¥lo} AN

P

S g

1974

U7 LOGOU Primsr

The U.T. LOGO Primer

The Novice’s Guide to LOGO

by Jonathan Siocum

Dept. 0f Conmputer Sciences

gct. 30, 1974 UT LOGO Primer s8¥e 2

INTRODUCTION

Tnis manual is written for those who really do not Know whati =
computer 1{s -- someone who has perhaps never written 2 program (and
might not Xnow what one is), or at least wno is “unsophisticated” in
¢ne art of speaking to a computer. AS such, 1{¢. may seen
oytrageously simplistic to an experienced programmer; nowever, there
are other 3ources of information on LOGO which assume. more
experience on the part of the reader, and such persons may wish 10
seeX those documents. In particular, althougn UT LOGO is imbedded
in UT LISP, no knowledge of LISP i{s presumed. UT LOGS appears 10
the user as a sStand-alone system, as intended in LOGO s initial
conception.

How t0 Use tnis Document

You should read each chapter once o “get the {flaver®™ of Lhe
materialy after you Tinish each chapter, you should find a terminal
and log in, and start reading the chapter again. NOW every time ¥ou
come t0 an example line, type iz in Just as shown. This way, you
can see immediately what LOGO does with your line, and what you need
t0 do next; vou will also gat some practice writing procedures, =aad
in general “interacting” with the computer. If you read the entire
manual before +trying anything on a terminal, you will probably
pecome more confused than necessary -- 30 you should endeaver to
experiment with each chapter on the tesrminal, before proceeding 0
the next. Finally, when a question 1is asked you should stop
immediately and formulate your answer before proceeding; this will
give you a chance to0 see how much you know, and will point-out whers
vyoy are confused.

A Technical Note

UT LOGO i3 run under the UT LISP monitor on the CDS 6800/76400,
and interfaces 10 the EXEC nmonitor on an IMLAC PDS-! graphics
terminal. Non-graphics users may empioy any sitandard “teleiype” ovF
ert device t0 use UT LOGO zs a simple programming ianguage. Ussr-
defined LOGO procedures are compiled on-the-fly on g ling-by-line
basis: every line is compiled the first time iis execuiion is
attempted: tnhnereafter the LISP form is interpreted directly Dy the
LISP interpreter, with no further overhead from the LOGO systen. &
primitive editor alliows 1iine deietion, insartion gnd <(complete’
replacenents; in addition, any line within & procedure may o8
srinted-out, o©or the entire procedure may be printed-0ut, 7or
inspection.

UT LOGO adheres rather closely 10 LOGO as defined by the M.l.T.
LOGC manuzl! (LOGO MEMO 7% nowever, 3ome M.I.7T., LOGU Zeatures ars
prohipited by UT nardwvaressofiwars consitraints, gand sctme fezatuvres
are inadequately documented in the M.I1.T. manual., Usuglly in these
cases thne author attemdied 0 substitule a2 razsonzbie ziterngtiva.
Thers are 3180 some extensions 30 LOB0: “gll of LISP® is availabie
+60 +the LOGO osrogrammer, N the sSense wLhgt any UT LISP momizor

AN

Jct. 38, 1974 UT LOGD Primer pege 3

function (like, MEMBER) may be called by a LOGO procedure, 30 long
as the LISP name is not used by the programmer as ths name oOf oOne of
nis own procedures, and with the constraint that they have 2 §1ixed
number of arguments as defined by the LOGO monitor, Where this
constraint is unreasonable -- such as in a PROG or a PROGN or COND
-- the LISP form is unavailable. Appendices A and B contain an
exhaustive 1ist of the avallable LOGO and LISP monitor functions,
along witn their number of arguments.

(&)

Jct. 38, 1974 UT LOGO Primer Y8 &4

CHAPTER 1
SOME SIMPLE THINGS

LOGO is z simple language for telling the computer what you
want it %o do. The first step in talking .to a computer is getting
connected t0 it -- this is called "logging in.” We will assume that
you know how to do this, or can find someone to show you, since the
precise details may vary slightly from one location On campus 10O
ancther. What happens when vou do this is that the computer writes
down in its ©“1o0g bocok” the time you log in; when you log out, the
computer writes this down, too, so that it knows who o biil <(your
acecount) for the computer time you used.

Once you are 1logged in and the computer types out "CC3:” you
are ready to do LOGO; you simply type "EXECPF 2331 LOGG"™ (witnout
the quotes), then hit the “carriage return”™ Xey (ihe one labelied
return) which {s somewhere on the right side of the Xkeypoard, Just
1ike on =2an electric typewriter. it {s always the case thrat the
computer will do nothing with what you type until you hit return; so
if you makKe a bad mistake on a line, you can erase the whoie line by
nitting the "escape” Key (labelled escape, Or esc) on the left sids
of the Xeyboard. Whether or not this line disappears from view Or
not depends on what equipment you are using, but in any case the
computer will not "see” the line. Once you escape, Yyou can re-type
the last line correctly and do a return at the end.

After doing the EXECPF line you are _"“in® LOGO. First the
computer will type out some stuff, then it will type a gquestiocn mark
€73 at the beginning of a line and stop. This means that the
computer is waiting for you to tell it what to do. Unfortunataly,
computers are not so smart yet that you can Jjust type, in Engiish
¢or Russian, or whatever), what you want -- but we're working on it.
Meanwhile, we have invented some simple languases that the computer
ean understand, s¢ that we may communicate wilih thald,. {Wniie you
may think tnese languages difficult, they regily are noi 30,
compared t0 Engiish. Remember, you have nad Raybe itwWwenily Years or
sc to learn English =-- and you are not through vetl. Mogst computer
ianguages -- and especialiy LOGO -- can be igarned in a very short
time.) We wiil start learning LOGO by learning some “direct”
commands that will enable us to draw plciures.

