THE TRANSLATION OF FORMAL
PROOFS INTO ENGLISH
by

Daniel Chester

Technical Report NL - 26

The Department of Computer Sciences
University of Texas at Austin

June 1975

Abstract

The argument of a logical proof written‘up in English can be
represented by a formal proof in symbolic logic; this formal proof
can also be taken to represent the deep sﬁructure of the written
proof. This paper describes a program which generates a written

proof from such a representation.

The Translation of Formal Proofs into Inglish
Daniel Chester

University of Texas, Austin, Texas

Introduction

Collectively the proofs of theorems form one of the
few categories of discoufse for which there is a well-
developed semantic theory. Formal representations for the
structure of discourse in cetegories such as narration,
expoesition, procedure, exnortation, etc. are being attempted
by Charnizk (1)}, Longacre [2], Pnillips [3], Schank [4],
and others. But attempts to formslige the structure of
logical argument go back as faor as Aristotle E%Qand have
successfully culminated in the many formal proof systems
which arenow part of symbolic logic. With such formal
systems available for representing the deep structure of
written proofs, proof discourse is an excellent place to
begin a study of discourse structure. In thls Daper we
shall look at the relctionship vetween formal proofs and
written proofs, and at a progrem called EXPOUND which

translates formal proofs into Znglisn.

Tormal droofs are defined in terms of formulas and

inference rales. Tyviczlly a formal proof is delined to

be a finite seguence of well-formed formulas such that
every member of the sequence is an axiom or is inferred
from earlier members by means of an inference rule.
Defined this way, formal proofs are useful for studies in
logic, but theyvdo not closely resemble written proofs.
Formal proofs show every step, while written proofs leave
many out. Nevertheless, for every written proof'a formal
proof can be constructed which represents its logiczal
content. (If this can't be done the proof isn't valid.)
Such a formel proof is thus a likely representation for the
written vroof's deep structure.

Another vrinciple difference petween many formal and
written proofs is that written proofs use the rule of
conditionalization. They begin by making an assumption,
then argue to a conclusion, and finally they assert the
fact that the assumption implies the conclusion. In print

the proof looks like

Suppose P. . o o Therefore Q. Hence we have

shown that P implies Q.

Formal deduction systems which do use the CD {conditional-
ization) rule are known as systems of natural deduction.
-7
. 9 - . - -
See Fitch [#] and Quine [3] for exemples.

Written proofs differ from typical formal proofs zalso

because they often indicate what the logiczl relationshivps

are that hold between statements 10 maxe the proof valid;
formal proofs often do not have any such indication.
Suppose that we want to show that the dog Toto is a

loveble pet, and we already accept as fects the statements

411 pets arc loveble or exotic.
Toto is & pet.

Toto is not exotic.

We might give a formal proof (using sentences in place of

‘

formulas) like this:

A1l pets are lovable or exotic.

If Toto is a vet then he is lovable or exotic.
Toto is a pet.

Toto is lovable or exofic.

Toto is not exotic.

Toto is lovable.

Toto is a lovable pet.

This sequence, a mere listing of the individual steps in
the proof, is not an acceptasble essay; it reads more like
a haphazerd list of facts. A better way to present this

proof is

Toto is a pet, and all pets are lovable or
exotic, so Toto is too. But Toto is not

exotic; consequently he is a lovable pet.

llote that the only lines of the original proof that are
actuzlly zsserted are the statemenis which we alreedy
sccept as facts. All the other assertions in this short
essay are about how the lines of the vroof are related.
The last clause, for example, does not assert thet Toto
is a lovable vet, it says thet this fact is implied dy
the statements mentioned earlier in the essay. A formal
proof that is used to represent a written vrooftls deep
structure should therefore belong to a natural system of
deduction, and it should also explicitly show how the

ste=tements are deduced from their predecessors.
EXPOUND

The program EXPOUND, written in UT LISPy translates a

g .

formal proof into an English stctement of a theorem and

its proof. It performs this translation in four stages.
In the first stzge it makes a graph representing the
inferentizl relationshnips bvetween the lines of the proof.
In the next two stages it uses this graph to make an

outline of the text whichn it will generate. The progran
fan) 2

makes this outline by first grouping lines together into

N

ol n linezr order

}_J.

S

xg)

+

paragraohs,then putting these paragr

¢4]

and inserting introductory caragracns where aporopriate to
exvlain how the other paragradhs are related. Finally it
generates an English text by explaining how ezch line is
obtazined from the preceding lines in the outline.

