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SEMANTIC NETWORKS: THEIR COMPUTATION AND USE FOR
UNDERSTANDING ENGLISH SENTENCES

I. Introduction

Networks are mathematical and computational structures composed
of sets of nodes connected by directed arcs. A semantic network is one
that purports to represent concepts signified by natural language words
and phrases, as nodes connected to other such concepts by a particular
get of arcs called semantic relations. Primitive concepts in this
system of semantic networks are word-sense meanings. Primitive semantic
relations are those that hold between the verb of a sentence and its
subject. object and prepositional phrase arguments as well as those
that underly common lexical, classificational and modificational
relations. A complete statement of semantic relations would include
all those relations that would be required in a complete classification
of a natural language vocabulary.

We consider the theory and model of semantic nets as a computational
theory of superficial verbal understanding in humans. We believe that
semantic nodes represent human verbal concept structures and ﬁhat
semantic relations connecting two such structures represent the linguistic
processes of thought that are used to combine them into natural language
descriptions of eventéﬁﬁ Some psycholinguistic evidence supports this
theory (Quillian 1968. Rumelhart & Norman, 1971, Collins & Quillian, 1971);
but a long period of research will be necessary before enough facts are

available to accept or reject it as valid and useful psychological theory.



We are on much stronger ground when we consider semantic networks
as a computational linguistic theory of structures and processing
operations required for the computer understanding of natural language.
The nodes model lexical concepts and the semantic relations represent
combining processes that are useful or necessary for analyzing English
strings, for paraphrastic transformations, for question answering
operations and for generating meaningful English sentences. Semantic
nets are simple even elegant structures for representing aspects of
meaning of English strings in a convenient computational form that
supports useful language processing operations on computers.

As linguistic theory, semantic nets offer a convenient formalism
for representing such ideas as ''deep structure', 'underlying semantic
structure', etc. The content of the structure represented in semantic
nets depends on the conventions of the linguistic theory that is adopted.
Qur semantic networks will be seen to reflect a linguistic theory of
deep case structures originated by Fillmore (194%) and further developed
by Celce-Murcia (147{). The processes undertaken on the nets to generate
language strings provide a theory of how language can be generated from
underlying semantic structures. Computational processes for analyzing
language into semantic nets provide a precise description of a theory
of how some aspects of sentence meaning can be understood in terms of
a well-defined semantic system. The term "understanding” is given
precise operational meaning in terms of the programs that recognize or
generate paraphrases and answer questions. The extent of the understanding

is measurable in terms of the ease or difficulty of the question



answering tasks, the size of vocabulary and the efficacy of the system
in handling complexities and subtleties of English structure.

Computational theories when backed up by working programs introduce
a measure of logical rigor into the relatively soft-science areas of
linguistics and psychology. A minimally satisfactory computational
theory of language requires that some set of natural language strings
be generated and understood in terms of formal elements of that theory
such ags lexical structures, grammars and semantic representations. A
working set of computer programs that carry out recognition, paraphrase,
question answering and language generation tasks proves the consistency
and demonstrates the degree of completeness of the theory.

Despite their logical rigor, computational theories may be weak
or powerful in terms of the amount of language phenomena they account
for; they may be elegant or cumbersome; they may be alien or closely
related to human thought processes as we think we understand them; they
may be in or out of fashion with respect to psychology, linguistics or
computer science. Ideally, they complement purely linguistic or
psychological theories by formulating and testing precise descriptions
of the structures and processes desctibed more loosely in the theory.
In the case of natural language systems, computational theories have
had to go beyond the bounds ordinarily set by linguists, psychologists
or logicians on their respective disciplines, and develop an inter-
discipliﬁary theory of verbal communication involving conceptual structures
underlying language; lexical, syntactic, semantic operations for

recognizing and generating English strings: and logical and mathematical




operations for determining the equivalence of two or more semantic
structures,
The theory and model of semantic nets presentéd in this chapter
ig still incomplete, limited in its present development to single
sentences. truncated at a certain conceptual depth., unspecified with
regard to many of the complex phenomena of English, and unexplored
with respect to other languages. In its favor, it encompasses such
major subtasks of the verbal communication process as the generation
and recognition of English strings and their understanding in terms of
limited capability to answer questions and to generate and recognize
paraphrases. As modelled in a working set of LISP 1.5 programs it is
precisely stated. internally consistent and potentially useful to guide
further research and for various applications to information retrieval,
computer aided instruction, and other language processing operations.
The system is described in éhe context of an abstract model of
the communication process which is developed in the next section. It is
based on a linguistic theory of deep case structures and verb paradigms
that is outlined in Section III. Section IV examines the computational

and logical structures involved in semantic networks.

Sections V , VI and VII respectively,
are devoted to the methods of computing semantic structures from sentences,
generating sentences from semantic structures, and answering questions by
transforming semantic structures. A final discussion section is provided

to wrap up some loose ends and suggest areas for additional research.



II. An Abstract Model of Communication

The main human use of language is to communicate aspects of the
feelings and ideas of one person to omne or more others. The simplest

model of this communication process is diagrammed in Figure 1.

INSERT Figure 1 about here

Thus simply shown the diagram is largely vacuous with respect to
meaning. If we develop a model of what is meant by "ideas and feelings",
another for ''language' and a set of functions to map language onto ideas
and ideas onto language we then have at least a mathematical theory of
the communicative use of language. Semantic network structures form
the model of ideas. A syntactic and semantic description (i.e., a
grammar and a lexicon) of allowable ordering rules of words and phrases
to make acceptable English sentences is an important aspect of the
model of language. Equally important are the rules for mapping words,
phrases and sentences into the semantic net structure of the model of
ideas and for mapping the ideas into language strings.

If the model of ideas is also to be used to represent the processes
of rational thought, then it must be able to represent the fact that one
idea may be the consequence of another or of a set of other ideas. For
example, "tiger' implies "mammal'. This is one essential feature of
problem solving, theorem proving and question answering behaviors. It
also is the basis for recognizing that two sentences are paraphrases

that (from some point of view) mean essentially the same thing. This
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Figure 1: Diagram of Communication Process

The symbol, = , is read as 'maps onto'.



feature of the model is carried in implicational rules and functions
that map one semantic structure into another.

The ideas may be mapped into other language férms than English
or other natural languages. We can define a language to describe a
structured sequence of actions and a mapping function from ideas into
that language. The behavior of a robot hand in selecting and stacking
blocks, for example, has been described by Winograd (Chapter ) as a
language composed of permitted sequences of simple operators as
Grasp(x), Move(x,y) Put(x,y) etc. Semantic representations of such
imperative sentences as "Put the large green pyramid on top of the
blue block'" are mapped into strings of this operator language which are
then interpreted by a computer (in complex ways) to result in the
appropriate actions by a (simulated) mechanical hand.

The content of visual representations is also representable as a
language string of edging, cornering, and shading elements. This
string is mapped onto a semantic structure of images that has been
represented in semantic net form by'iﬁgéig (197%) and Preparata (a7 ).
It is presumably the case that there is a language to describe internal
organic responses (i.e., feelings), and mapping functions that show
correspondences between semantic net representations of ideas and feelings.

The mappings into ideas of events presented visually, as verbal
strings, of a structure of organic reactions, or of a series of actions
can all be represented linguistically in terms of a grammar and a lexicon

that transform a language string into a semantic representation which



is taken as a model of underlying ideas. The semantic representation
of these events can be mapped out into any appropriate language using
the corresponding grammar and lexicon of that 1angﬁage.

Ideally we hypothesize one central cognitive structure of semantic
net form into which perceptions of speech, vision, action and feeling
can map, and from which can be generated gpeech, physical actions,
hallucinations, feelings, and other thoughts. So far, however, we have
only studied semantic nets to represent a class of English sentences.

At a very abstract level this model of communication can be simply
represented as three mappings:

M1 (language, ideas)

M2 (ideas, ideas)

M3 (ideas, language)
This abstract statement provides only an illusion of simplicity, since
the processes M1, M2, and M3 are incredibly complicated. Learning them
is a major occupation of humans for most of their lives. Analyzing
and programming them involves much of the content of linguistics,
psychology, logic, computational linguistics and other sciences depending
on the nature of the ideas that are studied.

The mappings ML and M3 are in a complex inverse relation. For a
given pair of language string and idea, L T, if M1(L) = I, then M3(I) =1L'
such that M1(L') 2 I. 1In other words, a given semantic structure, I,
that is derived from a language string, L, will generate another language
string, L', which is either identical to L or a paraphrase of L and
whose semantic structure is analyzed back into I. In this theory, L

and L' are not restricted to strings from the same language or the same

modality (i.e., speech, vision, feeling, etc.).
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The mapping. M2, of ideas onto other ideas clearly encompasses
many ideational processes. Perhaps the lowest level is simple association
where one structure can be substituted for another if they have an
element in common. Thus the ideas, "I saw a tree' and '"trees grow'
are reléted by the identical concept, 'tree''. Mappings can be in terms
of paths from one idea to another; e.g., "a tree is a plant" that could
be described as Superset(tree) = plant. Vastly more complex mappings
are commonly used for detecting paraphrase or answering questions such
as:

Quest: Did Napoleon lose the battle of Waterloo?
Ans: Wellington defeated Napoleon at Waterloo.

. The detailed statement of this mapping is a complex relation between

the concepts '"lose'” and ""defeat' which is stated in Section VII of

this chapter.

This abstract model of communication proposes that there is a

single cognitive representation of ideas regardless of whether they
originated as visual, auditory or tactile perceptions or whether they
were derived from verbal descriptions in English, French or Hindustani.
At the present level of development of semantic network representations
of meaning, emphasis has been concentrated on English sentences. The
structures presented in this chapter are shown to be largely sufficient
for accounting for understanding at the level of answering factual
questions and accounting for verbal paraphrases. Schank presents a
deeper level of ideational representation in Chapter and Winograd
shows a level of ideational representation (not in semantic network form)
that is deep enough to mediate between language and action in the robot's

world of blocks.



TII. Linguistic Structure of Semantic Nets

A sentence is a string of ambiguous word symbols that implies a
complex structure of underlying concepts. A semantic analysis of a
sentence transforms this string into a structure of unambiguous concept
nodes interconnected by explicit semantic relations. The concept nodes
in this system of semantic nets are taken as lexical wordsense meanings
and the semantic relations are variously deep case relations that connect
nominal concepts to verbs, and conjunctive, modifier, quantifier and
classifier relations that connect and specify concepts.

Deep Case Structure of Verbs: Our semantic representations of

sentence meanings are based partially on a linguistic theory of deep
case structures as developed by Celce-Murcia (1971) deriving from
earlier work by Filmore (/%) and Thompson ($47:1). 1In its essence, this
theory provides for each sentence an underlying structure of a verb, its
modality and its nominal arguments. A phrase structure grammar can be
used to describe this underlying structure as follows:

S -— Modality + Proposition

Modality —» Tense, Aspect, Form, Mood, Modal, Manmer, Time
Proposition —> Vb + (CASEARGUMENT)*

Vb —»run. walk, break, etc.

CASEARGUMENT -—> CASERELATION + [NPIS]

NP —> (prep) + (DET) + (ADI)* + (N) + N + (sjnp)
CASERELATION —>CASUALACTANT, THEME, LOCUS, SOURCE, GOAL.

- 10 -




Figure 2a shows a tree diagram of case structure and 2b expands the

definitions of the elements comprising the modality.

