Rule-Based Computations

on Story Trees

Blfred Correira

NL=-36 September , 1978

Technical Report NL36
Department of Computer Sciences
University of Texas at Austin 78712

September 1978

ABSTRACT

A theory of understanding (parsing) of texts as a
process of collecting simple textual propositions into
thematically and causally related units is described, based
on the concept of macrostructures as proposed by Kintsch and
van Dijk. These macrostructures are organized 1into tree
hierarchies -~ the story tree -~ and their interrelationships
are described in rule-based story grammars structurally
derived from the Kowalski logic based on Horn clauses. A
procedure for constructing such trees (a story dJenerator)
and for synthesizing them from texts derived from these same
generated trees (a story parser) is detailed. The resulting
program is capable of understanding and summarizing any
story it can generate usiné the same basic control

structure. This paper is related to ideas first presented

in Simmons and Correira {1978).

Page 2

1.0 INTRODUCTION

One of the most difficult tasks in the field of
Computational Linguistics is that of processing {parsing or
understanding) bodies of connected textual material from
simple narrativés, like fairytales and children's stories,
to complex technical articles, like textbooks and
encyclopedia articles. When effective parsers were created
capable of processing single sentences (Woods, 1970}
(Schank; 1975a), (Norman and Rumelhart, 1975), (Winograd,
1972), it was quickly realized that these same techniques
were not in themselves adequate for the larger task of
processing segquences of sentences. The understanding of
such texts involved more and different knowledge from that
necessary for understanding single sentences, and the
resulting structures from a text parser need not look like

the structures of the sentences parsed individually.

Experiments with processing texts lead to such
procedural entities as frames (Minsky, 1975:; Charniak,

1976; Winograd and Bobrow, 1977), scripts and plans (Schank

and Abelson, 1877, focus spaces (Grosz, 1877y,
partitions(Hendrix, 1976) among others. These. efforts
involve conceptual structures consisting of large,

cognitively unified sets of propositions, and they model
understanding as a process of £illing in or matching the

slots in a particular structure with appropriate entities

Page 3
derived from input text.

There have also been rule-based approaches to the text
processing problem, most notably the template/paraplate
notion of Wilkes(1976), and the story grammars of Rumelhart
{1975) . Although each approach (procedures and rules) has
its merits, it is the rule-based approach which will Dbe

presented here.

This paper describes a rule-based computational model
for text comprehension, patterned after the theory of
macrostructures proposed by Kintsch and van Dijk (1975).
The rules are notationally and conceptually derived from the
Horn clause, especially as described by Kowalski (1974).
Each rule consists of a set of thematically, causally, or
temporally related propositions. The rules are crganized
into a network with the macrostructures becoming more
generalized approaching the root. The resulting structure,
called the Story Tree, represents a set of textual

structures.

The process of generating from this network consists of
choosing one of the rules to serve as the root of a
particular story tree and recursively instantiating its
descendents until terminal propositions are achieved
(Simmmons and Correira, 1978).A These propositions form the
text of the generated story. Conversely, a text 1is
understood if its input propositions can be mapped into

rules and these rules recursively mapped into more abstract

Page 4

rules until a single node (the root) is achieved.

2.0 MACROSTRUCTURES AND STORY GRAMMAR RULES

In this section the fundamental notion of
macrostructure, as proposed and used by Kintsch and van
Dijk, is presented and then analyzed from a computational,
rather than a psychological, standpoint. An effective
representation for macrostructures 1is described, derived

from Horn clauses and organized into story trees.

Kintsch and wvan Dijk (1973) present a system for
organizing an entire discourse hierarchically into
macrostructures, which are wessentially metapropositions.
These macrostructures correspond to higher-order narrative
macro-categories such as "complication®”, "resolution", etc.
They introduce a number of rules for relating these
macrostructures to sets of input textual propositions:
information reduction (generalization), deletion (of less
important propositions), integration {(combining evénts with
their pre- and postconditions), and construction (which
relates complex propcsitions to their component

sub-propositions).

Page 5

There are two conditions that are always true regarding
these macrostructures: a macrostructure must be "implied”
by its subordinate propositions, and the macrostructures of
a text collected together form a meaningful summary of the
text. Kintsch and van Dijk believe that it 1is primarily
macrostructures that are retained when a text 1s understocd
by a human reader and that the macrostructures are created

as the text is being processed,.

As evidence in support of their theory they present a
number of psychological experiments in recall and summary
with human subjects using as a text a 1600-word narrative
taken from Boccaccio's Decameron (the Rufolo story). The
psychological validity of this theory is not an issue here,
only its wutility as a model for a computational theory of
text processing. As a computational entity, a
macrostructure is a node in a story tree whose immediate
descendents consist of the subordinate propositions by which
the node is implied, and is itself a descendent of the
macrostructure it (partially) implies. Every macrostructure
in this tree is the root of a derivation tree whose

terminals are simple propositions.

Each level of the tree shares the attribute of
summarizability, i.e. a summary of the text may be
extracted from any level of the tree, becoming less specific
as the summary level approaches the root. The lowest level

summary is the original text itself; the highest level (the

Page 6
root) is a title for the text,

The ability to give meaningful (coherent) summaries for
a text is one attribute of comprehension for that text, and
any procedure yielding trees possessing -the summary property
can be said to understand the text. Furthermore, given an
appropriate data base internalizing the relationships
between a macrostructure and its subordinate macrostructures
or simple propositions (microstructures) and a summary
derived from a story tree, it is possible for a procedure to
reconstruct to a certain degree of detail the original text
from which the tree was derived. The degree of detail
recovered is directly proportional to the relative distance
from the nodes forming the summary to the original input

propositions (the leaves) of the text tree.

Having defined an appropriate model for a computational
structure for text processing the next guestion is that of
finding a suitable rule structure for representing the
relationship between a macrostructure and its subordinate
propositions. One simple statement of this relationship is

in the form of a rule

8

meaning you may assert the truth {presence} of

Page 7

macrostructure A if you can find the (nearly) contiguous
propositions B, C, D present in the input text." “Nearly"”
means that an allowable 1level of "noise,” in the form of
irrelevant side information, may be present Dbetween the

specified propositions, a problem not addressed here.

This rule form <c¢losely resembles in structure and
meaning the Horn clause motation. The general Horn clause

has the format,
Cl, ¢.. , Cm <= Al, ... , An

where the set Cl, ... , Cm is called the Consequent, and
the set Al, e oo , An is called the Antecedent. For this

rule form the following interpretations are imposed

n =0 is the null clause

i

1. m

2, m=1, n =0 is an assertion

3, m= 0, n > 0 is a goal statement

i
o
=3
%
<

4, m is an operator.

If the propositions in a clause contain the wvariables xl1,

... , xi, then the clause has the interpretation

forall =1, ... , %i, Al, ... , An TRUE

implies Cl1, ... , Cm TRUE

The rule-base for the system described in this paper

Page B8

contains only clauses (propositions) of types 2 and 4;
clauses of type 2, written without the left-arrow, are
called facts, and the type 4 operators are rules. Clauses
of types 1 and 3 (without the left-arrow) are embedded 1in

the procedures for processing texts.

There are several differences between the Kowalski
logic, and the 1logic adopted here, but the most important
has to do with the ordering of the antecedent propositions.
In a true Horn clause, the ordering is irrelevant and A <= B
C D is as good a rule as A <= C D B, etc., i.e. the
antecedents can be proved in any order. The ordering in the
system described here is governed by rules of coherence.

For example, the rule

John built a house <=
John purchased building materials
John laid the foundation
John built the walls

John raised the roof
is a meaningful rule, whereas

John built a house <=
John raised the roof
John built the walls
John laid the foundation

John purchased building materials

Page 9

is nonsense and impossible. The antecedent set of
propositions is ordered by a principle of coherence. This
principle can be one (or more) of several standards:
forward causal connectedness (B causes C, which causes DY,
backward causal connectedness (D is the result of C, which
is in turn the result of B), temporal ordering (B happens

before C, which happens before D}, etc.

The Horn clause rule is reversible. If we are given

the proposition
John built a house

in a text, or a summary of a text, we may infer the chain of

events

John purchased building materials
John laid the foundation
John built the walls

John raised the roof

and if given some of these events in order in a text we may

infer that John was engaged in building a house.

The antecedent rule form is bidirectional and can be
used in either the parsing or generating tasks. A parser
can avail itself of antecedent rules to group sets of
propositions in a text into units headed by macrostructures

(which are the consequents of the rules) . These can be

Page 10

further grouped into more generalized macrostructures
recursively to vyield a story tree. A generator would
proceed in the other direction, starting with the top node
of a tree and expanding it and its constituents downward
recursively {by using the antecédent rules of the
constituents) to arrive at a tree whose terminals form a
coherent text. The head and the outcome together summarize

the macrostructure.

2.3

After several early experiments with this rule form on
a simple text (the Margie story - Rumelhart, 1973) it was
discovered that the simple antecedent rule form, although
capable f handling the computations necessary for the text
at hand, tends to gloss over several inherent attributes
that macrostructures generally have in common. For example,
in the previous housebuilding rule several categories can be
distinguished. In order to build the house, John must have
the proper building materials and the necessary knowledge of
house construction to use them. Given these, John will
follow a certain sequence of actions; he will 1lay the
foundation, then the walls, and finally the roof. The
result of this effort will be that John possesses a finished
house (for personal habitation or perhaps for sale}.
Therefore, we can break the housebuilding rule into several

natural groupings:

Page 11

John builds a house <
John has building materials
John has construction training
>
John lays the fouﬁdation
John builds the walls
John raises the roof
>>

John possesses a house

Structurally, this rule form will be referred to as an
"extended” Horn clause (EHC). The first part of the rule
{before the left-arrow) ig the Head of the rule, and
represents the macrostructure pattern. The second part
{(between the left- and single right-arrows) is the
Antecedent, forming the precondition set for the rule. The
propositions in the antecedent are the conditions which must
be true, or can be made true, before John can embark on an
episode of "housebuilding." The third part (between the
single and double right-arrows) is the Conseguent, oOr
expansion, of the rule. If John builds a house, then these
are the (probable) actions he will take in doing so. The
last part of the rule (after the double right-arrow) is the
Qutcome, or post-condition set, of the rule, which consists
of the conditions that will become true upon the successful

completion (expansion) of the rule.

Page 12

The resulting rule form is related conceptually and
historically to the notion of a script as developed by
Schank and Abelson (see also Norman and Rumelhart, 1975).
The antecedent sets the stage for the invocation of a rule.
It describes the setting and the rclés cf the characters
inveolved in the rule. The consequent consists of the
actions normally taken during the invocation of the rule.
The outcome 1is the result of the actions. When used iﬁ a
script-like role, a rule is activated when its antecedent
has been satisfied, and 1its conseguent can then be

sequentially instantiated.

