Rule Forms for Verse, Sentences
and Story Trees

R. F. Simmons & A. Correira

Technical Report NL35
Department of Computer Sciences
University of Texas at Austin 78712

January 1978

Page 2

Abstract

Rule forms and their interpreters are described for deriving
sensible and nonsenslcal wverse, for analyzing sentences into case
structures, for generating sentences from case structures, and for
generating story trees. A system of inference rules and assertioms in
the form of Horn clauses and their interpreter are presented as a
computational method for generating narrative story trees which have the
property that their terminal propositions form the story, while nodes
closer to the root provide ‘summaries. The story trees and their
generator are proposed as a promlising computational model for the
macrostructure theorized by Kintsch and Van Dijk to account for a human

reader’s memory and understanding of narrative text.

Page 3

1.0 INTRODUCTION*

A most significant problem in computational linguistics 1is to
develop a formal definition of a computational structure that represents
a human’s understanding of a narrative or amy other discourse. If such
a structure is defined for a given text, it becomes possible to produce
a computational model in the form of a grammar and an algorithm that
applies the grammar to the input text to compute the representation of
understanding. This assertion is more fully developed and supported in

later sections of this paper.

A series of psychological studies (typified by Kintsch (1974) wvan
Dijk (1975), Meyer (1975), Thorndike (1977), and Crothers (1972)),
offers strong evidence for the hypothesis that a person, after reading a
text, has developed a macrostructure that organizes the propositions of
the text in a hierarchical £form. The propositions highest in the
hierarchy are more general than those that occur at the lower levels.
When tested for recall, what a person remembers from reading a text are
propositions at the higher levels. If asked to produce a summary, the
person reports a set of high level propositions also. Significantly,
what a person remembers after a few days is a set of propositions very

similar to those produced by subjects asked to write summaries.

This research is partially supported by NSF Grant MCS 77-0135 and RADC
Contract F=30602-78-c-0132.

Page 4

From a computational viewpoint this hypothesized macrostructure can
be represented as a tree where nodes closest to the root are the most
important events -- i.e. episodes in a narrative, or content categories
in an expository text—- and nodes closest to the leaves are concerned
with details of the episodes or description. What a person remembers
after a period of days, or what a person reports as a summary is an
organized set of nodes closest to the root -=- a small subset of all the

nodes in the tree.

These findings lead us to the hypothesis that omne effective
computational model for a human’s understanding of a discourse is the
computation of such a tree so organized that the nodes closest to the
terminals form a summary approaching the length of the text. The
terminal nodes of this tree are the sentences or phrases of the text

itself.

In purely linguistic terms a similar hypothesis -- that the content
organization of folk tales could be described as a phrase structure tree
or story grammar -- was published by Propp in 1927. In the last decade
Propp’s work has received wide recognition and has been a seminal
influence on a whole subdiscipline of text linguists mainly in Europe,
but now represented in the United States by Grimes (1975), Klein (1965)
and Rumelhart (1975) among others. Earlier computational linguists
including Klein et. al. (1963) and Harper and Su (1969) studied the

application of text grammars to computing stories and representations of

Page 5

story content, respectively, with 1imited success. Psychologists cited
above adopted the mnotion of text grammars as a technique for
representing the structure of discourse as a basis for measuring what

human readers understood about a text.

In artificial intelligence work, comparable notioms of
macrostructure =—=- frames, scripts, partitions etc. =- are found to be
essential to provide representations that maintain connectivity among
sentences in systems that use the organized content of dialogue or
discourse for some computational purpose. Schank (1975), Lehnert
(1977), and Meehan (1976) have published demonstrations of the power of
their scripting approach, and Bobrow and Winograd (1977) showed
applications of frames to understanding dialogue. A related idea of
partitioned semantic networks and focus spaces was shown to useful in
computing representations of dialogue by Hendrix (1976), by Grosz (1977)
and others. A selected survey of text understanding research by Young
(1977) outlines much the work in the psychological, linguistic and
artificial intelligence research in this area. Books by Charniak and
Wilks (1976) and by Schank and Abelson (1977) devglop more fully the

notions of frames and scripts.

In an attempt to generalize the purely linguistic approach to
jnclude methods from artificial intelligence work, the next two sections
of this paper describe some uses of grammars for generating and

analyzing English sentences using the derivation tree to direct the flow

Page 6

of control in generation and parsing procedures. Subsequent sections
develop the idea of story trees and present an organized system of
inference rules and assertions for generating simple stories and their

summaries.

A necessary first step in computational understanding of a text is
to define the structure that represents that understanding. By
developing a system for generating story trees we believe we have
accomplished that first step by defining a precise computational model
for the macrostructure hypothesized by psychologists to account for

human understanding of text.

2.0
Pogen for Sense and Nonsense

By 1960, Yngve had published a procedural deséription for a method
of generating (i.e. computing) syntactically well-formed sentences from
a grammar. This formed a basis for some early work by Klein et. al.
(1963) for generating coherent discourse where coherence was controlled
by a dependency structure among words that was derived from recording
their usages from actual texts. The generation algorithm has proved
useful over the years in teaching computational linguistics by showing
students how a text can be analyzed into a grammar form that can be used

by a computer to generate that text, and with appropriate vocabulary

Page 7

classes, variatioms om it.

Let us first consider a phrase structure grammar for a simple

sentence, Sl.

S1) The little train goes toot, toot.

S
/ \
NP VP
/A /A
ART NP1 v NP2
/ /N /\
/ ADJ N | N N
/ / ! | / \

THE LITTLE TRAIN GOES TOOT TOOT

After constructing the above immediate constituent phrase structure
tree, we can start with the root, S, and record the grammar for the

sentence as follows:

§ = NP + VP ART = THE
NP = ART + NP1 ADJ = LITTLE
NP1 = ADJ + N N = TRAIN

VP = V + NP2 N = TOOT

NP = NP2 V = GOES

NP2 = N + N

Page 8

A sentence generation algorithm starts with the symbol, S, selects
a rule beginning with S from the grammar, rewrites the rule as its right
side and recurses until it reaches elements such as THE, TOOT, etc.
which have no rules assoclated with them and thus are terminal nodes.
It lists these terminal nodes in the order which they are achieved and
thus outputs a sentence.
For example, (GEN S) = (GEN NP) (GEN VP)
(GEN NP) = (GEN N) (GEN N)
{GEN N) = (GEN TRAIN) = TRAIN
(GEN N) = (GEN TOOT) = TOOT
(GEN VP) = (GEN V) (GEN NP)
(GEN V) = (GEN GOES) = GOES
(GEN NP) = (GEN ART} (GEN NPI1)
(GEN ART) = (GEN THE) = THE
(GEN NP1l) = (GEN ADJ) (GEN N)
(GEN ADJ) = (GEN LITTLE) = LITTLE

(GEN N) = (GEN TOOT) = TOOT

The result is on the rightmost column, "IRAIN TOOT GOES THE LITTLE

TOOT", a syntactically well-formed nonsense sentence.

POGEN 1s a realization of this procedure as a LISP function shown
in Figure 1. This function expects'each left part of a rule to have a
list of right parts, as it’s VALue, and provides a random selection

device, CHOOSE, to select one. If the left part also has the property

Page 9

REPLACE, a new right part is formed as a VALue with only the previously
selected member of the left part. This procedural feature provides for

controlled repetitions as illustrated in the next example.

(DEF
(GEN (SYMB)
(PROG (J)
(COND ((NULL SYMB) (RETURN))
((ATOM SYMB) (GO A)))
(RETURN (APPEND (GEN (CAR SYMB)) (GEN (CDR SYMB))))
A (COND ((SETQ J (GET SYMB "VAL))
(SETQ J (CHOOSE J))
(COND ((GET SYMB "REPLACE)
(PUT SYMB "VAL (LIST J))))
(RETURN (APPEND (GEN (CAR J)) (GEN (CDR J)))))
(RETURN (LIST SYMB)))))

Figure 1. LISP FUNCTION FOR POGEN

The procedure can be used to control the coherence and sense of a
text as well as to provide syntactic well-formedness. The last two
lines of Keats’ "Ode to a Grecian Urn" are:

Y“Beauty is trqth, truth beauty,
That’s all ye know on earth,
and all ye need to know."
To obtain semantically controlled variatiomns on this verse, we first
form substitution classes named with arbitrary variables as following,

Beauty is truth, truth beauty,
X is Y, Y XS

That’s all you know on earth
T P K L
That’s all vou need to know

T P l K

Page 10

We can then take each substitution class and augment it with items
semantically similar to those of the original under the comstraint that
each new item maintain the syntax and the sense (to whatever extent

desirable) of the original passage. One such set follows:

CLASS ORIGINAL SUBSTITUTES

X beauty 1ife, this, knowledge, wisdom, love,

¥ truth honor, all, joy, rapture, love,

T (that’s all) (that’s what), (it’s all), (it’s what)

P you Ye, I, we, some,

K know have, get, see, sense, meet

L (on earth) (°til heaven), (“til hell), (for living),
N (need to) (want to) (have to) (ought to)

Since classes, X,Y,T,P and K are all repeated in the verse, they are
marked with the property REPLACE. Then the phrase structure grammar is
formed as follows:

LINELl = X IS ¥, Y X,

LINEZ =T P K L,
LINE3 =T P N K,
VERSE = L1 L2 L3

The contents of the substitution classes are the terminal elements of

the grammar. These data are set up as property list structures and

POGEN is then called to generate a set of verses.

from this grammar:

(VARIATIONS ON TRUTH IS BEAUTY FROM KEATS)

(LOVE IS JOY , JOY LOVE)
(IT’S WHAT WE SEE FOR LIVING)
(IT°S WHAT WE HAVE TO SEE)

