Reducing Model Checking of the Many
to the Few™

E. Allen Emerson and Vineet Kahlon

Department of Computer Sciences,
The University of Texas at Austin, U.S.A.

January 31, 2000

Abstract

Systems with an arbitrary number of homogeneous processes occur in many applications.
The Parametrized Model Checking Problem (PMCP) is to determine whether a temporal prop-
erty is true for every size instance of the system. Unfortunately, it is undecidable in general. We
are able to establish, nonetheless, decidability of the PMCP in quite a broad framework. We
consider asynchronous systems comprised of an arbitrary number n of homogeneous copies of
a generic process template. The process template is represented as a synchronization skeleton
while correctness properties are expressed using Indexed CTL*\X. We reduce model checking
for systems of arbitrary size n to model checking for systems of size (up to) a small cutoff size
c. This establishes decidability of PMCP as it is only necessary model check a finite number of
relatively small systems. Efficient decidability can be obtained in some cases. The results gen-
eralize to systems comprised of multiple heterogeneous classes of processes, where each class is
instantiated by many homogeneous copies of the class template (e.g., m readers and n writers).

*This work was supported in part by NSF grant CCR-980-4737 and SRC contract 99-TJ-685. The authors can
be reached at {emerson,kahlon}@cs.utexas.edu and at http://www.cs.utexas.edu/users/{emerson,kahlon}

1. Introduction

Systems with an arbitrary number of homogeneous processes can be used to model many impor-
tant applications. These include classical problems such as mutual exclusion, readers and writers,
as well as protocols for cache coherence and data communication among others. It is often the
case that correctness properties are expected to hold irrespective of the size of the system, as mea-
sured by the number of processes in the system. However, time and space constraints permit us
to verify correctness only for instances with a small number of processes. This makes it impossi-
ble to guarantee correctness in general and thus motivates consideration of automated methods to
permit verification for arbitrary size instances. The general problem, known in the literature as
the Parametrized Model Checking Problem (PMCP) is the following: to decide whether a temporal
property is true of every size instance of a given system. This problem is known to be undecidable
in general [1]. However, by imposing certain stipulations on the organization of the processes we
can get a useful framework with a decidable PMCP.

We establish our results in the synchronization skeleton framework. Our results apply to systems
comprised of multiple heterogeneous classes of processes with many homogeneous process instances
in each class. Thus, given family (Uq, ..., Ug) of k process classes, and tuple (ni,...,nx) of natural
numbers, we let (Uy, ..., Uk)("l""’"k) denote the concrete system composed of n; copies or instances
of Uy thru ny copies or instances of Uy running in parallel asynchronously (i.e., with interleaving
semantics). By abuse of notation, we also write (Uy, ..., Uy)™+"%) for the associated state graph,
where each process starts in its designated initial state.

Correctness properties are expressed using a fragment of Indexed CTL*\X. The basic assertions
are of the form “for all processes Ah”, or “for all processes Eh”, where h is an LTL\X formula
(built using F “sometimes”, G “always”, U, “until”, but without X “next-time”) over propositions
indexed just by the processes being quantified over, and A “for all futures” and E “for some future”
are the usual path quantifiers. Use of such an indexed, stuttering-insensitive logic is natural for
parameterized systems.

We consider correctness properties of the following types:

1. Over all individual processes of single class U;:
Ai, Ah(i;) and A; Eh(i;) , where i; ranges over (indexes of) individual processes in Uj.

2. Over pairs of different processes of a single class U;:
Nijzj, Ab(ir, 1) and A;;, Eh(ir, ji), where i, j; range over pairs of distinct processes in Uj.

3. Over one process from each of two different classes Uj, Up,:
Nis jim Ah(i, jm) and Nt jm Eh(i;, jm), where 4; ranges over U; and j,, over Up,.

We say that the k-tuple (cq,...,cg) of natural numbers is a cutoff of (Ui, ...,Uy) for formula f
iff : V(nl, ...,nk), (Ul, ceey Uk)(nl""’nk) |: f iff V(ml, ,mk) = (Cl, ceey Ck) : (Ul, ceey Uk)(ml""’mk)):
f, where for n-tuples (my,...,mg) and (ci,...,c;), we write (mq,...,my) < (c1,...,cx) to mean
(mq,...,my) is component-wise less than or equal to (c1,...,cx) and (mq,...,mg) = (c1,...,cx) to
mean (¢, ...,cx) = (mq,...,mg).

In this paper, we show that for systems in the synchronization skeleton framework with transi-
tion guards of a particular disjunctive or conjunctive form, there is a small cutoff. This, in effect,
reduces PMCP to ordinary model checking over a relatively few small, finite sized systems. In some
cases, depending on the kind of property and guards, we can get an efficient solution to PMCP.

Each process class is described by a generic process, a process template for the class. A system
with k classes is given by templates (Ui,...,U). For such a system define ¢; = |U;| + 2, the
size (number of local states of template U;) plus 2. Then, for both conjunctive and disjunctive

guards a cutoff of (ei, ..., ;) suffices for all three types of formulas described above. These results
give decision procedure for PMCP for conjunctive or disjunctive guards. Since this is a broad
framework and PMCP is undecidable in general, we view this as quite a positive result. However,
the decision procedures are not necessarily efficient ones, although they may certainly be usable
on small examples. Because the cutoff is proportional to the sizes of the template processes, the
global state graph of the cutoff system is of size exponential in the template sizes, and the decision
procedures are also exponential. In the case of disjunctive guards, if we restrict ourselves to the
A path quantifiers, but still permit all three type of properties, then the cutoff can be reduced,
in quadratic time in the size of the template processes, to something of the form (1,...,2,...,1) or
(1,...,1). In fact, depending on the type of property, we can show that it is possible to simplify the
guards to ensure that only one or two classes need be retained. On the other hand for conjunctive
guards if we restrict ourselves to model checking over infinite paths, then sharper cutoffs of the
form (1,...,2,...,1) or even (1,...,1) can in some cases be obtained.

The rest of the paper is organized as follows. Section 2 defines the system model. Section 3
describes how to exploit the symmetry inherent in the model and correctness properties. Sections
4 and 5 prove the results pertaining to disjunctive and conjunctive guards respectively. We show
some applications of our results in Section 6. In the concluding Section 7 we discuss related work.

