AN IMPLEMENTATION OF

THE AUGMENTED TRANSITION NETWORK SYSTEM
OF WOODS
by

David Matuszek
June, 1971

as
revised by

Oct,,1972 Jonathan Slocum NL9

NATURAL LANGUAGE RESEARCH FOR COMPUTER-ASSISTED INSTRUCTION

Supported by:

THE MATIONAL SCIENCE FOUNDATION
Grant GJ 509 X

Department of Computer Sciences
and
Computer-Assisted Instruction Laboratory

The University of Texas
Austin, Texas



INTRODUCTION

English is a linear language. Every meaningful utterance in English
consists of a sequence of symbols, called words, and even when these words
are written on a two-dimensional sheet of paper thev maintain their linear
ordering. This apparent simplicity of form, however, does not reflect a
corresponding simplicity in the meaning of the utterance, in the thought
or thoughts which the words are intended to convey; rather, it seems to be
an artifact resulting from the nature of verbal communication.

Of course, vocal sounds themselves may vary along a number of dimen-
sions, but the possible variation is much too limited to be adequate for
expressing complex ideas with a single sound. Rather, this variation is used
to construct a basic set of speech sounds, called phonemes, which are mean-
ingless when considered individually but which may be arranged in particular
sequences to form words, which may in turn be combined sequentially to
form sentences. Thus, while thoughts and ideas may not be constrained to
a linear format, spoken languages are necessarily so constrained, and it
is quite possible that many of the complexities of grammar are the result
of linguistic signals which must be present to reflect the underlying
structure of the thought conveyed. 1In other words, a sentence may contain
a large number of cues whose function is to indicate to the hearer how
to interrelate the more substantive aspects of the sentence in order to
replicate the structure which exists in the mind of the speaker.

The nature of this underlying structure is the primary unknown in

the field of linguistics. Most linguists, however, feel that a tree



structure is sufficiently general to represent the meanings of utterances;
accordingly, a great deal of work has beer done in an attempt to devise a
suitable means of mapping sentences into tree structures and back again.
The development of suitable types of tree structures and of algorithms
for performing the mapping is a difficult job, and one in which the aid
of a computer can be of immense assistance.

Woods (1969) has recently described a LISP-based computer language
for representing algorithms which parse sentences into tree structures.

The language is more or less a description language for a particular

type of graph structure, which Woods refers to as an augmented transition

network. Woods shows that such graphs can be powerful tools for imple-
menting various parsing strategies.

The primary purpose of this paper is to describe in detail a par-
ticular implementation of the sentence parsing system of Woods. While
Woods gives a very clear overall view of the system, many of the details
relevant o programming and/or using the system are ambiguous, to say the
least. Accordingly, this paper may be taken as supplementary to that of
Woods.

The attempt has been made to remain consistent with the system as
described by Woods. Ambiguities have for the most part been resolved in
favor of the interpretation deemed most natural or most useful, rather than
the interpretation easiest to code. Some generalizations have been made
in order to increase the power of the system, while two routines (BUILDQ
and BUILD) have been discarded as they encourage what we feel is a too-
restrictive approach to parse -construction —-- that is, the full powers
of LISP (or GROPE, as the case may be) permit a complete latitude of

choice with regards to constructing a parse of a sentence. Therefore



the maintenance of such restricting functions was deemed inappropriate.
Finally, an added capability allows the user to construct as many such

"grammars'' as he desires -- so long as each is uniquely named.



TRANSITION NETWORKS

A recursive transition network (see Fig. 1) is a directed graph with

labelled nodes, called states, and labelled arcs. In each network, one
particular node is designated the start state énd is labelled with the
name of the syntactic type which the network is to recognize, while the
remaining nodes have arbitrary labels. 1In addition, one or more nodes

(marked with a '"'/1" in Fig. 1) are called final states: when entered
3

they indicate that an instance of the syntactic type indicated by the
label of the start state has been found.

Every node that is not a final state has one or more labelled arcs
pointing from it, while final states may or may not have such arcs point-
ing from them. Each arc in the graph is labelled in one of two waysj
either with the name of a category into whicg individual words of the input
may fall, or with the name of a syntactic type which is also the label of
the start state of another portion of the network.

A recursive transition network may be thought of as a mechanism which
accepts as input a string of symbols in a source language (e.g. words in
an English sentence), does computation over the input, and produces as
output either a ''yes' or a 'mo' respomse, indicating that the input string
is or is not an instance of the specified syntactic type, respectively.

