for printer output files.

ex: MAIN PROCEDURE TEST (INPUT[80], OUTPYT[132], OTHER[80]);

75

The record size actually stipulates the right-hand margin that
GROPE will "see", since the actual (physical) record may be longer

{(but not shorter)

‘procedures::= (RECURSIVE) (<type> PROCEDURE <procedure identifier»
+
(<forma] parameter list>) H <}statement> ;> FIN

The body of any procedure is composed of a sequence of state-
ments {each terminated by a semicolon) terminated by the reserved
word FIN. The statements may be declarative or executable in any
order so long as any declaration of a variable precedes its use
in an executable statement; of course it is highly recommended
that all declarations precede all executables, just to be safe.
Any undeclared identifiers encountered in an executable statement
before being encountered in a declaration or an executable context
obviously indicating them to be procedure identifiers or statement
labels, are classified simple variables of LOCAL scope and GROPE

type.

If a procedure is to be invoked recursively, the keyword
RECURSIVE should occur first in its definition; if it is to
return a non-GROPE value (GROPE is the default), then the type
of value to be returned must be declared. Procedure arguments
are passed by reference (as in FORTRAN); since the GROPE 2 trans-
lator does notcheck whether the number or types of actual parameters

passed to a procedure corresponds to the number for which that

-76-

procedure is defined, disruptive results are likely to occur at
run-time if these do not indéed correspond. These situations
cannot be detected because the translator is modular, nor are
run-time checks produced. The local FORTRAN compiler will define
the semantics of these cases: at any rate their use is not recom-

mended.

<variable specifiers>
<formal parameter list>::=s {

A procedure {not the main procedure) may be defined with or
without parameters. If extant, the formal (or dummy) parameters of
a procedure are named and typed in the formal parameter list;
FORTRAN, PL/I, and ALGOL, for instance, require the programmer to
name the dummy variables in the parameter list, then "declare"
them in separate‘statements. GROPE 2 is arranged so that no
variable is mentioned more than once in the declarations of any
one procedure; the formal parameter list is considered to be a

declaration, except that it implies no particular storage allocation.

The EXTERNAL declaration here defines subsequent identifiers
to be functional arguments -- procedures passed as actual parameters.

Their types may also be declared, and must be declared if not GROPE,

. <declaration statement>
<statement>::=

(: <sta. label») <executable statement>

A statement is either a declaration or a {possibly labelled)

executable statement. Statements are compiled in sequence (there

-

(<type>)<proc. id>» (,(<<type>.y)).y)

~17- - 78~

are no compfle-time branches), and normal run-time flow-of-control any procedures to which individual LOCAL variables are passed as
is of course sequential. Branching is allowed via Tabelled state- arguments, they are inaccessible outside the procedure declaring
ments and a GOTO, but the richness of control structures should them. Their contents upon allocation is indeterminate, and is
obviate the need for this construct in all but the most extreme lost upon deallocation.
. . - o
situations. - - . .
EXTERNAL <(<type>)<<proc. id> (((<type>>)),>> OWN variables are like (implemented as) FORTRAN local variables --
GLOBAL fixed allocation at compile time, accessible only to the procedure
LOCAL <variable specifiers>
«declaration statement>::= ouN declaring them (other than when passed as arguments}), and retaining
COMMON <« <common id> > <var. specifiers> their values when the procedure is exited.
<type list>

Labelled COMMON behaves exactly as it does in FORTRAN. It is

ldentifiers have scope (EXTERNAL, GLOBAL, LOCAL, OWN, COMMON) available primarily for communication with FORTRAN routines; how-

and type (ALPHA, GROPE, REAL, etc.). EXTERNAL scope is reserved for ever, it may be used by the GROPE programmer as desired. Of course,

procedure identifiers other than the one containing the declaration. variables in COMMON are “global® by location with respect to the

The EXTERNAL declaration may be necessary if a procedure is to be origin of the block, and so may be renamed and re-typed in different

passed as an actual parameter to another procedure (as in FORTRAN). procedures -- naturally, not recommended:

In the corresponding position in the dummy parameter list of the

e T d i i i
called routine, the dummy parameter is also identified as an EXTERNAL. he scope keywords apply until the next semicolon is reached

(terminating the statement), but several type lists may be included.

GLOBAL variables have a scope encompassing the entire program, If a declaration begins with a type keyword, the default scope is

although they are accessible only to the procedures which declare LOCAL. If the identifier following a scope keyword is not a type

them. Their storage allocation is fixed at compile time, since keyword then type GROPE is the default

- e
{abl 6 <<variable specifier> ,) <G <type list{>
<variable specifiers>::=

s < -‘ : R -
LOCAL variables are allocated storage at run-time (via a < type list>)

they are implemented via the FORTRAN labelled COMMON feature.

stack in "blank"” COMMON) when the procedure declaring them is en- Within a declaration statement the declared variables are

tered, and deallocated when the procedure is exited. Except for separated by commas. Each type keyword applies until the next is

encountered, or until the end of the statement {semicolon) is

~79-
reached.

<type list>::= «<type> <<variable specifier> .)

ALPHA
GROPE
INTEGER
LOGICAL
REAL

<type>::=

A type list is a type keyword followed by a sequence of
variable specifiers separated by commas. As mentioned, type lists
may succeed one another in a single declaration. The type of a
variable determines the nature of its contents once a value has
been assigned to it: ALPHA variables contain character strings;
GROPE variables, (pointers to) GROPE structures; INTEGER variables,
binary integer numbers; LOGICAL variables, “"true" or “false";

and REAL variables, single-precision real numbers.

<constant»
<variable description> | -= -

<variable specifier>::=
< <<constant> ,) >

A variable specifier describes the variable and specifies the
initial value (if any) the user desires to assign to that variable
at compile-time; the initial values must be “"constants". Since
storage for LOCAL variables is allocated at run-time, and this
initializati feature is implemented via the DATA statement of
FORTRAN, initial values for LOCAL variables may not be specified.
An array variable may be assigned a vector of initial (constant)

values. If the number of constant values is insufficient to

-80-

account for all the locations being allocated to an array variable,
then the assignment sequence is repeated: the (first) constant being
assigned to the next allocated location, etc., until all locations

have been provided with an initial value. GROPE 2 allocates array

storage by row, as opposed to by column, as in FORTRAN. In effect,
one may view the rightmost subscript as varying most rapidly, then
the next rightmost, etc., with the leftmost subscript varying least

rapidiy.

<array id-> [<(<arith. exp>:) <arith. exp»
<variable description>::=

<simple variable>
As in ALGOL and some other languages, the user may declare both
bounds of each subscript of an array, provided each first bound is the
lowest. The default lower bound for a subscript is one; thus the
default is FORTRAN-style 1-origin array indexing. The number of
subscripts allowed is three for non-LOCAL arrays, and theoretically

unlimited for LOCAL arrays. Note that there is no special keyword

for array declaration; the only special provision is that the bounds
be specified (within square brackets, as usuSI), and that the sub-
scripts may be evaluable when storage is to be reserved for the
array. This means that the subscripts for GLOBAL, OWN, and COMMON
arrays must be integer constants (which the compiler can interpret);
the subscripts for LOCAL arrays, on the other hand, may be arithmetic
expressions involving constants and perhaps “dummy” parameters,
since storage is reserved at run-time immediately upon entry of the

procedure.

3

3

-81-

<array identifier>::= «<identifier>

<common identifier>::= «<identifier>
<file identifier>::= «<identifier>
<procedure identifier>::= «<identifier>
<statement Tabel>::= «<identifiers>
<simple variables>::s <identifiers>
letters *
<identifier>::= <letter>| < GLVET>
<digit>

Identifiers are formed by an arbitrary sequence of letters and

digits, provided the first is a letter. The length of an identifier

is theoretically unlimited, but in practice procedure identifiers,
file identifiers, common identifiers and GLOBAL variable identi-
fiers are truncated to six or seven character, as required by the
Tocal FORTKRAN compiler and operating system. The user is respon-
sible for insuring uniqueness at this six- or seven-character
limit with respect to these types of identifiers, whose scope is
above the procedure level. In the case of OWN variables, the
translator provides new and guaranteed unique names to the FORTRAN
compiler; LOCAL variables “disappear" into the run-time stack
mechanism, which guarantees them unique run-time locations for
each procedure entry. Because the GROPE library routines contain
many procedures, COMMON blocks and file references to which the

user must be denied access, all identifiers whose first two

~82-

characters are "62" are reserved.
<string>
<number>

" "

<constant»::= <tabel>

<pro¢. id-

FALSE
TRUE
<string>:: ' <any character sequence not containing ‘> '
<digit-* (L <digits*) 3 .
<number>::= (i) . <digit>+ E(- <digit>
- <digits* 8
<label>::= «<a printable GROPE data structure, as defined in the

Data language>

GROPE provides ALPHA constants (strings), INTECER and REAL
constants {in the FORTRAN sense), GROPE’constants (atoms, arcs,
nodes, graphs, lists, and sets), procedure identifier “constants”
(EXTERNAL references), and the LOGICAL constants TRUE and FALSE.
Strings are delimited by single quote marks (apostrophes), and
numbers are as defined in FORTRAN, with in addition octal integers:
some sequence of digits (0-7) terminated by the letter B. (The
appearance of digits 8 or 9 in an octal integer is semantically

illegal.)

The Data language entities may be included in the programming
language delimited by double quote (") marks. Since GROPE 2
object code is actually FORTRAN, which must pass through some

FORTRAN compiler and a loader before being exécutable, and since

-83-

GROPE structures are run-time entities, the translator cannot
actually create (or "find") the linked data structures corres-
ponding to the descriptor (the label). Instead, the translator
generates code such that, upon the first invocation of a procedure
containing GROPE "constants", those constants are read by the
GROPE input routine. The resultant structure is then accessible
wherever its descriptor appeared in the procedure. Note that one
or more occurrences (exact copies) of a given descriptor in one
procedure will cause the input and possible creation of only one
structure, whereas the occurrence of identical descriptors in
different procedures may, depending on the input routine and des-
criptor, cause more than one structure to be input and created --
possibly a different one for each procedure, though not more than
one for any given procedure. The description of the operation of
GROPE input in the Data language chapter should clarify this
situation. [In any case, the generated structure is guaranteed

to correspond to the "picture"; but it is possible for there to

be several copies of the structure generated. Note that it is
possible (but not necessarily recommended) for the programmer to
employ normal GROPE operations to subsequently medify such “constants"

so that they no longer resemble their original descriptors.

We are now in a position to consider some examples of

procedure headings and declarations.

-84-

ex: RECURSIVE PROCEDURE INPUT;
EXTERNAL HELP, INTEGER FUNL1, ALPHA NEXTITEM;
GLOBAL ALPHA RDFILE[7] <= 'INPUT';
LOCAL X,Y,Z;
OWN INTEGER POSITION <= 0, LIMIT <= 120;
COMMON <I0BLOCK> ALPHA CLASS[30], INTEGER NUMBERS [70);

This starts the definition of a recursive GROPE procedure INPUT
which takes no parameters; it may call (among others) procedures
HELP (which is type GROPE), FUNL (which is type INTEGER), and
NEXTITEM (type ALPHA). \Note that, unless HELP is to be passed as

an argument to another procedure, its declaration here is extraneous
since context would define it to be a procedure identifier {at the
calling point), and it would default to type GROPE, anyway; however,
FUN1 and NEXTITEM must be declared because they are not of type
GROPE. INPUT may access the GLOBAL ALPHA variable RDFILE, whose
initial contents is the string INPUT. X, Y, and 7 are LOCAL GROPE
variables -- their storage will be allocated each time INPUT is
entered, and deallocated upon departure. Since INPUT is a recursive
procedure, it is possible that several storage locations will be
allocated to X, Y, and Z at the same time -- a different one for
each variable, for each "level® of recursion. Storage for the

OWN INTEGER variables POSITION and LIMIT, however, is fixed at

one location each, no matter how many times INPUT is called
recursively; thus it is possibie for the different “levels" (invoca-
tions) of INPUT to intercommunicate via these variables. Before
execution is begun, POSITION s initialized to 0, and LIMIT, 120.
The labelled COMMON block I0BLOCK contains two variables: the ALPHA

vector CLASS, which may contain a string of maximally thirty

-85-

characters as its value, and the integer vector {array) NUMBERS,
which may of course have seventy distinct integer values. (RDFILE,
by this example, could contain a string value of maximally seven
characters.) ALPHA vectors are indexable to the character level,
rather than the “"word" level. The number of machine words required
by ALPHA variables is of course a function of the particular hard-
ware; GROPE avoids the problem of word indexing in this case by
positing machine-independent character indexing. In the case of
the other types, GROPE does not stipulate any particular word size
{precision), leaving the determination of this characteristic to
the FORTKAN compiler and the machine. (As a note of interest, it
is intended that the number of words allocated to ALPHA variables
be one word more than the number required to store the declared

maximum number of characters -- to provide a binary zero terminator.)
ex: PROCEDURE APPLY (INTFUNCT(INTEGER) , ARG1,ARG2,ARG3);

The non-recursive procedure APPLY takes four parameters: the {type
GROPE) functional argument INTFUNCT, and the three {type GROPE)
arguments ARG1, ARGZ, ARG3. Presumably it will invoke the
procedure passed as its first argument, passing an integer argument
to it; or it might pass INTFUNCT as one of the arguments to yet

another procedure, or both.
ex: RECURSIVE INTEGER PROCEDURE FACTORIAL (INTEGER N);

This would be an appropriate heading for a procedure to compute nl,

if one were to write it recursively. Note that the FORTRAN compiler

-86-

would see instead of the function FACTORIAL, the function FACTOR,
or perhaps FACTORI. (Similarly, the labelled COMMON block in the
first example might have its name shortened to 10BLOC, and the
EXTERNAL ALPHA procedure, to NEXTIT or NEXTITE. Beware!) If an
ALPHA variable is declared but unsubscripted, it is an ALPHA simple
variable -- which may assume a zero-character value (the empty
string), or a single-character value, but no more.