2. The System Model

We focus on systems comprised of multiple heterogeneous classes of processes modeled as syn-
chronization skeletons (cf. [6]). Here, an individual concrete process has a transition of the form
1% m indicating that the process can transit form local state [to local state m, provided the
guard g is true. Each class is specified by giving a generic process template. If I is (an) index set
{1,...,n}, then we use U, or U™ for short, to denote the concurrent system U'|| ... ||U™ comprised
of the n isomorphic (up to re-indexing) processes U’ running in parallel asynchronously. For a sys-
tem with k classes associated with given templates Uy, Uy, ..., Uy, we have corresponding (disjoint)
index sets Iy, Io, ... I;. Each index set I; = (a copy of) an interval {1,...,c} of natural numbers,
denoted {1;,...,¢;} for emphasis. 1 In practice, we assume the k index sets are specified by giving
a k-tuple (n1,...,ng) of natural numbers, corresponding to I; being (a copy of) interval {1,...n;}
thru Ij being (a copy of) interval {1,... n}.

Given family (Uq, ..., Ug) of k template processes, and a k-tuple (nq, ..., ng) of natural numbers,
we let (Ul,...,Uk)("lv'“*"k) denote the concrete system composed on nj copies of U; through ny
copies of Uy running in parallel asynchronously (i.e., with interleaving semantics). A template
process U; = (S;, Ry, i) for class [, is comprised of a finite set S; of (local) states, a set of transition
edges Ry, and an initial (local) state i;. Each transition in R; is labelled with a guard, a boolean
expressions over atomic propositions corresponding to the local states of other template processes.
Then given index ¢ and template process Uy, Uli = (Sli, Rf, |§) is used to denote the ith copy of the
template process U;. Here Sli, the state set of Ul"7 Rf its transition relation and if its initial state are
obtained from S;, R; and i; respectively by uniformly superscripting the states of U; with ¢. Thus,
for local states s;,t; of S, s, ¢! denote local states of U} and (s;,¢;) € Ry iff (s, t!) € Rl

Given, the guard of the transitions in the template process, we now describe how to get the
corresponding guards for the concrete process Uli of (Uy, ..., Uk)(”l""'“k). In this paper, we consider
the following two types of guards.

i) Disjunctive guards — of the general form (a; + ... +b1) V... V(ag + ... + bi), where the vari-
ous ay, ...b; are (propositions identified with the) local states of template Uj, label each transition

'E.g., if I is a copy of {1,2,3}, the copy is denoted {11,21,31}. Informally, subscripted index 3; means process
3 of class 1; formally, it is the ordered pair (3,1) as is usual with indexed logics.

(si,t1) € Ry. In concrete process i of class [, U}, in the system (U1, ..., Uy,) (1) the correspond-
ing transition (sj,t;) € R; is then labelled by the guard

Vizi(a] + o +00) V Vja (Vi) (af 4 o+ 85))

where proposition ag? is understood to be true when process k in class Uj, Uf, is in local state a;

for template process Uj.

ii) conjunctive guards with initial state — of the general form (i; + a3 + ... + by) A ... A(ix +ag +
... + bg). In concrete process i of class [, Uli, in the system (Uq, ..., Uk)(”l""'“k), the corresponding
transition (s¢,#!) € R! is then labelled by the guard

Nosii +af + o+ 0)) A Nja(Akenng) (i§ + af tot b?))

Note that the initial local states of processes must be present in these guards. Thus, the initial
state of a process has a “neutral” character so that when another process, say, r is in its initial
state, it does not prevent a move by given process i. This natural condition permits modeling a
broad range of applications (and is helpful technically).

We now formalize the asynchronous concurrent (interleaving) semantics. A process transition
with guard g is enabled in global state s iff s |= g, i.e., g is true over the local states in s. A
transition can be fired in global state s iff its guard g is enabled. Let, (Ul,...,Uk)("lv'“*"k) =
(S("l*"'*"k), R(m1:nk) i("l""'nk)) be the global state graph of the system instance (n1,ng,...,ng). A
state s € S("1k) is an (ng + ... + ng)-tuple (ul, ..., ult, ...,up") where the projection of s onto
process i of class [, denoted s(l,), equals uf, the local state of the ith copy of the template process
U;. The initial state i("™) = (il,...;ii*). A global transition (s, t) € R(™»+m) iff ¢ results from s
by firing some enabled transition of some process, i.e., there exist ¢,! such that the guard labelling
(u},v¥) € R! is enabled at s, s(i,1) = ut, t(i,1) =}, and for all (j,k) # (i,1), s(k,j) = t(k,j). We
write (Uy, ..., U)(®1"%) |= f to indicate that the global state graph of (U, ..., Ug)(™»"%) satisfies
f at initial state i("1m%)

Finally, for global state s, define Set(s) = {t|s contains an indexed local copy of t}. For
computation path z = ¢, z;..., we define PathSet(z) = |J; Set(z;) . We say that the sequence of
global states y = yo, y1... is a stuttering of computation path x iff there exists a parsing PyP;... of
y such that for all j > 0 there is some r > 0 with P; = (z;)". Also, we extend the definition of
projection to include computation sequences as follows: for 7 € [1..n], the sequence of local states
zo(l,i),z1(l,7), ... is denoted by x(l,1).

3 Appeals to Symmetry

We can exploit symmetry inherent in the system model and the properties in the same spirit
characterized as “state symmetry” [9] (cf. [18], [13]) to simplify our proof obligation. To establish
formulas of types A;, f(i1), Aj,z5, £, 51) and A;, ;. f (i1, m), it suffices to show the results with the
formulas replaced by f(1;), f(1;,2;) and f(1;,1,,), respectively. The basic idea is that in a system
comprised of fully interchangeable processes 1 through n of a given class, symmetry considerations
dictate that process 1 satisfies a property iff each process i satisfies the property, for all 7 in [1..n].
Consult the appendix for details.

4 Systems with Disjunctive Guards

In this section we show how, for systems with disjunctive guards, to reduce the PMCP to model
checking systems of size bounded by a small cutoff, where the size of the cutoff for each process
class is essentially the number of local states of individual process template for the class. This
yields decidability for this formulation of PMCP, a pleasant result since PMCP is undecidable in

full generality. But it is not efficient decidability. We go on to show that in the case of universal-
path-quantified specification formulas (Ah), efficient decidability can be obtained.

