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ABSTRACT

We provide a general method for ameliorating state explosion via symmetry reduction
in certain asymmetric systems, such as systems with many similar, but not identical,
processes. The method applies to systems whose structures (i.e., state transition
graphs) have more state symmetries than arc symmetries. We introduce a new notion
of “virtual symmetry” that strictly subsumes earlier notions of “rough symmetry”
and “near symmetry” [ET99]. Virtual symmetry is the most general condition under
which the structure of a system is naturally bisimilar to its quotient by a group of
state symmetries.

We give several example systems exhibiting virtual symmetry that are not amenable
to symmetry reduction by earlier techniques: a one-lane bridge system, where the
direction with priority for crossing changes dynamically; an abstract system with
asymmetric communication network; and a system with asymmetric resource sharing
motivated from the drinking philosophers problem. These examples show that virtual
symmetry reduction applies to a significantly broader class of asymmetric systems
than could be handled before.

0. INTRODUCTION

Model checking [CE81, QS82] is an algorithmic method for checking whether a
finite-state system satisfies (i.e., models) a temporal logic formula. The system is
represented by a finite structure (i.e., state transition graph). Standard model-
checking algorithms have complexities that are efficient in their dependence on the
size of the structure (linear, for example, in the case of CTL model checking). Never-
theless, in practice, it is the contribution from the structure size that dominates the
computational cost (cf. [LP85]). Furthermore, the number of states of the structure
may be exponentially larger than the size of the textual description of the system.
This blowup is referred to as state explosion.

For systems comprising many identical or isomorphic components, the structure
may be large but may also exhibit considerable symmetry. The symmetry can be
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expressed through the action of a group of graph automorphisms of the structure.
For example, a system that is the parallel composition of n identical processes with
complete communication network has a structure that admits an automorphism for
each of the n! permutations of the processes.

Symmetry of a structure often constitutes redundancy for the purpose of model
checking a temporal logic formula. Symmetry reduction (cf. [JR91, ID96, ES96,
CE+96, HI+95, MAV96, ES97, GS97, ET98, AHI98]) is an abstraction technique
in which a symmetry-reduced quotient M /G is formed by identifying states of the
structure M that are related by elements of the group G. Under the quotient
relation, M and M /G are bisimilar as labelled digraphs for any labelling that is
invariant under the action of G. For suitably symmetric temporal logic formulas,
model checking can be performed on M /G rather than on the original structure M.!
Since M /G may be exponentially smaller than M, symmetry reduction can signif-
icantly ameliorate state explosion. In any case, maximum compression is obtained
by taking G to capture as many symmetries of M as possible.

The technique of symmetry reduction is limited by the genuine symmetry of the
structure M. For example, if a system of identical processes has communication
network that is a ring rather than complete, then the symmetries of M may be
restricted to a cyclic or dihedral group. In this case, the symmetry reduction can
produce at most a saving that is linear in the number of processes. As another
example, consider a system in which otherwise identical processes are partitioned
into two groups, one of which takes priority in certain transitions. If there are m
processes in the first group and n in the second, then M may have a genuine sym-
metry group of order m!n! rather than (m + n)!. Yet another source of asymmetry
is non-uniform access by processes to various shared resources.

These kinds of asymmetries are exhibited by structures whose group of state sym-
metries is larger than its group of arc symmetries. The asymmetry arises because
arcs are missing from the structure. For many interesting temporal logic formulas,
asymmetries of these kinds are irrelevant for model checking. We introduce a new
condition, virtual symmetry, under which a structure M can be reduced by a group
of state symmetries that may be larger than its genuine symmetry group. Virtual
symmetry is the most general condition under which a structure with a group of
state symmetries is bisimilar to its group quotient via the standard quotient re-
lation. The group quotient is an abstract structure whose states are equivalence
classes of original states related by the action of the group. The quotient relation is
the “natural” one relating a state to its equivalence class. In this sense, the bisimu-
lation is “natural”. The bisimulation is also label-preserving for any labelling that
is invariant under the action of the group.

We also introduce strong virtual symmetry, a condition that implies virtual sym-
metry and that is equivalent to virtual symmetry for asynchronous structures under
the group of all permutations of the processes. Strong virtual symmetry strictly sub-
sumes the earlier notions of “rough symmetry” [ET99] and symmetry with respect
to a group of “near automorphisms” [ET99]. Informally, rough symmetry accommo-
dates asymmetry arising from static priorities for the processes, while strong virtual
symmetry can also accommodate dynamic priorities. Symmetry under a group of

! Alternatively, one may form the product of an annotated quotient with an automaton
for the complement of the temporal logic formula and check the resulting structure for
non-emptiness [ES97, GS97].



near automorphisms requires that an asymmetric arc (i.e., an arc of the structure
that can be driven by a state symmetry to a missing arc) initiate only from a state
that is itself highly symmetric. Strong virtual symmetry is defined by more liberal
criteria and so applies to a broader class of asymmetric systems.

