PROBLEMS OF A TEXT-BASED

QUESTION ANSWERING SYSTEM

TECHNICAL REPORT NO. NL-7

James Ethan Justiss

August 1972

NATURAL LANGUAGE RESEARCH FOR COMPUTER-ASSISTED INSTRUCTION
Supported by:

THE NATIONAL SCIENCE FOUNDATION
Grant GJ 509 X

Department of Computer Sciences
and
Computer-Assisted Instruction Laboratory

The University of Texas
Austin, Texas 78712

ACKNOWLEDGEMENTS

The author would like to express his gratitude to the many
people who helped and encouraged him in this work: To Professor
Robert Simmons for supervising the thesis and for the learning process
he offered, to Robert Amsler and Jonathon Slocum for their comstant
aid, to Professor Musser for serving on the committee, and to everyone

else who made it a worthwhile experience.

August, 1972

CHAPTER

I1

I11

v

VI

TABLE OF CONTENTS

INTRODUCTION

PROBLEMS OF QA SYSTEMS ., o« .

THE OBJECTIVE OF NEWQA
NEWQA'S SYSTEM DESIGN

Storage Structure.+ o . .
Data Base Structure. . . . « . .+ & .
Lexical Structure.,« . .
Syntactic Features

Semantic Features,
Data Base Retrieval.

The Parsing System

GRAMMAR. . . . & « v ¢ ¢ o « o o = o &

Sentence Forms and Parsing Features,

ALTERNATIVES: WHY IT WAS DONE THIS WAY.

Data Rase and Retrieval Mechanism.

Programming Alternatives

ii

PAGE

.11

.14

.17

.18

.23

.24

.28

.30

31

.35

.36

.39

CHAPTER

CONCLUSIONS.

APPENDIX .

REFERENCES .

Parsing System Choices .

Features and Grammar .

»

e

iii

°

PAGE

.43

.45

.47

.48

FIGURE

10

11

12

13

LIST OF FIGURES

NEWQA system block diagram .

Semantic net

Parameterized semantic net .

A noun entity.

A modifier structure

A verb entity.

A lexical entry.

Syntactic features .

Semantic lexical entries

Indexing the data base .

The STARS text« « &

Sentence forms o o

Indexing a PLANNER data base .

iv

PAGE

.12

.13

.15

.16

.16

.25

.27

.32

CHAPTER I
INTRODUCTION

In recent vears an exciting area of computational linguistics
has been that of question-answering (QA) systems. These are computer
programs that will accept an English question and give a meaningful
reply. For a survey of QA systems, see Simmons [7]. Like all computer
programs, QA systems suffer from input-output and storage-retrieval
interfacg problems. However, in QA systems the interface problems
center around the English language and its lack of a precise definition
either syntactically or semantically. Everyone who speaks the language
has his own unformalized definition in his head.

Three of the most powerful QA systems have been developed by
Woods [14], Winograd [12], and Simmons [10]. Woods' system permits a
user to ask a question in English concerning the composition of moon
rocks, The system replies with a retrieval from its data base on that
subject. Winograd's system is a simulated robot in a tiny simulated
world of blocks on a table top. The user can ask the robot questions
about its world and can command it to perform tasks. The system
accepts this input in English and replies to questions in English.
Simmons' system PROTOSYNTHEX III, is the closest to the notiom of a
text-based question-answerer. It accepts statements (in a subset of
English) as input to its data base and accepts questions as queries

to the data base.

Although these are reasonably successful systems, they all
can be easily "broken' by someone who strays into the‘zzaﬁg,in their
natural~language interpretation procedures.i Thisg is more than a

deficiency of the syntactic grammar, which could be improved merely

by putting in every special form of a sentence as a case to be checked.
The deficiency involves the problem of interpreting meaning, which

is unsolved, except in restricted cases -- by limiting the range of
meaning, by limiting the vocabulary, by limiting the syntactic
variation, by limiting the subject of discourse, or by limiting the
size of the world model. A combination of these techniques is

usually necessary.

There has been no clear boundary in existing system descrip-
tions between what is a necessary compromise and what is merely left
to be fixed up in a future version of the system. Also many problems
of QA systems that have been adequately solved have been presented
in such a manner as to leave the reader in doubt as to whether the
solution is general or limited. This paper is an attempt to clarify
the boundary between limited solutions and general solutions.

A new text-based QA system, called NEWQA, has been designed.
Where no solution existed to a design problem, we show our compromises
and patches as such. When a solution did exist, it was implemented
as well as possible.

