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This thesis describes a computer program, called ISAAC, which can read,
understand, solve, and draw pictures of physics problems stated in English. The
program has solved twenty problems, most of which were taken unedited from high
school and college physics texts. These problems involve rigid bodies in static
equilibrium, and include such objects as levers, pivots, weights, ropes, and springs in
various configurations. An example of the class of problems solved is the following
(from Schaum’s Outline of College Physics):

The foot of a ladder rests against a vertical wall and on a horizontal
floor. The top of the ladder is supported from the wall by a horizontal
rope 30 ft long. The ladder is 50 ft long, weighs 100 1b with its center of
gravity 20 ft from the foot, and a 150 lb man is 10 ft from the top.
Determine the tension in the rope.

In order to understand and solve such a problem, it is necessary to build an internal
model of the problem in which the various objects and their interrelationships are
adequately represented. Many of the relationships and features of the objects are not
specified explicitly in the problem statement, but must be inferred by using common
sense knowledge of what is usual. In the above example, we assume that the man is
standing on the ladder, although this is not explicitly stated. Thus, the understanding of
a physics problem is an active process in which the sentences of the problem statement
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are used to guide the construction of a model which represents the relatic..ships and
features of objects with much greater detail and specificity than they are speciiied in the
original problem statement.

In this thesis, we investigate ways in which the meanings of phrases and
sentences may be understood and related to a developing model of the problem, using
common sense knowledge (represented by computer programs) to aid the understanding
process. Ways of representing objects and their relationships are developed. These
representations, which are originally created in response to the sentences in the problem
statement, are further elaborated by processes which construct a geometric model of the
problem, associate canonical objects (such as a point mass) with physical objects (such
as a person), write and solve equations which describe the interactions of the objects,
and construct a diagram of the problem.

The techniques used in ISAAC have potential application in providing a
natural language interface between specialist programs and users who are not computer
professionals, and in computer programs for teaching physics and other technical
subjects.
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1. Introduction and Overview

1.1 Introduction

The English language is a remarkably efficient and effective means of
communication. An English sentence does not contain the message to be transmitied,
but rather is a set of clues, a code which can be interpreted by a skilled recipient to
construct the message from what he already knows. A sentence is, in effect, a statement
in a programming language which causes its interpreter 1o construct a structure much
larger than the sentence itself. The creation of such a structure is controlled not only by
the words in the sentence and their syntactic relationships, but also by a compiex set of
inference rules which allow unspecified parts of the structure to be filled in, and which
cause the creation of additional structures not mentioned in the sentence.

There is a trade-off in languages between the length of a message and the
degree of detail with which the message can be specified. "Low-level”’ languages allow
every detail to be specified, but require many statements to specify even simple
structures. “‘Higher-level’” languages allow the specification of larger structures with
fewer statements. However, with higher-level languages there is the danger that
ambiguous statements may be misconstrued, or that the structure produced may be a
crude or inefficient representation of the desired structure. The ideal, from the
standpoint of effective communication, is to communicate using a high-level language to
an intelligent recipient which is capable, by virtue of its understanding of the subject
matter, of correctly interpreting ambiguities and constructing an efficient
representation of the message. In this sense, communication among humans using
natural languages such as English is remarkably effective.

The study of how computers can be made to understand natural language is
of interest not only for its potential applications, but also for what it can tell us about
the communication and representation of complex relationships and the use of these
representations in reasoning processes. It seems certain that many of the same
representations and processes which are used in the production and understanding of
language are also used in thinking, and hence that the study of computer understanding
of natural language may give us valuable insights for understanding human thought
processes. In addition, better understanding of natural language can iead to better
communication between computers and between processes within computers, as well as
better communication between humans and computers. Natural languages are the most
general interface languages known.

There are many potential applications of computer programs which are
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capable of understanding natural language. The use of computers by those who are not
computer professionals is frequently inhibited by the difficulty of learning the arcane
languages required to communicate with them. Even when a program is written to
perform a task for a specialized field, the language required 10 communicate with the
program is likely to be a computer language rather than the language of the field. The
use of English as a programming language can overcome this barrier and allow
specialist programs to be used by persons with no computer training. As the program
described herein demonstrates, the use of English as a programming language within a
limited area is currently within the state of the art.

1.2 Overview of Results

This thesis describes a computer program, called ISAAC, which is able to
read and understand physics problems stated in English, write equations for the
problems and solve them, and draw diagrams showing the objects in the problems and
their spatial relationships. The program has solved twenty problems, which were taken
essentially unedited from physics textbooks; these sample problems are shown, with the
drawings and answers generated by the program, on the following pages.

While the diagram and answer to a problem are the most easily observable
outputs of the program, another significant output is its robust internal model of the
objects in the problem and their relationships. It is this model which makes possible the
generation of the diagram and the answer to the problem. The internal model is robust
in the sense that it represents, in an explicit and readily accessible form, most of the
information which a competent human reader might be expected to derive from the
English problem statement. In addition to the ways in which it is currently used, the
model could be used for answering questions about the objects and their relationships,
or for generating a description of the problem in English or in another language, or for
generating other types of diagrams (such as a force diagram). Since it makes all of the
features and relationships of the objects explicit, the internal model is many times
larger than the original problem statement, which specifies only the ma jor features and
leaves many details to be filled in by the reader. )

The process of transforming the English sentences of the probiem statement
into the internal model of the problem requires much more than a simple one-to-one
translation from one form of representation into another. Even in so well-defined an
area as that of physics problems, it is often necessary to “‘read between the lines’’ and
infer relationships which are not stated explicitly. For example, when told that a man s
10 ft from the top of a ladder, the program should assume that he is standing on the
ladder. After the problem statement has been read, additional assumptions may be
necessary to complete the internal model. For example, if the length of a pole is
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(A LEVER 10 FT LONG 1S PINNED AT 173 LEFT END
) (THE LEVER IS SUPPORTED BY A SPRING WITH A
CONSTANT OF 40 LB/FT)(THE SPRING IS ATTACHED
§ FT FROM THE LEFT END OF THE LEVER) (R WEIGHT
OF 20 LB IS ATTACHED AT THE OTHER ENO OF THE
LEVER) (THE WEIGHT OF THE LEVER IS 8 LB) (HOW
MUCH IS THE SPRING STRETCHED)

ANSWER: 1.00000 FT




P2 SCHAUM® PAGE 12 NUMBER d

(WHERE MUST A WEIGHT BE HUNG ON R POLE . OF
NEGLIGIBLE WEIGHT . SO THAT THE BOY AT ONE
END SUPPORTS 1/3 AS MUCH RS THE MAN AT THE
OTHER ENDJ '

ANSWER:  (TIMES LENGTH7S 7.50000E-1) FROM THE
gﬁg " WHERE LENGTH76 IS THE LENGTH OF THE
P

#Problems marked SCHAUM are from College Physics [Schaum 61]. Copyright 1961 by
McGraw-Hill Book Company.
Used by permission.
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P3 DMW® PAGE B4 NUMBER &

(A SCAFFOLD 10.00000 FT LONG IS SUPPORTED BY
ROPES ATTACHED AT EACH ENDI {THE SCAFFOLD
WEIGHS 100 LB) (ONE PRINTER WEIGHING 150 LB
STANDS ON THE SCAFFOLD 4.00000 FT FROM ONE
END WHILE A SECOND PARINTER WEIGHING 175 LB
STANDS ON THE SCAFFOLD 2.00000 FT FROM THE
OTHER END) (WHAT IS THE TENSION ON ERCH OF THE
ROPES SUPPORTING THE SCARFFOLD)

ANSWER: 175.00000 LB . 250.00000 LB

#*Problems marked DMW are from Modern Physics [Dull, Metcalfe and Williams 64].
Copyright 1964 by Holt, Rinehart and Winston, Inc.
Used by permission.
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(A HORIZONTAL UNIFORM BAR 10 M LONG IS
SUPPORTED BY TWO ROPES ATTACHED AT ITS ENOSI I
THE ROPE ON THE LEFT END MAKES AN ANGLE OF U5
DEGREES WITH THE HORIZONTAL . WHILE THE ROPE
ON THE RIGHT END MAKES AN ANGLE OF &0
DEGREES WITH THE HDRIZONTAL) (R WEIGHT OF 100
NT IS ATTACHED 2 M FROM THE RIGHT END OF THE
BAR) (WHAT IS THE WEIGHT OF THE BAR)

ANSWER: 123.92305 NT
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PS SCHAUM PAGE 16 NUMBER 1S

(A UNIFORM SCAFFOLD 12 FT LONG AND WEIGHING
100 LB IS SUPPORTED HORIZONTALLY BY TWO
VERTICAL ROPES HUNG FROM ITS ENDS) (FIND THE
TENSION IN EACH ROPE WHEN A 180 LB PRINTER
STANDS 4 FT FROM ONE ENDIJ

ANSWER: 170.00000 LB . 110.00000 LB

. |




P6 SCHAUM PAGE 16 NUMBER 20

(R UNIFORM BAR (A B! IS 100 CM LONG AND
WEIGHS 50 LB) (THE BAR IS TO BE SUPPORTED AT
ENDS (A) AND [(B)) (AN UPWARD FORCE OF 40 LB IS
APPLIED 80 CM FROM (AJ) (COMPUTE THE FORCES
ON THE SUPPORTS)

ANSWER: ( (MINUS FORCE235] . 7.00000 ) LB
( FORCE23S . -17.00000 ) LB
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P7 SCHAUM PRAGE 16 NUMBER 21

(AR UNIFORM POLE 20 FT LONG AND WEIGHING 30 LB

IS SUPPORTED BY A BOY 3 FT FROM ONE END AND
A MAN B FT FROM THE OTHER ENDJ (AT WHAT POINT
MUST A 150 LB WEIGHT BE ARTTACHED SO THAT THE
MAN SUPPORTS TWICE AS MUCH AS THE BOY)

ANSWER: 7.40000 FT FROM THE BOY
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P8 SCHAUM PAGE 25 NUMBER 18

(THE FOOT OF A LADDER RESTS AGRINST A
VERTICAL WALL AND ON A HORIZONTAL FLOOR) (THE
TOP OF THE LADDER IS SUPPORTED FROM THE WALL
BY A HORIZONTAL ROPE 30 FT LONG) (THE LADDER
IS 50 FT LONG . WEIGHS 100 LB WITH ITS CENTER
OF GRAVITY 20 FT FROM THE FOOT . AND A 150
LB MAN IS 10 FT FROM THE TOP) (DETERMINE THE
TENSION IN THE ROPE]

ANSWER: 120.00000 LB



PS SCHAUM PAGE 25 NUMBER 21

(THE HINGES OF A DDOR WEIGHING 20 LB ARE 12
FT APART . AND THE DOOR IS 3 FT WIDE) (THE
WEIGHT OF THE DOCR [S SUPPORTED BY THE UPPER
HINGE) (DETERMINE THE FORCES EXERTED ON THE
DOOR AT THE HINGES)

ANSWER: [ -2.50000 . 203 LB . ( 2.50000 .
-0 ) LB



PI0 DMW PRGE B3 NUMBER 1

(R STEEL BEAM QF UNIFORM CROSS SECTION WEIGHS
2.5S0000E+8 DYNES) (IF IT IS 500 CM LONG .
WHAT FORCE IS NEEDED 7O LIFT ONE END OF IT)

ANSWER: 1.25000E+8 DYNE
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P11 DMH PRGE B3 NUMBER 2

(A TAPERING WOODEN TELEGRAPH POLE 1S 15.00000
FT LONG AND 1TS CENTER OF GRAVITY IS 6.0000C
FT FROM ONE END) (IT WEIGHS 40O LB) (WHAT
FORCE 1S REQUIRED TO LIFT ERCH END)

ANSWER: 160.00000 LB . 240.00000 LB
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Ple DMW PAGE 63 NUMBER 3

(R BAR 4.00000 M LONG WEIGHS 40O NT)LITS
CENTER OF GRAVITY IS 1.50000 M FROM ONE END) ¢
IF A WEIGHT OF 300 NT IS ATTACHED AT THE
HERVY END AND A WEIGHT OF 500 NT [S ATTACHED
AT THE LIGHT END . WHAT RRE THE MAGNITUDE .
DIRECTION . AND POINT OF APPLICATION OF THE
EQUILIBRANT)

ANSWER:  1200.00000 NT 2. 18667 M FROM THE
HERVY LEFTEND . AT 90.00000 OEGREES
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P13 DMW PAGE 63 NUMBER U

(A BRIDGE 60.00000 FT LONG 1S SUPPORTED BY A
PIER AT EACH END) (THE BRIDGE WEIGHS S0.000C0
TONS) (IF A LOAD OF 7.50000 TONS IS LCCATED
15.00000 FT FRCM ONE END . WHAT LOAD DOES
ERCH PIER SUPPORTI

ANSWER: ( FORCEUS7 . 26.B7500 ) TON . [ ¢
MINUS FORCEWS7) . 30.62500 ) TON
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P14y DMH PRGE B4 NUMBER S

(A BAR 5.0000C M LONG HAS [TS CENTER OF
GRAVITY 1.50000 M FROM THE HEAVY END) (IF IT
IS PLACED ON THE EDGE OF A BLOCK 1.50000 M
FROM THE LIGHT END AND R WEIGHT OF 730 NT
AODED TO THE LIGHT END . IT WILL BE BRLANCED]
(WHRT 15 THE WEIGHT OF THE BAR)

ANSWER: 562.50000 NT




P1S DMW PRGE B4 NUMBER 7

(R UNIFORM BRR 25.00000 M LONG WEIGHS

10000. 00000 NT) (FROM END (R) A WEIGHT OF
2500.00000 NT IS HUNGI (AT (B) . THE OTHER END
OF THE POLE . THERE IS R WEIGHT OF

3500. 00000 NT) (AN UPWARD FORCE OF 3000. 00000
NT IS EXERTED 4.00000 M FROM (B) . WHILE AN
UPWARD FORCE OF 4000.00000 NT IS EXERTED
8.00000 M FROM (R)) (DETERMINE THE MAGNITUDE .
DIRECTION . AND POINT OF APPLICATION OF THE

EQUILIBRANT)

ANSWER: 9000.00000 NT . 13.05556 M FROM
LEFTEND (R) . AT 80.00000 DEGREES
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P16 DMW PAGE 59 NUMBER S

(A BEAM 4.00000 M LONG IS SUPPORTED AT BOTH
ENDS) (A WEIGHT OF 500.00000 NT IS ATTACHED
1.00000 M FROM END (A) . R WEIGHT OF
800. 00000 NT IS ATTACHED 1.50000 M FROM END
A) . AND A WEIGHT OF 300.00000 NT 1S ATTACHED

1.25000 M FROM END (B)) (CALCULATE THE FORCE
géERIED BY THE SUPPORTS AT EACH END OF THE

M

ANSWER: ( FORCEGYY ., ©31.25000 ) NT . ([
MINUS FORCEBYY) , 968.75000 ) NT



19

P17 DMW PRGE SS9 NUMBER I

(PAUL AND HENRY CARRY A SACK WEIGHING

§00. 00000 NT ON AR POLE BETWEEN THEM) (IF THE
POLE IS 2.00000 M LONG AND THE LOAD IS
5.00000E-1 M FROM PAUL . WHAT FORCE DOES EACH
BOY EXERT)

ANSWER: ( FORCEGB86 . 150.00000 ) NT . (O
MINUS FORCEGS86) . 450.00000 ) NT
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P18 DMW PRGE SS NUMBER 2

(R BRIDGE IS B0.00000 FT LONG) (WHRT FORCE
MUST THE PIER AT ERCH END OF THE BRIDGE EXERT
TO SUPPORT AN AUTOMOBILE WEIGHING 2.00000
TON? HEICH IS 30.00000 FT FROM ONE END OF THE
BRIDGE)

ANSWER: ( (MINUS FORCE721) . 1.25000 ) TON
» ( FORCE721 . 7.50000E-1 ] TON
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P18 DMW PRGE S3 NUMBER 3

(R PRINTER WEIGHING 900 NT STANDS ON A PLANK
3.00000 M LONG . WHICH IS SUPPORTED AT EARCH
END BY A STEPLADDER) [IF HE STANDS 1.00000 M
FROM ONE END OF THE PLANK . WHAT FORCE IS
EXERTED BY EACH STEPLADDER)

ANSWER:  ( (MINUS FORCE7S7) . B00.00000 ) NT
« { FORCE757 . 300.00000 ) NT



. A

P20 DMW PAGE 55 NUMBER 4

(TWO BOYS . WEIGHING 100 LB AND 125 LB
RESPECTIVELY . WISH TO BALANCE ON A SEESAW) I
IF THE 100 LB BOY SITS 5.00000 FT FROM THE
CENTER . HOW FAR FROM THE CENTER MUST THE 125
LB BOY SIT)

ANSWER: -=4.00000 FT

[ 8]
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unspecified, it is necessary to create a symbolic constant to represent the length. Making
these assumptions and inferences requires that the program possess common-sense
knowledge of the usual features and relationships of particular types of objects;
moreover, this knowledge and the programs which control the understanding process
must be organized so that the knowledge can be brought to bear at the proper time and
place. Thus, another result of this research is a set of methods for representing certain
kinds of knowledge about the world and for organizing the understanding process so
that this knowledge can be used effectively. Some of the knowledge (for example, the
typical geometry and location names of a ladder) is represented by data structures, and
some (for example, the procedure to decide which object is referred to as the “load’ ) is
represented by programs. Linguistic and semantic knowledge are represented in
programs which parse English sentences into a structured semantic network form,
determine the proper sense-meanings of words, determine the meanings of modiiving
phrases, and determine the objects, locations, and relationships which are denoted by
noun phrases.

The major results of this research, then, are the development of ways in
which the types of objects and relationships found in these physics problems can be
adequately and efficiently modeled, and the development of methods for translating the
English problem statement into the desired form, making the inferences and
assumptions necessary at each stage in the translation process.

The development of this program provided some unexpected insights into the
way people solve physics problems. Problems which appeared to involve only one or two
equations were found to actually involve ten or twelve. Many of the “laws of physics™
needed to solve these problems are not to be found in physics textbooks. The person
solving physics problems uses these “hidden” laws and equations to construct the
equations which are written down on paper. Some hidden equations are ignored (such
as horizontal forces in a problem where all the significant forces are vertical), and
others are eliminated by substitution of variables. Those people who are good at physics
are often unaware that they are performing these operations. We shall argue that the
reason why people who are “bad”’ at physics have difficulty is that they lack the
knowledge of how to perform the hidden operations. These operations are so obvious to
those who are good at physics that they often cannot teach them to those who don't
understand how to perform the operations. A program such as ISAAC, which makes all
of the operations explicit, might be valuable for teaching physics to such people.

1.3 Overview of the Program
The overall organization of the program and its data elements is shown in
Figure 1.1; programs are represented by boxes with double lines, and data structures by

Lo
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Figure 1.1:

Overall Program Organization




plain boxes. In this section, we present an overview of the functions performed by each
group of programs and an overview of the types of information represented in the data
structures.

The process of understanding and solving a physics problem occurs in
several distinct steps. First, the problem statement is translated from English into a
structured parsing of the sentences, which is interpreted semantically to construct an
initial internal model. This model is interpreted to form a model in terms of canonical
physical objects (such as a point mass). A geometric model which represents the spatial
position and orientation of each object is constructed. Equations which describe the
interactions of the objects according to physical laws are written and solved, and
answers are generated from the solutions. Finally, a picture model is constructed and
used to guide the drawing of a diagram of the problem. These processes are described
below in somewhat greater detail.

The parsing programs transform each sentence from a linear string of words
into a more structured form in which the relationships of words and phrases to each
other are clearly defined. Each type of phrase is parsed by a specialist program which
implements the grammar of the phrase as an augmented transition network. The
grammar programs call the semantic programs both to interpret the semantic network
structure produced as a result of the parsing and to guide the parsing process itself.
Whether a particular modifier can be used to modify a noun phrase, for example, mayv
depend on the actual relationships between objects in the model of the problem. After
each clause has been parsed, the semantic routine associated with the main verb is
called to complete the semantic processing of the clause. This semantic processing
transfers the information provided by the sentence to a growing model of the objects in
the problem and their relationships. Once the semantic processing is completed. the
semantic network structures produced by the parser are no longer used. All of the
sentences in the problem statement are parsed and processed semantically before the
remaining parts of the program are executed.

The routines grouped under the heading of “Semantic Programs’’ perform a
variety of tasks. Semantic routines are associated with verbs and prepositions, and in
some cases with other words. Preposition semantic routines must determine the
appropriate sense-meaning of the preposition (using a decision network based on rough
semantic classifications of the modified phrase and the object of the preposition) and
then make the appropriate changes in the semantic network token of the modified
phrase. Verb semantic routines typically act to transfer information from the semantic
network to the internal model, or define relationships among objects in the model;
determination of the proper sense-meaning of the verb is often needed as well. Another
major semantic task is the identification of the referent of a noun phrase. Given a noun

(3]
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phrase which denotes an object or a location, it is necessary to decide whether the
phrase refers to an object or location which already exists in the model (and if there are
several possibilities, which one it refers t0), or whether a new object or location must be
created as the referent of the phrase and added to the model.

After all the sentences of the problem statement have been read, the frame
creation programs are called to assign to each object a canonical object type {such as a
point mass or an “ideal’” spring) which represents the behavior of the object as 1t
appears in the problem. The same type of actual object may be represented by different
canonical objects, depending on its context in the problem. Thus, a person may be
represented as a pivot when carrying a plank, or as a point mass when standing on one.
Once a canonical object frame has been selected, the model of the object is examined 10
see if it is complete for that type of object; if not, assumptions are made to correct the
deficiencies. Thus, for example, if the length of a pole is unspecified, a svmbolic constant
representing the length is created and added to the model.

After canonical object frames have been created for all the objects, the
program EUCLID is called to construct a geometric model of the problem. EUCLID
computes the orientation of each object and assigns geometric coordinates to each object
and the locations on the object; this process may require some geometric problem
solving. For example, in the sample problem (P8) it is necessary to solve a triangle given
two sides and an angle. Since the sizes of some of the objects may be represented by
symbolic constants, the geometric coordinates of some points may contain algebraic
expressions.

After the geometric model has been constructed, problem-solving programs
are called to write equations which describe the interactions of the objects according to
physical laws and to solve the resulting equations. There are specialist programs which
write equations for particular objects (such as springs and rigid bodies), as well as more
general programs which require, for example, that the sum of the forces at a point of
attachment must be zero. The equations, which may contain symbolic constants as well
as numbers and variables, are solved by a small symbolic manipulation package.