We give several example systems exhibiting virtual symmetry. One is a solution of
the readers-writers problem with writer priority. Because of the static writer prior-
ity, this system is also roughly symmetric. To distinguish (strong) virtual symmetry
from rough symmetry and from symmetry with respect to a group of near auto-
morphisms, we give an example of a one-lane bridge system, where the direction
with priority for crossing changes dynamically. An asymmetric communication net-
work is illustrated in a simple, abstract example in which pairs of processes begin
and end communication synchronously. A further example, exhibiting asymmetric
sharing of resources, is motivated from the drinking philosophers problem. A com-
mon feature of these examples is that asymmetric arcs are, in an intuitive sense,
“widely enabled.” The systems include reasonable limits (denoted A) that ensure
the existence of the required asymmetric arcs.

We also give a counting condition on the number of missing arcs. The condition
provides a convenient criterion for determining if a system is strongly virtually
symmetric. For asynchronous structures under the group of all permutations of the
processes, a simplifying assumption reduces the condition to a bound at each state
on the number of missing arcs initiating from the state. The simplifying assumption
requires that all asymmetric arcs arise from a single local transition. Apart from
the asymmetric communication network, which has synchronized transitions, each
of the examples mentioned above satisfies the simplifying assumption, and its strong
virtual symmetry can be demonstrated easily by counting missing arcs.

1. PRELIMINARIES
Some background material on group actions is given in the Appendix.

1.1 Conventions

Let X and Y be sets. The cardinality of X is denoted |X|. Sym(X) denotes the
group of all permutations (i.e., bijections) of X. Y* denotes the set of functions
with domain X and codomain Y. If R C X x Y, then

RT = {(y,2) €Y x X : (z,y) € R}.
Let G be a group that acts on X. If Y C X, then
Aut(G;Y)={ge G : gY =Y}.

For z € X, we write Aut(G;z) to mean Aut(G;{z}). When the group is clear from
context, we may write Aut(Y) in place of Aut(G;Y).

1.2 Structures and simulations

A structure is a pair (5, R), where S is a set, the state set of the structure, and
R C S x S, the arc set or transition relation of the structure. We use the notation
s — t interchangeably with (s, t) for an arc.



NOTATION: If M is a structure, then S,; denotes the state set of M and Rj; denotes
the transition relation of M. O

Let M, N be structures. A function f: Sy; — Sy is a homomorphism from M
to N, written f: M — N, if, for every s — t € Ry, f(s) — f(t) € Ry. A relation
B C Sur x Sy is a simulation of M by N if, for any (s,s’) € B and any s — t € Ry,
there exists t' € Sy such that (¢,¢') € B and ' — t' € Ry. For example, if f
is a homomorphism from M to N, then f (viewed as a subset of Sy x Sy) is a
simulation of M by N. If B is a simulation of M by N and B7 is a simulation of
N by M, then B and B” are bisimulations between M and N.

1.3 Indexed and asynchronous structures.

For virtual symmetry reduction, many structures of interest arise from parallel
composition of similar processes. A state of such a structure is an assignment of
local states to each of the processes.?

To be precise, let Z be a finite set of indexes, to be thought of as process identifiers,
and let £ be a set of local states. A function s € £Z is the global state in which,
for each i € Z, the local state of process i is s(i). An LZ-structure is a structure
whose state set is a subset of £Z. If L C £, then we define #L to be the function
£ — [0 : |Z|] that maps s — [s7}(L)|.*> For z € L, we write #z for #{z}.
If J C Z, then we define #(7, L) to be the function £Z — [0 : |J|] that maps
s |J NsH(L)|

Notice that Sym(Z) acts on £ by

ns=som * (%)

for 7 € Sym(Z) and s € £T. If X C £T and G C Aut(Sym(Z); X), then G acts on
X according to (). Unless stated otherwise, (x) will be the action understood for
subgroups of Sym(Z) acting on subsets of £Z.

An asynchronous LT -structure is a pair (S, R) such that S C L, RC SxZI x S,
and, for every (s,4,t) € Rand every j € T—{i}, s(j) = t(j). By asynchronous struc-
ture we mean an asynchronous £Z-structure for some £ and Z. A triple (s,i,t) € R
is thought of as an arc from s to ¢ with label i; it will also be written s — ¢. An
asynchronous structure determines an underlying structure by omitting the labels
from the arcs.*

To define asynchronous structures, it is convenient to use a language of guarded
local transitions. For our purposes, a guard is a predicate vy whose interpretation
[7] is a subset of Z x £Z. A guarded local transition is a pair v : ¢ — y, where 7 is
a guard and z,y € L. The transition v : £ — y is enabled for process i in global
state s provided (i,s) € [y] and s(¢) = z. If v: 2 — y is enabled for i in s, and if ¢

is defined by
. s(j) J#1
t(g) = T
Y J=1,
2For simplicity, we ignore shared variables.
8s71(L) = {i € Z: s(i) € L}, the pre-image of L under s.
“The asynchronous structure may have multiple self-loops on a single node, e.g. s — s
and s 2> s, that are collapsed to a single self-loop when passing to the underlying structure.



then we say that s 2 ¢ results from firing v:x N y in global state s.
For J CZ, it is a convenient abuse to understand J to denote the guard whose
interpretation is J x £Z.

