
Virtual Symmetry ReductionE. Allen Emerson�, John W. Havliceky, and Richard J. Treflerz
AbstractWe provide a general method for ameliorating state explosion via symmetry reductionin certain asymmetric systems, such as systems with many similar, but not identical,processes. The method applies to systems whose structures (i.e., state transitiongraphs) have more state symmetries than arc symmetries. We introduce a new notionof \virtual symmetry" that strictly subsumes earlier notions of \rough symmetry"and \near symmetry" [ET99]. Virtual symmetry is the most general condition underwhich the structure of a system is naturally bisimilar to its quotient by a group ofstate symmetries.We give several example systems exhibiting virtual symmetry that are not amenableto symmetry reduction by earlier techniques: a one-lane bridge system, where thedirection with priority for crossing changes dynamically; an abstract system withasymmetric communication network; and a system with asymmetric resource sharingmotivated from the drinking philosophers problem. These examples show that virtualsymmetry reduction applies to a signi�cantly broader class of asymmetric systemsthan could be handled before. 0. IntroductionModel checking [CE81, QS82] is an algorithmic method for checking whether a�nite-state system satis�es (i.e., models) a temporal logic formula. The system isrepresented by a �nite structure (i.e., state transition graph). Standard model-checking algorithms have complexities that are e�cient in their dependence on thesize of the structure (linear, for example, in the case of ctl model checking). Never-theless, in practice, it is the contribution from the structure size that dominates thecomputational cost (cf. [LP85]). Furthermore, the number of states of the structuremay be exponentially larger than the size of the textual description of the system.This blowup is referred to as state explosion.For systems comprising many identical or isomorphic components, the structuremay be large but may also exhibit considerable symmetry. The symmetry can be�Department of Computer Sciences and Computer Engineering Research Center, TheUniversity of Texas at Austin, USA. Email: emerson@cs.utexas.edu.yDepartment of Computer Sciences and Computer Engineering Research Center, TheUniversity of Texas at Austin, USA. Email: havlicek@cs.utexas.edu.zAT&T Labs{Research, USA. Email: trefler@research.att.com.1



expressed through the action of a group of graph automorphisms of the structure.For example, a system that is the parallel composition of n identical processes withcomplete communication network has a structure that admits an automorphism foreach of the n! permutations of the processes.Symmetry of a structure often constitutes redundancy for the purpose of modelchecking a temporal logic formula. Symmetry reduction (cf. [JR91, ID96, ES96,CE+96, HI+95, MAV96, ES97, GS97, ET98, AHI98]) is an abstraction techniquein which a symmetry-reduced quotient M=G is formed by identifying states of thestructure M that are related by elements of the group G. Under the quotientrelation, M and M=G are bisimilar as labelled digraphs for any labelling that isinvariant under the action of G. For suitably symmetric temporal logic formulas,model checking can be performed onM=G rather than on the original structureM .1Since M=G may be exponentially smaller than M , symmetry reduction can signif-icantly ameliorate state explosion. In any case, maximum compression is obtainedby taking G to capture as many symmetries of M as possible.The technique of symmetry reduction is limited by the genuine symmetry of thestructure M . For example, if a system of identical processes has communicationnetwork that is a ring rather than complete, then the symmetries of M may berestricted to a cyclic or dihedral group. In this case, the symmetry reduction canproduce at most a saving that is linear in the number of processes. As anotherexample, consider a system in which otherwise identical processes are partitionedinto two groups, one of which takes priority in certain transitions. If there are mprocesses in the �rst group and n in the second, then M may have a genuine sym-metry group of order m!n! rather than (m+ n)!. Yet another source of asymmetryis non-uniform access by processes to various shared resources.These kinds of asymmetries are exhibited by structures whose group of state sym-metries is larger than its group of arc symmetries. The asymmetry arises becausearcs are missing from the structure. For many interesting temporal logic formulas,asymmetries of these kinds are irrelevant for model checking. We introduce a newcondition, virtual symmetry , under which a structure M can be reduced by a groupof state symmetries that may be larger than its genuine symmetry group. Virtualsymmetry is the most general condition under which a structure with a group ofstate symmetries is bisimilar to its group quotient via the standard quotient re-lation. The group quotient is an abstract structure whose states are equivalenceclasses of original states related by the action of the group. The quotient relation isthe \natural" one relating a state to its equivalence class. In this sense, the bisimu-lation is \natural". The bisimulation is also label-preserving for any labelling thatis invariant under the action of the group.We also introduce strong virtual symmetry , a condition that implies virtual sym-metry and that is equivalent to virtual symmetry for asynchronous structures underthe group of all permutations of the processes. Strong virtual symmetry strictly sub-sumes the earlier notions of \rough symmetry" [ET99] and symmetry with respectto a group of \near automorphisms" [ET99]. Informally, rough symmetry accommo-dates asymmetry arising from static priorities for the processes, while strong virtualsymmetry can also accommodate dynamic priorities. Symmetry under a group of1Alternatively, one may form the product of an annotated quotient with an automatonfor the complement of the temporal logic formula and check the resulting structure fornon-emptiness [ES97, GS97]. 2