A rule can also be used as a plan. A plan is a data
structure that suggests actions to be taken in pursuit of
some goal, or outcome. This corresponds to activating a
rule according to its outcome, i.e. employing a rule
because its outcome is the desired effect. 1If one has the
goal 1'"possess a house" one might wish to employ the
housebuilding rule to achieve it. In this case, a rule is
invoked when a character has an active goal that matches one
of the outcome propositions of the rule. The antecedents
must then be checked to insure that the world at that point
will allow the application of the rule. If this 1is the
case, then the rule can be applied and the gozl marked as

being satisfied (made true).

This extension of the Horn clause structure serves two

Page 13

purposes. First, by separating the propositions subsumed
under a macrostructure into three parts, it renders it
unnecessary to label the roles that the individual
propositions play in the macrostructure. A macrostructure
will usually have preconditions,‘ expansion(s}, and
postconditions, which would have to be labeled (probably
functionally) 1in a simple Horn clause system. Secondly, it
serves as a means of separating those propositions which
must be true before a rule can be invoked (antecedents) from
those whose success or failure follow the invocation of the

rule.

A rule may have several consequents attached to it, one
for each expansion of the rule. Thus if a couple wants a
child they could employ a ruie - written in case-predicate
notation {see the Notes on Appendices section for

description of case-predicate notation and how to read 1it):

(POSSESS A COUPLE TH CHILD)
> (OR (HAVE A COUPLE TH CHILD)
(ADOPT A COUPLE TH CHILD)
(STEAL A COUPLE TH CHILD)

(BUY A COUPLE TH CHILD))

where each of the propositions, HAVE, ADOPT, STEAL, BUY are

Page 14

complex rules of the same form as the POSSESS rule .

A rule may also have multiple antecedents, if there are
several sets of circumstances under which the rule can be
invoked. Thus a rule for watching a drive-in movie could

have the form

(WATCH A PERSON TH DRIVE-IN-MOVIE)
< (OR { (PERSON IN CAR}) (CAR IN
DRIVE-IN-MOVIE-LOT))
({SEE A PERSON TH DRIVE-IN-MOVIE-SCREEN) (CAN A

PERSON TH (READ A PERSON TH LIPS))))

A rule can have but a single outcome, composed of
simple propositions, since by definition the outcome is the
set of propositions that are true if the rule succeeds. If
an outcome could contain a rule proposition, then that
proposition could fail independently of the rule for which
it is part of the outcome, gsince it could have its own
antecedents - thus defeating the purpose of the outcome in

the first place.

Syntactically, the Extended Horn Clause can be

represented

HEAD < (OR (P1l) (P2) ... (Pi))
> (OR (P1) (P2) ... (P3))

>> (AND (PROP1) (PROPZ) ... (PROPk})

Page 15

where each of the Ps are an ANDed set of PROPositions. In
the actual implementation, the ORs and ANDs are implicit,

and the structure becomes simply

HEAD < (P1l) < (P2) < ... < (Pi)
> (Pl) > (P2) > ... > (PJ)

>> ((PROP1l) (PROP2) ... (PROPKk)).

2.5

The rules are stored in memory in a semantic network.
However, unlike the wusual semantic networks for case
predicates, where the individual nodes {tokens) are

connected by case relations (Simmons, 1977), the semantic
links in the EHC rule network are based on the story tree

concept,

Each rule node (or instantiation of one) in the network
may have any of the following arcs: ANTE, CONSE, and
OUTCOME. The value attached to the arc depends on whether
the node represents a rule or an instantiation of a rule.
If the node is a rule, then the value of ANTE is a 1list of
the antecedent sets for the rule, the value of CONSE is a
list of the conseqguent sets for the rule, and OUTCOME is the
set of outcome propositions for the rule. If the node is an
instantiation of a rule, then the value of ANTE is a list of

the instantiated nodes in its antecedent, the value of CONSE

Page 16

is a list of instantiated nodes in its consequent, and the
value of QUTCOME 1is a list of instantiated nodes in its
outcome. Thus, the system is able to distinguish between

rules and instances in the database,

All the case relations are kept in a single list called
PATT (for PATTern) as arc-value pairs. Each node in the
ANTE, CONSE, and QOUTCOME lists (whether the node is a rule
or an instance of a rule), and each case value in PATT has a

USEDIN arc pointing back to the node in which they are used.

Three other arcs are used. TVAL marks terminal nodes
whose truth value is false as, for example, on the token for
KISS in the proposition (KISS A JOHN TH MARY), if John did
not kiss Mary. If this negated proposition were to be

printed, it would appear as (NOT OF (KISS A JOHN TH MARY)).

CTXT is a context marker. Each node in a tree belongs
to the context of that tree, i.e. to the context of the
story being generated or parsed. Each story 1s processed
under its own CTXT value. Thus, several stories may be
coresident in memory without conflict, since the propositons

in each will be marked by a unigue CTXT.

The last arc label, NXT, is a special arc used only
with class objects in the database. In the semantic

networks based on case-predicates, every class object points

Page 17

to all of the tokens subsumed by it in the network. For
example, the <class object representing DOG would have
pointers to each of its tokens, DCGl, DOG2, DOG4, etc.,
which represent individual objects of the class DOG. In the
EHC semantic network, this informatioﬁ is kept implicitly
via the NXT arc. The class objects are marked with a zero
token (DOGO) and NXT has as value the number of tokens plus
one in the database for that class. For example, 1f DOGO
has a NXT of 5, then the network (probably) contains the
tokens DOGl, DOG2, DOG3, and DOG4, not all of which,
however, need be in the same context. If a token no longer
exists in the network, like DOG3 in the first example, this
fact will be evident because DOG3 will have no attributes
(the value of its PATT arc will be NIL), since all extant
objects in the network must have at least one attribute

(usually an ISA case relation).

The database retrieval functions utilize the NET
attribute, coupled with “fuzzy" (partial) matching, to
retrieve potential rules to be applied to a proposition. At
any point where a rule can be applied, the class object for
the head of the proposition is gqueried for its tokens (via
the NXT arcj. Each token in turn has its PATT arc value
pattern-matched against the arc=-value pairs in the

proposition.

For each candidate rule, the pattern-matching proceeds

Page 18

as follows. For each case relation in the proposition a
search is made of the PATTern in the candidate rule for that
came case relation. If it is found, then a check is made to
ensure that any restrictions on the value slot for the PATT
are satisfied by the value in the pfopésition, i.e. 1if the
value slot in the PATT calls for a person, then the
corresponding slot in the proposition cannot be filled by a
dog, etc. If such a contradiction is found the rule 1is
rejected. If no case arc is found in PATT then the next arc
in the proposition is examined. At least half the arcs in
the proposition must be found in the PATT of the candidate

rule before the rule can be used.

Partial matching allows the rule-writer to combine
rules that only differ in one or two minor cases, but which
all share the same major cases; he need only write one rule
specifying the major case relations and ignoring the minor
ones. The second benefit 1is in the generator. Partial
matching also allows the generator to bring more operators
to bear at a given point in the story construction.
However, the parser pays the price for this flexibility by
having to examine more alternatives at each point in its

parsing where rules apply.

The ASK function, which gqueries the database for the
existence of facts (instantiated propositions without

variables), uses a complete pattern-matching algorithm (all

Page 19

case arguments must match the entire candidate instance
PATTern), since "John ate at Mary's place last night" is not
deemed a sufficient answer to the question "Who ate all the

cake last night at Mary's place?”.

3.0 SUCCESS AND FAILURE IN EBC RULES

The idea of rule success or failure in the EHC rule
form is tied to the domain the rules are attempting to model
- real life motivated behavicr (actions) where things can,
and do, go wrong and fail to achieve their goals. 1In real
life, John's decision to build a house does not guarantee
that the house will be built. For any given rule, one of
three conditions may arise. First the rule's antecedents
may fail to be true and the rule cannot be activated. In
the building rule, 1if Jechn cannot procure the building
materials necessary for constructing the house or does not
possess the appropriate knowledge needed to build 1it, the
house cannot be built despite John's intentions. A rule is
not invoked until one of its antecedent sets has been

successfully processed.

Once this condition is satisfied then the rulé can be
invoked and John can start building his house. At each step
of expanding the macrostructure, i.e as John performs each
step in the consequent of the rule, he is subject to success

or failure. He may succeed in laying the foundation, or he

Page 20

may fail, and the same is true for constructing the walls
and the roof. If he does manage to successfully perform all
the acts 1in a conseqguent, then the rule is said to be
successful, and its outcome propositions can be asserted as
being true. In the housebuilding rulé, an assertion that

John possesses the house he just constructed would be built.

But if a consequent fails, a different 1logic applies.
If John has 1laid his foundation, and built his walls, but
the walls collapse, then the last conseqguent proposition,
raising the roof, cannot be performed. The rule is said to
have failed, and the outcome predicates are negated. 1In the
housebuilding rule, an assertion that John does not possess

the house he was attempting to construct would be built.

Rule failure is an important concept with regard to
narratives. Many narratives consist of a series of episodes
in pursuit of a goal; often each episcde, except the last,
represents an instance of a failed script, since, if any
rule prior to the last succeeded, then the goal would have
been achieved and no further episodes would -have been
forthcoming, (unless a new goal were chosen). The mechanism
of rule failure 1is a natural one for analyzing this

narrative pattern.

4.0 GENERATION

Page 21

In this section the procedure for using
macrostructures, embodied in the EHC rule-form, to generate
stories, as well as a program, TELLTALE, for implementing

the procedure, will be discussed.

The paradigm used by TELLTALE for story generation is
similar to that used by Meehan (1976) in his TALESPIN
program, which wrote "metanovels”® concerning the
interrelationships, both physical and mental, of the motives
and actions of anthropomorphized animals possessing simple
behavior‘ patterns. It was Meehan's contention that a story
was an exposition of events that occur when a motivated
creature attempts to achieve some goal or fulfill some
purpose, such as satisfying a need or desire, solving a
problem, doing a job, etc. TALESPIN was essentially a
problem-solver that operated on a database consisting of
living entities, inanimate objects, and a set of assertions
(rules), typifying the relationships among them, and
descibing operations for changing those relationships. The
rules were organized into plans based on ;onceptual

relatedness, which aided in retrieval of specific rules.