EXAMPLE 1: Readers-writers with writer priority. Let Z be partitioned into the
non-empty sets R and W of “readers” and “writers.” Let £ = {N,T,C}. We define
an asynchronous £Z-structure, M, using guarded local transitions. Sy is the set of
states in £7 satisfying #C < 1. The guarded local transitions are the following:

1. true: N — T.
2. v:T — C, where vy = (#C = 0) A (R = (#(W,T) = 0)).
3. true: C — N.

Recall that R is interpreted to constrain the indexes which may fire. Informally,
“R = (#(W,T) = 0)” means that if the firing process is a reader, then there is
no writer in local state T'. This conjunct of v ensures writer priority in the local
transition T' — C. O

2. VIRTUAL AND STRONG VIRTUAL SYMMETRY

Let M be a structure, and let G be a group that acts on Sy, (i.e., G is a group of
state symmetries of M). There is an induced action of G on Sy x Sys defined by

g(s,t) = (gs, gt)

for g € G and (s,t) € Sy X Sy If G = Aut(G; Ry), then we say that M is

(genuinely) symmetric with respect to G. Notice that M is genuinely symmetric with

respect to G if and only if, for every s =+t € Ry, and every g € G, gs = gt € Ry
The quotient structure M /G is defined by

SM/G = {GS s E SM}

and
Ryrjq = {Gs — Gt : gs — ht € Ry for some g,h € G} .

Thus, the states of M /G are the G-orbits of Sys, and there is an arc in M/G from
Gs to Gt if and only if there exists an arc of M whose initial state is in G's and
whose terminal state is in Gt. For computation, Sy /¢ is typically identified with a
transversal for the action of G on Sy,.

There are two relations of particular interest in connection with the action of G
on Sps. The first is the orbit relation

O={(s,s") € Sy x Sp: Gs =Gs'} .
The second is the quotient relation
Q={(s,Gs) : s€Su}.

Notice that Q is a homomorphism M — M/G, hence Q is a simulation of M by
M/G. [ES96, CE+96] proved that if M is genuinely symmetric with respect to G,
then Q is a bisimulation between M and M/G.



Remark: Q is a “natural” relation between Sy and Sy, /G in the following sense:
if f: M — N is a homomorphism of structures, where N also has G as a group of
state symmetries, and if f(gs) = gf(s) for every g € G and s € Sy, then there is a
unique homomorphism (f/G): M/G — N/G such that (f/G) o Q= Qo f. O

Suppose that M is not genuinely symmetric with respect to G. Then there exists
an arc s — t € Ry and an element g € G such that gs — gt ¢ Ry;. We refer
to s — t as an asymmetric arc of M, and we say that gs — gt is missing from
M. In this case, Q@ may or may not be a bisimulation between M and M/G. In
Proposition 1 below, we show that Q is a bisimulation between M and M/G if
and only if O is a bisimulation between M and the genuinely symmetric structure
obtained from M by adding the missing arcs. Proposition 1 also shows that these
conditions are equivalent to a simple third condition, which we take as the definition
of virtual symmetry.

Define M€, the symmetrization of M by G, according to

SMG:SM
and
Ryec={g9s—>gt: geGands—t€ Ry}.

In other words, M€ is obtained from M by adding all the missing arcs. M€ is the
smallest superstructure of M that is genuinely symmetric with respect to G.

If M is an asynchronous £Z-structure and G C Aut(Sym(Z);Sp),® then an
asynchronous symmetrization can be arranged by letting

RMg:{gsii)gt:gEGands—i>t€RM}.

In this case, the ordinary symmetrization of the £Z-structure underlying M is equal
to the £Z-structure underlying the asynchronous symmetrization of M.

EXAMPLE 2: For the readers-writers of Example 1, the asynchronous symmetrized
structure is obtained by replacing y with v’ = (#C = 0). O

Proposition 1: Let M be a structure, and let G act on Sp;. The following are
equivalent:

(1) Q is a bisimulation between M and M/G.
(2) O is a bisimulation between M and MC.
(3) For any s — t € Ryse, there exists g € G such that s — gt € Ry;.

O

If M is an asynchronous structure, then Proposition 1 applies to the underlying
structure. The result also applies to the original asynchronous structure by ignoring
arc labels.

’The assumption G C Aut(Sym(Z); Sar) ensures that G acts on Z and that the action of

G on Sy is according to (*). It follows that, for g € G and s —> t € R, (95)(j) = (gt)(j)
for all j € Z — {gi}.