The computation performed by the network proceeds as follows. The
network is initially in the start state; that is, the system maintains a
marker to the node currently under consideration, and this marker initially
points to the start state. Under control of the input, the marker advances
from node to node along the arcs, checking at each node whether or not it

is in the set of final states. If the marker points to a final state at

the time the input string is exhausted, then the system accepts the string,



NP — L aux
\ — \/_\ .
NP
o B
S NP

=N PP

S 1is the start state

qa, qs, q7, q8, and qlo are the final states

Figure 1: A sample transition network

(Reproduced from Woods, 1969)



that is, it responds "yes”. On the other hand, if the end of the input
stream is reached while the marker is not pointing to a final state, or if
at any point in the procedure a suitable outpointing arc cannot be found,
then the input is not accepted as being an instance of the specified
syntactic type.
An arc may be followed if one of the following two conditions holds:
1) the arc is labelled with the syntactic type of the current symbol in the
input stream, or 2) the arc is labelled with the name of the start state
of another portion of the network, and this other portion of the network
accepts as input a substring of the input beginning with the current symbol.
The augmented transition network differs from the recursive transition
network outlined above in two respects: 1) arbitrary tests may be put on
the arcs, which must be satisfied before the arc can be followed, and 2)
following an arc may cause a set of structure-building operations to be
performed. Thus, while a recursive transition network is able to
recognize syntactic types, an augmented transition network may in addition
create a parse structure of the syntactic type which was input, as a side ef-

fect of tracing through the network.



THE SPECIFICATION TANGUAGE: PART I.

In order to work with augmented transition networks on the computer,
Woods developed a LISP-based language for their specification. In this
language, very powerful tests (in fact, arbitgary LISP expressions) may be
placed on the arcs, although only a rather limited number of structure-
building operations are available. A partial description of the syntax of
the language as described by Woods is shown in Fig. 2 in a BNF-like
metalanguage; a similar but somewhat more complete description of the
extended language as described in this paper is shown in Fig, 3.

A program in this language is intended to be a complete description
of an augmented transition network. Accordingly, the program itself is
also referred to as a transition network,

Each program consists of a list of arc sets; the order in which
the arc sets appear in the list is not important. Intuitively, each
arc set consists of the name of a node and a description of all the arcs
pointing out from that node; thus, there are exactly as many arc sets in
the program as there are nodes in the network. The arc set is written
as a list whose first element is the label of the node represented (e.g.,
"PP"), and the remaining elements of the list each describe an arc emanating
from that node.

We have already noted that an arc of a recursive transition network
may be labelled in one of two different ways. This is reflected in the
specification language by the existence of two distinct types of arcs,
the CAT arc and the PUSH arc. Each of these will be described in turn.

The CAT arc is used for those arcs of the network which are labelled
with the name of a category into which the individual words of the input

may fall. For example, the arcs labelled 'v' in Fig. 1 are those which



. %
<transition network> > (<arc set> <arc set> )

%
<arc set> - (<state> <arc> )
sl » *x ¥
<arc> » (CAT <category name> <test> <actioa> <term act>) |
v - *
(PUSH <state> <test> <action> <term act>) :
g *
(IST <arbitrary label> <test> <action> <term act>)
(POP <form> <test>)
<action> = (SETR <register> <form>) i
(SENDR <register> <form>) |
(LIFTR <register> <form>)

<term act> + (T0 <state>) z

(JUMP <state>)

<form> -+ (CETR'sregister>)
o* § ’
]
(GETF <feature>) |
* 1
(BULILDQ <fragment> <register> ) |
* i
(LIST <form> ) |
(APPEND <form> <form>) |

(QUOTE <arbitrary structure>)

Figure 2: Specification of a language
for representing augmented transition networks.

(Reproauced from Woods, 1969)



<transition network> > ({<arc set> <arc set>*) <network name>)
<arc set> = (<state> <arc>¥%)
<arc> » (CAT <category name> <test> <action>* <term act>) E
(PUSH <state> <test> <action>* <term act>) 1
(EVPUSH <form> <test> <action>* <term act>) |
(VIRT <syntactic type> <test> <action>* <term act>) {
(TST <arbitrary label> <test> <action>* <term act>) 1
(POP <form> <test§)
<test> - <form>
<action> »<form>
<term act>*(TO <state>) |
(TO* <state>) 1
(HOP <state>) |
(JUMP <state>)
<form> +(GETR <register>) |
(SETR <register> <form>) |
(SENDR <register><form>) }
(LIFTR <register> <form>) |
(HOLD <form>) |
(GETF <feature>) |

(GETM <feature>) ]
x|
<any simple LISP-type S-expression which can be
evaluated, not including COND, PROG, etc.>
<network name>, <state>, <category name>, <syntactic type>, <register>,

<arbitrary label>, <feature> ~<€any LISP-type atom>

Figure 3.



may be followed if the current input symbol is a verb. CAT arcs are
written in the specification language as a list having the following
elements:

1) The word "CAT", to indicate the type of arc.