The purpose of a text-based QA system is two-fold.

First, a text-based QA system takes input from text and organizes

it into a data base format that will support question-answering.
Second, a text-based QA system answers questions about the text that
is in the data base. This double purpose i; of interest theoretically
and practically.

On the theoretical side is the problem of how to make
a good question-answerer. This problem involves retrieval capa-
bility and theorem-proving techniques. On the practical side, the
problems are more mundane, but they are not much better understood.
A pressing practical problem is the development of a working grammar --
one that will accept a wide range of text. This will be essential
some day when a text-based QA system uses a set of books, such as

an encyclopedia, as input.

CHAPTER 11
PROBLEMS OF QA SYSTEMS

The problems of QA systems fall into three categories.

The first one is the problem of interpreting the meaning‘of natural
language input. The second is the problem of accessing what is in
the data base. The third is the problem of deduction and inference,
which is the theorem-proving problem of Artificial Intelligence.
These are interrelated problems, they involve representation of
meaning.

In the first category, the interpretation procedures try
to create a representation of the meaning of natural-language input.
In the process of creating the representation of meaning, the inter-
pretation procedures may have to look in the data base to find
concepts that are referenced by the input string. Deductions may
also bé necessary.

In the second category, the data base procedures look
up representations of meaning. Representations of meaning are filed
according to similarities of meaning to make the look-up possible.
Deductions may be necessary to find the proper index of an entry if
it is filed under a different shade of meaning than that assigned
to the question.

Finally we arrive at the third category, the deduction

procedures. They manipulate representations of meaning to find

other representations of meaning that are also true. Unfortunately,
Artificial Intelligence has not yet produced an adequate solution
to the theorem-proving problem. No method has been found to meet
the requirements so far. We either have to wait for a solution or
make do with limited deduction capability.

This is where the ambiguous nature of natural language
makes gaps in QA systems. There are many shades of meaning that
may or may not be true depending upon what is being talked about
and how it is being talked about. Many conditions can affect the
truth or falsehood of these representations of meaning. In order to
select those that are true we need a deduction capability that far
exceeds that of present theorem-proving methods. In QA systems so
far, the only deductions that can be made are the ones defined by
the builder. Such built-in definitions are a considerable limitation

of the ranges of meaning that people can express when they converse.

CHAPTER 111

THE OBJECTIVE OF NEWQA-

NEWQA was designed to answer questions about a small body

of text. It accepts the text as input to build the data base.

Then 1t accepts questions about the material covered in the text.

The body of text that it has been designed to handle is the first

two paragraphs of STARS, an introductory astronomy book for children.

This objective is a combination of the goals of the systems
mentioned in the introduction. The major characteristic of keeping
the data input and retrieval functions separate is that the state of
the data base is not subject to change while the system is making
a reply. Thus NEWQA performs a retrieval function like Woods'
system and like PROTOSYNTHEX III, NEWQA creates its own data base
from natural language input.

The restriction to input from only a small, specific body
of text is helpful to building the parser. In order to use other
pieces of text, the parser would have to be augmented to fit the
input. This restriction is not a cover-up to avoid an insurmount-
able theoretical difficulty, but it is rather a convenience. In
the parser description we can see that a parser can be made complex
enough to handle virtually any syntactic contingency. But in the
case of STARS' two paragraphs the text is already so complex that

the grammar is fairly incomprehensible, even though the text is an

elementary presentation. Further generality in parsing could increase
the size of the grammar by perhaps an order of magnitude. The point
would be reached where core space would be filled by grammar programs
alone. The result would not be a very balanced system.

The text restriction gives us a chance to keep the system
balanced among grammar, lexicon, data base, and utility programs.

We are interested in balance because we would like to have a time-
shareable system --- where decent response time impiies only a few
small overlays. (For a description of overlays, see page 9.) The
vocabulary of the text amounts to about 300 words (including in-
flected forms as separate entries). This is about right for the
lexical overlay.

Retrieval goals are simple: NEWQA is to reply with as
nearly as possible what the original text said --- much as a student
would. Thus it cannot answer questions that relate closely to the
meaning of the text, but are not closely related to the words in the
original sentences. By this means we avoid a massiye semantic
interconnection problem. It is definitely a patch, but no solution
is complete. We have simply said that it is not our goal to achieve
that kind of performance.