(KNOWLEDGE IS JOY , JOY KNOWLEDGE)
(IT°S ALL YOU SEE “TIL HEAVEN)
(IT°S ALL YOU HAVE TO SEE)

(KNOWLEDGE IS HONOR , HONOR KNOWLEDGE)
(IT°S WHAT YE HAVE FOR LIVING)
(IT’S WHAT YE NEED TO HAVE)

(LOVE IS JOY , JOY LOVE)
(IT°S WHAT YE KNOW ‘TIL HEAVEN)
(IT°S WHAT YE NEED TO KNOW)

(LOVE IS TRUTH , TRUTH LOVE)
(THAT’S WHAT WE GET ON EARTH)
(THAT’S WHAT WE NEED TO GET)

(WISDOM IS JOY , JOY WISDOM)
(IT°S WHAT WE MEET “TIL HEAVEN)
(IT*S WHAT WE OUGHT TO MEET)

(WISDOM IS TRUTH , TRUTH WISDOM)
(THAT’S WHAT I HAVE ON EARTH)
(THAT’S WHAT I WANT TO HAVE)

(KNOWLEDGE IS TRUTH , TRUTH KNOWLEDGE)
(THAT’S ALL YE MEET ON EARTH)
(THAT’S ALL YE HAVE TO MEET)

(BEAUTY 1S HONOR , HONOR BEAUTY)
(THAT’S ALL YE SEE ON EARTH)
(THAT’S ALL YE NEED TO SEE)

(LIFE IS TRUTH , TRUTH LIFE)
(THAT’S WHAT SOME SENSE ON EARTH)
(THAT’S WHAT SOME OUGHT TO SENSE)

Page 11

The following results

Page 12

The technique described above is well known in one form or another
and it has been used to generate bales of computer verse. With minor
changes to the procedure it is possible to control rhyme and meter as
well. Judith HMerriam (in a seminar assignment) provided one
modification to produce the following:

VARIATIONS ON PRUFROCK

THE SULLEN HAZE THAT STREWS HER LUST UPON THE HURRIED STREETS,
THE SULLEN AIR THAT STREWS HER POISON ON THE HURRIED STREETS,
SLIPPED HER HEAD INTO THE CURRENT OF THE TWILIGHT,

SAUNTERED BENEATH THE EVES THAT SHADE DEFEATS,

LET REST AGAINST HER MOUTH THE GRIT THAT RESTS IN STREETS,
PROWLED BY THE FOUNTAIN, LOOSED A MOCKING CRY,

AND SENSING THAT IT WAS SHRILL CICADA NIGHT,

SQUATTED LOW ALONG THE WALKS AND PACED THE SKY.

3.0 FROM SENTENCE TO NETWORK TO SENTENCE

Pogen is designed to accept a context-free phrase structure grammar
and follow its flow of control to generate its terminal elements.
Unfortunately, a pure context-free grammar i1is of little use for
analyzing ordinary English text into underlying structures . Our goal
in modelling macrostructures of discourse 1is to define methods for

representing texts as structures suitable for providing summaries,

Page 14

have developed independently with experimental study of semantic
networks. The arcs are binary semantic relations that make explicit the
ideas of agent or actor, theme or object of an act, instrument of an
act, location, time, frequency, duration etc. that are encoded in
English mainly by morphology and word order (in German augmented by case

endings).

The importance of semantic networks == or the equivalent 1linear
form s2, called ‘case relations == 1is to provide a canonical
representation of a sentence meaning in terms of explicit semantic
relations between pairs of unambiguous conceptual elements. A given
case relation may have several equivalent surface representations. In
contrast to Schank’s conceptual dependenéies formulated at a level of
primitive constructs, the case relations use word-senses as primitive
concepts. This approach proves convenient for translatién from surface
to canonical structure and back to surface form and also offers promise
for translation between languages by providing for the mapping of semse
meanings ontc variant character stringé depending on choice of target
language. (The question of what conceptual depth is most desirable for

what purposes, however, is still open.)

To obtain the structure S2 from the example sentence .an all-paths
parser =-- a version of the Cocke-Kasami-Younger algorithm described by
Pratt (1975) -— applies a grammar whose rules are of the following form:

(PHRASENAME (LIST OF SYNTACTIC CONSTITUENTS)

Page 13

retrieval capabilities and translatiomns. For this purpose we must

consider more complicated grammatical forms.

A twenty year preoccupation of natural language researchers has
been to develop useful natural language question answering systems.
This led, among other approaches, to the development of quantified
semantic networks as a useful method for classifying and representing
factual data for sentence content or for data bases. A sentence such as
"Rufolo loaded his ship and sailed to Cyprus” can be represented as
follows:
$2) (LOAD1 TENSE PAST AGT RUFOLO TH(SHIPl OWNBY RUFOLO)*AND SAIL1)

(SAIL1 TENSE PAST AGT RUFOLO TH SHIPL *TO CYPRUSIL)

This can also be shown as the following graph:

LOAD l====TENSE~--=PAST

|
| ~=-—--AGENT=-=-RUFOLO1 I

| l
[R SHIP1-——==OWNBY

l l
#AND-—---SAIL1-~~~TH

] *TO CYPRUSI

| »=~TENSE=m=== PAST

The arcs, AGent, THeme, INSTRUMENT, *FROM, #TO, *AND, and others* are

adapted originally from Fillmore’s (1968) theory of case structure but

* The * prefix distinguishes case relations such as *I0, indicating a
goal relation, from the word, to.

Page 15

(CORRESPONDING LIST OF SEMANTIC CONSTRAINTS)
(TRANSFORMATION))
Example: |
(S(NP VP) (ANIM ACT) (2 AGT 1))
This rule applies to two constituents, an NP followed by a VP. If the
NP has the semantic feature ANIMate and the VP has the feature, ACT,
then a new constituent is formed by'combining the VP (i.e. the 2nd
constituent) and the NP (the 1lst) connected by the semantic relation,
AGT, and the new constituent i1is 1labelled S. Thus if the two
constituents appear as follows:
NP = (RUFOLO ANIM T SING T)
VP = (SAIL PASTT ACT T ..)
the new constituent S is formed,
S = (SAIL PAST T ACT T ... AGT (RUFOLO ANIM T SING T))

The symbol "..." indicates additionmal data in the constituent that is

not relevant to the example.

Lexical rules follow the same form so,
(N(SHIP) T (1 SING T POBJ T))
(N(CYPRUS) T (1 SING T PLACE T NAME T))
(V(SHIP) T (1 3PS T ACT T))

(N(RUFOLO) T (1 SING T ANIM T NAME T))
(V(SAILED) T (SAIL PAST T ACT T))
(PREP(TO) T (1))

(POSSPRON(HIS) T (1 MASC T SING T POSS T))

Page 16

The example lexicon accounts for the words of the sentence 'Rufolo
sailed his ship to Cyprus® and the following grammar rules apply:

(NP(N) T (1))

(ve(v) T (1))

(VB(VP NP) (ACT POBJ) (1l TH 2))

(VP(VP PP) (ACT (PLACE PREP TO0)) (1 *TO 2))

(PP(PREP NP) T(2 PREP 1))

(NP(POSSPRON NP) (OK POBJ) (2 OWNBY 1))

(S (NP VP) (ANIM ACT) (2 AGT 1))
It can be noticed that the lexical rules contain semantic features which
characterize the particular word sense, and that these features are

included as the constituent is embedded in higher level constituents.

The complete result of the parse for '"Rufolo sailed his ship to

Cyprus” is as follows:

$3) (SAIL PAST T ACT T

TH (SHIP SING T POBJ T OWNBY (HIS SING T MASC T

POSS T))

*T0 (CYPRUS SING T PLACE T NAME T PREP TO)

AGT (RUFOLO SING T ANIM T NAME T))
The feature notation, SING T, ANIM T, etc. is analogous to the
linguistic feature markers, + and - where T is + and F is -. After
parsing, the words of the structure are assigned subscripts and the

semantic features may be discarded -- unless needed for some additional

Page 17

linguistic processing as for the case of translation to another natural

language.

Discarding the semantic features in this example the resulting

semantic relation is:
S4) (SAIL PAST T TH(SHIP SING T OWNBY(HIS SING T))

AGT (RUFOLO SING T)

*TO (CYPRUS SING T PREP T0))
This form is suitable for conversion to a knowledge base entry by
subscripting the words to give SAILI, SHIP1l, etc., and fitting it into
the discourse network by discovering preceding referents for definite
noun phrases and pronouns. It 1is appropriate to mention that this

procéss of finding referents is still only partially understood and

requires a human editor to assist the programs.

Once in the knowledge base the concepts of the semantic relation
are augmented by the network of genmeral knowledge. Thus RUFOLO is a
MAN, SHIP is a VESSEL and SAIL implies MOVE; this particular SAlLing
followed a LOADing of the SHIP, etc. The relation of a word to the
classification network is available through the lexical entry, and this
serves as the primary basis for finding answers to gquestions. The
process of answering questioms is described elsewhere, (Simmons and
Chester 1977). This semantic representation system is easily able to
encode causal and coherency relations among sentences, but a single

sentence parser cannot easily compute them.

Page 18

Let us now suppose that the above relation, 54, has been retrieved
as an answer to some question such as "Where did Rufolo Go?" We now wish
to transform S4 into English. A generatlon procedure resembling Pogen

but using a grammar sensitive to the case markers accomplishes the task.

One convenlent form for the generation grammar can be seen below.