near automorphisms requires that an asymmetric arc (i.e., an arc of the structurethat can be driven by a state symmetry to a missing arc) initiate only from a statethat is itself highly symmetric. Strong virtual symmetry is de�ned by more liberalcriteria and so applies to a broader class of asymmetric systems.We give several example systems exhibiting virtual symmetry. One is a solution ofthe readers-writers problem with writer priority. Because of the static writer prior-ity, this system is also roughly symmetric. To distinguish (strong) virtual symmetryfrom rough symmetry and from symmetry with respect to a group of near auto-morphisms, we give an example of a one-lane bridge system, where the directionwith priority for crossing changes dynamically. An asymmetric communication net-work is illustrated in a simple, abstract example in which pairs of processes beginand end communication synchronously. A further example, exhibiting asymmetricsharing of resources, is motivated from the drinking philosophers problem. A com-mon feature of these examples is that asymmetric arcs are, in an intuitive sense,\widely enabled." The systems include reasonable limits (denoted �) that ensurethe existence of the required asymmetric arcs.We also give a counting condition on the number of missing arcs. The conditionprovides a convenient criterion for determining if a system is strongly virtuallysymmetric. For asynchronous structures under the group of all permutations of theprocesses, a simplifying assumption reduces the condition to a bound at each stateon the number of missing arcs initiating from the state. The simplifying assumptionrequires that all asymmetric arcs arise from a single local transition. Apart fromthe asymmetric communication network, which has synchronized transitions, eachof the examples mentioned above satis�es the simplifying assumption, and its strongvirtual symmetry can be demonstrated easily by counting missing arcs.1. PreliminariesSome background material on group actions is given in the Appendix.1.1 ConventionsLet X and Y be sets. The cardinality of X is denoted jX j. Sym(X) denotes thegroup of all permutations (i.e., bijections) of X . Y X denotes the set of functionswith domain X and codomain Y . If R � X � Y , thenRT = f(y; x) 2 Y �X : (x; y) 2 Rg :Let G be a group that acts on X . If Y � X , thenAut(G;Y ) = fg 2 G : gY = Y g :For x 2 X , we write Aut(G;x) to mean Aut(G; fxg). When the group is clear fromcontext, we may write Aut(Y ) in place of Aut(G;Y ).1.2 Structures and simulationsA structure is a pair (S;R), where S is a set, the state set of the structure, andR � S � S, the arc set or transition relation of the structure. We use the notations! t interchangeably with (s; t) for an arc.3



Notation: IfM is a structure, then SM denotes the state set ofM and RM denotesthe transition relation of M .Let M , N be structures. A function f : SM ! SN is a homomorphism from Mto N , written f : M ! N , if, for every s! t 2 RM , f(s)! f(t) 2 RN . A relationB � SM �SN is a simulation ofM by N if, for any (s; s0) 2 B and any s! t 2 RM ,there exists t0 2 SN such that (t; t0) 2 B and s0 ! t0 2 RN . For example, if fis a homomorphism from M to N , then f (viewed as a subset of SM � SN ) is asimulation of M by N . If B is a simulation of M by N and BT is a simulation ofN by M , then B and BT are bisimulations between M and N .1.3 Indexed and asynchronous structures.For virtual symmetry reduction, many structures of interest arise from parallelcomposition of similar processes. A state of such a structure is an assignment oflocal states to each of the processes.2To be precise, let I be a �nite set of indexes, to be thought of as process identi�ers,and let L be a set of local states. A function s 2 LI is the global state in which,for each i 2 I, the local state of process i is s(i). An LI-structure is a structurewhose state set is a subset of LI . If L � L, then we de�ne #L to be the functionLI ! [0 : jIj] that maps s 7! js�1(L)j.3 For x 2 L, we write #x for #fxg.If J � I, then we de�ne #(J ; L) to be the function LI ! [0 : jJ j] that mapss 7! jJ \ s�1(L)j.Notice that Sym(I) acts on LI by�s = s � ��1 (�)for � 2 Sym(I) and s 2 LI . If X � LI and G � Aut(Sym(I);X), then G acts onX according to (�). Unless stated otherwise, (�) will be the action understood forsubgroups of Sym(I) acting on subsets of LI .An asynchronous LI-structure is a pair (S;R) such that S � LI , R � S�I �S,and, for every (s; i; t) 2 R and every j 2 I�fig, s(j) = t(j). By asynchronous struc-ture we mean an asynchronous LI-structure for some L and I. A triple (s; i; t) 2 Ris thought of as an arc from s to t with label i; it will also be written s i�! t. Anasynchronous structure determines an underlying structure by omitting the labelsfrom the arcs.4To de�ne asynchronous structures, it is convenient to use a language of guardedlocal transitions. For our purposes, a guard is a predicate  whose interpretation[] is a subset of I � LI . A guarded local transition is a pair  : x ! y, where  isa guard and x; y 2 L. The transition  : x ! y is enabled for process i in globalstate s provided (i; s) 2 [] and s(i) = x. If  : x! y is enabled for i in s, and if tis de�ned by t(j) = (s(j) j 6= iy j = i ;2For simplicity, we ignore shared variables.3s�1(L) = fi 2 I : s(i) 2 Lg, the pre-image of L under s.4The asynchronous structure may have multiple self-loops on a single node, e.g. s i�! sand s j�! s, that are collapsed to a single self-loop when passing to the underlying structure.4