INSERT Figure 2 about here

The modality carries detailed information concerning tense, form,
truth value, manner, time and syntactic form of the sentence. It can
be seen in Section VI to serve as a blueprint for generating a particular
syntactic form of sentence from a semantic proposition. The Proposition
is a verb that dominates a set of noun phrase or sentence arguments,
each of which is in a definite named case relation to the verb.
Celce-Murcia argues convincingly that all arguments of the verb
can be classified as members of five deep case relations; namely, Causal
Actant, Theme, Locus, Source and Goal. In a related case structure
system Chafe (1970) prefers several different case names including Agent,
Patient, Benefactor, etc.,, as proposed by Filmore and other case structure
theorists. We have chosen to follow the naming conventions suggested by
Celce-Murcia. A simple sentence such as 'Mary wore a sweater" gives the
following propositional structure:
Wear: LOCUS Mary, THEME a sweater.
A more complicated example, "John broke the window with a hammer', has
the following propositional structure:
Break: CAl John, Theme the window, CA2 a hammer.
This example shows that two Causal Actants (CAL, CA2) may be present

in a single sentence. The sentence, "An ape is an animal" can be
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interpreted as having two themes, as follows:
Be: Tl an ape, T2 an animal.
Two loci can be seen in "Mary wore a sweater in the park".

A fair degree of familiarity with this and other syvstems of case-
structure naming conventions is required before people come to agreement
in assigning names to propositional arguments. At this early period
in the development of the theory, it is quite possible that other naming
conventions will be generally adopted and that more objective criteria
will be developed for identifying the role of arguments in a proposition.

Verbs are assigned to classes called paradigms in accordance with
the way their deep case relations are allowed to be ordered in surface
strings. For example, "break' belongs to the ergative paradigm that
allows the following patterns of surface strings for the active voice:

John broke the window with the hammer.

John Broke the window.

The hammer broke the window.

The window broke.
Each of these variations is generated with argument ordering and deletion
operations from the following propositional structure:

Break: CAl John, T the window, CA2 a hammer.
The process of generating such sentences requires that the modality be
specified and an appropriate surface ordering rule be selected. The
modality for the above set is as follows:

MODALYTY: TENSE Past, VOICE Active, FORM Simple,
ESSENCE Positive, MOOD Declarative.

Unspecified values for Aspect. Modal, Manner and Time indicate null



representations in the surface string. The selection of a paradigmatic
ordering rule depends on very complex considerations such as choice of
subject emphasis, deletions of arguments because of context, embedding
environment etc, Paradigmatic ordering rules for the ergative class
verb are as follows:

(CAL,VACT, THEME, CA2)

(CA2,VACT, THEME)

(THEME, VACT)

(THEME, VPAS, CAl,CA2)

(THEME, VPAS, CAZ,CAD)

(THEME, VPAS, CAl)

(THEME, VPAS, CA2)

(THEME, VPAS)
If the Modality is marked for Emphatic, Progressive, Imperative, or
Interrogative, the choice and ordering of elements of the verb string and
of nominal arguments will differ within the application of rules such as
the above. Details of this generation process are presented in Section VI,

Like transformational theory, this one proposes a deep structure

underlying each embedded sentence, but the deep case structure can be
seen to meet our requirement that the semantic analysis of a sentence
result in a structure of unambiguous concepts connected by explicit semantic
relations. Unambiguous concepts are provided by the selection with
various contextual restrictions of particular word-sense meanings that
map onto the lexical choices. The small set of case designators name
specific semantic relations between the verb and its arguments. The
transformational deep structure, in contrast, provides only syntactic
relations to connect the elements of a structure,

The Celce-Murcis theory also suggests that what we have seen as

varied sense meanings of a verb can now be accounted for as varied



implications of a given event-class that the verb designates, under the
differing circumstances signified by different choices of semantic
classes of arguments. This notion is rather difficult to understand
at first reading. For example, the verb, '"run" is taken to designate
one event class -- that of rapid motion -~ in all of the following
environments:
John ran to school.
John ran a machine.
The machine ran.
The brook ran.
This verb belongs to a reflexive-deletion paradigm where the theme is
deleted if it corresponds to the CAl. Thus the propositional structure
of the first example is as follows:
Run: CAl John, T John, Goal to school.
During the event, the Theme incurs rapid motion with the instruments of
motion associated with that Theme, namely legs ‘and feet. Similarly, in
the running of a machine or of a brook, the Themes, '"machine' and
"brook" incur the rapid motion with their customary instruments; respectively,
motors and gravity. The first two examples specify "John" as the animate
Causal Actant, while the latter two leave the causal actants unspecified.
The result is that the semantic definition of "run" is informally
approximated by the following:
Run: THEME (incurs rapid motion)
CAl (animate instigator)
CA2 (instrumental cause of motion)
GOAL (condition of cessation of motion)

The development of this line of thought for numerous verbs offerg an

attractive area of research in the implicational meanings in language.



The present level of understanding of semantic net structures achieves
syntactic simplicity and computational advantages from expecting a
gingle meaning for a verb (excepting homographs), but is not yet deep
enough to use this form of definition in question answering and other
applications.

The theory is also consistent with recent linguistic suggestions
(Jacobs & Rosenbaum 1968) that adjectives be treated similarly to verbs.
In deep case structure, an adjective can be represented as a verb with
the Modality marked Adjective, and a2 one argument proposition. Thus,

""a red dress' might receive the following structure:

Red: MODALITY...Adjective, THEME a dress.

Similarly, a prepositional phrase such as "the book on the table" might
be expressed:

Be: MODALITY...NP, THEME the book, LOCUS on the table,
Nominalized verbs such as '"defeat™ in "Napoleon's defeat at Waterloo”
might be represented as:

Defeat: MODALITY.,.NP, THEME Napoleon, LOCUS at Waterloo.
The nesting of embedded sentences in this theory has been explored by
Celce-Murcia (1971) who shows that a structure such as shown in Figure 3

can be used.

INSERT Figure 3 about here

These are all attractive but still incompletely developed aspects

of the theory of deep case structures that have influenced our conventions
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Suffer

MODAL LOC1 L0C2
THEME

Tense Past Napoleon defeat Waterloo
Mood Declarative
Essense Posgitive Def Def
MODAL THE
Mood NP Napoleon Waterloo
Manner final of
def def

Figure 3. Proposed Deep Case Analysis of

"Napoleon suffered final defeat at Waterloo'



for semantic network representations of sentence meanings. We have so

far adopted the case structure representation for verbs and their arguments,
and the use of paradigm classes and embedding conventions for verbs. We
have not yet chosen to treat adjectives and noun phrases in the manner

just outlined although it is probable that the task of answering difficult
questions will soon prove the advisability of doing so.

Semantic Representations for Case Arguments: This subsection

develops the conventions used in semantic networks for representing the
meanings of words in general, nouns, NPs, adjectives, adverbs, prepositional
phrases, conjunctions. etc.
Words: The word is a convenient unit in dealing with printed text
in that it is easily distinguishable and is used as a basis for ordering
the lexicon. If we think of the lexicon as a set of word-sense meanings
each composed of syntactic and semantic data then each such meaning can
be taken as a concept or an idea. Each meaning in the lexicon maps
onto one or more character strings or words)and each word represents
one or more meanings in the lexicon. Each meaning in the lexicon has a
unique name which is a number prefixed by L, for example, L57, L1072, etc.
The contextual meaning of & word in a semantic network is represented
by a name such as Ci, Cj, etc., where i and j are unique numbers. This
name is connected by the TOKen relation to a particular word-sense
meaning. The primary function of & word in context is to refer to a
particular sense meaning in.order to meke that meaning available for use
in understanding the events described by & sentence. An example of this

basic semantic structure is:



Cl TOK apple
In this expression "apple' is printed for human communication to represent
some node such as 123 which is the name of a lexical structure containing
the syntactic category, noun, a set of features such as NBR-singular,
SHAPE-spherical, COLOR-red, PRINTIMAGE-apple,THEME*- eat, etc. These
features are consulted for syntactic and semantic operations by parsers,
generators and question answering systems.,

Inflectional Suffixes and Auxiliaries: Singular and Plural forms

and tense and agreement markings are usually carried as suffixual
elements of the word. They may be discovered either by direct lookup
of the full word form in the lexicon, or by a suffix stripping logic
such as that described by Winograd in Chapter . Every noun is characterized
in a semantic net with the relation NBR whose values are Singular, Plural
or both. Thus for "apples', the net shows,

C1 TOK apple, NBR Pl
A DETerminer relation is also required on noun structures and it is
discussed in a later paragraph.

Suffixes and auxiliaries provide much of the information required
in the Modality structure. An example sentence with a simple proposition
and a very complex modality will illustrate the way the modality information
is signified.
Could Tohn have been courting Mary falsely last year?

The semantic structure for this sentence is shown below.



¢l TOK Court. CAl (John), THFME (Mary), MODALITY c2.
C2 TENSE Past, VOICE Active, FORM Progressive, ASPECT Perfect,
MOOD Interrogative, MODAL Can, MANNER (Falsely), TIME (last
yvear) ESSENCE Indeterminate
Each C-tiode is a set of semantic relations whose values may be; constants
such as Past. Active, etc., lexical items, or other C-nodes. The
parenthesized elements of the above example structure are shorthand
notations that show that another structure not germane to the discussion,
is actually required to represent the semantic structure of the parenthesized
value.

The details of obtaining this structure for the Modality will become
apparent in Section V where the programs for computing it from surface
strings are presented. For the moment a few explanatory remarks will
suffice. "Could" signifies TENSE-Past, MODAL-Can, and by its introductory
position. MOOD-Interrogative. The phrase, 'have been courting' signifies
FORM-Progressive, ASPECT-Perfect, and VOICE-Active. ESSENCE refers to Truth
or Falsity of the statement--which as a question is indeterminate.
"Falsely' and "last year' are respectively MANNER and TIME adverbials
which in the present conventions of this system are carried on the
Modality. The information required to form these particular relations
and values is obtained during parsing with grammar rules and the contents
of the lexicon. Detailed computational analysis of the way in which
verb strings signify the specific values of the modality have been
described by Simmons & Slocum (1970) and Winograd (1971).

Determination and Quantification: In English every noun is

associated with a determiner, either explicitly with words such as

this", "these', "some', "a'", "an", 'seven', "all', "the', etc., or



implicitly where the absence of a determiner is interpreted as "most"

or "all" (as in '"bears eat fish".) 1In our semantic treatment we
distinguish four semantic relations, DET, COUNT, NEG and QUANTifier or Q.
The values of DET are definite, indefinite, or general. COUNT has as
values a number or the meanings signified by "many". "few', "most', etc.
NEG takes only the value '"none". QUANT has values such as '"some' "all"
"every", etc. COUNT, QUANT, and NEG are not marked unless they are
explicitly signified in the sentence. No claim is made that this is
either a complete or completely satisfactory scheme for analyzing the
truly vast complexity of determination of English nouns; it is instead
a starting point which must be modified as further research reveals
more details of this semantic structure.

One very important aspect of determination can hardly be discussed
within the framework of a single sentence. When a noun has a definite
determiner, it refers to a concept that has been mentioned previously,
to something in the nearby environment or to a well-known class of
events. Our relation DET with the value definite signifies this (respective)
anaphoric, deictic or generic usage; just which usage is implied and to
what it refers requires that DET be operated as a function to examine the
textual environment. The manner in which this can be accomplished is
suggested by Baranofski (1969).

The following examples illustrate our conventions for representing
determination in semantic networks:

All seven windows

Cl TOK window, NBR Plural, DET Def., COUNT 7, Q All.

- 21 -



Some windows

C1 TOK window, NBR Plural, DET Indef, Q Some.