2) The name of the syntactic category to which the
input work must belong if the arc is to be followed.

3) A <tests which is also used to determine whether or not
the arc may be followed: this <test> is evaluated

after (and in conjunction with) the category check.

4) A set of <action> (structure-building operations)
to be performed in the event that the arc is followed.

5) A <term act> which specifies the node to which the

arc points, and is an indicator as to whether or not

the input scanner should be advanced, and/or the *

register affected.

The PUSH and EVPUSH arcs are used to represent those arcs of the
network which are labelled with non-terminal syntactic type names which
are also the names of other nodes. TFor example, an arc may be labelled
"PP" for prepositional phrase, provided that "PP" is also the label of another
node elsewhere in the network. Such an arc is not immediately followed:
instead, control transfers to the node named - provided the <test> first
evaluates true - and the subnetwork beginning with this node is followed
in an attempt to recognize and parse a constituent of the type named. In
this example, the arc having label "PP" would cause control to transfer to
the node "PP"'; if a prepositional phrase can be found, control would then
be returned and the arc labelled "PP" would be followed, otherwize the arc
labelled "PP" would fail and the next arc would be attempted. The EVPUSH
arc is different only in that the <form> is evaluated to produce the name of
the state to which control will be transferred — again, provided the <test>
returns true.
The specification of the PUSH arc is very nearly identical to that of

the CAT arc: only the first two elements of the list differ. The word

"PUSH" (or "EVPUSH™) is used in place of the word "CAT” as the first element,



while the second element is the name (or in EVPUSH, will evaluate to
the name) of the required syntactic type, rather than the name of the
category. Execution, however, is quite different. If the <test> eval-
uates true, and before transfer to the 'mamed” néde occurs, all registers
in use (of which more will be said later), except for the special register
%' are pushed down to save their contents (hence the name PUSH), and
when control is again returned the registers still contain the information
they held before the PUSH occcurred. The registers involved in this op-
eration will be discussed in some detail in connection with structure-
building operations.

A third type of arc, the VIRT arc, is available in the current
implementation. While not specifically described by Woods, the existence
of the VIRT arc or its equivalent in Woods' system may be inferred from his
discussion of "wvirtual arcs" in connection with his second example. The
specification of the VIRT arc is again very nearly the same as that of the
CAT arc, differing only in the first two elements of the list. The word
"VIRT" replaces the word "CAT" as the first element of the list; the
second element is the name of a syntactic type, rather than the name of a
category. Unlike the PUSH arc, the VIRT arc does not initiate an attempt to
parse a constituent of the required type. Instead, the VIRT arc checks
whether such a constituent has previously been found at the current level
of processing and placed on a special 1list, called the HOLD list. 1If so,
the constituent is removed from the HOLD list and transferred to the specdial
system register "*", Then if the <test> on the arc evaluates true, the
actions on the arc are performed. The VIRT arc tests only the HOLD list
for this comstituent; it does not examine the current input symbol pointed
to by the scanner. (The HOLD list will be discussed in greater detail in

a later section.)



A fourth type of arc described by Woods is the TST arc. The format
of the TST arc is similar to that of the other arcs described thus far.
The first element of the list is the word "TST", while the second element
is an arbitrary label, serving only to maintain conformity with the other
types of arcs, and otherwise completely ignored. (However, the current
implementation requires that the label be present.) The TST arc may
be followed if and only if the <test> on the arc (the third element of
the list) is successful.