The Fformal proof that EXPOUND expects 1s a seguence
of triples such that each triple consists of a line
identifier, a first-order predicete calculus formula and
a list of atoms. ¥We shall cell the formula a line of the

proof and we shell use the line identifier to refer to it.

The list of atoms we shall call the justification for the

line. This list consists of the name of the inference rule
that wes used to obtain the line, followed by the identi-
fiers for the lines that the rule was applied to. If

four triples in a proof are

16 Fx (PR)

7 Vv x (Fx — Gx) {EN)

18 Fx — Gx (UI L7)

9 Gx {TF 16 1L8)

then the justificetion for line L6 shows that it is the
result of the PR (premiss) rule, which stztes that any
formula may be cdopted as a premiss at any step in the

proof. The justification for line 18 shows that it is a

universal instentiztion of line L7, & mmown fact, wnile

the justificstion of LS shows that 1% follows truth-
functionally from lines L6 and L8. We shell call a line
listed in the justificetion for a line a reason for the
line, and we shall call the rule listed in the Jjustifi-
cation the rule for the line. Thus the rule for line LS
sbove is the TF rule and the recsons for 19 are L6 and 18.
See Table 1 for a list of all the inference rules, their
full names and an illustration of each; except for the

KN rule, these rules are identical to those in (8. An
exzuple of a proof is shown in Fig. 1. In the following
sections we shall follow this example as EXPOUND <translates

it into English.

Graph

The lines of a proof have a natural order to them, a
partial order > which we can define by the following

four conditions:

1. If line x is a reason for line y then x > ¥.

5, If line z is obtained by the CD rule using
premiss x, line y is obtained by the CD rule using
premiss w, X > ¥, and ¥y > 2, then x > w.

3, If line x is obtained by the ZEI rule, v 1s the
variable naving an unguantified occurrence in X but not
in the reason for x, end y is enother line which has an

unguentified occurrence of v, then X > ¥.

4, If x> y and y > z then X > Z.

These conditions describe basic facts szbout how the
lines of a proof are usually presented. The first condition
stetes that the reasons for a line are given before the
conclusion dravn from them. The second aesserts that when
a proof is begun from some premiss x and a subproof cannot
be completed without using a successor to X (2 line y such
that x > y) then the entire uuoproof is nested within the
proof. This situation is illust raued by the five line
proof in Fig. 2a. Lines w, x, y, and z are related as in
the hypothesis of condition 2. If > were defined without
condition 2, the partial ordering of Fig. 2a would look
like Fig. 2b. With condition 2 the partial ordering is
the natural one shown in Fig. 2c. In these graphs and in
Pigures 3 and 4 a node n is greater than a node n' (n > n')
if there is a downward path from n to n'. The third
condition siotes that when a term ¢ is introduced by en ZEI
rule (informally this is the case when we say "Now there
are things that Let ¢ be such a thing.") then that
introduction precedes a2ll other references to c¢. The
fourth condition is the trensitive property for partial
orderings.

Internally EXPCURD represents the vartial ordering Dby
means of a graph; in the case of the prool in Fig. 1, it

roduces the graph in Fig. 3. Tne edges (lines between
o]

nodes) of this graph show only the reiationships of form
X > z wnich are irreducible, that is, there is no node y
such that x > y and ¥y > Z.

Most of the edges in this graph connect lines to their
ressons. Line 113, for example, is connected to L5, Lll,
and L12 because it is inferred from these lines. It is
also connected to Ll4 because 1t is a reason for Ll4.

Tine L14 is deduced by the CD rule from Ll3 and the
premiss L10; but there is no edge from L10 to L14 because
the relationship 110 > Ll4 can be determined by the
trensitive rule from the edges thet are in the graph.

Three of the edges, however, are the result of
condition 2 in the definition of the tertial ordering.
There is an edge indicating L4 > L6 veceause L6 is a premiss,
it begins the subvroof L6, L7, L8, 19, which ends with CD
line 19, and L4 > 19 because of the chein L4, 15, 18, I9.
Similarly there are edges indicating L3 > L4 and L3 7 L1O
because both I4 and L10 begin subproofs which are embedded

in the subproof beginning with L3.
Qutline

The next thing that EXPOUKD does is to combine the
nodes of the graph into secuences of lines which outline
the paragrachs that will appear in the output. These
sequences are the nodes of a new graph as shown in fig. 4.

The program combines the nodes by repected application of

X

three rules:

1. Ad4& the lines at node x to those at node y if
X >y, X is the only immediate predecessor to y and y 1s
the only immediate successor to X.