S = AGT:NP + VP VP = VSTRNG + COMPL

NP = DET:NP + NP VPAS = BE + VP

NP = MOD:NP + NP VSTRNG = AUX + VSIRNG
NP = OWNBY:POSSPRON + NP VSTRNG = =

NP = PREP:PP + NP AUX = PAST

NP = # AUX = *

PP = PREP + NP COMPL = TH:NP + COMPL
PREP = # COMPL = INSTR:PP + COMPL
S = INSTR:NP + VP COMPL = #TG:PP + COMPL

§ = TH:NP + VPAS COMPL = #

In this grammar the three symbols, :,%*, and # have the following effect

on the generation algorithm:

ARCNAME : PHRASENAME indicates that the phrase is
to be generated from this relation

only if the arc name is present

% indicates that the head of
the relation is to be realized

as an English word,

nothing need be generated;
used to terminate a sequence
of complements or PPs.

Page 19

Applying the above grammar to the relation,
(SAILL PAST T TH(SHIP1 OWNBY RUFOLO) AGT(RUFOLO SING T)
#TQ (CPRUS1 SING T))
the following steps result:
§ = AGT:NP + VP
NP = * RUFOLO
VP = VSIRNG + COMPL
VSTRNG = AUX + VSTIRNG
AUX = PAST PAST
VSTRNG = * SAIL
COMPL = TH:NP + COMPL
NP = OWNBY:POSSPRON
POSSPRON = HIS HIS
NP = # SHIP
COMPL = *TO:PP + COMPL

PP = PREP + NP

PREP = % 10
NP = % CYPRUS
COMPL = #

When a word is to be gemerated, morphoiogical routines are called
to examine the SING/PLURAL markers, decide on the desirability of
constructing a pronoun or definite noun phrase, and to realize the
English words. The result is shown in the rightmost column, "RUFOLO

PAST SAIL HIS SHIP TO CYPRUS." A last pass on the sentence temses the

Page 20
verb and adjusts agreements of subject, verb etc.

It should be noticed that neither the analyzer nor the generator
constructs a derivation tree. Instead, as 1in Pogen, the tree of
derivation from the grammar is used only to direct the flow of control
through the procedure. If the syntactic tree were needed for some

purpose, a minor change in these procedures would record it.

Although the grammar shown above is a sufficient form for
transforming semantic relations into single sentences, it offers no
provision for constructing connected paragraphs to form an organized
text, Nor does the recognition grammar provide capability beyond the
single sentence level: it too cannot develop the organization of
sentences in a paragraph or discourse. This limitation is one of the
reasons that it cannot always find referents for pronouns or definite
noun phrases, and in this form it does not record from sentence to

sentence even what is being talked about.

A grammar relating sentences to each other must provide the
connective tissue between the propositional elements of the text in
order to remove these limitations of sentence analysis. It 1is our
belief that if we can find a satisfactory structure for story trees we
will be able to write text grammars in the 4~tuple form described above
that can be used to analyze text organization as well as sentence

structure.

Page 21

4,0 STORY TREES

Limitations of the single sentence grammar approach shown in the
preceding section reveal much of the motivation underlying the invention
of such procedural notioms as scripts, implicational molecules, plans
etc, (Schank and Abelson 1977) partitions, focus spaces etc. (Hendrix
1976) Grosz (1977) frames (Minsky 1975, Bobrow and winograd 1977, and
Charniak and Wilks 1976). The latter book also describes a rulebased
approach of templates and paraplates by Wilks. Our own bias 1s toward a
rule-based approach to the recognition and generation of English
discourse and we have sought for systems of rules that can more formally

describe the organizations imposed by scripts, frames etc.

Story grammars provide one basis for the approach. Generally, a
Story can be analyzed into a Title and a Setting followed by Episodes,
and an Episode into Actions and Results; and this analysis can be

recorded as a phrase structure grammar as shown in Figure 2.

Page 22

THE HOLY GRAIL TITLE 1
ONCE LONG AGO TIME-—-| 1
IN CAMELOT PLACE—-| |
PARSIFAL WAS A KNIGHT | [
OF THE ROUND TABLE CHAR-—-|]
HE WAS A DEVOUT CHRISTIAN MOTIVE- | SETTING--|
AND SOUGHT THE HOLY GRAIL ACT—-| |
HE WANDERED THE WORLD ACT--|--ACT--| |
BUT COULD NOT FIND IT RESULT—==—~== | -EPISODE-~| -EPISODE- |
AFTER YEARS OF SEEKING Xy C— | | [
HE FOUND IT IN HIS HEART RESULT—-| ~~EPISODE~===== | STORY

STORY = TITLE + SETITING + EPISCDE
TITLE = THE HOLY GRAIL

SETTING = TIME + PLACE + CHARACTERS + MOTIVE
EPISODE = ACT + RESULT
EPISODE = EPISODE + EPISODE

ACT = ACT + ACT
ACT = PROPOSITION
RESULT = PROPOSITION

TIME, PLACE, CHARACTERS, and MOTIVE are PROPOSITIONS. A PROPOSITION is
an English phrase or sentence and thus a terminal element in the
grammar.

Figure 2. A Story and its Grammar

About all that this grammar shows, however, is that it is possible
to organize the events of a story into SEITING, ACTS, RESULTS and
EPISODES. What has been gained is the conception that phrases and
sentences at the story level can be "syntactically” classified in a
manner analogous to words and phrases at the sentence level of analysis.
But the resulting tree appears to be lacking in the critical property

required for the Kintsch-Van Dijk macrostructure that the nodes closest

Page 23

to the root should form a summary. So not just any grammar for a story

will form a story tree, i.e. a tree with the desired properties.

Page 24

3 THE HOLY GRAIL

1 STORY ——-—- 2 TITLE
I

[— 2 SETTING ===== 3 CHAR

l
i

l
|~--~ 3 CIRCUM

l
!

|-~-- 4 ATTRIBS

——————— 2 EPISODE ===== 3 ACT

i !

| 4 ACT

I
|--- 3 RESULT -

4 PARSEFAL WAS A KNIGHT

|-~~~ 4 MOD ==-=- 5 OF THE ROUND TABLE

----- 4 TIME

|
i
l
|
[|---- 4 PLACE
|
|
|
[
|

5 LONG AGO

5 IN CAMELOT

—————— 5 HE WAS A DEVOUT
CHRISTIAN

----- 4 HE SOUGHT THE HOLY GRAIL

5 HE WANDERED THE WORLD

4 BUT COULDN’T FIND IT

2 EPISODE~-- 3 ACI

4 AFTER YEARS OF SEEKING

|==~= 3 RESULT----= 4 HE FOUND IT IN HIS HEART

4 THE END

[

STORY = TITLE + SETTING + EPISODE
TITLE = P

SETTING = CHAR + CIRCUM

CHAR = P + MOD

MOD = P

CIRCUM = TIME + PLACE + ATTIRIBS
EPISODE = ACT + RESULT

ACT = P + ACT

ACT = P

RESULT = P + EPISODE

RESULT = P + THE END

NOTES:

P means proposition, and TIME, PLACE, and ATTRIBS are rewritten

as P’s.

Numbers on the tree are depth counters, the shortest summary can
be seen by reading the propositions marked 4 or less. The entire

story emerges at level 5.

Figure 3. A Story-Tree and its Grammar

Page 25

Figure 3 shows a story tree analysis and its grammar. The nodes of
this tree are numbe:ed to show their depth; when an episode is the
rightmost member of a result rule, its level is assigned the same number
as 1its ancestral episode. This feature insures that a sequence of
episodes forms what is effectively a shallow tree despite the deeply
nested form of the grammar. If we read the propositions whose numbers
are not greater than 3 from the tree, the only candidate is the title,
THE HOLY GRAIL. At level not greater than 4, we read; THE HOLY GRAIL:
PARSEFAL WAS A KNIGHT, HE SOUGHT THE HOLY GRAIL, HE COULDN’T FIND IT,
AFTER YEARS OF SEEKING HE FOUND IT IN HIS HEART, THE END. At level 35,
the whole story can be read:

THE HOLY GRAIL: PARSEFAL WAS KNIGHT, OF THE ROUND TABLE,

LONG AGO, IN CAMELOT, HE WAS A DEVOUT CHRISTIAN, HE SOUGHT
THE HOLY GRAIL, HE WANDERED THE WORLD, HE COULDN’T FIND IT,
AFTER YEARS OF SEEKING, HE FOUND IT IN HIS HEART, THE END.

Figures 2 and 3 show that if we want a story tree with the property
that its higher nodes produce a summary, we must design a grammar that
will place certain propositions at higher nodes in the tree than others.
A better approach that will be developed in Section 6 is to include
transformations at each node in the tree in such a manner that each node
will provide a summary of the complex structure that lies below. These
example story grammars also reveal the prominent weakness of the context
free phrase structure approach; it is suitable for generating a
sequence of propositions with such a system as Pogen, but it does not

provide the semantic conditions or transformations required to derive a

story tree from a sequence of propositions.

Page 26
5.0 COMPUTATIONAL ASPECTS OF SEMANTIC NETIWORKS AND STORY TREES

We believe Meehan’s (1976} generation of stories about the
interactions of the motives of talking animals may prove to be an
excellent model for the human story writing process. In his view a
story is the description of the events that occurred when a character
attempted to achieve a goal or solve a problem. If we look at his work
as an abstract problem solving program, we can see that his approach was
based on the use of a set of objects, i.e. bears, canaries, worms,
trees, etc. each characterized as appropriate by conceptual dependency
assertions of motives, personality characteristics, locations, etc. and
a set of rules in the form of plans, that could transform properties of
these objects. The rules were organized in plans and planboxes for easy
access by appropriate goals. The action of a story developed as an
exploration of paths through the rule tree as a character sought to
satisfy a goal. The system for generating the story is a problem solver
specialized to the use of indexed plans and conceptual dependency

structures.