The display screen you will bpe looking at is divided into 1024
X 1024 points; Just like the Cartesian plane you learned about in
high school, you can "address” any point on the screen by its x- and
y=coordinates. *he lowest point on the left side of the screen (s
point ¢(0,0); the lowest on the right is (1823,0)3 the hignest on ine
left is ¢0,1023); and the nighest on thne . right is (i923,1023>. Thus
the middle of the screen, where most drawing will siari, is =2bout
(512,512, At %his start point, there is an imaginary “turtlie”
whicen you can dirsct to0 move around on the screens you <can vell ig
$t0 move Jorward Or back any distance (s0 1onyg as it doesn’t “fall
off° tne edged, OrF 10 turn (withoui movingy Lo tas righit Or left DY

iii

a8 given andgis. if its “drawing pen” is down, it wiil drsw & lins

Gete 30, 1974 UT LOGO Primer wage 5

whenever it moves; if it is up, the turtle will move but not draw a
line as it does. This way, it 18 possible to draw part of a piciure
(with the pen down), pick up the pen, move elsewhere, then »ut the
pen back down and drav some more of the picture. iLet’s draw @
square: :

?RIGHT 903
?FORVARD 2003
?RIGHT 903
?FORWARD 2003
?RIGHT 903
?FORWARD 2003
?RIGHT 903
?FORWARD 2003
2

Since the turtle s initially at the centey 0f the scrssan
pointing up, this will turn the turtle to the rignt and then move {t
from the middie (512,512)> t0 the right 200 steps o position
{712,512>3 then (¢t turns right another 90 degrses and moves 20§
steps down to position (712,312>; then it turns rignt agsin and
moves t0 (512,312), and then makes its last right turn and moves up
t0 its initial position ¢(512,512). S0 at the end, the titurtle 1is
back where it started, and still pointing up.

Notice how each command 1is preceded by a gquestion markK (2).
This is not something you type, but rather {t 1{s a “prompt
character™ that the computer types to signal that it is ready for
another command, ifr, after you hit the carriagde return, t%he
computer “rings the bell”™ on your console but doesn’t type a prompt
character first, it probably means that you ~forgot 10 titype iLae
semicoion &t the end; if this happens, Just type the semicolon zand
hit return again, and you should see the prompt characiter next time.
¥Yhen the computer tyvpes the question mark, it i3 ready %20 cCarry-0ut
g “direct” conmand. You type in the command, then g semicoion =and
return, and tae computer will carry-out the command and aftervards
type another question marke.

The command CLEARSCREEN Qill grase all pictures from the scraen
and retuprn the turtle t0 the center ©f the screen, pointing usz.

7CLEARSCREEN;
?

Now let’s draw =& triangle; our first <triandgle ﬁiii be an
sguilateral triagngle -- one with all three sides ©Ff the same lengihn
== With one side norizontal:s

?RIGHT 303
?FORWARD 2083
TRIGHT 1203
?FORWARD 2003
TRIGHT 1283

Set. 36, 1974 UT LOGO Primer page &

?FORWARD 2003
?RIGHT 903
?

Notice that this, too, will leave the turtle Just as it was Dbefore
-- @8t the center of the screen pointing up. Now if we had
previously drawn the square and it was sti1l visiple on the screen,
‘the triangle added to it makes a house. Maybe it isn°t the most
realistic house drawing in the world, but it is definitely a house.
Later, we shall do better.

One could get tired of typing in eight commands for every
square one wanted to draw, (Consider drawing a2 house with square
windows.) What we would 1like to do is tell the computer how to drav
a square,. but only once; thereafter, we could say SQUARE and it
would draw one -- as many times as we said SQUARE. S0 we wili learn
now to write a procedure. A.procedure is a sequence 07 commands
with 2 name ¢(like, SQUARE). We will write a procedure called SGUARE
and this wiil tell the computer nhow to draw squares:

?T0 SQUARES

>10 RIGHT 903
>20 FORWARD 2003
>30 RIGHT 903
>40 FORWARD 200;
>50 RIGHT 903
>60 FORWARD 2003
>78 RIGHT 90;
>80 FORWARD 2003
>ENDS

SQUARE DEFINED
?

The direct command TO %ells the computer that we are defining a
procedure; thereafier, until we type "END;~ (which terminaies ithe
definition), the computer usss the prompt characier *»% and acgepis
each line we type as part of the definition. The compuisr does nol
carrv-0ut these “indirect”™ commands nNowe. alse, each indirec:
conmand is preceded by a number -- called the T“statement number”
since a command is also czliled a “statement®. The order in which we
type the statements of a given procedure is inconsequential: +{he
computer will arrange them in sequence according to tnelir statenent
number. The numbers do not have to0 De consecutive, Or sven
myltiples of 10 (as shown); but it is preferable to leave “holes”,
since we may wish to add new lines later, in between 0ld lines. ir
we don°t leave holes, we would have to re-define tne wiole
procedure. Thne computer does not care how big tiie numbers areg --
within reason -- nor does it care how bBig the holes are, Or Whether
they are uniform in size. Use whatever numbers suit you.

Wnen we type “END:;" then the compuler types out SQUARE DEFINED
(or whatever thne name oOf the procedurs 1s), itasen ine gquesiion markx

-

(wnose significance we are already awsre 07). 50 now iet’s tell ias

Jcte 38, 1974 UT LGGO Primer page 7

computer to draw 4s a square:s

?CLEARSCREEN;
? SQUARE;
2

Now that we have taught the computer a new command, 1t can
carry-out the new command as often as we tell i1 to. The command
SQUARE will aiways dravw a square of size 200, starting wherever the
turtle is when we say (call) SQUARE, and ieaving the turtle in the
same place. But ... Just how many squares of size 200 will we need
in one picture? Perhaps one, and @2aybe more (2 Or 3), Dbut not
likely very many. Have we really saved ourselves any Wwork? The
trouble is that SQUARE must always draw a square of the same .size.
Or_ must .it? Wouldn’t it be nice 1if one procedure c¢ould draw a
square of any size? Luckily, we can do this:

?T0 SQUARE 3:1SIZES
»10 RIGHT %03
>200 FORWARD :SIZE;
>30 RIGHT 903
>4 FORWARD :SIZE;
>50 RIGHT 903
»>60 FORWARD :SIZE;
>70 RIGHT 90;

>80 FORWARD :SIZE;
>END;

SQUARE DEFINED
?SQUARE 2003

?

Here we define the procedure SQUARE with one argumeéent {(or
input) =-- a number representing the desired size of the square. NoOw
when we want a square drawn, we have 10 specify some number for ihs
desired size. The computer then uses ¢his number in the progcedqurs,
wherever {ts name (SIZE) appears. NOw wWe can say !