then we say that s i�! t results from �ring  : x i�! y in global state s.For J � I, it is a convenient abuse to understand J to denote the guard whoseinterpretation is J � LI .Example 1: Readers-writers with writer priority. Let I be partitioned into thenon-empty sets R andW of \readers" and \writers." Let L = fN;T;Cg. We de�nean asynchronous LI-structure, M , using guarded local transitions. SM is the set ofstates in LI satisfying #C � 1. The guarded local transitions are the following:1. true : N ! T .2.  : T ! C, where  � (#C = 0) ^ �R ) (#(W ; T ) = 0)�.3. true : C ! N .Recall that R is interpreted to constrain the indexes which may �re. Informally,\R ) (#(W ; T ) = 0)" means that if the �ring process is a reader, then there isno writer in local state T . This conjunct of  ensures writer priority in the localtransition T ! C.2. Virtual and Strong Virtual SymmetryLet M be a structure, and let G be a group that acts on SM (i.e., G is a group ofstate symmetries of M). There is an induced action of G on SM � SM de�ned byg(s; t) = (gs; gt)for g 2 G and (s; t) 2 SM � SM . If G = Aut(G;RM ), then we say that M is(genuinely) symmetric with respect to G. Notice thatM is genuinely symmetric withrespect to G if and only if, for every s! t 2 RM and every g 2 G, gs! gt 2 RM .The quotient structure M=G is de�ned bySM=G = fGs : s 2 SMgand RM=G = fGs! Gt : gs! ht 2 RM for some g; h 2 Gg :Thus, the states of M=G are the G-orbits of SM , and there is an arc in M=G fromGs to Gt if and only if there exists an arc of M whose initial state is in Gs andwhose terminal state is in Gt. For computation, SM=G is typically identi�ed with atransversal for the action of G on SM .There are two relations of particular interest in connection with the action of Gon SM . The �rst is the orbit relationO = f(s; s0) 2 SM � SM : Gs = Gs0g :The second is the quotient relationQ = f(s;Gs) : s 2 SMg :Notice that Q is a homomorphism M ! M=G, hence Q is a simulation of M byM=G. [ES96, CE+96] proved that if M is genuinely symmetric with respect to G,then Q is a bisimulation between M and M=G.5



Remark: Q is a \natural" relation between SM and SM=G in the following sense:if f : M ! N is a homomorphism of structures, where N also has G as a group ofstate symmetries, and if f(gs) = gf(s) for every g 2 G and s 2 SM , then there is aunique homomorphism (f=G) : M=G! N=G such that (f=G) � Q = Q � f .Suppose that M is not genuinely symmetric with respect to G. Then there existsan arc s ! t 2 RM and an element g 2 G such that gs ! gt 62 RM . We referto s ! t as an asymmetric arc of M , and we say that gs ! gt is missing fromM . In this case, Q may or may not be a bisimulation between M and M=G. InProposition 1 below, we show that Q is a bisimulation between M and M=G ifand only if O is a bisimulation between M and the genuinely symmetric structureobtained from M by adding the missing arcs. Proposition 1 also shows that theseconditions are equivalent to a simple third condition, which we take as the de�nitionof virtual symmetry.De�ne MG, the symmetrization of M by G, according toSMG = SMand RMG = fgs! gt : g 2 G and s! t 2 RMg :In other words, MG is obtained from M by adding all the missing arcs. MG is thesmallest superstructure of M that is genuinely symmetric with respect to G.If M is an asynchronous LI-structure and G � Aut(Sym(I);SM ),5 then anasynchronous symmetrization can be arranged by lettingRMG = fgs gi�! gt : g 2 G and s i�! t 2 RMg :In this case, the ordinary symmetrization of the LI-structure underlyingM is equalto the LI-structure underlying the asynchronous symmetrization of M .Example 2: For the readers-writers of Example 1, the asynchronous symmetrizedstructure is obtained by replacing  with 0 � (#C = 0).Proposition 1: Let M be a structure, and let G act on SM . The following areequivalent:(1) Q is a bisimulation between M and M=G.(2) O is a bisimulation between M and MG.(3) For any s! t 2 RMG , there exists g 2 G such that s! gt 2 RM .If M is an asynchronous structure, then Proposition 1 applies to the underlyingstructure. The result also applies to the original asynchronous structure by ignoringarc labels.5The assumption G � Aut(Sym(I);SM) ensures that G acts on I and that the action ofG on SM is according to (�). It follows that, for g 2 G and s i�! t 2 RM , (gs)(j) = (gt)(j)for all j 2 I � fgig. 6