One significant aspect of Meehan’s study was that although his
system was based on conceptual dependency networks, he found no
necessity to draw graphs or deal explicitly with the network in his
exposition. His system of plans and planboxes was adequately described
in propositional form; his network was dimplicit din the chaining of

subgoals leading to the accomplishment or failure of a plan. The

Page 27 A

interrelations among concepts, e.g. '"bears like honey"”, "bears live in
caves", etc. were similarly implicit in such common coreferential terms
as "bear". In fact, the conceptual dependency system is an explicitly

indexed network.

In previous papers (Simmons 1977, Simmons and Chester 1977)
Semantic networks are defined as sets of nodes that represent verbal
concepts, connected by arcs that represent semantic case relations
between pairs of concepts. A single semantic relation is a
Node-Arc-Node triple. An English sentence or proposition is represented
by a head node and a set of arc-node pairs. We call this a case
predicate and usually write it as an n-tuple,

(HD ARCl VALUEl ARC2 VALUEZ ...ARCn VALUEn)
where the values refer to other n-tuples, i.e. nodes. One natural
computational form for this structure is an atom associated with a set
of incoming arcs and a set of outgoing arcs. I1f we consider these
n-tuples as relations where the head is a predicate name and each arc
identifies an argument by name then it is apparent that in comparing two
relations, each arc has a value which is a pointer to the Jlocation of
the value of a relation’s argument and no searching of the data base is
required to find that value. The naming of arguments also allows the
case predicate to list its arguments in any order and to represent only
the arguments that are specified. Thus the named arcs in a semantic
network serve two important purposes; first, they provide indexing for

directly accessing data, and second, they relax the constraint that a

Page 28

relation be represented as a strict n-tuple with an explicit position
for every argument. Both of these properties are of significant value
for dealing with large amounts of data derived from natural language

statements.

But an explicit semantic network is not the only way to represent
the interrelations among case predicates; a simple 1list of the
predicates provides exactly the information needed to compile the actual
semantic network. We think of such a 1list as one that implies a
network, i.e. as a virtual network, and have found it to be most
convenient for representing rules containing free variables which in
explicit representation could require infinite storage and computation.
The connectivity of the virtual network is signified by the
correspondence of values of arguments with names of other case
predicates. This correspondence is discovered by searching the list of
case predicates to find one that matches a given value. In other words,
we can trade the memory required to represent the connectivity of the
network for an increased amount of computation to explicate it by
searching through the case predicates. We can also delete the case
names and impose the constraint that every argument position be
represented in the n-tuple thus transforming our semantic case
predicates to ordinary logical relations of the form,

(HD ARG1 ARGZ... ARGun)
whose elements are English terms (i.e. words and variable names). The

connectivity of the virtual network remains the same and other indexing

Page 29

schemes can be provided to minimize the amount of computation required

to explicate the connective properties.

In subsequent sections of this chapter we will wuse the strict
n-tuples of English terms to represent the propositions and rules used
in computing story trees. Excepting only the retrieval and direct
matching steps, the computational procedures are the same as would be
required for explicit semantic network representations. We sacrifice
some of the indexing properties of the network with the consequence of
increased computation time and decreased memory requirements. What we
hope to gain is easier readability for the rules and propositions, a
more direct correspondence with a system of logic, and a simpler

exposition of the essential steps in generating story trees.

From Meehan we understand that problem solving is an appropriate
basis for developing a story, but we have been interested in a method
different from the use of conceptual dependency plans and planboxes.
Kowalski 1in his monograph, '"Logic for Problem Solving" (1974) presents
an attractive approach that allows the statement of problems, rules and
assertions as ordered sets of propositions. Although he interprets his
logic in terms of resolution theory, various procedures are available to
achieve flexible and efficient problem solving.- Further relations of
this system to semantic networks are developed in a later paper by
Deliyanni and Kowalski (1977). Using Kowalski’s logic with strict

n-tuple English notation we are able to define sets of propositions and

Page 30

inference rules to describe a virtual network that enables us to develop

story trees and compute stories in a very general fashion.

The Kowalski logic for problem solving is based on Horn clauses. A
Horn clause is a set of loglcal predicates

BO,...Bm<~-AD. .. An, where m and n are equal or greater than
ZEr0.
Kowalski distinguishes four types of Horn Clauses:
1 m=0, n=0 is the null clause
2 m=1, n=0, B a Horn clause with no antecedents

is an assertion

3 m=0, n not=0, <--Al,...An A Horn clause with no

consequent is a Goal statement

4 m=l, o not=0, B<== Al,...An Every other Horn clause

with a single element on the left

is an operator

The clauses Bi...Bm can be called Consequents, and Ai...An,
antecedents. If some clause, Bi...Bm <== Ai...An contains variables
such as x, v, z, then the clause should be read:

For all %, v, 2z, Bi...Bm i1s True if Adi...An is True.

A sentence, Al...An or Bi...Bm is read as the conjunction of its clauses
Ai and Aj and Ak etc.
Kowalski gives a complete development of this system as a resolution

based logic and he shows its application to solving problems.

Page 31

For example, a Horn clause procedure for doing sums in successor
arithmetic is as follows:

(SUM 0 X X)<==

(SUM (SUC X) Y 2)<-—(SUM X (SUC Y) Z)

<-=(SUM (SUC(SUC 0)) (SUC 0) U)
The first clause says that the sum of zero and any y is y. This is an
assertion. The second statement is an operator; it étates that the sum
of the successor of any x and any y is z if the sum of x and the
successor of that y is z. The third clause states the goal; find the
sum of the successor of the successor of 0 and the successor of 0 and

its value will be the value of u.

The goal statement is matched to the elements that have an arrow to
their right, i.e. consequents; it fails to match the assertiom but it
matches the operator. The values of argument positions in the goal are
bound to those in the consequent and through into the antecedent. The
consequent is detached and the antecedent is taken as a new goal until
finally the goal is

<==(SUM 0 (SUC(SUC(SUC 0))) Z)
which matches the assertion. The variable Z at that point takes on the
value (SUC(SUC(SUC 0))) or 3. This brief outline of the problem solving
use of Horn clauses is sufficient only if if the reader is acquainted
with the use of such logical systems . Kowalski’s description and

exploration is recommended for a more complete and clear explanation.

Page 32

Kowalski’s logic is of interest here to show some relationships
between problem solving and story generation. The basic method that
Meehan used for story generation could be illustrated in this formalism
but instead of using his complex world of motivated animals, let us use

the familiar MIT robot and block world.

Suppose we command Winograd’s (1972) robot,
"PUT THE GREEN PYRAMID’ON THE RED BLOCK™.
This translates into a parenthesized Horn clause as follows:
a) <==(PUT ROB GP ON RB)
Variables are recognized by being members of a special list, "S TU VW
X Y Z" and other terms are constants. The robot’s problem solving
system 1s encoded as follows:
b) (PUT ROB X ON Y)<-—(Y IS CLEAR) (ROB PUTS X ON Y)
¢) (Y IS CLEAR)<-=(Z IS ON Y)(ROB REMOVES Z FROM Y)
{(ROB PUTS Z ON TABLE)
d) (ROB REMOVES X FROM Y)<--(ROB PICKS UP X) (A*(Y IS CLEAR))
e) (ROB PUTS U ON W)<--(ROB HOLDS U) (W IS CLEAR)
(A%{U IS ON W)})
£) (ROB PICKS UP Z)<-=(Z IS CLEAR) (A*(ROB HOLDS Z))
g) (ROB HOLDS X)<-=(ROB PICKS UP X)
h) (RB IS ON TABLE)<==
i) (GB I8 ON RB)<~-
j) (GB IS CLEAR)<--

k) (GP IS ON TABLE)<--

Page 33

1) (GP 1S CLEAR)<-=
m) (TABLE IS CLEAR) <=~
The symbols GP, GB, RB, and ROB stand for GREEN PYRAMID, GREEN BLOCK,
RED BLOCK and ROBOT, respectively. Symbol A* is the name of the
function ASSERT. When (X ON Y) is asserted, any (Z ON Y) where Z not
equal X, and Y not equal TABLE are deleted. Similarly for (Y IS CLEAR).
The initial assertions that the GREEN BLOCK IS ON THE RED BLOCK, THE RED
BLOCK IS ON THE TABLE, THE GREEN PYRAMID IS ON THE TABLE etc. are shown
as h through m. The robot accepts the command, (PUT U GP ON RB) and
proves it in the following steps:
1) Command (PUT U GP ON RB) matches the consequent of b,

so (PUT ROB GP ON RB) is true if (RB IS CLEAR) and

(ROB PUTS GP ON RB).
2) (RB IS CLEAR) matches c.
3) ¢ is true if (Z IS ON RB) (ROB REMOVES Z FROM RB) and

(ROB PUTS Z ON TABLE)
4) (z IS ON RB) matches assertion i, (GB 1S ON RB) so
5) (ROB REMOVES GB FROM RB) is tried and found to match d
6) which is true if (ROB PICKS UP GB) which matches £

and is true if 7 and 9,

7) (GB IS CLEAR)
8) (GB 1S CLEAR) by j, so

9) (ROB HOLDS GB) is asserted by £f.

10)
iy
12}
13)
14)
15)
16}

17)

18)

19)

207

21)

22)

23)

Page 34

Statement 5 asserts (RB IS CLEAR) and is now true.

Statement 3 still requires that (ROB PUTS GB ON TABLE)

which matches e, whose antecedents require,

(ROB HOLDS GB), true by 9,

{TABLE IS CLEAR), true by m,

and asserts (GB IS ON TABLE).