?2SSUARE 4003
10 get a very large square, Oor

7SQUARE 303 a

to get a very small square, gtc. All we have t0 remember is that we
must specify some size. Now if we define TRIANGLE to Da:

?2T0 TRIANGLE :SiIZ2E3
>10 RIGHT 386;
>20 FORWARD :SIZE;
>30 RIGHT 1203
>40 FORVARD $SiZE:
>50 RIGET 1283
>60 FORWARD :812E;

35, 1974 UT LDOGO Prinsr page 8

3
[9]
(4
°

»70 RIGHT 903
>END;

TRIANGLE DEFINED
7

-= then we can define HOUSE to bes

?TO HOUSE :SI1IZEs
>108 SQUARE :SIZE;
»>20 TRIANGLE :SI1ZE3
>END;

HOUSE DEFINED

?

-= and then we can say

?CLEARSCREEN;
?HOUSE 4003

t0 get & large house; Or

?CLEARSCREEN}
?HOUSE 503

to get a small house. Notice that we have taught the computer threae
new commands (SQUARE, TRIANGLE, and HOUSE), and that one of thenm
(HOUSE) ™"calls™ each of the others. SO you see that you can use a
direct command to call any procedure, and then it can call any
number of other procedures, e&ic. ¢in fact a procedure can call
itself, as we shall see later.) Now that one procedure can draw
squares of any size, we can use it to draw windows in the house; Dbut
in order to do this, we need to learn how to tell the turtle t0.1i:t
i{ts pen up, SO that it doesn”t draw when it moves to the piace 10
draw g window. The command PENUP will do _this, and .tas command
PENDOWN will put it back down. S0 to draw windows, 117t ihe pen up,
move to the place for one window, put the pen down and dragw it, 117t
the pen up and move to the next window location, etc. These
commands might be part of the procedure HOUSE -- you can iry this
for yourself, Just for fun.

7TO HOUSE :S1ZE3
>10 TRIANGLE :S51ZE;
>20 SQUARE :SIZE;
>30 PENUP;

and so forth,

If you succeed, you might wish to try for a doecr; i7 you faili, ¥you
won’t vet Xnow how t0 correci your misiake, except by re-delining @
procedure, but we'll lesarn later, AlsO0 you mignt write a procedure
RECT that takes twWo arguments, LENG:LA and WIDin ==

?TO RECT :LEN 3WiID;
>18 RIGHT 903

gct. 30, 1974 UT LOGO Primer page @

»>20 FORVARD :LEN;
>30 RIGHT 903
>4(3 FORWARD :VWIDj;

etc. == and draws a rectandgle.

Let’s study some more examples of how to put procedures
together into larger procedures to0 draw more complex things:

?2TO DRAW :DIST;
>10 FORWARD :DIST:
>20 BACK $DIST;
>END;

DRAW DEFINED

2TO VEE :S1ZE3;

>10 LEFT 50;

>20 DRAW :SIZE;
»>30 RIGHT 1090;

>40 DRAV :S1ZE;
>50 LEFT 503

>END;

VEE DEFINED

?TO ARROW :SIZE;
>10 VEE :S51ZE;

>2(0 FORWARD :SIZE:
>30 FORWARD :SIZE;
>40 VEE $SIZE;
>END3

ARROW DEFINED

?

prav will draw dne - line and then re-trace 1%, perhaps making it
darker -- but the idea is t0 end up where the turtle started. VEE
will use DRAW +0 draw a “"v” of the requestaed size:

IVEE 2003 \\\\v////
?

ARROW will use VEE once to make the head of the arrow, then wiil
move forward 10 make the shaft, then use VEE agsin ¢0 make the taii.
?ARROW 1003 N
? N
The reason why we used FORWARD twice in ARROVW is that we wanted t0

make the shaft longer than the head, but don’t Xnow how (it6 uss
arithmetic) to do s0. But we will learn soon.

Here 1is z procedure to draw any regular polygon, ¢given ths
length of a side and the angle to0 turn:

?TO POLY $STEP :ANGLEs;
>10 FORWARD :S8TEP:
»20 LEFT :ANGLE;

Scte 35, 1974 UT LOGO Primer wade 18§

>30 POLY :STEP :ANGLE;
>END;

Some examples of what it can do are shown belowj; did vyou notice line
3072 POLY calls itself. LOGO certainly allows you to do this, dut
this particular usage nhas an interesting consequence -- oOnce ¥you
call POLY, {t never stops drawving. First the compuier does
statement 10, then 20, then it calls POLY, which does statement 110,
then 20, and then calls POLY ... forever. Sooner Or iater the
turtle will begin re-tracing its old path, but it will still
continue drawing, Obviously, we shall have to learn how to0 get
around tnis problem -- we must not tell the computer t0 Keep On
going forever. We need 10 learn arithmetic very soon. But firsi,
here are six examples (do NOT try these) of what POLY could do3

Cct. 36, 1974 UT LOGO Primer padge (2

How would you tell the turtle to draw a hexagon and si0p WwWnen
finished? (Hint: rotate the turtle only "~ half as much at the
corners as we did for a triangle.) Can youw think of =@ procedirs
somewhat 1like POLY that would draw any regular convex geometric
figure (one whose sides and angles were equal, but whose iines dlid
not cross) =-- t0 which you passed the number of sides desired, and
the length of each side, but not the angle to turn? For instance,
{f the procedure were called REGULARPOLY, then TRIANGLE might Dbe
defined with only one line:

?2TO TRIANGLE :SIZE;
>10 REGULARPOLY 3 :SIZE;
>END3

This procedure will require some arithmetic, so iet’s learn how 0
do arithmetic in LOGO.

Suppose you want the computer to form tThe sum OFf TWo numders.
(As everybody knows, computers are good 2t aritnmnetic, They never
make mistakes, and they are very, very fast.) We use the 35UM
command:

75UM 29 67;
96
?

In response to this command, LOGO will print-out the result on the
next 1line, and then type the question mark as before. SUM {s =7
command that returns an answer -- computer people call an answer 2
returned value, or the value of the procedure. This is the first
time that we have noticed a procedure return a valuej but actually,
all procedures always return values. We will discuss this later.