De�nition: Let M be a structure, and let G act on SM . M is virtually symmetric(with respect to G) if condition (3) of Proposition 1 is satis�ed. M is stronglyvirtually symmetric (with respect to G) if, for any s ! t 2 RMG , there existsg 2 Aut(G; s) such that s ! gt 2 RM . An asynchronous structure is (strongly)virtually symmetric if its underlying structure is (strongly) virtually symmetric.Remark: From Proposition 1, M is virtually symmetric with respect to G if andonly if Q is a bisimulation between M and M=G. In this sense, virtual symmetryis the most general condition under which M is naturally bisimilar (i.e., bisimilarvia Q) to M=G.
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t ts sFigure 1: Illustration of Example 3(a) withM on the left andMG on the right.M is strongly virtually symmetric with respect to G.
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t ts sFigure 2: Illustration of Example 3(b) withM on the left andMG on the right.M is not virtually symmetric with respect to G.Example 3: These simple examples illustrate the preceding de�nition. In each,SM = fs; t; ug, and G = f1; �g, where 1 is the identity, �2 = 1, and � acts on S by�xing u and swapping s with t. The arcs of RMG �RM are dashed in the �gures.(a) RM has the single transition u! t, and so RMG has the additional transitionu ! s. See Figure 1. Since � �xes u and drives u ! s to u ! t, M is stronglyvirtually symmetric with respect to G.(b) RM has the transitions u ! t and t ! s, and so RMG has the additionaltransitions u ! s and s ! t. See Figure 2. There is no transition in RM with7
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u u

t ts sFigure 3: Illustration of Example 3(c) withM on the left andMG on the right.M is virtually symmetric, but not strongly virtually symmetric, with respectto G.s as initial state, so the condition of the de�nition of virtual symmetry fails fors! t.(c) RM has the transitions u ! t, t ! t, t ! s, and s ! s. RMG has theadditional transitions u! s and s! t. See Figure 3. It is not di�cult to checkthat M is virtually symmetric with respect to G. For example, for s! t 2 RMG ,s ! �t = s ! s 2 RM . Since � does not �x s, M is not strongly virtuallysymmetric.Example 4: Returning to the readers-writers, it is easy to see that M is genuinelysymmetric with respect to Sym(R) � Sym(W), but, because of writer priority, Mis not symmetric with respect to the action of the full group Sym(I).We check that M is strongly virtually symmetric with respect to Sym(I). Recallthat the asynchronous symmetrization results by replacing  with 0 � (#C = 0).Suppose that s i�! t 2 RMSym(I)�RM . The transition results from �ring 0 : T i�! C,and it follows that (s; i) 2 [0]� [] and s(i) = T . Therefore, i 2 R, yet T 2 s(W).Pick j 2 W so that s(j) = T , and let � 2 Sym(I) be the permutation that swaps iwith j and �xes all other indexes. Plainly � 2 Aut(s). Notice that (s; j) 2 [], andso s j�! �t is obtained by �ring  : T j�! C in s. Therefore, s j�! �t 2 RM .The next proposition shows that virtual symmetry and strong virtual symmetryare equivalent for asynchronous structures under the group of all permutations ofthe processes.Proposition 2: Let M be an asynchronous LI-structure, and let Sym(I) act onSM . M is virtually symmetric with respect to Sym(I) if and only if it is stronglyvirtually symmetric with respect to Sym(I).3. Relation to Prior WorkPrior work [ET99] introduced several notions of near symmetry that are strictlysubsumed by virtual symmetry. The �rst is symmetry under a group of \nearautomorphisms," and the second is \rough symmetry."8



De�nition [ET99]: Let M be an LI-structure, and consider the action of Sym(I)on LI . An element � 2 Aut(SM ) is a near automorphism of M if, for everys! t 2 RM , either �s! �t 2 RM or Aut(SM ) � Aut(s).Proposition 3: Let M be an LI-structure and let G be a group of near automor-phisms of M . Then M is strongly virtually symmetric with respect to G.De�nition [ET99]: Let I be totally ordered, let M be an asynchronous LI-structure, and let G be a subgroup of Aut(Sym(I);SM ). M is roughly symmetricwith respect to the order on I and the group G if, for any i 2 I, for any s i�! t 2 RM ,and for any s0 2 Gs, there exists � 2 G such that (1) �s = s0, (2) �i = maxfj0 :s(i) = s0(j0)g, and (3) �s �i�! �t 2 RM .Example 5: LetM be the structure for readers-writers with writer priority. Choosea total order of I so that i 2 R and j 2 W imply i < j, and let G = Sym(I). Theargument of Example 4 that M is strongly virtually symmetric can be modi�ed toshow that M is roughly symmetric with respect to this order on I and the groupG. (See [ET99].)Proposition 4: Let M be an asynchronous LI-structure that is roughly symmetricwith respect to some ordering of I and the subgroup G of Aut(SM ). Then M isstrongly virtually symmetric with respect to G.The remainder of this section presents an example showing that strong virtualsymmetry strictly subsumes rough symmetry and symmetry with respect to a groupof near automorphisms. The example illustrates dynamically varying priorities fora critical shared resource. The processes are statically partitioned into two blocks,and only processes of a single block are allowed to be trying for or in the criticalsection at one time. The processes in the block with access have priority, but whichblock has access may change over time. In this sense, the example is like a one-lane bridge, where the blocks correspond to directions of travel. The symmetrizedstructure allows the partition into blocks to change dynamically, something likeroundhouse switching of rail connections.Example 6: Let I be partitioned into the sets I0 and I1, and assume that jI0j =jI1j = � > 1. Let L = fN;T;Cg. LetSM = fs 2 LI : s j= (#fT;Cg � �) ^ (#C � 1)g :For a 2 f0; 1g, let Pa � �#fT;Cg = #(Ia; fT;Cg)� ;and let good � P0 _ P1 :De�ne RM by the following guarded local transitions:1. (#fT;Cg < �) ^  : N ! T , where  � W1a=0 �Ia ^ (good ) Pa)�.2. #C = 0 : T ! C.3. true : C ! N . 9