Meehan emphasized the use of plans as a mechanism for

generating stories. Plan activation was a process of

Page 22

assigning a goal to a character and then calling up any

relevant plans that were indexed on this goal.

in the EHC rule the antecedent governs the ability of a
rule to be invoked. If a rule is considered to be a plan in
the Meehan sense above, then instead of indexing the rule by
its outcone propositions, it can Dbe indexed by 1its
antecedent if the antecedent contains information relating

to motivation. For example, the rule,

(MARRY-RULE A X TH Y)
< ((X IsA MAN) (¥ ISA WOMAN) (WANT A X TH
(MARRY A ¥ TH X))
> ((GO A X TO Y) (ASK A X TH Y IF (MARRY A X
TH X)) (ACCEPT A Y TH X))

>> ((MARRY A Y TH X))

is a rule that can be activated if some X, who must be a
man, WANTs to marry some Y, who must he a woman. Every rule
cshould contain some propositions in 1its antecedents that
restrict the set of objects that can be inserted into the

variables of the rule.

The last proposition in the antecedent, the WANT, is a
goal statement; it states that the MARRY-RULE <an be
invoked when one person wants to marry another. In the
process of generating a story, if a point is reached where a

man develops the goal of wanting to marry @ woman, the

Page 23

MARRY-RULE can be invoked in order to satisfy that want.

Since Propp it has been common linguistic practice to
describe a story +tree in a phrase-structure grammar. An
example of this is the work of Rumelhart (1975). Rumelhart
describes a simple set of rules for analyzing stories into

subordinate units. For example,

STORY -> SETTING + EPISODE
SETTING -> (STATES)

EPISODE -> EVENT + REACTION

is a description of the highest 1level of the story
structure. A story consists of a setting followed by an
episode, where the setting is a collection of states, and
the episode consists of an event followed by some reaction,
Rumelhart also outlined semantic interpretations for the
rules, to the effect that the setting ALLOWS the episode,
and that an event INITIATES a reaction. The semantic
constructs of the Rumelhart system are not necessary here,
since the causal connections are to be found in the
antecedents of the rules and need not be expiicitiy stated.

The corresponding EHC rules would be

(STORY) > ((SETTING) (EPISODE))

(SETTING) > ((STATE)})

Page 24

> {(STATE) (SETTING))

(EPISODE) > ((EVENT) (REACTION))

The actual syntactic rules used in the TELLTALE program
were slightly different, and are shown as part of the Rufolo
story rules in Appendix [D]. A subset of these syntactic
rules was used in the simpler fairytale story in Appendix

[a]l.

TELLTALE generates stories (sequences of propositions)
based on such rules, contained in its database, either under
user control or directed by the program itself. The
database is a semantic network of nodes created by building
a network of the case-predicate rules supplied by the user.
The input to TELLTALE is the root of a story tree, which
informs TELLTALE of the type of story which 1s to be
generated. The ocutput from TELLTALE 1is an instantiated
story tree whose terminals are the propositions of the text.
The program SUMMARIZE computes summaries from the story
tree. An example rule base can be found in Appendix [A] for
generating a set of fairytales. A sequence of propositions
for a story generated from that rulebase 1is shown in
Appendix [B]. Two summaries of the story are shown in

Appendix [C].

Page 25

The procedure for TELLTALE proceeds as follows. For
any dgiven node (proposition), if that node has no rules
concerning it in the database, then it either SUCCEEDs or
FAILs. If story control is in user mode, he is queried as
to whether he wishes the node to succeed or not, otherwise
the program decides. If node suceeds, an instantiated copy
is returned as value, otherwise the negation of the node {in

the form (NOT OF NCODE)}) is instantiated and returned.

If there is a rule form for this node in the rule-base,
then it is expanded. The node and the HEAD of the rule are
unified (by standard resolution techniques), and the
resulting variable bindings are substituted throughout the
antecedents, consequents and the outcome of the rule. The
antecedents are then stripped from the rule and each is
examined in turn until one of them succeeds, If all
antecedents fail, the rule cannot be applied and another
rule is tried, if one exists, or else NIL is returned. Each
proposition in an antecedent is examined by first ASKing if
it occurs in the database (i.e. has already been created
prior to the invocation of this rule, by some previously
instantiated rule). If this is not the «case, then the
procedure recurs on the proposition, expanding it in the
same manner described above for its father. As each
proposition of an antecedent is EXPANDed, if a successful
instantiation is returned, then the resulting bindings are

recorded and passed on to the remainder of the antecedent.

Page 26

If an entire antecedent succeeds, then the consequents
are stripped from the rule and examined. The same basic
procedure as outlined above is followed, with the following
exceptions: nc node that is examined 1s ASKed, since
conseqguents always represent new actioné being performed by
the program, and cannot already exist in the database. The
second exception stems from the natﬁre of a consequent
proposition as opposed to an antecedent proposition. The
failure of an antecedent proposition means that the rule
cannot be applied at all, whereas the failure of a
consequent proposition determines whether the rule returns

success or failure (a positive or negative outcome).

If a conseguent succeeds (ncone of 1its constituent
propositicons fail) then the outcome is stripped off and
bound, and each of its propositions 1is asserted to the
database. The node 1s then rebound with the bindings
recorded from the antecedent, conseguent and outcome that
succeeded and returned. If one of the propositions in a
conseguent fails, then the remainder of the propositions in
that conseguent are skipped, and another <consequent is
tried. 1If no further consequents exist, then the outcome is
stripped from the rule and bound, and then each of its
propositions negated and asserted. The node 1is then

rebound, then negated and returned.

Starting with the root, the program will execute until

Page 27

no more nodes remain to be expanded, because all have been
reduced to terminal propositions. A traversal of the
terminals of the resulting story tree will vyield the
propositional text of the story; any higher level traversal

will yield a summary of the story.

5.0 PARSING

This section describes a procedure, BUILDTALE, for

g
using macrostructures to parse stories. The goal of the
generator-parser system is to create a program capable of

understanding those texts that 1t can generate from a

rule~base. Diagrammatically

o o o s e e s ey e s v

RULE | 5 | SUM |TEXT!| PAR | | SUM |TEXT
BASE| GEN |TREE| MAR |PROP| SER |TREE| MAR |PROPS
> | ===>| IZE |===>] jm==>] IZE |====>
! | ! | 3 | | i
roa | i B | { Cc | i D |

oy e v o ot oy s o P . s areo

The tree that results from the story generator should yield
the same bottom-level terminal propositions as the tree that
results from the parsing of the terminal propositions of the
story, 1l.e. the output from part B in the diagram above
should equal the output from part D. The story trees may or
may not be identical, depending on whether the story grammar

is ambiguous.

Page 28

The philosophy of the understander can be summarized by

recalling a concluding statement by Rumelhart (1975)

"It is my suspicion that any automatic ‘story

parser’ would require... 'top-down'® global
structures..., but would to a large degree
discover them, in any given story, by the

procedures developed by Schank [1975].°7

The procedures developed by Schank emphasize the
"bottom-up" approach to story parsing. Starting with the
raw input data, emphasis is placed on integrating each
sentence into the developing narrative structure. The
structures used are scripts (and plans), and parsing
integrates propositions into scripts. The scripts form an
implicit episodic structure, but the higher order
relationships among the scripts are not generally made
specific {(i.e. what structures formed episcdes, setting

information, complications, resolutions, etc).

BUILDTALE is a program that combines the top~down and
bottom~-up approaches. As the parse progresses, BUILDTALE
attempts to integrate the terminal propositions into the
context of a story tree. It manipulates the terminals

bottom-up, integrating them into macrostructures, while it

Page 29

is building story structure nodes (STORY, SETTING, EPISCDE,
etc.) top-down. If BUILDTALE successfully parses the text
these two processes will "meet in the middle", forming a

complete story tree.

The BUILDTALE procedure proceeds as follows. A root
node is given to the BUILD function to be constructed.
Initially this node is the root of the story tree (STORY).
A global wvariable, STREAM, points to the next input
proposition that has not yet been integrated into the tree
(has not been marked as USED); initially this is the first
proposition in the text. If this proposition 1is to be a
nocde in the story tree a path from it to the root node
(STORY) must exist in the rule-base, 1i.e. the proposition
must be used in a rule that is itself used in a rule, etc.,
until a rule is reached that is used in the root node. Each
of the paths found with this property will be tried until

one succeeds in constructing an instance of the root node.

The paths are ordered by the size of the rule closest
to the terminal proposition in the path, i.e. the rule with
the largest number of propositions in its body (taking the
largest antecedent and the largest conseguent set plus the
cutcome set) is tried first. An attempt is made to map the
chosen rule into the text starting at the left-most unmarked

proposition.

Page 30

The rule body is examined in the order: antecedents,
conseguents, and outcome. Each proposition in an antecedent
is ASKed seguentially in the database. 1f it is found
(unnegated) then mapping continues, otherwise the left-most
unmarked proposition is matched aqainst the antecedent
proposition. If matching succeeds, the mapping of the
antecedent continues, otherwise the antecedent is rejected,
any propositions that were marked are unmarked, and the next
antecedent‘is tried. If no more exist then the rule being
tried cannot be applied, and another rule is examined. If
there are no more alternatives, then the root node fails and

NIL is returned.

An antecedent may also be rejected 1f one of its
propositions is logically negated, i.e. a proposition of
the form (HD ...) is found in the database instantiated as
(NOT OF (HD ... y), or vice versa. In such a case, the

logic of the previous paragraph alsc applies.

As each proposition in an antecedent matches, the
resulting bindings are recorded (i.e. variables are bound
to the constants in the text propositions) and bound through
the remainder of the antecedent. Wwhen an antecedent
succeeds in being matched the total binding record is bound
through the consegquent set. Processing continues with the
conseguents (in order by length) in the same manner as with

the antecedent, with two exceptions. FPirst, conseguent

Page 31

propositions are not ASKed in the dataéase, since they
represent new actions and cannot yet exist. 1Instead each is
matched against the left-most unmarked proposition in the
text, and the matched text proposition is marked as USED

when a successful match occurs.

Second, if a logically negated proposition is found in
the text stream, then a failed instance of the rule under
examination is built. The remainder of that consequent is
skipped, but the conseguent propositions already matched are
recorded, and another consequent is tried (any conseguents
in the rule that could not be applied previously are added
hack to the list of candidate conseguents). If no more
conseguents remain to be tried, then the outcome
propositions are negated and matched against the text

stream, and a failed instance of the rule is built.

If all the propositions 1in a conseguent match
successfully the recorded bindings are passed to the outcome
propositions, which are also matched, and the rule being
expanded 1is built (the head is bound and instantiated, and
linked to its instantiated body). If this head finishes the
path to the root node, then it is returned as value;
otherwise, we must build up the next node in the path from

the terminals to the root.

At this point a problem arises. Even though a rule has

Page 32

been built, the procedure may still have chosen the wrong
path to the root, and the effects of the build may have to
be undone later when this condition is recognized.
BUILDTALE has to save the context of the build; it does
this by always descending in the LISP séack whenever a build
is made that does not terminate a root path. The procedure
takes the rule head just built and makes it,~effectively,
the left-most unmarked proposition in the input text, and
then calls itself recursively with the same root as its
argument. If, at a later point in the parse, BUILDTALE
cannot match further, it will back up to its last build

point and undo it, and attempt another path if one exists.