The objective is to build a system that has undeniable
text processing ability. It is to generate its own data base from
actual prose --- written for a book and not as a test case. Thus

NEWQA attempts to demonstrate that grammar is not an intrinsically

unsolveable problem, but one that is limited by the available core

space in a balanced system.

CHAPTER IV
NEWQA'S SYSTEM DESIGN

A block diagram of NEWQA is shown in Figure 1. 1In U. T.
LISP the entire system is composed of four filés which operate as
three overlays and a randomly accessed storage file. At U. T. a
user who desires more than about 32K words of program storage while
time-sharing must create overlays. These are user files that contain
core images of the LISP system and whatever program the user wants
on that overlay. When an overlay program is called from an executing
LISP function, the executing function and all of its resident LISP
system are swapped out onto temporary storage and the overlay is
swapped in. When the overlay program has finished, the overlay
returns to secondary storage and execution returns to the calling
function.

The first level subsjstems of NEWQA are: 1) the Lexicon,
2) the Data Base, and 3) the Parsing Systems. (The parsing system
has two sets of grammar, each on its own overlay. There is one for
input and one for answering questions, but since they operate simi-
larly, they are discussed as one.) It is a simple design, but as
we shall show, for a system to accomplish the goals stated earlier,
more complexity often means building more complex patches around
unsolved problems. A more complex QA system does not necessarily

operate better.

TEXT

INPUT PARSER

creation

ANSWER

GENERATOR

QUESTION

N

reference

DATA BASE

QUERY PARSER

reference

LEXICON

LEXICAL INPUT
SYSTEM

Figure 1

NEWQA system block diagram

11

An important thing to notice about the block diagram is
that there is no data base manipulation subsystem apart from the
parser. This is because the parser must refer to the data base as

it processes a sentence, so another system is unnecessary.

Storage Structure: Parameterized Semantic Nets

The semantic net structure (Simmons 9 8) has been
widely used as an expression of a sentence's deep structure for
computational purposes. As a storage structure, a semantic net is
composed of a set of triples. In LISP property-list formalism this
structure is represented by an atom and a set of properties that
consist of an indicator and another atom. Figure 2. shows a semantic
net for "Stars and planets have attracted man's attention since
earliest times."

There is an indicator and a unique name for every relation
in the sentence. This structure is capable of representing the
computational structure, but it has an inherent interface difficuly
with a program that manipulates it. It requires programs that
know what part of the semantic net they are referencing since the
indicators differ so much from node to node. Thus the manipulating
procedures are inherently part of the interpretation procedures.

By limiting the indicators to a specific few for «very node
we can reduce the connection between manipulation and interpretation

programs. Such a network is called a Parameterized Semantic Net

Cl PI ATTRACTED C4 PI ATTENTION

MODALITY C2 NUM SING
CAl C3 DET DEF
THM C4 POSS C9
LoC C5
C9 PI MAN'S
C2 TENSE PRES NUM SING
ESS POS DET INDEF
NUM PLUR
FORM PERF C5 PI TIMES
MOOD DECL NUM PLUR
VOICE ACTIVE DET INDEF
MOD C8
C3 CONJ AND PREP SINCE
ARG1 Cé6
ARGZ2 C7 C8 PI EARLIEST
DEG SUP
C6 PI STARS
NUM PLUR
DET INDEF

C7 PI PLANETS
NUM PLUR
DET INDEF
Figure 2

"Stars and planets have attracted man's attention since earliest
times.”" in a semantic net.

C1 PI ATTRACTED C3 PI ATTENTION

ARGS (C2 C3) MOD (C7)
MOD (C4) FE (NOUN SING DEF)
FE (VERB PRES PERF) SM (...)

SM (semantic information)

C7 PI MAN'S
C2 PI AND MOD NIL
ARGS (C5 C6) FE (NOUN FING POSS)
MOD NIL SM (...)
FE (NOUNPH PLUR COMPOUND
SM (...) C4 PI SINCE
ARGS (C8)
C5 ©PI STARS MOD NIL
MOD NIL FE (PREPPH)
FE (NOUN PLUR) SM (...)
SM (...)
C8 PI TIMES
C6 PI PLANETS MOD (C9)
MOD NIL FE (NOUNPH PLUR)
FE (NOUN PLUR) SM (...)
SM (...)
Note: C9 PI EARLIEST
PI - print image MOD NIL
ARGS - arguments
MOD - modifiers FE (ADJ SUP)
FE - syntactic features
SM - semantic features SM (...)
Figure 3

"Stars and planets have attracted man's attention since earliest
times.”" in a PSN,

14

(PSN) because the indicators are named for a group of relations.
Figure 3. shows '""Stars and planets have attracted man's attention
since earliest times' in PSN format. Note that in LISP property-
1ists, PSN's consist of an atom with its properties that are an
indicator and (almost always) a list. This format permits them to

be manipulated and modified with simpler operations.