4.1 Properties ranging over all processes in a single class: A\, g(ip)

We will first establish the
Cutoff Theorem Let f be A; Ah(i;) or A; Eh(i;), for any LTL\X formula h and I € [1..k]. Then
we have the following equivalence:

V(nl, ce ,nk) = (]_, ey 1): (Ul, ey Uk)(nl""’nk)): f iff
V(dy,...,dy) < (c1y. .. c8) s (UL,...,Up)@0d) = f
where the cutoff (ci1,...,¢k) is given by ¢; = |U| + 1, and for i # [: ¢; = |Uj].

As a corollary we will have the:

Decidability Theorem PMCP for systems with disjunctive guards and single-index assertions as
above is decidable in exponential time.

Proof idea By the cutoff theorem it is enough to model check each of the exponentially many
exponential size state graphs corresponding to systems (Uy, ..., Uy)@%) for all (dy,...,d;) =<
(c1y...,C)- QED

For notational brevity, we establish the above results for systems with just two process classes.
We begin by proving the following lemmas.

Monotonicity Lemma

(i) Vn > 1: (Vq, Vo)™ = ER(1y) implies (V1, Vo)D) |= ER(1y).

(ii) Yn > 1: (Vi, Vo)1) = ER(1;) implies (V3, Vo)D) |= ER(1).

Proof idea We formalize the intuition that, in a system comprised of processes with disjunctive
guards, if there is a certain computation, then in the system resulting from adding an aditional
process, there is an analogous computation. See the appendix for details. QED

The following Bounding Lemma allows reduction in system size, one coordinate at a time.
Bounding Lemma

(1) Vn > [So| + 1, (V1, Vo)™ = Eh(1y) iff (V1, V2)(1e2) |= ER(1y), where ¢p = |Sa| + 1.

(ii) Yn > |Sa|, (V1, Vo)™ k= ER(1y) iff (V7, Vo)L152D) |= ER(1,).

Proof (i): (=) Let z = ..., be a valid computation sequence of (V;, Vo)™, Define Reach C Sy,
to be the set of all local states(ignoring indices) of V3 occuring in the local computation sequences
of process V3 ,j € [2..n], in z. It is clear that for each state t € Reach, there exists a finite local
computation ¢, ta, ..., t;,, say, of minimal length ending in ¢. Then let MinLength(t) denote m and
MinComputation(t) denote tq,ts,...,tm—1, (tm)“. For definiteness, let Reach = {s1, ..., ¢ }.

Define y = yoyi..., where y(1,1) = z(1,1),y(2,1) = z(2,1) and Vj € [L.m] : z(2,5 + 1) =
MinComputation(sj). Note that in assigning MinComputation(s;) to x(2,j + 1), we have to
index all states in it by j + 1. Then, we claim that y is a valid “stuttering” computation sequence
of (1, Vz)(l"szHl).

To prove this, it suffices to show that for any any ¢ such that y; # y;11, the guard g; labelling
the fired transition is satisfied by y; i.e. y; = ¢;. From our construction of y, it follows that there
exists a corresponding transition from x; to x;;1 labelled by the guard g;, say. Then, it is plain that
z; = g;. Now, t € Set(z;) implies that MinLength(t) < i. Also, t € Set(x;) implies that t € Reach
ie. t = s4 for some ¢q € [1..m]. Then, y;(2,¢q + 1) is an indexed copy of sq, i.e. t € Set(y;). Thus,
t € Set(x;) implies that t € Set(y;) i.e. Set(z;) C Set(y;) and hence, by the existential nature of
guards, it follows that y; = g;.

But, by our construction, y(2,1) = x(2,1). Thus we have proved that for every computation
sequence « of (Vi, V)™ | there exists a computation sequence y of (V1, V2)(1¢2) such that the local
computation sequences of process Vs are same in both z and y. ;From this path correspondence,
the result follows easily.

(<) The proof follows by repeated application of the Monotonicity Lemma.
(ii): This part follows by using a similar argument. QED
The following Truncation Lemma allows reduction in system size over multiple coordinates
simultaneously (2 coordinates for notational brevity).
Truncation Lemma VYny,ny > 1 : (U, Uz)™"2) |= Eh(1y) iff (U, Uz)™™2) |= Eh(1y), where
ny = min(ng, |Ss| + 1) and nj = min(n1, |Sy]).
Proof If ny > [S| +1, set V1 = U" and V3 = Uy. Then, (Uy, Up)(™Mm2) (= ER(1y) iff (V1, Va)(112) =
Eh(L,) iff (V1, Va)("2) |= Eh(1,) (by the Bounding Lemma) iff (Uy, Uz)™172) |= Eh(1y).

If ny < |S1], then n; = n’l and we are done, else set V; = U; and Vo = U;. Then,
(U1, Uy)(mma) = Eh(1) iff (U, Uy)mam) En(1,) iff (Vi, Vo)(bm) = ER(1y) iff (Vi, Va)(LIS1D) =
Eh(1;) (by the Bounding Lemma) iff (U3, Us)! nyma) = Eh(12). QED

An easy but important consequence of the Truncation Lemma is the following
Cutoff Result Let f be A; Ah(i;) or A; Eh(i;), for any LTL\X formula h and [€ [1..2].
Then we have the following equivalence:

V(nl,n2) i (1,].) (Ul, Uz)(nl’nz) |= f iff V(dl,dz) (61,62) : (Ul, Uz)(dl’dz)): f,

where the cutoff (c1,c2) is given by ¢; = |U;| + 1, and for i # [: ¢; = |U;]|.
Proof By appeal to symmetry and the fact that A and E are duals, it suffices to prove the result
for formulas of the type Eh(1y). The (=) direction is trivial. For the () direction, let nq, ns > 1.
Define n; = min(ny, [S1|), ny = min(ny, |So|+1). Then, (U1, U2) nun2) = f(1,) iff (U, Ug)("lvnz) =
f(12) by the Truncation Lemma. The latter is true since (n}, ny) < (c1,¢z). This proves the cutoff
result. QED

The earlier-stated Cutoff Theorem re-articulates the above Cutoff Result more generally for
systems with k, k > 1, different classes of processes; since its proof is along similar lines but is
notationally more complex, we omit it for the sake of brevity.

4.2 Efficient decidability for “for all future” properties: A Ah

It can be shown that “for some future” properties, corresponding to formulas of the type A Eh,
the reduction entailed in the previous result is, in general, the best possible. (See the appendix in
the full paper.)

However, for universal-path-quantified single index properties, A; Ah(l,4;), it is possible to be
much more efficient. We will establish the
Reduction Theorem (Uy, ..., Up)c %) |= Ai, Ah(i) iff Ul): Ah(i1), where ¢; = |S;| + 1 and
¢; = |S;| for ¢ # [and Ull is the simplified process that we get from U; by the reduction technique
described below.