BUILD can also be called at ény point in the matching
of an antecedent or conseguent proposition, when that
proposition does not exist either in the database (for
antecedents) or in the text stream (for either), but does
have rules that can be applied to it. For example, in the

rule
(STORY) > {(SETTING) (EPISODE})}

after the SETTING has been built, an attempt to match
EPISODE in the input stream will (probably) fail, and BUILD
will call itself with (EPISODE) as argument. If the build
succeeds a derivation tree with an instantiation of EPISODE
for root will be returned, and the STORY node can then be

built. An outcome proposition cannot avail itself of this

Page 33

capability, since outcomes cannot contain rules.

Starting with the root of a story tree (STORY) and an
unmarked string of text propositions, BUILDTALE executes

until one of three conditions occurs:

1) if the procedure exhausts the proposition 1list
before the STORY node has been built, then it
fails.

2) if the procedure builds an instance of STORY
but there still remain unmarked propositions, then
it fails.

3) if an instance of STORY is built and the text
stream is empty, the the procedure returns the

instantiated root.

A terminal-level traversal of the resulting tree will
yield the original input text proposition stream; higher

level traversals will yield summaries of the text.

6.0 THE RELATIONSHIP BETWEEN GENERATING AND PARSING

There are several major differences between the
BUILDTALE and TELLTALE procedures. First, whereas the
parser is restricted to propositions from the input text for

its terminals, the generator is free to build a terminal at

Page 34

any time. Second, the generator is free at each step to
choose any rule that will match a proposition it is trying
to expand, and also to use any of a rule's antecedents or
consequents in any order. The parser must be careful in its
choice of rules and in how it examines éhe antecedents and
consequents in a rule, always examining them in order of
decreasing length, to insure that it does not build a story
tree and find left-over unmarked text propositions when

done.

The generator builds a proposition by first
instantiating 1its antecedent, conseqguent, and outcome, and
then attaching them to the instantiated head. The generator
knows at all times the father of the proposition it is
instantiating; in fact it knows every ancestor of that
proposition between it and the root, since it operates

strictly top-down.

The parser operates primarily as a left-corner
bottom-up procedure, with overall direction supplied by some
top-down processing. Therefore, when the parser builds a
structure, it cannot be sure at that time that the structure
is indeed the correct one to be integrated into the tree at
that point, 1i.e. 1t does not yet know the correct path to
the root. The parser must, therefore, save the information
of when, where and in what context it makes its build

decisions, so that they can be undone (or at least ignored)

Page 35

if they are later found to be in error.

Some previous parsers solved this problem by resorting
to higher-level languages like CONNIVER and PLANNER, paving
the price in higher computational costs; A conscious effort
was made in this program to avoid the expense of resorting
to a higher-level language by having LISP perform the
necessary bookkeeping to handle the backtracking involved in
undoing an incorrect choice (build). In BUILDTALE, the
bookkeeping is accomplished by pushing context information
onto the LISP control stack: usually, when a build is
performed , instead of returning {(popping the LISP stack), a
further descent is made in order to construct the next
proposition. If a build is later found to be in error, then
the failing function automatically causes LISP to back up in
its stack to the point where the build was made and undo it,
since all the information that was around when the first

decision was made to build is still present cn the stack.

These differences should not obscure the very real
similarites between the two processes. TELLTALE and
BUILDTALE use the same functions to analyze the antecedents,
conseqguents and the outcome of a rule. 1In fact, the "basic”
control structure of TELLTALE is & special case of the
control structure of BUILDTALE. The difference between the
two occurs at build time. In BUILDTALE, when a node in the

tree is bullt, a check is made to see if this node matches

Page 36

the root of the derivation tree being built. This may not
be the «case since the node may be many levels lower in the
tree than the root in guestion, and these levels will need
to be built before the derivation tree is complete. Of
course, if the node should match the root, then it is

returned,

TELLTALE, on the other hand, never descends more tﬁan a
single level in the tree at a time. When a build is
performed, it will always be the root of the derivation tree
being processed. The node and the root always match, and
the node is returned. At build time, when BUILDTALE decides
whether to recur (call itself to add the next higher level
in the tree) or to pop the stack (returning the derivation

tree root), TELLTALE will always pop the stack.

This implies that generation is a special case of
parsing. This fact was borne out during the implementation
of the system. TELLTALE was the first procedure to be
written, and the eventual TELLTALE/BUILDTALE control
structure for processing antecedents, conseguents, and
outcomes was debugged and tested by generating many story
trees, BUILDTALE grew out of TELLTALE by adding the
build-time recursion/backup mechanism to the control

structure.

The relationship between generation and parsing is one

Page 37

of the most significant features to grow out of the EHC rule

system.

7.0 EXTRACTING SUMMARIES FROM STORY TREES

One of the principle reasons for the choice of the
Kintsch and van Dijk macrostructure theory was the resulting
property of summarizability; the ability to produce
coherent summaries is one mark of intelligence in a parser.
The summarizer produces various strings of propositions from
the story tree. One such string 1s composed of the
terminals and represents the complete story. Any seguence
of propositions output by the summarizer is a well-formed
input to the parser. The system is thus able to parse all

proposition seguences it can generate.

Since the summary feature is inherent in the trees as
they are given to the summarizer, a simple level traversal
algorithm would have been sufficient to generate useful
output. However, this would have resulted in needless
repetition of propositions {since some are checked
repeatedly by the antecedents of the rules and have pointers
to them at many places in the tree). Therefore, the
summar izer remembers what it has already output in the

summary, SO as never Lo repeat itself.

Page 38

Another area of repetition is in the outputting of
attributes for objects in the story. To avoid repeating an
object's attributes, the summarizer keeps a list of objects
that have already appeared in at least one proposition, and
whenever it encounters in a new proposiéion an object not on
this list, it outputs it with all of its properties and then
places it on the list of expanded objects. Since no time
ﬁarkers are put on an object's pfoperties, they are all
printed out at once, even if some of those properties are
not attached to the object until mu;h later in the story;
this is a weakness in the procedure that can be corrected by

the introduction of time-markers.

One attribute of story trees is that, at their higher
nodes, one can read off the structure of the story. For
example some story consists of a setting followed by three
episodes. As a summary, "setting plus three episodes” is
not very illuminating; therefore the summarizer has the
ability to recognize and not output these story structure
nodes in the final summary. Story structure nodes are those
nodes whose ©proposition head (not to be confused with rule
head) are marked with a number sign (see examples in
Appendix [A]). The nodes are treated like all other nodes
to the tree building procedures, but the summarizer uses the
number sign cue to always descend below the nodes so marked
to print their descendents, no matter what level summary 1is

being computed.

Page 39

There is also the guestion of summarizing the
macrostructures, which are nodes marked with double
asterisks (see examples in Appendices). By definition,

these nodes are expandable, i.e., they have a rule for
expand ing them in the rule-base) . Macréstructures are not
marked with a NOT if they fail; only simple propositions =
terminals - are. However, whether a script achievéd its
goal or not 1is wvital information to be included in any
reasonable summary produced from the tree. Therefore, when
summarizing a macrostructure, the summar izer outputs both
the head (the macrostructure pattern) and its outcome. If
the script failed to achieve its goal, the outcome will be

negated.

Finally, the summarizer outputs only those propositions
it recognizes as "actives" (those whose tokens are marked
with a terminal asterisk); it nevers outputs "statives”
(nodes without the asterisk or number sign markers). The
reason for this is that a stative ‘always describes the
attribute(s) of some object, and can therefore be outputted
the first time that that obJject appears in an active

proposition.

The summarizer is an algorithm that is given a story
tree and a level indicator, scans the nodes of the tree at

that level, and applies the following rules to each node:

1) if the node is marked with a number sign, then

Page 40

summarize its sons.

2) if the node has alreaéy been outputted, then
skip it.

3) if the node is marked as a script, output its
head followed by its outcome proéositions.

4) if the node is a stative, then skip it.

For each object in a proposition to be output, the following

rule is applied:

5) if the object has not appeared in a previously
outputted propesition print it and all its

attributes; otherwise, just print the node.

Some example summaries appear in Appendices [C, E].

An initial version of an English language generator has
been written that applies a set of rules to the output of
the summarizer to produce well-formed English texts (Hare
and Correira, 1978). This generator uses the rule forms and
the nature of the summarizer output to produce English texts
displaying the attributes of: reasonable paragraphing and
sentence connectivity, elision of noun groups and verbs, and

pronominalization of nouns.

8.0 DISCUSSION AND CONCLUSIONS

Page 41

The task of text processing regquires solutions to
several important problems. The computational theory for
macrostructures using Extended Horn Clauses was designed
with the following goals in mind. A computational model
should hasve a degree of psychological wvalidity, both ¢to
provide a humanly useful representation of textual content
and organization and to insure that the task of rule-writing
is as natural as possible for the human grammar-producer.
It should be conceptually simple, in both design and
implementation, taking advantage of similarities between
generation and parsing, and itvshould offer a rigorous data
structure that is uniform and avoids the growth of ad hoc

large~-scale structures.

The computational macrostructures realized by the EHC
notation succeed 1in many ways in satisfying these goals.
They are based ¢n a theory o©f macrostructures that, as
Kintsch and van Dijk have given evidence for, appears to
resemble the processing performed by human readers above the
sentential 1level for texts. The resulting grammars are not
dictated or constrained by the syntax of the EHC so much as

they are by the experiential bias of the rule-writer.

The Story Tree is proposed as a logical way to organize
these macrostructures, with the terminals of a particular
story tree comprising the actual textual propositions, and

the interior nodes containing the instantiated heads of

Page 42

rules (corresponding to macrostructures).' The story tree
has the summary property; 1if the tree is truncated at any
level, then a "meaningful" (coherent) summary of the
original text can be read off directly. The generality of
the macrostructure propositions increases as one nears the
level of the root (going from the level of specific actions
to the scripts that contain them, to the story categories
that contain these scripts), which can be considered as the

title for the text at its terminals.

The concept of rule failure takes the EHC out of the
strictly logical system of the normal (Kowalski-type) Horn
clause logic, since failure in a normal logic system means
something different from failure here. In narratives,
failure should be recorded, since it is one source of
"interest" in the resulting story; striving, failing, and
striving again is a common attribute of simple narratives.
These failure points, and their conseguences, have to be
recorded in the story tree (whereas, in normal logic
systems, failure points are invisible to the final result)
and, furthermore, they restrict the choice of paths that can

reasonably be expected to emanate from the failure.