The group G = Sym(I) acts on SM , but, because of the priority imposed by ,M is not symmetric with respect to G. The symmetrization MG is obtained byreplacing  with true.We check that M is strongly virtually symmetric with respect to G. Let s p�! t 2RMG � RM , and let p 2 Ia. Then this transition is of type 1, s j= #fT;Cg < �,s j= good , yet s 6j= Pa. Since s j= good , s j= Pb, where b 6= a. For any process q 2 Ib,(q; s) 2 [], so it su�ces to show that some process of Ib has local state N . Thisfollows because #fT;Cg(s) < � = jIbj :Next, we check that M is not roughly symmetric with respect to G for any totalordering of I. Pick Ia to contain the largest element, p, of I. Pick b 6= a. Let q,r be distinct indexes in Ib (here we use � > 1). Let s be a state so that s(q) = Tand s(i) = N for all i distinct from q. Then RM has a transition s r�! t in whichr changes local state from N to T . However, there is no element � of G such that�s = s, �r = p, and s �r�! �t is a transition of RM . Indeed, no index in Ia can �reN ! T in state s to produce a transition of RM because s(q) = T .Finally, notice that RM contains a transition s p�! t of type 1, where p 2 I0,s(q) = T for some q 2 I0 � fpg, and s(i) = N for all i 6= q. Any element of Aut(s)must �x q, so Aut(s) is not equal to G. Also, if � swaps p with p0, where p0 2 I1,and �xes all other indexes, then �s ! �t 62 RM . Therefore, G is not a group ofnear automorphisms of M . 4. Further ExamplesThe following abstract example addresses asymmetry of a communication network.A process can communicate with at most one other process at a time, and commu-nication between two processes is established and terminated synchronously.Example 7: Let N be the graph representing the communication network of asystem whose set of processes is I. Speci�cally, N has node set I, and, for i; j 2 I,there is an edge between i and j in N if and only if (1) i 6= j and (2) there is achannel between i and j in the network.Let � be a positive integer such that any matching in N of size less than �can be extended to a matching of size �. We think of � as a load limit for thecommunication network.A global state of M is a matching of size at most � in the complete graph on I.The presence of the edge fi; jg in the matching signi�es that processes i and j arecommunicating in the state. A global state is good if it is a matching in N . If s; tare global states, there is a transition s ! t if and only if one of the following twoconditions is satis�ed:1. t is obtained from s by adding a single edge, and if s j= good then t j= good .2. t is obtained from s by deleting a single edge.A transition of type 1 represents synchronous establishment of communication be-tween the processes of the edge added to s to obtain t. A transition of type 2represents synchronous termination of communication between the processes of theedge deleted from s to obtain t. 10



The group G = Sym(I) acts on SM as follows: for � 2 G,�ffi1; j1g; : : : ; fir; jrgg = ff�(i1); �(j1)g; : : : ; f�(ir); �(jr)gg :MG is obtained by omitting the requirement \if s j= good then t j= good" fromcondition 1.We check that M is strongly virtually symmetric with respect to G. Supposes ! t is a transition in RMG � RM . Then the transition is of type 1, the size of sis less than �, s j= good , but t 6j= good . Let fi; jg be the edge added to s to obtaint. Then fi; jg is not an edge of N . Since the size of s is less than �, s can beextended to a matching u in N of size �. Pick fi0; j0g an edge in u � s. Let � bea permutation that interchanges fi; jg with fi0; j0g and that �xes all other indexes.It follows that �s = s and s! �t 2 RM .The next example illustrates asymmetric sharing of resources. It is motivatedfrom the drinking philosophers problem [CM84].Example 8: Let R be a set of critical resources shared among the processes of I.Let can use � I �R be the relation describing resource sharing: i can use r if andonly if process i shares resource r. For r 2 R, letusers of (r) = fi 2 I : i can use rg :Let � be an integer such that� � minr2R � jusers of (r)jjRj � : (y)We assume that � can be chosen positive. For any resource, the number of processesthat can be waiting for or using the resource will be bounded by �.De�ne an asynchronous structure M as follows. The set of local states isL = fNg [ fT r : r 2 Rg [ fCr : r 2 Rg :SM is the set of s 2 LI satisfyingr̂2R�(#fT r; Crg � �) ^ (#Cr � 1)� :For any r 2 R, the guarded local transitions are the following:1.  : N ! T r, where  � users of (r) ^ (#fT r; Crg < �).2. #Cr = 0 : T r ! Cr.3. true : Cr ! N .The group G = Sym(I) acts on SM , and MG is obtained by replacing  by#fT r; Crg < �.We check that M is strongly virtually symmetric with respect to G. Supposes i�! t 2 RMG �RM . The transition must by of type 1 for some r that is not sharedby i. It su�ces to show that s satis�es#(users of (r); N) � 1 :11