<control statement>

<executable statement>::= }<I/0 statement>
<boolean expression>

For canonical purposes, executable statements are of three
types: control, I/0, and (boolean) expression. Control statements
control the execution of statements through implicit tests and
branches; 1/0 statements perform the obvious function; and {boolean)
expressions may be simple assignments, prbcedure calls, or indeed
any expression allowed in the language. MWhen used as statements,
the values of boolean expressions are not important, but rather
their side effects are: assignment of a new value to a variable,

alteration of GROPE data structures, etc.
__<compound statement> -]
<IF statement>

<G0 statement>

<NULL statement>
<CASE statement»>
<INCRement statements>
<WHILE statement>
<REPEAT statement»>
<FOR statement>
-<SELECT statement>

<control statement»::=

-89-

IF <boolexp> THEN <execsta>} ELSE <execsta>2

<boolexp>

<execsta>l

R

I o—

<execsta>2

UNLESS <boolexp> THEN <execsta>l ELSE <execsta>?

<boolexp>

<execsta>]

— 1
N —

<execsta»2

[
N

Figure 5.1 The IF statement

IF <boolexp> THEN

-90-

<execsta>1 REGARDLESS

<boolexp>

<execsta>l

Vil
Y

<execsta>2

!

UNLESS <boolexp> THEN <execsta>1 REGARDLESS <execsta»2

<boolexp>

<execsta>]

<execsta>2

Figure 5.2

|

The 1F statement

-87-

+
<compound statement>::= BEGIN <:: <sta. label> :) <exec. sta> ;> END

A compound statement is a sequence of (possibly labelled)
executable statements initiated by the keyword BEGIN and terminated
by the keyword END. Its purpose is to allow several statements
to be treated (syntactically) as one. Any statement labels de-
fined within the compound statement are undefined without -- as if
it were a block in ALGOL. This is to prevent explicit transfer of

control from outside a control structure to the inside by means of

a GOTO.
IF
<IF statement>::= <boolean exp> THEN <exec. sta>
UNLESS
ELSE
<egxec. sta>
REGARDLESS

The IF statement in its form IF ... THEN ... (ELSE ...) main-
tains the traditional semantic interpretation: the THEN statement
will be executed only provided the boolean expression is true; if
it is false then instead the ELSE statement (if present) will be
executed. 1In its form UNLESS ... THEN ... (ELSE ...) the logic is

simply reversed: the THEN statement will be executed only provided

the boolean expression is false, and the ELSE statement (if present)

only provided it is true. In the form IF ... THEN ... REGARDLESS ...

the THEN statement will be excecuted only provided the expression
is true, but the REGARDLESS statement will be executed (afterwards)
in any case. Again, UNLESS reverses the logic concerning the
execution of the THEN statement. In effect, the semantics follows

that which the English speaker would expect from reading the

-88-

statement. Note that, in GROPE, the representations of integer
zero, FALSE (which is implemented as integer zero), the empty
string (also integer zero), and the null GROPE value (integer
zero) are all treated as false under boolean interpretation.
Floating-point zero will also be interpreted as boolean false,

and anything else is interpreted as true. Again, the GROPE type
LOGICAL is implemented as type INTEGER in FORTRAN: the logical
constant TRUE is implemented as integer one. (This is so that the
GROPE translator can produce code that is independent of any local
test for “"true" and "false”. The translator-produced test is
“.EQ.0" in FORTRAN.) The IF ... THEN IF ... ELSE ambiguity is
resolved by matching the ELSE to the closest unmatched THEN to

its left.

-91- 97~

It hootexn THEN execsta. i
R GO statement- = GO 10 ‘statement label.

The GOTO is included in the language, but its use is somewhat
restricted, and in any case is recommended only when no other con-
trol mechanism is appropriate {or possible). If used, it over-

rides all other mechanisms tor flow-of-control and transfers

control to the named statement label (if it is defined -- remember

CexECsta that a statement labwel defined within a control structure is un-

defined without.) A branch may not be effected to a statement

label defined within a control structure not containing the GOTO.

R
<NULL statement>::= NULL
The NULL statement is a no-op: it exists for those occasions
UNLESS <boolexp> THEN <execsta> where syntax calls for a statement where the programmer has no
useful operation to perform. (The ELSE NULL sequence will be
seen to have its uses...)
T <exec, sta- *
<boolexp> <CASE statement»::= CASE <arith. exp» OF (:<sta. label>:) ;
HEXT
F ELSE <gxec. stax
REGARDLESS
cexecstar The CASE statement causes ex=iution of the nth statement in
the collection of (possibly labelled) executable statements, where
< n is determined by the arithmetic expression following CASE. The
/ collection is syntactically terminated by ELSE or REGARDLESS; if

ELSE, then the executable statement following it is executed iff n

Figure 5.3 The IF statement

-93-

does not correspond to any statement in the collection (n <1, or

n > k where there are k statements in the collection); if REGARDLESS,
then the executable statement following it is executed in any case.

1f n does not correspond to any of the statements in the collection
{as noted above), then none of the statements in the collection is
executed. Note that the CASE statement does not “transfer control"

th

to the n statement as does the FORTRAN computed GOTO, but rather

causes the execution of that one particular statement. An excep-
tion of sorts is the “"statement" NEXT: if the nth statement is

NEXT, then control will behave as if n had been n+l -- the succeeding
statement will be executed. A sequence of NEXT statements will

cause continued "incrementing” of n until a statement other than

NEXT is reached, whereupon that statement will be executed. This
feature allows wveral "cases" to share identical executable code,

if desired. It is semantically illegal for the last statement in

a CASE collection to be NEXT. Any statement Tabels defined within

the CASE statement are undefined outside the CASE statement: the

programmer may not branch (via a GOTO) into the middle of a control cexecstar]

structure.

CASE <arexp> OF <execsta>1l; HEXT; <execsta>3;

ELSE <execsta>e

-94-

J

temp <= <arexp>

temp : O

temp : n

<execsta>»n

NEXT p—=>{ <execsta>»3 <gxecstarn

<gxecstare

Figure 5.4

The CASE statement

-95-

CASE <arexp, OF <execsta>1; NEXT; NEXT; <execsta-d4; ... <execsta»n

|

temp <= <arexp>

REGARDLESS <execsta>r

A

temp : @
temp : n
<
temp
1 n
'.-
2 3 4\3. -
<execstarl HEXT D NEXT <execsta>4 <execsta»n

y

<execstas>r

Figure 5.5 The CASE statement

-9§-
INCR

<INCRement statement-::= <simple var- (FROM <arith. exp»)
DECR
(TO -arith. exp>)(8Y <arith. exp»)

<repeat loop> (THEN <exec. sta>)

.’
<repeat loop-::= REPEAT <(:<sta. labe1>:) <exec. sta> ;> Loge

The INCRform of the [NCRement statement is like FORTRAN's DO
foop. However, any simple numeric variable may be used as the
control variable, and all three arithmetic control expressions
are optional (and default to 1 if absent). The statements irn
the repeat loop will not be executed if the initial value (the
FROM expression) exceeds the terminal value (the T0 expression).
The optional THEN statement at the end will be executed once after
the loop terminates, whether or not any statements in the loop
were indeed executed. The valué of the simple control variable
after Teaving the loop will be its value on the last iteration,

or indeterminate if the loop is never executed.

The DECRement form of the statement will subtract the BY
expression upon iteration, rather than add it as does INCR, and of
course the completion test is whether or not the control variable
is less than the TO expression. Again, the test is performed
before the repeat loop is executed, and may prevent its being
executed at all. The FROM, TO, and BY expressions are all
evaluated once only, and the cortrol variable will asswre its
successive values regardless of any manipulation performed within

the leop. In no case will tne repeat loop be executed if the BY

expression is less than or equal to zero.

-97-

-98-
INCR <simvar> FROM <arexp>1 TO <arexp>2 BY <arexp>3 DECR <simvar> FROM <arexp> TO <arexp>2 BY <arexp>3
<repeat loop> THEN <execsta> <repeat loop>

templ <= <arexp>] templ <= <arexp>l

temp2 <= <arexp>2 temp2 <« <arexp>2

tempd <= <arexp>3 temp3 <= <arexp>3

templ temp2

templ temp?2

<simvar><= templ ‘ <simvar> <= templ
<repeat loop> <repeat loop>
templ <= templ+templ ' templ <= templ-temp3
I

v

<gxecsta> \L

fFigure 5.6 The INCR statement

Figure 5.7 The DECR statement

-99.
WHILE
<WHILE statement»::= <boolean expression> <repeat loop>
UNTIL
(THEN <exec. sta>)
WHILE
<REPEAT statement>::= <repeat loop> <bootean expression>
UNTIL

(THEN <exec. sta>)

The WHILE and REPEAT statements differ only with respect to
when the test for iteration is performed relative to execution of
the repeat loop. In the former case, the test is performed first,
and implies that the loop may not be executed at all; in the latter
case, one execution of the loop is quaranteed before the test.

The interpretation of UNTIL vs. WHILE is obvious. After the test
indicates no (further) iteration is to take place, the optional

THEN statement, if present, is executed once.

-100-

~repeat loop> WHILE <boolexp»

<repeat loop>

<boolexp>

<repeat loop> UNTIL <boolexp>
THEN <execsta»

<repeat loop>

~gbpooltexp>

<execsta>

v

UNTIL <boolexp»<repeat looo:

<boolexp>

“repeat loop»

7{

WHILE <boolexp><repeat loop»
THEN <execsta>

<bool exp>

<repeat loop>

<exscsta>

v

Figure 5.8 The REPEAT and WHILE statements

-101-

<FOR statement>::= FOR <quantified universe> <repeat loop
(THEN <exec. sta>)

<quantified universe>::= <quantifier> <simple var> <universe>
(<qualifying exp>)

ALL
<quantifier>:: = EACH
EVERY

THE (<arith. exp>) FIRST

<atom descr>
<graph descr>
<node descr>
<arc descr>

<universe>::= =

IN <grope exp>

<qualifying expression>::= SUCH THAT <boolean exp>

The FOR statement iteratively binds a GROPE control variable
to GROPE values retrieved from some universe, then executes the
repeat loop. The programmer indicates the type of element to be
retrieved by means of a pattern which describes the form of GROPE
structure desired (what type of graph, or arc, etc.), or alter-
nately identifies the universe (some list, or other linear struc-
ture) which is to be sequentially scanned. Thg quantifier indicates
how many such elements are to be considered: ALL, EACH, and EVERY
are synonyms and indicate that all elements are of interest; THE
FIRST indicates that only the‘first one is of interest, and THE
<arith. exp> FIRST indicates that the first n are of interest,
where the arithmetic expression produces n. The optional boolean
qualifying expression (SUCH THAT ...) may place further constraints

on the items. The universe will be searched by GROPE automatically,

-102-

but at most once; therefore it is possible that n elements will
not actually be available, so n must be regarded as a maximal
figure only. The optional THEN statement, if present, will be
executed once after the loop terminates, whether or not any
acceptable elements were actually found. The value of the control
variable upon loop termination will be zero -- the null (false)
GROPE value. The atom, graph, node, and arc descriptors will be

discussed in Chapter 6, along with the expressions of the language.

-103- -104-

FOR THE varexp- FIRST -simvar.-universe. qualexp-

4
SSELECT statementr::s SELECT «quantifier. <key- FROM <<1ocked stax ;>
<repeat loop- THEN <execsta.-
ELSE) .
“exec. sta>
N REGARDLESS
count <= 0
n <= <arexp» <key>::= <expression>
exec. sta-
<locked statement»::= . <lock»
N NEXT
B <lock>:: = <expression>
Count/
> The SELECT statement is somewhat like the CASE statement,
although more than one statement in the collection may be executed,
ssiavare o= elenent(universe-) In effect, the SELECT statement causes the execution of one or

more statements, each of whose "lock" expression is matched by a

F “key" expression. The key expression is evaluated once only.

SSlavars

Then the successive lock expressions in the collection are evaluated
until one produces a result equal to that produced by the key;
thereupon the corresponding executable statement is executed. If

the quantifier ALL (or EACH, or EVERY) is present in the SELECT

clause, the lock-evaluating and key-matching operations will be

continued throughout the collection; otherwise, after execution of

the nth "unloucked” statement (where n is determined by the arith-

<repeat loop>

metic expression in the quantifier), the lock evaluation and
count <= count+l

l matening terminates. The ELSE statement, if present, is executed

iff none of the locks are matched ("opened") by the key. The

attempted execution of a HEXT statement -- because its lock is
cexecstas opened -- automatically allows the key to open the lock of the
J, succeeding statement without evaluating the lock, and without

"consuming” one of the n ocases. Thus the role of NEXT here is
Figure 5.9 The FOR statement

-106-

-106~ SELECT ALL <key> FROM :<lock>1: NEXT; :<lock>2: <execsta>2;
:<lock>3: <execsta>3; ... :<lock>n: <execsta>n;

similar to its role in the CASE statement, and again NEXT may ELSE <execstare

not be the last statement of the collection. (Due to this d/

specialized usage, NEXT is not a true <statement>, but rather tempk <= key
temp <= F

a keyword.)

tempk : <lock>1

empk <lock»>2

temp <= T

<gxecsta>2

P

<Jock>3

temp <= T
<execsta»3
le
N

tempk : <lock»

l <execsta-n] l <gxecstare l

2

Figure 5.10 The SELECT statement

SELECT THE

ELSE

i<lock>2:

cexecntase

<arexp» FIRST <key> FROM

-107-

<execsta»Z; ... ; :<lock>n:

v

tempk -= <key»

count <= 0

i, <= <arexp>

<lock>1: NEXT;

<gxecsta-n;

tempk : <lock:2

~,
Cd

count <= count+]
<execsta>2

.
.