The final type of arc to be described, the POP arc, is to some
extent the converse of the PUSH arc. The POP arc is used to indicate
that the node from which it emanates is a final state, and it provides
for arbitrary conditions which must be satisfied in order to allow a
pop to a higher-level network. The POP arc, when followed, "pops"
those registers which were pushed down as a result of following a pre-
vious PUSH arc. However, this is not a true pop in the usual sense of the
word; the contents of the registers at the lower level are not lost, and
will again become available should another PUSH arc be attempted subse-
quently. As with the PUSH operation, the system register "*" is a non-
recursive register, so it is not affected by popping. Instead, it is
used to communicate information from the current computation to higher
level networks. A <form> or computation which returns a value, is a
mandatory part of the specification of a POP arc; when the arc is followed,
the computation is performed and the wvalue which results is automatically
placed in the special register "*", provided that value 1s not "false'.

A POP arc i1s written in the specification language as a list composed

of the following three elements:



1) The word "POP".

2) The <form> to be evaluated and placed in the "*"
register, provided the <test> returns true.

3) A <test> to determine whether or not the arc may
by followed.,

There is mo <term act> in the specification because, unlike a true arc,
the POP arc does not point to anything. Control returms to the PUSH

(or EVPUSH) arc whose evaluation was most recently initiated but not yet
completed.

This completes the description of the types of arcs available in the
specification languages.

It is possible for a node to be encountered which has no applicable
arcs emanating from it. In this event, the action taken is the same as that
described for the POP arc. The false value is returned; control returns to
the PUSH arc most recently initiated and not yet completed, and the false
value prevents this arc from being followed. Note that this does not
necessarily, or even usually, cause the entire parse to fail. It should
also be noted that the above feature allows explicit "failure POP arcs” to
be written, merely by using NIL as the <form> and T as the <test>on the
POP arc.

The next section describes in some detail the special system operations

and the registers over which they are defined.



THE SPECIFICATION LANGUAGE: PART II.

The Woods system uses a number of registers for temporary storage
of information., Woods, unfortunately, does not go into detail regarding
the nature, use, or mode of operation of these‘registers. The description
which follows is therefore a description of the current implementation
only; while no known incompatibilities with Woods' system exist, it cannot
be guaranteed that the two systems are in fact compatible.

As can be seen from Fig. 4, a program written in Woods' language
uses a number of registers whose names are common English words or
abbreviations, such as SUBJ, TYPE, and AUX. These registers, which we will

call programmer registers, are all recursive, each capable of holding a

stack of arbitrary S-expressions. The execution of a PUSH, EVPUSH, or POP
arc (or automatic popping due to failure to find an applicable arc) results
in the pushing or popping of all programmer registers. Thus, if we
consider the PUSH arcs as initiating a computation at a deeper level of
recursion, and popping as returning to the next higher level of recursion,
then we may consider each level of a computation as having its own private
set of registers, each capable of holding a single S-expression,

When the registers are considered to exist independently at every level
of recursion, it can be seen that popping from a level need not destroy
the contents of the registers at that level. Thus, registers are not actually
pushed down or popped, but rather each PUSH arc or POP arc merely changes
the set of registers which are available. As will be seen, this rather
gnusual interpretation of the form of the registers is necessitated by
the SENDR action, which transmits information to the next lower level

of recursion.

It appears from Woods' paper that there is a (relatively) fixed set



(s/ (PUSH NP/ T
(SETR SUBJ *)
(SETR TYPE (QUOTE DCL))
(T0 Q1))
(CAT AUX T
(SETR AUX +)
(SETR TYPE (QUOTE Q))
(10 Q2)) )
(Q1 (CAT V T
(SETR AUX NIL)
(SETR V #)
(TO Q4))
(CAT AUX T
(SETR AUX *)
(T0 Q3)) )
(Q2 (PUSH NP/ T
(SETR SUBJ #)
(T0 Q3)) )
(Q3 (CAT V T
(SETR V %)
(T0 Q4)) )
(Q4 (POP (BUILDQ (S + + + (VP +)) TYPE SUBJ AUX V) T)
(PUSH N2/ T
(SETR VP (BUILDQ (VP (V +) #) V))
(T0 Q5)) )
(Q5 (POP (BUILDQ (S + + + +) TYPE SUBJ AUX VP) T)
(PUSH PP/ T
(SETR VP (APPEND (GETR VP) (LIST %)))
(T0 Q5)) )

FPigure 4: An 1lllustrative fragment of an augmented

transition network. (Reproduced from Woods, 1969)

i



of programmer registers available, although a list of register names was
not given in the paper. Instead of attempting to compile such a list, the
current implementation makes use of the generalized high-speed storage
features of GRASPE 1.5, a LISP extension - or GROFE, a FORTRAN extension -
to maintain the registers. With this elaboration, any legal atom may be
used, without prior definition or binding, as the name of a programmer
register. These registers are defined by their occurrance in an AFSTN
program; initially, each such register is empty at every level of recursion.
As has been noted, no automatic clearing of registers occurs during a

POP operation, so that at any level of recursion the registers maintain
their contents until explicitly altered by the program.