> NOW suppose you want the difference of two numbers:

?DIFFERENCE %6 673
29
?

Similarly, vyou can take the product of two numbers, and taeir
quotients:

?PRODUCT S 73
38

?QUOTIENT 35 73
5

TQUOTIENT 34 73

4
?

But wnat is this? 34 divided by 7 is 47 And we Lhought cOmpulars

were good at arithmetic. Yell, WwWhen computaers divide intsgers
¢sometimes called “whoie® numbers), thney tharow away ine remainder.

iz

s 1974 UT LOGO Priamer page 13

(]
[¢]
ot
&

(&)
[o]

7REMAINDER 34 73
6
?

If you will remember back to elementary school, you probably first
learned to0 divide by finding the quotient of whole numbers, and the
remainder. ¢(How many times did your teacher mark your problens
wrong Dbecause you forgot to write down the remainder?) Later, you
iearned what decimal points are, and probably haven’t used
remainders since. It turns out that computers Xnow aboutl decimal
numbers too, but we’ll talk about that later.

There is a way to get both the quotient and the remainder in
one operations:

7DIVIDE 34 73
4 6
?

So you see that DIVIDE and QUOTIENT are very different. One thing
you must not do is to confuse then, because the computer isn’t smart
enough to figure out what you meant; it will do only what you teill
it t0. computers are easily confused, and when they are, they de¢
some very strange things, indeed.

Now, anyone can add Jjust two numbers; {f computers are %0 Dbe
nelpful, they should do things that we find hard -- like add lots of
numbers at once. But

2SUM 15 17 893

will not do, because the command SUM can ¢ake only iwo numbers.
¢Try it.) There are two ways 10 get around thiss one is by
functional composition, and the other is by writing 2 Drocedurs,
Composition is easy to explain. Ve note ¢+hat the sum o7 15 and 17
and 89 may be expressed as the sum of 15 aad the sum of 17 and B89:

7SUM 13 SUM 17 893
i21

Or we could write it another way:

7SUM SUM 15 17 893
i2i

The first way is more readable, so we prefer its it sums 17 and 89,
and then sums 15 and the result (106> to form i2i. Notice that it
doesn’t print the partial sum (106> -- this 1s Dbecause It isn’t
finished with the entire command (the entire staitemenis. The secona
axample above works Just as welli, Dut differently: it sums i35 and
17 to form 2ne partial sum 32, then sums 32 and 89 o form tne total
121, and then prints {t. TO sum four numLders:

Got. 35, 1974 UT LOGO Primer page 14

?7S5UM 30 SUM 27 SUM IS 193
91
?

You can add any number of numbers this way, but after = while
it may get a little tiresome having to type SUM sO many times. What
we will do now is write a procedure to add arbitrarily many numberss;
in this way we will teach the computer another new command. We will
put a pair of parentheses around the numbers 1o be added -- thus
forming a list of numbers: (15 17 34 27 & 10>. This list has six
numbers in it. We will tell the computer that the ADD of all the
numbers in a list is simply the SUM of (1) the first number in the
1ist, and <(¢2) the ADD of the rest of the numbers in the lists
computer people <(and mathematicians) call this a "recursive”
definition., (See how the result of the operation {s eXpressed in
terms of the operation itself? This makes a definition recursive. >
Now we teach the computer the new command:

?TO ADD :LIST;
>10 IF EMPTYP :LIST THEN RETURN 03
>20 RETURN SUM FIRST sLIST ADD BUTFIRST :LIST;
>ENDS

ADD DEFINED
?ADD (15 17 34 27 6 1053

109
?

The name of this new command is ADD; its single argument is the
1ist of numbers to be added. (The 1ist counts as one, no matter how
many things it contains.? An “empty list” is a list containing
nothing; it is writtens (>. Line 10 says that, if the 1ist 1is
empty (with no numbers in it), then ADD will return 0 (zerol as its
value. Otherwise in line 20 ADD wiil «cali itself with all ias
numbers in the list except for the first -- this wilil subictal all
<ne nuymbers but the first -- and then ADD will return as 1itis yalage
tne SUM of (1) the first number in the 1ist, and (2> the sybtotal
just returned (the ADD of the rest of the list).

1f this seems strange, stop and think & minutes (1> we intend
+0 write a procedure ADD to return as its value the total sum oOFf 2ii
tne numbers in a list; (2) we have faith that ADD will WOTrK
oroperly; (3) we Xnow about composition, and that it works; (4> if
ADD can Ssum-up @ list of (say) 6 numbers, then it can sum-up a 1ist
of S numbers, and then form the SUM of that sub-t0tal and the sixth
number. Therefore, ADD must work, as we have defined it. All we
need to note is that, although ADD calls 1itself <(like POLY,
remember?), it will not in this case continue indefinitely (ilike
POLY). This is because, py calling ADD with the BUTFIRST of the
iist, we are °“shrinking” the list of numbers by oOne number gach
+ime; sooner or later, the list will be down to oOne element, <then
none, and when this happens (the 1ist bescomes empiy’, ADD returnsg &
value (0. SO ADD doesn’t czli itseif again when the 1ist Dbecomss

gmgtye

f4]
28]
(1]
o
fponss

gct. 36, 1974 UT LOGO Primer P

7POLY 150 120 /\

?POLY 75 60;

7POLY 75 403

?POLY 4 33

7POLY 158 1445

?POLY 308 1563

s 1974 UT LOGG Primer page i5

[we]

gct. &

Line 10 <contains our first exposure t0 the IF statement.
Obviously, the IF statement tests for a certain condition ¢here, for
the empty 1ist) and performs an action (here, returning zero) oniy
provided the test was true. If the test was false, that action (thse
rest of the statement, after the test) wiil not be performed, but
instead the next line in the procedure is executed. Usually, i{f the
test is true and the rest of the IF statement is executed, then the
next line 1is executed thereafter; however, here the RETURN command
says to exit the procedure with the indicated value. With sonme
thinking, you can see that ADD (15 17 34 27 6 18> is the same as SUM
1S SUM 17 SUM 34 SUM 27 SUM 6 SUM 10 0 -- which is how the computer
finally performs the operation, given that ADD () returns zZero.