Answers to the problem are generated from the solutions to the eguations by
a small set of programs. These programs use information about the desired form of the
answer which was saved when the problem statement was read. Answer generation may
require small additional computations, and may require the generation of short English
descriptions of constant terms or locations.

A picture model is generated to allow a diagram of the problem to be drawn.
This model is similar to the geometric model, except that all dimensions of objects must
be numerical. Sizes must be chosen for objects which have zero size in the geometric
model (for example, a person who is represented as a point mass), and appropriate



locations for such objects to be attached to other objects (for exampic, 1ae feet of a
person) must be chosen if they are unspecified. A picture generator calls appropriate
routines to generate drawings of the objects in the problem, using the size, position, and
orientation specified in the picture model.

The organization of the body of the thesis follows the organization of the
diagram in Figure 1.1. Chapter 3 describes the parsing programs and the parse
structures which they produce. Chapter 4 describes the semantic programs which create
the initial internal model from the parsed sentences. Chapter 5 describes frame creation
and the construction of the geometric model. Chapter 6 describes problem solving and
answer generation. Chapter 7 describes how the diagram is constructed. Finally.
Chapter 8 examines the methodology of this work, indicated directions for future
research, potential applications of this type of program, statistics of the program, and
the problems involved in extending the program.



2. Review of Previous Work

This review of previous work is grouped into three sections: progr=ms which
solve problems stated in natural language, natural language processing, and theoretical
work.

2.1 Natural Language Problem Solvers

2.1.1 Bobrow’'s STUDENT

The first natural language problem-solving program was the STUDENT
system of Bobrow [Bobrow 68] for solving algebra story problems. The natural
language processing of this program is based on pattern matching around key words
and phrases. The phrases around the kev words become the “variables” in the
equations which are constructed from the sentences. Thus, in one of Bobrow’s
examples, ‘

If the number of customers Tom gets is twice the square of 20 percent of
the number of advertisements he runs, and the number of advertisements
he runs is 45, what is the number of customers Tom gets?

the two phrases “the number of customers Tom gets”” and “the number of
advertisements he runs’’ are treated as variables. This problem is thus treated as if it
were stated
If x is twice the square of 20 percent of v, and y is 45, what is x?

The pattern-matching rules break the input sentences into a possiblv embedded set of
“kernel sentences’’, in an order determined by priority values assigned to the keywords.
In the above example, since “percent’”’ has the highest priority, it would be processed
first. There is a fairly direct transformation from English sentences into equations; in
fact, the transformations are made upon the input sentences themselves until the
sentences become the equations used in solving the problem. Large segments of the
original sentences remain as “variables’’ in the equations.

When the equations constructed from the input are insufficient to find a
solution, other equations can be retrieved (based on words in common with “variable”
phrases) expressing general relationships, such as

(EQUAL (DISTANCE) (TIMES (SPEED} (TIMEN).

Bobrow’s program was impressive for its time {(about 1965). However, this
type of approach has definite limitations. The technique of transforming sentences
directly into equations works only when the sentences express algebraic relationships
among quantities. The “variable’’ phrases must be similar in each occurrence so they
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can be matched properly, and the key words must not be used in multiple wayvs which
might confuse the pattern matcher. These limitations make it difficult to extend the
techniques Bobrow used to more complex problem areas.

2.1.2 Charniak’s CARPS

Charniak's CARPS program [Charniak 68] is a program for solving calculus
rate problems. In many ways, it is an extension of Bobrow’s STUDENT program. The
analysis of the English input sentences is done by pattern matching which is slightly
more sophisticated than that of STUDENT. The type of rate problem (distance or
volume) is determined by the occurrence of certain key words in the problem statement.
Two sets of patterns are used to analyze the sentences appearing in the two types of
problems. Many of the patterns used are very ad hoc.

The CARPS program builds a structure (generally a single tree) containing
the information derived from the problem statement. This structure is used to generate
the equations required to solve the problem. Additional equations may be derived from
“world knowledge’’, but this is again very ad hoc. Thus, while the problems solved by
CARPS appear very impressive, the program is tailored so closely to this specific set of
problems that it would be difficult to extend it to additional problems or problem areas.

2.1.3 Gelb’s HAPPINESS

HAPPINESS [Gelb 71} is a program which solves basic probability problems
stated in English. This program seems much like Charniak’s: it builds a single tree
structure representing a single problem, and selects a solution method based on the
occurrence of keywords in the problem statement. The input sentences are broken into
simple clauses and phrases by pattern matching. These simple clauses are then
analyzed by a context-free grammar to extract the canonical verb and its voice, subject,
and predicate. If certain key words (e.g., those referring to dice and coins) are found, a
special search for possible modifiers of these words is made.

This program, like Charniak’s, is tailored verv closely to a small set of
specific problem types. It would be difficult to extend a program using these techniques
to handle a new problem area.

2.1.4 Heidorn’s Simulation Programming System

The NLPQ system of Heidorn [Heidorn 72] accepts an English statement of &
queueing simulation problem, and produces from it a program in the GPSS simulation
language which will simulate the problem. The system is interactive: it requests
additional information from the user when the problem statement is incomplete, allows
the user to ask questions about the simulation model, and can generate a complete
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problem description in English from its internal model.

English sentences are parsed and generated from two interpreted phrase
structure grammars augmented by some semantic programs. These grammars go down
to the character level, and handle English morphology as well as phrase structure. The
grammar is based in part on the theory of stratificational linguistics. The basic unit of
storage in the internal model is the “record’’, which is computationally equivalent to a
LISP atom with its property list.

This program represents an advance over those considered previously in this
section. It uses a legitimate grammar to parse the input sentences, and can construct a
model which expresses relationships among a number of objects. The grammar is
specialized for simulation problems, and would have to be modified 10 extend the
program to other areas. However, the performance of this system is quite impressive.

2.2 Natural Language Processing

2.2.1 Woods’ Augmented Transition Networks

The Augmented Transition Network (ATN) of Woods [Woods 70] is a
powerful formalism for representing grammars. The grammar of ISAAC, while written
in “pure’’ LISP, is equivalent to an ATN grammar. A transition network consists of a
set of nodes (representing states) and a set of directed arcs between the nodes which
specify transitions between states based upon the input string being scanned. An ATN is
augmented in several respects. The test associated with a state transition may be
arbitrarily complex, depending on the previously parsed structure as well as the input.
The test may be the name of another transition network, in which case control is given
to that network at a lower level, effecting a ‘“subroutine call’”” to the subordinate
network. These calls may be recursive. Transition arcs may also be augmented by
arbitrarily complex structure-building actions. The structures so built are passed
among network levels in designated registers. If an attempted parsing of a subnet fails,
the ATN interpreter automatically handles backup from the failure point and tries
another possible transition. The automatic backup and clearly defined interface (via
named registers) between network levels make the ATN a very ““clean’’ formalism for
writing grammars.

2.22 Winograd’s SHRDLU

Winograd’s widely known SHRDLU program [Winograd 72} allows a person
to converse with a simulated robot about a “micro-world’’ consisting of various colored
blocks on a table. The robot may be asked to perform actions such as moving blocks or
building structures and to answer questions about the state of the micro-world or about
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its motivations for performing particular actions. The system employs a la:ge grammar,
based on Halliday's theory of Systemic Grammar. Much of the knowledge in the system
is represented in the form of MICRO-PLANNER theorems. This makes it easy for
programs to be generated to find the answers to questions about the world model, and
allows a number of logical forms such as conjunction, disjunction, and quantification to
be handled naturally. The theorem prover base is a source of considerable power for
certain types of semantic operations. The semantics is made much easier by the small,
finite world of very simple objects (colored blocks). Still, the SHRDLU system remains
one of the largest and most powerful natural language systems produced to date. and its
fame is well deserved.

2.2.3 Wilks' Preferential Semantics

The work of Wilks [Wilks 75] is unique among “artificial intelligence”’
approaches to natural language processing in that Wilks is interested primarily in
machine translation, rather than in deep understanding of natural language by
computer. However, there is an interesting parallel between the semantic templates
used by Wilks and some of the semantic processing done in ISAAC, which 1s of course
concerned with deep understanding.

In Wilks’ system, a sense meaning of an English word is represented by a
formula, which is a list of element names. The elements are approximately 70 semantic
classes which roughly classify the entities, qualities, actions, etc. which occur in English
sentences. Examples of such elements are MAN (human being), STUFF (substances).
KIND (qualities), and CAUSE (cause to happen). These elements may be combined into
a formula to represent a word meaning, as in (FLOW STUFF) for the word “liquid™’. A
sentence is analyzed by trying to fit a template {which is a list of element types) to some
of the possible sense meanings of the words occurring in the sentence. The templates are
intended to represent the basic types of ‘“‘messages’’ that people wish to convey in
language. For example, the template MAN BE KIND would represent the ciass of
messages in which the sentence “My sister is pretty’ is included.

After (possibly several) templates have been fitted to a piece of text,
“preferences’’ of parts of each template are examined to see if they are satisfied. A verb,
for example, may prefer an animate subject. The template for which the greatest
number of preferences are fulfilled will be chosen as the intended meaning; however,
possible fillers for the template slots will be accepted even though they do not meet the
preferences, provided that the template as a whole is the best match.

There is considerably more detail to Wilks’ system which will not be covered
here. We mention Wilks because there seem to be parallels between some of his
techniques and techniques used in ISAAC. One such parallel is the use of rough
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semantic classes to distinguish between sense meanings of words. which w found to be
particularly useful for determining preposition meanings. Others have certainly used
rough semantic classes to distinguish sense meanings in special applications; Wilks’
work is valuable for investigating this technique over a large subset of English.

A second parallel lies in the acceptance of a word (or larger unit) which fails
to meet the preferences of the template which covers it. In the ISAAC system, this
acceptance is an active process in which an acceptable interpretation must be
constructed from the given unit. These processes are discussed in more detail later.

2.2.4 Simmons’ Semantic Networks

The Semantic Network formalism of Simmons [Simmons 73; Simmons and
Bruce 71] provides a powerful and convenient method for representing the elements of a
sentence and the semantic relations (derived from a variety of syntactic forms) which
hold between them. In effect, it produces an ordering of the arguments of a semantic
grouping (such as a verb and its case arguments, modality, and optional moditiers)
which is invariant over the various syntactic orderings which express the same
relationships. Thus,

John gave Mary the book.
John gave the book to Mary.
The book was given to Mary by John.

would all generate the same semantic network structure. The semantic network
formalism has been used for language generation [Simmons and Slocum 72] as well as
parsing. [Simmons and Bennett-Novak 75] shows how these structures may be used to
produce a small natural language understanding system with a minimum of effort.

The structures used by ISAAC in understanding sentences are a natural
extension of Semantic Networks as used by Simmons. In order to handle multiple
sentence discourse, links are made from tokens in individual sentences to the referents
of the tokens in the problem model which is being constructed. Semantic interpretations
are placed on some tokens as their meanings are determined. Particular semantic
interpretations may be specified based on information from many different sources.
Making an interpretation of a token may cause links to be made from that token to
objects not mentioned in the sentence and may generate additional inferences about the
relationships of the objects involved. These processes are discussed in detail in later
chapters.

2.2.5 Schank’s Conceptual Dependency
The Conceptual Dependency system of Roger Schank [Schank 73, 75] is a
theory (embodied in a series of computer programs) which postulates that the concepts

|8




33

transmitted in natural language can be represented as complex structures based on a
small number of primitive actions. The primitive actions are linked by named links to
their case arguments (some of which are other primitive action groups) and to other
groups to which they are related, e.g., causally. Some case arguments are mandatory, so
that in “John hit Mary’’ we must infer an instrument (in this case John's hand} used in
performing the action.

While the structures and actions used by Schank are not very useful for
physics problems (there is, for example, no primitive action which can represent the
exerting of a static force), some of the concepts he uses (such as interring a required
semantic object when it is unspecified) are basic to almost any language understander.
Schank’s work is also important because he has defined a set of primitive concepts and
actions which can be used to express a fairly wide range (though certainly not all) of
natural language sentences.

2.3 Minsky’s Frame System Theory

Minsky's frame system theory [Minsky 74] proposes that knowledge is
organized (in humans and, potentially, in computers) in terms of interconnecied
elements called Frames.

A frame is a data-structure for representing a stereotyped situation, like
being in a certain kind of living room, or going to a child’s birthday partv.
Attached to each frame are several kinds of information. Some of this
information is about how to use the frame. Some is about what one can
expect to happen next. Some is about what to do if these expectations are
not confirmed.

A frame may have “slots”’ which can be filled by the particular “arguments’ involved
in an instantiation of the frame. There may be procedures associated with a frame 1o
determine the suitability of proposed arguments and to infer values for those which are
unspecified.

Minsky also makes some general comments about how frames may be used
in computational linguistics.

...inunderstanding a discourse, the synthesis of a verb-structure with its
case-assignments may be a necessary but transient phase. As sentences
are understood, the resulting substructures must be transferred to a
growing “scene-frame’’ to build up the larger picture.

Minsky’s frame system theory has been immensely popular—so popular that
many people are claiming that frames are exactly what they have been doing all along.
There are many similarities between the processes and data structures used by ISAAC
and the frame systems described by Minsky, and the term “frame” will be used in
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describing some of them. The interpretations given will of course be those of the author.
The idea of frames is a powerful one. but the mechanics of their implementation

remains a problem for research.



3. Parsing

3.1 Introduction

Parsing, as used in this chapter, means the process of assigning a structure to
the linear string of words comprising a sentence so that the syntactic relationships
among the words and phrases in the sentence are made explicit. The processes of
relating the structures in the sentence to parts of the developing model of the problem
and of determining the meaning of the structures will be treated in the chapter on
Semantics. Obviously, there is no clear division between what is svntax and what is
semantics; many constructions couid be claimed to be either. In the sentence processing
done by ISAAC, syntactic and semantic processing are frequently intermixed. We shall
describe the two parts separately to make them easier 1o understand, while trving to
indicate the points at which they interact. How to best organize the interactions of
syntactic and semantic processes in a language understanding program remains an
unsolved problem.

Although the parsing programs in ISAAC are written in “pure”’ LISP, their
structure is strongly influenced by the Augmented Transition Network (ATN)
formalism of Woods [Woods 70]. An ATN grammar allows sub-grammars for phrases
to be called (recursively) as subroutines by other grammars. A grammar program may
build structures which are passed back to the program which calls it. In case an
attempted subgrammar fails, the grammar interpreter automatically backs up from the
failure point and tries the next possible alternative which is specified. These features of
ATN grammars are also present in the parsing programs of ISAAC. The grammar
programs are organized as a set of parsing functions, most of which parse a single
functional unit, such as a noun phrase. This organization in terms of functional units
seems natural because it allows the grammar functions to communicate with each other
by passing pointers to complete, well-defined functional structures. A noun phrase, for
example, causes the production of a noun phrase token structure which has a standard
form, independent of the function of the noun phrase in the sentence. Grammar
functions which parse larger syntactic units, such as a clause, connect the smaller
structures, such as noun phrase and verb phrase tokens, by means of named links which
specify the relationships of the phrases in the sentence.

The structures which are produced by the parsing programs bear a strong
resemblance to the semantic networks of Simmons [Simmons 73]. The grammar
functions which parse the major phrases, such as noun phrases and verb phrases,
produce “token’’ structures which represent the information in the phrase in a standard
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and readily accessible form. Other grammar functions, such as those which parse
prepositional phrases and other modifiers, may make changes and add informaton o
the modified token structures rather than creating new structures themselves. The links
between token structures may specify semantic relationships (for exampie, that one
noun phrase names a location on the object referred to by another noun phrase) as well
as syntactic relationships. In some cases (e.g., with prepositional phrase moditiers). the
semantics may be done at once, so that semantic links among the tokens are not needed.
As semantic processing proceeds, the token network structure is elaborated by adding
semantic interpretations to some tokens and by creating links between some tokens and
the objects to which they refer in the program’s model of the world. These semantic
processes may render a token unnecessary and leave it unlinked to the rest of the
structure. After all the semantic processing has been done, the information in the
sentence has been transferred to the world model, and the network of tokens is no
longer needed.

3.2 Control Structure of the Parser

The parsing programs are written as LISP functions. without using an
additional interpreter as a Woods system does. Automatic backup and control of the
scanner which points to the current position in the sentence being parsed are
accomplished by a set of small functions which are called from within the individual
parsing programs. These functions set the system registers {(global varables)
appropriately for the current state of the parser.

A sentence is represented internally as an ordered list of words. As the
sentence is scanned from left to right, the global variable SENT is set to point to the
current position in the sentence. The current word (or muiti-word unit) being scanned is
put into the * register. Thus, a grammar program could test whether the word currently
under the scanner is “and’’ by using the LISP code (EQ * “AND), where the quutation
marks are an abbreviation for the function QUOTE. The parsing of a sentence 1s
initiated by setting SENT to the sentence and calling the function SET™* to set the *
register. When a grammar program wishes to move the scanner one position to the rnight,
it does so by calling the function (=> ). The next word to the right and the second word
to the right may be gotten by using the functions (NEXT) and (NEXT2), respectively,
without affecting the position of the scanner. The function CAT (category) is frequently
used to test whether the word currently under the scanner is in a particular category, as
defined in the lexicon. Thus, (CAT “ADJ) may be used to test whether the current word
is an adjective. 4

Since the parser operates from left to right, it sometimes happens that a
grammar program fails to find the type of phrase it expects, after it has moved the
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scanner from its initial position. For example, in parsing the sentence “To err 1s
human’’, the parser might first attempt to parse 2 prepositional phrase. The preposition
would be found, and the noun phrase parser would be called after moving the scanner.
The noun phrase parser would find the verb “err’’, and so it and the prepositional
phrase parser would fail. In order to handle such cases, it is necessary to be able 1o save
the current position in the sentence so that the parser can back up and trv something
else when an attempted parsing fails. This is accomplished bv calling three small
functions, SAVE, SUCCESS, and FAIL, within each parsing function. Normally, a
parsing function will execute (SAVE) as its first action and execute either (FAIL) or
(SUCCESS), as appropriate, immediately before it exits. SAVE saves the pointers to the
current point in the sentence on a push-down stack. In addition. it saves the current
point in the list of generated atoms, SO that any atoms generated by a function which
later fails can be deleted. SUCCESS removes one set of pointers from the stack: since
the attempted parsing was successful, these pointers are no longer needed. FAIL
restores the pointers to the sentence to their original position. and calls SET* to restore
the * register. In addition. it releases any atoms which may have been generated by the
function which failed.

In order to illustrate how the parsing functions are actually written, a simpie
function to parse a noun phrase (using the same conventions as the parsing programs of
ISAAC) is shown below. This program parses a simple noun phrase consisting of an
optional determiner, zero or more adjectives, and a noun. The program succeeds and
returns True if it finds such 2 phrase; otherwise, it restores the pointers using FAIL and
returns NIL. No structures are built by this program, but it is easy to see how structure-
building code could be added.

(NP (LAMBDA () (PROG ()
(SAVE)
(COND ((CAT “DET) (=>)))

A (COND ((CAT “ADJ) (=>) (GO AN
((CAT “NOUN) (=>) (RETURN
(SUCCESS))
(T (RETURN (FAILD))

m

This program accepts a noun phrase equivalent to that accepted by the
following grammar:

<np> — <det> <npl>
<np> — <npl>

<npi> — <adj> <npl>
< npl> — <noun>

-3
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Using the Woods ATN formalism, such a program could be written as follows:

(NP/ (CAT DET T (TO NP1)
(TST T T (JUMP NPD)))
(NP1 (CAT ADJ T(TO NP1
(CAT NOUN T (TO NP2))
(NP2 (POP T T))

Our method of writing parsing functions requires the writing of slightly more
code than is required for a Woods interpreter system, but it avoids the overhead of
interpretive execution.

The function SET*, which sets the value of the * register, checks for
multiple-word units, and replaces them with single words in the * register. “As much
as’’, “center of gravity’’, “cross section’’, “point of application’’, and "so0 that”’ are
recognized as multiple-word units. These groupings could have been handled by other
methods, but replacing them by a single “constructed’’ word is a convenient way to do
it. A large parsing system would need to be able to back up in case the multiple-word
interpretation was incorrect; in our limited field of physics problems no such
ambiguities occurred. Becker [Becker 75] has argued that such groupings play a major
role in language.

Values are passed between levels of the grammar using the normal LISP
conventions of function arguments and returned values. A returned value of NIL
always indicates failure of a grammar program. A grammar program which succeeds
may return a generated token atom (as in the case of a Noun Phrase), or it may attach
its results to existing atoms and simply return True (as in the case of a Prepositional
Phrase). Some grammar functions have no arguments, but others (such as the Verb
Phrase) have quite a few.

3.3 Data Structures Produced During Parsing

As a sentence is parsed, the grammar programs create a set of interlinked
nodes representing the major phrases (primarily Noun Phrases and Verb Phrases) of a
sentence. These networks initially bear a strong resemblance to the Semantic Networks
of Simmons [Simmons 73]. As semantic processing of the sentence progresses, modifiers
of the nodes are removed or changed in form, semantic interpretations are added, and
links are made from the nodes to objects and relations in the developing model of the
problemn. Finally, after execution of the verb semantics, the network is discarded.

Each node in the parse network is a GENSYM atom whose name is TOK
followed by a number. Features of the node (also called a “token atom’’ or “token’’) are
stored on its property list. The “main” word of the phrase (usually, but not always, a
word from the sentence) is stored under the indicator TOK. The tvpe of phrase is stored
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under the indicator LFRAME (Linguistic Frame); the possible types of LERAMEs arc
NP (Noun Phrase), VP (Verb Phrase), QNP (Question Noun Phrase), and RELNP
(Relative Noun Phrase). The noun phrase “each end’’ in P3%, for exampie, would
generate the following token:

TOKS8S TOK END
LFRAME NP
NBR (NS)
MODS ((QNTFR EACH))

SFRAME LOCPART
SEMOBJ (SCAFFOLDS35)
RFNT (LOC91 LOC90)

The first four items on the property list of the token are created by the
parsing program. NBR is the Number (Noun Singular), and MODS is a list of modifiers,
in this case the quantifier EACH. The remaining property list itemns are added during
semantic processing: SFRAME (Semantic Frame) is LOCation/PART; SEMOBJ
(Semantic Object) is a link to the object in the problem model which the location refers
to, in this case the scaffold SCAFFOLDS5. RFNT (Referent) is a list of pointers to the
items in the problem model to which the phrase refers: the locations LOC91 and LOCS0.
When the semantic function for the verb is executed, it will deal directly with the
Referents of the phrase, independent of the syntactic construction in the original
sentence which caused those referents to be selected.