The remaining antecedent of statement 1 is (ROB PUTS GB ON RB)
which matches e, whose antecedents reguire

(ROB HOLDS GP) RB IS CLEAR) and the assertion (GP IS ON RB):
(ROB HOLDS GP) matches g, which is true if

(ROB PICKS UP GP) which matches £, and is true since its
antecedents,

(GP IS CLEAR) is true by 1, and

(ROB HOLDS GP) is then true by assertion.

Statement 17 still requires (RB IS CLEAR) which is true by
the assertion in 10, and asserts

(GP IS ON RB) thus completing the procedure.

The proof tree for establishing the goal, "PUT ROB GP ON RB" is

shown in Figure & as the tree, BLOKSTAK.

Page 35

BLOKSTAK
/ \
/ \
SETTING GOAL

! |
*GP 1S CLEAR |
*TABLE 1S CLEAR |
*GB IS ON RB PUT ROB GP ON RB
#RB IS ON TABLE / \
#GP 1S ON TABLE / (1
#GB IS CLEAR RB IS CLEAR |

/ \ |
%GB IS ON RB ROB REMOVES ROB PUTS GB ON TABLE
GB FROM RB / \
/ \ #R OB HOLDS GB %GB IS ON TABLE
ROB PICKS UP GB #RB IS CLEAR
/ \
*GB IS CLEAR *ROB HOLDS GB 48]
ROB PUTS GP ON RB
/ \
ROB PICKS UP GP *GP IS ON RB
/ \

*GP 1S CLEAR #ROB HOLDS GP

Figure 4. The Derivation Tree for BLOKSTAK

Assertions are marked with the symbol, *, while procedural clauses
are left unmarked. The nodes, Setting and Goal are simply added as
labels to suggest a story tree. Actually, the Setting shows only the
initial assertions; for some other purpose it might include the whole
inference system. Several summaries can be read from BLOKSTAK; the
highest of these 1is the GOAL dominated node which could be stated as,
THE ROBOT IS COMMANDED TO PUT THE GP ON THE RB. Next, can be read the
combination of two nodes, THE ROBOT CLEARS THE RB THEN PUTS THE GP ON

THE RB. The entire story in terms primarily of changes in world states

Page 36

is readable from the terminal leaves. Winograd took advantage of this
hierarchical ordering to program his robot’s reporting at successively
deeper levels of what was done and why. A similar proof tree underlies
the organization of each of Meehan’s stories. A related approach is
shown by Chester (1976) for translating from trees representing
mathematical proofs to English paragraphs. And it appears that some
variation on this proof tree is what we are striving to compute when we

attempt to understand a text.

An English description of what the robot did might take the

following form:
1. Robot removed the green block from the red block.
2. He put the green block on the table,
3. picked up the green pyramid

4, and put it on the red block.

These sentences suggest the scope of the text understanding problem.
From about twenty nodes on the derivation tree, four are selected to
describe the series of events. The underlyingy motivation, that the
robot wants to put the GP on the RB is not explicitly stated. As
readers, our knowledge of the Blocks World gives us a context and the
still inadequate theory of story trees gives us a basis for approaching

the problem. But until we can develop a theory of story or text

rage 37

grammars that approaches the completeness of our understanding of
sentence structures and proof trees we can only make informed guesses at

what the underlying derivation tree might be for a given text.

Knowing the derivation tree for this example and following the

constraints of story grammars we can construct the following story tree:

BLOKSTAK
/ \
i | | I
SETTING EPISODE
| / \
GB ON RB (rob, put gb on rb) ACTI RESULT (gb on rb)
RB ON TABLE / \
GP ON TABLE (clear rb) EPISODE ACT3 (put gp on rb)
GP IS CLEAR / \ \
(remove gb ACT2 RESULT (1)
from rb) /\ \ '
/ \ (rb is clear)
*PICK UP GB *PUT GB
ON TABLE
(1)
/ \

(get gp) ACT4 *PUT GP ON RB
/

=PICK UP GP

Figure 5. A Story Tree for BLOKSTAK

ACT1 corresponds to the derivation tree’s top goal, ACTZ to the goal of
clearing RB, ACT3 to the goal of putting the GP on the RB. The
parenthesized lower case expressions show what might be expressed as a
description at each node in the tree and suggest the use of special

comments for constructing summaries. The next section will show how

Page 38

useful rule systems can be prepared to generate story trees and

summaries.

6.0 SOME RULES FOR STORY TREES

A general form for narrative grammars can be described in phrase
structure rules as follows:
STORY = SETTING + EPL

SETTING = ACT

EPI = ACT + RESULT
ACT = ACT + ACT
ACT = T +...T

RESULT = TEST + EPI

RESULT = THE END
T+...T stands for a sequence of terminal assertions. Finer subdivisions
in the grammar are possible and often desirable as shown previously im
Figure 3. The notion of an episode being composed of an act and a
result, -- often referred to as an act followed by a complication -- 1is
the main control branch of the story grammar. The result or
complication is defined as a test to determine whether the story should

continue with additional episodes or terminate at this point.

The phrase structure rules merely show the form of the story tree
and reflect the flow of control in its generation. If we are actually

to generate story trees from rules we require the capability to test

X Page 39

whether a rule applies at a given point and the ability to transfer the
values of variables bound in one rule for use in another. We can use a
phrase structure organization of Horn clauses to satisfy these

requirements and to accomplish the generationm.

In this form the first three rules for a story grammay to generate
a rather trite story, OLD WEST SAGA, appear as follows:

(OLD WEST SAGA)<--(SETTING GG BG L MOT OUTC)
(EPI GG BG L MOT OUIC)

(SETTING GG BT L MOT OUTC)<--(THE SHERIF IS GG) (THE BAD GUY
1S BG) (THE PLACE IS L) (SET MOT (PEACEFUL TOWN))
(GG LIVES IN L) (BG RIDES INTO L)

(EPI GG BG L MOT OUTC)<--(ACT GG BG L MOT OUIC)
(RESULT GG BG L MOT OUIC)

The title, OLD WEST SAGA, stands for the node, STORY and it is composed
of a setting and an episode each of which is characterized by the
variables, GG, BG, L, MOT, OUTC. The setting is composed of a set of
clauses-- sentences containing variables. Corresponding to some of
these clauses the grammar contains the following assertions, (the
implication mark, <=--, is deleted for convenience):

(THE SHERIFF 1S DESTRY)

(THE BAD GUY 1S BLACKBART)

(THE PLACE IS DODGECITY)

(SET X X)

When the rule for SETTING is evaluated, each of its antecedents is
matched against the database of rules and assertions. When (THE SHERIFF

1S GG) is found to match (THE SHERIFF IS DESTRY), the wvariable GG is

bound to DESTRY for subsequent references within the rule. The

Page 40

assertion (SET X X) which assigns a value to a variable matches (SET MOT
(PEACEFUL TOWN)), so MOTivation is bound to (PEACEFUL TOWN). The result
of evaluating the rule, (SEITING...) gives the following:
(SETTING DESTRY BLACKBART DODGECITY (PEACEFUL TOWN) QuUTC)

(THE SHERIFF 1S DESTRY) (THE BAD GUY IS BLACKBART)

(THE PLACE IS DODGECITY) (SET (PEACEFUL TOWN) (PEACEFUL TOWN))

(DESTRY LIVES IN DODGECITY) (BLACKBART RIDES INTO DODGECITY)
This evaluation was a substep in evaluating the first rule, (OLD WEST
SAGA) and its values are bound back up into that rule as follows:
(OLD WEST SAGA) (SETTING DESTRY BLACKBART DODGECITY

(PEACEFUL TOWN) OUTC)
(EPI DESTRY BLACKBART DODGECITY (PEACEFUL TOWN) OUIC)
So the values of the variables have been established by the SEITING rule
and communicated through the antecedents of (OLD WEST SAGA) into the EPI
clause. The EPI clause is now evaluated and discovered to match the EPI
rule, so the variables are bound through the EPI rule and it appears as
follows:
(EPI DESTRY BLACKBART DODGECITY (PEACEFUL TOWN) QUTC)
(ACT DESTRY BLACKBART DODGECITY (PEACEFUL TOWN) OUTC)
(RESULT DESTRY BLACKBART DODGECITY (PEACEFUL TOWN) OUIC)

The ACT antecedent is now to be evaluated. In the database the
following rules are found to match the ACT antecedent:

(ACT GG BG L (PEACEFUL TOWN) (BG ROBS THE BANK))

(ACT GG BG L MOT (PEACEFUL TOWN))

(GG DISCOVERS BANKROBBERY) (FIND GG BG)

These rules are in the above ordering and both are found to fit the ACT
antecedent under the conditions that a variable matches a variable or a

constant and equal strings match. So DESIRY=GG, BLACKBART=BG,

DODGECITY=L, in both rules; (PEACEFUL TOWN)=(PEACEFUL TOWN) and

Page 41

OUTC=(BG ROBS THE BANK) in the first rule; and (PEACEFUL TOWN)=MOT and
OUTC=(PEACEFUL TOWN) in the second. The first rule is selected. This
rule is an assertion with the constant outcome that (BG ROBS THE BANK)
so it is true and its OUTC value is bound back into the ACT above it and
the RESULT rule is now evaluated with its OUTC=(BG ROBS THE BANK).