Definition: Let M be a structure, and let G act on Sy;. M is virtually symmetric
(with respect to G) if condition (3) of Proposition 1 is satisfied. M is strongly
virtually symmetric (with respect to G) if, for any s — t € Rjyc, there exists
g € Aut(G;s) such that s — gt € Rp. An asynchronous structure is (strongly)
virtually symmetric if its underlying structure is (strongly) virtually symmetric. O

Remark: From Proposition 1, M is virtually symmetric with respect to G if and
only if Q is a bisimulation between M and M/G. In this sense, virtual symmetry
is the most general condition under which M is naturally bisimilar (i.e., bisimilar
via Q) to M/G. O

Figure 1: Illustration of Example 3(a) with M on the left and M on the right.
M is strongly virtually symmetric with respect to G.

Figure 2: Illustration of Example 3(b) with M on the left and M on the right.
M is not virtually symmetric with respect to G.

EXAMPLE 3: These simple examples illustrate the preceding definition. In each,
Sy = {s,t,u}, and G = {1,7}, where 1 is the identity, 7> = 1, and 7 acts on S by
fixing v and swapping s with ¢. The arcs of Ry;¢ — Rjs are dashed in the figures.

(a) R has the single transition v — ¢, and so Ry¢ has the additional transition
u — s. See Figure 1. Since 7 fixes v and drives v — s to u — ¢, M is strongly
virtually symmetric with respect to G.

(b) Ras has the transitions v — ¢t and ¢t — s, and so Ry, has the additional
transitions v — s and s — t. See Figure 2. There is no transition in Rj; with



Figure 3: Illustration of Example 3(c) with M on the left and M€ on the right.
M is virtually symmetric, but not strongly virtually symmetric, with respect

to G.

s as initial state, so the condition of the definition of virtual symmetry fails for
s — t.

(c) Rpy has the transitions u — ¢, t — ¢, t — s, and s — s. Rjpe has the
additional transitions u — s and s — t. See Figure 3. It is not difficult to check
that M is virtually symmetric with respect to G. For example, for s — t € Ry,
s > 1t =5 — s € Ry. Since 7 does not fix s, M is not strongly virtually
symmetric.

O

EXAMPLE 4: Returning to the readers-writers, it is easy to see that M is genuinely
symmetric with respect to Sym(R) x Sym(W), but, because of writer priority, M
is not symmetric with respect to the action of the full group Sym(Z).

We check that M is strongly virtually symmetric with respect to Sym(Z). Recall
that the asynchronous symmetrization results by replacing v with v’ = (#C = 0).

Suppose that s Hte R, symz) — Rps. The transition results from firing ' : T N C,
and it follows that (s,7) € [7'] — [7] and s(i) = T'. Therefore, i € R, yet T € s(W).
Pick j € W so that s(j) =T, and let m# € Sym(Z) be the permutation that swaps i
with j and fixes all other indexes. Plainly 7 € Aut(s). Notice that (s,j) € [7], and

s0 s 2 7t is obtained by firing v : T 25 C in s. Therefore, s 2 mt € Ryy. O

The next proposition shows that virtual symmetry and strong virtual symmetry
are equivalent for asynchronous structures under the group of all permutations of
the processes.

Proposition 2: Let M be an asynchronous L -structure, and let Sym(Z) act on
Sar. M s virtually symmetric with respect to Sym(Z) if and only if it is strongly
virtually symmetric with respect to Sym(Z). O

3. RELATION TO PRIOR WORK

Prior work [ET99] introduced several notions of near symmetry that are strictly
subsumed by virtual symmetry. The first is symmetry under a group of “near
automorphisms,” and the second is “rough symmetry.”



Definition [ET99]: Let M be an £Z-structure, and consider the action of Sym(Z)
on £f. An element m € Aut(Sys) is a near automorphism of M if, for every
s =t € Ry, either s — wt € Rpr or Aut(Sy) C Aut(s). O

Proposition 3: Let M be an LT -structure and let G be a group of near automor-
phisms of M. Then M is strongly virtually symmetric with respect to G. O

Definition [ET99]: Let Z be totally ordered, let M be an asynchronous £Z-
structure, and let G be a subgroup of Aut(Sym(Z);Sp). M is roughly symmetric

with respect to the order on I and the group G if, for any i € Z, for any s — t € Ry,
and for any s’ € Gs, there exists 7 € G such that (1) 7s = §', (2) mi = max{j’ :

s(i) =s'(j")}, and (3) 7s T ont € Rr. O

EXAMPLE 5: Let M be the structure for readers-writers with writer priority. Choose
a total order of Z so that i € R and j € W imply i < j, and let G = Sym(Z). The
argument of Example 4 that M is strongly virtually symmetric can be modified to
show that M is roughly symmetric with respect to this order on Z and the group
G. (See [ET99].) O

Proposition 4: Let M be an asynchronous LT -structure that is roughly symmetric
with respect to some ordering of T and the subgroup G of Aut(Sp). Then M is
strongly virtually symmetric with respect to G. O

The remainder of this section presents an example showing that strong virtual
symmetry strictly subsumes rough symmetry and symmetry with respect to a group
of near automorphisms. The example illustrates dynamically varying priorities for
a critical shared resource. The processes are statically partitioned into two blocks,
and only processes of a single block are allowed to be trying for or in the critical
section at one time. The processes in the block with access have priority, but which
block has access may change over time. In this sense, the example is like a one-
lane bridge, where the blocks correspond to directions of travel. The symmetrized
structure allows the partition into blocks to change dynamically, something like
roundhouse switching of rail connections.