3.4 Noun Phrase Parsing
In this section we will examine in some detail the parsing of the noun phrase
and its modifiers.

3.4.1 Basic Noun Phrase

A flowchart of the NP parsing program is shown in Figure 3.1. A flowchart is
used to describe the program because a transition net of this size would be unwieldy,
and because a flowchart can more closely follow the actual program structure. A few
nonstandard conventions are used in the parser flowcharts in this chapter. A test
consisting of a word in capital letters indicates a test of whether the word currently
under the scanner (the word in the * register) is in that category. (NEXT) indicates the
next word to the right, and (NEXT2) indicates the second word to the right. The symbol
=> appearing next to a line indicates that the scanner is moved to the right along that
control path. The symbol ++ indicates that the right part is appended to the left;

* References to the example prdbie‘rn“é’(Chapter 1) are denoted by the letter P followed
by the problem number.
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generally, A =+ B is implemented as

(SETQ A (NCONC A (LIST B))).
Phrases in quotes next to control paths are examples of phrases which would follow the
indicated paths.

The initial tests in the flow diagram test for proper nouns, geometric names,
and pronouns, which are handled separately. [Geometric names, as in “AT END (A)",
are represented in LISP as lists containing the names; in the original sources from
which the problems were taken, such names were written as italic capitals.] The
determiner, if present, is saved. A series of tests separates the use of a measurement
(e.g., “10 ft’’) as a noun phrase by itself or as a modifier (“a 10 ft pole’’), while
prohibiting it if it precedes a relative preposition (as in “10 ft from . . .””) since this form
is more easily handled as part of the prepositional phrase. Adjectives which are marked
NULLADJ are ignored. Thus, “a tapering wooden telegraph poie”” (P11) is treated the
same as “‘a pole”’. This is one of the few cases in the parser where information from the
pr'oblem statement is ignored. Possessive pronouns are rewritten at once; the referent of
the corresponding root pronoun is found, and a modifier of the form (POSSBY referent)
is constructed. This modifier retains the ambiguity of the type of possession. Not
surprisingly, there is considerable similarity between the semantics of POSSBY and
some of the sense meanings of OF. Thus, for example, “its end’’ and “the end of the
lever”’ will be reduced to an identical form when processed semantically.

When the noun is found, a token atom is created for the noun phrase, usually
using the singular form of the noun as the token name. In some cases, however, an
expanded definition is used, resulting in the use of a different token name and the
generation of additional modifiers. Thus, PAUL becomes PERSON, (SEX MALE),
(NAME PAUL) and BOY becomes PERSON, (SEX MALE), (AGE YOUNG). This
expansion eases the identification of the same object when it is referred to by different
words; the identification of these two tokens will result in the inference that Paul is
voung. The modeling of words as carriers of modifiers to be applied to their root
concepts is an interesting area of research; [Simmons and Amsler 75] are investigating
this type of modeling for verbs of motion and communication.

After the noun token is made, an attempt is made to execute the semantics of
each of the modifiers which have been found. Some modifiers will make changes directly
to the NP token; others will create new modifiers which are saved for later processing.
“Both”’, for example, will create modifiers equivalent to “Each of the two . . ..

The pronoun matching algorithm which is used is very simple. A pronoun
which was previously used is matched to the same referent as before. Otherwise, the
last-mentioned candidate which matches the pronoun in number and is appropriately
human or inanimate is chosen. This technique is fairly crude, but it worked for this class
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of problems. In general, finding pronoun referents can be very difficult. [Crarniak 72]
considers this problem in some detail.

3.4.2 Noun Phrase Compounds and Modifiers

Conjunctions and modifying phrases introduce many potential ambiguities
into the parsing of a sentence. In a noun phrase containing two prepositional phrases,
for example, the second prepositional phrase (PP) might modify either the top-level
noun phrase or the noun phrase in the first PP. A conjunction between two noun
phrases might join them into a compound noun phrase, or it might connect two top-level
clauses containing the noun phrases. Although syntactic constraints may select the
correct interpretation in some cases, in many other cases the choice can be made only on
semantic grounds. For example, in

Lowering the level of the lake allows city officials to kill weeds and
residents to repair their docks.
we must use semantic interpretations to reject the possibility that “weeds and
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residents’’ is a compound noun phrase. People seem to make these choices easily and
correctly the first time they read or hear a sentence; only rarely do they have to back up
and re-parse a sentence in order to interpret it correctly. The parsing programs of
ISAAC rely heavily on semantic tests to reject incorrect combinations of phrases.

A noun phrase may be modified by a prepositional phrase, an adjective
phrase, or a dependent clause. In each case, the parser for the modifying phrase is called
with the NP token as an argument. The modifying phrase parser may reject the
combination on semantic grounds even though the appropriate syntactic constituent is
found. This is especially important in the case of prepositional phrases. Compound
modifiers, as in “a uniform scaffold 12 ft long and weighing 100 1b’’ (P5), are permitted.

Conjoined noun phrases are required to all be members of the same semantic
class, which may be one of the set PERSON, PHYSOB (physical object), LOCNAME
(location name), ATTRNAME (attribute name), or MEASU (measurement unit).
Pronouns are prohibited as members of compound noun phrases. These tests handled
almost all cases which occurred in the set of test problems. One pathological sentence
required additional treatment:

If it is placed on the edge of a block 1.5 m from the light end and a weight
of 750 nt added to the light end, it will be balanced. (P14)
Since thé auxiliary “is’’ is omitted in the second clause, “added . . .” could be
considered a dependent clause modifying “weight’’, and “block’” and “weight’’ could be
combined as a compound noun phrase under the above rules. This problem was solved
by a semantic test associated with the preposition “of’ which prohibits a compound

object noun phrase for such cases. This is not a very pleasing solution. People probably



accept “edge of a block as a well-formed unit before reaching the secor.d clause, and
thus do not consider combining “block’” and “weight”. The depth-first oper.iion of this
parser allows it to go fairly far afield in such cases; additional semantic tests to allow
some constituents to be combined earlier would be a desirable, but difficult,
improvement.

3.4.3 Noun Phrase Variants
There are three small parsing programs which accept variants of noun
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phrases. THERENP accepts “there’” as a noun phrase in cases such as “there is . . .
QNP accepts a noun phrase beginning with a question word, as in “what force . . .’
RELNP parses a “relative noun phrase” containing “‘as much as’’, as in “the man
supports twice as much as the boy’’ (P7). The multiplication factor is saved, and a link

is made to the noun phrase involved in the comparison.
3.5 Verb Phrase Parsing

3.5.1 Basic Verb Group

The verb group, which is parsed by the program VG, consists of a set of
auxiliary verbs, a main verb, and optional adverbs. The flowchart of VG is shown in
Figure 3.2. Since tense and modality are not needed for our type of physics problems, the
auxiliary verbs are ignored except for determining whether the verb group is active or
passive. Other authors (for example, [Winograd 72]) have given procedures for
determining verb tense from the auxiliary verbs.

The program VG has six arguments. NPHD is a noun phrase token which is
the syntactic subject of the verb. VPHD (if specified) is a verb phrase token which is
either the first part of a compound verb phrase or the initial auxiliary verb which is
separated from the rest of the verb group in a question. CMPND is a flag which is true if
the verb group is part of a compound verb phrase. DCLF is true if the verb group is part
of a dependent clause; DCLP is true if the dependent clause construction is passive.
QFLG is true if the verb group is a top-level verb group in a question.

The flowchart of VG is fairly straightforward. If a previous verb phrase is
available from a separated verb group in a question, it is deleted and incorporated into
the main verb group. The syntactic subject is attached to the verb phrase as subject or
object depending on whether the verb is active or passive. This transformation frees the
verb semantic programs from having to concern themselves with the voice of the verb.
In a compound verb phrase without a subject (object if passive), the corresponding
phrase from the first verb phrase is used. Thus, in “John was tarred and feathered’’,
“John”” would be used as the object of “feathered’’.
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3.5.2 Verb Phrase

A flowchart of the verb phrase parsing program, VP, is shown in Figure 3.3.
VP first parses a verb group by calling VG, then collects the remaining predicate
phrases and modifiers and attaches them to the verb phrase token. These phrases
include the syntactic object noun phrase or adjective phrase, an infinitive verb phrase
object (as in “they wanttogo . . .”’), and prepositional phrases or adverbs modifying
the verb.

After parsing a verb group, VP calls VPMODX to collect verb modifiers
(adverbs and prepositional phrases). An infinitive verb phrase object is collected if
present and attached to the verb phrase token under the indicator INFOBJ. If a
question is being parsed, the subject and the remainder of the separated verb group are
collected. A prepositional phrase on HOLD (that is, one which occurred at the start of
the sentence and could not be attached to anything, e.g. **At (B), the other end of the
pole, thereis . . .’ (P15) is attached to the verb phrase if possible. The predicate noun
phrase or adjective phrase is collected, along with any remaining modifiers. If the verb
phrase is part of a dependent clause, it is required to contain more than just a verb. A
dependent clause (DCLAUSE) is attached to the token of the phrase it modifies.

3.6 Prepositional Phrase Parsing

The structure of the prepositional phrase is fairly simple. In addition to the
usual PP consisting of a preposition and noun phrase, the PP parser accepts a phrase
involving a measurement and a preposition and noun phrase (as in “10 ft from one
end’’) as a single prepositional phrase. Both types may involve question phrases, as in
“at what point’’ (P7) and “how far from the center’” (P20).

The PP parser behaves differently from the other parsing programs in that it
saves a well-formed result which cannot be attached to the head token which was
specified, due to semantic constraints. If the PP parser is called again to reparse the
same phrase (as it surely will be), it applies the semantic tests to its previous result and
the new head token. This not only saves the work of reparsing an identical phrase twice,
but more importantly, it prevents side effects which occur during the parsing from being
repeated. These side effects (such.as the creation of a new object in the model of the
problem) violate the restriction on a pure Woods net parser that all results be passed
between programs in designated registers; hence, the effects are not undone when
backup is made from a failing parse attempt. We could make all such actions reversible,
as in CONNIVER [McDermott and Sussman 72], but such an approach exacts a high
penalty in computational overhead. Our approach is probably safe for prepositional
phrases, which cannot in general be parsed as anything else. The pure Woods net
approach makes it difficult to mix syntactic and semantic processing. More research is
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needed on ways to intermix the two and still be able to back up when necessary, without
incurring too much overhead.

Preposition semantics are executed, when possible, as soon as the
prepositional phrase has been parsed. In some cases, the semantic routine will elect to
delay the semantic processing. In these cases, the PP is saved on the head token under
the indicator PPS for later processing.

3.7 Clause Parsing

The clause parsing programs, CLAUSE and QCLAUSE, are relatively
simple programs which accept the several forms of declarative, imperative, and
question clauses. An initial prepositional phrase, if present, is placed on a HOLD list for
later processing. A noun phrase or question phrase is parsed and then used as an
argument for calling the verb phrase parser. The result of parsing a clause is the verb
phrase token, which contains pointers to its various arguments. This verb phrase token
is passed as an argument to the verb semantics driver, EXVBSEM, which completes
semantic processing of the sentence.

Figure 3.4 shows the structure formed after parsing and semantic processing
of a complete sentence. Much of the information in the structure is produced by the
semantic programs after parsing, but we will describe it briefly as an introduction to the
semantic processes. The root of the parse tree (the value returned by the SENTENCE
parsing function) is TOK185, the verb phrase token for the main verb of the sentence.
The object of the verb is TOK181, which was the syntactic subject (since the verb phrase
is passive); the subject (agent) of the verb is TOK186, which was introduced bv the
preposition “by”’. The semantic routine for “by’’ simply attached its object phrase
token, TOK186, to the verb phrase token as the subject of the verb; hence, there is no
need for “by’’ to appear anywhere in the structure. TOK 181 is the noun phrase token
produced from the initial noun phrase of the sentence; it is a TOKen of the word
SCAFFOLD, is a Linguistic FRAME of type NP (Noun Phrase), has an INDEFinite
DETerminer, and has a NBR (number) of NS (Noun Singular). The modifier “12 ft
long’’ has been converted to the form (LENGTH 12 FT); the same modifier form would
be produced for the phrase “a 12 ft scaffold”’. TOK181 is the syntactic subject of a
DCLAUSE (Dependent CLAUSE) whose verb token is TOK182. The SFRAME
(Semantic FRAME) interpretation of TOK181 is PHYSENT (PHYSical ENTity), and
its RFNT (Referent) is SCAFFOLD184, which is an object in the model of the problem.
The remaining tokens shown in the figure have a similar structure. The modifier
“vertical”’ of TOK186 has been converted to the form (ROTN 90); this token has two
referent objects. The modifier “its’’ of TOK188 was converted to a modifier of the form
(POSSBY SCAFFOLDI184), which was semantically processed to make TOK188 a




LOCPART (LOCation/PART) SFRAME whose SEMOBJ (SEMantic OBJect) is
SCAFFOLDI184; identification of the location referents of TOK188 yielded the two
locations LOC190 and LOC189, which are locations on SCAFFOLDI184 in the model of
the problem. Since TOK188 was the object of a preposition, semantic processing of the
prepositional phrase transferred its referents to a modifier of the verb phrase TOK187;
this left TOK 188 unconnected to the rest of the structure.

3.8 Conclusion

The computer time required for parsing and semantic processing averages
about one second per sentence, running on a CDC 6600 and using interpreted LISP. The
parsing programs constitute only about 15% of the total; the semantic programs are
twice as large. Syntactic processing is thus a relatively small part of the complete
process of language understanding. On the other hand, this program has convinced the
author that even in so constrained and well-defined an area as physics problems,
syntactic processing cannot reasonably be isolated and done without recourse to
semantic tests, some of which ultimately involve reasoning based on the particular facts
which are known about the objects being discussed.



“A uniform scaffold 12 ft long and weighing 100 1b is supported horizont.illy by two
vertical ropes hung from its ends.”
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It may be helpful at this stage to realize that the prim.ry form of
mathematical communication is not description, but injunction. In this
respect it is comparable with practical art forms like cookeryv, 1n which
the taste of a cake, although literally indescribable, can be conveved to a
reader in the form of a set of injunctions called a recipe.

—G. Spencer Brown

4. Semantics
4.1 Introduction

Semantics, for our purposes, is the process of constructing the meaning of a
sentence: the process of relating the objects in the sentence to objects in the world model
of the reader, and of updating the world model to reflect the meaning of the sentence.
The sentence itself is not a description of the meaning, but rather a set of injunctions, a
recipe which can be followed to construct the meaning from what the reader already
knows.

As the above definition implies, the way in which a sentence is interpreted
depends strongly on the knowledge, intelligence, and inclinations of the reader. As is
well known, different readers will interpret the same text (even in physics problems) in
different ways. A semantic interpretation of a sentence may be viewed as satisfactory or
unsatisfactory for a particular purpose, but it would be difficult to judge it as “right’” or
“wrong.”’

Updating the world model to reflect the meaning of a sentence can be a very
involved process, since the meaning of a single sentence can have many consequences.
In our physics problems, these deductions do not propagate very far beyond the
immediate understanding of a sentence during the time when the sentences are being
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read. In this chapter, then, we will primarily discuss “linguistic semantics,”” which we
may define as the semantic processing up to the point at which the parsing of a sentence
may be discarded. This distinction is well defined within the computer program. Under
this heading there are a number of distinct semantic processes: determining the
meaning of ambiguous words and phrases; finding anaphoric referents (such as
pronoun referents) and elliptical referents (such as the physical object referred to when
2 location is named alone, as in “one end’’); determining the meaning of groups of
words whose meaning in combination is more than a combination of their individual
meanings; determining the meanings of modifiers of nouns and verbs and saving the
meanings so that they can be effective at the proper place in the processing; determining
whether an object or location mentioned in a sentence is a new one, or whether it refers

to one mentioned previously; adding objects and relations to the world model, and
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updating existing ones to reflect new information; expanding the model of an object so
that its subparts may be referenced; testing a modifier to determine whether it can
reasonably modify a given phrase (which may require reasoning based on the
particulars of the world model); interpreting an object of a given type as an object of a
desired type (for example, interpreting an object as a location or vice versa). All of these
processes will be discussed in this chapter.

4.2 Preliminary Modifier Processing

Adjective and adverb modifiers of noun and verb phrases frequently have
their effects at a relatively late stage of semantic processing: the identification of the
referent of a noun phrase, or the execution of verb semantics. These modifiers must
therefore be saved for later reference. In some cases. 2 semantic routine will be
associated with the modifier itself; in other cases, it is more convenient for a larger
routine to look for the existence of certain modifiers to guide its processing. Preliminary
modifier processing puts modifiers of certain classes into a standard form so that they
will be easy to identify or so that a single semantic routine can be used for the whoie
class. In some cases, different meanings for a modifier mayv be selected depending on the
modified phrase.

Adjectives such as “one’”’, “‘other”’, “first’’, and “second’’ are put directly on
the noun phrase token under the indicator DET?2. These modifiers are referenced in
determining the referent of the noun phrase. Adjectives such as “heavy’”’, “left’’, and
“ypper’’ are converted to modifiers of the form (SELECT adj); they are used in
selecting a particular referent from several possible ones. Quantifiers such as “each’’
become modifiers of the form (QNTFR adj). Adjectives such as “horizontal’”,
“yertical’’, and “upward’’ are converted to rotation modifiers of the form (ROTN ang),
where “ang’’ is the appropriate angle.

Adjective phrases indicating measurement (as in “a 10 ft pole’’ or “a pole 10
ft long’’) are converted to modifiers where the measured quantity is made explicit, e.g.,
(LENGTH 10 FT). When the referent of the noun phrase is found, the modifier 1is
transferred to the property list of the referent. In the case of unspecified force
measurements, tests are made on the modified noun phrase to determine the measured
quantity. Thus, a 150 b man is a man whose weight is 150 Ib, while a 150 lb force is a
force vector whose magnitude is 150 lb.

4.3 Preposition Semantics

Preposition semantics is an interesting area. A single preposition can have a
number of sense-meanings (as many as seven in our set of physics problems) depending
on the types of objects it connects. The actions required of the semantic routine are in




general quite different for each sense-meaning; for our purposes, sense-nieanings are
differentiated by the different actions required to process them adequately.
Discrimination net tests based on rough semantic classifications of the phrases
connected by the preposition were found to be adequate to distinguish the preposition
sense-meanings in our sample problems. We shall discuss in detail the semantic
processing for some prepositions, and then compare our sense-meaning classifications
with dictionary classifications and postulate that techniques similar to ours may be
useful for machine translation of prepositional phrases.

4.3.1 Semantics of the Preposition “OF”

The sense-meaning classifications for the prepositions were determined by
listing the occurrences of each preposition together with the modified (or “head’’)
phrase and the object phrase of each. Occurrences which seemed to be of the same
semantic class were grouped together, and a set of discrimination net tests was
developed which would distinguish between preposition uses in each of the different
classes. Using this procedure, seven distinct sense-meanings of the preposition “OF"’
were found in our small sample of twenty physics problems—a surprisingly large
number considering that the problems are all of a similar type. The seven sense-
meaning classes are listed below with examples. Although the classes were determined
from our physics problems, it is easy to think of examples of each class which are in
common usage and are not limited to the narrow area of physics problems.

1. < quantifier> OF < objects> each of the ropes

2. <measurement> OF < value> a length of 10 ft

3. <object> OF <value> < attribute> a pole of uniform cross section
4. <location> OF < object> the left end of the lever

5. <attribute> OF < object> the weight of the lever

6. <group> OF < objects> pair of legs

7. < part> OF < object> hinges of a door

The semantic classes for the head and object phrases are given for each
sense-meaning in the left-hand column; the discrimination net at the beginning of a
preposition semantic routine uses tests for these semantic classes to determine the
proper sense-meaning for a given use of the preposition. Once the proper sense-meaning
has been determined, the processing required is fairly simple. For sense-meaning 1 of
“OF”, < quantifier> OF < objects>, the quantifier token is replaced by the object
token, and the quantifier is made a modifier of the token; thus, “each of the ropes” is
put into the same form as “each rope’’. For sense-meaning 4, < location> OF
< object>, the SFRAME (Semantic Frame) of the head is set to LOCPART, and the
referent of the object phrase is put on the head token under the indicator SEMORJ
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(Semantic Object). [The process of referent identification is discussed in a iater section.]
In cases such as this one, the determination of the preposition sense-meaning also serves
to determine the proper semantic frame for the head phrase. The prepositional phrase
itself serves to supply one of the arguments of the semantic frame. Just as parsing makes
explicit the syntactic relations which hold among the words in a sentence, the reduction
of phrases to their semantic frame form makes explicit the semantic relations which
hold among the objects referred to (explicitly or implicitly) by the phrases. The semantic
frames constitute a set of standard forms into which phrases representing similar
meanings are translated; thus, numerous different ways of expressing the same
meaning can all be translated into an identical semantic frame form.

In the case of sense-meaning 7, < part> OF < object>, a special semantic
routine may be called into play to define the parts and their relation to the object they
are part of. In our example, “the hinges of a door’” (P9), the correct formulation of the
problem requires the use of world knowledge that a door has two hinges (if the number
is unspecified) which are arranged vertically and attached to the door on one side. This
pragmatic knowledge is contained in a semantic routine for defining parts of doors. By
representing the knowledge in this way, it is possible to refer to the parts of a complex
object if necessary without expanding the internal model of the object into its parts if
they are not referenced.

In our sample problems, there was only one case where a prepositional
phrase modified a conjoined noun phrase: “magnitude, direction, and point of
application of the equilibrant”” (P12 and P15). In this instance, the prepositional phrase
“of the equilibrant’’ should be assumed to modify each of the three conjoined phrases;
this is handled within the semantic routine for “OF"’. It would be desirable to handle
such cases at a higher level and thus in a more general fashion. More research is needed
to find rules to govern the interpretation of prepositional phrases which modify
compound phrases.

4.3.2 Semantics of Other Prepositions

In this section we will briefly describe the sense meaning classifications and
semantic processing for the remaining prepositions. In each case, of course, there are
some sense-meanings of the preposition which are not handled by the program; we
discuss only those which are. '

BY is used only to specify the agent of the verb in a passive verb phrase. The
object of the preposition is put on the verb token under the indicator SUBJ.

AGAINST is used to specify a case argument for a verb, as in “‘rests against a
vertical wall”” (P8). The referent of the object phrase is identified, and the preposition
and referent are put on the verb token as a modifier under the indicator CASEARG.