Notice that any process not in local state N must be in local state T � or C� forsome � 2 R. Furthermore, in s,X�2R#fT �; C�g = #fT r; Crg+ X�2R�frg#fT �; C�g� �� 1 + (jRj � 1)�= �jRj � 1< jusers of (r)j ;the last inequality following from (y).5. CountingLocal counting of missing arcs can be used to establish that a structure is stronglyvirtually symmetric. We give a counting condition that is equivalent to strongvirtual symmetry.Notation: Rs;M denotes the subset of RM consisting of those arcs with s as initialstate.Proposition 5: Let M be a structure, and let G act on SM . M is strongly virtuallysymmetric with respect to G if and only if, for each s! t 2 RMG �RM ,jAut(s)(s! t)�Rs;M j < [Aut(s) : Aut(s) \ Aut(t)] :For brevity, write �(s ! t) = [Aut(s) : Aut(s) \ Aut(t)]. For asynchronous struc-tures under the group of all permutations of the processes, �(s ! t) is easily com-puted.Proposition 6: Let M be an asynchronous LI-structure, let G = Sym(I) act onSM , and let s ! t 2 RMG result from the local transition x ! y. If x = y, then�(s! t) = 1. Otherwise, �(s! t) = #x(s).Under the additional simplifying assumption that all asymmetric arcs arise from asingle local transition, the counting condition reduces to a simple bound at eachstate on the number of missing arcs initiating from the state.Corollary: Let M be an asynchronous LI-structure, and let G = Sym(I) act onSM . For simplicity, assume that every transition in RMG�RM is obtained by �ringthe single local transition x ! y, where x 6= y. M is strongly virtually symmetricwith respect to G if and only if, for every s 2 SM ,jRs;MG �Rs;M j < max(1;#x(s)) :The corollary can be used to demonstrate easily the strong virtual symmetry of thestructures in Examples 4, 6, and 8 by counting missing arcs.12
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[ID96] C-W.N. Ip and D.L. Dill, Better veri�cation through symmetry. FormalMethods in System Design, 9(1/2), 1996.[JR91] K. Jensen and G. Rozenberg (eds.), High-Level Petri Nets: Theory andApplication, Springer, 1991.[LP85] O. Lichtenstein and A. Pnueli, Checking that �nite state concurrent pro-grams satisfy their linear speci�cations. In POPL-85 , pp. 97{107, 1985.[MAV96] F. Michel, P. Azema, and F. Vernadat, Permutable agents in processalgebra. In tools and Algorithms for the Construction and Analysis ofSystems, 1996, LNCS 1055, Springer, 1996.[QS82] J.P. Queille and J. Sifakis, Speci�cation and veri�cation of concurrentprograms in CESAR. In Proc. 5th Int. Symp. Prog., LNCS 137, Springer,pp. 195{220, 1982. AppendixA.1 Group actionsLet G be a group, and let X be a set. An action of G on X is a pairingG�X ! X ;written (g; x) 7! gx ;such that g(g0x) = (gg0)x and 1Gx = xwhenever g; g0 2 G, x 2 X , and 1G is the identity element of G.Let G act on X . For �xed g 2 G, the function X ! X by x 7! gx is a bijectionwhose inverse is given by x 7! g�1x. Sym(X) denotes the group of all permutations(i.e., bijections) of X with group operation de�ned to be composition of functions.It is not di�cult to check that the map G! Sym(X) that sends g to the bijectionx 7! gx is a homomorphism of groups, and any such homomorphism de�nes anaction of G on X .For x 2 X , the G-orbit of x is the setGx = fgx : g 2 Gg :Notice that Gx = Gx0 if and only if there exists g 2 G such that x0 = gx. TheG-orbits are the equivalence classes of the relationO = f(x; x0) 2 X �X : Gx = Gx0g ;known as the orbit relation on X . A subset T of X is a transversal for the action ofG on X if T contains exactly one element from each G-orbit of X . In other words,a transversal for the action of G on X is a set of representatives of the G-orbits ofX . 14