Data Base Structure: Entities and Events

The data base structure is identical to PSN structure
except that only a certain part of the PSN structure for a sentence
becomes a data base entry. Specifically, noun phrases and verb
phrases are the retrievable units. A noun phrase is intended to
refer to a particular object, even when the object 1is mentioned in
many sentences. Thus the noun phrase must be found in the data
base. Retrieval of a verb phrase is necessary to reference an
action or an event. These data base entries have been called
Entities and Events by Jomathon Slocum*.

Figure 4. shows a noun phrase entity. It has the eight
indicators, PI - print image, TOK - token, TPCHN - time and space
chain, FE - features (syntactic), SM - semantic features, MOD -
modifiers, TMSP - time and space modifiers, and one or more from
the set of MOD*, ARG*, or PREP* depending upon what roles the noun

phrase plays in the sentence.

*Personal Communication.

address

address

TOK
PI
FE
SM
MOD
TMSP
TPCHN
MOD*
or
ARG*

or
PREP*

PI
MOD
FE
SM
PREP

or
CONJ

back chain

print image

list of syntactic features
list of semantic features
list of modifiers
time-space modifier

chain to next occurance
iist of top nodes of
entities in which it

occurs

Figure 4

A noun entity

print image‘

list of modifiers

list of syntactic features
list of semantic features
preposition or conjunction

(if any)

Figure 5

A modifier structure

15

address

word atom

PI

FE

SM

MOD

TMSP

ARGS

RT

FE

SM

SPEC

SPL

16

print image

list of syntactic‘features
list of semantic features
list of modifiers
time-space modifiers

list of argument entities

Figure 6

A verb event

1ist of root word {(and pointers)
list of syntactic features

list of semantic features
special program to be called
when PARSE is entered

special program to be called

when PARSE has completed

Figure 7

A lexical entry

17

Figure 5. shows a modifier structure.

Figure 6. is a verb phrase event. It has seven indicators;
P1, FE, SM, MOD, MOD*, ARG*, PREP*, and TMSP are as before. The
verb phrase has no need of either TOK or TPCHN since the verb phrase
is not used in successive sentences to refer to the same element
of the world as a noun may be. (If is is used in a noun position,
a noun entity is created that references it as an event.) It has
in addition the indicator, ARGS - arguments, which is an ordered

list of where the verb's arguments may be found in the data base.

Lexical Structure

The lexicon is a simple property-list structure with an
entry for every word in the vocabulary as shown in Figure 7. Every
word has the indicators, RT - root, FE - features (syntactic), SM -
semantic features, SPEC - special, and SPL - speclal. FE and SM
are the same for lexical entries as for entities, except they can
contain multiple entries for multiple word meanings, i.e. a word
can be more than one part of speech and can have more than one
meaning within a part of speech. For instance, 'pitcher' is a
container for water and "pitcher'" is also a man who throws a base-
ball. RT is a list of one element, the root word, if it is an
inflected form. If the word is its own root, RT contains pointers
to the inflected forms. SPEC and SPL are places where programs

for special words can reside. The word, "and", for instance, has

18

a SPL program which causes it to parse another unit of the same type
as was just parsed. SPEC is for programs which are to be entered
(as an interrupt) upon a call to PARSE. SPL is for programs which
are to be entered after PARSE has finished its normal operation.
This use is identical to Winograd's SPEC and SPECL programs respec-

tively. (See Winograd 12.)

Syntactic Features

Figure 8. lists the syntactic categories into which a
word can fall. A word can be in more than one category. As it is
parsed into one category or another, the parser selects the features
of the word that pertain to that category. Within a category a
word can have one or more of the features that are associated with
the name of the part of speech in the figure.

There are sixteen parts of speech: NOUN, VERB, ADJ, PREP,
ADV, PRON, PROPN, QADJ, CONJ, DET NUM, RELPRON, ORD, PRT, CLASF,
and EXPL.

NOUNs can have the features SINGular, PLURal, POSSessive,
MASS, and TIME. MASS nouns are non-countable nouns such as "sugar"
and "water'. TIME nouns have special time meanings, such as "B.C."