5. add the lines at node x to those at node y if ¥y
is an immediate successor to x and X 1is an eligible node
of lowest rank. Node x is eligible iff it has y as its
only immediate successor, the number of lines at x is less

than some fixed number (5 in our examples), none of the

lines are CD lines, and there c¢re no immediate predecessors

to y which should be added first to insure that subproofs
will be unbroken sequences. The rank of & node is the
number of its immediate predecessors.

3. When both rules 1 and 2 are applicable, apply
rule 1 first, repeatedly if possible.
These rules assure us that the lines that g0 into one
paragraph of the final text form an almost totally ordered
sequence. The only deviations from total ordering occur
just before lines derived from s set of lemmas with each
lemma preceded by a proof having fewer than five lines and
containing no CD lines. (The CD lines terminate subproofs
which should be in seperszte paragraphs, as 1s done in Fig.

A%t this stage the nodes, which corresvond to para-

raphs, may not yet Dbe linesrly ordered, so EXPCUND lists

ot
‘.J
(&}
}. 4
@)
=
]...J
I3
v

tnhe nodes in an order comva the partial ordering

Ry

(if x > y then x precedes y) and inserts introductory
paragraph nodes 1o clarify the reletionsnips between the
other nodes. The program examines the total cvroof and

each subproof seperately to determine where such nodes

are needed. An introductory paragraph seys nothing about
the internal structure of nested subproofs; that explanation
is left to the introductory zare reph within thet subproof.
An introductory paragraph'node consists of a conclusion

and a list of lemmas. At the oD level the conclusion is
the lzst line of the lest node, i.e., the lest line of the
proof. In a subvroof the conclusion is the last line before
the CD line terminating it. The lemmas are lines which

do not belong to subproofs of the current (sub)proof being
examined and which are the lazst lines of nodes which have
more than one immedizte successor (except the first such
node in a subproof) or whose immediate successor has more
t+han one immedizte predécessor (within the current sub-
proof being exzmined), or whose immediate successor is

part of a subproof at = deeper level. VWhen the program
crestes an introductory Daragrapi node it inserts it

either 2t the beginning of the entire proof, or, in a
suboroof, after the first node having more than one
immediate successor. In t.e case of Pig. 4, EXTCUND inserts
an introductory varagraph node consisting of conclusion

115 and lemmas L9 and 114 right after node w, making the

final outline w, introductory paragraph, X, ¥, 2.

}..J
'..J

The observant reader will note that lines L1 and 12 do
not aprear in Fig. 4. This is because they are the premisses
which are still assumed when the last line L19 is deduced.
They will therefore be mentioned in the statement of the
+heorem and do not need to be repeeted in the body of the
proof. For this reason EXPOUND removes L1l and L2 from the
graph before outlining the proof and ssves them until the
proof is ready to be printed. EXPOUND then precedes the
proof with & statement of the theorem, listing L1l and L2

a5 the hypotheses and L19 as the conclusion.

Paragraphs

The program now has & detziled outline of the English
text which it generates. This outline is a sequence of
nodes which are of two types; regular, consisting of &
sequence of lines from which the program generates a regular
parsgraph, and introductory, consisting of a conclusion
line and some lemmas from which the orogram generstes an
introductory varzgraph. In botn kinds of paragraph
EXPOUND makes statements about how the lines of the proof
are related, i.e., this line ic 2 tautologicel consecuence
of that one, to prove this line we must first drove such-
and-such, etc. Also EXPOUND does not meke a statement for
every line in a node; it lgnores sone lines becsuse the

inferences deriving them are trivial and easily

reconstructed by the reader. ,

For a regular varagraph TXPOUND examines each line
and generates a statement bzsed on the rule by which the
line was deduced and on the previous statement generated.
Tor instance, if a line x is a generalizegtion of the

previous line (by the UG or G rule) the program generates

n+hus" (or a randomly chosen svnonyn) followed by a sentence
asserting x. If x 1s an instantiation the situation is
different. If x is 2 UI line it is ignored; it won't get
mentioned until it is used to infer some other line. If X
ig =zn EI line the program generates a stetement having a
form like "Let Z denote such a « o o." If line x is a TF
consequence of a number of lines Tir Tos o o o Yo the
program chooses randomly from severazal possible statement
formats, with the range of choice depending on the
circumstances. If x is deduced from X 5 ¥ and this is

the previous line then the drogran ignores it and vorocedes
to the next line. If none of the yi‘s is the vrevious

line then EXPOUND generctes a statement like "since Yy and
Yo and . . .y end yk, X% or “yl, and Yoo and .« « o5 2nd