If Y � X , then Aut(G;Y ) = fg 2 G : gY = Y g ;the subgroup of G that leaves Y set-wise invariant. For x 2 X , we write Aut(G;x)to mean Aut(G; fxg). The size of a G-orbit is expressed algebraically byjGxj = [G : Aut(G;x)] :When the group is clear from context, we may write Aut(Y ) in place of Aut(G;Y ).Notice that for g; g0 2 G and x 2 X , gx = g0x if and only if gAut(x) = g0Aut(x).In other words, g and g0 send x to the same element under the action if and only ifg and g0 are in the same right coset of Aut(x).A.2 Lemmas and proofs omitted from the textAlthough O is equal to its transpose OT , it is convenient to view O as a subset ofSM � SMG and OT as a subset of SMG � SM .Lemma 1: Let M be a structure, and let G act on SM . Then the orbit relation Ois a simulation of M by MG.Proof: Suppose s; s0 2 SM , (s; s0) 2 O, and s! t 2 RM . Then Gs = Gs0, so thereexists g 2 G such that gs = s0. By the de�nition of MG, s0 ! gt 2 RMG , and, as(t; gt) 2 O, the simulation is demonstrated.Lemma 2: LetM be a structure, and let G act on SM . The following are equivalent:(1) QT is a simulation of M=G by M .(2) OT is a simulation of MG by M .(3) For any s! t 2 RMG , there exists g 2 G such that s! gt 2 RM .Proof: (1) ) (2). Suppose s 2 SM , Gs = Gs0, and s0 ! t0 2 RMG . By thede�nition of RMG , there exists g 2 G such that gs0 ! gt0 2 RM . Therefore,Gs ! Gt0 2 RM=G. According to (1), there exists t 2 Gt0 such that s ! t 2 RM .Since t 2 Gt0, Gt = Gt0.(2)) (3). Suppose s! t 2 RMG . Since (s; s) 2 OT , (2) implies that there existss! t0 2M such that Gt = Gt0. Then there exists g 2 G such that gt = t0.(3) ) (1). Suppose Gs 2 SM=G, s0 2 Gs, and Gs ! Gt 2 RM=G. Then thereexists g0 2 G such that s0 = g0s, and, by the de�nition of RM=G, there exist g; h 2 Gsuch that gs ! ht 2 RM . By the de�nition of RMG , s0 ! (g0g�1h)t 2 RMG . By(3), there exists g00 2 G such that, with t0 = (g00g0g�1h)t, s0 ! t0 2 RM .Proposition 1: Let M be a structure, and let G act on SM . The following areequivalent:(1) Q is a bisimulation between M and M=G.(2) O is a bisimulation between M and MG.(3) For any s! t 2 RMG , there exists g 2 G such that s! gt 2 RM .15



Proof: Apply the lemmas and the fact that Q is always a simulation of M byM=G.Lemma 3: Suppose t 2 LI , g 2 Sym(I), and p; q 2 I.(1) If t(i) = (gt)(i) for all i 6= p, then t = gt.(2) If t(i) = (gt)(i) for all i 62 fp; qg, then there exists g0 2 Sym(I) such that g0�xes I � fp; qg and gt = g0t.Proof: (1) Let x = t(p), and let a = #x(t). Thena� 1 = #(I � fpg; x)(t) = #(I � fpg; x)(gt) :Since a = #x(t) = #x(gt), we must have (gt)(p) = x. Therefore, t = gt.(2) If p = q, then by (1) we can take g0 to be the identity permutation. Assumep 6= q. Let x = t(p), y = t(q), a = #x(t), b = #y(t). Consider �rst the case thatx = y. Then a� 2 = #(I � fp; qg; x)(t) = #(I � fp; qg; x)(gt) :Since a = #x(t) = #x(gt), we must have (gt)(p) = (gt)(q) = x. Therefore, we cantake g0 to be the identity permutation. Consider now the case that x 6= y. Thena� 1 = #(I � fp; qg; x)(t) = #(I � fp; qg; x)(gt)and b� 1 = #(I � fp; qg; y)(t) = #(I � fp; qg; y)(gt)Since a = #x(t) = #x(gt) and b = #y(t) = #y(gt), it follows thatf(gt)(p); (gt)(q)g = fx; yg :Therefore, g0 can be taken either as the identity permutation or as the permutationthat swaps p with q and �xes I � fp; qg.Proposition 2: Let M be an asynchronous LI-structure, and let Sym(I) act onSM . M is virtually symmetric with respect to Sym(I) if and only if it is stronglyvirtually symmetric with respect to Sym(I).Proof: From the de�nition, strong virtual symmetry implies virtual symmetry.Assume that M is virtually symmetric with respect to G = Sym(I). Considers p�! t 2 RMG . Then there exists g 2 G such that s q�! gt 2 RM . According to in-terleaving, s(i) = t(i) for i 6= p and s(i) = (gt)(i) for i 6= q. Therefore, t(i) = (gt)(i)for i 62 fp; qg.If p = q, then part (1) of Lemma 3 gives t = gt, and so s p�! t 2 RM . Assumep 6= q. Part (2) of the lemma gives g0 2 G such that g0 �xes I �fp; qg and g0t = gt.Then s q�! g0t 2 RM . If g0 is the identity permutation, then g0 2 Aut(s). Otherwise,g0 interchanges p with q. Thens(p) = (gt)(p) = (g0t)(p) = t(q) = s(q) ;and so g0 2 Aut(s). 16