No window

Cl TOK window, NBR Sing, DET Generic, NEG none:
Combinations of these semantic relations signify various logical and
numerical quantifiers. 1In our present uses of semantic nets for generating
paraphrases and answering fact questions at the paraphrastic level, we
have found it necessary to deal only superficially with logical quantifiers.
These become of criticai importance in more difficult questions and in
verbal problem solving.

Adjectival Modification: Whether it occurs in a predicate or noun

modifier position, we represent adjectival modification in the same
semantic form. The two strings:

the barn is red
the red barn

each receive the following semantic representation:

Cl1 TOK barn, NBR Sing, DET def, MOD CZ.

C2 TOK red, DEG Pos.
The semantic relation DEGree takes as values Positive, Comparative, or
Superlative. If the value is positive, there is one noun argument for
the adjective; comparative requires two, and superlative more than two.

The relation MOD is in fact a temporary expedient that serves only

to indicate an adjectival modification. The linguistic structure of

adjectives is almost as complicated as that of verbs. The meaning of



a given adjective is relative depending on context. For example, the
sentence "a large ant is smaller than a tiny elephant" shows that
associated with the meanings of "ant" and "elephant', there must be a
characteristic size value which is further specifiable by a size adjective.

'Ia

"A large ant" thus means something like "a large tiny-ant' while
tiny elephant' indicates "a tiny large-elephant". Semantic relations
underlying MOD include SIZE, SHAPE, COLOR, etc., which Schank (Chapter )
suggests are characteristic attributes of nouns. The function of the
adjective is apparently to modify the characteristic attribute of the
noun as for example, 'yellow brick' changes the characteristic reddish
color associated with "brick'" to the value "yellow'.

The comparative and superlative uses of adjectives introduce a
whole range of complex sentence structures which have been treated
carefully in a dissertation by Celce-Murcia (1972). Our treatment of
adjectives in semantic nets is only sufficient at the moment for dealing
with the simplest cases. TFuture developments will probably require the

adoption of a structure similar to that now used for verbs.

Adverbial Modification: A previous example (p.}q ) showed that

adverbs are values of such Modality relations as Manner and Time. The

fact that they can also modify adjectives offers further motivation

for treating adjectives as having a structure similar to verbs. Since

so little is presently understood about the semantic behavior of adverbs,

we again adopt the expedient of a gross relation, VMOD, in our computational

models., This relation can be further specified as, MANNER, TIME, FREQUENCY,



INTENSITY, etc., depending on the semantic class of the adverb.

Conjunction: In addition to the frequent occurrances of 'or"
and "and', many common adverbial conjunctions or sentence connectors are
used in English. These include words such as "since". "because', "thus",
"before', "after". etc. Our representation of these important terms in
semantic structures is to form a TOKen structure followed by a list of
arguments, as illustrated below.

¢l TOK (any conjunction), ARGS C2, C3, C4 ...

The conjoined elements may be words, phrases or sentences. The meaning
of conjunctions enters deeply into paraphrase and question answering
tasks, and they are used frequently to order sentences in time, causation,
etc. Much detailed knowledge of the meaning of particular conjunctions
is recorded in style books and dictionaries, but little formalization of
this knowledge has so far been developed. Once again we are in the
position of preserving a lexical indicator in the semantic net structure
with little corresponding understanding of the lexical structure to which
it refers.

The verbs Have and Be: Since these two verbs have noun phrase

transformations, we choogse to represent them in semantic networks as

"is" illustrate the applicable

nominal structures. A few examples for
conventions:

The girl is beautiful

Cl TOK girl. DET Def, NBR S, MOD (beautiful).



The girl is a mother

Cl TOK girl. DET Def, NBR S, SUP (mother).

The girl is in the chair.

Cl TOK girl, DET Def, NBR S, LOC C2
C2 TOK chair, DET Def, NBR S, PREP in

The first example 1s treated as an adjectival MODification even though
it occurs in predicate form. The second shows that the concept associated
with "girl" is a subclass of that associated with "mother". The third
shows the same structure as would have been derived from the noun phrase,
"the girl in the chair".

Examples for "have' are as follows:

Mary has long fingers,

Mary has money.

Mary has fun.
The three semantic relations expressed here are respectively, HASPART,
POSSess, and ASSOCiated. They are also signified by the apostrophe in
such forms as '"Mary's fingers', "Mary's money" and '"Mary's fun'. These
alternate forms are assigned the same semantic structure as those with
the verb expressed. The next example shows the treatment of "have® with
a prepositional phrase.

Mary has fun in the park.

Cl TOK Mary, DET Def, NBR S, ASSOC (fun), LOC C2.
C2 TOK park, DET Def, NBR S, PREP in.

Eventually the theory of deep case structures may require that various

forms of nominal modification should always be dominated by a verb and



" and “have'

its modality. If we were to adopt this convention for "is
and their nominal forms, the following examples would result:

Mary is in the park.

Cl TOK Be, MODALITY... TENSE Present, THEME(Mary), LOCUS C2.
C2 TOK park, DET Def, NBR S, PREP in,

Mary has fun in the park.

Cl1 TOK Have, MODALITY...TENSE Present, Theme(Mary), LOCUS C2.
C2 TOK park, DET Def, NBR S, PREP in.

Mg o 18

The structures immediately above would result whether "is'" or "have"
are present or deleted. It is not clear at this time whether these case
structure conventions applied to nominal structures will simplify the
computational structure and improve paraphrase and question answering
capabilities of the model. One apparent advantage is that éaraphrase
transformations might always be expressed in a formalism referring to
case relation arguments., A disadvantage is that the syntactic depth of
the constructions would be increased.

Additional discussion of conventions for expressing semantic
structures found in English sentenceg, some definition of lexical structure

and the development of inverse relations and their use for representing

embedded sentence structures can be found in Simmons (1970f) .
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IV. Computational and Logical Structure of Semantic Nets

In addition to their linguistic form, semantic nets have a
computational representation, a logical structure, and a conceptual
content. No one of these aspects has been completely explored although
enocugh knowledge of each has been obtained to make interesting computer
programs for experimenting with the process of understanding verbally
expressed ideas,

Computational Representation: To say that a structure is a network

implies only that it has nodes and connections between them and that there
are no restrictions such as exist in a tree where a daughter node may

not have a direct connection to a sister or grandparent. When we add

the modifier "semantic" to form "semantic network', we introduce a notion
of content, i.e., a semantic network is a structure that contains

meanings of language arranged in network. A semantic net generaily

contains concept nodes interconnected by semantic relations. Primitive

verbal concepts are lexical meanings that map onto the character strings
of words. Every concept is a node that has a set of relations to other

concept nodes.

Figure 4 shows graphic and list representations of networks. The

INSERT Figure & about here

simplicity of these structures make them ideal for computer representation
as attribute-value lists or lists of triples, with the subsequent

advantage of easy accessibility for processing operations. A network
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4a. Abstract Network as a Directed Graph
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4b. Attribute-Value List and Triples Representation

Figure 4. Representation of Networks



is defined according to the following:

Network := Node¥*

Node Atom + Relationset, terminal Conmstant

[}

Atom := Ci. Li (a number prefixed with L or )

Relationset := Relation + Node

Relation := member of a list of semantic relations

Terminal Constant := character string

The asterisk signifies one or more repetitions of the marked
element. The comma represents 'or', the + and. Terminal constants
include English words as well as such examples as "noun", "sing'",
MActive', "Past', etc., which are values of lexical relations.

From this definition, a semantic network is an interconnected
set of nodes. A node is simply a name such as Ci or Li. 1Its
relationset encodes the information it represents. The meaning of
any node is an ordering of the rest of the nodes of network with
which it is related. Assuming a richly intercommected network, the
complete meaning of any particular node may involve every other node
in the system. This feature of semantic networks was discussed at
length by Quillian (1968) who showed that human subjects when asked
repeatedly to define the words in their definitions of words. could
continue the process indefinitely.

Semantic relations are viewed computationally as functions and

procedures. In our present realizations these relations are largely




undefined as procedures although in a previous paper (Simmons & Slocum,
1971) we showed how they could be defined as generation functions that
would produce an appropriate syntactic structure corresponding to each
semantic relation and its arguments.

In our present development such relations as THEME, CAUSAL ACTANT,
etc., can be perceived dimly as procedures which in some cases will
change the contextual definitional structure to reflect the action of a
verb. Thus, THEME(John,run) as a procedure might be expected to apply
the characteristic of fast motion involving legs and feet to the ordinary
structure defining John. Similarly, CAl(run,John) might be expected to
add the information that John instigated the motion; and GOAL(run,store)
must add some terminal condition to the motion implied by "run'. A most
interesting and potentially rewarding research task is to develop this
ijdea computationally.

Logical Structure: The semantic network representation of sentences

is also a logical system. A semantic net is a set of triples, (AR B
where A and B are nodes and R is 2 semantic relation. For example,
(Break THEME Window) from an earlier example is one such triple;
(Window DET Def) is another. Nodes are required to be elements of a
set of unambiguous symbols -- usually entries in the lexicon. Semantic
relations are required to be defined or definable relations such as the

following list:




1. Connectives OR, NOT, SINCE, BUT, AND, IMPLY, etc.
2. Deep Case Relations CAl, CA2, THEME, SOURCE GOAL, LOC
3, Modality Relations TIME, MANNER, MOOD, ASPECT, etc.

4. Attributive Relations MOD, POSSESSIVE, HASPART, ASSOC,
SIZE, SHAPE, etc.

5. Quantitative Relations Q, NBR, DET, COUNT

6. Token substitution TOK

7. Set Relatioms SUP, SUB, EQ, PARTOF, etc.
These relations can be defined extensionélly in a given system by
listing the arguments that are acceptable. They can be defined
intensionally by indicating properties that are required on their
arguments, For example, in (A CAl B), CcAl for Causal Actant 1, requires
that B be animate, that it be the instigator of A, and that A belong to
a class of action verbs that can accept an agent.

We can also apply a set-theoretic interpretation to semantic network

structﬁres. Each node is taken as the name of a set of processes and
each relational arc is a restriction on the sets signified by the nodes

it connects. Let us consider the propositional structure for the following

example:
John Broke the window with a hammer
C1 TOK break., CAl C2, THEME C3, CA2 C4
C2 TOK John, DET Def, NBR S
C3 TOK window, DET Def, NBR S.
C4 TOK hammer, DET Indef, NBR S. PREP with.
The hearer knows of a set of events that he calls "breakings'. These

include the breakings of glasses, of windows, of crime rings, of news
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stories, of horses and of hearts. The net Cl restricts these breakings
to only those in which John is an instigator, a particular window
received the action, and a hammer was the instrument. The subnets
further specify a particular man named John, a definite member of the
class named windows, and some one hammer. The modality further specifies
the event in terms of time of occurrence, truth value, etc.

The relationset of Cl can thus be viewed as a conjoined set of
binary predicates that restrict the application of the concept named
by "break" to a particular subclass of events each of which is more or
less precisely specified by the values of such relations as DET and
NBR.

Logical aspects of semantic net structures are developed more
formally by Sandewall (1970, 15?%), Palme (1971) and Simmons & Bruce
(1971). Sandewall's development is of particular interest in showing
conventions for insuring that the representation will be in a first
order calculus and in providing fairly explicit methods for axiomatizing
meanings of words. Palme has demonstrated how these techniques can be
used in a semantic net based question answering system. Simmons and
Bruce showed an algorithm for translating from semantic net structure
notation into a fairly standard form of first order predicate calculus.