EXAMPLE 6: Let Z be partitioned into the sets Zy and Z;, and assume that |Zg| =
IZi| = XA > 1. Let £ ={N,T,C}. Let

Su={seLf:s (#{T,C} <A A#C <)}

For a € {0,1}, let
Pa = (#{Ta C} = #(Ith {Ta C})) )

and let
good = Py vV Py .

Define Rjs by the following guarded local transitions:
L. (#{T,C} <A\)Av:N — T, wherey = \/i_, (Zo A (good = P,)).
2. #C=0:T—C.

3. true: C — N.



The group G = Sym(Z) acts on Sy, but, because of the priority imposed by -,
M is not symmetric with respect to G. The symmetrization M is obtained by
replacing v with true.

We check that M is strongly virtually symmetric with respect to G. Let s Lte
Ry — Ry, and let p € Z,. Then this transition is of type 1, s = #{T,C} < A,
s |= good, yet s = P,. Since s = good, s |= Py, where b # a. For any process q € 7y,
(g,8) € [7], so it suffices to show that some process of Z; has local state N. This
follows because

#{T,C}(s) < A = T, .

Next, we check that M is not roughly symmetric with respect to G for any total
ordering of Z. Pick Z, to contain the largest element, p, of Z. Pick b # a. Let g,
r be distinct indexes in Z, (here we use A > 1). Let s be a state so that s(q) =T
and s(i) = N for all 7 distinct from q. Then Ry has a transition s — ¢ in which
r changes local state from N to T'. However, there is no element 7 of G such that
ns = s, mr = p, and s — 7t is a transition of Ry;. Indeed, no index in Z, can fire
N — T in state s to produce a transition of Rys because s(q) =T

Finally, notice that Rj; contains a transition s Lt of type 1, where p € 7,
s(q) =T for some g € Zy — {p}, and s(i) = N for all i # ¢q. Any element of Aut(s)
must fix g, so Aut(s) is not equal to G. Also, if 7 swaps p with p’, where p’ € 75,
and fixes all other indexes, then ms — wt € Rjy;. Therefore, G is not a group of
near automorphisms of M. O

4. FURTHER EXAMPLES

The following abstract example addresses asymmetry of a communication network.
A process can communicate with at most one other process at a time, and commu-
nication between two processes is established and terminated synchronously.

EXAMPLE 7: Let A be the graph representing the communication network of a
system whose set of processes is Z. Specifically, N has node set Z, and, for i, j € Z,
there is an edge between 7 and j in N if and only if (1) ¢ # j and (2) there is a
channel between ¢ and j in the network.

Let )\ be a positive integer such that any matching in A of size less than )\
can be extended to a matching of size A\. We think of A as a load limit for the
communication network.

A global state of M is a matching of size at most A in the complete graph on Z.
The presence of the edge {i,j} in the matching signifies that processes ¢ and j are
communicating in the state. A global state is good if it is a matching in N, If s,
are global states, there is a transition s — ¢ if and only if one of the following two
conditions is satisfied:

1. ¢ is obtained from s by adding a single edge, and if s |= good then t = good.
2. t is obtained from s by deleting a single edge.

A transition of type 1 represents synchronous establishment of communication be-
tween the processes of the edge added to s to obtain ¢. A transition of type 2
represents synchronous termination of communication between the processes of the
edge deleted from s to obtain ¢.

10



The group G = Sym(Z) acts on Sy as follows: for m € G,

7T{{ilvjl}a .- -v{irvjr}} = {{ﬂ(il)vﬂ(jl)}v o '7{7r(ir)77r(jr)}} .

M€ is obtained by omitting the requirement “if s = good then t = good” from
condition 1.

We check that M is strongly virtually symmetric with respect to G. Suppose
s — t is a transition in Ry;¢ — Rps. Then the transition is of type 1, the size of s
is less than A, s |= good, but t = good. Let {i,j} be the edge added to s to obtain
t. Then {i,j} is not an edge of A. Since the size of s is less than \, s can be
extended to a matching u in N of size \. Pick {i’,7'} an edge in u — s. Let 7 be
a permutation that interchanges {i, j} with {i',j'} and that fixes all other indexes.
It follows that 7s = s and s — 7t € Ryy. O

The next example illustrates asymmetric sharing of resources. It is motivated
from the drinking philosophers problem [CM84].