Proposition 3: Let M be an LI-structure and let G be a group of near automor-phisms of M . Then M is strongly virtually symmetric with respect to G.Proof: Let s ! t 2 RMG � RM . Since RM contains a transversal for the action ofG on RMG , there exist s0 ! t0 2 RM and g0 2 G such that g0(s0 ! t0) = s ! t.Since g0 is a near automorphism, we must have Aut(SM ) � Aut(s0). It follows thatG � Aut(s0), hence s0 = s. Therefore, the condition of the de�nition of strongvirtual symmetry is satis�ed by letting g = (g0)�1.Proposition 4: Let M be an asynchronous LI-structure that is roughly symmetricwith respect to some ordering of I and the subgroup G of Aut(SM ). Then M isstrongly virtually symmetric with respect to G.Proof: Let s i�! t 2 RMG , and suppose that s i�! t 62 RM . Since RM containsa transversal for the action of G on RMG , there exists g0 2 G such that g0s g0i�!g0t 2 RM . Since s 2 G(g0s), rough symmetry gives � 2 G such that �g0s = s ands �g0i��! �g0t 2 RM . With g = �g0, it is easy to check that gs = s and s gi�! gt 2 RM .Proposition 5: Let M be a structure, and let G act on SM . Then M is stronglyvirtually symmetric with respect to G if and only if, for each s! t 2 RMG �RM ,jAut(s)(s! t)�Rs;M j < [Aut(s) : Aut(s) \ Aut(t)] :Proof: We understand Aut(s) = Aut(G; s) and Aut(t) = Aut(G; t). M is stronglyvirtually symmetric with respect to G if and only if, for any s! t 2 RMG �RM ,Aut(s)(s! t) \Rs;M 6= ; :Notice that Aut(Aut(s); s! t) = Aut(s) \ Aut(t) :Therefore, jAut(s)(s! t)j = [Aut(s) : Aut(s) \ Aut(t)] :The claimed strict inequality thus holds if and only if Aut(s)(s ! t) \ Rs;M 6= ;.Proposition 6: Let M be an asynchronous LI-structure, let G = Sym(I) act onSM , and let s ! t 2 RMG result from the local transition x ! y. If x = y, then�(s! t) = 1. Otherwise, �(s! t) = #x(s).Proof: If x = y, then s = t, hence �(s ! t) = 1. [This reects the fact that M isstrongly virtually symmetric only if there is no self-loop in RMG �RM .] Otherwise,x 6= y. Let i be the process that undergoes the local state change x ! y. Noticethat Aut(s) �= Yz2s(I)Sym(s�1(z)) ;and similarly for Aut(t). Since t(j) = s(j) for j 6= i, it follows that t�1(x) =s�1(x) � fig, t�1(y) = s�1(y) [ fig, and t�1(z) = s�1(z) for z 62 fx; yg. Anyelement of Aut(s) \ Aut(t) must �x i, and thusAut(s)Aut(s) \ Aut(t) �= Sym(s�1(x)) � Sym(s�1(y))Sym(s�1(x) � fig)� Sym(s�1(y)) :17



Therefore �(s! t) = [Sym(s�1(x)) : Sym(s�1(x)� fig)] = #x(s) :[In fact, the #x(s) elements of Aut(s)(s! t) are obtained by �ring x j�! y in states for each j 2 s�1(x).]Corollary: Let M be an asynchronous LI-structure, and let G = Sym(I) act onSM . For simplicity, assume that every transition in RMG�RM is obtained by �ringthe single local transition x ! y, where x 6= y. M is strongly virtually symmetricwith respect to G if and only if, for every s 2 SM ,jRs;MG �Rs;M j < max(1;#x(s)) :Proof: ()) If Rs;MG � Rs;M is empty, then the inequality above holds trivially.Otherwise, let s p�! t and s p0�! t0 be transitions in Rs;MG �Rs;M . Each results fromthe local transition x! y. Let � 2 G interchange p with p0 and �x all other indexes.Then � 2 Aut(s) and �(s p�! t) = s p0�! t0. Therefore, Rs;MG �Rs;M is contained inAut(s)(s! t)�Rs;M , and the inequality above follows from Propositions 5 and 6.(() Consider s! t 2 RMG�RM . This transition results from the local transitionx ! y, so #x(s) � 1. By the inequality above, jRs;MG � Rs;M j < #x(s). Plainly,Aut(s)(s ! t) � Rs;M is contained in Rs;MG � Rs;M , and so, by Proposition 6,jAut(s)(s ! t) � Rs;M j < �(s ! t). According to Proposition 5, M is stronglyvirtually symmetric with respect to G.
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