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Abstract

A single server queue with feedback and multiple customer classes is
analyzed. Arrival processes are independent Poisson processes. Each round of
service is exponentially distributed. After receiving a round of service, a
customer may depart or rejoin the end of the queue for more service with a
probability that is dependent upon his class membership and number of rounds of
service achieved. By properly defining customer classes, a wide range of non-
exponential service time requirements are admissible in this model. Our main
contribution is characterization of response time distributions for the customer
classes. Our results generalize in some respects previous analyses of processor-
sharing models. They also represent initial efforts to understand response time

behavior along paths with loops in local balanced queueing networks.



1. Introduction

Many service facilities can be modeled as a feedback queue such as shown in
Figure 1. Of interest in this paper is a single-server queue with infinite waiting
room and R classes of customers. The arrival process of the rth class is an
independent Poisson process (r = 1, 2, ... R). Each new arrival joins the end
of the queue. The customer at the head of the queue receives from the server a
round of service which is an independent exponentially distributed random variable
with mean 1/p seconds. After receiving a round of service, a customer may depart
or rejoin the end of the queue for more service, depending upon his class membership

and number of rounds of service achieved.
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Figure 1. A feedback queue model.
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where a; ° can be interpreted as the probability of a class r customer requiring

exactly i rounds of service. {}ir), 1 <1 figz can be an arbitrary set of prob~
abilities that sum to one and may be different for different customer classes,

Our model is also different from the feedback queue model of Takics {5}, In
his model, each round of service can have a general distribution. However, he
considered a single clagss of customers only and the number of rounds of service
required by a customer is geometrically distributed; in other words, after each
round of service, a customer always departs with probability (1-p) and rejoins
the end of the queue with probability p (memoryless behavior).

The original motivation of this work stems from our efforts to characterize
the response time in a network of queues. For a network of FCFS queues that
satisfies local balance, J. Wong [6] found the response time distribution of
Customers traversing loop-free paths. Our results in this paper represent efforts
ro undevrstand the response time behavior along paths with loops in the simplest

form of queueing networks satisfying local balance.

Assumptions and definitions

We shall, without any loss of generality, consider the following model. There
are R classes of customers. The arrival process of the rth class is Poisson at
rate Y, customers per second. A class r customer requires exactly r rounds of
service. It should be obvious that if we can derive response time distributions
for this model, response time distributions for any model with service time re-
quirements characterized by Eq. (1) can be easily obtained.

Let tr be the response time of attaining exactly r rounds of service;
r=1, 2, ... R and obviously t@ = 0. We shall solve for 1its moment generating
function
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algorithm to calculate the second order statistics of t. [Theorem 4].

2. The Analysis

Consider the system state n = (nl, Doy veny nR) at arrival instants.
Recall that n, is the number of customers with exactly k more rounds of service

to go. Let us redefine the meaning of customer classes to correspond to

nl, Doy ceens nR. Hence the aggregate arrival rate of customers to the kth class is
A, =5
ko j=k (2)

since any new arrival who requires at least k rounds of service must enter and
th
leave the k class exactly once.

Lemma 1. The moment generating function of n is

(3)
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where p, = A /u and p = ) o .,
Kk~ 'k o1 Tk

Proof. Given Poisson arrival processes and that each round of service is
exponentially distributed with the same mean (1/u), we have an open queueing
network that satisfies local balance [1]. Eq. (3) has been obtained by Reiser
and Kobayashi [8]. (Q. E. D.)

Since each round of service is exponentially distributed, it has the moment

generating function

B(s) = i (4)

%
A recursive solution of Ur (s, z) is next given.
Lemma 2

Ug(s, 2) = P*(g_) €)

als

U (s, 2) = v1(s, z) Uj(s, (s, 2)) r>0 (6)
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Unconditioning on t, andﬂg(r), (6) follows. (Q.E.D.)
% *
Explicit solutions for Ur (s, z) and Tr (s) can now be shown.
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where Pr(s) and Qk r(s) are polynomials in s, and given by
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Proof. (i) Because of (3) and (5), (7) holds for r = 0 with Po(s) = 1 and

Q for 1 < k < R. Assuming that (7) holds for r, we use (6) and (4)

1,0(8) = °y

*
to express Ur+1(s,<§) as follows.
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From the above, we obtain Tr“(s) for r = 1, 2 and 3 by letting z = 1 in U_ (s, 2z}
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We note that the solutions for Ui (s, 2z) and Tr (s) become quite complex if

one tries to solve for Pr(s) and Qk r(s) explicitly using the matrix equation (8)
5

when r > 4. 1In what follows, we turn our attention to finding the moments of tra

().

To do so, we need the following result concerning the distribution of m

()

Theorem 2. For any r > 0, m and n have the same stationary distribution.

That is m(-r} m(r) m(r)

1 2 R
z

% 3 %
Ur (0, z) = E[z1 z, cees Zp 1 =P (2) (11)

Proof. By (5), (11) holds true for r = 0. Assume that (11) holds true for some T

3 *
so that Urq(o, z) =P (z). By (6) and the induction hypothesis,
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Theorem 3. The conditional mean response time is

r/u

Ble ] =7 (13)

Proof. Using (6) and (12), we have
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Substituting this into the above expression for E[tr+l}, we have
Efe_, .1 =<2 4 E[e ]
r+1 1-p T
which yields (13) by induction starting with E[to] = Q. (Q.E.D.)

Theorem 4. The second order statistics of the conditional response time can be

found recursively using

Var(tr+1) = Var(tr) + ~%—:~ZQ§ +<; E[trM(r)] (14)
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where Var(tr) is the variance of tr and E[tr mR+l] is zero, with the initial condition

Var(to) = 0
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where the terms bracketted by {} can be evaluated using (11) and (13) to yield
(16). (Q.E.D.)
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