EXAMPLE 8: Let R be a set of critical resources shared among the processes of Z.
Let can_use C Z x R be the relation describing resource sharing: ¢ can_use r if and
only if process ¢ shares resource r. For r € R, let

users_of (r) ={t € Z: i can_use r} .

Let A be an integer such that

.| |users_of (r)]

We assume that A can be chosen positive. For any resource, the number of processes
that can be waiting for or using the resource will be bounded by A.
Define an asynchronous structure M as follows. The set of local states is

L={N}U{T":re R}U{C":r € R}.
Sar is the set of s € £7 satisfying
A (I, 0y <)) A #OT <)
reR
For any r € R, the guarded local transitions are the following:
1. v: N = T", where v = users_of (r) A (#{T",C"} < A).
2.#C"=0:1T"— C".
3. true: C" — N.

The group G = Sym(Z) acts on Sy, and M€ is obtained by replacing v by
#{T",C"} < A\
We check that M is strongly virtually symmetric with respect to G. Suppose

sSte Ryre — Ryr. The transition must by of type 1 for some r that is not shared
by ¢. It suffices to show that s satisfies

#(users_of (r), N) > 1.

11



Notice that any process not in local state N must be in local state T” or C” for
some p € R. Furthermore, in s,

D O#HT Y =#{T7,CT 4+ Y #{TP, 00}

pER pER—{r}
SA-14+(R|-1)A
=AR| -1
< |users_of ()|,

the last inequality following from (7). O

5. COUNTING

Local counting of missing arcs can be used to establish that a structure is strongly
virtually symmetric. We give a counting condition that is equivalent to strong
virtual symmetry.

NOTATION: R, denotes the subset of Rjy; consisting of those arcs with s as initial
state. O

Proposition 5: Let M be a structure, and let G act on Spr. M is strongly virtually
symmetric with respect to G if and only tf, for each s -t € Ry;e — Ry,

|Aut(s)(s = t) — Rem| < [Aut(s) : Aut(s) N Aut(t)] .

O

For brevity, write §(s — t) = [Aut(s) : Aut(s) N Aut(t)]. For asynchronous struc-
tures under the group of all permutations of the processes, 6(s — t) is easily com-
puted.

Proposition 6: Let M be an asynchronous LT -structure, let G = Sym(Z) act on
Su, and let s - t € Ryre result from the local transition v — y. If x =y, then
0(s = t) = 1. Otherwise, 6(s — t) = #xz(s). O

Under the additional simplifying assumption that all asymmetric arcs arise from a
single local transition, the counting condition reduces to a simple bound at each
state on the number of missing arcs initiating from the state.

Corollary: Let M be an asynchronous L -structure, and let G = Sym(Z) act on
Syr. For simplicity, assume that every transition in Ryre — Ry s obtained by firing
the single local transition © — y, where x # y. M is strongly virtually symmetric
with respect to G if and only if, for every s € Sy,

|RS;MG - RS§M| < max(l, #m(s)) .

O
The corollary can be used to demonstrate easily the strong virtual symmetry of the
structures in Examples 4, 6, and 8 by counting missing arcs.
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6. CONCLUSION

Virtual symmetry reduction is a general method for ameliorating state explosion in
asymmetric systems. It subsumes previous methods of rough symmetry reduction
and reduction by a group of near automorphisms. Virtual symmetry is the most
general condition under which an asymmetric structure is naturally bisimilar to
its quotient by a group of state symmetries. We have described example systems
exhibiting virtual symmetry that are not amenable to symmetry reduction by earlier
techniques. These examples show that virtual symmetry reduction applies to a
significantly broader class of asymmetric systems than could be handled before.

Acknowledgment: This work was supported in part by NSF grant CCR-980-4736
and SRC contract 99-TJ-685.
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APPENDIX
A.1 Group actions
Let G be a group, and let X be a set. An action of G on X is a pairing

GxX—X,

written
(9,7) = gz,
such that
9(g'z) = (99')z and lgz =1z
whenever g,¢' € G, x € X, and 1¢ is the identity element of G.

Let G act on X. For fixed g € G, the function X — X by z — gz is a bijection
whose inverse is given by z — g~'z. Sym(X) denotes the group of all permutations
(i-e., bijections) of X with group operation defined to be composition of functions.
It is not difficult to check that the map G — Sym(X) that sends g to the bijection
z — gz is a homomorphism of groups, and any such homomorphism defines an

action of G on X.
For z € X, the G-orbit of z is the set

Gz ={gz: g€ G}.

Notice that Gz = Gz’ if and only if there exists ¢ € G such that 2’ = gz. The
G-orbits are the equivalence classes of the relation

O={(z,2') € X x X: Gz = Gz'},

known as the orbit relation on X. A subset T of X is a transversal for the action of
G on X if T contains exactly one element from each G-orbit of X. In other words,
a transversal for the action of G on X is a set of representatives of the G-orbits of
X.
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IfY C X, then
Aut(G;Y)={ge G : gY =Y},

the subgroup of G that leaves Y set-wise invariant. For z € X, we write Aut(G;z)
to mean Aut(G;{z}). The size of a G-orbit is expressed algebraically by

|Gz| =[G : Aut(G;z)] .