<g@xecstarn

4

<execstace

|

<
/

Figure 5.11 The SELECT statement

-108-

INPUT <format exp><<variab]e> ,) -
OUTPUT <format exp><}expression> ,)
<[/0 statement>::= PRIN <3expression> . >‘
PRINT
READ <<1ocation>,>;

o

<format exp>::= <alpha exp-

The INPUT statement is roughly equivalent to the FORTRAN
formatted READ statement. The (ALPHA)} format expression produces
a standard FORTRAN format, starting with a left parenthesis {lacking
the word FORMAT) and ending with a right parenthesis. Any format
which is acceptable in the local FORTRAN will do. The expressions
will be read from the file named by the GLOBAL ALPHA variable
INFILE.

The QUTPUT statement is similarly equivalent to the FORTRAN
formatted WRITE statement; data isprinted on the file named by the
GLOBAL ALPHA variable OUTFILE.

GROPE provides free-field 1/0 via the PRIN, PRINT, and READ
statements. The GLOBAL ALPHA variable ﬁRFILE contains the logical
file name (default 'OUTPUT') onto which PRIN and PRINT will write,
and the GLOBAL ALPHA variable RDFILE contains the logical file name
(default 'INPUT') from which READ will read. The GLOBAL ALPHA
variable ECFILE names the file (default '*, indicating no echo)
on which READ will echo-print input lines. These may be changed
as the user desires; any changes will be noted at the next 1/0

statement. The difference between PRIN and PRINT is that PRIN

-109-

will allow the next free-field output operation on the same file
to continue on the same line at the point where PRIN stopped;
PRINT will "dump the buffer" after printing all expressions,
forcing a subsequent PRIN or PRINT operation to commence with

the next (empty) line. The user should take care to use PRINT

{or the provided procedure TERPRI) to terminate a line before he
uses OUTPUT on the same file -- to avoid “"mixing" results. READ
will always continue scanning on the same line where it stopped
last, unless the provided procedure TERRD is invoked to eject the
remainder of an input line. A <lecation> may be regarded, for the

moment, as a <variable>.

In conjunction with free-field I/0 there are six GLOBAL
INTEGER variables to allow some control over formatting: IMARGIN,
ISPACE, ITAB, OMARGIN, OSPACE, and OTAB. I- denotes input, of
Course, and 0- denotes output. The margins indicate the number
of columns on the left from (in) which nothing will be read
{printed). OMARGIN defaults to 1 {the leftmost column -- typically
printer carriage control -- will be blank), while all five others
default to zero. The value of (I/0)MARGIN is investigated only
when each new input/output line is started. The other four 1/0
variables are interrogated immediately before respective READ/PRIN(T)
statements are executed If strictly positive, a suitable action
is taken and the variable in question is reset to zero. If
(I/0)TAB is positive, the read/print scanner is positioned at the

column (1, 2, ...) corresponding to the value of the (I/0)TAB

-110-

variable, and the tab is reset to zero. Then {1/0)SPACE is in-
vestigated; if positive, its value is added to the read/print
scanner pointer (thus advancing it to the right the number of
spaces indicated), and the space variable is reset to zero. If
the actions taken result in advancing the scanner beyond the end
of the line, the line is terminated and the next is started at
the specified (I/0)MARGIN. Note that the tab, but not the space,

allows "backspacing" on the given line.
ex: INPUT <format> A[5],B,C,D[1,3,5:9],€;

This statement will read values for A[5], B, C, five values for the
array D (to be stored in locations D[1,3,5], D[1,3,6], ... , D[},3,9]),
and a value for E; the GLOBAL ALPHA variable INFILE specifies from
which file the input is to be read, and a FORTRAN format will be

provided by the programmer.
ex: OQUTPUT <format> 'THE ANSWER IS:',X;

This statement will print the string 'THE ANSWER IS', presumably
in "A" format, then the value of the variable X in whatever format
is provided, on the file specified by the GLOBAL ALPHA variable
OQUTFILE.

ex: PRIN 'THIS IS A STRING',1.23456E47,TRUE,X,A[1:10];

This statement will print (free-field -- with items separated by
one blank space) the string ‘THIS IS A STRING', then the constant

1.23456E47, then the logical constant TRUE, then the value of the

-111-

variable X (in some form appropriate to its type), then ten values
from the array A (A[1], A[2], ... , A[108]) in the appropriate
format. The print line will not be terminated after this state-
ment, so the next free-field output statement may‘continue printing

on the same line.
ex: PRINT A;

The contents of the variable A will be entered into the line buffer

in some appropriate format, then the buffer will be printed and

cleared. {Other items may have been in the buffer previously -- if
PRIN was last used -- and if so they, too, will be printed along
with A.)

A1l of the statements in GROPE 2 have now been presented. The
flow-charts should answer any questions about the detailed logic of
their implementation and operation, except for the evaluation of
expressions and boolean expressions which is subsumed. The next

chapter will cover the syntax of (boolean) expressions in GROPE 2.

CHAPTER VI

The programming language expressions

Although a variety of options allows the construction of
quite complex expressions, it is not expected that the user will
habitually avail himself of all this complexity. Nevertheless,
the key to unraveling GROPE expressions is really very simple:
within sub-expressions of equal precedence, everything is evaluated
strictly left-to-right. Side-effects, if any, appear immediately.
The general rule of precedence is: boolean (in the traditional
order), followed by assignment (replacement), followed by catenation,
followed by arithmetic (in fraditional order), then primary expres-
sions -- variables, procedure calls, constants, etc., which are of

equal precedence.

<alpha exp>::= <expression»
<arithmetic exp>::= <expression>
<grope exp>::= <expression:

An alpha expression is any expression which produces a string
as its result; an arithmetic expression, a number; and a grope

expression, a grope value.

W
<boolean expression>::= <boolean factor» <OR <boolean factor>>
L
<boolean factor>::= <boolean secondary> <AND <boolean secondary>>
<boolean secondary>::= GVOT) <boolean primary>

As in LISP, boolean expressions are evaluated only until such

time as a true/false value for the expression may be ascertained.

-112-

-113-

This means that, uniike FORTRAN, not all components are guaranteed
to be evaluated. For example, "a OR b" does not involve the evalu-
ation of "b" if “a" is true, since the clause is necessarily true.
Only if "a" is false, will "b" be evaluated; this argument
generalizes to cases such as "a OR b OR c" and "a AND b". C(lauses
of equal precedence are evaluated left-to-right.

[MAY] [ATTACH]

MAYNOT RELATE
<boolean primary>::= <grope exp> [IS]

ISNOT *
<expression> < <comparator> <expression>)

<data type>

CALPHA] - -
ARC LINEAR
ARRAY LIST
ATBEG NODE
ATEND NODESET
ATOM NSET
ATOMSET NUMBER
ATTACHED OBJECT
ATTSET PROCEDURE

<data type>::= CURCI <data type>::= PSEUDO
CURCO READER
DEEP REAL
GRAPH RELATED
GRAPHSET RELSET
GROPE RSETI
GSET RSETO
INTEGER SET
LABEL SYSET
— - TEXY

The programmer may employ certain forms of the boolean primary
to test the values of grope expressions with regards to their

current structural characteristics. Ffor instance, one might ask if

<comparator>::

-114-

NSUB
HCON
NDIS
NPSUB

NPCON _

-115-

a certain grope structure 1S an ATOM, or if it MAY ATTACH, etc.
ISHOT and MAYNOT simply negate the logic of 15 and MAY, respec-
tively, without requiring the programmer to use the booledn secon-

dary NOT. (It "reads" better.)

The other form of the primary allows the programmer to compare
expressions: some of the comparisons are numeric, and others are
set-theoretic. In the case of numeric comparisons, there are two
sets of comparators: symbolic and "literal", or FORTRAN-like.

won

(For example, the symbols and “LT" are synonyms for "less than”,

and "~ >" and "NGEQ" are synonyms for "not greater than or equal to".

The "not” symbol "M and the prefix "N" both negate the logic of
the comparison. In addition, the programmer may indicate a long

AND-ed set of comparisons by using the (infix) comparators hetween

successive expressions: "a < b < ¢ » d" is somewhat like "a < b AND

b < ¢ AND ¢ > d" except that the precedence is not that of AND,

"

and "b" and "c¢" are evaluated only once, instead of twice each as
they would be in the AND form. The set-theoretic comparisons are

IN (member), SUBset, CONtain, and DISjoint; "P" is a prefix

meaning "proper”. for example, "a NPSUB b" means "a is not a
proper subset of b". In addition to their numeric semantics,
"= and "=" will compare expressions of any type -- ALPHA, GROPE,

won W Hoou woon

or whatever. The operators "<", “<", ">", "“>" and their "not"
counterparts will also compare ALPHA expressions; this will, for
instance, allow "alphabetization" of strings -- depending on the

Jocal FORTRAN collating sequence. That is, GROPE will simply employ

-116-

the lacal FORTRAN character-codes; however, note that strings are

binary-zero filled, rather than blank filled as is the FORTRAN

standard.

cexpression>::s <catenation exp> <<rep1acement op> <catenaticn exp-
<=

<replacement operator>::= <=

>
>

GROPE allows "left" assignment, "exchange" assjgnment, and
“right" assignment. The three characters "<, "=", and ">" are
combined in three different ways, indicating the three different
replacement operators, and of course "point" to the <location>
(variable) receiving the new value. In this respect, the syntactic
rule above is perhaps misleading because it indicates that assign-
ment to a catenation expression is allowed; in point of fact it is

not (semantically) allowed, but the strict syntactic rules to

indicate what is and what is not allowed would cover half the

page -- and would not facilitate (human) comprehension. Consider:
<location> = <catenation exp> , <location> <=> <location> ,
and <catenation exp> =- <location» . This conveys some sense

of what is allowed; however, such forms as these may be "strung
together" much like comparisons. (Again, consider <location> to be

<variable..)

This is evaluated left-to-right, remember, and is “equivalent"
to: A =B 5 B =0 G C = Dy -- which assigns the value of B to A,

then exchanges the values of B and €, then assigns the value of C

-117-

(which was the old value of B) to D. So A s necessarily equal

to C and D, after evaluation of the expression.

This assigns the value of B to A, then assigns the value of C to B;
thus A is not necessarily equal to B after evaluating the ex-

pression.
ex: A => 8 => (

This assigns the value of A to B, then assigns the value of B
{and of A) to C. Finally, in the first example above {the one
involving the exchange), neither A, B, C, nor D could have been
a catenation expression since all received {new) values; in the
second example, only C could have been an expression; in the

third example, only A could have been an expression.

*
<catenation expression>::= <addition exp> écatenation op><addition exp>>

o

<catenation operatory::=
.>
A catenation expression allows the catenation of two {or more)
strings to produce one string as the value of the expression. Each
of the three operators {which are composed of some combination of
the characters "<", "." and ">") perform catenation. The first and
last, however, also effect an assignment (to a <location>) in the

process.

-118-
ex: A - B

This will concatenate the values of {the ALPHA sub-expression) A
and (the ALPHA sub-expression) B to produce a third string; neither

A nor B are affected.

ex: A < B

This will also concatenate the values of A and B; but after the
catenation, the resultant string will be assigned to the <location»

A.
ex: A+ B «> C

This will concatenate the values of A and B and C, then assign the

resultant string to €; A and B are unaffected.
ex: A < B . ¢

This will concatenate A and B and assign4the result to A; then that
resultant string will be concatenated with the value of C to produce
the value for the expression, but A will be unaffected by this

operation -- that is, A will still contain the result of A - B.

<addition expression>::= (+) <multiplication exp>

<<addition op> <multiplication expaf
<«
<+
.
-
+

<addition operator>::=

-119-

Again we see that the usual addition operators have been
augmented so as to allow “"simultaneous" assignment. As with the
catenation expression, the value of the addition expression is
independent of any of the "side-effects" that might take place,
unless one of the variables to which a value is assigned by the
special addition operators appears later in the evaluation sequence.
Again, evaluation of sub-expressions of equal precedence is left-

to-right, with side-effects (if any) appearing immediately.
ex: A+ B <+ C->0D

The value of this expression is A + B + C - D, but B will assume

the value A + B + C, while D assumes the value of the expression.
ex: A <- B+ C + A

The value of this expressibn is A - B+ C+ (A-B). First A -8
is assigned to A; then C is added to the result {of A - B}; then

the value of A is added, but note A was side-effected earlier,

so its new value is the effective value added to the partial sum
to produce the value for the expression. A, of course, must be

a <location>, rather than just any multiplication expression.

<multiplication expression>::= <exponentiation exp>

*
<&mu1tip]ication op> <exponentiation exp>)

.
</
<multiplication operator>::= *
/

*

/>

-120-

The multiplication operators are also augmented to allow
side-effect replacement. It should be obvious by now how these
will operate, and surely multiplication (and division) need no
explanation, other than to note that integer division involves

truncation.