The most significant consequence of defining semantic networks
as a logical system is to make the techniques and results of research in

automatic theorem proving easily transferable to problems of question

answering and problem solving in semantic nets. It has been apparent




for some time that the question-answering and paraphrase problems of
natural language processing are closely related to the more abstract
problem of proving logical and mathematical theorems. (See Green &
Raphael 1968, and Simmons 1970.) For the shallow level of answering
factual questions or recognizing paraphrases, little use of theorem
proving logic is required. For more difficult questions and verbal
statements of such problems as''the missionaries and cannibals''or''the
monkey and the bananas) problem solving and theorem proving techniques
must be used.

Conceptual Level: The conceptual level of semantic net structures

has been carefully limited to that of word-sense meanings connected

by semantic relations that are frequently very closely related to
corresponding‘syntactic relations. Is there any satisfactory rationale
for selecting this level rather than the semantically deeper levels
chosen by Schank (Chapter } or Rumelhart and Norman (1971))7?

The depth of a syntactic or semantic structure can be defined as
proportional to the extent to which it accounts for a set of strings
which are, from some point of view, paraphrases of each other. If we
define syntactic paraphrases as those strings which differ only in
inflectional suffixes, certain forms of deletion (as of "have', 'be' and
of prepositions) and in the ordering of lexical selections; then a

minimal depth of semantic structure would be shown by a structure which

was the same for strings that are syntactic paraphrases of each other.




Deeper semantic levels would provide identical structures for paraphrase
sets of strings that have differing choices of content words and may
vary in syntactic form.
We consider the following set of sentences as syntactic paraphrases"

John broke the window with a hammer.

The window was broken by John with a hammer.

The window was broken with a hammer by John,

1t was a hammer with which John broke the window.
Each of these sentences can be generated from or analyzed into the
following propositional structure:

Cl TOK break, CAl(John), THEME (the window), CA2 (with a hammer) .
The variation in the Modality structure as to active and passive voice,
and the choice of different argument-ordering rules from the verb
paradigm account for the different syntactic forms of these sentences.

We consider the following two sentences to be semantic paraphrases

of each other--i.e., they are very close in meaning and describe the
same event using different words and syntactic forms.

John bought the boat from Mary.

Mary sold the boat to John.
A semantic structure deep enough to represent the common meaning of
these two sentences is the following:

Cl TOK and, ARGS C2,C3.

2 TOK transfer, SOURCE(John) GOAL(Mary), THEME (money)

C3 TOK transfer, SOURCE(Mary) GOAL(John), THEME(boat).
This structure--with approériate variations in modality--can account

for both syntactic and semantic paraphrases of the two sentences and




is consequently deeper than one that accounts only for the syntactic
paraphrases of either. It also makes explicit the implied fact that
"puy' and "'sell' involve a transfer of money and of ownership in opposite
directions. This is analoguous to the depth of structure used by
Schank in Chapter
The shallower structure of semantic nets described in this chapter

is shown below:

Cl TOK buy, SOURCE(Mary), GOAL (John), THEME(boat).

C2 TOK sell, SOURCE(Mary), GOAL(John), THEME(boat).
Tn order for the present system to determine that the two structures are
semantic paraphrases, it is necessary to have a paraphrase rule such
as the following connecting "buy" and Mgell™:

RO1 (BUY (S-S)(G-G)(T-T) SELL)
This rule simply means that the TOKen of Cl may be rewritten as SELL
and that no change in the values of the arguments 1is indicated--that
ig, the value of SOURCE remains Mary, the GOAL, John, and the THEME,
boat. Differing generation rules for "huy" and "'sell' result in the
reordering of the case arguments in the surface string. The rule can
be expanded to introduce a CA2-MONEY, if desired and thus, through a
semantic transformation, account for the same facts as the deeper
structure previously illustrated. The formulation and use of such rules
is developed at some length in Sectionvzy.

It is probable that the deeper structure forms a more satisfactory

psychological model of conceptual structure as well as one that will

answer questions more economically. The argument for the shallower
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structure is that it neatly defines a distinction between syntactic and
semantic transformations at the level of lexical choice and at least
for the moment offers a definable reference level in the confuged area

of generative semantics.




V. The Computation of Semantic Nets from English Strings

An English string can be transformed automatically into semantic
structures such as those shown in the previous section with the aid of
a program that consults a lexicon and a grammar. We use a variant” of
a system developed by Woods (1970) called an "Augmented Finite State
Transition Network" (henceforward, AFSTN) which interprets a grammar--
shown graphically as a transition network--as a program to transform
an English string into & semantic network. The same system with different
grammars is also used as a basis for generating English strings from
the semantic networks and for embedding an algorithm that answers
questions. These latter two applications will be discussed in sections
immediately following this one. 1In this section we will briefly
describe the operation of the AFSTN system and show a grammar for
translating from a small class of English strings into semantic nets.

The Woods AFSTN System: Simple phrase structure grammars can be

represented in the form of state transition networks. An example grammar

is shown below:

NP -» (DET) + (ADJ*) + N + (PP¥)
PP —» PREP + NP

S —« NP + (AUX) + VP

S & AUX + NP + VP

VP -» V + (NP) + (PP%)

Figure 5 shows the augmented finite state network that represents this

grammar. The grammar shown above is in context-free phrase structure format.

INSERT Figure 5 about here

* Programmed by D. Matuseek and J. Slocum at Univ. of Texas following
Woods' description.
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Figure 5. An Augmented Finite State Transition

Network for a Simple Grammar

NN s e




1t uses the conventions that, parentheses indicate optionality and an
asterisk shows that one or more repetitions of the phrases are allowed.

In the graph of Figure 5 the nodes or states are shown as circles with
labels such as ''s", "NP". "VP", "37" etc., and the arcs or paths are
1abelled by phrase names such as nNpt, PP, "VP", or by word-class

names such as "Aux", "V", "Prep', etc. Some states such as 34,36,38

and ql0 are specially marked with the symbol, "T'" to show that a phrase

or sentence can end at that node. The grammar can be seen to be recursive
in that such paths as "apJ" and "PP" form loops. It has subgraphs such

as NP VP and PP which are also the names of arcs.

The figure shows only syntactic category information associated
with the arcs, but each arc may in fact have an associated set of
conditions to be met and operations to be performed as control passes
from state to state. In this fashion, an AFSTN augments the ordinary
state transition network by allowing a program to oc;ur at each arc.

The reader can imagine a scanner looking at each word in such a
sentence as ""The merry widow danced a jig", and examining its word
class under the control of the "S'" net. The first arc examined is the
one labelled NP which causes a transfer to the net, NP where the category,
Article, corresponds to the name of the first arc and allows transition
to state g5. The next word, "merry' is category Adjective which allows
transition over the loop labelled adj to stéte q5. 'Widow' allows
transition of the arc, N to state q6 where the noun phrase has been

satisfied. and is popped to achieve transition of the arc labelled NP




in net S. This takes the system to state gl where transition of the VP
arc will successfully complete the scan of the sentence. By operating
the programs associated with each arc, a structure of the sentence may
be created in any form designed by the programmer. Thus transformational
deep structures result from one such set of programs written by Woods,
and semantic network structures result from the programs described in
the following paragraphs.

For complete understanding of the following example programs, the
reader will find it helpful to study Woods' careful description of
the structure and operation of his AFSTN system (Woods 1970).

1) Analysis of a Noun Phrase: The following program recognizes and

transforms simple noun phrases into semantic structures.

(S(Push NP T
(SETR SUBJ *)
(10 Q10) ))

(NP (CAT ART T
(MAKEPR (QUOTE DET) (GETF DET))
(SETR NBR (GETF NBR))
(TO N2))
(TST ADJ T
(SETR NBR OK)
(JUMP N2) ))
(N2(CAT ADJ T
(SETR ADJ (PUT(GENSYMC) (QUOTE TOK) *))
(TO N3))
(TST N T
(SETR NBR OK)
(JUMP N3)))
(N3(CAT NOUN (AGREE(GETR NBR) (GETF NBR))
(ADDPR (QUOTE MOD) (GETR ADJ))
(ADDPR (QUOTE NBR) (GETF NBR))
(ADDPR (QUOTE TOK) *)  (JUMP N4) ))
(N4 (POP (PUTPRL (GENSYMC) (GETR MLIST))T))

A graph of this program is shown in Figure 6 and an explanation of its
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flow and effects is shown in Table 1. The figure shows the major test
above the arc and the operations to be performed below each arc. The
table shows the condition of the star (*) register usually containing

the word under the scanner except when a POP is to occur when it contains
the results to be passed back up to the control level of the last PUSH.
The flow of program operations is numbered, the main result is listed in
the next column. and the last column shows the registers or structures

that contain the result.

INSERT Figure 6, then Table 1 about here

If we enter the program with the phrase, "a mery widow' the system
scans the first element, "a" and enters the network at S. (S(PUSH NP T)
has the effect of transferring control to the network node labelled NP.
At this node, (CAT ART) means that a procedure called, CAT looks at the
dictionary entry for what is in the * register to discover if it is an
article. Since * contains "a'", the CAT function returns true and the
operations associated with that arc are undertaken. (Note In Figure 5
that if we were considering the phrase ''old dowager', CAT ART would have
failed and TST ADJ would have transferred control to N2 without moving
the scanner--by using JUMP instead of TO).

The first operation, line 3 in Table 1, is (MAKEPR (QUOTE DET)
(GETF DET)). GETF DET gets the value of the feature DET from the lexicon

1, 18

for the element in the * register. This value for "a' is "indefinite".

MAKEPR puts the pair (DET INDEF) in a register called MLIST.
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The next operation, line 4, is (SETR NBR (GETF NBR)). This operation
gets the value of NBR for "a" which is SINGULAR, and puts it into the
register named NBR. The terminal operation (TO NZ) transfers control
to N2, setting the * register to "merry" the next element in the phrase.

At N2 the first test is (CAT ADJ) which is found True for "merry'.

The main operation undertaken here, is to create a property list structure,
(C1 (TOK merry)), by using the functions, GENSYMC which creates the symbol
"C1" and PUTPRL which makes the property list for Cl and returns 'Cl" as

its value to be used by SETR which places Cl in the register, ADJ. The

next operation in N2 is (TO N3) which sets the scanner and * register to

the next element in the string, namely "widow", and transfers control to
node N3. Again it can be noticed -- in Figure 6 -- that if a phrase without
an adjective had been analyzed, the test, (CAT ADJ) would have failed and
(TST NOUN) would have succeeded causing a (JUMP N3) without moving the
scanner.

At N3 (line 9) two tests are called for; first (CAT NOUN) second,
(AGREE (GETR NBR) (GETF NBR)). Previously nodes have had a CAT test or
the dummy TST each followed by the symbol T in place of a second conditional.
The symbol T has meant that the second conditional was automatically
taken as TRUE. Here, however, the second conditional tests for agreement
in number between the noun and any article that it may have (and the
second conditional is evaluated first by the system.)

The register NBR has been set in line 4 to the value SINGULAR and

(GETR NBR) retrieves this value., Since "widow" is singular, (GETF NBR)
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returns this value. Thus the condition reduces to (AGREE SINGULAR SINGULAR)
which evaluates to TRUE. At this point additional semantic agreement

tests are usually introduced to select wordsense meanings, but to maintain
simplicity of exposition they are omitted in this example.

Since the two conditions of N3 have been met, some operations are
now undertaken to form a semantic structure for the phrase. These are
ADDPR functions which create the structure shown in the result column
for lines 11-13. At line 14, the terminal operation (JUMP N4&) transfers
control without moving the scanner. N4 provides an unconditional POP
using PUTPRL and GENSYMC to create the structure shown in the result
column. POP assigns the value, C2 to the * register and returns control
to the place where (PUSH NP) occurred--i.e., line 1.