In addition to the programmer registers, there is a special system
register, * , whose function it is to hold the current constituent of the
sentence under consideration. This system register is apparently intended
to be nonrecursive, capable of holding only a single S-expression, and has
been so implemented in the current program. Because it is not recursive,
it may not be interrogated or altered by the same instructions which
interrogate and alter programmer registers. (In this connection, it should
be noted that the defined type <register> in the syntax tables of Figures
2 and 3 refer only to programmer registers.) System register operations
will be discussed at the end of this section.

A <form> is an expression which results in a value. Certain of the forms
retrieve the contents of a register; others may perform arbitrary computation
over the contents of zero or more registers. The syntax of forms is given in

Figure 3; the following discussion concentrates on their semantics.



The GETR instruction fetches the contents of the designated register
at the current level of computation. GETR may be used on any programmer
register. However, since the system register * is not recursive, the
instruction "(GETR *)"is not meaningful; instead; the "*” standing alone
is used as a complete form which fetches the contents of the system register.

The GETM instruction takes as its single parameter the name of a
"morphological feature' and returns true if the last item processed by a
CAT arc was that morphological variant of its root form. (Along with the
CAT arc operatién, this is dependent upon the logical structure of the
lexicon -- an appropriate lexical input routine is provided.

The GETF form acts as a lexical retrieval operation; it takes as its
single parameter the name of a 'feature', and returns as its value the
value of thé feature -- retrieved with respect to the last input symbol
processed by a CAT arc. This too, then, is dependent upon the lexical
structure.

The instruction SETR takes as its two arguments a programmer register
name and a <form>, evaluates the <form” , and stores the result in the des-
ignated register at the current level of recursion. Thus, SETR is normally
used to save information which may later be retrieved by GETR. The value of
the function SETR is the evaluated result.

Two additional forms, SENDR and LIFTR, also take as their two arguments
a programmer register and a <form”>, and evaluate the <form”. However,

SENDR stores the result of this evaluation in the designated register at
the next lower>level of recursion, while LIFTR stores it at the next
higher level of recursion. These also return that result.

The HOLD list, like the programmer registers, has an independent
existence at every level of recursion. Unlike the registers, which may each

hold only a single S—expression, the HOLD list is capable of maintaining an

entire list of values. One final type of action, the HOLD action, is used



for inserting new items onto the HOLD list., HOLD takes as its one

argument a <form> to be evaluated. An important restriction is that the
evaluated <form> must be a list whose first element is an atom representing
the name of a syntactic type. After evaluation, the list is placed on the
BOLD list at the current level of recursion. Values may be retrieved from
the HOLD list only by execution of a VIRT arc, as described earlier.

Normally, an atom in a <form> is evaluated before being used as a
parameter to a function -- that is, its value is passed. The programmer
may bind a value toan atom by executing the function SETQ <atom> <form>.
This also applies to the system atom "*" -- that is, the star register
"x'" ig just a special atom, whose value may be automatically affected
when the scanner is moved during the course of an application of the
program to an input sentence.

Finally, any LISP-type S-expression (function call, etc.) may now be
used as a form. This is perhaps the most important extension of the
language as described by Woods, which only allowed APPEND and LIST, but
no other system or user-supplied functioms. With the current implementatiom,
the user may use any LISP (or GROPE) function which evaluates its arguments,
including functions which he has written himself., Moreover, within a form,
it is possible to use other forms, at any level of parenthesis nesting,
exactly as if they were LISP functions. User-supplied functions should be

written in pure LISP - or GROPE, as the case may be.



THE SPECIFICATION LANGUAGE: PART III.

During the attempted parse of an input string, a special device
called the scanner is used to point to that symbgl in the input string
currently being processed. As in Woods' system, no back up 1is allowed
—— the scanner can only advance or remain in place. In the current
implementation, any attempt to advance past the end of the input string
results in the scanmer pointing to the false value; this is normal
procedure and does not constitute an error. The means of moving the
scanner is by the execution of a <term act> , which is the last element
of every arc except POP arc. There are four different <term acts>
available: TO, TO*, JUMP, and HOP, each of which takes as its single
argument the name of the node (state) of the network to which the arc
points.