When the group is clear from context, we may write Aut(Y') in place of Aut(G;Y).
Notice that for g,¢' € G and z € X, gz = ¢’z if and only if gAut(z) = g' Aut(z).
In other words, g and ¢’ send z to the same element under the action if and only if
g and ¢’ are in the same right coset of Aut(z).

A.2 Lemmas and proofs omitted from the text

Although O is equal to its transpose Q7T it is convenient to view O as a subset of
Sy x Syre and OT as a subset of Sp;e X S

Lemma 1: Let M be a structure, and let G act on Sp;. Then the orbit relation O
is a simulation of M by MGC.

Proof: Suppose s,s’ € Sy, (s,8') € O, and s -+ t € Ry;. Then Gs = G¢’, so there
exists g € G such that gs = s’. By the definition of MY, s’ — gt € Ryc, and, as
(t, gt) € O, the simulation is demonstrated. O

Lemma 2: Let M be a structure, and let G act on Syp;. The following are equivalent:
(1) QT is a simulation of M/G by M.
(2) OT is a simulation of M® by M.
(3) For any s — t € Rye, there exists g € G such that s — gt € Ryy.

Proof: (1) = (2). Suppose s € Sy, Gs = Gs', and s' — &' € Rye. By the
definition of Ryse, there exists g € G such that gs' — gt' € Ryp;. Therefore,
Gs — Gt' € Ry;yg. According to (1), there exists ¢ € Gt such that s — t € Ry,.
Since t € Gt', Gt = Gt'.

(2) = (3). Suppose s — t € Ryse. Since (s,s) € O, (2) implies that there exists
s — t' € M such that Gt = Gt'. Then there exists g € G such that gt =¢'.

(3) = (1). Suppose G's € Sy/q, s' € Gs, and Gs — Gt € Ry . Then there
exists g’ € G such that s’ = g's, and, by the definition of Ry;/q, there exist g,h € G
such that gs — ht € Ry. By the definition of Rye, s’ — (9’9 th)t € Rye. By
(3), there exists g” € G such that, with t' = (¢"¢'g 1h)t, s' = t' € Ry,. O

Proposition 1: Let M be a structure, and let G act on Sp;. The following are
equivalent:

(1) Q is a bisimulation between M and M/G.
(2) O is a bisimulation between M and MC.

(3) For any s — t € Rye, there exists g € G such that s — gt € Ryy.
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Proof: Apply the lemmas and the fact that Q is always a simulation of M by
M/@. O

Lemma 3: Suppose t € LT, g € Sym(Z), and p,q € .
(1) If t(z) = (gt)(i) for all i # p, then t = gt.

(2) If t(3) = (gt)(3) for all i & {p,q}, then there exists g' € Sym(Z) such that g’
fizes T — {p,q} and gt = ¢'t.

Proof: (1) Let z = t(p), and let a = #x(t). Then
a—1=#( - {p}2)t) = #(Z —{p},z)(gt) -

Since a = #x(t) = #z(gt), we must have (gt)(p) = z. Therefore, t = gt.

(2) If p = q, then by (1) we can take g’ to be the identity permutation. Assume
p # q. Let ¢ = t(p), y = t(q), a = #x(t), b = #y(t). Consider first the case that
z =y. Then

a—2=#T—-{p,q}2)(t) = #(Z —{p,q},)(gt) -

Since a = #xz(t) = #z(gt), we must have (gt)(p) = (9t)(¢) = . Therefore, we can
take g’ to be the identity permutation. Consider now the case that x # y. Then

a—1=#T—{p,q},2)(t) = #(Z —{p, q},)(g?)

and

b—1=#(Z —{p,q},y)(t) = #(Z —{p,q},y)(g?)
Since a = #xz(t) = #z(gt) and b = #y(t) = #y(gt), it follows that

{(gt)(p), (9t)(@)} = {=z,y} .

Therefore, g’ can be taken either as the identity permutation or as the permutation
that swaps p with ¢ and fixes Z — {p, ¢}. O

Proposition 2: Let M be an asynchronous L% -structure, and let Sym(Z) act on
Sy- M is virtually symmetric with respect to Sym(Z) if and only if it is strongly
virtually symmetric with respect to Sym(Z).
Proof: From the definition, strong virtual symmetry implies virtual symmetry.
Assume that M is virtually symmetric with respect to G = Sym(Z). Consider
s 2t € Rye. Then there exists g € G such that s % gt € Ry,. According to in-
terleaving, s(i) = t(¢) for i # p and s(i) = (gt)(¢) for i # g. Therefore, t(i) = (gt)(i)
for i & {p, g}

If p = ¢, then part (1) of Lemma 3 gives t = gt, and so s — t € Ry;. Assume
p # q. Part (2) of the lemma gives ¢’ € G such that ¢’ fixes Z — {p, ¢} and ¢'t = gt.
Then s % g't € Ry;. If ¢’ is the identity permutation, then ¢’ € Aut(s). Otherwise,
¢’ interchanges p with ¢g. Then

s(p) = (gt)(p) = (9't)(p) = t(q) = s(q) ,
and so ¢’ € Aut(s). O
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Proposition 3: Let M be an L -structure and let G' be a group of near automor-
phisms of M. Then M is strongly virtually symmetric with respect to G.