At this point we can notice that a PUSH arc is also a conditional
which returns True if the next element or elements in the string being
scanned form the phrase which is the argument of PUSH. (PUSH VP, PUSH PP, etc.).
The PUSH NP being true in this case, its operations set a register called
SUBJ to the value of the * register--i.e., C2--, move the scanner and
transfer control to Q10. €2 is the name of a property list structure
containing the following semantic structure for the phrase:

(C2(TOK WIDOW) (NBR SINGULAR) (DET INDEF)(MOD C1))
(C1{TOX MERRY))

Tt should be noticed that the resulting semantic structure corresponds
to conventions described in Section 1IV.

2) Analysis of a Verb Phrase: As a result of making the noun phrase

of the preceding example, control was returned to the top level, the
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(PUSH NP) arc was successfully completed, C2 assigned to the SUBJ
register, and control was passed to node Q10. At Q10 we have a choice
of two arcs; either (POP *) or (PUSH VP). Assuming, now, that our
sentence had continued as follows: "A merry widow had been dancing a
jig", then the scanner would contain "had" and the arc, (PUSH VP) would
be attempted.

A portion of the VP network is shown in Figure 7 and program
corresponding to it is listed in Appendix Table 1. This part of the
network has the purpose of determining the modality (i.e., NUMBER,

TENSE, VOICE, FORM, ASPECT & MOOD) and constructing the semantic form

of the verb. This figure shows fairly completely the tests (above the
arc) and the operations (below the arc) that are required. The functions
that make structure pairs are indicated by a left-pointing arrow, % ;
those such as LIFTR that send arguments up to the next level by a vertical
arrow. ® . To maintain simplicity of exposition, some paths in the
network are left incomplete where they concern modal, emphatic and future

auxiliaries.

INSERT Figure 7 about here

We will follow the example sentence through the graphed network of
Figure 7 leaving the interested reader to consult the program for complete
statements. Control is at VP with the scanner containing "had",

(CAT AUX (GETF BE)) fails since “"had" is not a form of ''to be’.

(CAT AUX (GETF HAVE)) succeeds since "had" has the feature HAVE. The

- 46 -




2an3ona3s qaap pue ALITVAOW Burindwo) 103 3JoN dA TBTIIBd

©/ 2an814

OLANI -» AOOK
dHI-» 1OAASY
MANES HATLOV-» ADTOA
INTANOISSY —>  :®30N P ASNEL
s MUN
¥H0dd - W04 )
AATLOY > AD10A A Ivo T
NI+ A IVD
L0d+ X0V io
) oG+ XNV .:a
ATAWIS — WI0J ; : L
SVd-> A0I0A o0 XOV IVD
I TWE KOV IVD
s Q.
wmu&mwmﬂwwwwm e OLANI > (00K > ASNAL
A IMHd > LOAISY 4N
Na+ ALVD THAVH+ XOV IVD
. 4TI S —» W04 OLaNI-> 00K
| AOI0A 10 AATSSYd < TDTOA dHI-> LOUASY
(ILSITH dod) 10 "IVAOK Nt ALY -2 HSNAL
% MOL —» LSTTANNNY ,, — mmz\
. WOIAdd 90U - WH0d G XY LVD
SOUVY, . AATLOV-» HDI0A _
T NI+ A IVD




operations indicated are to create in register MLIST the pairs

(NBR 3PPL) (TENSE PAST) (ASPECT PERFECT) and (MOOD INDIC). MAKEPR first
cleans the register MLIST, then adds a pair, while ADDPR simply adds a
pair to MLIST. Thus MAKEPR is called first on entry to a level to insure
emptying MLIST at that level of any previous contents such as those
inserted in the last example. The scanner is advanced to 'been" and
control is passed to V4 by the terminal actions, (TO V&),

Since '"been' has the category "aux' it fails the CAT V test, but
passes the (CAT AUX) and control is passed to V5 with the scanner at
"dancing'. Notice that no additional semantic structure is assigned here
because the ''been'" is only part of the indicator for either a passive
or progressive verb form. The first path tests for (CAT V) and (GETF +EN) ;
since "dancing' is not an "en'" form it fails this test and the next arc
is attempted. This one tests for (CAT V) and (GETF +ING) which succeeds
because the verb is & progressive or +ING form. At this point the pairs
(VOICE ACTIVE) & (FORM PROGRESSIVE) are added to MLIST by using ADDPR.
Control is passed without advancing the scanner by using (JUMP Vé).

V6 is an unconditional arc in that (TST VP T) always evaluates TRUE.
(TST is a null test so the argument VP is only for a human reader, and T
is the second conditional which evaluates to TRUE). At V6 we now have
the elements of the verb structure in the MLIST and must create the
appropriate semantic structure and send it and other information back
up to the top level of the sentence. LIFIR is a function that sends

information up a level and it is used here to send the content of the



verb features PDIGM and ARGS to the next higher level in the sentence
where they will be used to continue the example in the next subsection
of the paper. 1In traversing nodes, VP V4, and V5 we accumulated the
modality structure for the verb as follows:
((NBR 3PPL) (TENSE PAST) (ASPECT PERFECT) (MOOD INDIC) (VOICE ACTIVE)
(FORM PROGRESSIVE))
Here PUTPRL is used to form a property list headed by the result of
operating GENSYMC, namely C3; and the pair (MODAL C3) is put onto a
clean MLIST. The pair (TOK dance) is added to MLIST, the gcanner is
advanced to "a'" and control is passed to V7. V7 is an unconditional
POP that transfers the contents of the MLIST in the * register and sends
it back up to Q10 where (PUSH VP) occurred,

3) Analysis of the Sentence: Figure 8 shows a portion of the top

level of a sentence network and Appendix Table 2 shows the corresponding
portion of program. The figure shows some incomplete paths, indicated

by dotted lines, to suggest additional grammar that is not required for

the present example. INSERT Figure 8 about here

As we returned to QlO, the * register contained the following content:
( (TOK DANCE) (MODAL C3))
This is put in MLIST by (SETR MLIST *) and a register called LASTNP is
set to NIL (for later use). At this point we are ready to determine
what semantic relation holds between the subject and the verb, A function
called ARGEVAL takes the noun phrase in question, consults the lexical
entry for the verb and determines whether the NP is a causal actant,

source. locus, theme, etc., and returns either NIL or a deep case structure
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name (or names) as a value. The relevant lexical information for "dance"
for this purpose was sent up earlier from the NP net into the registers
PDIGM and ARGS whose contents are as follows:
(PDIGM(CASES (CAL 1O0CUS) THEME 1OCUS2))
(SUBJ(CA1l LOCUS)) (OBJ THEME) (PREP(WITH LOCUS2)))
(ARGS (LOCUS ANIMATE) (THEME dance) (LOCUS2 ANTMATE))

In evaluating SUBJ, ARGEVAL must firgt obtain the head noun with a
(GET SUBJ (QUOTE TOK)) which returns the lexical node for Myidow'.
Consultation of the registers ARGS and PDICM then shows that the noun
in SUBJECT position for VOICE-ACTIVE must be a CAl and a LOCUS. (If
voice had been passive, ARGEVAL would have read SUBJECT as OBJECT). The
data in ARGS shows that CAl and LOCUS for this verb must be marked
animate. The noun ''widow' is so marked in the lexicon so ARGEVAL returns
(CAl, LOCUS) as the value of the relation between "widow' and 'dance'.

In a similar manner when this function is later called with "jig"
it will discover that this noun is an OBJECT and marked with ''dance" and
so return THEME. If presented with a phrase such as "with John", it
recognizes by the preposition "with" and the animate marker on "John"
that it is dealing with a LOCUSZ.

In this example the function ADDPR is then called with arguments
as follows: (ADDPR (CAl LOCUS) (GETR SUBJ)). The result is to put two
pairs on the MLIST as follows:

((CA1 €2)(LOCUS €2))

The scanner is advanced and control passed to node, Q12 by the instruction,
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(TO Q12). The first arc leaving Q12 is (PUSH NP T)Y. Since the phrase
foliowing the verb is "a jig", the push to NP returns with the * register
containing, C4 whose property list is as follows:

(C4 (TOK JIG) (NBR SINGULAR) (DET INDEF))
ARGEVAL of C4 returns THEME and ADDPR adds to the MLIST the pair (THEME C4).
At this point the terminal action (TO Ql2) advances the scanner and passes
control to Q12 again. But the sentence ended with "jig" so the *
register is set to NIL and the PUSH NP and PUSH PP arcs fail. The arc
(POP etc.) T) is unconditional so it succeeds in building the final
structure for the sentence and passing up the node C5 whose property list
is as follows:

(C5(’TOK DANCE) (MODAL C3) (CALl C2) (LOCUS C2) (THEME C4))
The complete expansion of C5 gives the following semantic structure for

the sentence:

C5 TOK DANCE C3 NBR 3PP1 €2 TOK WIDOW
MODAL C3 TENSE PAST NBR SINGULAR
CAl c2 ASPECT PERFECT DET INDEF
LOCUS C2 MOOD INDIC MOD Cl
THEME C&4 VOICE ACTIVE

FORM PROGRESSIVE
C1 TOK MERRY C4 TOK JIG
NBR SINGULAR
DET INDEF
Had the sentence continued with a prepositional phrase such as in
", .danced a jig with John" the PP arc of Figure 8 would have operated
and the additional structure (LOCUS2 C5)(C5(TOK John) (NBR SINGULAR) (DET DEF)),

would have been added.

The semantic net developed for the "merry widow' sentence is in fact
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a tree. As additional sentences in a discourse are analyzed they will
refer to nodes in earlier structures and the tree of the single sentence
becomes part of a larger network. Elements of the sentence tree are
also inter-connected by paths through the lexicon. Thus what we see in
this analysis of the sentence is an explicit structure of unambiguous
lexical references. It is the surface tip of an iceberg with great
depths of inter-relationship in the data contained in the lexicon but
not shown here as part of the analysis of the sentence. We claim that

what is shown is the shallowest level of semantic structure.




VI. Generating English Sentences from Semantic Nets

A basic function called GEN is central to the process of generation.
This function takes a list as its argument. The list contains the name
of a structure from which a sentence is to be generated followed by a
series of constraints on the modality. For example, if we wish to
generate a question from the sentence "A merry widow danced a jig'",
the call to GEN would be written as follows:

GCEN((C5 ACTIVE, INTERROG, (QUERY JIGY))
This call is designed to generate, "What did the merry widow dance?"

GEN calls first a function that gets the modal structure of C5 and
rewrites those values specified in the call. After this has been accomplished,
another function, PATTERN, is called to select one of the verb paradigm
patterns associated with the verb "dance'. The paradigm for generationm
is selected by discovering which one fits the case arguments of the
semantic structure. In this example, the following paradigm 1s selected:

((SUBJ (CA1-1L0OCUS))(0BJ THEME))
The register, SNTC, is then set to the list,

(CAl-Locus VACT THEME)
Tt is this list that will be scanned and presented in the * register
to control the generation sequence of the sentence. At this point, GEN
turns over control to the geheration grammar, R, with the call,
(RETURN(PUSH R)). The POP from R will cause the sentence that has been
generated to be printed out as the value of the function GEN.

The generation grammar-program, R will be explained by first showing




the top level of control flow then by looking at the generation of the
NPs and VP. Appendix Table 3 shows the grammar for the top level
and Figure 9 presents it as a network which forms the basis for the

explanation.