In the database there are two result rules as follows:

(RESULT GG BG L MOT OUTC)<--(EQ* MOT OUIC) (THE END)

(RESULT GG BG L MOT OUTC)<--(NEQ* MOT OUIC)
(EPI GG BG L MOT MOT)

Both are retrieved and the first one 1is tried. EQ* and NEQ* are
functions for testing equality and nonequality, respectively. 4s a
result of the last ACT, MOT=PEACEFUL TOWN and OUTC=(BLACKBART ROBS THE
BANK). Since MOT is not equal OUTC, the first RESULT rule fails and the
second succeeds, causing a new episode whose outcome is bound to the
value of MOT, i.e. (PEACEFUL TOWN). And so the story will continue
until the value of the MOT and OUTC arguments match at which point, (THE

END) will be asserted.

The interpreter that evaluates these Horn clauses has two modes,
QUERY and ASSERT. In QUERY mode it is a problem solver that must show
that all antecedents of a rule are eventually derivable from assertions
in the data base. In this mode it can be used to solve the Block’s
world problem shown earlier. In ASSERT mode it is a tree generator and
if an antecedent is not present in the data base, it can be asserted.

Only functions, e.g. EQ* and NEQ%*, can cause an antecedent to fail and

Page 42

so reject a rule whose consequent has been matched. The ASSERT mode is
used in the above example so such statements as, (DESTRY LIVES 1IN
DODGECITY) and (BLACKBART RIDES INTO DODGECITY) were asserted although
not found in the database. 1In general the ASSERT mode allows an author
to place terminal assertions that he wishes to appear in his story
directly in the antecedents of the rules that order the events of the

story.

At this point we can introduce one last important mechanism, the TF
antecedent. This 1is a transformation statement that can be associated
with each node to form a summary of what dis happening. The TF
antecedent allows the author to formulate such comments as were shown
associated with nodes in the Blokstak example of Figure 5. The last
antecedent in a statement may be a transformation and its arguments in
the form, (TF (Y (Yeoo)e Let wus add a TF antecedent to the
SETTING rule. h
{SETTING GG BG L MOT OUIC)

oo ({TF (SHERIFF GG LIVES IN L A MOT UNTIL 7))
After binding, the whole expression appears as follows:
{SETTING DESTRY BLACKBART DODGECITY (PEACEFUL TOWN) OUIC)
{(THE SHERIFF 15 DESTRY) (THE BAD GUY 1S BLACKBART)
(THE PLACE 15 DODGECITY) (SET(PEACEFUL TOWN) (PEACEFUL TOWN})
(DESTRY LIVES IN DODGECITY) (BLACKBART RIDES INTO DODGECITY)
(TF(SHERIFF DESTRY LIVES IN DODGECITY A

{PEACEFUL TOWN) UNTIL 7))

Page 43

Notice that the TF expression had variables, GG L and MOT which were
bound to values, DESTRY, DODGECITY, and (PEACEFUL TOWN) when the
expression was evaluated. It also contained the number 7 which remains.
This number refers to the rule’s seventh clause, (BLACKBART RIDES INTO
DODGECITY). TF is a special interpreter function which will substitute
the referenced clause for the number when it is evaluated. The TF
expression 1s treated as an ordinary clause when the rules are
evaluated, but when the story tree has been computed, the function (SAY
PROOF N) evaluates the TF functions at level N in the tree to form a

summary or complete story.*

A complete story grammar for OLD WEST SAGA is shown in Appendix A.
The function RAND* is used in one rule; it returns True or Nil with a
.5 probability to allow the author to include variations in his storxy.
A story and its summaries derived from this grammar are shown in Figure
6. The grammar provides a second story which 1is shown with its
summaries in Figure 7. The complete story tree corresponding to the
story in Figure 7 is included in Appendix A. A careful study of the
grammar and 1its corresponding story tree will show the style of

programming that is required to compute stories.

o s e R T Y D S T D

* Programmed by M. Kavanagh Smith.

Page 44

(STORY OLD WEST SAGA)

*VALUE:

(OLD WEST SAGA (IN (THE DAYS OF THE OLD WEST) (THE SHERIFF IS DESTRY)
AND (THE BAD GUY IS BLACKBART) ; (DESTRY LIVES IN DODGECITY) HAPPILY
ENOUGH UNTIL (BLACKBART RIDES INTO TOWN)) (BLACKBART RIDES INTO
DODGECITY AND (BLACKBART ROBS THE BANK) (DESTRY DISCOVERS THE HEIST
AND (DESTRY SWINGS INTO THE SADDLE AND (GALLOPS AFTER BLACKBART) (
BLACKBART HIDES IN GREAT ROCK CANYON) (DESTRY RIDES INTO GREAT ROCK
CANYON) (DESTRY HEARS THE WHINNY OF A HORSE) (DESTRY DISMOUNTS AND
TRACKS BLACKBART) (DESTRY GETS THE DROP ON BLACKBART) THEN (BLACKBART
SURRENDERS) SO (DESTRY SHOOTS HIM) AND THERE IS A (PEACEFUL TOWN)) (
THE END)))) :

*TIME: 5821

(SAY PROOF 2)

*VALUE:
(OLD WEST SAGA (DESTRY KEEPS A (PEACEFUL TOWN) UNTIL BLACKBART ARRIVES

) (BLACKBART ROBS THE BANK (DESTRY HUNTS BLACKBART (THE END))))

*TIME: 265

(SAY PROOF 3)

*VALUE:

(OLD WEST SAGA (IN (THE DAYS OF THE OLD WEST) (TBE SHERIFF IS DESTRY)

AND (THE BAD GUY IS BLACKBART) ; (DESTRY LIVES IN DODGECITY) HAPPILY

ENOUGH UNTIL (BLACKBART RIDES INTO TOWN)) (BLACKBART RIDES INTO

DODGECITY AND (BLACKBART ROBS THE BANK) (DESTRY DISCOVERS THE HEIST

AND (DESTRY SHOOTS BLACKBART TO MAKE A (PEACEFUL TOWN)) (THE END))))

*TIME: 329

(SAY PROOF 4)

*VALUE:

(OLD WEST SAGA (IN (THE DAYS OF THE OLD WEST) (THE SHERIFF IS DESTRY)

AND (THE BAD GUY IS BLACKBART) (DESTRY LIVES IN DODGECITY) HAPPILY

ENOUGH UNTIL (BLACKBART RIDES INTO TOWN)) (BLACKBART RIDES INTO

DODGECITY AND (BLACKBART ROBS THE BANK) (DESTRY DISCOVERS THE HEIST

AND (BLACKBART HIDES IN A CANYOHN (DESTRY RIDES INTO GREAT ROCK CANYON)
(DESTRY HEARS THE WHINNY OF A HORSE) (DESTRY DISMOUNTS AND TRACKS

BLACKBART) (DESTRY GETS THE DROP ON BLACKBART) THEN {BLACKBART

SURRENDERS) SO (DESTRY SHOOTS HIM) AND THERE IS A {PEACEFUL TOWN)) (

THE END))))

*TIME: 459 (Note: Times are CP time in milliseconds.)

Figure 6. 01ld West Saga and Summaries

Page 45

(STORY OLD WEST SAGA)

®VALUE:

(OLD WEST SAGA (IN (THE DAYS OF THE OLD WEST) (THE SHERIFF 1S DESIRY)
AND (THE BAD GUY IS BLACKBART) ; (DESTRY LIVES IN DODGECITY) HAPPILY
ENOUGH UNTIL (BLACKBART RIDES INTO TOWN)) (BLACKBART RIDES INTO
DODGECITY AND (BLACKBART ROBS THE BANK) (DESIRY DISCOVERS THE HEIST
AND (DESTRY SWINGS INTO THE SADDLE AND (GALLOPS AFTER BLACKBART) (
BLACKBART HIDES IN GREAT ROCK CANYON) (DESTRY RIDES INTO GREAT ROCK
CANYON) (BLACKBART BUSHWHACKS DESTRY) AND {DESTRY DIES) AND BLACKBART
CONTROLS A (PEACEFUL TOWN)) (THE END))))

*TIME: 5453

(SAY PROOF 2)

*VALUE:

(OLD WEST SAGA (DESTRY KEEPS A (PEACEFUL TOWN) UNTIL BLACKBART ARRIVES
) (BLACKBART ROBS THE BANK (DESTRY HUNTS BLACKBART (THE END))))
*TIME: 230

(SAY PROOF 3)

*VALUE:

(OLD WEST SAGA (IN (THE DAYS OF THE OLD WEST) (THE SHERIFF IS DESTRY)
AND (THE BAD GUY IS BLACKBART) ; (DESTRY LIVES IN DODGECITY) HAPPILY
ENOUGH UNTIL (BLACKBART RIDES INTO TOWN)) (BLACKBART RIDES INTO
DODGECITY AND (BLACKBART ROBS THE BANK) (DESTRY DISCOVERS THE HEIST
AND (BLACKBART AMBUSHES DESTRY) (THE END))))

*TIME: 320

Figure 7. Variant Blackbart Story and Summaries

Although the example stories are brief and uncomplicated, the
problem solving system using Horn clauses that include functions is
theoretically strong enough to support the generation of arbitrarily
complex stories. In QUERY mode it can solve a large class of problems
and describe the solution path with the aid of the TF antecedents. The
study of more complicated applications is an ongoing line of

experimentation with the system.

Page 46
7.0 AN INTERPRETER FOR STORY GRAMMARS

Systems of antecedent-consequent rules have been a favored tool for
problem solving in artificial intelligence research beginning with GPS.
Fischer Black in 1964 used a system of consequent-antecedent rules
patterned partly after GPS to demonstrate the efficacy of answering
questions by proving theorems. He showed that his system mapped into
Smullian’s logic. We found his algorithm to be one of the most natural
for answering questions in quantified semantic networks (Simmons and
Chester 1977) and it applies as well to the interpretation of Horn

clause representations of story grammars.