[¥1]
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CASEARG modifiers are processed by the verb semantic routines, which may have
specific interpretations for case arguments indicated by certain prepositions.

TO with a location object is used to specify a location for a verb phrase. The
location referent is identified, and the preposition and referent are used as a modifier
under the indicator LOC. Since modifiers are kept as a list under the property list
indicator MODS, there can be multiple LOC modifiers. The preposition is kept in case
the verb semantic routine can derive additional information from it; usually, however,
only the location referent will be used.

Proposed LOC modifiers are tested against the head phrase to determine
whether the modification is acceptable; this is done by a function called LOCTST. If the
head is a verb phrase, the verb is tested to see whether it can properly take a location
modifier. For example, in the sentence “There is a man weighing 150 lb at one end’’, the
LOC modifier “at one end”” would be rejected as a modifier of “weighing’’, while in the
sentence “There is a man standing at one end’’ the LOC modifier would be accepted as
a modifier of “standing’’. If the modified phrase is a noun phrase, the object referred to
(explicitly or implicitly) by the location modifier is tested against the head object; if they
are the same, the modification is rejected. Thus, in the sentence ‘one
painter . . . stands on the scaffold 4.0 ft from one end’’ (P3), the location modifier “4.0
ft from one end’’ is rejected as a modifier of “scaffold’’, since its implicit object referent
is the scaffold. This rejection on semantic grounds (making reference to the
relationships among objects in the model of the problem which has been constructed so
far) will cause the parsing in which the prepositional phrase modifies “‘scaffold’ to be
rejected, so that the prepositional phrase will eventually be interpreted as a LOC
modifier of the verb “stands’’. In the case “a boy 3 ft from one end’’ (P7). the location
modifier is accepted since different objects are referenced by the head and object
phrases.

FROM (without a measurement phrase preceding it) modifies a verb as a
CASEARG, as in “supported from the wall” (P8), or a LOC, as in “From end (A) a
weight of 2500 nt is hung’’ (P15). FROM2 (preceded by a measurement phrase) always
specifies a LOC; the measurement phrase may be a question phrase, as in “how far from
the center’’ (P20). If the object of FROM2 specifies a physob rather than a location on a
RELPOBJ (an object on which relative positions are defined), an appropriate object for
the location to be on must be found. This is done by finding an attachment point
between the specified object and a RELPOBJ; thus, “0.5 m from Paul’” (P17) specifies a
location on the pole Paul is carrying which is 0.5 m from the point of attachment
between Paul and the pole. The semantic routine for FROM2 must interpret the given
object (a physob) as an object of the desired type (a location on a different physob of a
particular type).

(s H)
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BETWEEN occurs only once in our problems: “on a pole between them”
(P17). When it connects a single physob and two physobs, as in this case, BETWEEN is
interpreted to mean that the first object is attached to the other two at the “usual”’
places for the object (in this case, the ends of the pole).

AT always specifies a location, which may be a question phrase, as in “at
what point”’ (P7).

IN specifies either a location, as in “stand in the center’”, or an attribute of
an object, as in “the tension in each rope” (P5). In the latter case, the SFRAME of the
head noun phrase is set to ATTROF and its SEMOBJ is set to the referent of the object
noun phrase. The same semantics are used for sense-meaning 5 of OF, < attribute> OF
< object>, and for one sense-meaning of ON.

WITH may be used to connect an object with an attribute and value. as in""a
spring with a constant of 40 Ib/ft”” (P1), or to connect a second participant in a
relationship with the relationship, as in “an angle of 60 deg with the horizontal” (P4).
The latter sense-meaning is frequently used in English to define the participants in a
relationship, usually using the verbs “have’” and “make’.

There are five sense-meanings of ON which are recognized by the program:

1. < physob> on <loc> the rope on the left end (P4)

2. < attribute> on < physob> the tension on each of the ropes (P3)
3. < action> on < physob> the forces on the supports (P6)

4. <verb> on < physob> stands on the scaffold (P3)

5. < verb> on <loc> placed on the edge of a block (P14)

Sense-meanings 1 and 5 are processed as LOC modifiers; meaning 2 is
converted to an ATTROF SFRAME; meaning 4 is converted to a CASEARG modifier.
Meaning 3 is converted to the SFRAME ACTON, with the referent of the object noun
phrase as its SEMOBJ.

4.3.3 Definition and Translation of Prepositions

Out of curiosity, the sense-meaning classifications for the preposition OF
(which had the most sense-meanings of any in the program) were checked against the
definitions given for OF in several dictionaries. The agreement with the dictionary
definitions was very poor. Often, several of our classes would fit in a single dictionary
class, or one of our classes would fit in several dictionary classes. Prepositions are of
course hard to define, and native speakers of a language rarely need to look them up in
a dictionary. However, in translating from one natural language to another (whether
done by a human or by a machine), the correct translation of prepositional phrases is a
difficult problem. For example, the preposition OF can be translated into about a dozen
different prepositions in German; some uses of OF are translated into the genitive case
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or other constructions which do not use prepositions. It seems plausible that
discrimination nets similar to those used in our preposition semantic routines might be
used to discriminate preposition sense-meanings for machine translation. Hopefully,
sense-meaning classes could be found such that all usages of a preposition which fall
within each class could be acceptably translated into the same form in the target

language.

4.4 Referent Identification

Referent Identification is the process of associating the phrases in a sentence
with the objects and relationships they refer to (explicitly or implicitly) in the reader’s
model of the world. Such a process involves a number of possible steps. Candidate
referents must be found. In some cases the candidates will be identified by the same
word used in the sentence, or will be members of the same class which can be matched
together (e.g., “Paul” and “boy’’, both of which are members of the class PERSON with
the restriction (SEX MALE)). In other cases, the phrase in the sentence identifies the
candidates implicitly by identifying their relationships or attributes. (For example, in
(P17) the word “load’’ refers to a sack which is being carried on a pole.) In such a case,
the candidate can be considered an instance of the phrase in the sentence in its
particular instantiation, but not in general. If there are no candidates (or if there are
not enough), a referent must be created and added to the model. If there are several
candidates, it may be necessary to select a particular one, either arbitrarily or based on
modifiers of the phrase in the sentence. If modifiers are used, problem solving may be
required to determine which of the candidates satisfies the modifiers. Once the
referent(s) of the phrase have been identified, modifiers of the phrase must be processed
to add information to the referent as appropriate.

ISAAC contains programs to identify three types of referents: Physical
entities (objects and non-material physical entities such as forces), locations, and
attachments. These referent identification programs are described below.

4.4.1 Identifying Physical Entity Referents

Physical entity referents are identified by the function IDRFNT. If the
referent was previously identified, it is retrieved from the noun phrase token’s property
list. Otherwise, the referent is identified using the function PHYSNP and put on the
token’s property list under the indicator RFNT. (The “referent”’ is a list of pointers to
each of the objects or relations denoted by the noun phrase.) If the noun phrase is
compound, the referent of each component noun phrase is determined, and the
concatenation of all the referents is used as the referent of the compound.

A flowchart of PHYSNP is shown in Figure 4.1. The first step in identifying
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the referent is to find the existing Jobje'cts in the world model to which the noun phrase
might refer. (If the determiner is indefinite, it is assumed that a new object is being
referred to, and this step is bypassed.) The list of existing objects is searched first for
objects with the same token word as the noun phrase, and then for objects whose token
words are synonyms of the token word of the noun phrase. If no candidates are found by
either of these searches, a semantic routine associated with the noun phrase token word
is executed (if available) to see if there is a suitable referent for that word in the model.
Such a semantic routine allows the noun phrase “the load’’ in (P17) to be matched to
the object whose token word is “sack’’. The referent semantic routine for *“load’’ selects
an object which is a physical entity, is not a person, is supported by something, and does
not support anything itself. The semantic routine for “support’’ selects the appropriate
number of objects which all support the same object. If candidate objects are found by
any of these searches, they are subjected to further testing beginning at the flowchart
label (B) (page 2 of Figure 4.1).

If no candidate objects are found, or if all candidates are rejected on
semantic grounds, new referent objects must be created. The number of objects to be
created is set equal to the QTY (quantity) attribute of the noun phrase if specified (as in
“two boys’’ (P20)), to two if the noun phrase is plural and not compound, to the number
of locations if there is a location modifier (as in *‘a pier at each end”’ (P13)), or to one
otherwise. The proper number of objects is then created using the function MAKENT.

In most cases, MAKENT simply creates a GENSYM atom, sets its token
word appropriately, and adds it to the list of created objects. Provision is made,
however, for special semantic routines to create referents for particular words. A
seesaw, for example, is not a single object, but a rigid plank pivoted at its center. The
semantic routine to make a referent for “seesaw’’ creates both objects and specifies their
attachment. Similarly, an equilibrant is a force which is applied to a rigid body to
produce equilibrium. The semantic routine to create a referent for “equilibrant’’ creates
a force, finds an appropriate rigid body, and specifies the attachment of the force to the
rigid body at an unknown position.

When the referents of the noun phrase have finally been determined or
created, the function DOMODS is called to execute the modifier semantics for each of
the modifiers which remain on the noun phrase token. Modifier semantics is discussed
in a later section.

The second page of Figure 4.1 shows the tests which are performed on
candidate referents for a noun phrase in order to reject those candidates which are
clearly inappropriate on semantic grounds and to select the proper candidate(s) from
those which remain. First, each candidate is subjected to RSTRTEST (restriction test)
and NAMETEST. RSTRTEST requires that if the candidate and the noun phrase have




RESTRICT modifiers with the same indicator, the restriction values muast be equal.
Thus, “Paul’’ and “boy’’, both of which have the modifier (RESTRICT (SEX MALE)),
would match, while “Paul’’ and “girl”” would not. NAMETEST requires that if both
the candidate and the noun phrase token have names, the names must match.

After any candidates which fail RSTRTEST or NAMETEST have been
removed, the remaining candidates are examined to see if they constitute the proper
number of referents. If there is only one candidate, if the quantifier “each’’ is present, if
the number of candidates matches the QTY (quantity) of the noun phrase, or if the noun
phrase is plural and there are two candidates, then the existing set of candidates is
accepted without further tests. If a determiner adjective is present, the corresponding
candidate is picked: the first for “one’ or “first’’, or the second for “‘other’ or “second’’.
Otherwise, the candidates are tested against modifiers of the noun phrase. If a
candidate is found which has a matching modifier (e.g., both have the modifier
(WEIGHT 125 LB)), that candidate is selected. If a candidate has a mismatching
modifier (e.g., (WEIGHT 150 LB)), that candidate is removed from the list of
possibilities. Some modifiers, such as location modifiers, may have special semantic
routines for selecting candidates. A candidate is selected by the location semantic
routine if the location referent of the location modifier is a member of one of the
attachment relations of the candidate. Thus, “the rope on the left end”’ (P4) will select
the rope which is attached to the left end of the bar. If multiple candidates remain after
all the modifiers have been tested, the first one is selected arbitrarily.

In some cases, the number of referents created for a noun phrase is not
enough when the context of the noun phrase is considered; in such cases, the function
MORERFNT may be called to create additional referents. For example, “the pier at
each end of the bridge”’ (P18) will cause two “pier’’ objects to be created because of the
two locations in the location modifier generated by the prepositional phrases. However,
in “a plank . . . supported at each end by a stepladder’” (P19), the location modifier is
attached to the verb phrase, so that initially only a single “stepladder’’ referent is
created. The verb semantics for SUPPORT, however, requires a separate supporting
object for each specified location, so that MORERFNT will be called to make a second
“stepladder’’ referent. '

4.4.2 Identifying Location Referents

There are two primary functions involved in the identification of location
referents, IDLOC and LOCNP. IDLOC identifies a location given the object to which the
location is relative, the location name, an optional SELECT modifier, and an optional
list of location frames to be excluded from the selection process. For example, the
phrase “the left end of the lever’ would result in a call to IDLOC with the referent
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object for “the lever’’, the location name “END’’, the SELECT modifier “LEFT", and
a null exclusion list as arguments. IDLOC is used both by internal processes and by
LOCNP.

LOCNP identifies the location(s) referred to by a noun phrase. Since 8
location may be specified by a wide variety of syntactic forms, LOCINP must identify the
form of the noun phrase and the features of the location which are specified. These
features are collected, and missing features are filled in by making inferences; finally,
IDLOC s called to identify the location referents. Thus, LOCNP serves as an interface
function to collect the arguments for IDLOC and put them into a standard form.
1DLOC and LOCNP are described in detail below.

A flowchart of IDLOC is shown In Figure 4.2. IDLOC first examines all the
existing locations on the specified object 0 se€ if one of them is suitable. An existing
location is rejected if it is a member of the excluded locations list, if it has the wrong
location name, Of if it has a relative position (displacement) from the named position. If
the location passes these tests, it is examined for the specified SELECT value. In most
cases, the SELECT semantics consists of a test for an identical SELECT modifier (e.g.,
RIGHT or LEFD. In some cases, however, 2 special semantic routine must be used to
test the world model and determine whether a location meets the selection criterion. To
find “the heavy end’’ (P12), for example, it is necessary 10 examine the object frame for
the object involved; the “heavy’ end is the one which is closest to the center of gravity of
the object. Which end is the “heavy’’ one could be changed by changing the numeric
value of either the length of the bar or the distance from one end of the center of gravity,
while leaving all the English words the same. Thus, numerical problem solving by &
specialist program, based on the particular values specified for certain parameters, is
required to determine the proper location referent.

If no SELECT parameter is specified to IDLOC, or if the object being
examined has no SELECT modifier, the object 18 saved as a second choice in case a
better candidate is not found. Thus, if a SELECT value of LEFT is specified, all the
locations on the object with the proper location name (e.g., END) will be examined for &
SELECT LEFT modifier. If none is found, a location with no SELECT modifier will be
chosen; when the modifiers of the noun phrase are processed, the select value will be
added to that location frame.

In addition to its use by LOCNP, IDLOC is used internally by semantic
routines to identify particular locations on objects. For example, when & referent object
for “seesaw’’ 18 created, IDLOC is called to create a location frame for the center of the
newly created seesaw plank: this location is then used in specifying the attachment of
the plank to the pivot which is created.

LOCNP identifies the referent(s) of a location noun phrase; such a location
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mav be denoted in many different ways. If the location has a name, the name alone may
be used (as in *“80 cm from (A)” (P6)); the object to which the location is relative may or
may not be named (“the left end of the lever’’ or simply “the left end”’); a physical
object name may be used to specify a location, since every physical object occupies a
position in space.Most of the function LOCNP consists of code to make the inferences
and collect the arguments needed to identify a location when the location is denoted by
any of the noun phrase forms mentioned above.

A flowchart of LOCNP is shown in Figure 4.3. If the referent of the noun
phrase is known, it is returned at once. Otherwise, a series of tests is made to determine
the type of location noun phrase. If a location is specified by name, the existing location
frames are searched for a location with that name. When the correct location is found, it
is saved on the noun phrase token under the indicator RFNT, and the function
DOMODS is called to process any modifiers of the noun phrase. If the noun phrase is
already marked as being a LOCPART SFRAME, the object to which the location 1s
relative is already known; this will be the case if a modifier of the location noun phrase
specifies the object, as in “the end of the lever’’ or “its left end’’. In such cases, LOCNP
transfers directly to the label “B" (page 2 of Figure 4.3). If a location is named without
an object (as in “one end’’), it is necessary to find an appropriate object. This is done by
examining the GEOMODEL (geometric model) of each object in the model of the
problem until an object for which the location name is appropriate has been found.
Once the appropriate object for the location has been inferred, the noun phrase token is
converted to a LOCPART SFRAME, and control is transferred to label “B’’. If the
noun phrase names a physical object or person, IDRFNT is called to identify the
physical object referent. If the object to which the location is relative is specified in the
call to LOCNP and is different from the object named by the noun phrase, a search is
made for a location at which the named object is attached to the desired object; thus, in
“0.5 m from Paul’’ (P17), which specifies a location on a pole which Paul is carrying,
“paul’’ is interpreted as a location on the pole by finding the point on the pole where
Paul is attached to it. If the desired object is unspecified, a location is made for the
default location of the named object.

At label “B’’ of the flowchart, where LOCPART SFRAMESs are processed, a
test is made to see if the noun phrase is plural or modified by the quantifier EACH, asin
“its ends’’ or “each end’’. If so, the number of such locations is gotten from the
GEOMODEL of the object, and that number of locations is identified by calls to
IDLOC. Thus, “each end”’ (P3), referring to a scaffold, will cause two “end’’ location
frames to be generated.‘ If the noun phrase is singular, IDLOC is called to identify a
single location referent. If a location name is specified, the location found is required to
pass NAMETEST, having either the correct name or no name. Once the proper referent
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has been found, control is passed to the label “H’' to save the referent and process
modifers of the noun phrase.

4.4.3 Attachment Identification

An attachment relationship among two or more objects is identified by the
function IDATT. Attachment relations are not the direct referents of phrases in a
sentence, but are defined by verb semantic routines or modifier semantic routines. The
argument of IDATT is a paired list of objects and locations on the objects; one member
of each pair may be nil. IDATT identifies an attachment frame which specifies the
attachment of all the objects in the list; if no such attachment frame exists, one is
created, along with links between it and the objects involved. (The structure of
attachments and other frames is described in Appendix B.) If an existing attachment
which matches the list is found and the list contains locations which were previously
unspecified, the locations are put into the existing attachment frame. Thus, in cases
such as

A painter . . . stands on a plank . . .
If he stands 1.0 m from one end of the plank . . . (P19),

the second attachment will be identified with the earlier one and will cause the location
on the plank to be added to the attachment frame. The order in which the
object/location pairs are specified in the call to IDATT is unimportant.

A second parameter in the call to IDATT is the type of attachment:
CONTACT (as in the above example) or PINJOINT. The type of attachment is not used
by IDATT, but is saved with the attachment frame for later use. The interaction of
objects at an attachment point may depend on the type of attachment. A CONTACT
attachment with a “smooth’’ surface, for example, implies that the force exerted by the
surface is nonnegative and perpendicular to the surface. A PINJOINT attachment may
transmit a force in any direction, but may not transmit a torque. Although other types of
attachments could be used, CONTACT and PINJOINT are the only ones used by the
program in its present form.

4.5 Modifier Semantics

Modifiers of noun phrases are saved, after some preliminary processing
(Section 4.2), on the property list of the noun phrase token under the indicator MODS.
After the referent of the noun phrase has been determined, the semantic routines of
these saved modifiers are executed so that the appropriate changes may be made to the
referent of the noun phrase. (Some modifiers, which are used in selecting the proper
referent, are deleted before this stage is reached.)

Modifier semantic processing is controlled by the driver function DOMODS,
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which calls PUTMODR for each modifier. PUTMODR (which is also used for modifier
processing by some verb semantic routines) transfers the modifier to the property list of
each referent, or executes a special semantic routine if there is one associated with the
modifier. Thus, in simple cases such as “a 150 Ib man’’, the modifier (WEIGHT 150
LB) generated from the adjective phrase is transferred to the referent’s property list as
the value (150 LB) under the indicator WEIGHT. In other cases, semantic routines may
make inferences from modifiers, e.g., that an object which is at a location on another
object is attached to the other object at that location.

RESTRICT modifiers are concatenated and placed on the referent object
under the indicator RESTRICT; this allows an object to have multiple RESTRICT
modifiers, which are used in determining noun phrase referents.

Measurement modifiers are transferred directly to the property list of the
referent. In the process, the measurement units for each type of measurement are saved
for use in answer generation. It would be easy to modify the measurement modifier
semantic routine to allow differing units (e.g., feet and meters) to be used in the same
problemi.

NAME modifiers are processed in different ways depending on the type of
name and the type of object which is named. Simple names are transferred directly to
the property list of the named object. Geometric names which modify locations are
distributed to the named locations. If geometric names are assigned to a physical object,
as in “a uniform bar (A B)”’ (P6), location referents are created for the appropriate
locations on the object (in this case, the ends of the bar) as determined by the object’s
GEOMODEL, and the geometric names are assigned to the location referents.

An APART modifier gives the distance between two locations, as in “the
hinges of a door . . . are 12 ft apart’” (P9). This modifier not 6n1y gives the distance
between the two locations, but also implicitly determines the size of the object if the two
locations are on the same object. In the above case, for example, we can infer that the
door is at least 12 ft tall. The semantic routine for APART modifiers consults the
GEOMODEL of the object, calculates the overall size dimension which would give the
specified distance between the two points, and assigns that size to the object.

In our set of physics problems, a location modifier of a noun phrase always
implies that the referent object is attached to something at that location, as in “‘an
automobile . . . which is 30.0 ft from one end of the bridge”” (P18). The modifier
semantics routine for location modifiers calls IDATT to define the attachment. In a
larger system which handled a wider range of problems, some additional semantic tests
would be needed to determine whether an attachment was actually implied by the
location modifier.



e

4.6 Verb Semantics

The semantic functions performed by verbs are very diverse. Some verbs (for
example, certain sense-meanings of the verbs "“is"’, “have’’, and “make’’) serve only as
function words which connect other phrases; the semantics of such verbs resides
primarily in the phrases they connect. Other verbs (e.g., “need’’ or “wish’’) introduce
verb phrases to which they pass some of their case arguments. Some verbs carry case
arguments and other inferences to be used with their “underlying’’ verbs; for example,
“stand on . . .”” specifies an attachment by contact between the feet of the subject and
the object of “on’’, with the subject in a standing position. A single verb may have
multiple sense-meanings; as in the case of prepositions, we found that discrimination
net tests based on rough semantic classifications of the case arguments of the verb were
sufficient to differentiate the sense-meanings.

In this section, we will describe the semantic functions for a number of verbs
as they are implemented in the program. In the cases where a verb appeared
infrequently in the sample problems, the verb semantic routines handle only the limited
sense-meanings necessary for those cases; often, there are not many error checks to keep
the program from going astray if it were presented with different cases. Some of the verb
semantic routines handle a number of variations in the types of their case arguments; it
seems likely that general rules for handling different types of arguments which would
be applicable to classes of similar verbs might be found. This would be an interesting
area for further research.

The execution of a verb semantic routine is initiated by EXVBSEM, which is
called when a clause or dependent clause has been parsed. EXVBSEM executes the
semantic routines for any prepositional phrases or adverbs which modify the verb. It
then binds some of the case arguments of the verb (and their referents) to global
variables so that they will be easily accessible, and calls the semantic function
associated with the main verb of the verb phrase.