INSERT Figure 9 about here

The semantic structure for the sentence after modification by GEN

appears as in Table 2 below.

C5 TOK DANCE C3 NBR 3PPL
MODAL C3 TENSE PAST
CA1-LOCUS C2 ASPECT IMPERF
THEME C& MOOD INTERROG
VOICE ACTIVE
FORM SIMPLE
QUERY THEME
Cl1 TOK MERRY €2 TOK WIDOW C4 TOK JIG
NBR SINGULAR NBR SINGULAR
DET INDEF DET INDEF
MOD C1

TABLE 2. Semantic Structure for Generation

The register SNTC at the time of the PUSH to R contains (CAl-Locus, VACT, THEME)
and the * register contains CA1-LOCUS.

Figure 9 shows that at node R the MOOD value of C3 is examined to
determine whether it is Interrogative, Imperative or Declarative. Since
it is marked INTERROG ,control is jumped to étate Q. Arcs leaving Q test
to determine the form of the question by examining the QUERY arc in C3.
Since the value of QUERY is THEME and the * register contains CA1-LOCUS
a query-fronting transformafion on the questioned element will be required.

This is signified by setting the register QFRONT to T. The question word
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is then generated by calling the function WH~- with THEME as its argument.
This function computes the question word "What" for the THEME Value "jig"
of the structure C5. Control is then JUMPed to node Q1 leaving the *
unchanged. At Ql we PUSH NP which results in the generation of "a
marry widow' which is popped back up in the * register. Register SNT is
set to this phrase and control is passed to Vvl with * set to the next
element of the control string, VACT.

At V1 a PUSH VP ig tried and on successful completion it returns
in the * register, "did dance'. The 1did'" was generated because the
register QFRONT was set to T; otherwise "danced" would have been the value.
We TUMP to V2 where QFRONT is again tested. Since the value is T, the
register SNT is set to the sequence, (PRE, (CAR %), SNT, (CDR *)), whose
values are respectively. What, did. the merry widow, dance. Since there
are no arguments in C5 that are now unaccounted for, the transfer to V3
results in a (POP SNT) where SNT containg the generated gquestion,
YWHAT DID THE MERRY WIDOW DANCE".

In passing we can note that at node Q, if the value of QUERY on
the MODAL structure had been CA1-LOCUS, the contents of * would have
matched it, QFRONT would have been set to F, and the gquestion generated
would have been, "WHO danced a jig". If the value of QUERY had been §,

the question would have been "DID A MERRY WIDOW DANCE A JIG".

Generating Simple NPs: Figure 10 shows a grammar network for dealing

with noun phrases containing only a determiner, an adjective string and a

noun. Generalizations of this net to include further modifications by
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nouns and prepositional phrases simply require extension of the grammar
in the form described. More complex embeddings of relative clauses etc.,
will require continued study particularly with reference to appropriate

sequencing and limitations of depth.

INSERT Figure 10 about here

wda

On the PUSH NP of the previous example (Figure 9) the * register
contains CA1-LOCUS and there has been a (SENDR ST (GET ST *)). The
effect of this latter operation has been to make the structure C2
available at the NP level. An expansion of C2 is as follows:
C2 TOK WIDOW C1 TOK MERRY
DET INDEF
NBR SINGULAR
MOD C1
At node NP there are three TST arcs to examine the determiner and choose
an article. The test that is made for an indefinite article is as follows:
(TST DEF (EQ(GET(GETR ST) (QUOTE DET) ) (QUOTE INDEF))
This test gets the value of DET (which is INDEF) from C2 and matches it
against the value INDEF. Since the TST condition returns T, the register
SNT is set to the value (A) and control is jumped to node NI.
At N1 the arcs test for the presence of adjectives with the following
expression:
(TST ADJ (SETR ADJ (GET (GETR ST) (QUOTE MOD)))
As a result in the present example, register ADJ is set to Cl. The
graph notation ADJ €= MOD sHows this consequence, and control is JUMPED to N2.
1f the (GET ST MOD) had returned NIL signifying no MOD relation on the

structure, ADJ would have been set to NIL and the condition on the TST

arc would have failed allowing the next arc (TST NOADJ T) to cause a JUMPF to N3.

- 58 -



39N uoTjeasul]y dN g1 oandtg

(rav ¥ao)—> rav
(TIN (Cav ¥vd) XFLLED) + LNS—» INS AHV

(1IN CQV XTLLIH) + INS-» INS TIN-» LNS

T ANON ISi
TV WOLV LSL
,  LNS ,
@ (4N MOL XALLAD)+HINS>INS e e QMWWWZ e
(INS dod) k- _QOW - [Qy N

NOON ISI £av LSl ﬁE..Twa%
Ad9a 1S1

ION LSL

rdv ON LSL



At W2 the test is made to determine whether there is one adjective,
(ATOM (GETR ADI)) = T. or more if the predicate fails. Since the value of
ADJ is the atom CI1, there is only one modifier. The notation in the
figure:

SNT4- SNT + (GETLEX ADJ NIL)
is a shorthand for the following expression in the actual grammar:

(SETR SNT(APPEND (GETR SNT) (LIST(GETLEX (GETR ADJ) NIL))))
The function (GETLEX A B) takes a structure name and a morphological
attribute -- such as NBR, TENSE, etc.-- and returns the word form. 1In
this case GETLEX returns MERRY as its value. SNT is reset to the
concatenation (i.e., APPEND) of its old value to the list (MERRY). making
its current value, (A MERRY). Control is then JUMPED to N3.

1f register ADJ had contained a list of values, GETLEX would have
been called with (CAR(GETR ADJ))..., ADJ would have been set to
(CDR (GETR ADJ)), and control JUMPED to N2 to loop through the list of
adjective modifiers.

At N3 in this net the noun head of the structure is developed by the
call (GETLEX (GETR ST) NBR) which returns WIDOW, the singular form. SNT
is then reset to A MERRY WIDOW and control is JUMPED to OUT where
(POP SNT T) puts this phrase in the * register and returns control to

[ ST $ 4

Generating Verb Strings: Figure 11 shows the net representation of

the grammar-program for generating verb forms. The upper part of the

figure shows the (PUSH VP) with its conditions. These are the sending




down to the next lower level of the Modal structure, the Token of the

verb and the register QFRONT. The VP subnet will use this information

to generate a verb string according to the data in the Modal structure,
and its successful POP will return the verb string that has been generated

in the * register.

INSERT Figure 11 about here

At the PUSH to VP the * register contains either VACT or VPAS from
scanning the generation pattern. The two arcs leaving VP begin to
generate the verb string in one of these two forms. Under the arc, is a
number referring to the operations listed in the lower part of the figure,
which actually construct the elements of the string. In our example,
the * register contains VACT. The operation on this arc is to set the
register SNT to NIL in order to clear it. Control is JUMPED to node FORM
where the FORM attribute on the Modal structure is found. Since FORM
has the value SIMPLE (Table 2 ), QFRONT is T, and ASPECT is IMPERF,
operation #3 is performed to set SNT to the value returned by

(LEXWD (GETR WD) (QUOTE INF))
LEXWD takes as arguments a word token and a morphological signal; like
GETLEX, it returns a word form -- in this case, DANCE. The second
operation on this arc is to set the register WD to the value DO --
introducing an auxiliary to be fronted for the question form. 1In the case
of a PROGRESSIVE or a PERFECT form, other arcs -- from VPl or ASP--would
introducf an auxiliary verb, BE or HAVE, which in the case of a question

could be fronted.
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After these operations, control is jumped to TNS where the value of
the attribute TENSE on the Modal structure is examined. The operations
associated with these arcs will produce tensed English verb form for
whatever is in the register WD. 1In the present example WD contains DO
and the value of TENSE is PAST so LEXWD returns DID. If a simple
declarative present sentence were being generated, WD would still contain
the form of the verb sent down from V1 and the verb string generated
would be a simple verb in present form such as DANCE.

Control is then jumped to node ESS where the form in WD is made
to agree in NBR with the subject, a NOT is inserted for a negative, and
SNT ie set to the concatenation of the value of WD and SNT by:

(SETR SNT(CONS(GETR WD) (GETR SNT)))
Control ig JUMPED to OUT where the contents of SNT are POPped to the

calling level in the * register.
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VITI. Answering Questions with Semantic Nets

So far the semantic net structures have been shown to preserve the
meanings expressed by a phrase or a sentence at a level such that syntactic
paraphrases are represented by a canonical semantic structure -- one
that differs only in such sentence design features as are represented in
the modality. This level of structure is well-guited to generating
syntactic variations as needed to embed sentences in varying environments
without changing the intended meaning, but it falls short of what is
required for question answering applications.

The following two sentences would usually be judged to carry
the same* meaning: particularly, if one is a question, the other would
be selected as an answer.

1) Wellington defeated Napoleon at the Battle of Waterloo.

2) Bonaparte lost the Battle of Waterloo to the Duke of Wellington.
These two examples have differeing semantic structures because of the
different lexical choices that have been made for the concepts WIN-LOSE-DEFEAT.
NAPOLEON-NAPOLEON I-NAPOLEON BONAPARTE-BONAPARTE, and WELLINGTON-THE
DUKE OF WELLINGTON-THE IRON DUKE.

Farlier in Section IV it was mentioned that deeper semantic structures
can be devised such that the two examples above might have the same
semantic or conceptual representation, but that our present approach was

deliberately fixed at the definable level where unambiguous lexical

5

)
Ygame" is taken to mean "equivalent with respect to a purpose’.
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concepts--i.e., word sense descriptions--are related by explicit semantic
relations. This choice of level requires an additional mechanism of
paraphrase rules in order to account for paraphrase resulting from
different lexical choices. In studying the process of answering gquestions
from text., it is apparent that a deeper structure will be more economical
of computation but that paraphrase rules will probably continue to be
required.
Paraphrase rules to account for the two example sentences above

can be expressed quite simply. First, let us show an abbreviated
representation of the two semantic structures:

DEFEAT; Cl WELLINGTON T NAPOLEON, L BATTLE OF WATERLOO

LOSE: S BONAPARTE, T BATTLE OF WATERLOO, G DUKE OF WELLINGTON
The abbreviations for deep case relations decode as follows: Cl =~ Causal
Actant 1., T-Theme, L-Locus, S-Source, G-Goal. Some paraphrase rules

associated with LOSE are shown below:

Rule 1 (LOSE(5-8) (T-T) (G=G) WIN)
Rule 2 (LOSE(C-G) (T-8) (L-T) DEFEAT)
Rule 3 (LOSE(L-S) (T-DEFEAT) (G-G) (L-T) SUFFER)
1f we seek to transform the second semantic structure into the first,
rule R2 applies since it connects LOSE and DEFEAT. The rule is interpreted

to have the following effect:

LOSE; S BONAPARTE DEFEAT; C DOW
T BOW :;> T BONAPARTE
G DOW L BOW

An interpreter given the relevant rule and the structure headed by

LOSE, does the following:
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1) Begin a copy of the structure
2) Write the new TOK value as DEFEAT
3) Write a semantic relation C and set its value to the
old value of G (i.e., Duke of Wellington)
4) Write a relation T and set its value to the old value
of S
5) Write a relation L and set it to the old value of T
1f we were now to generate an active declarative sentence from the
transformed or new structure we would get:

The Duke of Wellington defeated Bonaparte at the Battle of
Waterloo.