<exponentiation expression>::= <primary exp» «

<<exp0nentiation op>»<primary exp>>

<t
<exponentiation operator>::= +

+>

By a similar argument, exponentiation should require no expli-
cation. Arithmetic in GROPE is allowed to be mixed-mode. If all
operands are integer, all arithmetic is integer arithmetic; once
a type real operand is encountered, type real arithmetic is per-
formed. If an alpha operand is encountered in arithmetic, the
character sequence of which it is composed is assumed to represent
a number, and it will be duly converted to type REAL; if the repre-
sentation is not that of a number, a diagnostic will be generated
and the program aborted. If a grope operand is encountered in
arithmetic, it is assumed to be either a pseudo integer or numeric
atom, and its IMAGE will be retrieved, converted to type REAL if
necessary, and used; if this is not the case, a diagnostic will
be issued and the program aborted. If a logical operand is en-
countered, its arithmetic value will be zero if "false™ or integer

one otherwise,

-121-

<pattern-directed search exp>
<list-building exp>
<set-building exp>
<primary expression>::= <vector-building exp>
<procedure invocation>
<extended variable>
<constant>

<< <expression> >>

e mad

? <atom descr>
<graph descr>
<node descr>
7 <arc descr>

<pattern-directed search expression>::= |!

The pattern-directed search expression signals a (possible)
search of the GROPE universe for some atom, graph, node, or arc
which “matches” the indicated pattern. The symbol "?" means that
if the indicated item is not found, no operation is to be performed
and the “false” value (zero) is to be returned as the value of the
primary expression. The symbol "!" means that if the indicated
item is not found, one is to be created. The symbol " " means
that no search is-actually performed, but the indicated item is
created. In all cases, the found item {if any), or the created
item (if any) is to be returned as the value of the expression --
unless the "false” value is returned, as described above. The
following descriptor definitions -- and the type of search subsumed --
also apply to the FOR statement, except of course the FOR state-

ment usage may find more than one entity matching the pattern.

<atom descriptor>::= <expression>

-122-

The expression, when evaluated, will produce a string or
number or array or procedure identifier (constant) which is to be
the image of the atom -- whether -found or created. If a search

is performed, it will only be through the atomset.

<graph descriptor>::= [(?) [<2rope ex;p] (:: <grope exp>)(: <grope exp>)(7':

The graph descriptor should be somewhat familiar -- it is
essentially an un-quoted "graph constant" (from the Data language),
with grope expressions allowed for the label, object (if any), and
value (if any). The symbol "** indicates an "I-don't-care” with
regards to the label. The symbols “," represent an “"I-don't-care”
with regards to the attached and related conditions of the graph,
while the symbols "™ " mean, as in the Data language, “not". The
absence of one of these means, as in the Data language, the graph
is to be related/attached. If a search-is to take place, it will
only be through the gset of the label (unless "don't attach” or
“I don't care about the label" is indicated), and/or the graphset
{unless "don't relate" is indicated). Note that no graph "elements"
may be specified. At least one of these search possibilities must

not be contra-indicated, if a search is to be performed.

<node descriptor>::= #(?) f2r°pe exp>](: <grope exp>)(: <grope expg(:

[<grope exp>] P
*

The node descriptor is also like its Data language equivalent.

The symbols "*" and "," mean, as before, "1 don't care”, and "™ "

-123-

means "not". Any search to be performed will only be through the
nset of the label (unless "I don't care about the label" of “don't
attach” is specified), and/or the nodeset of the graph (unless

"1 don't care about the graph” or “don't relate" is indicated).

At least one of these possibilities must not be contra-indicated,

if a search is to take place.

<]
<arc descriptor>::= =[9'"°pe exp>]# <,> <grope exp> (:: <grope exp>)
+

(- <grope ex;»)(‘]) #[«‘grope exp>];
+

Obviously the arc descriptor bears a resemblance to its Data
tanguage cousin, and the symbols “*", """, "+ and "," play the
expected roles. If a search is to be performed, it will be through
the rseto of its frnode {unless "I don't care about the frnode" or
“don't relate" is indicated), and/or the rseti of its tonode {unless
"1 don't care about the tonode" or "don't attach" is specified).

At least one of these possibilities must not be contra-indicated

if a search is to be performed.

When these descriptors are employed in the FOR statement
{(cf. Chapter V), their interpretation is‘essentia]ly the same;
however, the FOR statement never implies the creation of one of
these structures. If an item is found it is bound to the control

"

variable in the "quantified universe" expression, then the boolean

qualifying clause (if any) is evaluated to test for rejection of the

item; then if the item is not rejected, the repeat loop is evaluated;

-124-

then the search may continue (if the quantifier allows) for the
next item, and the process iterates until no more matching items
are found (the end of the universe is reached) or the specified

number of items has been found.

The test for “match” is as follows: an “I don't care" matches
any value for its correspondent in the candidate structure; any
fully-specified attribute must be identical to its correspondent’s
attribute; all attach/relate truth-values must be identical. Thus
if the pattern specifies a particular value, the matching structure
must have the identical value; if the pattern specifies "relate"
then the matching structure must be related; if the pattern says
“1 don't care about the graph" then the graph of the (node) can-
didate is of no consequence in the match. The logical value
“false" in the gbject or value position of the pattern indicates
that the matching structure must not have any GROPE structure as
the corresponding object or value attribute, while the absence of
the object or value attribute in the pattern indicates an “I don't
care” with regards to that attribute in the matching structure.

Finally, note that either one or two system sets may be searched
in this process.

ex: T = N# , LV, #M= or ?=N#,L:V, #M=

This says: "“Find me an arc whose frnode is N, whose label is L,
and whose tonode is M; I don't care whether it is attached or

related (although it must be one or the other), or what its

-125- 126~

object is, but its value must be V. If none exists, do nothing". creating 1t is exited. Therefore a vector expression cannot be

- the value of a procedure, for instance. However, it may be
<list-building expression>::= ((ﬂ<grope exp>-) (?gggg:'e:gzv) .)) P Y
passed as a parameter to another procedure.

The list-building expression is just that -- an expression .
<procedure invocation>::= <procedure name> { (<actua1 par. list>))
which builds a list. No search is performed (there is no system
. ; . : <procedure name>:;:= <proc. id>
set composed of lists), so this necessarily builds a new list each <grope exp>

time it is evaluated. Its value may be specified if desired -- <actual parameter list>::= <<expression> . >-

delimited by two symbols “4" as in the Data language. The list's

. L A procedure invocation is a proced " "
initial elements {if any) and their order in the list is indicated P P ure "call The name of the

. rocedure (typically a procedure identifi i i .
by evaluating the mixture of grope expressions and “quantified P (trp v " er) is given, followed by

a pair of parentheses enclosing its i .
universes" encountered before the matching right parenthesis. P P g arguments (if any). However,

any GROPE expression which produces a "procedure atom" (an atom

<set-building expression>::= { (1<grope exp> ﬂ) (Egggg:.e:3:V> .) 1 whose image is a procedure) may appear instead. This powerful
feature allows the programmer to store the “"name" of a procedure
The set-building expression builds a set, of course. Its . .
in a graph or list, say, and call that procedure with an argument
initial value may be specified, as well as any element -- but not . .
—— list as dg51red. Thus the construction of interpreters in GROPE
the order of the elements, which is controlled by GROPE. A new R .
baS LN is almost unreasonably simple; the user can surely imagine many
set 1s created each time such an expression is encountered, since

applications for this feature -- one of the more useful concepts
t f t i hich 1d b hed.
no system set of sets exists which cou e searche in GROPE.
<vector-building expression>::= < <}expression> ,> > ex: G(X)(Y,1)
A vector-building expression builds a vector of values; the This evaluates the function G with arqument X; the result must
types of these values must be uniform: all GROPE, all INTEGER, : be a procedure atom, and the procedure it references (as its image)
etc. The programmer will find that the utility of this feature is then evaluated with two arguments, Y and 7.

is somewhat limited because it does not imply “permanent” allocation

of storage space: its storage space is deallocated when the procedure

-127-

: name> b ipts
<extended variable»::s | OTT3Y [<subscripts.]

<simple var>

. <array id»
carray name>::-

<grope exp>

*
; . i * ; . j<arith. exp>
<subscripts»i: <arith. exp> , <arith. exp> {: N

<array identifier> [<<arith‘ exp> ,)—]
<simple variable>

<variable»::=

Array accessing is non-standard in only two respects: (1) an
array name may be either an array identifier or any GROPE expression
which evaluates to produce an "array atom” -- one created with an
array as its image; {(2) the subscripts may reference a number of
{contiguous) locations -- a portion of a row, an entire row, a
portion of a plane, an entire plane, etc. Essentially, the programmer
may “delete” subscripts from the right, substituting one symbol "**
to indicate this; or he may specify a range (two arithmetic expres-
sions separated by a colon) as the rightmost un-deleted subscript,
or he may specify a range but substitute the symbol "*" for the
second arithmetic expression. Subscripts must be(come) integers,
by means of truncation if necessary.

ex: A[10,10,10] , A[5,7,3:6] , A[2,6,4:%] , A[1,5,*] ,

A[3,9:10] , A[4,7:*) , A[6,*] , A[S5:101 , A[7:*] , A[*]
The first example references one item at location 10, 10, 10; the
second example, items 3 to 6 (inclusive) in row 5, 7; the third
example, row 2, 6, from the 4th column to the end; the fourth

example, the entire row 1, 5; the fifth example, rows 9 and 10 in

-128-

in plane 3; the sixth example, everything in plane 4 from row 7
to the end; the seventh example, all of plane 6; the eighth
example, planes 5 through 10; the ninth example, everything in
the array from plane 7 to the end; and the tenth example, the

entire array A.
ex: F{x)[1,4]

This invokes the procedure F with one argument, X; the value
feturned by F must be an array atom, which is then accessed for

its Jth item in row I.

In order to override the indicated precedence (to force addition
before multiplication, for instance), the brackets "<<" and “>>"
are provided. These are admittedly unusual, but since there is a
shortage of characters in the alphabet, and this use of brackets
is the most infrequent, it was decided that this usage would have
to be the "ugly" one.

oy

CURCI

CURCO
FIRST
FRNODE
GRAPH
IMAGE
<location>::= LABEL (<grope exp>)
LAST

LOCALE
0BJECT
TONODE
JALUE

NTH (<grope exp> , <arith, exp>)

<extended variable>

- el

-129-

At last we define "locatfon”. A location is a place to which
one may assign a value; in the traditional usage, this has been a
variable, whether simple or subscripted. GROPE adds the concept
of "extended” variable, plus that of "functional replacement”.
PL/I has a form of the latter which is simitar to GROPE's, except
not for GROPE's type of data structures. The "change" operations
in the last part of Chapter 3 are examples of what can be done

using these "functional" locations.
ex: OBJECT(A) <= X

This replaces the object of A with the object X. A must be an
arc, node, or graph, and X must be an object (or else the GROPE
“"false" value, in which case A will no longer have an object --

that is, OBJECT(A) will return the “"false” value).
ex: READ VALUE(G)

This "reads" the new value for G "directly" into G's value field.
G must be a label -- the only structure type that has a value

attribute.
ex: NTH(L,4) <= 1
This replaces the fourth element of the list L with the GROPE

structure Z. The other elements of the list, and the length of

the list, are unaffected.

The character set of Programming language is the same as

that of the Data language, with the addition of the characters

~-130-

L] "

"
<.

>* and “-", and the deletion of the characters "$", "%",
and "¢". GROPE also defines “{" to be equivalené to “(:"; "}" is
equivalent to ":)"; "[", to "<:*; and "I", to ":". “<" and ">"
may also be deleted from the character set because there are

defined equivalents. Along with the deletion of lower-case letters,
and the substitution of the decimal point "." for the catenation
operator “-", the resultant set comprises 58 characters. Further
substitutions and deletions would certainly begin to render the
language unreadable, so this is not recommended; a minimum of 60

to 65 characters is preferable.

Provided procedures

The astute reader may have noticed in Chapter V that no
means has yet been provided for exiting from procedures or termina-
ting program execution. There is no statement in the language
which effects these capabilities. Instead these features are
implemented by means of the provided procedures RETURN, EXIT,
STOP, and ABORT.

RETURN is a procedure that "never comes back" after being
called; rather it causes the procedure calling it to be exited.
The argument passed to RETURN is the value returned as the value

of the calling procedure. The "execution" of FIN is RETURN(FALSE).

ex: RETURN{X) will exit the procedure containing this call
to RETURN, and the value of the procedure will be X.

-131-

EXIT{procname,value), where procname is an ALPHA expression,
and value is the value to be returned (as in RETURN), will cause
the procedure whose symbolic name matches procname to be exited
with the value. Procedure calls are of course handled with a run-
time stack: EXIT searches this stack for the most recent invocation
of the procedure whose name is procname, then pops all the stack to
that point and returns value to the procedure calling procname.

(If there is no instance of an invocation of procname, the program

is terminated abnormally.)

ABORT and STOP each take one ALPHA argument and terminate
program execution with a message (the argument); ABORT constitutes
abnormal termination, while STOP is normal. Note that the program
is also terminated "nermally" (with no message) if MAIN procedure
“falls through" to the end (FIN) by not invoking RETURN, EXIT,
STOP or ABORT.

This completes the definition of GROPE 2. The design was
intended to produce a clean, convenient, useful language for the
GROPE programmer. Certain features of some other languages are
not available in GROPE; certain features of GROPE are not avail-
able in other programming languages. In the end, only the user
can judge the worth of the language, and then only with some ex-

perience in using it.

Appendix A contains the definitions of all GROPE procedures --

many more than have been defined up to this point. Given the

-132-

understanding of the GROPE data structures as presented in
Chapters 1 through III, the reader should be able to understand
the English definitions presented. Many of the procedures des-
cribed there, however, need not necessarily be used as procedures
in GROPE programs; the GROPE translator automatically generates
calls to some of them when certain syntactic constructs (presented
herein) are encountered. ({Ffor example, consider the "is" and
“change" functions.) Even given the size of this document, not
all of GROPE has been presented or necessarily adequately ex-
plained. The attempt has been to provide the user with a thorough
introduction to GROPE, from which point one may experiment with
more advanced features of the language and data structure until a
complete understanding is attained. Nevertheless, it is felt that
even partial comprehension of what has been introduced here will
allow the production of “good" GROPE programs employing many of
the advanced features of the language. It is hoped that this

document will provide the incentive for such experimentation.