The interpreter is written to offer two modes of operation, QUERY
and ASSERT. In Query mode it is an ordinary problem solver that
requires that a problem or theorem be reduced to some combination of
assertions and theorems in the data base. In Assert mode it is a
generator, so if a theorem cannot be proved, it is asserted.~ This
latter mode makes the procedure comparable to POGEN (of Section I1) in
flow of control, but it binds variables in a different manner and

computes a syntactic derivation structure, the story tree.

The two basic functions GEN and GENLST are shown in LISP 1.5 in

Figure 8. They 1ncorporate the following steps:

Page 47

(DEF
(GEN (SYM)
(PROG (Z ANS V A Q P V1)
(RETURN
(COND ((NULL SYM) NIL)
((ATOM SYM) (GEN (LIST SYM)))
((GET (CAR SYM) "FN)
(AND (SETQ Z (EVAL SYM)) (LIST Z Z)))
((NOT (SETQ V (MATCHV SYM RULES)))
(AND (NULL QUERY) (LIST SYM SYM)))
((FOR1 "V1
v
" (COND ((NOT (SETQ Q (MEMBER "< V1)))
(SETQ ANS :
(BIND SYM (CAR V1) (CAR V1)))
(SETQ SYM (BIND ANS SYM SYM))
(LIST SYM SYM))
((SETQ A
(GENLST
(BIND SYM (CAR V1) (CDR Q))))
(SETQ P
(BIND (CAR A)
(CDR Q)
(CAR V1)))
(SETQ P (BIND P SYM SYM))
(LIST P (CONS P (CADR A))))))))NI))

[DEF (GENLST(LST) (PROG(R R2) RETURN
(COND ((NULL LST)NIL)
((SETQ R(GEN(CAR LST)))
(SETQ R2 (GENLST(BIND (CAR R) (CAR LST) (CDR LST))))
(OR (AND (NULL R2) (LIST (CONS (CAR R) NIL) (CONS (CADR R))))
(LIST (CONS (CAR R) (CAR R2))
(CONS (CADR R) (CADR R2)))))
(T WIL))]

Figure 8. The LISP functions GEN and GENLST

Page 48

To Generate a Relation; SYM;

1.

2.

3.

If SYM is null, return NIL,

If SYM is a function, return the value of the evaluated
function

Match SYM to the database of rules and assertions:
1. If there is no match,
1. if in Query mode, returm nil,

2. if in Assert mode, Assert SYM to database, Return SYM.

2. 1If SYM matches a database element, R;

1. 1f there 4is no right half to R-=-i.e. R is an
assertion--Bind the constants of R through the
variables of SYM and returun S¥M.

2. there is a right half -- R is a rule--
1. bind constants of SYM through R,

2. detach the first element of R =- it is proved 1if
the remainder are proved,

3. for all the remaining elements Rm=R1l...Rn, Generate
Ris as each Ri is proved, Bind its values through
Ri+l...Rn and reiterate from step 3.2.2.2 until Rn
is proved,

4, BRind the values of varlables in R for the variables
of SYM and return SY¥M.

The tree of instantiated rules form the proof, and in the LISP procedure

SYM is consed to this tree to return both the answering relation and its

proof.

Page 49

The function, BIND, takes three arguments, a relation, R, the first
element A of the rule it matches, and the remainder of the rule, C.
Since R matches A, the variables in A are replaced by the constants in
R, Since rules are written so that variables in A must stand for the
same values as they do in C; where a variable in A has been assigned a
value, the same value is assigned to that variable wherever it occurs in
C, and C is returned. When C has been proved , values of variables in C
are bound backward through A to R. The match function uses the

following logic:

1. a variable matches a constant

2. a constant matches a variable

3. two identical strings match

4., two expressions match if every element in ome matches the

corresponding element in the other.

The algorithm is programmed in LISP 1in a nesting (the Forl ™v...
function) such that when matching fails the LISP interpreter
automatically tries the next candidate with no explicit dinstructioms

needed for backup.

The procedure described above 1s a simplified first path version of
the question answering algorithm published in Simmons and Chester

(1977). It uses a list of rules and assertions as its database. In the

Page 50

more complete version it comsults a semantically organized network with
significant savings in computation time. We have tested the
semantically organized versions of this procedure for question answering
and for several of the problems that Kowalski presents (Kowalski 1974),
and it is our belief that it is a suitable interpreter for experimenting

with many applications of predicate logic expressed in Horn clauses.

8.0 DISCUSSION AND CONCLUSIONS

The problem of most concern in computational linguiétics is to
compute a representation of the understanding of ordinary natural
language text. Several psychologists, but particularly Kintsch and Van
Dijk, have accumulated evidence that human readers comstruct a
macrostructure above the level of the sentences that they read. This
metastructure appears to organize the propositions of the text in a
fashion similar to the way we might comstruct an outline. It is this
macrostructure and its contents that appears best to account for the way

human subjects remember, summarize and forget what they read.

In developing a computational model of this theory we first
presented a study of generating sense and nonsense from texts modelled
in phrase structure grammars with more or less random selection of
terminal elements. A considerable degree of control over the coherence
of the resulting text was demonstrated by the ability to generate

reasonable variations on an author’s verses.

Page 51

A method for using more complex grammar rules was then described
for computing deep case structures from sentences and a corresponding
rule-based method for recomstructing English sentences was shown. It is
expected that these semantically based grammars will ultimately prove
adaptable to computing macrostructureé that organize sentences into

blarger units of discourse.

We then defined a story tree as a phrase structure organization of
text propositions that provided the property that the most general
propositions were closest to the root. The test of "story-treeness" is
that when the tree is truncated at a given depth less than that of its
leaves, the resulting terminals produce a summary. The leaves of the

complete tree are the propositions of the entire story.

Meehan’s use of Plans and Planboxes to write stories was next
considered as a model of the thought process that underlies the
construction of a story. As a much simpler example, we examined a story
of Winograd’s robot stacking a greem pyramid on a red block. We used
Horn clauses following Kowalski to model the robot’s problem solving for
this task and then showed that the resulting derivation tree had the
story tree’s property of providing summaries at levels approaching the
root. A similar tree ordered according to a story grammar Wwas

constructed from four sentences describing the robot’s task.

Page 52

This form of grammar, augmented with transformation rules, was then
used to organize Horn clauses so as to produce some simple stories and
to demonstrate that the resulting story trees provided summaries. An
interpreter for the story grammars was then described in terms of a
problem solving system with an Assert mode that makes it a tree
generator. In Query mode it can also prove ordinary Al examples written

in Horn clauses.

What has been accomplished in this study is the definition of a
structure called a story tree that 1is generated by assertions and
inference rules in such a manner that its terminals providz the sequence
of propositions comprising a story while higher nodes contain
transformations that describe summaries of the nodes below. As a
result, truncation of the story tree at successively higher levels
provides briefer and briefer summaries. This structure for representing
narratives is presented as an initial computational model for the
macrostructure theorized by Kintsch and Van Dijk to account for aspects

of human understanding and memory for stories.

Following Meehan, we used a problem solving approacﬁ, but in the
form of Kowalski’s logic of Horn clauses, to represent models of
microworlds. A story tree is generated by using the inference procedure
to generate a particular subtree of instantiated events in the
microworld. All possible events in the microworld are modelled by a set

of assertions and inference rules which can imply an infinitely large

Page 53

network.

The microworlds that we use for defining narratives are comprised
of such events as Episodes, Acts, Results, TF-transformatiomns, and
Propositions. These are obviously linguistic entities that form models
of possible text constituents in contrast to microworlds that model
motivated characters and sequences of their problem solving actioms.
Our analysis of the blocks problem as a story tree indicates that
problem solving in "blocks world"” or "talking animals world" can also be

organized to generate story trees.

Defining story trees by generating them is an initial step toward
the goal of computing from English texts a representation of their
meaning. If we could compute story trees from any arbitrary sequence of
propositions from a narrative, we could claim a model of human
understanding. Having established one form that has properties that can
model a human reader’s understanding, our next step is to apply the
inference network to infer the story trees that account for a sequence
of propositions that comprise a story. Im this recognition or parsing
task in order to minimize the multiple interpretations that could
possibly account for a sequence of propositions, the inference rules
will require many more antecedents to specify tight semantic comstraints

on the realization of a story tree.

Page 54

Although it is clear that much work remains to be accomplished, we
conclude that this approach to generating story trees provides a
promising initial computational model for the macrostructure that

appears to underly human understanding and memory for narratives.

Page 55

Appendix A. 01d West Saga Grammar and Story Tree
The Blackbart grammar is shown below.