This makes precise our claim that for formulas of the type A; Ah(i;), it is possible to give
efficient decision procedures for the PMCP at hand, by reducing it to model checking systems
consisting of one or two template processes.

To this end, we first prove the following lemma which states that the PMCP problem for the
above reduces to model checking them for just the single system instance of size equal the (small)
cutoff (as opposed to all systems of size less than or equal to the cutoff).

Single-Cutoff Lemma VYni,ny > 1 : (Uy, Us)™m2) = Ah(1y) iff (Uy,Us)(1¢2) |= Ah(1), where
c1 = |Sl|,62 = |Sg| + 1.
Proof (=) This direction follows easily by instantiating n; = ¢; and ng = ¢z, on the left hand side.

(<) Choose arbitrary ki,ko > 1. Set k; = min(ky,c1), ky = min(ka, c2). Then, (Uy, Us)F1k2) =
Eh(1y) iff (Uy,Us)*1k2) |= ER(15) (by the Truncation Lemma) implies (U, Us)(€1%2) |= Eh(1s) (by
Monotonicity Lemma). Now, by contraposition, (U1, Uz)(¢1:¢2) |= Ah(1y) implies (Uy, Us)k1k2) =

Ah(1g). Since ki, ko were arbitrarily chosen, the proof is complete. QED
Next, we transform the given template processes and follow it up with lemmas giving the

soundness and completeness proofs for the transformation. Given template processes Uy, ..., Uy,
define ReachableStates(Uy,...,Uy) = (Si,...,S,), where S; = {t|t € S;, such that for some
ni,ng,...,n; > 1, there exists a computation path of (Uy, ..., Uk)("l*'"*"k), leading to a global state
that contains a local indexed copy of t}. | Vj > 0, VI € [1..k], we define P/ as follows.

P = {u}. , ,

Pl]Jr1 =P U{p : Ip e P! :3p 2 p' € R; and expression ¢ contains a state in U, P!}

Soundness Lemma Let a; = |Pl] |. Then, there exists a finite computation sequence =z =
L0, L1, .., Ty Of (U7, ..., Uy)@%) such that Vs; € Plj (@ e l.a] : zn(l,p) = 7).

Proof See appendix. QED
Completeness Lemma (S;,...,S;) = (Py, ..., P).

Proof See appendix. QED

We now modify the k-tuple of template processes (Ui, ...,Uy) to get the k-tuple (Ui7 ...,U,;)7
where U, = (S;, R}, i;), with (s;,t;) € R, iff the guard g; labelling (s;,t;) in U; contains an indexed
copy of a state in Uie[l"k} S;. Furthermore, any transition in the new system is labelled with gy,
a “Universal” guard that evaluates to true irrespective of the global state the system is in. The
motivation behind these definitions is that since for any ni, ns,...,ng > 1, no indexed copy of states
in S; \ R; is reachable in any computation of (U, ..., Uy)™") we can safely delete these states
from their respective template process. Also, any guard of a template process involving only states
in S; \ R;, will always evaluate to false and hence the transition labelled by this guard will never
be fired. This justifies deleting such transitions from the transition graph of respective template
processes. This brings us to the following Reduction Result, which by appeal to symmetry yields
the Reduction Theorem stated before.

Reduction Result (Uy,...,Uy) %) = Ah(1,) iff U;(I) = Ah(1;), where ¢, = |Sp| + 1 and
C; = |Sz| for ¢ ;ép.
Proof We show that (U3, ..., Uy)-et) = ER(1,) iff U, |= ER(1y).

(=) Let (sllq,tzl,) be any transition of UI} in (U1, ..., Ug)(€1¢%) labelled by guard g, say. Then,

since by definition of S;-,Set(s) C U S;- for any global state s of (Uy, ..., Uy)(€»¢) therefore g
(1)

must have an indexed copy of a state in |J; S;, which implies that (s;,%,) is a transition of U1’7 .
Also, i, € S;. It follows that for any computation sequence @ of (Uy, ..., Uy)(¢»¢) | there exists

a computation sequence y of U;q, such that z(p,1) and y are same up to re-indexing of the states.
From this, the result follows easily.

(<) We define a relation “C” from U;(l) to (Uy,...,Up)€1) ag follows: for s € S;,t €
Slener) s Tt iff s = t(p, ¢p), modulo indices, and Vj € [1..k] : Vg; € S;- :Ju € [1..|S]] : t(j,u) =
g;- Thus, s C ¢, implies that {J; S; C Set(t).
(1)

Now, let (s,u) be a transition of U]’J labelled with guard g, say. By our construction, the

expression for ¢ must contain some state in U; S;. But since |J; S; C Set(t), it follows that the
transition (s(p, cp), u(p, cp)) can be fired, to reach state v of (Uy, ..., Uy,)(€1%) | with the property
that u = v(p, ¢p), modulo indices, and Vj € [1..k] : Vg; € S;- : Ju € [1..|Sj]] : t(j,u) = ¢;. Hence
u C v.

Also, it follows from the Soundness and Completeness Lemmas, that there exists a finite compu-
tation path x = zq, 1, ..., Ty of (U1, ..., Ug)(€1k) starting at i(¢1+¢%) | such that z(p, cp) = (ipf)™t
and Vj € [1..k] : Vg; € S;- :Ju e [1.]S]5] : m(d,u) = g¢;.

So, for each computation path y of (Up)(l), there exists a computation path z of (U1, ..., U,)(€1r--¢k)

such that, modulo stuttering, z(p, ¢,) is the same as y, up to re-indexing of states. This completes

the proof of the result. QED
Finally, we get the

Efficient Decidability Theorem For systems with disjunctive guards and properties of the type

A, Ah(i;), the PMCP is decidable in time quadratic in the size of the given family (Uy, ..., Ug),

where size is defined as 3 ,;(|S;| + |R;]), and linear in the size of the Biichi Automaton for —A(1;).

Proof See the appendix. QED

4.3 Properties ranging over pairs of processes from two classes [,m: A; ; (i1, jm)

Using similar kinds of arguments as were used in proving assertions in the sections 4.1 and 4.2,
we can prove the following results.