Yy SO x" or "x because ¥q, and Tos and .« « o4 &nd yk."
The line x is replaced by a sentence zsserting x and each
y; is replaced by a sentence asserting yy» often preceded
by an expression like "Dby nypothesis", "oy assumption, or
"we have shown that". The drogran also prefixes to the

whole statement a synonym of “"furthermore" if the previous

13

line is zlso a TF line, or "now" or "putt® if there is no
relationship between x and the previous line. On the
other hand, if x 1is related %o the previous line, that
is, if the previous line is one of the 'yi’s, say ¥ s
then EXPOUND generztes a statement like "but Yo » and
Y3y o and . « o5 and Yy » 80 x"* or “"this and the fact
that Vo o and y3 , and « . ., and Yy imply that x" or
"thus since ¥, » and Y3 s and « . ., and NAT x",
The lines X 5 Yo 9 =« o < ¥y are replaced by sentences
just as in the other case, and words like "thus", "since",
and "so" may be replaced by synonyms. In every case the
program generates sentences from the lines and connects them
together using patterns determined by the justifications.
FPor an introductory paragraph IXPOUND uses one of
several formats. If the conclusion is X and the lemmes
are ¥y Yo 5 o o o yk , where k » 1 , 1% usually

generates a paragraph like

We want to show that =x . This is implied by
the following statements. ¥, - Yo o0 o o e Ty o

These statements we shall now prove.

If 211 the y.'s have the form Dy —» X , however, it
i i

generates

14

We want to show that x . This we shall

do by considering the following k cases.

For other special cases EXPOUND generates similar

paragraryhs.

Sentences

We have now explained all the steps by which EXPCUND
generates a text from a proof like Fig. 1 except how 1%
generates a sentence to assert a formula. The grammar
on which the sentence-building procedure is based is a
simple case grammar. Eath predicate has gssociated with
it a verb sitring, a syntzctic type, and the vreposition,
if any, associated with each argument. Sometimes a
gender is also associated with the predicate so that
EXPOUND can choose an appropriate pronoun when needed,
This lexical information is supplied to EXPOUND in the
form of a table such as the one illustrated by Table 2,
which is the one that sccompanies the proof in Fig. 1 as
EXPOUND's input. The verb string is listed in up %o four
forms for convenience; these represent the positive active,
negative active, positive passive, and negative passive
forms. The syntactic type is either adjective, noun,
phrase, or clause, and indicates wnich kind of word phrase

to consitruct from the verb string when buiiding a noun

bt
i

phrese description for some variasblie. The prepositioné
indicate the cose for each argument. Using this
informstion about how to translate the predicates, EXPOUND
genereates a”sentence by examining the syntactic structure
of the underlying formula andé using that structure to
guide its decisions about which subformulas generate noun
phrases, which generate verb phrascs, and how these
vhreases are connected together.

The way that EXPOUND combines sentences from
subformulas is about what one expects when the formula
is a conjunction, disjunction or implication: i1t translates
P A Q into "P and Q", P v Q into "either P or Q", and
P — Q into either "if P then Q" or "Q whenever P%. DBut
it acts on quantified and atomic formulas in more
complicated fashicn.

Universally ouantified formulas usually have the form
V x (P — Q) with varisble X occﬁrring in both subformulas
P and Q. After recording the fact that x 1is universally
guantified, EXPOUND attempts to build from P = noun phrese
deseribing x. If successful it then generates a sentence
from Q; if not it generztes a sentence from P' — Q ,
where P' is what is left of P after the phrase-building

process has terminated.

£

A noun phrase describing x is built from a formule P

if P is either an atomic FTormuzla {(a predicate with its

arguments), a Tormula beginning with guantifiers, the
& g s & 2 9

o
(93
w

negation of either an atomic formulae or quantified formula,
or the conjunction of the agbove kinds of formulas. The
conjuncts are grouped together according to thelr syntactic
types; atomic formulas (with one exception) are the same
type as their predicate, while guantified formulas are
either ovhrase or clzuse types (the choice depends on the
last atomic formula occurring in them) and negeted formulas
or atomic formulas with a predicate of noun type and two .
or more arguments are clause types. Word strings are made
from cach formula and then struﬁg together with adjectives
coming first, then nouns, then (prepositional) vhrases, and
finally (dependent) clauses. Adjective and noun sirings
are generated by removing the first word (usually "is") or
the Tirst two words ("is" and a determiner) from the
positive active form of = predicate's verdb string. Phrases
and clauses are generated bv making sentences from formulas
and then replacing the subjects by "wno' or "which" (to
make clauses) or by just deleting the subjects and their
verbs (to make phrases). I1f there is more than one phrase
or more +than one clause, then "and" is inserted between
them., The noun phrase describing x the first time 1t must
be mentioned consists of the strung-together word strings
preceded by a quantifier, either "every" or "some" as
appropriate. Subsequent occurrences of X are indicated by
a pronoun or "the K", where N is the last word on the list