Proof: Let s -+t € Ryye — Ryy. Since Ry, contains a transversal for the action of
G on Rysc, there exist ' — t' € Ry and ¢’ € G such that ¢'(s" = ') = s — .
Since ¢' is a near automorphism, we must have Aut(Sar) C Aut(s'). It follows that
G C Aut(s'), hence s' = s. Therefore, the condition of the definition of strong
virtual symmetry is satisfied by letting g = (¢')~". O

Proposition 4: Let M be an asynchronous LT -structure that is roughly symmetric
with respect to some ordering of T and the subgroup G of Aut(Sp). Then M is
strongly virtually symmetric with respect to G.
Proof: Let s SHte Rjyse, and suppose that s KN ¢ Rpr. Since Rps contains
a transversal for the action of G on Rjsc, there exists ¢’ € @ such that ¢'s 2%
g't € Rys. Since s € G(g's), rough symmetry gives m € G such that mg's = s and
s 2% 1g't € Ry. With g = mg/, it is easy to check that gs = s and s 25 gt € Ryy.
O

Proposition 5: Let M be a structure, and let G act on Sp;. Then M is strongly
virtually symmetric with respect to G if and only if, for each s -t € Ryje — Ry,

|Aut(s)(s = t) — Rs;m| < [Aut(s) : Aut(s) N Aut(t)] .

Proof: We understand Aut(s) = Aut(G;s) and Aut(t) = Aut(G;t). M is strongly
virtually symmetric with respect to G if and only if, for any s — t € Ry;e — Ry,
Aut(s)(s > t) N Rs;m #0 .

Notice that
Aut(Aut(s); s — t) = Aut(s) N Aut(t) .
Therefore,
|Aut(s)(s — t)| = [Aut(s) : Aut(s) N Aut(¢)] .
The claimed strict inequality thus holds if and only if Aut(s)(s — ¢) N Repr # 0.
(]

Proposition 6: Let M be an asynchronous LT -structure, let G = Sym(Z) act on
Su, and let s - t € Rype result from the local transition v — y. If x =y, then
0(s = t) = 1. Otherwise, (s — t) = #x(s).

Proof: If x = y, then s = t, hence §(s — t) = 1. [This reflects the fact that M is
strongly virtually symmetric only if there is no self-loop in Ry;¢ — Rps.] Otherwise,
x # y. Let i be the process that undergoes the local state change z — y. Notice

that
Au(s)= T Syms()),
z€s(T)
and similarly for Aut(t). Since t(j) = s(j) for j # i, it follows that ¢t~!(z) =
s7H(z) = {i}, t7H(y) = s7H(y) U {i}, and t71(2) = s7'(2) for 2 ¢ {z,y}. Any
element of Aut(s) N Aut(t) must fix ¢, and thus
Aut(s) ~ _ Sym(s~'(z)) x Sym(s"*(y))
Aut(s) N Aut(t)  Sym(s—1(z) — {i}) x Sym(s—1(y))
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Therefore
6(s > ) = [Sym(s *(2)) : Sym(s () — {i})] = #a(s)

[In fact, the #z(s) elements of Aut(s)(s — t) are obtained by firing = EN y in state
s for each j € s71(z).] O

Corollary: Let M be an asynchronous LT -structure, and let G = Sym(Z) act on
Sn - For simplicity, assume that every transition in Ry;e¢ — Ry is obtained by firing
the single local transition © — y, where x # y. M is strongly virtually symmetric
with respect to G if and only if, for every s € Sy,

|Rs;me — Rs;ar| < max(1, #x(s)) .

Proof: (=) If Ry e — R is empty, then the inequality above holds trivially.

Otherwise, let s 2 t and s &5 ' be transitions in R, pre — Ry, 0. Each results from
the local transition z — y. Let m € G interchange p with p’ and fix all other indexes.

Then 7 € Aut(s) and 7(s = t) = s = t'. Therefore, R,,5;¢ — Ry is contained in
Aut(s)(s = t) — Rs;m, and the inequality above follows from Propositions 5 and 6.

(«) Consider s = t € Ryre —Ryps. This transition results from the local transition
r — y, so #x(s) > 1. By the inequality above, |R,.py¢ — Rym| < #z(s). Plainly,
Aut(s)(s — t) — Ry;n is contained in R, ¢ — Ry, and so, by Proposition 6,
|Aut(s)(s — t) — Rs;m| < 6(s — t). According to Proposition 5, M is strongly
virtually symmetric with respect to G. O
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