The rule is symmetric so, if reading from right to left we applied it
to the first sentence structure headed by DEFEAT, we could have transformed
into a structure that would generate:
Napoleon lost the Battle of Waterloo to Wellington.
Thus rule R2 accounts for a fairly complex paraphrase relation between

10SE and DEFEAT. If we are to demonstrate that the two example sentences

are completely equivalent in terms of this semantic system we must also
have rules such as the following:

R4 (NAPOLEON-BONAPARTE;NAPOLEON*I-NAPOLEON*BONAPARTE)

RS (WELLINGTON(PMOD-TOK)(PREP-OF)(DET-DEF) DUKE)

R6 (WELLINGTON(MOD—IRON)(DET-DEF) DUKE)
Rule R4 is a simple substitution rule that is interpreted as meaning
that any inétance of one of the terms can be substituted for any instance
of another. This is avrelatively rare form of perfect synonymy of names.
Rules R5 and R6 are a more common case in which a word is transformed
into a phrase that has the»same meaning. The same interpreter is used to

transform the structure WELLINGTON into DUKE, PMOD WELLINGTON, PREP OF,
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DET DEF. The rule R5 is still a symmetric rule but with an important
difference from previous example. Since DEF and OF are not semantic
relations, they must be values and the interpreter takes them as
conditions on the structure headed by DUKE. Thus, THIS DUKE OF
WELLINGTON or THE DUKE OF WELLINGTON will transform into WELLINGTON
whereas A DUKE AT WELLINGTON fails as does THE DUKE OF WINDSOR, etc.
The result of applying the rules illustrated to the semantic
structure of either of the two sentences is to take it into an exact
match with the other. The rules that have been illustrated are quite
simple and they require very few conditions for their application.
Other rules may be very complex with different conditions applying
depending on the direction in which the rule is to be applied.
Another pair of example sentences will show a higher degree of
complexity:
Napoleon commanded the troops that lost the battle.
Napoleon lost the battle.
The abbreviated structures for these two sentences follow:

COMMAND, C1 NAPOLEON, T TROOPS
LOSE, S TROOPS, T BATTLE

TOSE S NAPOLEON, T BATTLE
A rule to show the paraphrase relation between these two structures must
show that in certain circumstances a combination of two sentencés implies
a third. Such a rule could be written as follows for application to
COMMAND and LOSE;

R7 (COMMAND [(T(1lst) = C(2nd)) (TOK(2nd) = LOSE) ]
(s-C(lst)) (T-T) LOSE)
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The elements in the square brackets are conditions to be met by the
structure to which the rule is to be applied. They say that the Theme
of the first sentence must correspond to the Source argument of the
second, and that the Token of the second is limited to LOSE. The
remainder of the expression is the transformation which produces the
desired structure.

A rule of this degree of complexity is no longer obviously symmetrig,
and several new notational conventions have been introduced. These
vastly increase the complexity required of the interpreter of rules.

Tt becomes apparent that rules for generating paraphrase are at least

as complicated as those required for analysis and generation of sentences.
Once again the Woods AFSTN interpreter can be used, this time with states
as rule names and paraphrase rules written in the form of conditions and
operations.

1f we assume the * register contains the name of the structure to be examined
and that a function, GETA with a semantic relation as an argument returns
the value asgsociated with that relation for the * structure, the following
ares illustrate a mode for writing paraphrase transformations in the AFSTN:
(R7(TST COMMAND~LOSE (AND(EQ (GETA TOK) (QUOTE COMMAND) )

(SETR 2NDVB(GET(GETA TYS*))
(EQ(GET(GETR 2NDVB) TOK) (QUOTE LOSE)))

{(MAKEPR TOK(QUOTE LOSE))

(ADDPR S (GETA C))

(ADDPR T (GET(GETR 2NDVB) ™)

(JuMP OUT)))

(OUT(POP (PUTPRL (QUOTE QT)(QETR MLIST)) T))

The number of conditions and operations on this arc reveal the

complexity of rule R7. Essentially, the condition is an ANDed set of
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tests to determine that the Token of the structure under the scanner

is COMMAND, that the value of its Theme argument is the Source argument
for a verb it dominates (S* is the backlink from TROOPS to LOSE), and
that the dominated verb is LOSE. If all these conditions are met,

then MAKEPR and ADDPR construct a new list of arguments and values on
a register called MLIST. At the jump to OUT, PUTPRL makes a property
1ist -- i.e., a new semantic structure -- with the name Qf, which is
then POPped in the * register.

The point to be emphasized is that paraphrase rules of arbitrary
complexity can be used if interpreted by the AFSTN system. On the
other hand, if only simple rules such as R1-R6 are required, a simpler
translating function will prove much more efficient. The question of
efficiency for a given purpose is central to the design of a question

answering algorithm for it has a great deal of computation to accomplish.

A Question Answering Algorithm: It is from paraphrase rules such

as those just described that a text based question answering system
derives much of its power. But more than this is required. 1f we
assume that a data base of semantic structures representing sentence
meanings has been accumulated, then it is first necessary to select

a set of structures that appear relevant to the question. One measure
of relevance is the number of lexical concepts in common between the
proposed answer and the question. This can be obtained by a simple
algorithm that orders the candidates according to the number of Token
values they have in common with the question. Such a function is called

CANDS. It takes the name of the question structure as an argument,
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goes to the lexicon to obtain a list of structures that contain each
content word used in the question, and orders these in terms of their
match with the question.

The task of CANDS introduces a new lexical requirement, that
each lexical entry contain a list of the semantic structures in which
it is used. The structures to be indexed for each word are the
sentences (or larger discourse units) in which each occurs. In terms
of a previous example, the words Napoleon, Wellington, Defeat, Battle,
Waterloo all occur in structure Cl, and Bonaparte, lose, Battle,
Waterloo. Duke and Wellington occur in C2. Thus, for this example,
Wellington and Waterloo have as values for the U/I (used/in) attribute,
Cl. C2; while Napoleon has U/I Cl and Bonaparte has U/I C2. 1If we ask
the question,

Did Napoleon win the Battle of Waterloo?

We will discover that there are four content words in the question, three
of which occur in Cl and two in C2. The ordering that CANDS returns for
these candidate answer structures is thus, Cl, CZ.
The task of the question answering function, called ANSWER, is now
to match the question structure against each candidate. The first step is
to determine if the token of the head verb of the question matches the
head verb of the candidate. If there is no direct match, there may be a
paraphrase rule that applies that can transform the question structure
into that of the candidate answer. But how is the relevant rule, if it
exists, to be located? We have gained much experience with question answering

and theorem proving experimentation and know that the cost of finding
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and applying such transformations is very high indeed.
Additional lexical structure helps to simplify the problem. If

each entry in the lexicon indexes the rules that transform it to another
entry -- i.e., the paraphrase rules -- then the task becomes manageable.
The following fragments of lexicon for some of the words in example sentences,
¢l and C2, show the indexing method.

(LOSE (IMPLY (WIN R1) (DEFEAT R2) (SUFFER R3)))

(DEFEAT(IMPLYBY (LOSE (R2,R3))))

(WELLINGTON (IMPLY (DUKE (R5,R6))))

(NAPOLEON (IMPLY ((NAPOLEON, BONAPARTE, ETC...)R4)))
Thus a lexical entry shows that LOSE will paraphrase to DEFEAT by rule R2

/

(which is shown on p. &

.X‘}}

).
A function named PATHS takes two arguments such as LOSE and DEFEAT.
It examines the lexical structures associated with the two words (actually

word-sense addresses) to dis cover if there is a rule connecting the two.

If not, it takes the set that the first word will transform into and calls
itself recursively to see if any member of that set transforms into the
second word; that failing it takes the set of words the second transforms
into to determine if one of these goes into words derived from the first.
1t stops either when a match is found or when an arbitrary depth of
search has been reached. If successful, it returns an ordered list of
rule names that the interpreter function can use to translate from the
first word to the second.

PATHS is the function that discovers whether one word can be transformed

into another. It is an important timesaving device that uses a directed
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search to avoid an exhaustive exploration of the network of paraphrase
rules.

When such a path has been found, a function called TRANSLATE is
used to transform a copy of the question structure into the form of the
candidate answer. This is the interpreter function that has been discussed
previously; if the rules to be used are of simple form, TRANSLATE can
be a simple function to interpret them; if the rules are complex, TRANSLATE
can push to a paraphrase grammar that is interpreted by the AFSTN system.
In either case TRANSLATE returns the name of the question structure as
its value.

The function MATCH1 is the control function for matching the Tokens
ofAtwo semantic structures. It also examines quantifiers and modalities,
to determine if quantificational relationships are gsatisfied and if tense,
and negation relationships are matched. It has the additional task of
examining the question's semantic structure to determine if the relation
QWD is present and satisfied.

An example will show more clearly what MATCH1 does in the context
of its call by the ANSWER function.

What man lost a battle?
The semantic structure would be as follows:

Ql TOK LOSE, S Q2, T Q3

Q2 TOK MAN QWD WHAT

Q3 TOK BATTLE, DET INDEF
(ANSWER Q1) calls (CANDS Q1) which returns the ordered list (C2,Cl) as
candidate answering structures. MATCHL is then called for application

to the first of these, C2, in the following fashion:
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(MATCH1 Q1 C2)
MATCH1 embeds the following call:

(TRANSLATE (PATHS LOSE LOSE))
No transformation is required and MATCHl1 returns Q1 unchanged, thus
signalling that the head of Ql matches the head of C2. MATCHI is
itself embedded by a function MATCH which attempts to see that the structure
which is the value of each semantic relation of the question matches
the structure which is the value of each semantic relation in the candidate
answer. What it does is to call

(MATCH1 (GET QI S)(GET C2 S)) which means

(MATCH1 Q2 C21)

where C21 is the structure

C21 TOK BONAPARTE
DET DEF

and Q2 is: Q2 TOK MAN
QWD WHAT

When the paraphrase rule (BONAPARTE IMPLY MAN) is found, by PATHS, the
translation gives Q2' TOK BONAPARTE, and MATCH1 looks then at the QWD
relation and puts BONAPARTE in a register called QANS whose value will be
returned by ANSWER if the rest of the question is accounted for by the
candidate structure.

In a later call, (MATCH1 BATTLE BATTLE), this function will compare
the determiners and find that INDEF in the question 1s encompassed by
DEF in the candidate. Eventually the match is found to be complete and

BONAPARTE is returned as the answer to "What man lost a battle?™ LISP
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definitions of the functions ANSWER, MATCH, MATCH1, and other related
functions are included in Appendix A. The complexities of traversing
two semantic structures can be understood from studying these functions,

but because of their deeply recursive nature, further verbal description

will not be attempted.
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VIII. Concluding Discussion

Three topics of critical importance to the computation and use of
semantic structures have only been 1ightly touched on in this chapter.
Lexical structure, semantic disambiguation and the translation from
semantic structure to procedural language will each be discussed
briefly in this section and then a short concluding summary will close
the chapter.

Lexical Structure: The form of a lexical entry is the same as that

for any other semantic structure--a node associated with a set of
relational arcs connecting it to other nodes. The nodes are word-sense
meanings, or constants and the arcs are semantic relations of various
types. Some of these are indicators of paraphrase transformations such
as SUPerset. SUBset. Rulei, etc. Some are morphological to show the
meanings of various endings, guch as Present or Past Participle, Future,
Singular, Plural, etc. Some relate the word-sense to its syntactic
word-class. Additional relations such as Print Image, and Used/In
map word-sense meanings onto words and data statements, respectively.
If the system is to be used for mapping from English into another
natural language or into a procedural language, additional semantic
relations must be encoded into the dictionary for these purposes and
used by grammar programs that can accomplish these tasks. As yet we
have not attempted a careful description of lexical content since it is
dependent on the uses of a language processing system. Each new task

typically requires use of some standard lexical features but adds its




own unique requirement.