that

ast word is the same

iy
[

of nouns in the noun phraese. I

as the las® noun for some previous variable so that "the N©

-

is potentially ambiguous, the noun phrase describing X is

followed by ", say Z," where Z is an arbitrary symbol, and
¥

ngu ig ysed instead of "the N¥ for subseguent occurrence

[e1]

of x.

The sentence that EXPOUND generates from an atomic
formule is simply the first ergument followed by the
predicete's verb string followed by prevositional phrases
mede from the remzining arguments. For example, if
predicate G had three srguments x, y, and z, and its verbd
string were "gives", then 2 wouid have the preposition "to"
nssociated with it. The formula Gx,y,z would then generate
a sentence of the form "x gives y to z". The variables
would of course be replaced by suitable noun phrases built
from other formulss. The first occurrences of quantified
veriables in the argument list would be rearranged so that
they appear in the same order in thch they were quantified.
the first variable were moved from its initisl position in
the argument list then the passive form of the verb siring,
"is given", would be used in place of "gives". The
prevosition used with a variable that has been moved is the
one corresponding to its originel vosition in the argument
list; e.g., if variables x, y, and z wers guantified in
the order y, z, X, the sentence generated froz GX,y,z would

neve the form Yy is given $0 z by X%,
o

i5¢

Suppose the underlying formula is V¥ x ((Fx 4 Gx) = Hx)
and the predicates are to be translated as shown in Table 2.
Because the formula is the universel gquentification of an
implication, EXPOUND first builds a noun phrase %o describe
the variable x using the predicates in the antecedent
formula Fx A~ Gx . After noting that F end G are noun and
clause syntactic types respectively, EXPQOURD combines their
verb strings to make the expression "worker who signed the
contract"., It then makes a sentence from the conseguent Hx ,
giving rise to the output "every worxer who signed the
contract is in the union." If the underlying formula were
¥ x ((Fx ~ P) — Hx) and P were a formula that EXPOUND
couldn't use 1o make a noun phrase, it would generate a
sentence from the formula P — Hx ; this would produce an
output like "if any worker . . . then he is in the union. "
(The quantifier "every" is changed to "any™ when it is

printed in the antecedent of such a conditional.)

!,.J
(@2

The existential quantification of a conjunction is
translated in similar fashnicn. All conjuncts but the last
sre used to make g noun vhrace znd a sentence is made from
tne last conjunct. The formala & x (Fx A GX A Ex) , for
example, would be translated "some worker who signed fhe
contract is iﬁ the union." TPor some formulas the desired
sentence may be generated from several conjuncts besides
the last if they can't be used in building the noun phrase
for the guantified variable. If no noun phrase is generated
for the variable, ¥XPCUND makes one from the verbdb string for
the predicate UNIVERSZ. This meens that the program would
tranclote T x Fx into "“some person is a worker."

When a formula is & negation EXPCUND notes that fact
and then nrocedes to mske a sentence Irom the subformila
which is negated. If the negstion symbol precedes a
quantifier, it affects the guantifying word in noun pareses.
mhe formula = ¥V x (Fx — Gx) , for instance, is translated

into "not every worker signed the contract.® Tne formule

-~ T x Fx Dbecomes "no person is & worker." When an atonic
formula is negated, the negative active (or negative passive)
verb string is used., Thus I x (Fx A = Gx) is translated

nsome worker did not sign the contract.”
tput

altogether EXPCUND takes just seven seconds of
computation on a CDC 6600 to accept Fig. 1 and Table 2 zas
inout end perform all the operations discussed. During
this time it makes a graph from the proof, condenses the
greph down to a linear sequence of paragraph outlines,
end then generates the statement of the ﬁheorem and its

proof shown below.,

Theoremn:

Suppose that if every worker who gsigned the
contract is in the union then sone worker did
not sign the condract. Suppose mOreover tnat
either every worker signed the contract, or
every worker is in the union. Then if every
worker in the union signed the contract then
some worker who signed the contract is not in
the union.

suppose that every worker in the union signed
the contract. Suppose moreover that some worker

éid not sign the contrazct. Let w denote such

a worker who did not sign the contract.

ot
(e ¢]

We want to show that = contradiction
follows. This we shall do by considering the
following 2 cases.