Wwe have also learned some other things in this exercise: (1>
we have Dbeen introduced to lists; (2) there is a procedure EMPTY?
that returns true if the 1list passed to it is empty; (3> thers is a
procedure FIRST that returns the first thing in =2 1ists ¢4) there is
a procedure BUTFIRST that returns a list composed o¢f all the things
in a 1ist except for the first thing; and (5) we have iearned that
we can write a recursive procedure (one that calls itseif) that does
not continue executing forever, but (eventually) stops.

NoQ you write a procedure called MULTIPLY that returns the
product of all the numbers in a list.)

You see that you can teach a computer how to do a lot of work
for wyou; this {s why (and how) we use computers. BY themseives,
they can do only very, very simple things, but we can teach then
more things and have a 1ot of fun in the process. ¢(The author had
+0 teach our machine LOGO.) ‘

Remember DIVIDES, It seemed to have two values, didn’i. 112
Well, .1t really has only one -- but that one is a list (of two
numbers). When LOGBO oprints-out a 1ist, it doesn”t .print the
tertmost ¢(left) and rightmost (right) parentheses. Thus the 1ist (4
6y orints as 4 6. A procedure can only have one CUTPUT (answer).
By the way, there is a command PRINT that takes one argunent ==
whetner it be a word, a number, or a list -- and prints i<
immediately. <You might like t0 define ADD (opr MULTIPLY) with a iine
5 like this:s

2T0 ADD :LIST; .
>5 PRINT :LIST; |
>10 IF EMPTYP ...

etc.

Go ahead and try it. It doesn®t change the ansée?. (Why?
Wwhat do you think would happen if we defined ADD 1ikKe tais:

?2TO ADD :LIST;
>10 IF ENMPTY

g OUTPUT 43
>20 SUM FIRST :Lii

T ADD BUTFIRST :LisTs

0y n
e |

i3

gcte. 30y 1974 UT LOGO Primer padge 16

>END3
ADD DEFINED
?

First of all, the word THEN is missing from the IF statement -- Dut
that s ok sincs it is optional, anyway. Second, the word OUTPUT
has replaced the word RETURN -- but that 1is 0k since they are
synonyms. Perhaps you should stop here and type 1t in like it is
defined above, and then ¢try it on a couple of examples, iike ADD ()
and ADD (5 6 75,

Surprised? In line 20 we formed the sum correctly, but we
forgot (to tell the computer) to RETURN that result. (Go back =and
100k at our former definition.) When you want a procedure to return
a value, you must remember to use RETURN or OUTPUT; otherwise, the
computer will return as the default value the empty 1list (. and
when it prints a list, it doesn’t print the lseftmost and righimost
parentheses; in the case of the empty list, this means that there is
notnhning left to print. This is the only reason why nothing was
printed after the picture-drawing procedures vwe plaved with sarliers:
they .were returning a value «-- the empty list -- which cannoi be
seen when it is printed;, since there is nothing inside {t t¢ Dde
printed. The enmpty 1list is also the FALSE valye: whenever an IF
statement s test returns the enmpty 1list as {ts wvalue, that 1is
interpreted as false and the THEN statement is not executed.
Forgetting to return a value from a2 procedure is a frequent source
of error -- be warned.

"A mistaKe in a procedure is_called a "bug” (pecause in the 01ld
days real bugs could get into a computer and foul {1t up, causing
errors. The process of correcting mistakes (c¢cleaning out the
insects) is called “debu9gging”, and we shall learn what t0 d¢ when
we have found a bug, in the next chapter.

Now let®s learn how 10 CcOmpare numbers., The procedurse GREATER
taxes two numbers and returns TRUE if ¢the first is greater than Lthe
seconds; othervise {1t returns FALSE (the empty 1list). The function
LESS takKes two numbers and returns TRUE {f the first is 1less than
the ssconde. The function EQUAL takes twe numbers and relurns TRUE
if they are equal. YOu ¢an use these tests t0 determine whather
(and what) to¢ return from a procedurse.

Now you ¢0 back and write REGULARPOLY. Does it work f0r 3, 4.,
5, 6, 8, 9, and 10 sides? How about 72 Or 117 If there Is an
error (and 1711 bet there is), what do you thaink mignt be the cause?
{The cige is provided in_ the discussion about whole-number
arithmetic.> OCan you 9uyess how t0 correct {17

id

Octe 30, 1974 UT LOGO Primer ' pade 17

CHAPTER 11
EDITING

Assume we had originally defined ADD as we did above, and we
have found the bug; what can .we do? We can always re-define the
procedure, but that 1is Dbothersome, Besides, for very lardge
procedures we are liable to make a.mistake when typing it == thus
introducing vet another bug while correcting an old onse. What wve
have to help us in these cases is an editor. The command EDIT is
available, and its argument is the name of the procedure that we
wish to change in some way:

?EDIT ADD;
EDITING ADD
<

The message EDITING <name> is typed out by the computer 0
verify that we are in editing mode, and that the procedure ve named
in the EDIT command exists. The new prompt character “<° is typed
out to indicate that the computer is ready to =accept an editing
command -- oOne of the commands that operates on one line of tne
procedure being edited. To correct the procedure ADD, We need to
change line 20, so:

<CHANGE 20 RETURN SUM FIRST :LIST ADD BUTFIRST :LIST3

While Qe're at it, let’s add =a néé line that will “trace-print” whén
ADD is executed:

<INSERT 5 PRINT :LISTs
Then we will finish editing ADD:3

<END;

ADD RE=-DEFINED
?24DD (3 4 503

3 45

4 5

5

i2

?

== and no& ADD is working properly. This being so, wse should now
deletse the annoying “trace-print® line:

7EDIT ADD:
EDITING ADD
<DELETE 53

Obviously, one is allowed t0 edit.gny procedure as often as

desired. wnile editing a procedure, wWe can request that any of itis
lines bpe printed-out so tnat we may 100K at its

i7

gct. 30, 1974 UT LOGO Prinear page 138

<SHOW 29

20 RETURN SUM FIRST : LIST ADD BUTFIRST : LIST 3
<END3;

ADD RE-DEFINED

?