Semantic Disambiguation: The relevant lexical information for this

task is in the form of semantic classes or markers and selection restrictions
associated with each lexical entry. The information is used in the
parsing grammar in a manner gimilar to that illustrated for testing
syntactic agreements. Such an approach is minimally satisfactory for
analyzing a carefully controlled subset of English but as Bolinger (1965)
has argued, disambiguation may require consultation of any aspect of
knowledge that the listener may have. A generally satisfactory scheme

for semantic disambiguation has not yet been developed but will probably
require complex conditions and consultation with the whole context of

a discourse. This area is suggested as a profitable one for computational
linguistic research.

Translation to Procedural Languages: The semantic network structures

for sentences have been defined at the level of deep case structures.

The question arose as to whether this is properly called a syntactic or
semantic level. We defined transformations that do not change the choice
of lexical entries as syntactic and those that do as semantic, thus
forming a fairly clear distinction between the concepts ''syntactic
paraphrase' and ''semantic paraphrase'. From these notioms it is
immediately apparent that any transformations into other languages,
natural or procedural, are semantic in nature.. The structure on which
syntactic and semantic transformations both operate is called a semantic
structure and defined as a set of unambiguous references to word-sense

meanings connected by explicit, definable semantic relations.
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Woods and Winograd have each shown how a procedural semantics -- a
system of semantic transformations -- can be used to operate on sentence
structures to transform them into commands in a procedural language.

Both of these researchers are concerned with objects in a data base

that are designated by noun phrase descriptions and each embeds the
identifying elements of the noun phrase in a retrieval command to

discover particular named elements of data such as AA-57 or the red

block named B3. This appears to be the first level of procedural language
transformation -- the discovery of the particular data objects identified
by a noun phrase. Winograd's system most clearly includes a deeper

level of procedural language in its use of Microplanner to assemble

a program of actions in the command language that drives the simulated
robot hand.

For example, the sentence, "place the red block on the blue block™
first retrieves an object name such as B3 corresponding to the noun phrase,
"The red block' and similarly, B4 for "the blue block”. The sentence
now has a semantic structure equivalent to the following:

Place: Mood Imper., T B3, On B4
A transformation associated with the verb, ''place" transforms this into
a goal statement roughly as follows:

ThGoal: (ON B3, B&4)
A microplanner program expands this state description into a series
of commands that will achieve the desired state and passes this as a
program for the interpreter of the command language to run and so

physically accomplish the goal.




In this example we can see three levels of procedural transformation;
first the identification of referents of the NPs, second, transformation
of the sentence structure into a desired goal state, and third the
assembly of a command language program by Microplanner to achieve the
desired goal state. The resulting command language statement is a
representation of the pragmatic meaning of the English statement;and
the dynamic interpretation of the command language statements results
in changes in the world of blocks and is an operational definition of
the "meaning' of the sentence.

The semantic structure of a sentence can thus be seen to be simply
a first stage representation of meaning which can be operated on by
various semantic transformations to produce paraphrases or translations
into other languages including procedural ones. Schank's conceptual
structures and Winograd's goal structures can both be seen as modelling
deeper levels of thought that are signified by semantic structures of
verbal meanings. Transformation from either the semantic structure or
these deeper structures into procedural languages, models the human
process of generating actions in the world under the control of thought
processes which also correspond to verbal expressions.

Summary: This chapter has described a consistent approach to the
derivation and manipulation of representations of verbal meaning for a
subset of English sentence structures. The subset treated is a small
one and we have undoubtedly ignored more English forms than we have

accounted for. But we have described a process for mapping from English




into a semantic level, from that 1evel back into English, and procedures
for discovering equivalence relations between different semantic structures.
This is a theory and a model of superficial aspects of verbal communication
and one that fits naturally into those systems which model the deeper
forms of thought required for problem solving and the accomplishment of
non-verbal actions.

These theories and models of language understanding offer a very
rich area for continued research. Computational research is needed to
improve data representations and algorithms required by the models and
to provide additional systems such as the Woods AFSTN and PLANNER to
simplify the programming tasks. A great deal of linguistic research is
needed to expand the range of natural language constructions for which
syntactic and semantic conventions can be agreed on. Psychological
research is necessary to determine how closely these theories and models
account for experimentally determined facts of human verbal memory and
human language understanding and generation skills. Finally, there is
need for hardware development of computers with gigantic memories.
multiple processors, and command languages at the levels now exemplified

by LISP and PLANNER.
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APPENDIX A

QUESTION ANSWERING ALGORITHM

J. Slocum



(ANSWER (LAMBDA (QST) (PROG (CANDS QANS)
(SETQ CANDS (CAND QST))
AGAIN (COND ((NULL CANDS) (RETURN NIL))
((MATCH(MATCH1 QST(CAR CANDS)) (CAR CANDS))
(RETURN QANS))
(SETQ CANDS (CDR CANDS))

(GO AGAIN} )))

(MATCH (LAMBDA(QT ST)
(COND ( (OR(NULL QT) (NULL ST)) NIL)
((MATCH2 (INDICATORS QT)) T)

(T NIL) )))

(MATCH2 (LAMBDA (INDS)
(COND ((NULL INDS) T)
((MATCH(MATCH1 (GET QT (CAR INDS))(GET ST(CAR INDS)))
(GET ST (CAR INDS)))(MATCHZ2 (CDR INDS)))

(T NIL) )))



(MATCH1 (LAMBDA (QT ST)
(COND( (NOT (DETMTCH(GET QT DET) (GET ST DET))) NIL)
( (NOT (MODMTCH (GET QT MODAL) (GET ST MODAL))) NIL)
((QWDTEST QT ST) NIL)

(T (TRANSLATE(PATHS(GET QT TOK)(GET ST TOK)))) )))

(QWDTEST(LAMBDA(QT ST)

(AND(GET QT QWD) (SETQ QANS ST) NIL) M)
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(Q10(PUSH VP T

(VP (CAT AUX(GETF BE)
(MAKEPR (QUOTE NBR) (GETF NBR))
(ADDPR (QUOTE TENSE) (GETF TENSE))
(ADDPR (QUOTE ASPECT) (QUOTE IMPERF))
(ADDPR (QUOTE MOOD) (QUOTE INDIC))
(TO V1))

(CAT AUX(GETF HAV)

(MAKEPR (QUOTE NBR) (GETF NBR))
(ADDPR (QUOTE TENSE) (GETF TENSE))
(ADDPR (QUOTE ASPECT) (QUOTE PERF))
(ADDPR (QUOTE MOOD) (QUOTE INDIC))
(TO V&4))

(CAT V T

(MAKEPR (QUOTE NBR) (GETF NBR))
(ADDPR (QUOTE TENSE) (GETF TENSE))
(ADDPR (QUOTE VOICE) (QUOTE ACTIVE))
(ADDPR (QUOTE ASPECT) (QUOTE IMPERF))
(ADDPR (QUOTE MOOD) (QUOTE INDIC))
(JUMP V6)))

(V1(CAT V (GETF +ING)
(ADDPR (QUOTE VOICE) (QUOTE ACTIVE))
(ADDPR (QUOTE FORM) (QUOTE PROGRESSIVE))
(JUMP V6))

(CAT V (GETF +EN)

(ADDPR (QUOTE VOICE) (QUOTE PASSIVE))
(ADDPR (QUOTE FORM) (QUOTE SIMPLE))
(JUMP V6) ))

(V4 (CAT V(GETF +EN)
(ADDPR (QUOTE VOICE) (QUOTE ACTIVE))
(ADDPR (QUOTE FORM) (QUOTE SIMPLE))
(JUMP V6))
(CAT AUX T
(TO V5)))

(V5(TST VP T
(LIFTR ARGS (GETF ARGS))
(LIFTR PDIGM (GETF PDIGM))
(MAKEPR (QUOTE MODAL) (PUTPRL(GENSYMC) (GETR MLIST)))
(ADDPR (QUOTE TOK) *)
(TO V7) ))

(V7(POP (GETR MLIST)T))

Appendix Table 1 Program for VP




(S(PUSH NP T
(SETR SUBJ *)
(TO Q10))
(CAT AUX T

(PUSH PP T

)

(QLO(PUSH VP T
(SETR MLIST *)
(SETR LASTNP NIL)
(ADDPR (ARGEVAL (GETR SUBJ)) (GETR SUBJ))

(TO Q12) ))

(QL2(PUSH NP T
(ADDPR (ARGEVAL *) *)
(SETR LASTNP *)
(TO Q12))
(PUSH PP T
(PPEVAL * (GETR LASTNP))
(SETR ARGl (ARGEVAL *))
(JuMP Q13))
(POP (PUTPRL (GENSYMC) (GETR MLIST))T))

(Q13(TST ARGl (NOT (NULL(GETR ARG1))))
(ADDPR (GETR ARG1) *)
(TO Q12) )

Appendix Table 2 - Program for Top-Level
Analysis of a sentence.



(R(TEST INTER
(EQ"INTER (GET(SETR MODEL(GET(GETR ST)*))''™MOOD)
(JuMP Q))
(TST TMPER(EQ"IMPER(GET MODE1'MOOD))
(TO V1))
(TST DECL T (JUMP S1)))
(S1(PUSH NP T
(SETR SNT *)
(T0 V1))

(Q(TST QUERY (EQ* (GET(GETR MODE1)"QUERY))

(SETR SNT (WH- *))
(SETR QFRONT ())
(TO V1))

(TST SQUERY (EQ"S(GET(GETR MODE1)"QUERY))
(SETR QFRONT T)
(JuMP S1))

(TST OTHER T
(SETR SNT(WH- (GET(GETR MODE1)"QUERY)))
(SETR QFRONT T) (PUT ST(GET(GETR MODE1)"QUERY()))
(JuMP Q1))

(QL(PUSH NP T
(CONC (GETR SNT)*)
(TO V1))
(POP(PRING'QL)T))

(V1(PUSH VP (AND(SENDR WD(GET(GETR ST)'"TOK))
(SENDR ST(GETR MODEL)))
(HOP V2)

(V2(TST QFRONT(EQ(GETR QFRONT)NIL)
(CONC (GETR SNT)*)
(TST NO T(CONS(LIST(CAR*) (GETR SNT)) (CONC(GETR ST) (CDR %))

Top Level Sentence Generation Net

Appendix Table 3



(NP (TST DEF (EQ(GET(GETR ST) (QUOTE DET)) (QUOTE DEF))
(SETR SNT (QUOTE THE))
(JUMP N2))
(TST INDEF (EQ(GET(GETR ST) (QUOTE DET)) (QUOTE INDEF))
(SETR SNT(QUOTE A))
(JUMP N2)))

(N2(TST ADJ (SETR ADJ(GET(GETR ST) (QUOTE MOD))
(JUMP N3)
(TST NO ADJ T
(JUMP N&4)

(N3(TST ONE ADJ (AND(ATOM(GETR ADJ)) (NOT(NULL(GETR ADJ))))
(APPEND(GETR SNT) (GETLEX(GETR ADJ))NIC))
(JUMP N4))
(TST MORE T
(APPEND (GETR SNT) (GETLEX(CAR(GETR ADJ))NIC))
(SETR ADJ(CDR(GETR ADJ))
(JUMP N3))

(N4 (TST NOUN T
(APPEND (GETR SNT) (GETLEX (GET(GETR ST)TOK)
(GET(GETR ST)NBR)))
(JUMP OUT)

(OUT(POP SNT T)

NP Generation Net

Appendix Table 4