-133-

CHAPTER VII

Conclusions

There have been more than enough uses of GROPE1 to justify
its development into GROPE 2. Slocum [31]}, Hendrix [13, 15], and
Thompson [36] have implemented natural language processing programs
in GROPE. The Linguistics Research Center at the University of
Texas (Austin) has employed GROPE as a central portion of its
automated translation system [20, 32, 33]. In the area of program-
ming language semantics, an ALGOL interpreter (Wilson [40], and
Wesson [39]), using H-graphs [25] is being tested in GROPE. Work
in program analysis (Griggs [10]), optimal overlay structure for
LISP and FORTRAN programs (Greenawalt [9]), and robotics

(Hendrix [14]) are further illustrations of the utility of GROPE.
Sussman [34) makes the point that

A higher level language derives its
great power from the fact that it tends to
impose structure on the problem solving be-
havior of the user. Besides providing a
library of useful subroutines with a uniform
calling sequence, the author of a higher level
language imposes his theory of problem solving
on the user. By choosing what primitive data
structures, and operators he presents, he
makes the implementation of some algorithms
more difficult than others, thus qiscouraging
some techniques and encouraging others. So,
to be "good", a higher level language must not

-134-

only simplify the job of programming, by providing
features which package programming structures com-
monly found in the domain for which the language
was designed, it must also do its best to dis-
courage the use of structures which lead to "bad"
algorithms.

The approach taken by GROPE 2 is to provide the user with a
multiplicity of data structures which are very general in scope
and yet efficiently implemented, then to advance a programming
language which orients their usage in a convenient, readable

manner which enhances their utility. Still, GROPE does not simply

"provide all known data structures in a new format, but rather ad-

vances some new structures and some old structures which, taken
together, form a more powerful representation than any yet proposed
for operating in the graph processing domain. GROPE embodies some
major new ideas about representation and‘processing of complex

data structures. No other language provides so many well-defined
“system" sets which may be searched and modified by the user almost
at will, while at the same time providing for their automatic
maintenance so that the user is pever required to perform any
primitive operations upon them. No other programming language

with so many data structures provides a means of expressing them

in a linear format -- or of including them in the programming
language, rather than restricting their expression to 1/0 operations
only. GROPE data structures are everywhere dynamic: they can grow,

shrink, and be modified irregularly. The presence of a garbage

-135-

collector relieves the user of the responsibility {(and danger)
of performing his own storage allocation/deallocation. The
facility for creating atoms which are arrays and/or compiled
procedures and distributing them about the data structures makes

the creation and utilization of interpreters and simulation

programs almost ridiculously simple -- so much so that programming

a new interpreter for a new problem would be de rigeur, if it
weren't for the fact that the programming language itself is so

versatile.

The CASE and SELECT statements might of course be abandoned
in favor of IF statements, but to do so could drastically reduce
readability and associated reliability. (And in higher level
programming languages, readability and reliability is the name
of the game.) These statements are particularly useful in in-
terpreters and compilers -- the GROPE 2 translator makes use of

these statements in its own code.

The 1F/UNLESS and ELSE/REGARDLESS choices are dictated by
legibility and utility constraints: the former minimizes the
use of NOT, while the latter sometimes allows the formation of

one statement out of two without the use of BEGIN-END. The same

argument applies to the <repeat loop> THEN <exec. sta> construct --

it is nice to have around.

Of all the programming language statements, certainly the

FOR statement is the most novel. When used as a "mapping function",

-136-

performing operations upon each successive element of a linear

structure, it is most readable:
FOR ALL X IN L SUCH THAT F(X)

When used as a "search function", performing operations upon each

element matching some pattern, it is most powerful:

FOR EACH ARC = =N#LAB#*=
SUCH THAT F(TONODE(ARC))

Most GROPE algorithms to date have relied upon the "mapping®
facility {(extant in GROPE l'as the functions MAPFT, ANDFT, and
ORFT) to process system sets; however, there was no corresponding
search operation until GROPE 2 introduced it. Given that this
new facility is reasonably legible, it would appear to allow a
significant reduction in programming and debugging time -- since
the user does not have to write his own search functions, but
instead just specifies a pattern for the desired item{s). As

Bobrow [2] stated:

Most programming languages are universal in the
sensé that any algorithm that can be expressed

by a program in one language can also be expressed
in any of the other languages. However, the set
of unique facilities provided by a language makes
some types of programs easier to write in that
tanguage than any other. Indeed, the main reason
for introducing new features into a programming
language is to automate procedures that the user
needs and would otherwise have to code explicitly;

-137-

such features reduce the housekeeping details that
distract the user from the algorithms in which he
is really interested. Therefore, underlying the
design of any programming language is a set of
assumptions about the types of programs that users
of that language will be writing.

In the Future

The reason for the existence of EXIT, RETURN, ABORT, and STOP
as “"functions” rather than statements is to pave the way for ex-
tensions into the realm of "non-deterministic” programming. Back-
up features, etc., are easily implemented as "functions" which
perform operations on the program's environment. The possibility
of adding such operations to the GROPE repertoire of provided
procedures is under investigation; their implementation as functions
will allow the extension without any changes in the definition of
the language or the translator. Balanced against this, however,
is the knowledge that GROPE structures are "permanent" -- that
is, much more so than in LISP and its descendents. There is the
unanswered question: "Who (if anyone) will un-do all the data base
changes made since theilast fail-set, when backup is invoked"?
Until there is some satisfactory solution, implementation will

remain pending.

Finally one wmight ask, "What about a GROPE 2 interpreter"?
One answer is that there is not likely to be one: The declarations

in particular are oriented toward compilation -- not interpretation;

-138-

and the structure of the language gives no indicatian of any
internal representation of a GROPE program -- so fhat the user
might play with his program at run-time. The other answer is

that there will not be a GROPE 2 interpreter: rather, the user

may write his own if desired. It is more likely that the user

will invent his own “mini—]anguage“, perfectly suited to the

task at hand, then implement the interpreter for it in GROPE --

in a few minutes or hours., Herein lies the true power of GROPE:
the wide range of data structures and powerful programming language
features promote straightforward solutions to previously difficult

problems such as the implementation of ultra-specialized systems.

GROPE combines the speed of compiled code, the utility of
LISP, the flexibility of sophisticated graph-based structures,
and the over-all system control and portability of FORTRAN in a
single self-documenting language to produce a truly powerful

and convenient programming tool.

{1

2]

3]

4]

fs1

[6]

(7]

(8]

f9]
[10]

f11]

[12]

-139-

REFERENCES

Baron, R., L. Shapiro, D. P. Friedman, and J. Slocum, "Graph
processing using GROPE/360", University of lowa Computer
Science Technical Report (in preparation).

Bobrow, D. G., "New Programming Languages for Al
Research”, Tutorial Lecture presented at 3IJCAl,
Stanford University (1973).

Cashin, P. M., M. R. Mayson, and R. Podmore, "“LINKNET -- A
structure for computer representation and solution of network
problems”, Australian Computer Journal 3 (August 1971).

Crespi-reghizzi, S., and R. Morpurgo, "A language for treating
graphs”, Comm, ACM 13 (1970), 319-323.

Feldman, J. A,, and P. D. Rovner, "An ALGOL-based Associa-
tive Lanquage", CACM 12, 8, p. 439 {(August 1969).

friedman, D. P., D. Dickson, J. Fraser, and 7. W. Pratt,
"GRASPE 1.5: a graph processor and its application”, Depart-
ment of Computer Science Report RS1-69, University of Houston,
Houston, Texas (1969).

, “GRASPE: graph processing a LISP extension",
Computation Center Report THN-84, University of Texas, Austin,
Texas (1968).

Friedman, D. P., GROPE: A Graph Processing Languagg and
its Formal Definition, Ph.D. dissertation, University
of Texas (June 1973).

Greenawalt, E. M., private communication.

Griggs, Eric R., "Automatic Data Flow Analysis of Computer
Programs", unpublished Master's thesis, University of Texas
at Austin {May 1973).

Griswold, R, E., J. F. Poage, and I. P. Polonsky, The SNOBOLA
Programming Lanquage, Englewood Cliffs, New Jersey: Prentice-
Hall, Inc. (7968).

Hart, R., "HINT: a graph processing language", Institute for
Social Science Research Technical Report, Michigan State
University, East Lansing, Michigan (1969).

[13]

[14]

[15]

[16]

(17}

[18]

[19]

[20]

[21]
[22]
[23]
[24]
[25]

f26]

-140-

Hendrix, 6. G., "Question answering via canonical verbs and
semantic models: A model of textual meaning", Technical
Report NL12, Department of Computer Science, The University
of Texas at Austin {January 1973).

, "Modeling simultaneous actions and continuous
processes”, to appear in Artificial Intelligence Journal.

. > C. W. Thompson, and J. Slocum, "Language processing
via canonical verbs and semantic models™, in Proceedings of

the Third Annual Joint Conference on Artificial Inteliigence
{August 19737,

Iverson, K. E., A Programming Language, John Wiley & Sons,
New York (1962).

Kiviat, P. J., Introduction to the SIMSCRIPT Il Programming
Langyage, RAND Corp., P-3314, Santa Monica, Calif. {February
1966).

Knowlton, K. C., "A programmer's description of L6, Bell
Telephone Laboratories low-level linked list langquage",
Comm. ACM 9, 8 (August 1966).

Lawsen, Harold W., Jr., "PL/I list processing”, Comm. ACM 6
(June 1967), 385-367.

Lehmann, W. P., and R. Stachowitz, "German -

English translation system", Technical Report of the
Linguistics Research Center, The University of Texas at
Austin. In preparation (1973).

McCarthy, J., et al., LISP 1.5 Programmer's Manual, MIT Press,
Cambridge, Massachusetts (1662).

Naur, P. (ed.), "Report on the algorithmic language ALGOL 60",
Comm. ACM 6, pp. 1-17 {(January 1963).

Newell, Allen (ed.), Information Processing Language-V Manual,
Prentice-Hall, Englewood CViffs, New Jersey (1961).

Pohl, Ira, "A method for finding Hamilton paths and Knight's
tours”, Comm., ACM 7 (July 1967).

Pratt, T. W., "A hierarchical graph model of the semantics
of programs", Proceedings of AFIPS SJCC, 813-825 (1969).

_ ___, "Semantic modeling by hierarchical graphs",
ACM ST GPLAN Symposium on Programming Language Definition,
San fFrancisco, Calif. (August 1969).

[27]

[28]

f29]

[30]

[31]

[32]

{331

[34]

f35]

[36]

{37]
[38]

[39]

[40]

-141-

. "Pair grammars, graph languages, and string-to-
raph translations", J. of Comp. Sys. Sci., 5, 560-595
?6 Dec. 1971).

, "A forma) definition of ALGOL 60 using hierarchical
graphs and pair grammars", Report TSN-33, University of Texas
Computation Center, 82 pp. (1973).

, and D. P. Friedman, "A language extension for
graph processing and its formal semantics", Comm. ACM 14,
460-467 (1971).

Ross, Douglas T., “"The AED free storage package”, Comm. ACM 8,
481-492 (August 1967)

Slecum, J., "Question answering via canonical verbs and
semantic models: generating English for the model", Tech-
nical Report NL13, Department of Computer Science, The Univer-
sity of Texas at Austln (January 1973).

Stachowitz, Rolf, Voraussetzungen fiir maschinelle Ubersetzung:
?rob\eme, Losungen, Aussichten, Athen§um Verlag, Frankfurt/M,
1973).

, Ein Modell linguistischer Performanz, Athendum
VerTag, Frankfurt/M. (in preparation).

Sussman, G. J., and D. V. McDermott, "Why Conniving is better
than Planning", Al Memo No. 255A, MIT Project MAC ?Apri] 1972).

Swinehart, D. €., and R. F. Sproull, "SAIL Manual", Stanford
Al Projecy Operating Note No. 57.2, Artificial Intelligence
Project, Stanford University (1971).

Thompson, C. W., "Question answering via canonical verbs
and semantic models: Parsing to canonical verb forms"
Technical Report NL13, Department of Computer Science, The
University of Texas at Austin (January 1973).

USA Standard X3.23-1968 COBOL.

Weizenbaum, J., "Symmetric list processor", Comm. ACM 6, 9
(September 1963).

Wesson, Robert B., "A pair grammar based string to graph
translator writing system", Master's thesis in preparation,
The University of Texas at Austin.

Wilson, James P., "Graphical representat1on of semantic
structure”, unpub]lshed Master's thesis, The University of
Texas at Austin (August 1972).

[41]

[42]

f43]

-142-

Wirth, N., “The programming language, PASCAL",
Acta Informtica 1, 35-63 (1971).

Woods, W. A., “Transition network grammars for natural language
analysis®, Comm ACM 13, 10, 591-606 (October 1870).

Wulf, W. A., D. B. Russell, and A. N. Haberman, "BLISS:

A Language for Systems Programming”, CACM 14, 12, pp 780-790
(December 1971).