Or at any time we c¢can tell +the computer td print-0ut a whole
procedures

?SHOV ADD3;

TO ADD : LIST ;3

10 IF EMPTYP ¢ LIST OUTPUT 0 3

20 RETURN SUM FIRST : LIST ADD BUTFIRST : LIST ;
END3;
?

-= and it will print it out, line by line., These four comnmands
(CHANGE, INSERT, DELETE, and SHOW) are the only special commands one
needs to perform any desired editing. Actuaily, CHANGE isn°t
strictly necessary since it could be effected using two commands
(BELETE and INSERT)>, but it is included rfor vour convenience. Aalso,
showing of a particular line is unnecessary since one could show tne
whole procedure, but then the idea of having a computer i{s ¢t0 nmake
things (including waiting) easier on you, the user.

i8

Gget. 30, 1974 UT LGGO Primer Page 19

CHAPTER 111
PRACTICE

Now that we KXnow how to define new procedures and edit old
ones, let’s get some experience in deing {t. We will write & new
procedure COUNT which takes one input -- 3 11st -- and returns
(QUTPUTs) the number of things in the liste.

?TO COUNT :LIST;
>10 IF EMPTYP :LIST THEN RETURN 8:
>20 RETURN SUM 1 COUNT BUTFIRST :LIST:
>END;
COUNT DEFINED

An empty list has COUNT zero; a list of one thing -- like ¢hnello) o=
has COUNT one, and so on. Essentially, the COUNT of a list is =zero
if the list is empty, and otherwise it is one plus the COUNT of the
BUTFIRST of the list. What do you think {s the COUNT o©f +the 1lists
(I (LIKE YOU) TOO) ? Let s try i{t:

?COUNT (1 (LIKE YOU) TOO);
3

What wve have here is a thing in a list that is itself a list: the
list (LIKE YOU) {s called a “"sublist® of the 1ist (I <(LIKE YOO
TOO) . No matter how many things a sublist has in {t, it counts as
only one thing in another list 0f which it is a sublist. aAny list
can be a sublist of any 1ist.

Now let’s learn how to find out if a certain thing is already
in a list. We will write MEMBER; it will return TRUE {f its first
argument 1is somewhere in the 1list that is its second argument,
otherwise it will return FALSE:

7TO MEMBER 33X :Lg

>i18 IF EMPTYP :L THEN RETURN FALSE:

>20 1IF EQUAL :X FIRST :L THEN RETURN TRUE;
>30 RETURN MEMBER :X BUTFIRST :L:

>END;

MEMBER DEFINED

?MEMBER (B) (<A)Y (BY (C)>:

%T*

TMEMBER (D) (¢4&) (BY (Cr>:

?

Line [0 says that, if the list is empty, nothing can be in it so
return false; line 20 says that, if the thing in X is eqgual to the
first thing in the 1ist in L, then we can reiurn true; 1ine 39 says
that, otherwise, MEMBER Is true or false devending on whether +the
thing in X is in the rest 0f the list. Note that SQUAL comparss any
twe things, and not Just numbers.

i9

gct. 3G, 1974 UT LOGOC Priner pase 248

LOGO also allows an ELSE statement within an IF statenent; the
reader may verify that the entire procedure MEMBER may be written in
“one line” as follows:

?TC MEMBER :X 3L

>10 IF EMPTYP :L THEN RETURN FALSE
ELSE IF EQUAL :X FIRST :L THEN RETUEBN TRUE
ELSE RETURN MEMBER :X BUTFIRST :L:

>END;

MEMBER DEFINED

?MEMBER (A) (<AY (B>

* T

TMEMBER (C> (CA) (B)y);

?

You see, then, that ELSE is interpreted Jjust as one would eXpect it
to be; it is also the case that ELSE may appear only within an IF
statement. That {s, the ELSE statement is meaningful only within an
IF statement. (The reeson why MEMBER results in #*T# {n the first
case(s) is that #*T# is what LOGO <(LISP) uses t0 mean TRUE; the
reason why nothing gets printed in the second case(s) is that LOGO
(LISP) uses the empty list () to mean FALSE, and as we have already
seen, LOGO does not print the empty 1ist.)

Notice, too, that line 10 above extends oOver more than one line
on input. This is oK, so long as you type less than 72 columns on
one line, and then hit the return Xey and continue tysing. The
computer will accept as many lines as you type (until it sees a
semicolon) as one statement. (If you type t00 far over on one iine,
the computer will do an “automatic” carriage return -- this is not
the same as when you do 1it. You musi then hit the return kKey
yourself. But {f you are in the middle of a word, vou wili have 10
“"escape” and re-type the line, nitting return before the last word
and starting the next line with that word.)

No& ve are ready to learn about handling words and 1ists. We
Know what FIRST does when we dive it a list:; there is giso sz
procedure LAST that returns the last thing in a 1iist:

?FIRST (A B ©);
A

2LAST (A B Cus
¢

We Know that BUTFIRST returns a list composed of everything in the
list we give 1t except for the first thing:; there is a procedurs
BUTLAST that returns a list composed of everything in the ist we
give it except for the last thing:

IBUTFIRST (X Y 23
¥ Z
?BUTLAST (X Y 21
XY

20

gcte 30, 1974 T LOGO Primer page 21

We can aiso put ne& +hings into a list, either at the front:s

?2FPUT "X (Y 2Z)3
XY 2

-= OF 3t the Dback (lastl:

FLPUT "2 (X YJ3
XY 2Z

Here we meet with sbmething news: wWe use the quote markx (") in
front of a word (like X, or 2> t¢ mean that we are talking about the
word itself, rather than the thing in the word. Always .before, e
nave used the colon; this means t0 use the thing in the word, rather
than the word itselif. If a word zppears without either & quote mark
or a colon in front of it, then it means that we are calling the
procedure with that name. (S0 you see that our use of the word TRUE
within LOGO procedures means calling a function (named TRUE) that
returns #*T#, and that FALSE s the name o0f a LOGO function tnat
returns the empty list.)