4.6.1 Semantics of the Verb “BE”’
There are seven sense-meanings of the verb “BE’’ which are recognized by
the program; the sense-meaning classes are listed with examples below.
1. THERE BE < physob> <loc> At(B)...there is a weight (P15)
2. < physob> BE < loc> a man is 10 ft from the top (P8)

3. < physob> BE < adjphrase>  the door is 3 ft wide (P9)

4. < attrof> BE < measurement> the weight of the lever is 8 1b (P1)

5. < attrof> BE WHAT .what is the weight of the bar (P4)

6. < locpart> BE < loc> its center of gravity is 6.0 ft from one end (P11)
7

. <subj> BE TO < verb phrase> the bar is to be supported...(P6)

Y



These sense-meanings are easily separated by a set of discriraination net
tests; most of the semantic classes being tested at this point are SFRAME types, so that
any of the syntactic forms which result in the creation of a particular SFRAME will be
accepted. Once the sense-meanings have been separated into these classifications, we
find happily that most of the semantics has already been done: it is only necessary 10
pass the arguments of the verb to routines which were written to do the same semantics
for different syntactic forms. Sense-meaning 1 is changed to the same form as 2; IDATT
is called for both cases to define an attachment of the object at the location specified.
For sense-meanings 3 and 4, PUTMODR is called to execute the semantics of the
modifier for the referent of the object involved. For sense-meaning 5. the argument is
converted to arguments for the question routine WHATIS; WHATIS is explained in a
later section. For sense-meaning 6, the location is saved on the property list of the object
referent using the location name as the indicator. For sense-meaning 7, the function
SUBSTINF is called to substitute the subject of the verb as the syntactic subject of the
infinitive verb phrase and execute its verb semantics. Thus, in “the bar is to be
supported’’ (P6), the subject “the bar’’ is substituted as the syntactic subject of the
passive verb phrase, so that the referent of ““the bar’’ becomes the semantic object of the
verb “support’’.

4.6.2 Semantics of the Verb “SUPPORT”

Six sense-meaning classes of the verb “SUPPORT”’ are recognized by the
program; these are listed with examples below.
1. < physob> SUPPORT < physob> the lever is supported by a spring (P1)

2. < physob> SUPPORT <N the boy...supports ' as much as the man (P2)
times > AS MUCH AS < physob>

3. < physob> SUPPORT WHAT  what load does each pier support (P13)
< force>

4. < nil> SUPPORT < physob> a beam...is supported at both ex;:ds (P16)

5. < physob> SUPPORT < locpart> the top of the ladder is supported from the wall by
a horizontal rope (P8)

6. < physob> SUPPORT < attrof> the weight of the door is supported by the upper
hinge (P9)

It might be argued that these are not distinct sense meanings, but rather six
different ways of specifying the arguments for a single sense-meaning. Essentially, the
verb SUPPORT (for our purposes) specifies an attachment of two objects at a particular
location on each object; a force is exerted on one object by the other object in order to
support it. For sense-meaning classes 1, 4, and 5, the arguments of the verb are arranged
to serve as arguments for IDATT so that the attachment relation may be specified. (In




the case of sense-meaning 4, a pivot object is created to serve as the unnamed supporting
object.) In the remaining sense-meaning classes (2, 3, and 6), the forve exerted in the
attachment relation is referenced. Such a force is identified by the function 1DFYORCE,
which creates variables for the force vector and adds them to the attachment relation if
necessary. For sense-meaning 2, < physob> SUPPORT < N times> AS MUCH AS
< physob>, equations are written which relate the two force vectors so that one s N
times as much as the other. For sense-meaning 6, < physob> SUPPORT < attrof>, an
equation is written equating the force and the specified force attribute. For sense-
meaning 3, < physob> SUPPORT WHAT < force>, the force vector variables are
marked as desired unknowns, and an entry is made to use the force vector values as a
reply. (The latter operations are discussed in more detail in the section on question
semantics.)

4.6.3 Semantics of Other Verbs

Verbs such as WEIGH and STRETCH express attributes in verbal form.
The semantic routines for these verbs call the function ATTRVBSEM with the
appropriate case argument of the verb (subject for WEIGH, object for STRETCH)
specified as the object which is modified. ATTRVBSEM uses the attribute associated
with the verb to make a modifier, whose semantics are executed by PUTMODR. (In the
case of a question, the case argument and attribute are used as parameters for the
function WHATIS.) Thus, a semantic transformation is used to transform the verbal
form into a modifier form for which the semantics already exists. The forms "‘a man
weighs 150 1b”’, “a 150 Ib man’’, and “the weight of a man is 150 1b"" are all reduced to
an identical “semantic deep structure’’, which consists of the referent object for “a
man’’ and the modifier (WEIGHT 150 LB), by the time the semantics of the modifier
are to be executed. A single modifier semantic routine performs the final semantic
operations for all three cases.

In addition to the verb SUPPORT, the verbs REST, PIN, BALANCE, SIT,
HANG, CARRY, ATTACH, STAND, LIFT, and EXERT can all be used to specify
attachment relations. SIT and STAND imply that particular locations on the person
who is sitting or standing are involved in the attachment, and that the attachment is of
type CONTACT. (These verbs could also determine the person’s posture for the picture-
making programs, but that is not done in the present system.) A number of the verbs
imply that one of the objects in the attachment relation supports the other. These
support relations are marked by SUPPORT and SUPPORTBY links among the objects;
they are used in later inferences, such as inferring whether a person should be modeled
as a pivot or as a weight by the problem solver. The verb PIN implies (as used in these
problems) a pivot object which must be created as the other object for the attachment
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relation. CARRY, if used with an instrument, implies that the subject is attached to the
instrument and that the object is attached to and supported by the instrument, as in
«paul and Henry carry a sack . . . on pole between them’" (P17).

The verbs WISH, NEED, and REQUIRE are used in the sample problems
with infinitive verb phrase objects, as in “two boys . . . wish to balanceon a seesaw’’
(P20). For our purposes, the “modal”’ information provided by these verbs can be
ignored. The verb semantic routines for these verbs call the function SUBSTINF to
substitute the appropriate argument as the syntactic subject of the infinitive verb phrase
and execute its verb semantics. The above example is processed as if it were simply “two
boys balance on a seesaw’’.

HAVE appears with only one sense-meaning, < physob> HAVE
< locpart> < loc>, as in “a bar . . . has its center of gravity 1.5 m from the heavy
end”’ (P4). The location is put on the property list of the subject referent using the
LOCPART name as the indicator. This sense-meaning is similar to sense-meaning 6 of
the verb BE, < locpart> BE < loc>, except that the arguments are in a different order.

MAKE is used with a relation name as an object, as in “‘the rope . . . makes
an angle of 45 deg with the horizontal” (P4). In such cases, the semantics is determined
primarily by the relation involved (in this case, “angle’’). The verb semantic routine for
MAKE calls the semantic routine for the relation, passing to it the arguments of the
verb. The semantic routine for “angle’” creates a relative rotation modifier and attaches
it to the former subject referent. The ambiguity of the direction of rotation is maintained
by the relative rotation modifier; later, absolute rotations are chosen (based on
symmetry considerations) to provide a plausible interpretation of the problem.

FIND, CALCULATE, COMPUTE, and DETERMINE are all handled by
a common semantic routine. If the object of the verb is an ATTROF SFRAME, as in
“find the tension in each rope’’ (P5), the object and attribute are used as arguments for
the question routine WHATIS. If the object of the verb is an ACTON SFRAME, as in
“compute the forces on the supports” (P6), the desired force is identified using
IDFORCE. The force variables are marked as desired unknowns, and an entry is made
to print the value of the force as a reply.

4.7 Question Semantics

A question of the type found in our physics problems specifies two types of
information: a set of variables whose values must be found in order to answer the
question, and the manner in which the information provided by the variables is to be
presented in the answer. For example, the sentence “Determine the magnitude,
direction, and point of application of the equilibrant”” (P135) identifies the two variables
in the equilibrant’s force vector and the distance variable in the equilibrant’s
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attachment relation as “desired unknowns’’, or variables whose values are required to
generate the answer. In addition, the sentence specifies that the magnitude and
direction of the force vector are to be computed from its (x v} component form, and that
the location of the equilibrant on the rigid body is to be described. These two tvpes of
information are maintained separately by the program. Variables which are identified
by a question as desired unknowns are put onto a globally bound list calied DESUNKS:
the problem solver attempts to find values for all the variables on DESUNKS, and
stops when values for all of them have been found. In addition, the question semantic
routines determine what type of reply is required and what objects the reply should be
generated from; this information is formatted as a series of function calls to the answer
generation routines with pointers to the proper objects in the model as arguments.
These function calls are put onto a globally bound list calied SYSREPLY. At the end of
the problem-solving process, the function calls on SYSREPLY are executed to generate
the answers.

There are five answer-generation routines. PRTVAR prints the value of a
simple variable. PRTFV prints the value of a two-component force vector composed of
two variables. PRTMAG and PRTDIR compute and print the magnitude and direction,
respectively, of a force vector object (which is different from a force vector associated
with an attachment, since it is a separate object in the model). PRTLOC generates a
description of a location, typically as a point which is a certain distance from a known
location.

Questions involving an attribute of an object, as in “What is the weight of the
bar” (P4), result in calls to the function WHATIS. If there is a special question
semantics routine associated with the attribute, that routine is executed; such routines
for the attributes “magnitude’’, “direction’’, and “point of application’’ generate calls
to PRTMAG, PRTDIR, and PRTLOC, respectively. If there is no special semantic
routine, a variable is created for the specified attribute, marked as a desired unknown,
and inserted into a call to PRTVAR.

When a question involves an ACTON SFRAME, as in “compute the forces
on the supports’”’ (P6), the force vector involved is identified using the function
IDFORCE. This force vector is then used as the argument in a call to PRTFV.

A question involving a location, as in “where’”’ or “at what point’’, causes a
location to be created on an appropriate object (either an object which is a case
argument of the verb or an inferred object from the model of the problem) with an
unknown distance from a known location on that object. The unknown distance is
marked as a desired uhknown, and a call to PRTLOC is generated to describe the
location.

A question involving an unknown distance from a known point, as in “how
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far from the center’’ (P20), causes a variable to be created for the distance and marked
as a desired unknown. In contrast to “where’” questions, for which a description of the
location is generated, this type of question generates a call to PRTVAR to print the
value of the distance variable.



5. Construction of Object Frames and the Geometric Model

5.1 Introduction

In reading the English problem statement of a physics problem, ISAAC
builds an internal model of the problem in which most of the objects and relationships
in the problem are represented. A number of steps are necessary to convert this model
into a model for which equations describing the interactions of the objects can be
written. It is necessary to determine for each object the canonical object frame which
represents the object in its particular instantiation in the problem for the purpose of
solving a physics problem. (The frame representing a similar object in a different
situation or for a different purpose might be a completely different type of canonical
object.) A person, for example, might be modeled as a weight when sitting on a pole, or
as a pivot when carrying it. Once the canonical object frame has been selected, it is
necessary to make appropriate assumptions to fill in information necessary for the
canonical frame which may not be present in the original problem statement. A
“weight’’ object must have a weight, aithough it need not have a geometric size; if the
weight is unspecified and is not a variable, a symbolic constant is created for it. A
“lever’’ object need not have a weight, but must have a length.

Once the canonical object frames have been selected for all the objects in the
model, a geometric model of the problem in which the locations and orientations of the
objects are made explicit must be constructed. Since the sizes of some objects may be
symbolic constants, the geometric locations for some points may contain algebraic
expressions. Problem solving by specialist programs (for example, solving a triangle
given two sides and an angle) may be necessary in order to create a complete geometric
model.

After the geometric model of the problem has been created, the canonical
frames for each object are completed by filling in any necessary information that
remains unspecified. The weight of an object, for example, is modeled as a force exerted
on the object at its center of gravity. (The geometric model is needed to determine the
location of the center of gravity.) Attachment relations are completed by creating force
variables for each object involved in the attachment. After all of these processes have
been completed, the problem solver is called to write equations for the interactions of
the objects and solve the resulting equation set.

This chapter describes the processes of making canonical object frames,
creating the geometric model of the problem, and completing the frames which were
created.
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5.2 Making Canonical Object Frames

A Canonical Object is an idealization of an actual physical object which
represents its salient characteristics for a particular physics problem. A pole, for
example, may be represented as a weightless rigid body; this is an idealization of an
actual pole, which has a finite weight and is not perfectly rigid. The idealized canonical
objects used in physics problems, such as weightless poles and frictionless pulleys,
rarely exist in the real world, but often give good approximations to the behavior of
real-world objects. The same object may be represented in different problems by
different canonical object frames, depending on its relationship to other objects in each
problem. For each object in the problem, it is necessary to decide which canonical frame
should be used to represent it, to mark the object with the canonical frame type, and to
fill in any information necessary for the frame which is missing.

The function MFDRIVER calls the appropriate frame making routine for
each physical entity in the model of the problem. Associated with each physical entity
token word is a list of the frame-making routines which might be applicable to that tvpe
of object; there may be a specialist routine for a particular object (as in the case of a
person) which decides which of several possible canonical object frames to use, or there
may be a list of more general routines which can fail if they are inappropriate for a
particular object in a particular context. In the present system, only a single frame-
making routine is needed for each physical entity token.

The functions REQUIREVAL and REQUIREVAR examine an object frame
for a specified quantity; if the quantity is unspecified, they create a symbolic constant or
a variable, respectively, to represent the missing quantity, and add the constant or
variable to the property list of the object frame atom. A constant or variable is a
GENSYM atom which is added to the list of objects in the model; it has property list
values which tell the canonical object frame it is associated with, the quantity it
measures (e.g., TENSION), the units (e.g., LB), and whether it is a constant or variable.

There are seven canonical object types in the present system: LEVER,
WEIGHT, SPRING, PIVOT, ROPE, SURFACE, and FORCE. The simplest, the
PIVOT and SURFACE frames, do not require any attributes. A WEIGHT is required
to have a weight; if absent, a constant is generated for it. A SPRING or-ROPE must
have a TENSION (variable); a SPRING must also have a STRETCH (variable) and
CONSTANT (constant). [The type of symbol generated for each quantity if it 1s
unspecified is given in parentheses.] A SPRING or ROPE must have a LENGTH
(constant) only if it is attached to more than one object. CKROTATION is called to
check and disambiguate the orientation of a SPRING or ROPE, and DISAMLOCS is
called to disambiguate locations; these functions are described below. A FORCE frame



is required to have an orientation; if absent, an orientation of zero is assumed. A
LEVER (actually, rigid body) frame is required to have a LENGTH (con-tant). If a
width is specified (as in the case of the door in (P9)), it is used in making the geometric
size vector; otherwise, a width of zero is assumed. Unless a LEVER is oriented
vertically, it is required to be attached at more than one point; if it is not, a PIVOT
object is created and attached to a point similar to the existing attachment point. Thus,
in a problem such as “What force is needed to lift one end of [a beam]’’ (P10), a pivotis
created to hold up the other end of the beam while one end is being lifted. DISAMLOCS
is called for a LEVER frame to disambiguate its locations. The function MFPERSON,
which makes a frame for a PERSON, examines the context to determine whether to
model the PERSON as a WEIGHT or as a PIVOT. If the PERSON is supported by
something or supports something, a WEIGHT or PIVOT model is used, respectively.
Otherwise, the objects the person is attached to are examined to see whether they
support something or are supported. A person is assumed to be supported by an object
which is supported, and to support an object which supports something. (A function to
infer support relationships based on “usual’ relationships and a more careful
examination of the known relations of objects in the problem would not be too difficult,
and would give correct answers in more general cases than the above heuristic can
handle.)

CKROTATION examines an object to see if its orientation is specified by a
relative rotation, as in “the rope on the left end makes an angle of 45 degrees with the
horizontal’” (P4). If so, the relative rotation is converted to an absolute rotation. In
addition, the objects to which the specified object is attached are examined to see if a
similar object is attached to one of them with a relative rotation; if so, the rotation of
the other object is made absolute in a direction symmetrical to that of the first object.
This insures that if an object is hanging from two ropes, for example, the orientations of
the ropes will be made symmetrical:

/NN

Right Wrong

DISAMLOCS disambiguates locations by assigning specific locations on an
object to location frames which were originally specified by ambiguous location names.
The ends of a bar, for example, may be specified by “oneend . . . the other end’’, “the
leftend . . . the other end’’, “ends (A) and (B)”, and so forth. These locations must be
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assigned to specific locations on the cbject so that geometric positions can be compuied.
DISAMLOCS first assigns location names to locations which have specific SELECT
modifiers; the appropriate SELECT modifiers and corresponding absolute location
names are specified as part of the GEOMODEL of the object. Thus a location with the
name END and the modifier (SELECT LEFT) is assigned the absolute location name
LEFTEND. After those locations which have specific SELECT values have been
assigned, the remaining locations are given unique absolute location names; thus, “'the
other end’” would be given the absolute name RIGHTEND if it appeared with “the left
end’’. Absolute location names are propagated to locations relative to named locations

(e.g., “2 m from the right end” (P4)) by the function RENAMELOC.

5.3 Geometric Model Construction

After a canonical object frame has been made for an object, its geometric size
and (frequently) its absolute rotation are known, and absolute location names are
assigned to all of its locations. This information is sufficient to construct a geometric
model of the problem in which absolute locations (coordinates which are numeric or
composed of expressions involving constants or variables) are assigned to each object
and (implicitly) to all of its locations. The geometric model is two-dimensional. The
position of an object is completely specified by three quantities: the coordinates of its
starting point, its rotation relative to its standard orientation, and its geometric size.
The GEOMODEL of the object gives the coordinates relative to the starting point for
each named absolute location. The geometric position of a named point on the object
can be found by taking the coordinates of the point relative to the starting point, scaling
this vector by the geometric size, rotating it by the object’s rotation, and adding the
resulting vector to the geometric coordinates of the starting point. This process is
illustrated in Figure 5.1. The vector V, which is the position of the point P relative to the
starting point S in the GEOMODEL of the object, is scaled to the appropriate geometric
size and rotated through the angle 8 to give the vector V’. Adding V' to §', the geometric
starting point of the object in the problem, yields P’, the coordinates of the point
corresponding to the point P.

Once an object has been added to the geometric model by specifying values
for its GSTART, GSIZE, and ROTN (rotation), the geometric coordinates for any
location on the object may be obtained by calling the funtion EXECLOCA with the
location frame as an argument. If the location specifies a position relative to a named
location, EXECLOCA calls itself to find the position of the named location. A relative
position vector of the appropriate size is created and added to the geometric position of
the named point to give the position of the relative point. The direction of the relative
position vector is taken as the direction of a vector from the named point toward the
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GEOMODEL of Object Object as it appears in problem

Figure 5.1: Finding Relative Position on an Object

center of gravity of the object; if the named point is the center of gravity, the direction of
the rotated x-axis of the object is used.

Construction of the geometric model is performed by the function EUCLID.
When EUCLID is initiated, every object has a geometric size (in terms of length units,
e.g., meters) specified under the property list indicator GSIZE. The GSIZE of each
object is recomputed by dividing each component by the corresponding scale factor
(stored under the indicator FRMSCL) for the GEOMODEL of the object. After this has
been done, a relative position vector from the GEOMODEL can be multiplied by the
object’s GSIZE to yield the corresponding vector in length units.

The geometric model is built up by repeatedly adding objects which are
attached to objects which are already part of the model. (The first object is selected
arbitrarily and assigned a starting point of (0 0).) In order to add the object to the
model, its rotation must be determined. If the rotation is unspecified, the function
TRITEST is called to test whether the object is part of a triangle; if so, its rotation is
computed by the function TRIANGLE. Otherwise, the “normal’’ rotation for the object,
or zero, is assumed. Given the rotation and geometric size of the object, its starting point



can be calculated from a point of attachment to an object which is already in the model.
The coordinates of the point are calculated for the object in the model, and for the new
object assuming a starting point of zero; subtracting the latter vector from the former
yields the starting point for the new object. This is illustrated in Figure 5.2, where the
new object O2 is to be added to the model based on its attachment to the existing object
01 at point P. The coordinates of the point P in the geometric model are computed, and
the vector V2 is calculated by finding the coordinates of P relative to 02 with S2
assumed to be zero. Subtracting V2 from the geometric model coordinates of P gives the
geometric coordinates of the new starting point, S2.

A
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Figure 5.2: Calculating the Starting Point for a New Object

After the starting point of the new object has been determined, the
coordinates of all of its attachment points are computed and saved. Any objects to
which it is attached which are not part of the model or on the waiting list are added to
the waiting list. Finally, the next object from the waiting list is selected to be added to
the geometric model. When the waiting list has been emptied, the model is complete.

If three objects are attached to each other so that they form a triangle, it will
generally be necessary to solve the triangle for one or more sides and angles in order to
properly construct the geometric model. Since the triangle may be implicitly specified by
specifying the attachments of the three objects, it is necessary to test objects which have
a finite size to see if they are part of a triangle; this test is performed by the function
TRITEST. Given an object A, TRITEST locks for objects B and C such that A is
attached to B and C and B is attached to C; if such a set of objects is found, TRITEST
returns a list of the three objects as its value. This list may then be used as the argument
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for the function TRIANGLE.

Given a list of three objects which are attached so that they form a triangle,
the function TRIANGLE attempts to solve the triangle to find the unknown sides and
angles. Since a triangle is solvable given three sides, two sides and an angle, or a side
and two angles, there are a number of ways in which the known data for a solvable
triangle may be present. TRIANGLE first enumerates the known data for the three
objects in the order in which they are given. The function GDIST calculates the
geometric distance between the two attachment points for each object. The function
GANGLE computes the angle between two objects whose rotations are known.
(GANGLE as implemented does not handle all possible cases, but it would be fairly
straightforward to make it do so.) Lists are made of the sides and angles, and a transfer
is made to the appropriate subsection based on the types of known quantities. (Only the
section for solving triangles for which two sides and an angle are given is coded, but
provision is made for the other sections.) The triangle is “normalized’”’ by circularly
shifting the order of the sides so that the single known quantity (e.g., the known angle) is
in the first position; this makes it relatively easy to test for the remaining unknown and
solve the triangle. After all unknowns have been found, the triangle is un-normalized by
shifting back to the initial order of the objects, and the newly found information is
transferred to the objects which comprise the triangle. In the case of computed angles,
the function DEFANG defines the rotation of the object based on the angle it makes
with other objects in the triangle.

The geometry found in elementary physics problems is usually fairly simple;
the solution of a triangle is the most difficult geometric problem which is typically
found. EUCLID and its subroutines solve such problems in a general way which is
based on legitimate geometric rules, rather than on “canned’’ formulas which work for
particular problems but are not true in general. Geometric programs like EUCLID (but
much more sophisticated) might be of great benefit to scientists and engineers for
solving problems in geometry, just as symbolic manipulation packages are now used to
aid in solving algebraic problems.