This failure mechanism is based on a rather simplistic
model of human behavior, where individuals act on single
motives, pursued sequentially. A more comprehensive .model,

and one necessary for processing longer text structures such

Page 43

as novels would include facilities for complex ~ and
interacting motivations, as well as rules for ordering them
into a hierarchy. It would also allow for shifting the
narrative focus from one character's motivation structure to
another's. Finally, the failure mechanism is tailored to
the purpose of narratives involving entities exhibiting
motivated behavior. Other text forms, such as technical or
encyclopedia articles, would probably not reguire the

failure mechanism to be parsed or generated.

As a result of programming experience the relationship
between the processes of generating and parsing text was
noted. The TELLTALE/BUILDTALE procedures form a single
program with a decision switch for choosing between modes;
The major computational difference between them stems from
the nature of the two modes, TELLTALE being entirely a
top-down process, and BUILDTALE being mostly bottom-up,
which regquires that BUILDTALE incorporate a back-up facility
in case of error. This back-up capability was successfully
embedded into LISP, making it unnecessary to resort to a
higher-level language, saving time, space and complexity in

the program.

The underlying approach in the program is that of a
problem-solver, as was also true of Meehan's story-writer.
A rule-base, organized as a Story Tree, is used to dJenerate

a particular, instantiated, story tree by an augmented (via

Page 44

the failure - mechanism) inference procedure. Each
instantiated tree is treated as a context, consisting of the
events, objects, and their relationships, relating to a
particular story. The facts and rules in the rule-base
serve as a model for the possible states.in the microworld
formed by that story tree. These states are categorized
using standard linguistic entities, such as SETTING,

EPISODE, COMPLICATION, and RESOLUTION.

The problem-solving approach, coupled with the story
grammar concept, is a natural one for processing most forms
of narratives. Analogous systems of rules could be used for
processing other large text forms, although the categories
involved would be different. ~ For example, oﬂe template for

an encyclopedia article can be described by the rule
(ARTICLE)} > ({INTRODUCTION)(OUTLINE)(EXPANSION)(SUMMARY))e

By changing the rules describing the overall syntactic
structure of the text, and adding the necessary specific
knowledge, the same technigues could be used to generate and

parse encyclopedia articles.

A summarizing algorithm was also described‘ for the
story tree. Rather than simply reading off left-to-right
the propositions at a level in the tree, extra rules were
added to allow the summarizer to avoid clumsiness in its

output. By avoiding the repetition of antecedent

Page 45

propositions that are constantly being checked, the
summarizer streamlines its summaries and also aids in the
TELLTALE-to-BUILDTALE processing chain by making it
unnecessary to check for redundant information when
BUILDTALE is making 1its tree. The' summarization of a
macrostructure consists of the head of the rule embodying
it, plus the outcome of the rule. This enables the reader
to determine whether the rule succeeded or failed 1in

achieving its goal.

The result is a procedure capable of understanding
wexts that it can generate. One way of improving the system
is to allow partial, or "fuzzy" matching of rules to input
texi proposition seguences, since it is fregquently the case
the macrostructures are incompletely realized in real life,
and it is also the case that human story-writers will omit
some seguences of propositions, provided they are extremely
familiar to the expected reader and need not be specified.
This capability would reguire that the parser be able to
distinguish those propositions in a rule that are critical
to its presence being detected in a piece of text, and those
that c¢an be missing without effecting the presence of a

rule.

One prominant feature of the generating and parsing
procedures is the amount of wvariable binding that takes

place. Variables are bound forward when a rule is invoked;

Page 46

each proposition in the antecedent, consequent and cutcome
of a matching rule have to be bound forward, and also
contribute bindings of their own to the ongoing matching
process. Finally, the results of all this matching are
bound back into the rule head before it~can be returned. 1In
fact, calculating bindings and passing them around occupied
a goodly percentage of the total computational effort in a
program run. The problem (such as it is) stems from the use
of purely 1local wvariables in all rules in the rule-base.
Some so:t of global variable feature, such as the register
notion in the ATN parser could cut processing time
considerably. Registers could also reduce the amount of
redundant testing ¢f simple conditions in the antecedents of

the rules.

A reasonable extension to BUILDTALE woculd be to enable
it to parse texts that 1t cannot generate (at least not
prior to first encountering the text). One solution path
for this goal is to give the BUILDTALE procedure the
capability of making up its own rules. This is primarily a
problem of deciding coherence, i.e. when a proposition fits
into a growing rule structure {a potential macrostructure),
as well as when a rule begins and ends. This task remains
to be solved before a truly general text parser can be

achieved.

Page 47

NOTES ON THE APPENDICES

Several facts concerning the Appendices should be
noted. The rules are all written 1in a case predicate
notation (Simmons [1977]). The general form for such a

predicate is
(HEAD ARC1 VALUEl ... ARCn VALUEn)

The HEAD of a case predicate is either a verb form or an
object:; because no formal lexicon was maintained for the
TELLTALE/BUILDTALE program, verb forms were marked with an
asterisk and objects were left unmarked. The ARCs are
standard case relations, such as Agent, THeme, LOCation,
INSTance, etc., although no attempt was made to be strictly
correct linguistically with their every wuse, and a few
relations were created for convenience sake. The VALUE can

be either a verb form, an object, or another case predicate.

The case predicates used in the program were written to
enhance readability. For example, in the fairytale story

(Appendix [B]), the case predicate
{(WANT*1 TO POSSESS1 A GEORGE1l TH MARY1)

can be rendered into English as "George wants to possess

Mary®. The seguence

(GO*3 A GEORGEl TH IRVINGI1)

Page 48

(SLAY*1 A GEORGE1l TH IRVINGI1)

(RESCUE*1 A GEORGE1l TH IRVING1)

can be rendered as "George goes to Irving. Gecorge slays

Irving. George rescues Mary.”.

In some instances, information was added to a predicate
because it was necessary for the English language text
generator (Hare and Correira). For example, the initial

predicate in the fairytale story,

(LIVE*2 A (GEORGE ISA KNIGHT1 SEX MALEZ PERSON T MOD BRAVEL)

LOC (CAMELOT1 ISA PLACEl) DURING (ONCEUPONATIMELl ISA TIMEL))

can be rendered into English as "Once upon a time in a place
called Camelot there lived a brave knight named George."” The
case arcs PERSON and SEX were used in the English generator
to determine pronouns and capitalization. These markers do
not occur in the Rufolo story (Appendices [D, E]) because it

was never run through the English generator.

Two other markers were also used with the verb forms.
The first, the number sign, was used by the summarizer and
its effect is described in section 7; the number sign was
treated like an asterisk (verb form) by the program. The
second notation, the double asterisk, was a device used by
the author to denote macrostructures (propositions that were
expandable) from the simple text propositions (marked by the

single asterisk); they were treated as verb forms by the

Page 49

program,

Finally, 1in several places, there occur variables
marked with an exclamation point (!). This notation was
used in rules containing more than one inStance of objects
from a single 'class, where the marked objects had to be
replaced by objects different from any other object used to
£fill the other variablé positions for that class in the

rule.

APPENDIX A

RULE~BASE FOR FAIRYTALE

(FAIRYTALE*) > ((FAIRYSTORY** A G0241 TH G0242)))
(FAIRYSTORY** A G0241 TH G0242)

o NS e,

(SETTING A G0241)

(EPISODE A G0241 TH G0242))

>> ((LIVE* A G0241 TH G0242 MANNER HAPPILYEVERAFTER)))
((SETTING A G0244) < ((LIVE* A G0244 LOC G0248 DURING
G0249)))

((LIVE* A G0245 LOC GO0246 DURING G0247) < ((CHAR INST
G0245) (G0246 ISA PLACE) (G0247 ISA TIME)})

({CHAR INST G0248)

(60248 ISA KNIGHT SEX MALE PERSON T))
ISA PRINCE SEX MALE PERSON T))

(GO248 MOD BRAVE))

P I VA
(]
(o]
3]
i
<o

(G0248 MOD HANDSOME)))
((EPISODE A G0249 TH G0250) < ((MOTIVE A G0249 TH GO0250)

(ACTION A GO0249 TH G0250)))

((MOTIVE A GO0251 TH G0252) < ((DESIRE* A GO0251 TH G0252)) >
((WANT* TO* POSSESS A G0251 TH G0252)))

((DESIRE* A GO0253 TH G0254)

<
((CHAR INST G0253) (G0254 ISA PRINCESS SEX FEMALE PERSON T)

(G0254 MOD BEAUTIFUL))

<
((CHAR INST GO0253) (G0254 ISA HOLYOBJECT POBJ T) (G0254 MOD

LOST)))

((ACTION A G0255 TH G0256)

>

((ASK** TO* MARRY A G0255 TH G0256))

(RESCUE** A G0255 TH G0256 FROM G0262 })

(QUEST** A G0255 TH G0256))

N e N e N

((PRAY** PART FOR A G0255 TH G0256)})
((ASK** TO* MARRY A GO0257 TH GO0258)

RULE-BASE FOR FAIRYTALE Page A-2

<

((WANT* TO* POSSESS A G0257 TH G0258) (G0258 ISA PRINCESS
SEX FEMALE PERSON T))

>

((GO* PART TO A G0257 TH G0258)

(ASK* A G0257 TH G0258 IF (MARRY* A G0258 TH G0257})
(ACCEPT* A G0258 TH G0257))

>> ((MARRY*! A G0258 TH G0257))) -

((RESCUE** A G0260 TH G0261 FROM G0262)

<

(WANT* TO* POSSESS A G0260 TH G0261) (G0261 1ISA PRINCESS)
(THREATEN** A G0262 TH G0261))

>

((GO* PART TO A G0260 TH G0262)

(SLAY* A G0260 TH G0262)

(RESCUE* A G0260 TH G0261))

>> ((MARRY* A G0261 TH G0260)))

((THREATEN** A G0264 TH G0265)

<

((G0264 ISA DRAGON ANIMATE T) (G0264 MOD EVIL) (G0265 1ISA
PRINCESS) (WANT* TO* POSSESS A G0264 TH G0265))

>

((CARRY** PART OFF A G0264 TH G0265 TO G0273)))

((CARRY** PART OFF A G0266 TH G0267 TO G0285)

<
((G0266 ISA DRAGON) (G0267 ISA PRINCESS) (G0285 ISA DEN POBJ
T))

>
((GO* PART TO A G0266 TH G0267) (CAPTURE* A G0266 TH G0267)

(FLY* A G0266 TH G0267 PREP (TO! TH G0285)})))
((QUEST** A G0268 TH G0269)

(CHAR INST G0268) (G0269 ISA HOLYOBJECT MOD LOST))

(GO* PART TO A G0268 TH ORACLE)

REVEAL* A ORACLE TH PLACE OF G0269)

(G0269 LOC PLACE)

(GO* PART TO A G0268 TH PLACE)