Actually, FPUT and LPUT do not change the listis we give thaea,
bput instead return altered copies of the lists. Now let®s use FPUT
to write a procedure APPEND that takes two lists and returns as itis
value =a new 1list composed of all the things in the first 1ist,
followed by all the things 4in the second list. Here are some
exampless

(1) APPEND () (A B) is8 (A B);

(2) APPEND (A) (A B C) is (A &4 B C;

{3y APPEND (A B> (C D) is (A B C D,
Now we write {t:

?TO APPEND :L1 3L2;

»>10 IF EMPTYP :L1 THEN RETURN 3L2%

»>2§ FPUT FIRST :L1 APPEND BUTFIRST Ll :LZj
END3

APPEND DEFINED

?APPEND (> (A BJ3

A B

TAPPEND (A BY (C DJ;

?

Oops. Something is wrong -- what is it? We forgot to RETURN the
resylt (in line 20). What we should have said was:

28 RETURN FPUT FIRST :L1 APPEND BUTFIRST :Li :L2;
Now you use the editor to make the correction,
What do vou think would hzppen {f we had 7orgotien 1o i¥pe in
line 107 Would we have an infinite loop? 17 80, why? If not, %wny

n101? Yhen APPEND is exscuted, i1t will do iine 20, waich cguses
APPEND ¢0 be executed, wnich causes line 20 t0 be execuied, which

21

gcte 306, 1974 UT LOGO Primer pags 22

causes APPEND to0 be executed ... forever? NO -- there i{s another
mistake. What 1is 1{t? Each time line 20 is executed, it calls
APPEND with a smaller 1ist in Li; eventually, the 1list in Li will
become empty. If line 10 existed, then APPEND would then return =
value; but it doesn’t. S0 line 20 is executed. Now, what {s the
FIRST of an empty list? Since there is no first element, FIRST is
not defined. That’s right -- undefined. We use the term in the
mathematical sense, since there 1{s certainly a function called
FIRST. What we mean is that the function (procedure) FIRST does not
kKnow what to do with the enmnpty. 1list. Therefore the computer
“generates an error” and stops working on the latest command. It
will also print-out an error message, Or else c¢all vyour errop
routine, (We will learn about this, later.)> More to the point,
this will terminate the (otherwise) infinite lo0p.

Well, we were saved from this infinite 100p DbDug by <¢the rfact
that we would try to execute an undefined function. But what would
happen if this were not the case? Consider thls definition o7
APPEND:

?2TC APPEND :X :Y;

>10 IF EMPTYP :X RETURN :Y;

>20 RETURN FPUT FIRST $X APPEND :X :Y
>END3

we

Notice that line 20 neglects to make the list in X smaller. So,
unless the first list we pass to APPEND is gzlready empty, we have an
infinite loop becguse it will never become empty, and line 180 will
never De able to return a value. This being the case, it i{s the
same as if line 10 didn“t exist; the only thing that might have
saved us is the error discussed above (FIRST) which will not exist
nere. S0 we have an infinite loop.

intinite loops can never be completed; however, ithers ars ways
in which they may be terminated without meaningful resulit. <(We have
already discussed one -- the undefinesd-function error.> LOGO must
“remember” where it is when it calls a function (so <that it Xnowvs
wnere 10 coOme Dback to when the function is compieted); LOGO can
remender Just so many things, before {1 runs oul of memory; <0 run
oyt of memory is {tself an error. Therefore, the “infinite iocop”
above aise turns out to be terminables eventually, LOGD 11 run
out of the memory it needs to call APPEND again, and this generates
an error, which In turn causes the computer t0 terminate the
execution of APPEND. S0 we are saved., Again. This type Of error
is called a "recursion 1imit” error. Recursion 1imit errors will
sooner Or later De detected and terminated -- but most importantly,
you should be very careful not to construct infinite loops to begin
withe After all, you’re wasting both your time and computer time.

In <this <chapter we have nad a little practice in writing
procedures; we shall get some more practice laier. As it nappens,
the procedures we wrote in ¢his chapter are ali so useful tnzt they
have already been incorporaisd into LOGO, so you won"t nave 190

2e

Gct. 305, 1974 UT LOGO Primer page 23

define them for yourself when you want t¢ use them, also, FIRST,
LAST, BUTFIRST, BUTLAST, and COUNT may take a word as . their

argument, and if so they treat the word somewhat as if it were =2
list of letters:

?FIRST "WHOOPIE;

W

?LAST "PRINT;
T

?BUTFIRST "WOV;
ow

?BUTLAST "WOW;
WO

?COUNT "WHOOPIE;
7

?

So you see that you can play with words 1like youw can play with
iistse.

23

Gcte 3G; 1974 UT LOGO Primer pagse 24

CHAPTER IV
ITERATION IN LOGO

S50 far, you Know a littie about how t0 use recursion in LOGO;
now you will learn about iteration. To do iteration you haye ¢0
Know about two .. things -- now $0 change the contents of a word (a
variable), and how to tall the computer $0o g0 t0 some_ statement in
the procedure other than the next one in sequence, S0 first we wiil
learn the former:s how to put new things (nto words.

Imagine a word (called a variable) t¢c be like a2 “pigeon-hole”
that can accommodate only one thing at a tinme. You can tell the
computer to0 put something into <the pigeon-hole, which destrovs
whatever was there before. Or you can tell the computer to 100k at
what 1s already there. Actually, you Xnow now 10 do0 this: the
colon in front of a word tells the computer t0 1look i{nside. And
when you call a procedure and pass it some argument(s), the computer
puts the argument(s) into the word(s) following the colons on tne
first line of the procedure (the one starting with TO). But there
is a way to tell the computer t0 put something into a word at any
time, whether you are in a procedure Or nots

IMAKE "X 103

-- fOopr instance, will put the number 10 into the pideon-hole called
X. Any word could appear where_X appears, and that word would have
10 put into it. Also, in place of the number 10 one might put any
number, or a list, or a colon or quote followed by another word, or
a call to any procedure., For example:

?MAKE "“TOTAL SUM :TOTAL FIRST :L3;

will form the sum of the number currentiy in TOTAL, and .the nunber
that is the first thing in the 1list called L, and wiil pul %tas
result back into TOTAL. The number previously in TOTAL nas Dbeshn
displaced, and c¢an no longer be retrieved. Notice the guote mark.
Again, it means that we are talking about the word TOTAL, instead of
what is in it. Consider carefully the focllowing:

?MAKE “RABBIT "HARE;
HARE

?PRINT “RABBIT;
RABBIT

?PRINT ¢RABBIT:
HARE

?MAKE “HARE “LUPUS;
LUPUS

?PRINT “HARE3;

HARE

7?PRINT :HARE;

LUPUS

?MAKE :RABBIT “EGG;
EGG

24

gcet. 30, 1974 UT LOGO Priner pade 23

2PRINT :RABBIT;
HARE

7PRINT :HARE;
EGG

Especially note that (MAKE :RABBIT *£G68) puts the word EGG into the
pigeon-hole whose name 1s (not the word RABBIT, buty in the word
RABBIT. Generally speaking, this is wrong. (That s, it {s not
what vyou Intend.) in almost all cases, the procedure MAKE should
have as its first argument, a “quoted”™ word -- not 2 *colon-ed”
word.