Cutoff Theorem Let f be A, ; Ah(is, jm) or \;, ;.. ER(it, jm), for LTL\X formula h and [€ [1..k].
Then we have the following equivalence:

V(nl, ce ,nk) = (]_, ey 1): (Ul, ey Uk)(nl""’nk)): f iff

Y(dy,...,dy) < (c1y. .. c8) s (U,...,Up)@0d) = f
where the cutoff (ci1,...,¢k) is given by ¢; = |Uj| + 1, ¢ = |Up| + 1 and for i # I, m : ¢; = |U;].
Reduction Theorem (U7, ..., Uy)() = A, o Ah(is, jm) i (U;, Un)™™ = Agyin, ARG, m),
where ¢; = |S)| + 1,¢m = |Sm| + 1 and Vi # I,m : ¢; = |Uj.

Again we get the analogous Decidability Theorem and Efficient Decidability Theorem. More-
over, we can specialized these results to apply when [=m. This permits reasoning about formulas f
being A;, ., Ah(i, ji) or A;,2j, ER(it, i), for properties ranging over all pairs of processes in a single
class [.

5 Systems with Conjunctive Guards

The development of results for conjunctive guards closely resembles that for disjunctive guards.
Hence, for the sake of brevity, we only provide a proof sketch for each of the results.
Conjunctive Monotonicity Lemma

(i) Vn > 1: (V1, Vo)™ = ER(1,) implies (Vi, Vo) 4 = ER(1y).

(ii) Vn > 1: (Vi, Vo)™ = Eh(1;) implies (Vy, Vo) +) = ER(1y).

Proof Sketch The intuition behind this lemma is that for any computation z of (Vi, V)™ there
exists an analogous computation = of (Vi, Va)(bn+1) wherein the (n+ 1)st copy of template process
V4 stutters in its initial state and the rest of the processes behave as in x. QED
Conjunctive Bounding Lemma

(i) Vn > |Ss| + 1, (Vi, Vo)™ = Eh(1y) iff (V1, Va)(e2) |= ER(1,), where ¢y = |So| + 1.

(ii) Yn > |Sa|, (V1, Vo)™ k= ER(1y) iff (V7, Vo)L152D) |= ER(1,).

Proof Sketch For an “infinite” computation z of (Vy, V)™ we can construct an infinite com-
putation X " of (4, Vz)(l*”) by letting process Vit behave as in x and in case there exists another
process that performs an infinite local computation by letting that process behave as before. We let
the rest of the processes stutter in their initial states. Then it can be proved that z' is a stuttering
of a valid infinite computation of (V7, V3)(1:e2),

In case * = xpx1...xq is a deadlocked computation sequence of (Vl,Vz)(l*"), we construct a
deadlocked computation 2 of (V1, V2)(1¢2) as follows. For each state s in Set(zq) \ {z4(2,1)} pick
a process Py of (Vl,Vz)(l'“) in local state s in x4 and make P; behave as in x. Also let process
Vy behave as in z. Then one can show that ¢ is a stuttering of a deadlocked computation of
(Vl, Vg)(l’cz).

Note that in both cases, when constructing z from x, we preserved the local computation
sequence of process V. This easily gives us the result. QED

Again as before, the following Truncation Lemma allows reduction in system size over multiple
coordinates simultaneously (2 coordinates for notational brevity).

Conjunctive Truncation Lemma Vny,ne > 1 : (Uq, Uz)(”lvnz) = Eh(1y) iff (U4, Uz)(”llvnlz) =
Eh(1z), where ny = min(na, |Ss| + 1) and nj = min(ny, |Sy]).
Proof Idea Use the Reduction Lemma and associativity of the || operator. QED
Conjunctive Cutoff Result Let f be A; Ah(i;) or A; Eh(4;), for any LTL\X formula h and
[€ [1..2]. Then we have the following equivalence:

V(nl,nQ) i (1,].) (Ul,Uz)(nl’nz) |= f iff V(dl,dz) j (61,62) : (Ul,Uz)(dl’dz)): f,
where the cutoff (c1,c2) is given by ¢; = |U;| + 1, and for i # [: ¢; = |U;].
Proof Sketch Follows easily from the Truncation Lemma. QED

More generally, for systems with k£ > 1 class of processes we have
Conjunctive Cutoff Theorem Let f be A; Ah(i;) or A, Eh(i;), for any LTL\X formula h and
[€ [1..k]. Then we have the following equivalence:

V(nl, ceey nk) bl (]_, ceey].): (Ul, ceey Uk)(nl""’nk) |: f iff
Y(dy,...,d) < (c1,.ck) : (UL, ..., Up) @) = f)
where the cutoff (ci,...,cx) is given by ¢; = |U;| + 1, and for i # [: ¢; = |U;].

Although the above results yield decidability for PMCP in the Conjunctive guards case, it is
not efficient decidability.

We now show that if we limit path quantification to range over infinite paths only (i.e. ignore
deadlocked paths) — or finite paths only — then we can give an efficient decision procedure for this
version of the PMCP. We use A, for “for all infinite paths”, Ej,¢ for “for some infinite path”, A,
for “for all finite paths”, and Eg, for “for some finite path”.

Infinite Conjunctive Reduction Theorem For any LTL\X formula h, and [€ [1..k] we have:

(a) V(nl, . ,nk) i (1, ey 1) (Ul, veey Uk)(nl""’n’”’)): /\il Einfh(il), iff (Ul, veey Uk)(l""’l)): Einfh(].l);

(b) V(nl, . ,nk) t (]., ey].) (Ul, veey Uk)(nl""’nk) |= /\il Ainfh(il), iff (Ul, veey Uk)(l""’l) |= Ainfh(].l).
Proof Sketch To obtain (a), by appeal to symmetry, it suffices to establish that for each (nq,...,ng)
= (1,...,1), (UL, ..., Ug) ™) = Eh(1) iff (UL, ..., Ug)"Y |= Eh(1;). Using the duality between
Ains and Ejy¢ on both sides of the latter equivalence, we can also appeal to symmetry to obtain (b).

We establish the latter equivalence as follows.

b b P .
(=) Let ¢ = zp 2% 2; 2% .. denote an “infinite” computation of (Uy, ..., Ug)""%) where

b; indicates which process fired the transition driving the system from global states x; to ;41 and
gi is the guard enabling transition. Since z is infinite, it follows that there exists some process
such that the result of projecting = onto that process results in a stuttering of an infinite local
computation of the process. By appeal to symmetry, we can without loss of generality, assume that
for each process class Up, if a copy of U, in (Uy, ..., Uk)("l""’"k) has the above property then that
copy is in fact the concrete process UI}.