(FIND* A G0268 TH G0269))

>> ((POSSESS* A G0268 TH G0269)))

((PRAY** PART FOR A G0271 TH G0272)

<

((CHAR INST G0271) (WANT* TC* POSSESS A G0271 TH GO0272)
(G0283 ISA GOD PERSON T SEX MALE)

(G0282 1ISA CHURCH POBJ T})

>

((GO* PART TO 2 GO0271 TH G0273)

(KNEEL* A G0271 PREP (IN TH (FRONT PREP (OF TH ALTER})))
(PRAY* A G0271 PREP (TO TH G0283) PREP (FOR TH G0272))
(GRANT* A G0283 TH (PRAYER POSSBY GO0271)}))

<
(
>
(
(

GO* PART TO A G0271 TH G0273)
PAY* A G0271 TH G0286 EXPECT (INTERCEDE* A G0286 PREP (WITH
TH G0283) PREP (FOR TH GO0271)))

>
((G0286 ISA PRIEST SEX MALE PERSON T)
(
(

RULE~BASE FOR FAIRYTALE

(PRAY* A G0286 TO G0283 FOR G0272)

(GRANT* A G0283 TH (PRAYER POSSBY G0286)))

>> ((POSSESS* A G0271 TH G0272)))

(JOHN ISA PRINCE SEX MALE PERSON T)

(GEORGE ISA KNIGHT SEX MALE PERSON T)
(PRINCECHARMING ISA PRINCE SEX MALE PERSON T)
(LANCELOT ISA KNIGHT SEX MALE PERSON T)
(PARSIFAL ISA KNIGHT SEX MALE PERSON T).
(MARY ISA PRINCESS SEX FEMALE PERSON T)
(GUENEVIERE ISA PRINCESS SEX FEMALE PERSON T)
(HOLYGRAIL ISA HOLYOBJECT POBJ T)
(SACREDCROSS ISA HOLYOBJECT MOD PIECE POBJ T)
(CAMELOT ISA PLACE)

(MONTSALVAT ISA PLACE)

(ONCEUPONATIME ISA TIME)

(IRVING ISA DRAGON ANIMATE T)

(HERMAN ISA DRAGON ANIMATE T)

(CARMEN ISA DRAGON ANIMATE T)

Page A-3

APPENDIX B

TEXT OF FAIRYTALE

(FAIRYTALE*1)

((LIVE*2 A (GEORGEl ISA KNIGHT! SEX MALE2 PERSON T MOD
BRAVEL)

LOC (CAMELOT ISA PLACEl) DURING (ONCEUPONATIMEl ISA TIMEl))
(DESIRE*2 A GEORGEl TH (MARYl ISA PRINCESS1 SEX FEMALEL
PERSON T

MOD BEAUTIFUL1))

(WANT*1 TO POSSESS1 A GEORGEl TH MARY1)

(GO*1 PART TOl A GEORGEl TH MARY1))

(ASK*1 A GEORGEl TH MARY1l IF (MARRY*1 A MARYl TH GEORGEl))
(NOT OF (ACCEPT*1 A MARY1l TH GEORGEL))

(NOT OF (MARRY*2 A MARYl TH GEORGEL))

(WANT*2 TO POSSESS2 A (IRVING ISA DRAGON1 ANIMATE T MOD
EVIL1) TH MARY1)

(GO*2 PART TO3 A IRVINGl TH MARY1)

(CAPTURE*1 A IRVINGl TH MARY1)

(FLY*1 A IRVINGl TH MARY1l PREP (TO TH (DENl1 ISA DEN2 POBJ
T)))

(GO*3 PART TO3 A GEORGELl TH IRVINGI)

(SLAY*1 A GEORGE1l TH IRVINGI)

(RESCUE*1 A GEORGEl TH MARY1)

(MARRY*4 A MARY1l TH GEORGEL)

(LIVE*3 A GEORGEl TH MARY1l MANNER HAPPILYEVERAFTER))

APPENDIX C

SUMMARIES OF FAIRYTALE

(FAIRYTALE*1)

((LIVE*2Z A (GEORGEl ISA KNIGHT1 SEX MALEZ PERSON T MOD
BRAVEL)

LOC (CAMELOT1 ISA PLACEl) DURING (ONCEUPONATIMEl ISA TIMEL))
(DESIRE*2 A GEORGELl TH (MARY1l ISA PRINCESS1 SEX FEMALEL
PERSON T

MOD BEAUTIFULL))

(WANT*1 TO POSSESS*1 A GEORGEl TH MARY1)

(GO*1 PART TOl A GEORGEl TH MARY1)

(ASK*1 A GEORGEl TH MARY1l IF (MARRY*1 A MARY1 TH GEORGELl))
(NOT OF (ACCEPT*1 A MARY1l TH GEORGE1l))

(NOT OF (MARRY*2 A MARY1 TH GEORGEl))

(WANT* TO POSSESS2 A (IRVINGl 1ISA DRAGON1 MOD EVIL1) TH
MARY1)

(CARRY**2 PART OFF1 A IRVING1 TH MARY1l TO DEN1)

(GO*3 PART TO3 A GEORGE1l TH IRVING1)

{SLAY*1 A GEORGEl TH IRVING1)

(RESCUE*1 A GEORGE1l TH MARY1)

{MARRY*4 A MARY1l TH GEORGEl)

(LIVE*3 A GEORGEl TH MARY1 MANNER HAPPILYEVERAFTER1))

(FAIRYTALE*1)

((LIVE*2 A (GEORGEl ISA KNIGHT1 SEX MALEZ PERSON T MOD
BRAVE])

LOC (CAMELOT1 ISA PLACEl) DURING (ONCEUPONATIMEl ISA TIMELl))
(DESIRE*2 A GEORGELl TH (MARY1 ISA PRINCESS1 SEX FEMALEL

PERSON T

MOD BEAUTIFULL))

(WANT*1 TO POSSESS1 A GEORGEl TH MARY1)

(ASK**2 TO MARRY1l A GEORGEl TH MARY1)

(NOT OF (MARRY*2 A MARY1l TH GEORGEl))

(RESCUE**2 A GEORGEl TH MARY1l FROM (IRVINGl1 ISA DRAGON1
ANIMATE T

MOD EVIL1))

(MARRY*4 A MARY1l TH GEORGELl)

(LIVE*3 A GEORGEl TH MARY1l MANNER HAPPILYEVERAFTER1))

APPENDIX D

RUFOLO STORY

(LIVE*2 A (RUFOLOl ISA PERSONl FIRSTNAMEI (LANDOLFO2 1ISA
FIRSTNAMEl)) LOC (RAVELLOl CONT (AND1 OF (MERCHANTI1 Is5a
MERCHANT2 MOD (AND2 OF (RIC H1) (ENTERPRISING1)) NBR
MANYZ LOC RAVELLOl) (GARDEN1 ISA GARDEN2 NBR MANY3 LOC
RAVELLOL) (FOUNTAIN1 1ISA FOUNTAIN2 NBR MANY4 LOC
RAVELLOl)) PARTOF (TOWN1 ISA TOWNZ2 NBR MANYl MOD SMALL1
LOC (COAST1 ISA COAST2 MO D BEAUTIFULl BETWEEN (AND3 OF
(REGGIOI1) (GAETAl)) HASPRT (REGION1 LOC (SALERNOl PROX
NEAR1) NAME AMALFIl) LOC ITALY1l)) HOMEOF RUFOLO1) DURIN
G (TIMEl ISA TIME2))

(POSSESS*1 A RUFOLO1 TH (WEALTHI1 Isa WEALTH2 VAL
CERTAINAMOUNTI1))

(SATISFY*1 A RUFOLOl TH WEALTH1 MODAL NOT1)

(WANT*1 A RUFOLOl TH (DOUBLE*1 A RUFOLOl1 TH WEALTH1))

(MAKE*1 A RUFOLOl TH (CALCULATIONS1 MOD MERCHANTS1 TYPE
USUALL)) A

(BUY*1 A RUFOLOl TH (SHIP1 ISA SHIP2))

(BUY*2 A RUFCLOl TH (GOODS1 ISA GOODS2))

(LOAD*1 A RUFOLOl TH SHIP1l WITH GOODS1)

(SAIL*1 A RUFOLOl TH SHIP1l TO (CYPRUS2 ISA ISLANDI))

(DISCOVER*1 A RUFOLOl TH (SHIP3 NBR MANYS MOD DOCKEDI POSSBY
(MERCHANT 3 NBR SOME1l MOD OTHERL)))

(CARRY*1 INSTR SHIP3 TH (GOODS3 SAMEAS GOODS1))

(NOT OF (SELL*1 A RUFOLOl TH GOODS1 FOR (PRICE1 1ISA PRICEZ
MOD GOOD1))

(NOT OF (MAKE*2 A RUFOLO1l TH (PROFIT1 MOD GREAT1)))

(BRING*1 INSTR COMPETITIONl TH RUFOLO1 TO (RUINI1 MOD
VERGE1))

(REDUCED*1 TH RUFOLOl TO SEMI-POVERTY1)

(DISTRESSED*1 TH RUFOLO1) :

(DECIDE*1 A RUFOLOl TH (ORO OF (MAKEGOOD*1 A RUFOLOL1 TH
LOSSES1 MEANS PRIVATEERING1) (DIE*1 TH RUFOLO1)))

(SETOUT*1 A RUFOLOl MANNER RICHZ2 FROM RAVELLOl CAUSE {WANT*2
A RUFOLOl TH (RETURN*1 A RUFOLO1l TO RAVELLOl MANNER
POOR1 MODAL NOT2)))

(SELL*2 A RUFOLO1 TH SHIP1)

(BUY*3 A RUFOLOl TH (SHIP4 ISA SHIP5 TYPE PIRATEl MOD
LIGHT1}))

(FITOUT*1 A RUFQOLO1 TH SHIP4 WITH (EQUIPMENT1 MOD
BESTSUITEDL;)

RUFQOLO STORY Page D-2

(SEIZE*1 A RUFOLOl TH (SHIP6 NBR MANY6 POSSBY (TURK2 1ISA
NATIONALITY1l)))

(DOUBLE*2 A RUFOLO1l TH WEALTHI1)

(POSSESS*2 A RUFOLOl TH (WEALTH3 ISA WEALTH4 VAL (TWICE*1 R1
WEALTH3 R 2 WEALTHL1)))

(PERSUADE*1 A RUFOLO1l TH (SATISFIED*1 A RUFCLOl TH WEALTH3))

(DECIDE*2 A RUFOLOl TH (GOHOME*1 A RUFOLO1l TH WEALTH3))

(SAIL*2 A RUFOLO1l TH WEALTH3 FOR RAVELLOl MEANS SHIP4)

(PROPEL*1 A (ROWERS1 MOD VIGOROUS1) TH SHIP4)