Suppnose that every worker signed the contract.
Now a contracdiction follows, since by '
assumption w 1is a worker an¢ he did not
sign the contract, and if he 1s a worker then
ne signed the contract. Thus if every worker
signed the contract then a contrediction follows.

Suppose that every worker is in the union.
But a contradiction follows, &s by assumption
w igs a worker and he 4id not sign the coniract,
end if he is a worker then he is in the union,
and if he is =z worker and he 1is in the union
then he signed the contract. Thus 1f every
worker is in the union then a contrzsdiction
follows.

Because by hypothesis either every worker
signed the contract, or every worker is in the
union, and we have shown that if every worker
signed the contract then a contradiction
follows, and if every worker is in tze ion
then a contradiction follows, a convradiction
follows. Thus if some worker did not sign the
contract then a contradiction follows. This
and the fact that by hypothesis if every worker
who signed the contract is in the union then
some worker did not sign the contract imply
that not every worxer wno signed the contract
is in the union. In other words scme woriker
wno signed the contract i1s not in the union.
Therefore if every worker in the union signed
the contract then some worker who signed the
contract is not in the union.

[
O

Pwo more exemples of proofs and their translations

are shown in the Avpvpendix.

Conclusion

We have described a first aprroximation to the
process by which people generate logical discourse Irom
formal vroofs. There are three principal idees incor-
porated in this approximation. The lines of the proof
are presented in a linezr order wnere possible

so that each is deduced from the vreviously
mentioned line, but where this is not possible, the
rezder is given signposts to warn him. Thegse signposts
consist mainly of the indentations showing the beginnings
of paragraphs, introductory paragraphs which indiceate
the relationships between paragraphs, ant, within
paragraphs, by words like "now" and vfyurthernoret. Also

some lines get omitted or replaced by special constructions

4

Al

I line

t=

(as in the czse of and contradictions) when this

[en}

leads to greater efficiency in communicetion. Finally,

the primary function of the text is to explain how the
lines of the vproof ure deduced, i.e. to show the structure
0f the proof. This structursl information is found mostly
in the connective dhrsses like "thus'", "by assumption”, and
"supvose', which gre used to bulld complex sentences from

the simple ones.

20

Tt is hoped that EXTCURD will evolve into a nore
sophisticated text generator &s more complicated
sentence constructions are incorporated into it. With
longer proofs it will omit larger portions so that its
output more closely resemnbles the writings of mathena-
+icians. PFerhaps 1t can be adapted to other forms of
discourse involving naetural orcerings, like narretive
or procedurszl discourse, bgsed on chronological order,
or descriptions making use of spetial order. Perhaps
after we underctend the structure of such ordered texts
we will be better prepared to understand (by contrast)

texts about sets of things wnich zre not naturally ordered.
y

21

Appendix

The input for a second example oI a proof is

Lexical information:

Predicate

Property

arguments
+gctive form
gender

syntactic tyne

arguments

+active form

gender

syntactic type

arguments
+active forn
gender

syntuctic type

Value

x

is & native of Ajo

has a cephalic index in
excess of ¢6
i

clause

X
is a woman
r

noun

B arguments
+active form
gender

syntactic type

P arguments
+active form
+passive form
preposition for x
preposition for ¥y
gender

syntactic type

Universe arguments

+active form
gender

syntactic type

Formal proof:

11
L2
L3
L4

Vv x (Nx — Hx)
v x ((Wx ~ Hx) — 3Bx)
Vv x &y (Wy A Py,x)

Vv xVy ((Py,x . By) — 3x)

x
has Pima blood
M

clause

Xy ¥

is a parent
is parented
by

of

I

noun

X
is a person
il

noun

(PR)
(FR)
(K)
(PR)

23

15 Vy (Py,x — Ny) (PR)

16 Ty (Wy . Py,x) (GI 13)

L7 We . Pc,x (EI 16)

18 Pc,x — Nc (UI 15)

19 Ne - He (UI L1)

L10 (Ve . He) = Bc (UI 12)

111 Bce (TF 17 18 19 1L10)
112 v y ((Py,x . By) — 3Bx) (UT 1L4)

113 (Pe,x , Bec)

-3 BX (UI 112)

Li4 3x (TF L7 111 I13)
L15 (v v (Py,x = Ny)) = 3Bx (CD L5 1Ll4)
116 V x ((¥v ¥ (Py,x — Ny)) — Bx) (UG 1L15)

The output genercted by EXFCOURD is

Theorem:

Suppose that every native of Ajo has & cephalic index

in excess of 386.