Although the present program does not do so, it would be easy to generate a
geometric diagram, similar to the “force diagrams”’ often found in physics texts, from
the geometric model of the problem. Such a diagram would be useful if a program
similar to ISAAC were to be used for computer-assisted instruction in physics.

5.4 Frame Completion

After the geometric model has been completed, the function CFDRIVER is
called to complete the canonical object frame for each object. Since the canonical object
frame has already been selected for each object, CFDRIVER simply calls the frame-




completion routine associated with the canonical frame for each object.

The primary operation performed during frame completion is the completion
of attachment relations by associating appropriate force vectors for each object with the
attachment frame. In some cases, the geometric model is required in computing the
force vectors. The function CMPATT, which is used for LEVER and PIVOT frames,
associates a two-variable force vector with each attachment for which the force vector is
unspecified. (A separate force vector is added to an attachment frame for each object
which is attached there.) The forces exerted by the object and the geometric position of
the point at which each force is exerted are collected and saved on the property list of
the object under the indicator FORCES. For a LEVER frame, the location of a PIVOT
attached to it is noted if there is one. The function MKWTFRC makes a weight force,
exerted on the object at its center of gravity, for a lever object if it has a weight.

In the case of a WEIGHT object, the weight of the object (which must exist
since the frame creation routine requires it) is used to make a downward force vector.
This vector is inserted directly into the attachment frame.

In the case of a spring (or rope), the force exerted by the spring is equal to the
tension in the spring and directed from the end of the spring toward its center. This law
is so “obvious’’ that it is almost never stated in a physics text; nevertheless, it is a
physical law of the SPRING and ROPE canonical objects, and is necessary to solve the
problems. The frame completion routine for SPRINGs and ROPEs calculates the unit
vector from each attachment point to the center of the object. Each component of the
unit vector is multiplied by the tension, and the resulting force vector is put into the
attachment frame.

A FORCE may be specified as a two-component force vector, or in magnitude
and direction form. If the vector form is specified, it is used directly. If the magnitude
and direction are used, they are converted to vector form for use in the attachment
relation.

A SURFACE is assumed to be a “smooth’” surface as found in physics texts;
that is, it can only exert a force perpendicular to the surface. The unit vector
perpendicular to the surface is calculated and multiplied by a single force variable to
give the force vector.

Once the canonical object frame for each object has been completed, the
problem model is ready to be turned over to the problem solver. 4

5.5 Conclusion

The processes of frame selection, geometric model construction, and frame
completion which were described in this chapter are relatively simple processes; yet,
they are crucial for solving physics problems. We shall argue that selecting and
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completing canonical object frames is a primary skill which is taught in a puysics class,
that this skill is taught mostly by example rather than explicitly, and that {ailure to
iearn the skill from the examples is what causes people to be “bad’’ at physics.



6. Problem Solving

Problem solving, as described in this chapter, is the process of writing
equations which describe the interactions of objects according to well-known physical
laws, solving these equations for the desired unknowns, and printing the answer in the
desired form. Compared to the processes of language understanding and frame
construction which precede it, the problem solving process seems very simple: it consists
mostly of elementary algebra, which is well understood.

6.1 Generation of Equations

Some equations may have been generated directly in response to statements
in the problem, e.g. “‘the man supports twice as much as the boy’’ (P7). Any existing
equations such as these are passed to the equation solver, SOLVEQ, at the beginning of
the problem solving process. The remaining equations are generated and solved by the
functions ATTDRIVER and PSOLVER.

ATTDRIVER writes equations for each attachment relation according to
the physical law that the sum of the x forces and the sum of the v forces must each be
zero for a body in static equilibrium. The x and y components of each force involved in
the attachment are added to two accumulators using the function SPLUS (symbolic
PLUS); two equations are then written setting each of the accumulators equal to zero,
and the equations are used as arguments in calls to SOLVEQ. These equations are
generally quite simple, and result in a numeric value for a variable or a substitution
equation which allows one variable to be rewritten as a function of another. The
following equations from the set generated for (P4) are typical of the types of equations
generated by ATTDRIVER:

(EQUALS 0 FORCE179)
(EQUALS 0 (PLUS -100 FORCE180))
(EQUALS 0 (PLUS (TIMES TENSION173.7071) FORCE175)

The first two equations give numerical values for the variables, and the last
equation allows FORCE175 to be expressed as a function of TENSION173, thus
reducing the number of active unknowns by one.

The function PSOLVER calls the problem-solving functions which are
associated with some canonical object frames to write equations for objects of that type
and solve them. The objects which have desired unknowns associated with them are
selected first, followed by objects which involve other unknowns. After a problem-
solving function has been called for an object, a test is made by TESTSOL to see
whether values have been found for all of the desired unknowns; if so, PSOLVER
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returns, without requiring that values be found for the other variables. In the present
system, there are problem-solving functions for SPRING and LEVER canonical objects.

SOLVESPRING generates a single equation for the spring law, which states
that the tension on a spring is equal to the spring constant times the distance the spring
is stretched. The other laws which apply to a spring, namely that the sum of the forces
exerted on it must be zero (in static equilibrium) and that the force exerted by the spring
is directed from the end of the spring toward its center, are made true implicitly by the
way the force vectors are generated by the frame completion routine for springs.

SOLVELEVER generates the three equations which govern a rigid body in
static equilibrium, namely that the sums of forces (in the x and v directions) must be
zero and that the sum of moments on the body must be zero. If a PIVOT object attached
to the LEVER was found by the frame completion routine for the LEVER, the pivot
point is chosen as the point around which moments are summed; otherwise, a point
whose position is known and which has one or more unknown forces exerted there is
chosen.

The number of equations generated for a single problem is surprisingly
large: between seven and thirteen equations per problem, with an average of about ten
equations per problem. For a reasonably skilled human problem solver, all of our
sample problems can be solved using two equations except for (P4), which requires
three. This large discrepancy suggests that the human problem solver performs a
number of steps (which become largely subconscious with practice) to reduce the
number of equations which must be written. Some equations, such as those involving
horizontal forces in a problem where all the significant forces are vertical, are simply
ignored. Others, such as our attachment equations, are eliminated by substitution of
variables which is done mentally. Since these processes are largely subconscious in a
skilled person, it may be difficult to teach them to a person who is unable to acquire the
skill by watching the solution of example problems. A program such as ISAAC, which
makes all of the steps explicit, might be useful for teaching physics to such persons.

6.2 Equation Solving

The equations which are generated to describe the interactions of objects in
the model of the problem are solved by a set of routines for simplifying expressions and
solving linear equations. This small symbolic manipulation package is fairly primitive
compared to the state of the art in symbolic manipulation. Much more powerful
packages exist, such as MACSYMA [Moses 74]; a more powerful program for solving
physics problems could easily be interfaced to such a system (as was Charniak’s CARPS
program), allowing problems involving more complex mathematics to be solved.
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Equations are solved by the method of substitution, that is, by expressing
one variable as a function of another variable and substituting this function for the
variable when it occurs in other equations. Since this reduces the number of active
variables by one, the process can be repeated until a value is found for some variable.
This value can then be substituted into the functions to calculate the values of other
variables, and so forth until values have been calculated for all of the variables. This
method is the one generally used by humans for solving simple equations. For equations
as simple as those generated for our sample problems, the method works well and is
reasonably efficient; for more complex equations, other methods (such as Gaussian
elimination) would be needed.

Equations are written using the five functions SPLUS, SMINUS, SDIFF,
STIMES, and SQUOT. These functions perform some elementary simplifications on
their arguments when possible; for example, (SPLUS 0 x) = x, where Xx is any
expression. If no simplification is possible, these functions construct a prefix
subexpression using the corresponding LISP function name.

The function SIMPLIFY may be used to simplify an expression (not
necessafily an equation) by operations such as removing double negations, combining
constant factors of a variable, and so forth. SIMPLIFY is used in making the geometric
model as well as in the problem solving process. The function SIMVECT simplifies a
vector by calling SIMPLIFY for each component.

The function COPYSUB copies an expression, substituting the VALUE of
each variable (gotten from its property list) for the variable if the value is defined. Such
a value may be either a numeric value or a substitution function in terms of another
variable.

SOLVEFOR solves an equation for a given variable, which should occur
only once in the equation. This is easily done by finding a path from the root of the tree
representing the equation to the desired variable. Inverse operations are then generated
along this path to bring the desired variable to the top. For example, to solve the
equation (EQUALS A (TIMES B C)) for C, we generate the inverse operation
QUOTIENT to obtain (EQUALS C (QUOTIENT A B)). A similar process is easily
applied to an arbitrarily large expression.

The function LISTVC examines an expression and constructs a list of all the
variables and constants used in the expression and the number of times each symbol
appears. This list is used by SOLVEQ to guide the equation solving process.

The function SETEQUAL is used to define the value of a variable based on
an equation. The equation is solved for the value of the variable using SOLVEFOR,;
this value is put on the variable’s property list under the indicator VALUE. The value
is then substituted in the value expression for each variable whose value is expressed as



a function of the variable just defined; a list of all such variables is stored on the
property list of the variable under the indicator USEDIN. For each such variable,
COPYSUB is used to copy its value, substituting the new value of the variable just
defined. The resulting expression is made into an equation, and SETEQUAL is calied
again (recursively) to define the new value of the variable. In this way, a new definition
of & variable is propagated to all the variables whose values are dependent on it. Since
the new definition of a variable may make some saved equations solvable, each
equation on the list EQUATIONS is copied using COPYSUB; SOLVEQ is then called
to solve the resulting equation.

SOLVEQ attempts to solve an equation; if it succeeds, the results are
propagated to related equations and variables, which may lead to the solution of
additional equations. SOLVEQ first uses COPYSUB and SIMPLIFY to substitute
values for any variables whose values are known or defined in terms of other variables
and simplify the resulting expression. LISTVC is then called to list the number of
constants and variables in the expression and the number of times each occurs. If there
are more than two variables, the equation is considered temporarily unsolvable and is
put on the EQUATIONS list. If there is only one variable in the equation, SETEQUAL
is called to define the value of the variable based on the equation; SETEQUAL will
propagate the consequences of this definition, possibly causing SOLVEQ to be called
again. If the equation involves two variables, an attempt is made to solve for one
variable in terms of the other. (If both variables occur more than once in the equation, it
is saved on the EQUATIONS list). After defining one variable as a function of the other
and adding it to the USEDIN list of the other, the new value of the variable is
propagated to all members of its USEDIN list, which is then set to NIL. The
propagation is done by using COPYSUB and SIMPLIFY on the value of each variable
on the USEDIN list to substitute the value of the new variable, then adding the variable
to the USEDIN list of the other variable in the equation. Thus, for example, if a were
defined in terms of b as a = f(b) and b was then redefined as b = g{(x), we would
redefine a as a = f(g(x)) and put both a and b on the USEDIN list for x. If the newly
defined variable is used in any of the equations on the EQUATIONS list, the new value
is substituted using COPYSUB, and SOLVERQ is called recursively to attempt to solve
the resulting equation. ,

The time required to solve a set of equations varies, but typically is about one
second (using interpreted LISP on a CDC 6600) for our sample problems.

6.3 Answer Generation
Once the values of the desired unknowns have been calculated, answer
generation is fairly easy. The name of an answer-generation routine and the object to be




89

used as its argument are saved (for each part of the answer) on the list SYSREPLY in
response to the question asked in the problem statement. The function PRTSOL
evaluates each of the members of this list in turn, putting commas between the
generated answers.

PRTVAR prints the value of a variable and the units associated with it. If
the answer is an expression which contains constants, the function EXPLCOX is called
to explain each constant. EXPLCON gets the object with which the constant is
associated and the attribute which it measures from the constant’s property list, and
outputs these in a standard format, e.g., “where LENGTHT76 is the length of the pole”
(P2). EXPLCON is called by most of the answer generation routines if the answer is an
expression involving constants.

PRTFV prints the two components of a force vector in parentheses,
separated by a comma. PRTMAG and PRTDIR compute and print the magnitude and
direction, respectively, of a force vector.

PRTLOC generates a description of a location; typically, a location which is
the object of a question will be represented as a point which is a certain distance from a
known point, with the distance an unknown. PRTLOC prints the distance from the
known point, then generates a description of it. If the known point has a name, the name
is printed following the location name, as in “‘end (A)"’; if it has a meaningful SELECT
modifier, the modifier is printed with the location name, as in “the heavy end’.
Otherwise, an attempt is made to find an object which is attached at the known point; if
such an object is found, it is used to describe the location, as in “7.4 ft from the boy”
(P7).

All of the answer generation functions comprise about two pages of LISP
code, compared to 44 pages of code for input parsing and semantics. Language
generation to describe the answers to physics problems is a relatively easy task, since
the “objects” to be described are so simple. [Simmons and Slocum 72] describe a
method for generating fairly complex sentences using semantic networks and an ATN
grammar.



7. Picture Construction

The process of constructing a picture from the internal model of the problem
is in many ways similar to the process of constructing the geometric model of the
problem; however, there are some significant differences. While a WEIGHT object is
represented as a point in the geometric model, it must be drawn at a reasonable size. A
size must be chosen for each object whose size is a symbolic constant, and relative
positions on the object must be scaled accordingly. The size of the picture must be scaled
to the space available for the drawing, independent of the size of the objects in the
problem.

Construction of a picture is done in two stages. First, a picture model is
constructed, specifying the position and size of each object. From this model, global
offsets and a scale factor are computed to properly scale and position the picture within
the drawing area. Finally, picture generation functions are called to generate each
object in the picture.

7.1 Constructing the Picture Model

The picture model for the problem is constructed by the function DIAGRAM.
Each object in the picture is assigned a starting point and a size, which are stored under
the property list indicators STVAL and PSIZE, respectively. The rotation, stored under
the indicator ROTN, is the same as for the geometric model. A set of objects arranged in
a picture is represented by a “picture frame”, or PFRAME, consisting of a set of
minimum and maximum x and y values which bound all of the objects in the picture,
and a list of the objects in the picture frame. The starting point value for each object is
relative to its picture frame set. Two picture frame sets may be combined by specifying
the coordinates relative to each of a point which is to be made common to both. A new
set of bounds is computed, and objects from one picture frame set are incorporated into
the other by adjusting their starting points and adding them to the object list of the
other picture frame set.

DIAGRAM first calls the function PICSCALE to determine the picture
scaling factor for each object. Some objects are scaled according to the value of a certain
attribute: poles according to their length, weights according to their weight, springs
according to their spring constant, and so forth. If such an attribute is defined for an
object and the attribute has a numerical value, the attribute name and value are saved
on the property list of the object under the indicator SIZEDET. In addition, PICSCALE
keeps a list of the different attributes and the maximum value found for each attribute.
This list and the saved SIZEDET value are used later to determine the scale factor to
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be used for each object in the picture. If a scaling attribute is not specified for an object
or is not defined as a numeric value, a test is made to see if there is a special function to
determine the scaling factor for the object; such functions exist for FORCE and rigid
body objects. PSIZEFORCE computes the magnitude of a two-component force vector
and returns this value as the scaling factor. In addition, it computes the rotation of the
force vector and stores this on the force object’s property list under the indicator ROTN.
PSIZERB is used to compute the scaling factor for rigid body objects, including both
SURFACE and LEVER objects. The attachment points of the object are examined. If
the attachment points have numeric geometric positions, then the largest distance in the
x or y directions between two attachment points is used as a LENGTH scale factor.
Thus, in the picture for (P8), the unspecified length of the vertical wall is set equal to the
distance between the rope and ladder which are attached toit. If numeric values are not
available for the attachment points, but there are some numerical relative positions, the
minimum distance from the center of gravity of the object to its boundaries in the x
direction is made equal to the maximum relative position offset; this guarantees that all
of the relative positions will be drawn within the area of the object in the picture. Thus,
in the picture for (P20), the seesaw is made large enough so that both boys are drawn as
being on the seesaw, with their relative distances from the center in correct proportion.
If neither of the above methods can be used, the maximum dimension of the drawing of
the object is used as the scaling factor with the artificial attribute name CLENGTH.
This will cause objects of unspecified size to be drawn at a size proportional to the
unscaled size produced by their drawing programs.

Once the picture scaling factors have been computed by PISCALE,
DIAGRAM constructs the picture model in a manner similar to the way the geometric
model is constructed by EUCLID. An initial object is chosen arbitrarily 1o start the
picture. Objects are added to the picture by combining a new object with the existing
picture at a point of attachment between the new object and an object already in the
picture. Objects which are attached to the new object but are not in the picture are
added to the waiting list of objects to be added to the picture. The subroutines which are
used in performing this process are described below.

MAKEPF is a function which makes a picture frame for a single object. In
order to do so, it must compute the drawing size to be used for the object and a set of
picture frame boundaries which will completely enclose the drawing of the object. Some
objects, such as a door or person, have special size computation routines; these are used
to compute the size for an object if they are defined. If a SIZEDET attribute and value
were found for the object, its size is scaled in proportion to the maximum value found
for that attribute in the problem. (For some objects, such as WEIGHT objects, the
picture could be made more realistic by using a special function to make the picture size



proportional to, say, the square root of the weight proportion. This was done in an
earlier version of the program, but is not in the present version.) If all else fails, the
scale factor is set to one. The size computation routine for a door computes separate
scale factors for the height and width of the door. The picture making function for a
door draws a square, but with separate scale factors for the x and y coordinates; this
allows a door to be drawn to scale for the specified width and height. The size
computation routine for a person uses the SIZEDET value if it is available. Otherwise,
a test is made to see if the person has a RESTRICT YOUNG modifier; if so, the size is
reduced slightly. Thus, in (P2) the boy is drawn slightly smaller than the man. If the
size of an object is defined in terms of length, the scale factor between length and picture
size is computed and stored on the object’s property list under the indicator PSCALE.
The picture size (which is a vector, although in most cases only one component is used)
is stored under the indicator PSIZE. The initial picture frame is computed by scaling
the basic picture size (stored under the indicator FRMSCL in the GEOMODEL of the
object) by PSIZE; the minimum values and starting point are defined by convention to
be (0 0). If the object is rotated, its picture frame is recomputed by ROTPF. This is done
by computing the positions of the corners of the picture frame after rotation, and
computing a new frame which encloses all of these points. This process is illustrated in
Figure 7.1. As the figure shows, the rotated picture frame may be somewhat larger than
needed to contain the object. However, it is easily computed in this manner, and is
certain to be large enough. The only effect on the final drawing from a picture frame
which is too large is to make the drawing slightly smaller than it might have been.
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Figure 7.1: Computing Picture Frame for a Rotated Object




After a picture frame has been made for an object by MAKEPF, DIAGRAM
searches the attachment relations of the object to find a point at which it is attached to
an object which is already in the picture. When such an attachment is found, PICTLOC
is called twice to find the position of the point of attachment on the new object relative
to its picture frame and the point of attachment on the other object relative to the larger
picture frame. These two positions are then used in a call to COMPFRM to combine the
new object’s picture frame into the total picture frame which is being constructed.
Finally, objects which are attached to the new object and are not already in the picture
or on the waiting list are added to the waiting list. After all the objects on the waiting
list have been processed, DIAGRAM exits with the completed picture frame set as its
value.

PICTLOC calculates the position of a point on an object relative to the
object’s picture frame. When the geometric size of the object and the name of the
location are specified, the position is calculated by simple vector operations as described
in section 5.3 and illustrated in Figure 5.1 for geometric positions. If there is a relative
position offset from a known location and the geometric size of the object is a symbolic
constant (as in (P2), where the weight is attached 0.75 times the length of the pole from
the boy), PSIZERB will have made a CLENGTH size factor for the object. When it does
so, PSIZERB also defines the VALUE of the length constant to be the same factor.
Thus, by performing COPYSUB and SIMPLIFY on the relative position expression, the
correct proportional length on the object in the diagram is obtained. (If the relative
position were a function of other constants, this procedure would fail, and the relative
position would be ignored. This does not happen in our sample problems.) If no location
name is specified for the object, a default location must be found for the object’s point of
attachment in the picture. {(This is not usually necessary in the geometric model, where
such an object is typically treated as a single point.) The default location for the object
may be stored on the property list of its token word, or there may be a function to
compute it. Such a function is provided for PERSON objects; this function selects
HANDS as the default location if the person is modeled as a PIVOT object, or FEET
otherwise. (Some verbs, such as SIT and STAND, specify the location as part of the verb
semantics, so that a default location is not needed.)

COMPFRM combines two picture frame sets, given a point relative to each
picture frame which is to be made a common point in the combined picture frame. A
constant translation vector is easily computed from the two given points; by adding this
vector to the coordinates of each point in the second picture frame, the coordinates of
the corresponding point in the first picture frame (which will become the combined
frame) are obtained. Since the position of each object is relative to its starting point,
only the starting point coordinates of the objects in the second picture frame need to be
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recomputed. A simple loop is used tc}‘fecrém;/)‘ute the starting point of each object in the
second picture frame and add it to the object set of the first picture frame. “'he picture
boundaries are recomputed by calculating the offset positions of the boundaries of the
second picture frame, then choosing boundaries for the combined set which enclose both
of the component picture frames. This process is illustrated in Figure 7.2, where the
frame drawn with solid lines is the combined frame for the two smaller frames drawn
with dotted lines. (The solid lines are drawn outside of the dotted lines for clarity where
they would be in the same place.)

Many of the functions used for constructing the picture model and drawing
the pictures are similar or identical to those used in [Simmons and Bennett-Novak 75].
The picture frame concept used in constructing the picture model is so simple and
obvious that it probably is not new; it is described here for completeness.
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Figure 7.2: Combining Two Picture Frames

7.2 Drawing the Diagram

The completed picture frame set is passed as an argument to the function
DRAWPICS, which controls the drawing of the picture. The size of the picture frame in
the x and y directions is computed from the frame boundaries. These size values are
used in conjunction with the size of the available picture area to set the global constant
GLOBALSIZE so that the finished picture will occupy 0.9 of the available space along




its maximum dimension. The {rame boundaries and global size are used to compute an
offset base vector so that the picture will be centered in the available area in each
dimension. For each object which is to be drawn, DRAWPICS calculates the proper
offset starting position, sets the initial position and heading, and calls the program to
draw the object with the size as an argument.