GROPE 1.5 A-1

APPENDIX A

ALL THE LITTLE GROPE FUNCTIONS

(OTHERWISE KNOWN AS GROPE 1.5)

NOTE: THE ASTERISKS MARK THE PROCEDURES
NOT AVAILABLE IN THE PROGRAMMING LANGUAGE
VIA SPECIAL SYNTACTIC CONSTRUCTS

PROCEDURES

GROPE 1,5 A-2 PROCEDUKES

ABOKT (MESSAGE] NEVER RETURNS, THE PROGRAM 1S TERMINATED ABNORMALLY,
AND THE ALPHA STRING MESSAGE IS PRINTED.

ADD {VALUESET]) = SET. IFf THE VALUE IS NUT ALREADY A MEMBER OF TwE
SETs THEN IT IS ADDED TO THE SET AS A NEW ELEMENT, OTHERWISEs
NO ACTION IS5 PERFORMED,

ASCEND (READER] = READER, THE READEReS STACK 1S POPPED ONE LEVEL -
THAT 1S, THE READER ASCENDS OuT OF THE MOST RECENT SuB-
STRUCTURE TO wHICH 1T DESCENDED.

ATTACH [ARC-NODE-OKR-GRAPH]} 1= ARC-NQUE-OR-GRAPH, THE ARCes NODEs OR
GRAPH PASSED AS AN ARGUMENT 1S ATTACHED TO THE APPROPRIATE
(RSETIs NSETs OK GSET) ATTSET ~= THAT ISe 1T BECOMES AN
ELEMENT OF THE PROPER SYSTEM SETs IF 1T wAS NOT SO ALREADY.
THE ADDITION 1S MADE BY STACKING OR QUEUINGe ACCORDING TO THE
POSITION OF THE GLOBAL ALPHA »QSMODE~ SwlTCH,.

CARTES ([SET1sSET2) = A MEW SFT wHICH IS Trnt CARTESIAN PRODUCT OF THE
TWO SETS PASSED AS AKGUMENTS. FACH ELEMENT OF THE NEw SET IS
A LIST OF TWO VALUESs THE FIRST OF WHICH IS AN ELEMENT OF
SEV1e AND THE SECOND OF wWHICH IS AN ELEMENT OF SETZ2.

CHACURI{NODESARC) 3= NUDE. THE ARC BECOMES THE CURRENT=ARC=INCOMING
TO THE MNODE. CHATON 1S INVOKED IF NECESSARY.

CHACURO{NODE+ARC] = NODE. THE ARC BECOMES THE CURRENT=ARC-OUTGOING
FROM THE NODE. CHAFRN IS INVOKED If NECESSARY.

CHAFIR {LISTeVALUE]) 1= LIST. THE VALUE IS SuSTITUTED FOR THE FIRST
TTEM In THE (ISTs wHICH MUST NOT HE EMPTY,

CHAFRN [ARCYNODE] :i= ARC. THE NODE oECOMES THE FRNODE OF THE ARC.
(CONCEPTUALLYy THE TAIL OF ThHE ARC IS SwUNG AROUND SO THAT THE
ARC NOw ORIGINATES FROM ThHE NEW NODE.) IF THE ARC WAS KELATED
(IN THE RSETO)s 1T WILL ALSO BE IN THE NEw RSETO,

CHAGR (NODEGHAPH] 1= NODE. THE NODE IS REMOVED FROM ITS OLD GRAPH
AND UEPOSITED IN THE NEW (ARGUMENT) GRAPH, IF THE NODE waS
RELATED (IN THE NODESEY OF 1TSS OLD GRAPH)s [T wltt BE IN TnE
NODESET OF 1TSS NEw ORAPH,

CHALAB [aRC~NODE~OR-GRAPHILABEL) iz ARC=NODE~OR~(GRAPH, THE ARCe
NODEs OR GRAPH ACQUIRES THE NEw LABEL., IN THE CASE OF NODES
AND GRAPHSSs THIS MIGHT ENTAIL REMOVING THE NODE OR GRAPH FkOM
THE NSET OR GSET OF ITS OLD LABEL AND ADDING IV TQ THAT OF I1S
NEW LadEL (BUT OwnLY IF THE NODE OR GRAPH WwAS ALREADY
ATTACHED) o

CHALAS [LISTsVALUE] 3= LIST. [THE VALUE 1S SUBSTITUTED FOR THE LAST
ITEM In TrbE LIST (wrICH MUST NOT bE EMPTY),

CHALEX {CHARACTERYINTEGER] = CHARACTER, THE oLEXICAL CLASSe OF ThE
(STRING) CHARACTER BECOMES THE CLASS DESIGNATED BY THE SMALL
POSETIVE INTEGER, {SEFE THE LEX FUNCTION.)

GROPE 1.5 A-3 PROCEDURES

CHALOC [READERIREADERZ) := READERL, THE LOCALE (TEXT AND TOKEN) OF
READER] IS ALTERED YO BECOME IDENTICAL TO TWAT OF READERZ.

CHANTH [LISToVALUE INTEGER)} = LIST. THE VALUE 1S SUBSTITUTED FOR
THE NTH ITEM IN THE NON-EMPTY LISTs AS INDICATED BY TuE SMALL
POSITIVE INTEGER, (CHANTHILISTsVALUES1] IS EQUIVALENT TO
CHAFTRILISTsVALUE).}

CHATON [ARCNODE} := ARC, THE NODE BECOMES THE TONODE OF THE AKC.
(CONCEPTUALLY. THE ®EAD OF TrE ARC IS SWUNG AROUND TO POINT TO
THE NEw NODE.) IF NECESSARY, THE ARC IS DETACHED FROM ITS OLD
TONODE AND ATTACHED T0 ITS NEW TONODE ("UT ONLY 1f IT wAS
ALREADY IN THE RSETI OF ITS OLD TONODE).

CHAVAL (LABELsVALUE]} = LAHMEL. TrHE LABEL ACQUIRES THE NEw VALUE,
LOSING ITS OLD ONE IF ANY., IF THE SECOND ARGUMENT IS THE
AFALSEr GROFPE VALUE (BINARY ZERO)» THE LABEL WILL HAVE THE
#FALSE» VALUE == THAT [S. NO VALUE AT ALL.

CHEND (READER) 3= READER, THE LIST BEING READ BY THE READER IS
ALTEKED SO THAT THE ELEMENT INDICATED HY THE READER BECOMES
THE LAST IN THE LIST, THE ORDER OF ELEMENTS 1S NOT CHANGED
(THAT ISs THE INDICATED ITEM IS NOT MOVED)s BUT RATHER THE
INTERNAL POINTER TO THE ~FIKSTe LIST ELEMENT IS CHANGED TO
POINT TO THE ELEMENT FOLLOWING THE INDICATED ITEM,

CHOBJ {ARC-NODE-OR-GRAPHWOBJECT] 1= ARC-NODE~OR-~GRAPH, THE ARCy
NODE+ OR GRAPH ACQUIRES A NEW OBJECTs LOSING ITS OLD ONE. IF
THE SECOND ARGUMENT (OBJUECT) IS THE ~FALSE~» GROPE VALUE
(BINARY ZERO)s THEN THE ARC» NODEs OR GRAPH WILL HAVE NO
08JECT,.

CHTEXT [READERSYEXT) = READER. THE READER. WITHOUT ASCENDING OR
DESCENDINGs IS CAUSED TO HAVE A NEw TEXT (LINEAR STRUCTURE
NODE s OR GRAPH)W 1T 1S RESTARTED ==~ SO THAT IT HAS NO CURRENT
TOKEN UNTIL THE READER HAS BEEN MOVED,

COMDIF (SET1+5ET2) 5= A NEW SET COMPOSED OF THE ELEMENTS OF SET1 THAT
ARE NOT ALSO IN SET2. tSET1 - INTERSECTION({SETI1+SET21})

CONCAT {LIST1sLIST2) = LISTL, LISYT2 BECOMES EMPTYs AND 1TSS ELEMENTS
ARE APPENDED TO THE END OF LIST1ls wHICH THUS GROWS BY THE
NUMHER OF I1TEMS FURMERLY IN LIST2.

CONNECTIREADERL+READERZ) = READERL., READER) IN THIS MANNER ACQUIRES
A NEw HISTORY (STACK)s AND IN THE PROCESS LOSES 1TS OLD ONE.
AFTER THIS OPERATIONs ASCENUIREADERL] WwILL PRODUCE KEADARZ,
(AMONG OTHER THINGSe THIS ALLOWS FOR THE EASY CREATION OF A
CONCORUANCE 49

CURCI {NODE} i3 THE CURRENT=ARC-INCOMING TO THE NODEs IF ANY, I
THERE 1% NONE (PROBABLY BECAUSE NO READER HAS EXECUTED A T1
FROM Trls NODE)s THEN THE oFALSE~ VALUE IS RETURNED,

CURCO [NODE) 1= Trit CURKENT=ARC~-OUTGOING FROM THE NODECs 1F ANY,

GROPE 1,5 At PROCEDURES

DELETE [(READER) := READER, THE ITEM IN THE LIST INDICATED BY TkE
READER IS ELIMINATED FROM TrE £1ST -- TrUS SHRINKING IT BY ONE
1TEM, THE READER 1S MOVED BACK ONE STERP (wlln 11} HREFORE TnE
OPERATIONs SO AS NOT TO LEAVE IT DANGLING,

DESCENDIREADERSTEXT]} := A NEW READER FOR THE TEXTe HAVING PUSKHED TrE
ARGUMENT READER DOWN ON ITS STACK, (THAT 1Se THE CURRENT
STATUS OF THE ARGUMENT HEADER 1S KEMEMHERED,) QPERAT JONALL Y s
THIS Is BEQUIVALENT TO CONNECTIREAUELRITEXT JoREADEK Y,

DETACH {ARC-HODE-OR=-GRAPH] 3= ARC-NODE-QK-GKRAPH., ThE ARCs NODEs OR
GRAPH ARGUMENT IS REMOVED FROM THL APPROPRIATE ATTSET (RSET1.
NSETs OR GSET).

DISCON (READER) iz READER., THE READER LOSES 171S HISTQORY (STACn),
HENCEFORTH IT MAY NOT ASCENDs SINCE 1T IS5 NO LONGER »DEEP-,

ENDFILE(FILENAME] = FILENAME, AN otND-OF~F [LEr IS WKITTEN ON THE
FILE INDICATED BY THE ALPHA STRING FILENAME,

EXIT {PROCNAMESVALUE] = VALUEy BUT EXIT UDOES NOT SIMPLY RETURN T0O
THE PROCEDURE CALLING 1T. INSTEADs T CAUSES THE PRUCEDUKRE
INDICATED BY Trf ALPHA STRING PROCNAME TO BE EXITED wlTr THE
INDICATED VALUE AS [TS FUNCTIONAL VALUE, THIS MAY PC2 InE
CONTROL STACK BY AN ARRITRARY AMOUNT BUT ONLY UNTIL Thb LAST
(MOST RECENT) INVOCATION OF PROCHAME S FOUND,.

FIRST [LINEAR-STRUCTURE] = THWE FIRST ELEMENT InN THE LINEAR STRUCTURE
(LISTs SETe OR SYSTEM SET)e ELSE ThE efaLSE~ VALUE IF THE
STRUCTURE 15 EMPTY,

FRNODETARCY 3= THE NODE FRUM wHICH Tob ARC EMANATES,

GRAPH [NODE] i= THE GRAPH ON WHICH THE “~NODE RESIDES,

GSET [LABEL) = Trk SYSTEM SET COMPRISING ALL OF THE ATTACHED GRAPHS
SHARING THE 1DENTICAL LABREL.

IMAGE [ATOM) = THE CHARACTER STRINGs NUMBERs ETC.s wHICH IS TnE
ePRINTS IMAGE OF TrE ATOM,

INSERT [READERPVALUE Y = KREADER. ThE vALUE IS INSERTED INTO THE L]ST
INDICATED BY ThE READE®s JUST TO TnE RIGNHT OF THE READEReS
POSITION. THUS THE LIST GROWS BY ONF ITEMs AND THE NEXT
TOUREADER] wiltt ADVANCE TrE WEADER PTQ THE ITEM INSERTED,

INTERSECT (SEVISETZ2) = A NEW SET COMPOSEU OF THE ELEMENTS IN SETI1
WHICH ARE ALSO IN SETZ,

ISALPHALATOM] 3= ATOM [F THE IMAGELTATOM]} IS A CHAKACTER STRING,.
ISAKC [ARG] 1= ARG 1F ARG IS AN ARCH OTHEkSISE]5AKC = FALSE,
ISARRAYLATOMT = ATOM IF Tt IMAGELATOM) IS AM ARRAY (OF ANY TYPE) .

ISATBEGIREADER]) = WEADEW IF THE REAULR IS POINTING AT Teb FIRST JTEM

GROPE 1,5 A5 PROCEDURES
In THE LINEAR STRUCTURE THAT IS 1735 TEXT,

ISATENDIREADER]) = READER IF THE READER IS5 POINTING AT THE LAST ITEM
In THE LINEAR STRUCTURE TwAT IS TS TEXT,

ISATOM (ARG) i= ARG [F ARG IS AN ATOM: OTHERWISE ISATOM := FALSE.

ISATSET(ARG]) = ARG [F AHG 1S THE ATOMSETYY OTHERWISE FALSE.

ISATT [ARC-NODE-OR-GKAPH]) = ARC-NODE=-OR-GRAPH IF IT IS ATTACHED (IF
IT IS IN THE APPROPRIATE ATISET)I? OTHERWISE FALSE.

ISATTIST{ARG] 3= ARG IF ARG IS AN ATTSET (HSETIs NSETs UR GSET).
ISCURCILARC]) = ARC [F ARC 1S THE CURCI OF ITS TONUDE.
ISCURCOCLARC]) = ARC [F ARC IS THE CURCO OF 1TS FRNODE.