Supnose furthermore that every woman who

has 2 cephalic index in excess of 96 has Pima blood.

Suppose that if any person is parented by any verson,

say w , and the
has Pima blood.

whenever he 1s a

O

person W nas Pima blood then the person

Then if every person ig a native of Ajo

perent of any person, say » , then the

person p has Pima blood.

24

Proof:

Suppose that every person vho is a parent of a
person x is a native of Ajo. Since some woman is a
parent of x , let ¢ denote such a woman who is a parent
of him. But if she is & parent of him then she 1s a native
of Ajo, and if she is a native of Ajo then she nas a
cephalic index in excess of 96, and if she is a woman and
she has a cephalic index in excess of 96 then she has Pima
blood, thus she has Pima blood. 2But by assumption she is a
woman and she is a parent of x , and if she is a parent of
him and she has Pima blood then x has Pima blood, so he
has Pima blood., Thus if every verson is a native of Ajo
whenever he is a parent of any person, say 2., then the

person 2z has Pima blood.

The input for a third example of a proof 1is

Lexical information:

Predicate Property Value
H arguments X
+active form is in this house

syntactic tyre phrase

25

arguments X

+active form is & cat

syntactic type noun

arguments X

+active form is suitable for a ret
-active form is not suitable for a pet
syntactic type phrase

arguments x

+gctive form loves to gaze at the moon
syntactic tyve clause

arguments Xy ¥

+active form detests

syntactic tyze clause

arguments Xy, ¥

+active form avoilds

svntactic type clause

arguments X

+active form is caernivorous

D

ctive

o©
[oF]

syntactic Type

=
L%

P arguments X
+active form prowls at night
-gctive form does not prowl at night
syntactic type clause

M arguments pe
+active form kills mice
syntactic type clause

T arguments Xy ¥
+gctive form takes
-gctive form does not take
preposition for ¥y to
syntactic type clause

X arguments X
+active form is a kangaroo
syntectic type noun

Universe arguments X

+active form is an animal
syntactic tyve noun

Formal proof:

x (Hx =—» Cx)

x (Ix - Sx)

x (Nx —» Px)

(Cx = Lix)

x (Tx,joe =—» Hx)
x (Kx = = Sx)

x (Mx = Ix)

< @ o < < @ o o <
b

x (Px —» Ix)
Ty, joe

Ty,joe = Hy
Hy

Hy =s Cy

Ny = Py

Py

Ty, joe = Iy

¥V x (Tx,joe — Px)

e

AT

x (Djoe,x = Vjoe,x)

x (= Tx,joe =—» Djoe,x)

(FR)
(PRr)
(Pr)
(PR)
(Pr)
(PR)
(PR)
(PR)
(FR)
(PR)
(PR)
(U1

(UI

27

L12)

114)

116)

118)

L20)

121)

125 Kz = = Sz (UI L7)

126 = Sz (TP Le24 1L25)

127 1z —» Sz (UI 12)

128 Pz — Iz ~ (UI 110)

129 = Pz (TF 128 127 1L26)
L30 Tz, joe — Pz (UI 123)

131 = Tz,joe (TF 130 129)

132 = Tz,joe = Djoe,z (UI 19)

133 Djoe,z =» Vjoe,z (UI 1L3)

134 Vjoe,z (TF 131 L32 L33)
L35 Kz — Vjoe,z (CD L24 L34)

136 ¥V x (Kx — Vjoe,x) (UG 135)

The output generated by EXPOUNL is

Theorem:

Suppose that every animal in this house is a cat,.
Suppose moreover that every enimal which loves to gaze at
the moon is suitable for a pet. Suppose that Joe avoids
every animal which he detests. Suppose that every
carnivorous animal prowls at night. Suppose that every cat
kills mice. Suppose that every animal whicnh takes to Joe
is in this house. Supvose thot every Xangoaroo is not
suitable for a pet. Suppose thet every animel which kills

mice is carnivorous. Suppose that Joe detests every animal

which does not take to him. Supvose tnat every animal
which vrowls at night loves to gaze at the moon. Then Joe

avolds every kKangasroo.

Proof:

We want to show that Joe avoids every Kangarooc., This
follows from the fact that every animel which tekes to Joe
nrowls at night, which we shall now prove.

Suppose that a animal y tskes to Joe. Then it is in
this house. Thus it is a cat. Conseguently 1t kills mice.
Consequently it is carnivorous. Conseguently it prowls at
night. Thus every animal which tzkes to Joe prowls at night.