Normally, the computer will execute each line within a
procedure in numeric sequence. We have already seen where the IF
statement controls how much within a single statement is executed.
Ye have also seen that the RETURN (or OUTPUT)> statement causes the
procedure to Dbe exited, without zany further execution. There is
another procedure that controls execution of lines: the G0 command
(which can appear only within a procedure) takes as its arguyment 2
line number and tells the computer to go to that 1line and start
executing there. Consider this definition of ADD:

?2T0O ADD :L;

>10 LOCAL :N3

>20 MAKE "N 03

»>30 IF EMPTYP :L RETURN 3N
>40 MAKE "N SUM :N FIRST :
>50 MAKE "L BUTFIRST :L;
>60 GO 303

>END3;

2
]
L3

Tne LOCAL statement invents a new pigeon-nole called N. Statement
20 puts zero into the word N. Line 30 is our “finished?” test ==
1 the list in L i{s empty, then we are done and the contents of N is
the answer. Otherwise, line 40 adds the first numbper in the list io
N, and line 58 throws away the first number in the list and puts the
~e3t of the list back into L, and line 60 says to go to line 30 and
aontinue from there.

Performing the same sequence of statements over and over ag9gin
is called iteration. Earlier, in chapter I, we had a “recursive”
definition of ADD; here we have an “iterative” definition. AS ¥you
can see, the iterative definition hes more iines, and thus 1s more
work for vyou. The computer doesn’t care which form Jyou use,
although the recursive form might be a little faster -- like; a faw
micro-seconds. Furthermore, although recursion requires memory . -=
which <can therefore Dbe exhausted by t00 much demand fOor {¢ ==
itaration does not require memory, and thus an infinite 100p error
involving iteration may be undetectable. This is oOne situation that
you absolutely, certzinly wish to avoid. If you nave created an
infinite iterative loop, then unless that causes another error (A
occur (¢like taking the FIRST of an enmpty list), you may never Rrnow
{t --- and the computer will grind on and on, wasting iime ¢ and

25

gcte. 30, 1974 UT LOGY Primer page 28
mON8YJ). If vyou expect that this {s the case, all you can do is
avort the entire program -- and lose everything. S0 if you use
iteration, be careful.

?2T0 COUNT :L3

>10 LOCAL :Nj;

»20 MAKE N 03

>30 TEST EMPTYP :L;

>40 IFTRUE RETURN :Nj;

>50 MAXE "N SUM | :N3

>60 MAKE "L BUTFIRST :L;

>70 GO 30;

>END3;

Here {is another definition of COUNT. Lines 30 and 40 contain

the procedures TEST and IFTRUE. The procedure TEST

something new:
takes 1ts

procedure

argumnent
puts it into a TESTBOX which is automatically
{COUNT)Y.

The

procedure s testbox and,

anything except the empty 1list,

(here,

pro

cedure

which

the result of the procedure EMPTYPY
_associated

IFTRUE will

if its contents are TRUE (that is,
FALSE
1f the contents is

is the

computer will execute the rest of the statement.

FALSE
of the statement.

operates oppositely;

>30 TEST

{the enmpty list),

conversely,

sLs

IFFALSE

and
with ths
investigats this
ir it .is

value), . the

then the computer will not execute the rest
there {s an
thus lines 30 and 40 could be written:

statement that

>40 IFFALSE RETURN :Nj

word THEN is not allowed here, nor is there an ELSE

Note that the
portion.

?T0O MEMBER :X 3:L3;

»>10 IF EMPTYP :L RETURN FALSE:;

»>20 IF EQUAL :X FIRST :L RETURN TRUE;

>38 MAKE "L BF :L3

>40 GO 103

ENDs

Here we nave illiustrated the iterative form of MEMBER. Notice

the abbreviation BF for BUTFIRST in line 303 several of the LOCGO

srocedures have abbreviations. Appendix A lists all of them.
?2TC APPEND :Li :L23

>10 IF EMPTYP :Li THEN RETURN L2

»20 MAXE “L2 FPUT LAST :L1 :L2;

>30 MAKE “L1 BL :Lis

>40 GO 10

>ENDs

BL is of course the abbreviation for BUTLAST. Notice that MAXE

“1L2 is necessary in line 20. Why?

26

o
m .
£
&
(]
3

Oct. 38, 1974 UT LOGO Primer

Now we wWill re-write POLY s0 that it stops after drawing =2
ceptain nunber of lines:

2TO POLY :NSIDES :STEP :ANGLE;

>10 IF LESS :NSIDES | THEN S5TOP:

>28 FD :S5TEP;

>30 LT :ANGLE;

>480 MAKE “NSIDES DIFFERENCE :NSIDES |3
>S50 GO 10;

>END3;

-=0pr; Detter yet:

?TO POLY :NSIDES :STEP :ANGLE;

>10 IF LESS :NSIDES | STOP;

>20 FD :STEP;

>30 LT $ANGLE;

>40 POLY DIFFERENCE :NSIDES 1| :STEP :ANGLE;
>END;

Now you can try the POLY examples from chapter 1, adding the
appropriate (first) argument. The command STOP is like RETURN (oOr
CUTPUT)> except that you may not specify a value t0 be returned --
false i1s the value returned.

The only thing you need to kndw ndw is hoﬁ t0o find bugs, given
that you know they exist (because your program is doing funny things
that you did not intenq, or because it {s generating error

messages).

27