ISDEEP [(READER)} i= READER If THE READER HAS A NON~EMPTY STACK (THE
READER MAY BE ASCEND)§ OTHERWISE FALSE,

ISDISY [SET1+SET2) = SETI IF THE TwO SETS ARE DISJOINT (HAVE NO
ELEMENTS IN COMMON) 3 OTHERWISE FALSE

ISGRAPH{ARG] 1= ARG IF ARG [S A GRAPHE OTHERWISE [SGRAPH 3= FALSE.

ISGHOPE[{ATOM] = ATOM IF THE IMAGE({ATOM] IS5 ITSELF A GROPE STRUCTURE
-~ THAT ISy AN ARRAY OF GROPE STRUCTURES.

ISOGRSETIARGY iz ARG IF ARG IS THE ORAPHSETG OTHERWISE FALSE,
ISGSET [ARG] = ARG IF ARG IS A GSET (OF SOME LABEL).
ISINT LATOM) 3= ATOM IF THE IMAGE{ATOM] 1S5 AN INTEGER.

ISLAB [(ARG] := ARG IF ARG IS A LABEL (AN ATOMs ARCs NODEs GRAPH»
LISTy UR SET),

ISLIST (ARG) = ARG IF ARG IS A LISTI OTHERWISE ISLIST = FALSE,

ISLNSR [ARG) ARG 1F ARG 1S A LINEAR STRUCTURES OTHERWISE FALSE,

i

ISNODE [ARG] = ARG IF ARG 1S A NODLE: OTHERWISE ISNODE := FALSE,
ISNUDESTARG] :i= ARG IFf ARG IS A NODESET (OF SOME GRAPH) .
ISNSET (ARG] = ARG IF ARG IS AN NSET (OF SOME LABEL).

ISNUM LATOM] = ATOM IF THE IMAGE[ATUM) 1S NUMERIC (INTEGER OR REAL)S
wrETHER AN ARRAY OR A SCALAR,

1508J [ARG] = ARG IF ARG 1S AN OBJECT (A LABELs KEADER, OR PSEUDO
INTEGER) 3 OTHERWISE 1S0By := FALSE.

1SPROC {ATOM]) = ATOM IF ATUM 1S A PROCEODURE-ATOM (ONE WHOSE rIMAGER
IS A PHRGCEDURE) ¥ OTHERWISE 1SPROC = FALSE.

@

“

“

GROPE 1.5 A-h PROCEDURE S
ISPSEUDLARG) = ARG IF ARG IS A PSEUDO-INTEGERY OTHERWISE FALSE,

ISPSUB [SET1SET2) = SETD [F SET)] IS A PROPLR SUBSET OF SETZ2 (A
SUBSETs BUT NOT EGUAL) 5 OTHERWISF FALSE,

ISROK LARGE 3= ARG If ARG IS A READEW: UTHERWISE JSRDR iz FALSE,
ISREAL [ATOM] := ATOM IF THE [MAGE[ATOM] IS A REAL NUMBERP,
ISREL [ATOM-ARC-NODE~-OR~GRAPH) iz ATOM~ARC-NODE~OR-GRAPH IF 1T is

RELATED (IT IS IN THE APPROPEIATE RELSET) i OTHERWISE FALSE.

ISRELSTIARG) = ARG IF ARG IS5 A RELSET (THE ATOMSETs THE GHAPHSET. &
NODESETs OR AN RSETO0)5 OTHERWISE ISRELST := FALSE,

ISRSETILARG) = ARG IF AKG IS AN RSETI (OF SOME NOUL) .
ISRSETOLARG] = ARG IF ARG IS AN RSETOQ (OF SOME NOGE) .
ISSET [ARG) 3= ARG IF ARG IS5 A (USERs NOT SYSTEM) SET. '

ISSUB (SET1,SET2} = SET1 IF SETI IS A SUSSET OF SET2s OTHERWISE
FaLSE,

ISSYSET(ARG]) $= ARG IF ARG IS A SYSTEM SET (AN ATTSET OR A RELSET),

ISTEXT [ARG] $= ARG IF ARG IS A LINEAR STRUCTUREs A NODEe. OR A GRAPH
(ARG MAY BE SEARCHED WITH A READER).

ISVAL LARG] 3= ARG IF ARG IS5 A GROPEL STRUCTURES IF ARG IS THE #FALSEe
VALUEs OR A STRINGs OR NUMBERs ETCe.» ISVAL iz FALSE.

LABEL [ARC-NODE-OR-GRAPH] := THE LAHBEL ASSIGNED TO THE ARCs NODE. OR
GRAPH, (EVERY ARCs» NODEs AND GRAPH HAS A LABEL.)

LAST [LINEAR-STHUCTURE) = THE LAST ITEM IN THE LINEAR STRUCTURE

LENGTH [LINEAR=STRUCTURE) = THE (INTEGEK) NUMBER OF ITEMS IN THE

LINEAR STRUCTURE.

LEX {CHARACTER] = THE (INTEGER) wLEXICAL CLASSe OF THE ALPHA STRING
CHARACTER, THIS IS THE CODE wWHICH THE GROPE 1/0 ROUTINES
EMPLOY TO DETERMINE HOW TO TWEAT £ACH CHAKACTER == FOR
EXAMPLE y THE LEFT PARENTHESIS mAS DEFAULT CLASS 163 ANY
CHARACTER IN CLASS 19 1S BY DEFINITION A LEFT-SIDE L1ST
DELIMITER. WHEN THE GROPE INPUT ROUTINE FINDS A CHARACTER OF
CLASS 19+ IT EXPECTS. A LIST 10 FOLLOWS TERMINATED RY SOMF
CHARACTER FROM CLASS 20, CONVESSELY, WHEN THE GROPE 0QJ4TPUT
ROUTINE NEEDS TO PRINT A& LISTs IT CHODSES ONE OF ThE
CHARACTERS IN CLASS 19 TO PRINT AS TrE LEFT DELIMITERe AND ONF
OF TrOSE IN CLASS 20 AS THE R{GHT DFLIMITER, ETC. THUS THF
USER MAY EXAMINE THE CUNRENT LEXTCAL CLASS OF 4 CHARACTER HY
MEANS OF THE LEX FUNCTIONs AND hE MAY CHANGE 1T wlTH TwE
CHALEX WUOUTINE MENTIONED EAKLIER, SBhLUOw Is a4 LIST uF TrE
CHARACTERS AND THEIR DEFAULT CLASSES. IN ORDER TO FutLy
UNDERSTAND THE IMPLICATIONS OF TwlS TABLE. THE READER MUST gt

GROPE

L IMAGE

1.9 A7 PROCEDURES

FAMILIAR WiTH THE DATA LANGUAGE.
CLASS MEMBERS

'] <END-OF =L IN

1 A CF 6H

QRSTU

£>
1 JLNDO
VWwXxy?z?z

123456789

DN L P
2o o wa + NI SXTMOTXD T

L

s h ¢

N
n
G5 U TR Y A s e g -

29 <BL ANK>

{ATOM) = THE LENGTH OF THE IMAGELATOM]s IN CHARACTERS OR
WORDS AS APPROPRIATE,

LIST (ARG} $= A NEwW EMPTY LIST. IF ARG IS A GROPE VALUEs THEN IT

LOCALE

MACUR]
MACURO

MAYATT

MAYREL

MEMHBER

JILL BE THE VALUE OF THE NEW LIST3 OTHERWISEs THE LIST HAS NO

VALUE.

(READER)} = READER, THIS IDENTITY FUNCTION ACTUALLY EXISTS
ONLY FOR THE SAKE OF COMPLETENESS -~ LOCALE IS A <LOCATION>
FUNCTIONs AND AS SUCH 1T HAS A CH~ COUNTERPART: CHALOC.

[ARC) = ARC, THE ARC BECNMES THE CURCI OF ITS TONODE.

fARC) = ARC, THE ARC BECOMES THE CURCO OF ITS FRNODE.

[VALUE} = vALUE IF THE GROPE VALUE (STRUCTURE) MAY BE
ATTACHED =~- THAT ISs If IT IS A GRAPH. NODE, OR ARC.

(VALUE} 3= VALUE IF THE GROPE VALUE (STRUCTURE) MAY Bt RELATED
- THAT 1Se IF IT IS AN ATOMs GRAPrs NODEs OH ARC,

[VALUE +»SET) 2= VALUE IF THE VALUE IS IN THE SETH ELSE FALSE.

GROPE 1.5 A-8 PHOCEDURES

® MERGE (READERSLIST) = READER, THE ARGUMENT L1ST IS MERGED INTO THE
LIST INDICATED BY THE READER. TO THE RIGHYT OF THE READEReS
POSITION. THE ARGUMENT L IST dECOMES EMPTY, AND THE
LENGTHITEXT(READER]] OGROWS 8BY THE FOWMER LENGTH{LISTI. THUS
THE NEXT TO[READER] WILL CAUSE TwE READER TO ADVANCE 10 THE
ITEM THAT WAS FORMEKLY THE FIRST ITEM IN YHE ARGUMENT LIST,

® MOVETO (READERSVALUE) := READER. CONCEPTUALLYs THE READER 1s
ADVANCED (VIA TO) UNTIL THE TOKEN[READER) = VALUE, IN ThE
CASE WHERE THE TEXTIREADER} IS A LIST. THIS IS PRECISELY THE
CASES HOWEVER. WrERE THE TEXTIREADER]} IS ANY UTHER STRUCTURE
THAN A LISTs MOVETO IS MUCH FASTER THAN CALLING TO ITERATIViLY
~- THAT 1S, THE MOVETO ALGORITHM 1S NOT [TERATIVE FoR
STRUCTURES OTHER THAN LISTS. GLFFECTIVELYs MOVETO wlLL MOVE
THE READER DIRECTLY TO0 THE ARGUMENT VALUE WwITHIN THE
TEXTIHEADER],

® NODESETIGRAPH) i= THE NODEStT OF THE GRAPH. THE NODESET OF 4 GRAPH
15 COMPUSED OF THOSE NODES ON THE OKAPH WHICH ARE RELATED.

® NSET [LABEL) 3= THE NSET OF THE LABEL. THE NSET OF A LABEL IS
COMPOSED OF THOSE NODES SHARING THE IDENTICAL LAREL AND wHICH
ARE ATTACHED,

® NTH [LINEAR-STRUCTURE 2 INTEGER) = THE INTEGER-~TH ITEM IN THE L INEAR
STRUCTURE. NTHILSRs1} = FIRSTILSRI,.

® 0BJECT [ARC-NODE-OR-GRAPH] i= THE OBJECT OF THE ARCe NODEe OR GRAPHe
IF ANY3 IF THERE IS NONEs OBJUECT := FALSE,

POP [LIST) 2= FIRSTILIST)y AFTER WHICH THE FIRST ITEM IN THE LIST IS
DELETEU FROM THE LIST. (THAT [Se POP REMOVES THE FIRST JTEM
FROM THE LIST, AND RETURNS THAT [TEM AS ITS FUNCTIONAL VALUE.}

& PSEUDO (INTEGER) := THE PSEUDO INTEGER WwHOSE IMAGE IS THE INTEGER,

® PULL ELIST) = LASTILIST)s AFTER WwHICH THE LAST ITEM IN THE LIST IS
DELETED FROM THE LIST. (THAY 1Ss PULL REMOVES THE LAST IVEM
FROM THE LISTs AND RETURNS THAT ITEM AS ITS FUNCTIONAL VALUE,.)

@ QUEUE (VALUELIST) := LIST. THE VALUE 1S ADDED TO THE (IST BY
INSERTING I¥T TO THE RIGHT OF aLL OTHER LIST ITEMSE THUS THE
LENGYHILIST) 1S INCREMENTED BY ONE AND THE LASTILIST) BECOMES
VALUE .

® READER [READABLE-STRUCTURE]) := A Ntw READER FOR THE LINEAR-STRUCTURE
s GRAPHs OR NODE PASSED AS THE AKGUMENT, THE READER IS
UNMOVED AND NOT DEEP --~ THAT 15, TOKEN{READER) AND
ISDEEP(READER]) ARE BOTH FALSE wlTH RESPECT 7O THE NEW KEADER.

& RELATE (ATOM~AHC-NUDE~OR-GRAPH] 1z ATOM-ARC-NODE-OR~GRAPH, THE ATOM.
ARCs NODLEs OR GRAPH PASSED AS THE ARGUMENT]S RELATED ~=-
INSERTED INTO THE APPROPRIATE {ATUMSET, KRSLTOs NODESETs OR
GRAPHSET) RELSET 8Y STACKING OR QUEUINGs ACCOKDING TO ThHE
POSITION OF THE GLObAL ALPHA »QSMODEe SAITCH <~ IF IT WAS NOTY
50 ALKREADY.

GRUPE 1.5 A~9 PROCEDURES

“EMUVE [vALUEeSET) := VALUE. THE VALUF IS DFLETED FroM ThE SETE ThHUS
YHE SET SHRINKS BY ONE ITEM, PROVIOED THE VALUE wAS [NDEED IN
THE SET. (IF NOTs NO ACTION 1S PELRFORMED,)

HESTART{=EADER] = READER, THE READER 1S RESTARTED: THE TEXT IS
UNCHANGEDs BUT THE TOKENIREADER] BECOMES FALSF. nENCE TnE
NEXT TOLREADER] wILL ANDVANCE THE KEADER YO THE FIRST [TE4 IN
ITs Tead,

WETURN ARG = VALUEs BUT RETURN DOES NOT SIMPLY RETURN CONTKOL TO
THE PROCEDURE CALLING ITe BUT INSTEAD RETURNS CONTROL T2 THE
PROCELURE WHICH CALLED THE PROCENDURE CALLING RETURNY THUS THE
ARGUMENT wllL RE TrE FUNCTIUNAL vAaLUE OF THE PrROCEDURE CALLING
HE TURN, (THE RECURSION STACK IS POPRED ONE LEVEL)

REVARC [ARC) = ARC, THE ARC 1S REVERSFD == THE TONODE BECO~ES THE
FrNOGEs AND THE FRNODEs THE TONODE. IF THE ARC wAS ATTACHED
BrFORE REVARCs 1T Wittt BE AFTERWARDSE IF IT WAS RELATED BEFORE
PEVARC 1T Wit ok AFTERWARDS, OTHERWISE 1T wltL NOT BE
ATTACHEU OR RELATEDs RESPECTIVELY.