The functions used from LISP to draw the pictures have a structure similar
to the LOGO language of Papert [Papert 72]. The “turtle” concept of plotter commands
used in LOGO is convenient for drawing objects because an object can be drawn in any
orientation if the turtle is initially pointed in the right direction. Functions were added
to allow (x y) positioning from the current point and current orientation. The drawing
functions convert the turtle commands to (x v) position and vector commands which are
interpreted by the locally written operating system of an IMLAC interactive graphic
display terminal. The plots shown in Chapter 1 were made by a small FORTRAN
program which translated a file of the IMLAC plot commands into calls to CALCOMP
plotter routines.

There are several ways in which the pictures generated by the program could
be improved with additional work. Only a single picture is generated for a PERSON. It
would be easy to let verb semantic routines for verbs such as SIT specify that the subject
should be drawn in a sitting position, with a second GEOMODEL and picture-making
routine provided to draw a sitting person. LEVER objects are treated as one-
dimensional when attachments are computed, although they are drawn as two-
dimensional objects: thus, objects which should be drawn as being on top of (say) &
scaffold are drawn as if they were attached at the center. This could be corrected by
additional tests when the attachment locations are computed for the picture.



8. Conclusion

In the preceding chapters, we have described a particular program which is
capable of reading, understanding, solving, and drawing pictures of a class of physics
problems which are stated in English. In this chapter, we shall examine the
methodology of this research, some directions for future research which are suggested by
this work, and potential applications of programs similar to this one. Finally, we
present some data on the program’s size and execution time, and examine what
extensions would be necessary to handle additional problems.

8.1 Methodology

The area of physics problems involving rigid body statics is certainly a
“micro-world’’, and a fairly small one at that; however, in the opinion of this author, it
is a fruitful one for research in computational linguistics. The area is sufficiently
circumscribed to be tractable for programming, but still involves a number of
interesting problems-—many more than a casual glance at the sample problems would
suggest. In some cases, the correct parsing of a sentence depends on the particular
relations of objects in the model of the problem, thus forcing the integration of syntax,
semantics, and world knowledge in the parsing program. The difficult problem of
referent identification must be solved (though of course in a limited way) for both
physical objects and locations. Different sense-meanings of words (particularly verbs
and prepositions) must be disambiguated. Canonical object frames must be selected to
represent objects in the model, and inferences must be made to construct a complete and
consistent model. Geometrical models of the problem must be constructed both for
solving the problem and for drawing the picture. Thus, although the problem solving is
specific to the area of physics problems, the process of understanding the English
statement of the problem involves a number of interesting sub-processes which are
likely to be important in any language-understanding program. The area of physics
problems is a good one for investigating these sub-processes because there is a relatively
clear understanding of what the result of understanding a physics problem must consist
of: a model of the problem in which the attributes and relationships of objects are
represented with sufficient specificity to allow equations to be written describing the
interactions of the objects and to allow a diagram of the problem to be constructed. In
most other areas—even “factual’’ ones—there is as yet no clear understanding of what
the result of understanding a sentence or text should be. The area of physics problems
thus provides a valuable test of the adequacy of the processes used to produce an
understanding of a problem.
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The twenty sample problems used to test the program were selected before
the major version of the program was written. (When the program was almost complete,
one problem which involved a great deal of world knowledge required only for that
problem was deleted and replaced by another problem.) Thus, in a sense, the program
was written to solve twenty specific problems—not a very large number. However, we
tried to solve the problems in a legitimate, general way, using a minimum of “tricks"’.
We hope (but have not yet shown) that the program could be expanded considerably
without rewriting very much of the existing code, and that it could be made to solve
twenty more problems of the same type with relatively little difficulty. (Adding the
problem which replaced the deleted one required only a semantic routine for one word.)
The use of twenty preselected problems by several different authors actually made the
program much more difficult than it might have been. Almost every problem had some
idiosyncracy which required additional capabilities of the program or prevented an easy
trick from being used in a superficially similar situation in another problem. On the
other hand, the diversity of the problems led to the discovery of many interesting
regularities which would have been missed if we had (say) selected problems that an
existing program could solve or edited the problems to make it easier on the program.
Thus, in a sense we are treating computational linguistics as an experimental science, in
which the experimental data are existing examples of linguistic performance by
competent native speakers, and in which the goal of the research is the production of
programs which can adequately understand the examples of language performance. In
this author’s opinion, this is a valuable approach. Many interesting problems which
would never have been noticed were made glaringly apparent when the program failed
to work. Likewise, many regularities were found by suddenly realizing that a subroutine
almost identical to the one needed for the current task was written earlier. This
approach does not replace theory, but rather lays the groundwork for theories which
can be powerful because they account for a large number of examples of linguistic
performance. Because a program such as this one deals with the whole process of
understanding language, it can serve as the basis of a more complete theory of language,
rather than a theory which deals only with a narrow aspect such as syntax.

8.2 Directions for Future Research

In this section, we will comment briefly on some interesting possibilities for
future research which are suggested by some of the techniques used in this program, and
on areas where more research is needed to find better ways of doing things.

The organization of a parsing program is a difficult problem; the parser we
use is not nearly as clean and elegant as we would like. In particular, the use of
semantic and pragmatic knowledge to guide a parser is a poorly understood area. Many
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people are working on this problem, and much more work is needed. The ISAAC
program could be considerably improved in this area.

The use of discrimination net tests based on the rough semantic categories of
the “case arguments’’ of a verb or preposition to differentiate its sense-meanings is an
interesting area for further research. It would be interesting to determine how well this
technique works in areas other than physics problems, to see when it fails and why, and
to see what sets of rough semantic classifications are useful for such discriminations.

The SFRAME (semantic frame) concept, in which a semantic interpretation
is assigned to a phrase, inferences are made to fill in missing arguments of the semantic
frame, and specialist routines are associated with the frame to perform tasks associated
with that type of semantic object, is an interesting one. Only a few types of SFRAMEs
are used in ISAAC; it would be interesting to see if this technique is useful for
understanding language in other areas besides physics problems, and to investigate how
the use of SFRAMESs might be integrated into the parsing process.

The process of referent identification is an important one for understanding
virtually all types of language. The procedures used for referent identification by
ISAAC are fairly rudimentary, are specific to the area of physics problems, and deal
only with extensionally specified referents. This area deserves much more research to
determine rules for referent identification in wider contexts and ways to represent and
use intensionally specified referents. (For example, when identifyving the phrase “the 8
million people of New York”, we would like to create an intensional referent, rather
than creating 8 million PERSON referents.) While a PLANNER theorem can be used as
an intensional representation, it would be desirable to have a representation which is
more accessible as a data object than a PLANNER theorem is.

The concept of the canonical object frame (due primarily to Minsky) is a
powerful one. The canonical frames dealt with in ISAAC are particularly simple ones.
It would be interesting to develop canonical frames for more complex objects in physics
and engineering. Analysis done by engineers is based very heavily on the use of
canonical object frames; it would be interesting to study how such frames are selected
and used, and how such frames are used when the modeled object doesn’t fit the
canonical frame very well (as, for example, when piecewise linear analysis is used to
simulate a nonlinear device characteristic).

The construction and manipulation of geometric models is an interesting
area with potentially useful applications. The ability to construct a geometric model
and to automatically derive desired analytical expressions from it would be a valuable
aid to practicing engineers and scientists in much the same way as the symbolic
manipulation packages which are now available. In addition, more powerful geometric
manipulation programs could be used in conjunction with automatic problem solving
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systems with greater capa‘biiity\th”an‘ ISAAC.

Since the model of a problem is constructed before equations are written to
solve the problem, the existing program could be used as a test bed for investigating
other strategies for solving this type of problem. It is clear that the present method
generates many more equations than are usually generated by humans; it would be
interesting to investigate how the few critical equations could be written more directly,
and what rules might be used to select and inhibit such shortcut methods.

It would be interesting to extend ISAAC to additional types of physics
problems. Although the present program handles only static problems, most dynamic
problems are handled as a sequence of (usually two) “static”’ situations with a specific
relationship (such as a conservation law) which holds between the two situations.
Extension of the present canonical object frames to handle dynamic atiributes (e.g..
initial velocity, velocity as a function of time, final velocity) would be an interesting
area of research.

8.3 Potential Applications

Programs similar to ISAAC, but with expanded capabilities, might find
useful application In two areas: as engineering assistants, and in technical education.

There are many specialized programs to aid in the analysis of engineering
problems. Often, however, these programs are not used for problems of small to
moderate size, either because considerable knowledge of a system is required in order to
use it (and it isn’t worth the effort to acquire this knowledge for a small problem), or
because the data must be laboriously prepared in a rigidly specified format. A program
which, like ISAAC. could accept 2 problem statement in English could overcome these
problems. In addition, since such a system could handle symbolic as well as numerical
calculations, it could perform analysis tasks which most of the specialized programs
cannot handle at all. The practice of engineering still consists much more of drudgery
than of creative engineering. An engineering assistant program which could
communicate in English and with graphics could free the engineer of much of the
drudgery and leave him free to exercise his creative talents.

Another potential application of a program such as ISAAC is in computer-
assisted instruction (CAI). Other CAI programs using natural language, such as the
SOPHIE program [Brown and Burton 75] for teaching electronic circuit analysis, have
been successfully developed and used. ISAAC is particularly interesting for application
in this area because of the insights it gives into the problem solving process. The
primary skill which is taught in a.physics class to enable the students to solve problems
is the application of physical laws to actual problems. The physical laws themselves are
of less importance—in fact, not all of the laws necessary to solve a problem are taught
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explicitly (such as, for example, the “laws’’ that the force exerted by a rope is directed
toward the center of the rope and cannot be negative). Many of these laws are "buried”
in the procedures for settingup a problem solution. These procedures are usually taught
by example—often with many steps left out. The student who does not understand how
the missing steps are being skipped may become completely lost. A program such as
ISAAC could be valuable for teaching physics (and similar subjects) because it could
present all of the steps in detail, progressing to more abbreviated forms once the student
grasped the steps that were to be skipped. In addition, such a program could explain the
process of selecting canonical object frames in response to student questions. Thus, such
a program might be better for some students than a personal tutor, because it could
come down to the student’s level and provide specific remedial instruction where it is
needed.

8.4 Program Statistics

The time required by the program to process a complete problem (including
parsing, semantics, problem solving, and picture generation) averages about 10 seconds
per problem, using interpreted LISP on a CDC 6600. This is really quite fast. By using
compiled LISP instead of interpreted LISP, an increase in speed of several times might
be obtained, so that the processing time per problem in a “production’’ system might be
reduced to a second or two. It took the author about 45 minutes to solve all the
problems (drawing only minimal diagrams as a mnemonic aid); two of the answers were
wrong due to ‘“‘careless’’ errors. Thus, even in its present form, the program is more than
ten times as fast as a human test subject and (assuming the problem is within its range
of competence) more accurate.

The program is coded in UT LISP 1.5, using a virtual memory package for
function definitions which was written by Mabry Tyson. Virtual memory is particularly
good for programs such as this one because it allows semantic functions for a large
vocabulary to be available without clogging the machine when they are not in use. Some
of the standard transcendental functions needed for the geometry and picture
generation were coded in LAP to increase their execution speed.

The complete program comprises about 5000 lines of LISP source code,
including comments. (This is admittedly an imprecise measure of the program'’s size.)
Breaking the program down roughly into functional categories, the percentages of the
total code in each of the categories are approximately as follows:
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Syntax 15%
Semantics 30%
Canonical Frame Programs 8%
Geometric Model 4%
Problem Solving 2%
Symbolic Algebra Package 11%
Answer Generation 3%
Picture Model 7%
Picture Generation 7%
Lexicon and Other Data 8%
Miscellaneous 5%
100%
Words
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Figure 8.1: Required Vocabulary as a Function of Number of Problems




The current version of the program has a vocabulary of about 200 words.
Some of these (for example, different ways of writing measurement units) do not appear
in the sample problems. Not counting different forms of the same root word, the twenty
sample problems use a total of 135 words. It is interesting to graph the number of words
required as a function of the number of problems, even though this is somewhat
dependent on the arbitrary ordering of the problems. Such a graph is shown in Figure
8.1; the graph is extended to include the vocabulary for five additional problems, which
are discussed in the next section. The graph suggests that twenty problems (even though
they are of the same type) are not enough to reach a plateau where the existing
vocabulary will handle many new problems. In the next section, we discuss the
program’s ability to handle new problems.

8.5 Handling Additional Problems

The ultimate test of an artificially intelligent program is its ability to handle
new situations for which it was not specifically programmed. Unfortunately, many
artificial intelligence programs turn out to be “toy’’ programs which cannot solve many
new problems beyond the few test cases used and cannot easily be extended. It is of
interest, therefore, to examine the ability of ISAAC to solve new problems and, more
important, to examine the specific improvements (in the many abilities of the program)
which are required to handle new problems. In order to do this, we asked our colleague,
Michael K. Smith, to select independently five additional test problems. The
restrictions on this selection were that the problems should be problems involving rigid
body statics, and that they should be stated in English without requiring a diagram as
part of the problem statement. The five additional problems are reproduced below.

P21. A uniform steel meter bar rests on two scales at its ends. The bar weighs 4.0 1b.
Find the readings on the scales.

P22. A 60 ft ladder weighing 100 lb rests against a wall at a point 48 ft above the
ground. The center of gravity of the ladder is one-third the way up. A 160 1b
man climbs halfway up the ladder. Assuming that the wall is frictionless, find
the forces exerted by the system on the ground and the wall.

P23. A uniform beam is hinged at the wall. A wire connected to the wall a distance d
above the hinge is attached to the other end of the beam. The beam makes an
angle of 30 deg with the horizontal when a weight w is hung from a string
fastened to the end of the beam. If the beam has a weight W and a length 1, find
the tension in the wire and the forces exerted by the hinge on the beam.
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P24. A door 7.0 ft high and 3.0 ft wide weighs 60 lb. A hinge 1.0 ft from the top and
another 1.0 ft from the bottom each support half the door’s weight. Assume
that the center of gravity is at the geometrical center of the door and determine
the horizontal and vertical force components exerted by each hinge on the doeor.

P25.  An automobile weighing 3000 Ib has a wheel base of 120 in. Its center of gravity
is located 70 in behind the front axle. Determine the force exerted on each of the
front wheels (assumed the same) and the force exerted on each of the back
wheels (assumed the same) by the level ground.

These problems are taken from Physics [Halliday and Resnick 67]%, pages
327.339. This is a somewhat harder book than the texts from which we took the original
twenty sample problems; nevertheless, all of the new problems except (P23) are within
the existing capability of the problem-solving, geometry, and picture-generation parts of
the program. However, the program could not complete any of these problems without
some modifications. In order to solve all five of these problems, it would be necessary to
extend the capabilities of the program in the areas of vocabulary, grammar. world
knowledge, and algebraic manipulation. We do not feel that these modifications would
be too difficult, and we believe that they could be made within the existing framework of
the program. In the sections below, we consider the specific extensions needed in each of
these areas to solve the additional problems.

*Copyright 1967 by John Wiley & Sons, Inc. Used by permission.

8.5.1 Vocabulary

Each of the new problems requires additional vocabulary. The average
increase of seven words per problem is higher than that of the last few problems of the
original set, probably due to the fact that the problems are written by different authors
and are somewhat harder. The new words required for each problem are listed below.
Of the thirty-six words, ten (those marked with an asterisk) could be added trivially as
simple lexicon entries or as synonyms of existing words. For example, “one-third”’ could
be defined as a number with a value of 0.33333333; ‘“‘connect’’ could be made
gynonymous with “attach”, and “wire’’ and “string’’ could be made synonymous with

L13 29

rope’’.
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P21 meter bar* P23 hinge [verb]*
scale wire*®
reading connect®

distance

P22  above string*
ground fasten*
one-third* length
way
up P24  another
climb* each [pronoun]
halfway half*
assume geometrical
frictionless force [ad;]
system component

high
bottom

P25  wheel base
front
axle
wheels
same
back
level*
behind

Of the remaining words, some (such as “wheel base’’) are useful only for
individual problems; however, there are still a number of more general words (such as
“above’” and “distance’’) which are likely to be used in a number of problems out of a
large sample. This seems to indicate that it would take a much larger vocabulary
(perhaps twice as large) to include most of the “general’’ words likely to be encountered
in this type of physics problems. It also indicates that several times more than twenty
test cases would be needed before we could have confidence in the program’s ability to
solve a new, independently selected problem.

8.5.2 Grammar

There are several constructions in the new problems which are not handled
by the existing grammar. We shall discuss these below, with the caveat that it is easy to
overlook subtle features of sentences which might confuse the existing grammar and
require some debugging.
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In (P22), the phrase “one-thi;d the way up’’ would not be handled by the
present grammar. Such a phrase would become a type of LOCPART SFRAME, with
inferences required to determine the object involved, the starting point for the relative
position, and the length of the object. A slight grammar extension might be required to
handle the initial clause “assuming that . . ."".

In (P24), an extension would be necessary to accept the “each’” in the second
sentence. Extensions would also be needed to accept “half the door’s weight’’, both to
handle the “half’’ and to accept the possessive form of nouns as an adjective (this would
not be hard, since possessive pronouns are already handled). An extension would be
needed for the compound adjectives in “horizontal and vertical force components™.

In (P25), it would be necessary to handle the two parenthetical expressions
“(assumed the same)’’.

8.5.3 World Knowledge

“World knowledge’’, as we use the term here, is knowledge of the usual
relationships and features of objects which is used in making inferences used to
understand a problem. Additional world knowledge is needed for several of the new
problems.

In (P22), we need to infer that the bottom of the ladder is resting on the
ground. Similar knowledge is needed for (P25), where we need to infer that the ground
supports the automobile in four places (the four wheels). In (P24), we need to know that
(whatever their vertical position) the hinges are on one side of the door. This would
require additional semantic routines to control the generation of these locations.

Additional research on ways to represent and control world knowledge such
as that described in this section would be very valuable.

8.5.4 Comments on Individual Problems

(P21) is of course very simple. If we substituted another word (say
“supports’’) for “scales’’ and substituted “forces’” for “readings’’, the present program
could solve it. To handle the problem as stated, we would need to add a SCALE
canonical object (which has a reading equal to the force on it) and add a drawing
program to draw a scale. '

In (P22), we could take a static view of “climbs’” and make it equivalent to
“stands’’. Although the program automatically assumes that walls are frictionless, it
would be easy to write a semantic routine to set a zero coefficient of friction if desired. A
semantic routine would be needed to identify the referent of “system’’.

(P23) is beyond the algebraic capabilities of the present program, since it
involves algebraic arguments of transcendental functions. It would not be hard to allow
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this, although the resulting expressions might be intractable for the present expression
gimplifier and equation solver. The present program would work if d and | were
constants.

(P24) would present no problems beyond the ones previously mentioned.

For (P25), a semantic program (or a more general program which referenced
the object’s GEOMODEL) would be needed to correctly define the wheel base of the car
as the distance between the two axles. The car’'s GEOMODEL would have to be
expanded to include wheels and axles. It would be desirable to be able to handle an
object such as a car either as a single point, as in (P18), or as a lever system in its own
right, as in (P25).



Appendix A: Note:s on Sampie Problem Solutions

Chapter 1 contains the generated solutions and pictures for the twenty
sample problems solved by the program. The page numbers and problem numbers
shown with each problem refer to the books from which the problems were taken.
“SCHAUM"’ refers to Schaum’s Outline of Theory and Problems of College Physics, 6th
ed. [Schaum 61}; “DMW?"’ refers to Modern Physics [Dull, Metcalfe, and Williams 64].
Problems (P1) and (P4) were composed by the author.

The English statement of each problem shown with the diagram is identical
to the problem statement used as input by the program, except for minor differences in
numbers due to LISP output editing. The problem statements are the same as in the
original texts, except as described below. Geometric position names (denoted by italic
capitals in the original texts) were written in parentheses, as in “a uniform bar (A B)”
(P6). In (P5), the original text “weighing w =100 Ib’’ was rewritten as “weighing 100
Ib’’. In (P8), the phrase “‘as shown in adjoining Fig. (g)"" was deleted. Semicolons were
replaced by commas in (P16). In (P20), the hyphen in “100-lb boy’’ was omitted.
Numbers, of course, were written in LISP syntax.
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Appendix B: Object Frame Representations

This appendix briefly describes the representations of objects and their

relationships which are constructed by the various parts of the program. The various

items of information associated with each object are stored in its property list under

named indicators; in describing each type of information, we give the name of the

indicator under which it is stored, followed by a description of the information itself.

B.1 Physical Entity Representation

The property list indicators for physical entities (which include explicit

forces as well as physical objects) and the type of information stored under each one are

described below.

ENTITY:

TOK:

WORD:

NAME:

RESTRICT:

SELECT:

PARTOF:

PARTS:

COFG:

LOCs:
ATTACH:

PHYSENT

word

word

name

{{attribute value) .. .)

(selection)

object
(object . . .)

(location)

{location ...)

{attachment .. .)
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Identifies the object as a physical
entity.

Identifies the token word of which this
object is an example. Usually the word
representing the object in the sentence.

Identifies the specific word describing
the object in a sentence, if different
from the TOK. For example, “boy"”
would be represented by TOK:
PERSON and WORD: BOY.

Name of the object if it has one.

Restrictions on the TOK for this
object. For example, “boy’” would have
(RESTRICT (SEX MALE) (AGE
YOUNG)).

Selection used to select a particular
object. For example, “‘the upper hinge”’
would have SELECT: (UPPER).

Object which this object is a part of.

List of all objects which are part of this
object.

Location object which is the location of
the center of gravity of this object (if
specified).

List of all locations on this object.

List of all attachment relations which
involve this object.



SUPPORT: {object . )
SUPPORTBY: (object...)
UNKNOWNS: (variable...)

CONSTANTS: (constant...)

ROTN: {angle)

FRAME: frame

GSIZE: (Sx Sy)

GSTART: (x v)

PIVOT: (xy)

FORCES: ((xy)fxfy) ..

SIZEDET: {measurement . value)

PSCALE: scale
PSIZE: {Sx Sy)

STVAL: (xy)
IMLACITEM: *T=

LENGTH: (value units)
WEIGHT: (value units)
TENSION: (value units)
CONSTANT:  (value units)

B.2 Location Representation

ENTITY: LOCATION
FRAME: LOCATION
OBJECT: object

LOCNAME: word
NAME: name
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List of objects which this object
supports.

List of objects which support this
object.

List of all variables associated with
this object.

List of all constants associated with
this object.

Rotation of the object
{counterclockwise in degrees) from its
GEOMODEL orientation.

Name of the canonical object frame
which represents the object in 1its
current instantiation, e.g.,, LEVER.

Geometric size scaling vector.
Geometric starting point.