"s'clock™.

and
VERBs can also have the features SINGular and PLURal for

agreement in number with their arguments. SING3 is the special

DEFLIST ((

(NOUN (NOUN SING PLUR POSS MASS TIME))

(VERB (VERB SING PLUR SING3 FST TRANS INTRANS
TRANS2 CLOBJ TOOBJ POBJ VBE PRT NOPASS
AUX QUAX BAUX DAUX HAUX MODAL NEG PRES
PAST FUT EN ING INF))

(ADJ (ADJ COMP SUP))

(PREP (PREP PREP2))

(ADV (ADV ADVMOD VMOD PREPMOD NEG))

(PRON (PRON THPRON SING PLUR FST SEC POSS NOM
OBJ DEM POSSDEF NEG REFL))

(PROPN (PROPN SING PLUR POSS))

(QADI (QADJ))

(CONJ (CONJ SUBCONJ))

(DET (DET INDEF DEF QDET DEM QUANT NEG NONUM OFDET))

(NUM (NUM SING PLUR NTHAN NAS NAT NUMW))

(ORD (ORD))

(PRT (PRT))

(CLASF (CLASF))

(EXPL (EXPL))

(RELPRON (RELPRON SING PLUR POSS NOQU))

) WDCL)

Figure 8

Wordclass categories and their features.

19

20

third person singualr form, while FST denotes special first person

i

singular forms as in 'be''--"am''. TRANS denotes a verb that takes
a direct object, such as "hit'". TRANS2 indicates indirect object
verbs like ''give''. VBE signals a verb that like "be'" or ''seem'" can

take a subject complement. TOOBJ indicates a possible infinitive

object on verbs like '"fail' and "try'", while CLOBJ indicates that

1 it

a clause object is likely -- often found with 'say" and 'show'.
POBJ is found on verbs that require a place designation as in
"put the block down" or 'put it om the table'. ("Put it" is not
grammatically well-formed for this system.) PRT indicates that the
verb may have a particle as with '"look up'". NOPASS is a feature of
verbs that cannot be passive, such as ''cost". AUX is a marker for
auxiliaries, which include QAUX (question auxiliaries such as "will"
and "did"), DAUX ("'do" forms), HAUX ("have' forms), and BAUX ("'be"
forms). MODALs are '"can' and '"may'. Negation is signaled by NEG
on "-n't" verb forms. PRES, PAST, and FUT are the markers for
present, past, and future temses. EN signifies the past participle
and ING indicates the present participle. INF is the infinitive
form of the verb.

ADJectives can be only ADJ or they may also be COMPar-
ative or SUPerlative.

PREPositions may have the feature PREPZ which means that
another preposition may follow them. (An adverb phrase may also

intervene.) An example of a PREP2 is "as' in "as far as’ or "on”

21

in "on top of'".

ADVerbs are distinguished by what they can modify. VMOD
signifies verb modifiers such as "-1ly" words like "slowly". PREPMOD
marks preposition mo&ifiers, and ADVMOD adverbs can modify other
adverbs. NEG adverbs are negative ("not’).

PRONouns can be SINGular or PLURal in number, and they
can be NOMinative, OBJective, or POSSessive in case. FST and SEC
denote first and second persons respectively (third person is un-
marked). POSSDEF (for possessive definite) pronouns are stand-alone
possessive pronouns such as mine, yours, his, ours, etc. REFLexives
are the "-self' pronouns such as "myself" and "himself". THPRON
marks indefinite pronouns like "something”, "anything', and "nothing’’.
"Nothing" is also NEGative. Finally there are the DEMonstrative
pronouns, "that', "this', "these", and "those'.

PROPN is the abbreviation for proper nouns. They have
the features SING, PLUR, and POSS just as nouns do.

QADJ denotes interrogative adjectives and adverbs like
"how', "where", and "when'.

CONJunctions can have the feature SUBCONJ which means it
is a subordinate conjunction. Subordinate conjunctions introduce
subordinate clauses within a sentence.