REWIND [FILENAME]) (= FILENAME, ThHE FILE NAMED 8Y THE ALPHA STRING
FILEnaME IS KEWOUND,

RSETI [NQULEL = Trmt SET OF ARCS INCO-ING YO THE NODE THAT ARE
ATTACHED.

RSETO InDDEY 1= TrE SET OF ARCS OQUTGOING FROM ThtE NODE THAT ARE
RELATED.

SET [ARG) 1= A NEW EMPTY SET. IF ARG IS A GROPE VALUEs THEN ARG wILL
BE TrE VALUE OF THE NEW SETS OTHERWISE THE NEW SET wili HAVE
NY YALUE .

SPLIT [READER) = NEADER. THE ELEMENTS AT AND TO THE RIGHT OF THE
READERAS POSITION IN THE TEXTIREADER] {(wHICH MUST BE A LIST)
A<E DLLETED FwOM THAT TEXT (LIST) AND FORM A NEW LIST. THE
READERSS TEXT wlbtL HE CHANGED TO BE THE NEWLY CREATED LIST
AND TrE READER WILL oE POSITIONED ON THE FIRST ELEMENT OF THE
NEW LIST -~ THUS THE TOKEN(wEADER] wliLL Bf UNCHANGED BY THIS
OPE~AT [ON, In EFFECTs THE ORIGINAL TEXTIKEADER]Is A LISTs IS
SPLIT INTO TwO LISTS AT THE LOCATION MARKED HY THE READER,

STACK {VvALUESLIST) = LIST, THE VvaALUE IS ADDED VO THE LISY 8Y
INSERTING 1T TO ThE LEFT OF alLL OTHER LIST ITEMSS THUS THE
LEAOTHILISTY IS INCREMENTED BY OnE AND THE FIRST(LIST} BECOMES
VALUE .

STOP [MESSAGE)] NEVER RETURNS, THE PROGRAM IS TExMINATED NOKMALLYS
AND THE ALPHA STRING MESSAGE IS PRINTED,

SUHST (READERSVALUE] = READER. THE VALUE IS SUHSTITUTEN FUR THE
ITEM IN THE LIST MARKED BY THE LOCATION OF THE READEN. THUS
LENGTHILIST] 1S UNCHANGEDs wWHILE THE TOKENIWKEADER] DOES CHANGE
~- TO vALUE. THE READER 1S NOT MOVED,

GRUPE 1,5 A-10 PROCEDURES

SYMDIF ([SET]SET2) = A NEw SET wWHICH IS THE (SYMMETRIC) DIFFERENCE
OF SETL AND SETZ (UNTON(SETLsSET2] = INTERSECTION[SETISET21).

TEXT [READER} = THE READABLE STRUCTURE PASSED TO THE FUNCTION RYADER
WrHICH RESULTED IN THE CREATION OF THE WEADEK == INCLUDING VIA
THE DESCEND FUNCTION. (THE TEXT OF A READEW IS THE OVERALL
STRUCTURE ®EING READ BY THE READERs AS QPPOSED TO TwE
PARTICULAR JTEM WITHIN THE TEXT wnlCH THE READER IS POINTING
Tuo == THE TOKEN.)

T1 (READER] t= THE TOKEN{WREADER] AFTER THE READER HAS MOVED ONE STLP
TO Tt LEFT IN THE CINEAR STRUCTURE TEXT. 0R HAS CROSSED AN
ARC TNCOMING TO THE MODE wHICH wWis THE FORMEN TOKEN IN THE
CASE UF GRAPH AND NODE READEWS,

TO (READEKR]Y 1= Tob TOKENIWEAUER) AFTER Tt READEW HAS MOVED ONE STEP
TO THE RIGHT IN THE LINEAR SYRUCTURE TEXTe OR HAS CROSSED AN
ARC QUTGOING FROM THE NODE wHICH wAS THE FORMER TOKEN IN THE
CASE UF GRAPH AND NODE READLKS,

TOKEN [READER] = THE ITEM WITHIN THE TEXTIREADER) wHICH THE READER
IS CURRENTLY POINTING AT$ BUT IF THE READER 15 UNMOVEDs TOKEN
t= FALSE. THE READER IS NOT MOVED.

UNION [SET1sSET2] 3= A NEw SET COMPOSED OF ALL OF SET1 PLUS ANY ITEMS
In SETZ2 WHICH #ERE NOT IN SETL,

UNRELATE (ATOM~-ARC-NODE=OR=GRAPH) 1= ATOM=ARC-NODE=~OR~GRAPH. ThE
ATOMy ARCy NODEs OR GRAPH ARGUMENT IS REMOVED FROM ITS RELSET
IF IT wAS RELATEOD.

VALUE (LABELJ 3= THE VALUE OF THE ATOMs ARCe NODEs GRAPH, LISYe OR
SET ARGUMENT (LABEL)s UNLESS THE LABEL HAS NO VALUE IN wHICH
CASE VALUE = FALSE.

-GROPE 2 B-2 GLOBAL VARIABLES

GRUPE 2 B-1 GLOBAL VARIABLES
GLOBAL ATOMSETH THE ATOMSETY
THIS VARIABLE NAMES THE ATOMSET ~- THE HASH~CODED SYSTEM SET
APPENDIX B OF RELATED ATOMS. THE USER MAY NOT ASSIGN A VALUE TO TYHIS
VARIABLE.
GLOBAL CURARCSH INITIALLY FALSE

wHEN ANY ARC 1S CROSSED BY ANY NODE OR GRAPH READER, GROPE
WILL ASSIGN THAT ARC TO CURARC.

GLOBAL ALPHA ECFILE(T7)3. s INITIALLY e
ECFILE NAMES THE FILE ON WHICH ECHO-PRINTING OF ANY LINE(S)
READ Y A <READ STATEMENT> IS Y0 TAKE PLACE, THE EMPTY

STRING INDICATES NO ECHO-PRINT,
THE SPECIAL GLOBAL VARIABLES

GLOBAL REAL FREEPCTs FULLPCTS INITIALLY 1.0
THESE VARIABLES INDICATE THE RESPECTIVE FRACTIONS OF IN-CORE
(IMPLEMENTED AS LABELLED COMMON BLOCKS IN FORTRAN) FREE (POINTER-CELL) SPACE AND FuLL (ATOM=IMAGE) SPACE THAT

WERE AVAILAHBLE FOR USE IMMEDJATELY AFTER THE LAST GARBAGE
COLLECTION,

GLUBAL GRAPHSETS ' THE GRAPHSET
THIS VARIABLE NAMES THE GRAPHSET == THE SYSTEM SET OF RELATED
GRAPHS. THE USER MAY NOT ASSIGN A VALUE T THIS VARIABLE.

GLOBAL INTEGER IMARGING INTTIALLY ©
IMARGIN INDICATES TrHE NUMBER OF COLUMNS ON THE LEFT OF AN
INPUT LINE THAT A <READ STATEMENT> WILL IGNORE.

GLOBAL ALPRA INFILE(T7]); INITIALLY oINPUTe
INFILE NAMES THE FILE FROM wWHICH THE <INPUT STATEMENT> wWiLL
NOTE: EXCEPY FOR THE ATOMSET AND GRAPHSETs READ.
THE USER MAY ASSIGN A NEW VALUE 1O ANY
OF THESE VARIABLES. AT ANY TIME GLOBAL INTEGER ISPACES INITIALLY O

ISPACEs #4HICH IS RESET TO ZERO AFTER EACH <READ STATEMENT»>,
INDICATES THE NUMBER OF COLUMNS TO BE SKIPPED WBEFORE THE READ
STATEMENT BEGINS SCANNING THE CURRENT INPUT LINE, A NEGATIVE
VALUE WILL CAUSE BACKSPACINGs BUT AT MOST 10 THE BEGINNING OF
THE CURRENT LINE (OVER-RIDING THE MARGIN). SPACING BEYOND
THE RIGHT-HAND END OF THE CURRENT LINE WILL CAUSE A NEW LINE
TO BE HEADs -AND SCANNING WILL START AT THE IMAKGIN.

GLOBAL INTEGER 17A8: INITIALLY O

ITABs WHICH IS SET TO IMARGIN¢l AS A NEW LINE IS REAQ.

INDICATES THE EXACT POSITION (COLUMN) OF THE CuRKRENT INPUT

LINE WHERE SCANNING wILL RESUME wWHEN THE NEXT <READ

STATEMENT> IS EXECUTED -- SUBJECT TO MODIFICATION BY ISPACE.
. I1Fs WwrEN A READ STATEMENT I35 EAFCUTEDe ITAHsISPACE IS GREATER

THAN THE L INE LENGTH OF THE CURRENT RDFILE (AS SPECIFIED ON

THE MAIN PROCEDURE CARD)s A NEW LINE IS READ.

GLOBAL INTEGER MAXERRS INITIALLY 10
MAXERR 1S DECREMENTED BY OME EVERY TIME GROPE DETECTS &
RECOVERABLE RUN-TIME ERRUR CONDITION, WHEN MAXERR AS
OECREMENYED HECOMES NEGATIVE. ABOKT IS CALLED wITH AN
APPRUPRIATE DIAGNOSTIC. THUS MAaXERR AT ANY TIME KEFLECTS THE

GRUPE 2

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

GLOBAL

B-3 GLOBAL VARIABLES

NUMHER OF ALLOWABLE ERRORS REMAINING,

ALPHA MSFILELT)Y INITIALLY ~OUTPUT»
4SFILE NAMES THE FILE ON WHICH ERROR MESSAGES ARE T0 BE
PRINTED. THE EMPTY STRING INDICATES NO PRINTING OF SUCH
MESSAGES.

INTEGER NFREEGCs NFULLGCH INITIALLY O
THESE VARTABLES INDICATE THE RESPECTIVE NUMBER OF FREE SPACE
AND FULL SPACE GAKBAGE COLLECTIONS THAT HAVE OCCURRED,

INTEGEK OMARGING INITIaALLY
OMAKGIN INDICATES THE NUMBER OF COLUMNS ON THE LEFT OF AN
QUTPUT LINE THAT A PRIN OR PRINT STATEMENT wlLL FILL WITH
HLANKS AS THE NEW LINE IS SYARYFDs BUT OTHERWISE IGNOKRE,

INTEGER OSPACER INITIALLY O
OSPACEs wHICH IS RESET TO ZERO AFTER EACH PRIN OR PRINT
STATEMENT s INDICATES Trk NUMBER OF COLUMNS TO HE SKIPPED
BEFURE THE PRIN OR PRINT STATEMENT BEGINS FILLING THE CURRENT
QUTPUT LINE. A NEGATIVE VALUE W#ILL CAUSE BACKSPACING (BUT
nOT UVER-PRINTING) BUT AT MOST TO THE BEGINNING OF THE
CUPRENT LINE (OVER-RIDING VTht OMARGIN). SPACING BEYOND THE
RIGAT-HAND END OF THE CURKHENT LINE wILL CAUSE THE CURRENT
LINE TO BE PRINTEDs ANMD A NEW ONE INITIATED AT THE OMARGIN.

INTEGER OTABW INITEALLY O

0TAR. wHICH IS SET TO OMARGIN+1l AS A NEw LINE IS STARTED,
INDICATES THE EXACT POSITION (COLUMN) OF THE CURRENT OUTHUT
LINE WHERE FILLING wWILL RESUME WHEN THE NEXT PRIN OR PRINT
STATEMENT IS EXECUTED ~- SUBJECT TO MODIFICATION BY OSPACE,
IFs wrbN A PRIN OR PRINT STATEMENT IS EXECUTEDs OSPACE+OTAB
1S GREATER THAN ThE LINE LENGIH OF ThHE CURRENT PRFILE tAS
SPECIFIED ON THE MAIN PROCEDURE CARD)s A NEW LINE IS STARTLD.

ALPHA OQUTFILELT) INTTEALLY »OUTPUTs
QUTFILE NAMES THE FILE ON WHICH THE <OUTPUT STATEMENT> WILL
wHITE.

ALPHA PRFILE(T)S ’ INITIALLY ~OUTPUT»
PRFILE NAMES THE FILE ON WHICH THE PRIN AND PRINT STATEMENTS
wilL wRITE LINES AS NECESSARY,

ALPHA QSMODELS)3 . INITIALLY AQUEULs
Tng ADDITION OF ITEMS TO SYSTEM SETS (8Y ATTACHING OR
RELATING) IS HY STACKING OR QUEUING =~ ACCORDING TO WHETHER
THE VALUE OF QSMODE IS #STACKe OR AQUEUEs,

ALPHA RUFILELT)E INITIALLY »INPUTe
ROFILE NAMES THE FILE FROM wrlCH THE <READ STATEMENT> wiLL
READ LINES AS NEEDED.

ALPHA TRFILE(T7])3 INITIALLY ~OUTPUTe
TRFEILE NAMES THE FILE On WHICH ANY TRACE MESSAUGES ARE
WRITTEN., THE EMPTY STRING INDICATES NO TRACE MESSAGES.