(BLOW*1 INSTR GALEl DURING EVENINGl LOC ARCHIPELAGOl)

(PUTINTO*1 A RUFOLO1l TH SHIP4 LOC (BAYl 1ISA BAY2 LOC
(ISLAND2 MOD SMAL L2)))

(PUTINTO*2 A (GENOESEl ISA GENOESE2 NBR SEVERAL1 MOD (AND4
OF (RAPACIO Usl) (MONEYGRABBING1)) FROM
CONSTANTINOPLEl) TH (CARRACK1 ISA CARRACK2Z NBR TWOl
POSSBY GENOESEl) LOC BAY1)

(BLOCK*1 A GENOESEl TH (PATH1 MOD ESCAPEl OF RUFOLO1l)})

(DESIRE*1 A GENOESEl1 TH (AND5 OF (RUFQOLOl ISA PERSON]
FIRSTNAMEl LANDO LFQ2) (SHIP4 ISA SHIP5 TYPE PIRATEL
MOD LIGHT1)) RESULTOF (REALIZE*1 A GENOESE] THAT
(POSSESS*3 A RUFOLOl LOC SHIP4 TH (LOCOT1 MOD MUCH1))))

(SURROUND*1 A (PARTY1 COMMANDBY GENOCESEl) TH SHIP4)

(POSSESS*4 A PARTY1 TH (AND6 OF (CROSS-BOWSl) (WEAPONS1 MOD
DEFENSEl)))

(LAUNCH*1 A GENOESEl TH (CUTTERI NBR SEVERAL2))

(DRAW*1 INSTR CURRENT1 TH CUTTER1 TO SHIP4)

(CAPTURE*1 A (MENl1 LOC CUTTER1) TH SHIP4 AIDBY (ROWER1 NBR
MANY7 OF SH IP4) RESULT (ESCAPE*1 TH NOONE1l))

(PUTABOARD*1 A MEN1 TH RUFOLO1 LOC (CARRACK3 MEMBEROF
CARRACK1 CONT RU FOLO1))

(ROB*1 A MEN1 TH SHIP4 MOD FULLY1)

(SINK*1 A MEN1 TH SHIP4)

(WANT*3 A RUFOLO1 TH (ESCAPE*2 A RUFOLOl FROM GENOESEL))

(SAIL*3 A GENOESEl TH RUFOLO1 FOR DESTINATIONL MEANS
CARRACKI)

(BLOW*3 INSTR GALE3 DURING EVENING3)

(SEPARATE*1 INSTR GALE3 TH CARRACK1)

(THROW*1 INSTR GALE3 TH CARRACK3 ONTO (SANDBANKIL LOC
CEPHALONIAL))

(CRASH*1 TH CARRACK3 LIKE (THROW*2 TH BOTTLEl LOC WALL1))

(STREWABOQUT*1 INSTR GALE3 TH (AND7 OF (PLANKS1l) (CHESTS1)

(SPARS1)))
(TRY*1 TO (AND1C OF (GRAB1) (CLINGTOl)) A (ANDI11 QF

(EVERYONEL) {(RUFOL 01 ISA PERSON1 FIRSTNAMEL
LANDOLFO02)) TH WRECKAGEL)

(FRIGHTEN*1 TH RUFOLOCI1)

(CLING*1 A RUFOLO1 TH SPARI1)

(WANT*4 A RUFOLOl TH (RESCUE*1 A GOD1 TH RUFOLOL MANNER

SOMEHOW1))
(SET*1 A RUFOLCl1 TH SPARI MANNER ASTRIDEL)
(TOSS*1 A (AND12 OF (SEAS1) (WINDS1)) TH RUFOLC1 MANNER
(AND13 OF (HIT HER1) (THITHER1)) UNTIL DAYBREAKI1)
(SEE*1 A RUFOLOl TH (AND14 OF (WATERL) (CLOUDS1) (CHESTZ2

PROPERTYOF RU FOLOl)})
(FLOAT*1 TH (CHEST2 PROPERTYCF RUFOLOl) LOC (VICINITY1l OF

RUFOLO STORY Page D=3

RUFOLOl) MAN NER EVERYSOOFTEN1)

(FEAR*1 A RUFOLOl THAT (AND15 OF (COLLIDE*l1 TH CHEST2Z WITH
RUFOLOl) (H URT*1 INSTR CHESTZ2 TH RUFOLOl)) SO (PUSH*1
A RUFOLOl TH CHEST2 AWAYFRO M RUFOLCL))

(SEND*1 A (SQUALL1 MOD SUDDEN1) TH CHESTZ INTO RUFOLOL
MANNER HARD1)

(OVERTURN*1 TH SPAR1 RESULT (GOUNDER*1 TH RUFOLO1))

(SWIM*1 A RUFOLOl TH CHEST2 REASON (TOOFAR*1 TH SPAR1))

(DRAG*1 A RUFOLOl TH RUFOLOl ONTO CHEST2)

{(SPRAWLACROSS*1 A RUFOLOl1 TH CHEST2 RESULTOF (HOLD*1 A
RUFOLOl TH CHES T2 MANNER STEADYl MEANS (ARMS1 POSSBY
RUFOLO1))) ~

(SURVIVE*1 A RUFOLOl DURING (AND16 OF (DAYl MOD WHOLEL)
(NIGHT1 MOD FO LLOWING1)))

(STARVE*1 TH RUFOLO1)

(THIRST*1 TH RUFOLO1)

(ARRIVE*2 A RUFOLOl LOC (BEACH2 LOC (ISLAND4 NAME CORFU2))
RESULTOF (O Rl OF (GOD2) (POWER1 OF WINDI1)))

(CLEAN*1 A (WOMANl ISA WOMANZ2) TH (POT1 NBR MANY10 POSSBY
WOMAN1) MEAN S (AND17 OF (SAND1l) (SALTWATER1)))

(SEE*2 A WOMAN1 TH RUFOLO1l RESULT (ALARMED*1 TH WOMAN1))

(RECOGNIZE*1 A WOMANl THAT (BE*1 A RUFOLO1l TH MAN1))

(WADE*1 A WOMAN1 INTO SEAl)

(DRAG*2 A WOMANl TH RUFOLOl TO SHORE1 MEANS (HAIR1 POSSBY
RUFOLO1}))

(PLACE*1 A WOMAN1 TH CHEST2 ONTO (HEAD1 POSSBY (DAUGHTER1 OF
WOMAN1)))

(CARRY*2 A WOMAN1 TH RUFOLOl TO VILLAGEl MANNER GENTLY1)

(PUT*1 A WOMANl TH RUFOLOl INTO (BATH1 MOD HOT1))

(RUB*1 A WOMAN1 TH RUFOLOl WITH (WATER2 MOD HOT1))

(THAWOUT*1 TH RUFOLO1)

(TAKE*1 A WOMAN1 TH RUFOLOl OUTOF BATHI)

(RECOVER*1 A RUFOLOl TH (STRENGTH1 MCD SOME2))

(GIVE*1l A WOMAN1 TO RUFOLO1l TH (AND20 OF (WINEl) (FOODl1 MOD
SWEET1)))

(NURSE*1 A WOMAN1 TH RUFOLO1l DURING (DAY2 NBR SEVERAL3))

(RECOVER**1 A RUFOLOl TH (STRENGTH2 MOD REMAINDERI1))

(GIVE*2 A WOMAN1 TH CHEST2 TO RUFOLO1)

(TELL*1 A WOMAN1 TH RUFOLOl1l THAT (LEAVE*1 TH RUFOLOl MODAL
SHOULD1))

(REMEMBER*1 A RUFOLO1l TH CHEST2 MODAL NOT3 BUT (ACCEPT*1 A
RUFOLOl TH CHEST2))

(HOPE*1 A RUFOLOl1 TH (CONTAIN*1 LOC CHEST2 TH (VALUABLElL MOD
SOMEWHATI1)))

(DISCOVER*2 A RUFOLOl TH (BE*2 TH CHESTZ2 WEIGHT LIGHT2)
RESULT (DISAPP OINTED*1 TH RUFOLOL1))

(FORCE*1 A RUFOLOl TH CHEST2 RESULT (OPEN*1 TH CHEST2)
DURING (ATHOME* 1 TH WOMANl MODAL NOT4))

(DISCOVER*3 A RUFOLOl TH (CONTAIN*2 LOC CHEST2 TH STONEZ2})

(HAVE*1 A RUFOLOl TH (KNOWLEDGEl OF JEWELS1))

(REALIZE*2 A RUFOLO1l TH (VALUEl OF STONE2))

(PRAISE*1 A RUFOLOl TH (GOD3 ISA GOD4) FOR (COME*1l A GOD3 TH
RESCUE*2 OF RUFOLOL1l))

(WANT*5 A RUFOLOl TH (RETURN*2 A RUFOLO1 TO RAVELLOl WITH

STONEZ))

RUFOLO STORY | Page D-4

(WRAP*1 A RUFOLOl TH VALUABLEl IN (RAGS1 MOD OLDl))

(EXCHANGE*1 A RUFOLOl1 TH CHEST2 WITH WOMAN1l FOR SACKI1)

(THANK*1 A RUFOLOl TH WOMANl FOR SERVICES1)

(TAKE*2 A RUFOLOl TH BOAT1 TO BRINDISI1)

(GOALONG*1 A RUFOLOl TH COAST3 TO TRANI1)

(MEET*1 A RUFOLOl TH (MERCHANTS2 MOD CLOTH1 FROM RAVELLOl))

(TELL*2 A RUFOLO1l TH MERCHANTS3 ABOUT (ADVENTURES1 OF
RUFOLO1 RBRUT (MEN TION*1 A RUFOLO1 TH CHESTZ MODAL
NOTS)))

(FEEL*1 A MERCHANTS3 TH RUFOLOl MANNER SORRY1)

(GIVE*3 A MERCHANTS3 TO RUFOLOl TH CLOTHES1)

(LEND*1 A MERCHANTS3 TH HORSE1l TO RUFOLO1)

(SEND*2 A MERCHANTS3 TH RUFOLO1 TO RAVELLOl WITH COMPANY1)

(ARRIVE*3 A RUFOLOl TH RAVELLOL)

(INSPECT*1 A RUFOLOl TH (CONTENT1 OF SACK1))

(REALIZE*3 A RUFOLOl1 IF (SELL*3 A RUFOLOl TH VALUABLEl THAT
(DOUBLE*3 A RUFOLO1l TH WEALTH1)))

(SELL*4 A RUFOLOl TH VALUABLEl FOR WEALTH2)

(SEND*3 A RUFOLOl TH (SUM1 MOD TIDYl PARTOF WEALTH2Z) TO
WOMAN1 REASON (REWARD*1 A RUFCLO1 TH WOMAN1))