Define a (formal) sequence y = yp IM Y1 lﬂ} ... by projecting each global state z; onto the
process 1 coordinate for each class to get a state y; and by letting b} = 1; if b; = 1, else ¢, while g} is
the syntactic guard resulting from g; by deleting all conjuncts corresponding to indices not preserved
in the projection. Then, by our construction and the fact that was an infinite computation we
have that y denotes a stuttering of a genuine infinite computation of (Uy, ..., Uk)(l""’l). To see this,
note that for any ¢ such that y; # y;11, the associated (formal) transitions labelled with b} = 1; have
their guard g} true, since for conjunctive guards g; and their projections g; we have x; |= g; implies
y; = g}, and can thus fire in (Uy, ..., Uy)~1). For any stuttering i where y; = y;11, the (formal)
transition is labelled by b = e. Thus, we have shown that for every infinite computation path of
(Ut ..., Up)"1m%) - there exists a stuttering of an infinite computation path of (Uy, ..., Ug)t1),
such that the local computation path of Ul1 is the same in both. This path correspondence proves
the result.

(<) Let y = yo,¥1, ... be a valid infinite computation path of (Uy, ..., Uy)1). Then consider

the sequence of states = xg,x1,...,, where z({,1) = y(I,1), and Y(k,j) # ([,1) : z(k,j) = (|§c)“’

Let g; be the guard labelling the transition sll — tll in state o;. Then all the other processes are

in their initial states in x;, and since the guards do allow initial states of all template process as

“nonblocking” states in that there being present the global state does not falsify any guards, we

have z; = g;. Thus, we have shown that for every infinite computation path y of (Uy, ..., Uk)(lv"'*l),

there exists an infinite computation path z of (Uy, ..., Uk)("l""’"k)7 such that the local computation
path of Ull is the same in both. This path correspondence easily gives us the desired result. QED
In a similar fashion we may prove the following result.

Finite Conjunctive Reduction Theorem For any LTL\X formula h, and [€ [1..] we have:
(a) Y(ni,...,ng) = (1,...,1) (Uy,... Uk)("lv'“*"k = Ni, Efinh (i), iff (U4, ..., Ug) (L1)= Efinh(1;);
(b)V(ny,...,ng) = (1,...,1) (Uy,... Uk)(”lv 1) |—/\ Aginh(7y), iff (Uq, ...)):Afm (1;).
Note that the above theorem permits us to verify safety properties efﬁmently. Informally, this

is because if there is a finite path leading to a “bad” state in the system (Uj, ..., Uk)(”l""'nk), then

there exists a finite path leading to a bad state in (U1, ..., Uk)(l""*l). Thus checking that there is no

finite path leading to bad state in (U, ..., Uy)") reduces to checking it for (U, ..., Uy)LD,
We can use this to obtain an Efficient Conjunctive Decidability Theorem. Moreover, the results

can be readily extended to formulas with multiple indices as in the disjunctive guard case.

6 Applications

In the full paper, we will apply our method to the readers-writers problem, and a cache coherence
protocol. Here, we consider a solution to the mutual exclusion problem. The template process is
given below.

N T C
(M " @ ° ()
x/ x/ _

U

Initially, every process is in local state IV, the non-critical region. U = T 4+ N + C denotes the
“universal” guard, which is true independent of the local states of other processes. If a process
wants to enter the critical section C, it goes into the trying region 7T which it can always do
since U is always true. Guard G = N + T, instantiated for process i of n processes, takes the
conjunctive form A;2;(N; +T;). When G is true, no other process is in the critical section, and the
transition from 7" to C can be taken. Note that all the guards are conjunctive with neutral (i.e.,
non-blocking) initial state N. Thus, by the the Finite Conjunctive Reduction Theorem for multi-
indexed properties, PMCP for all sizes n with mutual exclusion property A, ;;.; AinG—(C; A Cj)
can be reduced to checking a 2 process instance. Using the Conjunctive Cutoff Theorem, the
starvation-freedom property A; A(G(7; = FC;)) can be reduced to checking a 4 process instance.
In this simple example, mutual exclusion is maintained but starvation-freedom fails.

7. Concluding Remarks

PMCP is, in general, undecidable [1]. However, under various restrictions, a variety of posi-
tive results have been obtained. Early work includes [16] which uses an exponential-size abstract
graph “downstairs” to capture then behavior of arbitrary sized parameterized asynchronous pro-
grams “upstairs” over Fetch-and-Add primitives; however, while it caters for partial automation,
the completeness of the method is not established, and it is not clear that it can be made fully
automatic. A semi-automated method requiring construction of a closure process which represents

computations of an arbitrary number of processes is described in [4]; it is shown that, if for some
k,C||U* is appropriately bisimilar to C||{U**!, then it suffices to check instances of size at most
k to solve the PMCP. But it is not shown that such a cutoff & exists, and the method is not
guaranteed to be complete. Kurshan and McMillan [14] introduce the related notion of a process
invariant (cf. [24]). Ip and Dill [13] describe another approach to dealing with many processes
using an abstract graph; it is sound but not guaranteed to be complete; [20] proposes a similar
construction for verification of safety properties of cache coherence protocols, which is also sound
but not complete. A theme is that most these methods suffer, first, from the drawback of being
only partially automated and hence requiring human ingenuity, and, second, from being sound but
not guaranteed complete (i.e., a path “upstairs” maps to a path “downstairs”, but paths downstairs
do not necessarily lift). Other methods can be fully automated but do not appear to have a clearly
defined class of protocols on which they are guaranteed to terminate successfully (cf. [5], [23], [21]
).

For systems with CCS processes German and Sistla [11] combine automata-theoretic method
with process closures to permit efficient solution to PMCP for single index properties, modulo
deadlock. But efficient solution is only yielded for processes in a single class. Even for systems
of the form C||U™ a double exponential decision procedure results, which likely limits its practical
use. Emerson and Namjoshi [8] show that in a single class (or client-server) synchronous frame-
work PMCP is decidable but with PSPACE-complete complexity. Moreover, this framework is
undecidable in the asynchronous case. bounds in considered in [10].