The JUMP <term act> does not advance the scanner. The symbol
currently under the scanmer is copied into the * register, and control is
transferred to the named node. HOP only transfers control to the named node,
without moving the scanner or affecting the * register.

Normally, the TO <term act> both advances the scanner and enters the
new symbol scanned into the * register, thus making it available to the
program, then transfers control to the named node. This clearly coincides
with Woods' intentions, but in our implementation this is instead the
definition of TO*, since a more commonly useful definition of TO was found:
with the former definition of the action of TO, unfortunately, it is
impossible to make Woods' first example network parse in the manner specified.
Accordingly, the following peculiarity has been added to the definition of
the TO <term act> : when the * register does not contain the gymbol currently
pointed to by the scanner ( as for example when a PUSH has just been

gsuccessful), the scanner is not advanced, and the symbol currently pointed



to by the scanner is entered into the * register. (Again, TO* conforms
to the original Woods definition of TO.)

It is now possible to describe the operation of the scanner and

the * register in more detail. At the beginning of a "parse”, the scanner
is set to point to the first symbel of the input string, and this symbol
is also entered into the * register. A PUSH'to node S/ on level 0 is then
executed, thus turning control over to the program in the specification
language.

The scanner is interrogated whenever a TO <term act> is executed.

The * register is interrogated and/or altered at the following times:

(1) Whenever a JUMP, TO*, or TO <term act> is executed, the
scanner either is advanced or remains in place, as described
above, following which the symbol then under the scanner is
entered into the * register.

(2) Whenever a POP arc is successfully executed, the value
returned by the < form~ ( the second element in the description
of the POP arc) 1s entered into the * register, provided
that value is not ""false' -- NIL in LISP, zero in GROPE.

(3) Whenever it is determined that a VIRT arc might be followed,
but before the test or actions on the arc are executed, the
expression removed from the HOLD list is entered into the
* register.

(4) Whenever a CAT arc is attempted, a test is made to determine
whether the symbol in the * register belongs to the specified
category.

(5) The "*" standing alone may be used as a complete form whosé

value is the current contents of the * register.



USING THE SENTENCE PARSING SYSTEM

In order to use the sentence parsing system, it is necessary to
be able not only to define a transition network, but also to input to
the system any and all information required by the network during a
parse. A number of functions which have been made available to the

user for these purposes are described below.



LISP version

DEFINE* <transition network> -- compiles the network into a (CRASPE-type)
graph, whose name is the <network name>. This function may be used
to amend previously-compiled networks, a node at a time.

TRACEPARSE (flag) -- will enable or suppress the trace feature according to
whether flag is true (mot NIL) or false (NIL).

CLEARREGS ( ) —-— empties all registers at all levels.

LEXICON <lexicon> -—- compiles the <lexicon>.

GRAMMAR (network name>) -~ identifies to the AFSTN interpreter which
(grammar) network is to be interpreted in subsequent execution of
an AFSTN network.

Note: the syntax of the <lexicon> appears in Fig. 5.



< lexicon> »+ (K lexical entry>#)
<lexical entry> + Kword> Kcategory> <morphological feature>)
%est of lexical information>%*)
<rest of lexical information> -~ Kmorphological feature> <word>) |
K feature> < feature value>)
<word> - <any atom of the source (English) language>
examples: PRODUCE, BOY, IT, RED.
<category> -+ < any atomic form-class name>
examples: N, V, ADJ, ADV, PREP, CONJ, PRON.
<morphological feature> - <any atomic morphological-class name>
examples: S, PL, INF, PST, :EN, :ING, SG3, POS, COM, SPR, PI, NOM,
0OBJ, POSS, RFL.
< feature> - <any atom not a <morphological feature> name>

< feature value> -+ <any LISP-type S-—expression>

Figure 5

The syntax of the input lexicon



GROPE version

GRAMMIN < transition network> -- compiles the network into a <graph>, whose
label is the <network name>, and returns the <graph> as the value
of GRAMMIN., This function may be used to amend previouslv-compiled
networks, a node at a time.

TRACEP flag -— will enable or suppress the trace feature according to whether
flag is true (non-zero) or false (zero).

CLEAREG —- empties all registers at all levels.

LEXICON < lexicon> -= compiles the <lexicon>.

START <node> <1list> -~ begins the interpretation (execution) of a network
at location <node>, using <1list> as the control string (input

sentence).