(SEND*4 A RUFOLOl TH (SUM2 PARTOF WEALTH2) TO MERCHANTS3
REASON (REWAR D*2 A RUFOLOl1 TH MERCHANTS3))

(KEEP*1 A RUFOLOl TH (REMAINDER2 OF WEALTH2))

(INTEREST*1 A RUFOLOl TH COMMERCEl MODAL NOLONGER1)

(LIVE*3 A RUFOLOl MANNER SPLENDOR1 DURING (REMAINDER3 OF
(DAY3 OF RUFO LO1)))

APPENDIX E

A SUMMARY OF THE RUFOLO STORY

(LIVE*2 A (RUFOLOl ISA PERSONl1 FIRSTNAMEl (LANDOLFO2 1ISA
FIRSTNAMEl)) LOC (RAVELLOl CONT (AND1 OF (MERCHANT1 ISA

MERCHANT2 MOD (AND2 OF (RIC HI1) (ENTERPRISING1)) NBR
MANY2 LOC RAVELLOl) (GARDEN1 ISA GARDENZ2 NBR MANY3 LOC
RAVELLO1) (FOUNTAIN1 ISA FOUNTAIN2 NBR MANY4 LOC

RAVELLO1)) PARTOF (TOWN1l ISA TOWN2 NBR MANYl MOD SMALLI1
LOC (COAST1 ISA COAST2 MO D BEAUTIFUL1 BETWEEN (AND3 OF
({REGGIOl) (GAETAl)) HASPRT (REGION1 LOC (SALERNOl PROX
NEAR1) NAME AMALFI1l) LOC ITALY1l)) HOMECF RUFOLOl) DURIN
G (TIMEl ISA TIME2))

(POSSESS*1 A RUFOLO1 TH (WEALTH1 ISA WEALTH2 VAL
CERTAINAMOUNT1))

(SATISFY*1 A RUFOLOl TH WEALTH]1 MODAL NOT1)

(WANT*1 A RUFOLO1l TH (DOUBLE*1 A RUFOLOl TH WEALTHI1))

(TRADINGVOYAGE**2 A RUFOLO1 TH (GOODS1 ISA GOODS2) TO
(CYPRUS2 ISA ISL AND1))

(NOT OF (DOUBLE*1 A RUFOLOl TH WEALTH1))

(BRING*1 INSTR COMPETITIONl TH RUFOLO1 TO (RUINL MOD
VERGE1))

(REDUCED*1 TH RUFOLOl TO SEMI-POVERTY1)

(DISTRESSED*1 TH RUFOLO1)
(DECIDE*1 A RUFOLOl TH (OR0O OF (MAKEGOOD*1 A RUFOLOl TH
LOSSES]1 MEANS PRIVATEERING1) (DIE*1 TH RUFOLO1)))
(SETOUT*1 A RUFOLO1l MANNER RICH2 FROM RAVELLOl CAUSE (WANT*2
A RUFOLC1I TH (RETURN*1 A RUFOLO1l TO RAVELLOl MANNER
POOR1 MODAL NOT2)}))

(PIRATEVOYAGE**2 A RUFOLO1l TH WEALTH1 MEANS (SHIP4 ISA SHIPS
TYPE PIRA TE1l MOD LIGHT1))

(DOUBLE*2 A RUFOLO1l TH WEALTHI1)

(POSSESS*2 A RUFOLO1l TH (WEALTH3 ISA WEALTH4 VAL (TWICE*1l Rl
WEALTH3 R 2 WEALTH1)))

(POSSESS**5 A RUFOLO1l TH SHIP4)

(PERSUADE*1 A RUFOLOl TH (SATISFIED*1 A RUFOLOl TH WEALTH3})

(DECIDE*2 A RUFOLOl TH (GOHOME*1 A RUFOLOl TH WEALTH3))

(SAIL*2 A RUFOLOl TH WEALTH3 FOR RAVELLOl MEANS SHIP4)

(PROPEL*1 A (ROWERS1 MOD VIGOROUS1l) TH SHIP4)

{STORM**3 R1 RUFOLOl R2 SHIP4)

(BLLOCK*1 A (GENOESEl ISA GENOESE2 NBR SEVERALl MOD (AND4 OF
(RAPACIOUS 1) (MONEYGRABBING1l)) FROM CONSTANTINOPLEL)
TH (PATH1 MOD ESCAPEl OF RU FOLO1l))

A SUMMARY OF THE RUFOLO STORY Page E-2

(CAPTURE**2 A GENOESEl TH RUFOLO1)

(WANT*3 A RUFOLOl TH (ESCAPE*2 A RUFOLOl FROM GENOESE1l))
(SAIL*3 A GENOESEl TH RUFOLOl FOR DESTINATIONI MEANS
(CARRACK]1 ISA CAR RACK2 NBR TWOl POSSBY GENCESEl))

(STORM**4 R1 CARRACK1l R2 RUFOLO1)
(CLING*1 A RUFOLOl TH SPAR1)
(SET*1 A RUFOLOl TH SPAR1 MANNER ASTRIDEL)
(TOSS*1 A (AND12 OF (SEAS1) (WINDS1l)) - TH RUFOLOl MANNER
(AND13 OF (HIT HER1) (THITHER1)) UNTIL DAYBREAKI1)
(SEE*]1 A RUFOLO1l TH (AND14 OF (WATER1l) (CLOUDSl) (CHEST2
PROPERTYOF RU FOLOl))) ‘

(FLOAT*1 TH (CHEST2 PROPERTYOF RUFOLOl) LOC (VICINITYl OF
RUFOLOl) MAN NER EVERYSOOFTEN1)

(FEAR*1 A RUFOLOl THAT (AND15 OF (COLLIDE*1 TH CHEST2 WITH
RUFOLO1l) (H URT*1 INSTR CHEST2 TH RUFOLCl)) SO (PUSH*1
A RUFOLO1 TH CHEST2 AWAYFRO M RUFOLO1l))
(SQUALL**2 TH (AND21 OF (RUFOLOl 1ISA PERSON1 FIRSTNAMEL
LANDOLFO2) (SP ARl) (CHEST2 PROPERTYOF RUFOLO1l}))
(SURVIVE*1 A RUFOLOl DURING (AND16 OF (DAYl MOD WHOLEl)
(NIGHT1 MOD FO LLOWINGL)))

(STARVE*1 TH RUFOLO1)

(THIRST*1 TH RUFOLOL)

(WANT*4 A RUFOLOl TH (RESCUE*1 A GOD1 TH RUFOLOl MANNER
SOMEHOWL1))

(RESCUE**2 A (WOMAN1 ISA WOMAN2) TH RUFOLO1)

(LUCKYF IND**2 A RUFOLOl IN CHEST2)

(WANT*5 A RUFOLO1l TH (RETURN*2 A RUFOLOl1 TO RAVELLOl WITH
STONEZ2))

(GOHOME**2 A RUFOLO1l TH STONE2 TO RAVELLOCL)

(INTEREST*1 A RUFOLO1l TH COMMERCEl MODAL NOLONGERI1)

(LIVE*3 A RUFOLO1l MANNER SPLENDOR1 DURING (REMAINDER3 OF
(DAY3 OF RUFO LO1)))

Bibliography

BIBLIOGRAPHY

Bobrow, D. G. and Collins, A. 1975. Representation and
Understanding. New York: Academic Press.

Bobrow, D. G. and Raphael, B. 1974. "New programming
languages for AI research". Computing Surveys, Vol.
6, No. 3, pp. 155-174.

Bobrow, D. and Winograd, T. 1977. "An overview of KRL, a
knowledge representation language." Cognitive Science,
Vol. 1, No. 1, January, 1977, pp. 3-46.

Charniak, E. and Wilkes, Y. 1976. Computational
Semantics. New York: North-Holland Press.

Grosz, B. 1977. "The representation and use of focus in
dialogue understanding.” Technical Note No. 151,
Memlo Park, California: Stanford Research Institute,

Hare, D. and Correira, A. 1978. "Generating connected
natural language from case predicate story trees.”
unpublished manuscript, May, 1978.

Hendrix, G. G. 1976. "Partitioned networks for modelling
natural language semantics.” Dissertation. Austin,
Texas: Department of Computer Sciences, The University
of Texas.

Kintsch, W. and van Dijk, T. 1975. "Recalling and
summarizing stories.”™ unpublished manuscript, May,
1975.

Kowalski, R. 1974. "Logic for problem solving." Memo 75.
Edinburgh, Scotland: Department of Computational
Logic, University of Ed inburgh.

Lehnert, W. 1977, "Question answering in a story
understanding system.” Cognitive Science, Vol. 1, pp.
47-73.

Meehan, J. 1976, "The metanovel: writing stories by
ceomputer.” Dissertation. New Haven, Connecticut:
Department of Computer Sciences, Yale University.

Meyer, B. 1975. The Organization of Prose and its Effects
on Recall. Amsterdam, The Netherlands: North-Holland
Press.

Minsky, M. 1875. "A framework for representing knowledge.”
In The Psychology of Computer Vision. P. Winston ed.
New York: McGraw-Hill,

Norman, D, A. and Rumelhart, D. E. 1975, Explorations

Bibliography
in Cognition. San Francisco: W. H. Freeman and
Company.

Rumelhart, D. E. 1975. "Notes on a schema for stories.”
Bobrow, D. and Collins, A.eds.

Schank, R. C. 1975. *The structure of episodes in
memory." Bobrow, D. and Collins, A.eds.

Schank, R. €. 1975a. Conceptual Information Processing.
New York: North-Hclland Press.

Schank, R. and Abelson, R. 1877. Scripts, Plans, Goals
and Understanding. New York: Wiley Press.

Simmons, R. F. 1978. “Rule~-based computations on
English.” in Pattern-Directed Inference §ystems.
Hayes-Roth, R. and Waterman, D.eds. New York:

Academic Press. (in pr ess) .

Simmons, R. F. and Correira, A. 1878. "Rule forms for
verse, sentences and story trees.® in Associational
Networks. (in press).

Simmons, R. F. and Chester, D. 1977. “Inferences in
quantified semantic networks". Proceedings of 5IJCAI.

van Dijk, T. A. 1975. "Recalling and summarizing complex
discourse.” unpublished manuscript. amsterdam, The
Netherlands: Department of General Literary Studies,
University ¢f Amsterdam.

Winograd, T. 1972. Understanding Natural Language. New
York: Academic Press.,

Woods, W. A. 197¢. "rransition networks grammars for
natural language analysis®. CACM, Vol. 13, pp.
591-602.

Young, R. 1977. "Text Understanding: a survey."” Natural
Languages Report No. 33. Austin, Texas: Department
of Computer Sciences, The University of Texas. {in
press, American Journal of Computational Linguistics).