In some sense, the closest results might be those of Emerson and Namjoshi [7], who for the token
ring model, reduce reasoning, for multi-indexed temporal logic formulas, for rings of arbitrary size
to rings up to a small cutoff size. These results are significant in that, like ours, correctness over all
sizes holds iff correctness of (or up to) the small cutoff size holds. But these results were formulated
only for a single process class and, for a restricted version of the token ring model, namely one
where the token cannot be used to pass values. Also, related are the results of Attie and Emerson
[2]. In the context of program synthesis, rather than program verification, it is shown how certain
2 process solutions to synchronization problems could be inflated to n process solutions. However,
the correpondence is not an “iff”, but is established in only one direction for conjuntive-type guards.
Disjunctive guards are not considered, nor are multiple process classes.

We believe that our positive results on PMCP are significant for several reasons. Because PMCP
solves (a major aspect of) the state explosion problem and the scalability problem in one fell swoop,
many researchers have attempted to make it more tractable, despite its undecidability in general.
Of course, PMCP seems to be prone to undecidability in practice as well, as evidenced by the
wide range of solution methods proposed that are only partially automated or incomplete or lack a
well-defined domain of applicability. Our methods are fully automated returning a yes/no answer,
they are sound and complete as they rely on establishing exact (up to stuttering) correpondences
(yes upstairs iff yes downstairs). In many cases, our methods are efficient, making the problem
genuinely tractable. An additional advantage, is that downstairs we have a small system of cutoff
size that looks just like a system of size n, but for its size. This constrasts with methods that
construct an abstract graph downstairs which may have a complex and non-obvious organization.

10

References

[1]

[7]
(8]
[9]
[10]
[11]

[12]

[13]
[14]

[15]

[16]
[17]

[18]
[19]

[20]
[21]
[22]
[23]

[24]

K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent systems. Information
Processing Letters, 15, pages 307-309, 1986.

P.C. Attie and E.A. Emerson. Synthesis of Concurrent Systems with Many Similar Processes. ACM
Transactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998, pages 51-115.

M.C. Browne, E.M. Clarke and O. Grumberg. Reasoning about Networks with Many Identical Finite
State Processes. Information and Control, 81(1), pages 13-31, April 1989.

E.M. Clarke and O. Grumberg. Avoiding the State Explosion Problem in Temporal Logic Model Check-
ing Algorithms. In Proceedings of the Sizth Annual ACM Symposium on Principles of Distributed Com-
puting, pages 294-303, 1987.

E.M. Clarke, O. Grumberg and S. Jha. Verifying Parametrized Networks using Abstracion and Regular
Languages. In CONCUR ’95: Concurrency Theory, Proceedings of the 6th International Conference,
LNCS 962, pages 395-407, Springer-Verlag, 1995.

E.A. Emerson. Temporal and Modal Logic. In Handbook of Theoretical Computer Science, Vol. B,(J.
van Leeuwen, ed.), Elsevier/North Holland, pages 997-1072, 1991.

E.A. Emerson and K.S. Namjoshi. Reasoning about Rings. In Conference Record of POPL ’95: 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 85-94, 1995.

abstract E.A. Emerson and K.S. Namjoshi. Automatic Verification of Parameterized Synchronous Sys-
tems. CAV, 1996.XSXS

E.A. Emerson and A.P. Sistla. Symmetry and Model Checking. Formal Methods in Systems Design,
1996.

E. Emerson and R. Trefler, Parametric Quantitative Temporal Reasoning. LICS 1999: 336-343.
S.M. German and A.P. Sistla. Reasoning about Systems with Many Processes. J. ACM,39(3), July 1992.

C. Ip and D. Dill. Better verification through symmetry. In Proceedings of the 11th International Sym-
posium on Computer Hardware Description Languages and their Applications.1993.

C. Ip, D. Dill, Verifying Systems with Replicated Components in Murphi, pp. 147-158 CAV 1996.

R.P. Kurshan and L. McMillan. A Structural Induction Theorem for Processes. In Proceedings of the
Eight Annual ACM Symposium on Principles of Distributed Computing, pages 239-247, 1989.

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear speci-
fications. In Conference Record of POPL ’85: 12nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 97-107, 1985.

B. Lubachevsky. An Approach to Automating the Verification of Compact Parallel Coordination Pro-
grams I. Acta Informatica 21, 1984.

Z. Manna and A. Pnueli. Temporal Logic of Reactive and Concurrent Systems: Specification. Springer-
Verlag, 1992.

K. McMillan, Verification of Infinite State Systems by Compositional Model Checking, CHARME’99.
A. Pnueli. The Temporal Logic of Programs. In Proceedings of the eighteenth Symposium on Foundations
of Computer Science. 1977.

F. Pong and M. Dubois. A New Approach for the Verification of Cache Coherence Protocols. IEEE
Transactions on Parallel and Distributed Systems, August 1995.

A. P. Sistla, Parametrized Verification of Linear Networks Using Automata as Invariants, CAV, 1997,
412-423.

M. Vardi and P. Wolper. An Automata-theoretic Approach to Automatic Program Verification. In
Proceedings, Symposium on Logic in Computer Science, pages 332-344, 1986.

I. Vernier. Specification and Verification of Parametrized Parallel Programs. In Proceedings of the 8th
International Symposium on Computer and Information Sciences, Istanbul, Turkey, pages 622-625,1993.

P. Wolper and V. Lovinfosse. Verifying Properties of Large Sets of Processes with Network Invariants.
In J. Sifakis(ed) Automatic Verification Metods for Finite State Systems, Springer-Verlag, LNCS 407,
1989.

11

Optional Appendix

A3 Appeals to Symmetry

The aim of the following lemmas is to exploit symmetry inherent in the system model and the
properties in the spirit of “state symmetry” codified by Emerson-Sistla [9]. Let Sym n denote the
set of all permutations over the set [1..n].

Lemma an >]., (Ul, Uk) 1yl |— /\Jl (]l) iff (Ul, ,U) 150l): f(]-l)
Proof (=) Follows directly from the definition of A},

(<) (Uy,...,Uy)mom) = f(1;) implies that m;((Uy, ..., Ug) ™)) = f(m(1;)), where m €
Sym n; just permutes copies of the template process U;, leaving the other processes unchanged.
Since the initial state i) is completely symmetric, (i (n1,-. ’"k)) = j(mn) - Also, because
of the symmetric nature of guards, for both the disjunctive and the conjunctive cases, it is not
hard to see that 7r((U1,...,Uk)("l""’"k)) = (Uy,...,Up)(mmk) - Thus, for any m € Sym ng, we
have that (U, ..., Uk)(”l* k)): f(m(1;)). So, given 7;, by choosing m such that m(l) = z'l,
we see that (Uy,...,Uy)™»™) = f(i;). This implies that Vi;, (Uy,...,U)™m™) = f(i;) i.
(Un, ooy Ug) i) = Ao (1) QED

Similarly, one can show that
Lemma Vn; > 2, (U1, ..., Up) ™™ = Ao (i, 5i) HE (U1, .0, Ug)P0m) = (15, 2)).