Preferred pivot location for a rigid
body object.

Position and force vector for each force
exerted by the object.

Measured quantity and value for this
object, used to determine picture size
scaling.

Scale factor between geometric length
and picture size.

Picture size scaling vector.
Starting point for object in drawing.

True if the object has been drawn. Not
really used in current system.

Measurements of various attributes, as
appropriate for a particular type of
object.

Identifies the object as a location
entity.

Identifies a location frame.

Identifies the object with which the
location is associated.

Location name, e.g., END.
Name of the location, if specified.



SELECT: (selection)

REFLOC: location
REFLOCS: (location . . .)

RELPOS: {type {(quantity units))

POSITION: (xv)

B.3 Attachment Representation
FRAME: ATTACH
TYPEATT: type

LOCS: ( (object location (fx fy)). ..

POSITION: (xy)

B.4 Constant or Variable Representation

ENTITY: CONSTANT
or VARIABLE
SYSTEM: object

MEASURE: attribute

UNITS: units
VALUE: value
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Selection used to select thi> particular
location. For example, “the left end”
would have SELECT: (LEFT).

Location to which this location is
relative.

List of all locations which are relative
to this location.

Specifies position relative to the
reference location. For example, "6 ft
from one end”’ would have RELPOS:
(FROMLOC (6 FT)).

Geometric position of the location.

Identifies this as an attachment frame.

Type of attachment, e.g., PINJOINT
or CONTACT.

Specifies each object involved in the
attachment, along with the location on
that object and the force vector for the
force exerted bv the object at that
location.

Geometric position of the point of
attachment.

Identifies this object as a constant or
variable.

Physical entity object with which the
constant or variable is associated.

Attribute which is measured, e.g,

TENSION
Units of the measurement, e.g., FT.

Numeric or symbolic expression which
is the calculated value of a variable.




Appendix C: Generated Structures for a Sample Problem

This appendix contains snapshots of some of the major data structures
produced by ISAAC at various stages in the processing of the sample problem (P¥). The
first part of the listing shows the structures produced by the parsing and semantic
processing of each sentence. After each sentence, the result of the parsing is shown;
<S> indicates that a major clause was parsed, and the list of tokens which follows
gives the root of the parse tree (the verb) for each of the major clauses which was parsed.
This is followed by a listing of each of the tokens produced during parsing. The dump
follows all of the semantic processing; the tokens are not used thereafter except in
finding pronoun referents.

Following the dump of the parse structures 1s a listing of the internal model
of the problem as it exists just after all of the input sentences have been processed, but
before frame creation and all the subsequent processing. Each of the GENSYM atoms 1s
a separate object in the model. The four atoms UNKNOWNS, DESUNKS, SYSREPLY,
and SYSUNITS are global variables whose bindings are the list of all unknowns, the
list of desired unknowns, the reply to be generated once the problem is solved, and the
measurement units used for various types of measurements, respectively.

The next part of the dump shows each of the equations presented to
SOLVEQ for solution, followed by the answer generated by PRTVAR. The equation
(EQUALS 0 0) is caused by a deficiency in CFSURFACE (complete frame for
SURFACE) which went unnoticed because it didn’t cause any problems. CFSURFACE
requires that the force exerted by a surface be perpendicular to the surface; this is fine
for an attachment of type CONTACT, but not for one of type PINJOINT, such as the
attachment between the rope and the wall. Thus, one of the zeros should be a variable
representing the vertical force exerted by the wall. The other zero, representing the
vertical force exerted by the rope on the wall, is correct.

The final part of the dump shows the model of the problem at the end of the
problem solving and picture generation processes. It can be seen that a great deal of
information has been added to the model beyond that which was available immediately
after the problem statement was read. The meaning of the information associated with
each of the objects in the model is explained in Appendix B.
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Sentence Structures After Parsing and Semantics

(THE FOOT OF A LADDER RESTS AGAINST a VERTICAL wALL AND ON A
HORIZONTAL FLOOR)

(<S> (TOKR292)))

TOK289 ((TOK . FOOT) (LFRAMF . MP) (DET . DEF) (NBR NS)
(SFRAME . LOCPART) (SEMOBRJ LADDER291) (RFNT L0OC297))

TOK290 ((TOK . LADNDER) (LFRAYE , NP) (DFT ., INDEF) (NBR MNS)
(SFRAME o PHYSENT) (RFNT LANDER291))

TO0K292 ((TOK . REST) (LFRAME . VP) (MAINVR , RESTS)
(INTRANS o *T#) (ACT . *T%x) (SURJ , TOK289) (MCDS
(CASEARG AGAINST (WALL204)) (CASEARG ON (FLOORZ2S6))))

TOK293 ((TOK . wALL) (LFRAMF . NP) (DET o INNEF) (NBR NS)
(MODS (ROTN 90)) (SFRAME o PHYSENT) (RFNT WALL294))

TOK295 ((TOK . FLOOR) (LFRAME , NP} (DET . INDEF) (NBR NS)
(MODS (ROTN 0)) (SFRAME , PHYSENT) (RFNT FLOOR296))

{THE TOP OF THE LADDER IS SUPPORTED FROM THE WALL PY A
HORIZONTAL ROPE 30 FT LOMNG)

((£S> (TOK302)))

TOK300 ({(TOK . TOP) (LFRAME . NP) (DET . DEF) (NBP NS)
(SFRAME . LOCPART) (SEMORJ LADDER291) (RFNT LOC309))

TOK301 ({TOK .« LADDER) (LFRAME ., NP} (DET , NEF) (MBR NS
{(SFRAME . PHYSENT) (RFNT LANPDER291))

TOK302 ({TOK o SUPPORT) (LFRAME , VP) (MAIMNVR , SUPPORTED]
(AUX IS) (TRANS . =T#) (PASY . «Tx) (ORJ . TOK300)
(MODS (CASEARG FROM (wALL294))) (SUBJ ., TOK3A0u4})

TOK303 ((TOK . wWALL) (LFRAME . ~P) (DET . DEF) (MGR NS)
(SFRAME . PHYSENT) (RFNT WALL294))

TOK304 ((TOK . ROPE)} (LFRAME . MP) ({DFT . INDEF) (NBR NS)
{MODS (ROTN 0) (LENGTH 30 FT)) (SFRAME , PHYSENT) (RFNT
ROPE305))
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(THE LADDFR IS 50 FT LONG » WFIGHS 100 LA WITH ITS CENTER OF
GRAVITY 20 FT FROM THE FOOT » AND A 150 LB MAN IS 10 FT
FROM THE TOP)

{ (<S> (TOK312 TOK320)))

TOK311 ((TOK . LADDER) (LFRAME , NP) (DET . DEF) (NRR NS)
(SFRAME o PHYSENT) (RFNT LANDER291))

TOKk312 ((TOK . BE) (LFRAME , VP) (MaIMVB . IS) (ITRANS .
£T*) (ACT . *T#) (SUBJ . TOK311) (COMP LENGTH 50 FT)
(VPCOINJ TOK313))

TOK313 ((TOK « WEIGH) (LFRAME ., VP) (MAINVB ., WEIGHS)
(INTRANS . #Tx) (ACT . »T#%) (SUBJ . TOK311) (COMP
TOK314))

TOK314 ((TOK « LB) (LFRAME . NP) (QTY , 100))

TOK315 ((TOK . COFG) (LFRAME . NP) (NBR NS) (SFRAME .
LOCPART) (SEMORJ LADDER291) (MODS (LOC AT (LOC317))))

TOK316 ((TOK o FOOT) (LFRAME . NMP) (DET . DEF) (NBR NS)
(SFRAME o LOCPART) (SEMORJ LADDER291) (RFNT L0C297))

TOK318 ((TO¥ « PERSON) (LFRA™E , NP) (9WORD . MAN) (MODS
(RESTRICT (SEX MALE)) (RFSTRICT (AGE ADULT)) (WEIGHT
150 LB)) (DET . INDEF) (MBR NS) (SFRAME ., PHYSENT)
(RFNT PERSON319))

TOK320 ((TOK . RE) (LFRAME , VP) (MAINVR . IS) (INTRANS .
«T%) (ACT ., *T#) (SUBJ ., TOX318) (MODS (LOC AT
(LOC322))))

TOK321 ((TOK « TOP) (LFRAME . NP) (DET . DEF) (NRR NS)
(SFRAME . LOCPART) (SEMORJ LADDER2931) (RFMT LOC309))

(DETERMINE THE TENSION IN THE ROPE)

( (<S> (TOK324)1))

TOK324 ((TOK . DETERMINF) (LFRAVE , VP) (MATMVEB .
DETERMINE) (TRANS o *T*) (IMPERATIVE . #T#) (ACT . *Tx)
(0BJ « TOK325))

TOK325 ((TOK . TENSION) (LFRAME , NP) (DET , DEF) (NBR NS)
(SFRAME . ATTROF) (SEMORJ ROPEZ0S))

TOK326 ((TOK . ROPE) (LFRAME o nNP) (DFT , DEF) (MN3BR NS)
(SFRAME . PHYSENT) (RFNT ROPE305))



Initial Model After Reading Problem Statement

LADDER291 ((TOK . LANDER) (EMTITY , PHYSENT) (LOCS LOC297
LOC309 LOC317 LOC322) (ATTACH ATTACH298 ATTaCHi299
ATTACH310 ATTACHZ23) (SUPPOPTRY FLNOR29s wWALLZAy
ROPE305) (COFG LOC317) (LENGTH 50 FT) (WEIGHT 100 LR))

wALL294  ((TOK , WALL)Y (ENTITY . PHYSEMT) (ROTM @0) (ATTACH
ATTACH299 ATTACH308) (SUPPORT LADDER291))

FLOOR2GS ((TOK , FLOOR) (ENTITY ., PHYSEMT) (ROTN 0) (ATTAC
ATTACH298) {(SUPPORT LADDER2911})

LOC297 ((FRAME ., LOCATION) (FENTITY ., LOCATIOM) (ORJECT .
LADDER291) (LOCMNAME « FOOT) (REFLOCS LOC317))

ATTACH298 ((FRAME . ATTACH) (TYPEATT . CONTACT) (LOCS
({LACDER291 LOC297) (FLOOR29A NIL)))

ATTACH299 ((FRAME . ATTACH) (TYPEATT . CONTACT) (LOCS
(LADDER291 L0C297) (WALL294 NIL)))

ROPE305 ((TOK , ROPE) (EMTITY . PHYSFEHNT) (ROTN 0) (LENGTH
30 FT) (LOCS LOC306 LOC307) (ATTACH ATTACH30A
ATTACH310) (SUPPORT LADDER201) (UMKNOWNS TEMSION327)
(TENSION TENSION327 LB))

LOC306 ((FRAME , LOCATIOM) (FNTITY . LOCATION) (ORJECT .
ROPE30S) (LOCNAME o ENDJ)

LOC307 ((FRAME ., LOCATIOM) (FNTITY , LOCATIOM) (ORJECT .
ROPE305) (LOCNAME . END))

ATTACH308 ((FRAME . ATTACH) (TYPEATT . PINJOINT) (LOCS
(WALL294 NIL) (ROPE305 LOC307)))

LOC309 ((FRAME , LOCATIOM) (ENTITY . LOCATIOM) (OwJECT .
LADDER291) (LOCNAME . TOP) (REFLOCS LOC3P23)

ATTACH310 ((FRAME , ATTACH) (TYPEATT . PINJOINMT) (LOCS
(ROPE30S LOC306) (LADDER291 LOC309)))

LOC317 ({(FRAME , LOCATIONN) (FNTITY . LOCATIOM) (ORJECT .
LADDER291) (LOCMAME. o FOOT) (REFLOC . LOC297) (RELPOS
FROMLOC (20 FT)))

il4

H
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PERSON319 ((TOK . PERSOM) (WORD ., MAN) (EMTITY . PRYSENT)
(RESTRICT (SEX MALE) (AGS ANULT)) (WEIGHT 150 Lg)
(ATTACH ATTACH323))

LOC322 ((FRAME , LOCATION) (EMTTTY ., LOCATIOM) (OisJECT .
LADDER2G1) (LOCMNAME . TOP) (REFLOC . LOC309) (RELPOS
FROMLOC (10 FTy))

ATTACH323 ((FRAME . ATTACH) (TYPEATT « CONTACT) (LOCS
(PERSON319 NIL) (LADDER29L LOC322)))

TENSION327 ((ENTITY ., VARIARLE) (SYSTEM , ROPE30S) (MEASURE
o TEMSTIOM) (UNITS . LB8))

UNKNOWNS (TENSION327)
DESUNKS (TENSION327)
SYSREPLY ((PRTVAR TENSION327))

SYSUNITS ((FORCE .+ LB) (LENGTH . FT))

Equations Generated By Problem Solver

SOLVEQ (EQUALS 0 FORCE328)

SOLVEG@ (EGUALS 0 (PLUS FORCE329 FORCE338))

SOLVEQ (EQUALS 0 (PLUS FORCE330 (TIMES FORCE336 =1)))
SOLVEQR (FQUALS 0 FORCE331)

SO;VEG (EQUALS 0 (PLUS (TIMES FORCE337 =1) TENSION327))
SOLQEG (EQUALS 0 0)

SOLVEQG (EGUALS 0 (PLUS (TIMES TEMSION327 =1,00000)
FORCE332))

SOLVEG@ (EQUALS 0 FORCE333)
SOLVEQ (EQUALS 0 FORCE334)

SOLVE® (EQUALS 0 (PLUS =150 FORCE335))



SOLVEQ (EQUALS n (PLUS 250 (YINS FORCEZ38)))
SOLVEQ (FWUALS 0 (PLUS FORCE332 FORCE33A))

SOLVEQ (EQUALS 0 (PLUS (PLUS (PLUS (DIFFEREMCE (TIMES
FORCE332 8.00000) (TIVES FORCE333 6.N000N)) (DIFFERENCE
(TIMES FORCE330-32,00000) (TIMFS FORCE3Z1 =24.,00000)))
(DIFFERFNCE (TIVMFS FORCE328 =32,0000Nn) (TIMES FORCEZ29
=24.,000N00))) 1200.00000))

ANSWER: 120.00000 L~8

Final Model of the Problem

LADDER291 ((TOK o LANDER) (ENTITY . PHYSENT) (LOCS LOC297
LOC303 LOC317 LOC322) (ATTACH ATTACH298 ATTACH299
ATTACH310 ATTACH323) (SUPPORTRY FLONR2Gs WALL2Qy
ROPE305) (COFG LOC317) (LENGTH 50 FT) (WFIGHT 100 LB)
(GSIZE 1.00000 0) (FRAME o LEVER)(SUPPORT PERSON319)
(GSTART 0 0) (ROTN 53.13010) (FORCES ((24,00000
32.00000) (FORCE334 FORCF235)) ((3n,000N00 40.,00000)
(FORCE332 FORCE333)) ((n 0) (FORCE330 FOPCE331)) ((n 0}
(FORCE328 FORCE329)) ((12.00000 16.00700) (0 100)))
(UNKMNOWMS FORCE328 FORCE329 FORCE230 FORPCE331 FORCE332
FORCE333 FORCE334 FORCE335) (SIZEDFET LENATH o S0)
(PSIZE 1.00000 1,00000) (PSCALE . 1.00000) (STvaL 0 Q)
(IMLACITEM , #Tx))

WALL294 ((TOK . wALL) (ENTITY . PHYSENT) (ROTN 90) (ATTACH
. ATTACH299 ATTACH308) (SUPPORT LADDER291) (GSIZE 0 0)

(FRAMz , SURFACE) (GSTART 0 n) (UNKNOWMS FORCE336
FORCE337) (FORCES ((6.13909F=12 40.00000) ((TIMES
FORCE337 =1) 0)) ((0 0) ((TIMES FORCE33s =1) N0)))
(SIZEDET LENGTH . 40,00000) (PSIZE R.000N0E-1
8.00000F=1) (PSCALE . 1.250n0) (STVAL =8.000NDE=1
6.00000F=1) (IMLACITEM ., =%Tx))

FLOOR296 ((TOK . FLOOR) (ENTITY . PHYSENT) (ROTN 0) (ATTACH
ATTACH298) (SUPPORT LADDER2n71) (GSIZE 0 0) (FRAME .,
SURFACE) (GSTART 0 0) (UMKMNNOWNS FORCE338) (FORCES ((O
0) (0 FORCE338))) (PSIZE 1 1) (STVAL =8,N0000E=1
6.00000F=1) (IMLACITEM , =Tx))

L0C297 ((FRAME , LOCATION) (ENTITY ., LOCATIOM} (ORJECT .
LADDER291) (LOCNAME . FOOT) (REFLOCS LOC317) (POSITION
0 0))



ATTACH298 ((FRAME ., ATTACH) (TYSEATT . COMTACT) (LOCS
(LADNER291 LOC297 (FORCE228 FORCE329)) (FLOOR29s NIL (O
FORCE338))) (POSITION 0O 0})

ATTACH299 ((FRAME , ATTACH) (TYPFATT . CONTACT) (LOCS
(LADDER291 LOC237 (FORCF330 FORCE3231)) (WALL294 NIL
((TIMES FORCE336 =1) 0))) (20SITION N 0))

ROPE305 ((TOK , ROPE) (ENTITY ., PHYSEMT) (ROTN 0) (LENGTH
30 FT) (LOCS LOC306 LOC3N7) (ATTACH ATTAZH3NA
ATTACH310) (SUPPORT LADDTR201) (UNKNOWMS TENSION327)
(TENSION TENSION327 L3) (GSIZE 6.00000E-1 0) (FRAME .
ROPE) (GSTART 6.,139N9E=12 41,00000) (FORCES((30,000N00
40.00000) ((TIMES TENSIOM327 =1.00000) 0))
((6.13900E«12 40.00000) (TEMSIOM327 0))) (SIZEDET
LENGTH . 30) (PSIZE 6.00N00F=1 &,00NN0E=1) (PSCALE
1.66667) (STVAL =8,000005=1 40,30000) (IYLACITEM .
*xT#))

LOC306 ((FRAME . LOCATIOM) (FNTITY ., LOCATION) (OrJECT ,
ROPE30S) (LOCNHAME o RIGHTENM) (POSITION 30,00000 0))

LOC307 ((FRAME . LOCATION) (ENTITY . LOCATION) (OBJECT .
ROPE305S) (LOCHNAME o LEFTEND) (POSITION 6.1390GE=12
40.00000))

ATTACH308 ((FRAME . ATTACH) (TYPEATT . PI*JOINT) (LOCS
(WALL29u NIL ((TIMES FORCE337 =1) 0)) (POPE3NS LOC307
(TENSION327 0))) (POSITION 6£.13909E=12 40.,00000))

LOC309 ((FRAME , LOCATIOM) (ENTITY . LOCATION) (ORJECT .
LADDER291) (LOCNAME . TOP) (REFLOCS LOC322) (POSITION
30.00000 40.,00000))

ATTACH310 ((FRAME . ATTACH) (TYPEATT . PINJOIMT) (LOCS
(ROPE30S LOC306 ((TIMES TENSION327 =1.00000) n))
(LADDER291 LOC302 (FORCF332 FORCE333))) (POSITION
30,00000 40,00000))

LOC317 ((FRAME ., LOCATION) (ENTITY . LOCATION) (ORJECT .
LADDER291) (LOCMAME ., FGOT) (REFLOC ., LOC297) (RELPOS
FROMLOC (20 FT)) (PNSITION 12.0n000 16.,00000))

PERSON319 ((TOK . PERSON) (WORD . MAN) (FNTITY . PHYSENT)
(RESTRICT (SEX “ALE) (AGF ANULT)) (WFIGHT 150 LB)
(ATTACH ATTACH323) (6SIZE 0 0) (SUPPORTRY LADNER291)
(FRAME ., WEIGHT) (GSTART 24,0000n0 32.00000) {(ROTN 0)
(FORCES ((24,00000 32.00000) (0 =150))) (SI?FDET FORCE
s 150) (PSIZE 6.00000E=1 6.,NN000F=1) (STVAL 17.80000
32.60000) (IMLACITEM , =T=x))



LOC322 ((FRAME , LOCATION) (FHTTTY ., LOCATIOM) (ORJECT .
LADDER291) (LOCHNAME . TOP) (REFLOC ., LOC309) (RELPOS
FROMLOC (10 FT)) (PASITION 24.00000 32,00000))

ATTACH323 ((FRAME . ATTACH) (TYPEATT o CONTACT) (LOCS
(PERSON219 NIL (0 =150)) (LADDER291 LOC322 (FURCE334
FORCE335))) (POSITION 24,00nN0 32.00000))

TENSIOMN327 ((ENTITY . VARIABLE) (SYSTFM o ROPE30S) (MEASURE
. TENSION) (UNITS . LB) (VALUE . 120,00000))

FORCE328 ((EMTITY . VARIABLF) (SYSTEM . LADNER291) (MEASURE
. FORCE) (UNITS . L®) (VALUR . 0))

FORCE329 ((ENTITY . VARIABLE) (SYSTEM . LADDER291) (MEASURE
. FORCE) (UNITS . LB) (VALUE . =250))

FORCE330 ((EMTITY . VARIABLE) (SYSTEM ., LADDER291) (MEASURE
. FORCE) (UNITS . LB) (VALUE . =120.00000))

FORCE331 ((ENTITY . VARIABLF) (SYSTEM . LADDFP291) (MEASURE
. FORCE) (UNITS . LB) (VALUT .« 0))

FORCE332 ((ENTITY . VARIABLE) (SYSTEM . LADNDER291) (MEASURE
. FORCE) (UNITS . LB) (vaLus . 120,00000))

FORCE333 ((ENTITY . VARIABLE) (SYSTEM . LADDER291) (MEASURE
. FORCE) (UNITS . LR) (VALUE .« 0))

FORCE334 ((ENTITY . VARIABLE) (SYSTE™ . LADDER291) (MEASURE
. FORCE) (UNITS . L3) (VALUZ - 0))

FORCE235 ((FENTITY . VARIABLF) (SYSTEM , LADDER291) (MEASURE
. FORCE) (UNITS . LR) (VALUE - 150))

FORCE336 ((EMTITY . VARIABLF) (SYSTEM . WALL294) (MEASURE
FORCE) (UNITS . LB) (VALUE . =120.00000))

FORCE337 ((EMNTITY . VARIABLE) (SYSTEM . WALL294) {(MEASURE .
FORCE) (UNITS . LB) (VALUE ., 120.00000))

FORCE338 ((ENTITY . VARIABLE) (SYSTEM , FLOOR296) (MEASURE
. FORCE) (UNITS , L3) (VALUE . 250))
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