Suppase'that a enimsl 2z is a Xangaroo., Then 1t is
not suitable for a pet. But if it prowls 2t night then it
Aloves to gaze at the moon, end if 1t loves to gaze at the
moon then it is suitable for a pet, therefore it does not
prowl at night.

Because if 2z tukes to Joe then it prowls at night,
end we have shown that it doeg not prowl at night, it does
not take to Joe. This and the fact that 1f it does not
take to him then he detests z , and if he detests it then
he avoids it imply that he avoids it. Therefore he avoids

every kangaroo.

Rule

b
4

43
Ga

premiss

conditionalization

nown fact

truth-functional inference

converting quantifiers

universal instantistion

universal generalizaticn

existential instantiation

existential generalization

Table 1o

- ~
Informzl mesning

sume P

o}

a

after inference of Q from
premiss P, infer P = Q

we ¥xnow that P

infer Y from Xy , X2 s

because
is a tautology

from =V x Px

from Vx Fx infer Ty
from TFy infer V x Px
from

infer Fy

from Fy infer ¥ x Fx

Inference Rules.

infer ¥ x = Fx

Predicate

Property

]

Universe

arguments
+active form
-getive form
gender

syntactic type

arguments
+active form
-anctive form

syntactic type

arguments
+active form
-active form

syntactic type

arguments
+gctive form
gender

syntactic type

Value

X
is o worker
is not a worker

M

t7%

noun

bd
signed the contract
did not sign the contract

clause

X
ig in the union
is not in the union

phrase

X
is & person
i

noun

Table 2. Lexical Information.

¥ x ((Fx ~ Gx) — Hx) =

n
Ve

x (Fx A = GX)

Vx (Fx — Gx) v V x (Fx = Hx)

¥ x ((Fx o Hx) — Gx)
T x (Fx . = Gx)

Fec A~ = Gc

¥ x (Fx = Gx)

Fc =-» Gce

GC,\‘RGC

¥ x (Fx — Gx) = (Gc ~ - Gc)

¥V x (Fx — Hx)
Fec —» He
(Fe A~ He) -=» Ge

Ge A = GeC’

¥V x (Fx — Hx) —» (Ge . = Ge)

Gec ~ = Ge

T x (Px A = Gx) — (Gc , = Ge)

-V x ((Fx . Gx) — Ex)
g x (Fx A GX A = HX)

¥ x ((Fx , Hx) — Gx) =

Figure 1.

nT

b

x (Fx 5, Gx , = Hx)

4 proof.

(PR)
(PR)
(PR)
(PR)
(BI
(FR)
(U1
(IF
(CD
(PR)
(U1
(U1
(TF
(CD
(TF
(CD
(TF
(cQ
(CT

L4)

16)
15 L7)
L6 18)

110)

L3)

15 L1l 112)
110 113)

12 19 IL14)
L4 115)

11 L116)
117)

13 118)

X P
W P == Q
u Q
v (P = Q) = Q
z P — ((P = Q) — Q)
(a)
x
Z

(v)

(PR)
(PR)
(TF x w)
(CD w u)

(CD % vy)

(c)

Figure 2. Graphs representing a proof.

or input proof.

Fag
N

irst gravh

15

re 3.

Flgu

|
116

117

118
|

Pigure 4. Final graph showing lines grouved into varegraphs.

References

Charniak, Bugene. Toward a model of children's story
comprehension., AI-TR-266. M.I.T., Artificial

Intelligence Laboratory, Cambridge, lMass., 1972.

Longacre, Robert EZ. Discourse, Paragraovh, and Sentence

Structure in Selected Thilipvine Languages. The Summer

Institute of Iinguistics, Santa Ana, Ca., 1968, vol. 1.

Fhillivs, Brian. Topic Analysis. Presented at the 1973
International Conference on Computational Linguistics,

Pisa, Italy, Aug. 27-Sept. 1, 1973.

Schank, Roger C. Understanding paragraphs. Centro di
Documintazione della Fondazione Dalle Kolle pir gli
studi linguistici e di comunicazione internuzionale,

Villa Barbariga, Italy, 1974.

Aristotle. On Interpretation.

. Prior Anzlytics.

Fitch, Frederic Brenton. Sywbolic Logic, anl ntroduction.

The Ronald Press Company, N.Y., 1952.

Quine, Willard Van Orman. Netncds of Lozic, Zevised ec.

Henry Holt and Compeny, Inc. N.Y., 1959.