Lemma Vng,np > 1, (U, ..., Up) oo™ = Ny o (i,) HE (UL, 0, Ug) 000 = (1, 1),

A direct consequence of the above lemmas is that to prove our results about properties involving
formulas of types A;, f(i1), Ni,z5, £, 51) and A;, ;. f (i1, m), it suffices to show the results with the
formulas replaced by f(1;), f(1;,2;) and f(1;,1,,) respectively.

A4 Proofs for Disjunctive Guard Section

Monotonicity Lemma
(i) Vn > 1: (V1, Vo)™ = Eh(1y) implies (Vi, Vo)(bnHD) = Eh(1,).
(ii) Yn > 1: (Vi, Vo)(b™) |= ER(1;) implies (V7, Vo)) = ER(1y).

Proof (i) We define define a relation “C” from (Vi, Vo)™ to (Vi, V)" +1) as follows: for s €
Stn) ¢ e shntl) s C ¢ iff 5(1,1) = (1,1), £(2,1) = £(2,1) and Vj € [2..n] : 5(2,7) = (2, 7).

Clearly itn) C (Lntl) - SQuppose that C ¢ and let uw be such that (s,u) is a transition of
(V1, V)™, Then, there exist I € [1..2] and i € [1..n], such that we transit to u from s by firing
(s(l,i),u(l,4)). The definition of “C”, implies that Set(s) C Set(t). Consider the corresponding
transition from ¢(I, k) in (Vi, V2)(5" 1 and let it be labelled by guard g. ;From from the existential
nature of guard g, and the fact that Set(s) C Set(t), it follows that ¢ = g. Then, if by firing the
transition from ¢(l,7), we reach state v € Sntl) it s easy to check that u C v.

Thus, “C” is a simulation relation from (V;,V2)™ to (Vi, V3)(b") with the property that,
s C t implies s(2,1) = #(2,1). This enables us to exhibit, for every compuatation sequence x of
(Vi, V2)(1™) | a computation sequence y of (Vi, Vo)1) such that the local computation sequences
of process V3 are same in both x and y. ;From this path correspondence, the result follows easily.

(ii) This part follows by using a similar argument. QED

12

Soundness Lemma Let a; = |Pl] |. Then, there exists a finite computation sequence z =
L0, L1, .., Ty Of (U7, ..., Uy)@%) such that Vs; € P! :(3pel.a]:en(l,p) =s).

Proof The proof is by induction on j. The base case, j = 0, is vacuously true. Assume that the
result holds for j C u and let y = yo,y1, ..., ¥+ be a computation sequence of (Ul,...,Uk)(”*"'*’"’f),
where r; = |P!|, with the property that Vs; € P¥: (3p € [L..r] : am(l,p) = 7). ,

Now, assume that Pl“+1 # P!, and let 5; € Pl“+1 \ P*. Furthermore let (s;,s;) be the tran-
sition that led to the inclusion of s; into Pl“"'l. Clearly, s; € P/. Then, by the 1nduct10n hy-
pothesis, 3¢ : y:(l,q) is an indexed copy of s;. Consider the sequence y = yo,yl, ,y2t+1 of
states of (U, ... ,Up)roomitlers) wwhere for i € [1.k], ¢ € [1..1], ¥ (i,¢) = y(i,¢)(y:(3,)t and

y (I, + 1) (T’H) , where z is y(l,q)(s]* ') with the index g replaced by 7 + 1. It can be
seen that y is a valid stuttering computation path of (Uq, ...,Uk)(’”l""”"’“"“”"k), where y,2t+1 has
the property that Vs; € P¥,3p : yarr1(l,p) = s and yo, 1 (l,r + 1) = s?”’l. Repeat the above
procedure for all states in Pl“"'1 \ P to get a computation path with the desired property. This
completes the induction step and proves the lemma. QED

Completeness Lemma (S, ...,S;) = (P, ..., Pi).

Proof By the above lemma, Vi,i € [1.k] : P; C Sz’-. If possible, suppose that (Sll, veey S;C) #
(Py, ..., Py). Then, the set D = |J;(Si' — P;) # 0. Let s; € D S;. Then by definition, there exists a
finite computation sequence * = xg, 1, ..., Tm such that for some i,z.,(l,7) = si. Let j € [0..m] be
the smallest index such that Set(a?]) ﬂD # (. Then, PathSet(xy,...,zj—1) C U; P; which implies
that there exists a transition (sl, s1) in Ry, with guard g such that o;_; |= g. But this implies that
s; would be included in Pl for some t i.e. s; € P, a contradiction to our assumption that s; € D.
Thus D = () and we are done. QED

Efficient Decidability Theorem For systems with disjuctive guards and properties of the type
A, Ah(i;), the PMCP is decidable in time quadratic in the size of the given family (Ui, ..., Ug),
where size is defined as 3°;(|S;| + |R;|), and linear in the size of the Biichi Automaton for —h(1;).

Proof We first argue that we can construct the simplified system U] efficiently. By definition,
Vj > 0: P C P/t Let Pt = |J;P}. Then, it is easy to see that, ¥j > 0 : P/ C Pi*! and
if P9 = PI*l theni > j: P' = PJ. Also, Vi : P* C |, S; Thus to evaluate sets Plj, for all
7, it suffices to evaluate them for values of j C >7;|S;|. Furthermore, given P] to evaluate P/ i+
it suffices to make a pass through all the transitions leading to states in 5 \ P] *1 to check if a
guard leading to any of these states conatains a state in |J; Plj . This can clearly be accomplished
in time 37 ,(|S;| + |R;|). The above remarks imply that evaluation of sets Plj , can be done in time
O, (1)1 + IR;)Y):

The Reduction Theorem reduces the PMCP problem to model checking for a system containing
just one copy of the modified template process U,. Now, U, = Ah(1y) iff U; | =E—-h(1;). Thus it
suffices to check whether U, |= E-h(1;), for which we use the automata-theoretic approach of [22].
We construct a Biichi Automaton B_j, for —h(1;), and check that language of the product Biichi
Automaton P, of (U;)) and By, is non-empty(cf [15]). Since the nonemptiness check for P can
be done in time linear in the size of P, we are done. QED

13