DETerminers include the articles, "a'", "an'", and "the'.
PAT and "an'' are INDEFinite, while "the' is DEFinite. DEMomstrative

determiners are ''that', 'this', 'these', and "those'. Question
2 3 2

22

determiners like ''which", "what", and "how many'" are marked QDET.
QUANtifiers are "any', "every", etc. Quantifiers can also have the
feature OFDET, indicating that they can take an "of' phrase. ''None"
and "no" are NEGative determiners. The feature NONUM says that the
word cannot be used with numbers. "None" and "many'' are NONUM's.,
NUMbers can be PLURal, or if the number is "one'" or "1",
it is SINGular. All numerical LISP atoms are numbers and all
number-naming words like "seven' are numbers. Some other words can

also behave like numbers and they are NUM's, too. NTHAN is a feature

of number words like "more" and 'fewer' which can precede 'than".

1 it

as' and can

NAS is for number words like "few' which can precede
be used in "as...as' constructions. NAT is for number words that
may follow "at”, such as ''least” and "most'. NUMW is a number
word that does not have any of these specific features. "Exactly"
is a NUMW.
RELPRON is the name for relative pronouns. They can be
SINGular, PLURal, or POSSessive. They can be NOQU if they cannot
be used in a question. For example, 'which', '"who', and "whose"
can be used to start questions, but ''that’ and "whom' are NOQU.
ORDinal numbers like "first' have only the feature ORD.
PRT marks particles like "up' in "pick her up’.
CLASF is the name for classifiers -- nouns that can

modify other nouns. '"Girl" is a classifier in "girl scout’.

EXPL marks the expletives ''there' and "it" which are

23

often used to start sentences. Then the true subject of the sentence
appears in the object position, as in "There was an old woman who

lived in a shoe."”

Semantic Features

NEWQA uses a set of semantic features to disambiguate
the use of a word in a sentence. The semantic markers are: THING,
PHYSOBJ, EVENT, ANIMATE, HUMAN, PLACE, TIME, RELATION, and IDEA.
They are stored on the SM indicators of words and entities and used
both as selection restrictions and markers.

On a noun the marker words show the meaning of the noun.
On modifiers the markers act as selection restrictions to show what
the modifier can modify. This provides a selection procedure to
decide what modifies what. The SM of a word is intersected with
the SM's of its modifiers to give a new SM. 1If the new SM is empty,
the modifier has been assigned to modify the wrong constituent and
further analysis is necessary.

For this purpcse the simple intersection function is not
sufficient to find what all modifiers should modify. Since there
are alternate SM meanings for many words, the order of testing words
against each other becomes important. For the first meaning may
fail to match ome constituént and the second meaning will succeed
in matching. But the first meaning would succeed if it was matched

against another constituent. Therefore the order of matching is:

24

Match the first semantic meaning everywhere. If it succeeds somewhere,
the first place it succeeds is the place it should modify. If it
fails everywhere, try the second semantic meaning, and so forth.

As the reader can see, this 1s not a general solution, but
it is a procedure that works simply because the ordering that has
been chosen is adequate for the purposes of analysing the STARS
text., There is no real solution to this problem in unrestricted
text. Without further context, such sentences as: 'The man by
the painting with the peaches saw me' are necessarily ambiguous to
an automatic sentence parser with a non-specific grammar.

Figure 9. shows some sample SM markers for a noun, an
adjective, a preposition, and a verb. Unlike other modifiers,
prepositions have an SM that limits the meaning that the prep-
ositional phrase can convey. It selects the meaning of its noun-
phrase argument. Verbs have a list of possible argument SM

markers in each argument position.

Data Base Retrieval

The problem of retrieving a data base entry by everything
that it means is unsolved. The ideal would be a data base indexed
by every meaning of every entry. But there is no unambiguous and
repeatable way to assign every representation of meaning to an
entry. If an arbitrary code that describes the possible meanings

the word can take is generated for indexing a word or concept, we

OLD:

IN:

TRY:

((NOUN ((HUMAN) (MAN MEN MAN#S MEN#S MANKIND MANKIND#S))

((HUMAN) (MAN MEN MAN#S MEN#S HUMAN HUMANS HUMAN#S

HUMAN#)))

((ADJ ((HUMAN ANIMATE THING PHYSOBJ TIME IDEA RELATION)

(OLD OLDER OLDEST))

((PREP ((PLACE) (IN))

((TIME) (IN)))

((VERB (((SUBJ HUMAN ANIMATE EVENT IDEA)
(OBJ1 THING EVENT IDEA PHYSOBJ))
(TRY TRIES TRYING TRIED ATTEMPT ATTEMPTED ATTEMPTING
ATTEMPTS)
((SUBJ HUMAN ANIMATE EVENT IDEA))

(TRY TRIES TRIED TRYING)))

Figure 9

Semantic lexical entries

25