(GENPRINT RULES)
((OLD WEST SAGA) < (SETTING GG BG L MOT OUTC) (EPI GG BG L MOT OUTC) (

TF (1 2 3)))

((SETTING GG BG L MOT OUTC) < (THE SHERIFF IS GG) (THE BAD GUY IS BG)
(THE PLACE IS L) (THE TIME IS Z) (GG LIVES IN L) (BG RIDES INTO TOWN)
(SET MOT (PEACEFUL TOWN)) (TF (IN Z 2 AND 3 ; 6 HAPPILY ENOUGH UNTIL 7
) (GG KEEPS A MOT UNTIL BG ARRIVES))) '

((EPI GG BG L MOT OUTC) < (ACT GG BG L MOT OUTC) (RESULT GG BG L MOT
oUTC) (TF (2 3) (OUTC))) :

((RESULT GG BG L MOT OUIC) < (EQ* MOT OUIC) (THE END) (TF (3)))

((RESULT GG BG L MOT OUTC) < (NEQ* MOT OUTC) (EPL GG BG L MOT MOT) (TF
3N

((ACT GG BG L (PEACEFUL TOWN) (BG ROBS THE BANK)) < (BG RIDES INTO L)
(SET OUTC (BG ROBS THE BANK)) (SET MOT (PEACEFUL TOWN)) (IF (2 AND

OUTC) (OUTC)))

((ACT GG BG L MOT (PEACEFUL TOWN)) < (GG DISCOVERS THE HEIST) (FIND GG
BG) (TF (2 AND 3) (GG HUNTS BG)))

((ACT GG BG) < (GG SWINGS INTO THE SADDLE) (GALLOPS AFTER BG) (BG
HIDES IN GREAT ROCK CANYON) (TF (2 AND 3 4) (BG HIDES IN A CANYON)))

((FIND GG BG) < (RAND*) (ACT GG BG) (GG RIDES INTO GREAT ROCK CANYON)
(BG BUSHWHACKS GG) (GG DIES) (SET OUTC (PEACEFUL TOWN)) (TF (3 4 5 AND
6 AND BG CONTROLS A OUTC) (BG AMBUSHES GG)))

((FIND GG BG) < (ACT GG BG) (GG RIDES INTO GREAT ROCK CANYON) (GG
HEARS THE WHINNY OF A HORSE) (GG DISMOUNTS AND TRACKS BG) (GG GEIS THE

DROP ON BG) (BG SURRENDERS) (GG SHOOTS HIM) (SET OUTC (PEACEFUL TOWN)
) (TF (2 3 4 5 6 THEN 7 SO 8 AND THERE IS A OUTC) (GG SHOOTS BG TO

MAKE A OUTC)))

((THE SHERIFF IS DESTRY))
((THE BAD GUY IS BLACKBART))
((THE PLACE 1S DODGECITY))

((THE TIME IS (THE DAYS OF THE OLD WEST)))

Page 56

((SET X X))
The Blackbart storytree starts below.

{(PPRINT PROOF)}
((OLD WEST SAGA)
((SETTING DESTRY BLACKBART DODGECITY (PEACEFUL TOWN) OUTC)
(THE SHERIFF IS DESTRY)
(THE BAD GUY IS BLACKBART)
(THE PLACE IS DODGECITY)
(THE TIME IS (THE DAYS OF THE OLD WEST))
(DESTRY LIVES IN DODGECITY)
(BLACKBART RIDES INTO TOWN)
(SET (PEACEFUL TOWN) (PEACEFUL TOWN))
(TF
(IN (THE DAYS OF THE OLD WEST) 2 AND 3 ; 6 HAPPILY ENOUGH UNTIL 7)
(DESTRY KEEPS A (PEACEFUL TOWN) UNTIL BLACKBART ARRIVES)))
{(EPI DESTRY
BLACKBART
DODGECITY
(PEACEFUL TOWN)
(BLACKBART ROBS THE BANK))
{(ACT DESTIRY
BLACKBART
DODGECITY
{PEACEFUL TOWN)
(BLACKBART ROBS THE BANK))
(BLACKBART RIDES INTO DODGECITY) -
(SET (BLACKBART ROBS THE BANK) (BLACKBART ROBS THE BANK))
(SET (PEACEFUL TOWN) (PEACEFUL TOWN))
(TF (2 AND (BLACKBART ROBS THE BANK)) ((BLACKBART ROBS THE BANK))))
{ (RESULT DESTRY
BLACKBART
DODGECITY
(PEACEFUL TOWN)
(BLACKBART ROBS THE BANK))
*T %
((EPI DESTRY BLACKBART DODGECITY (PEACEFUL TOWN) (PEACEFUL TOWN))
((ACT DESTRY BLACKBART DODGECITY (PEACEFUL TOWN) (PEACEFUL TOWN))
(DESTRY DISCOVERS THE HEIST)
((FIND DESTRY BLACKBART)
*T%
((ACT DESTRY BLACKBART)
(DESTRY SWINGS INTO THE SADDLE)
(GALLOPS AFTER BLACKBART)
(BLACKBART HIDES IN GREAT ROCK CANYON)
(TF (2 AND 3 4) (BLACKBART HIDES IN A CANYON)))
(DESTRY RIDES INTO GREAT ROCK CANYON)
(BLACKBART BUSHWHACKS DESTRY)
(DESTRY DIES)

rage 57

(SET (PEACEFUL TOWN) (PEACEFUL TOWN))
(IF (3 4 5 AND 6 AND BLACKBART CONTROLS A (PEACEFUL TOWN))
(BLACKBART AMBUSHES DESTRY)))
(TF (2 AND 3) (DESTRY HUNTS BLACKBART)))
((RESULT DESTRY
BLACKBART
DODGECITY
(PEACEFUL TOWN)
(PEACEFUL TOWN))
*T &
(THE END)
(TF (3)))
(IF (2 3) ((PEACEFUL TOWN))))
(TF (3)))
(TF (2 3) ((BLACKBART ROBS THE BANK))))
(TF (1 2 3)))

Page 58

References

Black, F. 1969. "A deductive question answering system.” In Semantic
Information Processing. M. Minsky, ed. Boston: MIT Press.

Bobrow, D. G. and Collins, A. 1975. Representation and Understanding.
New York: Academic Press.

Bobrow, D. and Winograd, T. 1977. "An overview of KRL, a knowledge
representation language.”" Cognitive Science, Vol. 1, No. 1,
January, 1977, pp. 3-46.

Charniak, E. and Wilks, Y. 1976. Computational Semantics. New York:
North-Holland Press.

Chester, D. 1976. "The translation of formal proofs into English.”
Artificial Intelligence, Vol. 7, No. 3, pp. 261-278.

Crothers, E. 1972, "Memory structure and recall of discourse.”
In Language Comprehension and the Acquisition of knowledge.
Freedle, R. and Carrol, J. eds. New York: Wiley.

Deliyanni, A. and Kowalski, R. 1977. "Logic and semantic networks.”
London, England: mss. Imperial College, University of London.

Fillmore, C. 1968. ''The case for case." in Universals in Linguistic
Theory. Bach, E. and Harms, R. eds. New York: Holt, Rinehart

and Winston.

Grimes, J. 1975. The Thread of Discourse. The Hague, Netherlands:
Mouton Publishers.

Grosz, B. 1977. "The representation and use of focus in dialogue
understanding.” Technical Note No. 151. Menlo Park, California:
Stanford Research Institute.

Harper, K. and Su, S. 1969. "A directed random paragraph generator."”
Rand Manuscript No. RM6053-PR. Santa Monica, California: Rand
Corporation.

Hendrix, G. G. 1976. "partitioned networks for modelling natural
language semantics.’ Dissertation. Austin, Texas: Department
of Computer Sciences, The University of Texas.

Kintsch, W. 1974. Representation of Meaning in Memory. New York:
Wiley Press.

Page 59

Kintsch, W. and Van Dijk T. 1975. "Recalling and summarizing stories."
unpublished mss. from the authors, May, 1975.

Klein, S. 1965. "Automatic paraphrasing in essay format.” Mechanical
Translation, Vol. 8, Nos. 3 and 4, pp. 68-83.

Klein, S. and Simmons, R. 1963. "Syntactic dependence and the
computer generation of coherent discourse.'" Mechanical Translation,
Vol. 7, No. 2, pp. 50-61.

Kowalski, R. 1974. "Logic for problem solving."” Memo 75. Edinburgh,
Scotland: Department of Computational Logic, University of
Edinburgh.

Lehnert, W. 1977. "Question answering in a story understanding system."
Cognitive Science, Vol. 1, No. 1, pp. 47-73. ’

Mechan, J. 1976. '"The metanovel: writing stories by computer.”
Dissertation. New Haven, Connecticut: Department of Computer
Sciences, Yale University.

Meyer, B. 1975. The Organization of Prose and its Effects on Recall.
Amsterdam, The Netherlands: North Holland Press.

Minsky, M. 1975. "A framework for representing knowledge.” 1In the
Psychology of Computer Vision. P. Winston ed. New York: McGraw-
Hill,

Pratt, V. R. 1975. "Lingol - a progress report.” Proc. 4IJCAI.

Rumelhart, D. E. 1975. 'Notes on a schema for stories.” Bobrow, D.
and Collins, A. eds.

Schank, R. C. 1975. Conceptual Information Processing. New York:
North~Holland Press.

Schank, R. C. 1975. '"The structure of episodes in memory."” Bobrow, D.
and Collins, A. eds.

Schank, R. and Abelson, R. 1977. Scripts, Plans, Goals and Understanding.
New York: Wiley Press.

Simmons, R. F. 1978. "Rulebased computations on English."” in Pattern-
Directed Inference Systems. Hayes-Roth, R. and Waterman, D. eds.
New York: Academic Press. (in press).

Page 60

Simmons, R. and Chester, D. 1977. "Inferences in quantified semantic
networks.” Proc. SILJCAI.

Thorndike, P. 1977. ‘'Cognitive structures in comprehension and
memory of narrative discourse.” Cognitive Psychology, Vol. 9,

No. 1, pp. 77-110.

Van Dijk, T. A. 1975. '"Recalling and summarizing complex discourse.”
unpublished mss. from the authors. Amsterdam, The Netherlands:
Department of General Literary Studies, University of Amsterdam.

Winograd, T. 1972. Understanding Natural Language. New York:
Academic Press.

Yngve, V. 1960. "A model and an hypothesis for language structure.’
Proc. American Philosophical Society, No. 104, pp. 444:466.

Young, R. 1977. '"Text understanding: a survey." Natural Languages
Report No. 33. Austin, Texas: Department of Computer Sciences,
The University of Texas. (in press, American Journal of Compu-

tational Linguistics).

