
Reducing Model Checking of the Manyto the Few�E. Allen Emerson and Vineet KahlonDepartment of Computer Sciences,The University of Texas at Austin, U.S.A.January 31, 2000AbstractSystems with an arbitrary number of homogeneous processes occur in many applications.The Parametrized Model Checking Problem (PMCP) is to determine whether a temporal prop-erty is true for every size instance of the system. Unfortunately, it is undecidable in general. Weare able to establish, nonetheless, decidability of the PMCP in quite a broad framework. Weconsider asynchronous systems comprised of an arbitrary number n of homogeneous copies ofa generic process template. The process template is represented as a synchronization skeletonwhile correctness properties are expressed using Indexed CTL*nX. We reduce model checkingfor systems of arbitrary size n to model checking for systems of size (up to) a small cuto� sizec. This establishes decidability of PMCP as it is only necessary model check a �nite number ofrelatively small systems. E�cient decidability can be obtained in some cases. The results gen-eralize to systems comprised of multiple heterogeneous classes of processes, where each class isinstantiated by many homogeneous copies of the class template (e.g., m readers and n writers).

�This work was supported in part by NSF grant CCR-980-4737 and SRC contract 99-TJ-685. The authors canbe reached at femerson,kahlong@cs.utexas.edu and at http://www.cs.utexas.edu/users/femerson,kahlong0



1. IntroductionSystems with an arbitrary number of homogeneous processes can be used to model many impor-tant applications. These include classical problems such as mutual exclusion, readers and writers,as well as protocols for cache coherence and data communication among others. It is often thecase that correctness properties are expected to hold irrespective of the size of the system, as mea-sured by the number of processes in the system. However, time and space constraints permit usto verify correctness only for instances with a small number of processes. This makes it impossi-ble to guarantee correctness in general and thus motivates consideration of automated methods topermit veri�cation for arbitrary size instances. The general problem, known in the literature asthe Parametrized Model Checking Problem (PMCP) is the following: to decide whether a temporalproperty is true of every size instance of a given system. This problem is known to be undecidablein general [1]. However, by imposing certain stipulations on the organization of the processes wecan get a useful framework with a decidable PMCP.We establish our results in the synchronization skeleton framework. Our results apply to systemscomprised of multiple heterogeneous classes of processes with many homogeneous process instancesin each class. Thus, given family (U1; :::; Uk) of k process classes, and tuple (n1; :::; nk) of naturalnumbers, we let (U1; :::; Uk)(n1;:::;nk) denote the concrete system composed of n1 copies or instancesof U1 thru nk copies or instances of Uk running in parallel asynchronously (i.e., with interleavingsemantics). By abuse of notation, we also write (U1; :::; Uk)(n1;:::;nk) for the associated state graph,where each process starts in its designated initial state.Correctness properties are expressed using a fragment of Indexed CTL*nX. The basic assertionsare of the form \for all processes Ah", or \for all processes Eh", where h is an LTLnX formula(built using F \sometimes", G \always", U, \until", but without X \next-time") over propositionsindexed just by the processes being quanti�ed over, and A \for all futures" and E \for some future"are the usual path quanti�ers. Use of such an indexed, stuttering-insensitive logic is natural forparameterized systems.We consider correctness properties of the following types:1. Over all individual processes of single class Ul:Vil Ah(il) and Vil Eh(il) , where il ranges over (indexes of) individual processes in Ul.2. Over pairs of di�erent processes of a single class Ul:Vil 6=jl Ah(il; jl) and Vil 6=jl Eh(il; jl), where il; jl range over pairs of distinct processes in Ul.3. Over one process from each of two di�erent classes Ul, Um:Vil;jm Ah(il; jm) and Vil;jm Eh(il; jm), where il ranges over Ul and jm over Um.We say that the k-tuple (c1; :::; ck) of natural numbers is a cuto� of (U1; :::; Uk) for formula fi� : 8(n1; :::; nk); (U1; :::; Uk)(n1;:::;nk) j= f i� 8(m1; :::;mk) � (c1; :::; ck) : (U1; :::; Uk)(m1;:::;mk) j=f , where for n-tuples (m1; :::;mk) and (c1; :::; ck), we write (m1; :::;mk) � (c1; :::; ck) to mean(m1; :::;mk) is component-wise less than or equal to (c1; :::; ck) and (m1; :::;mk) � (c1; :::; ck) tomean (c1; :::; ck) � (m1; :::;mk).In this paper, we show that for systems in the synchronization skeleton framework with transi-tion guards of a particular disjunctive or conjunctive form, there is a small cuto�. This, in e�ect,reduces PMCP to ordinary model checking over a relatively few small, �nite sized systems. In somecases, depending on the kind of property and guards, we can get an e�cient solution to PMCP.Each process class is described by a generic process, a process template for the class. A systemwith k classes is given by templates (U1; :::; Uk). For such a system de�ne ci = jUij + 2, thesize (number of local states of template Ui) plus 2. Then, for both conjunctive and disjunctive1



guards a cuto� of (c1; :::; ck) su�ces for all three types of formulas described above. These resultsgive decision procedure for PMCP for conjunctive or disjunctive guards. Since this is a broadframework and PMCP is undecidable in general, we view this as quite a positive result. However,the decision procedures are not necessarily e�cient ones, although they may certainly be usableon small examples. Because the cuto� is proportional to the sizes of the template processes, theglobal state graph of the cuto� system is of size exponential in the template sizes, and the decisionprocedures are also exponential. In the case of disjunctive guards, if we restrict ourselves to theA path quanti�ers, but still permit all three type of properties, then the cuto� can be reduced,in quadratic time in the size of the template processes, to something of the form (1; :::; 2; :::; 1) or(1; :::; 1). In fact, depending on the type of property, we can show that it is possible to simplify theguards to ensure that only one or two classes need be retained. On the other hand for conjunctiveguards if we restrict ourselves to model checking over in�nite paths, then sharper cuto�s of theform (1,...,2,...,1) or even (1,...,1) can in some cases be obtained.The rest of the paper is organized as follows. Section 2 de�nes the system model. Section 3describes how to exploit the symmetry inherent in the model and correctness properties. Sections4 and 5 prove the results pertaining to disjunctive and conjunctive guards respectively. We showsome applications of our results in Section 6. In the concluding Section 7 we discuss related work.2. The System ModelWe focus on systems comprised of multiple heterogeneous classes of processes modeled as syn-chronization skeletons (cf. [6]). Here, an individual concrete process has a transition of the forml g! m indicating that the process can transit form local state l to local state m, provided theguard g is true. Each class is speci�ed by giving a generic process template. If I is (an) index setf1; : : : ; ng, then we use U I , or Un for short, to denote the concurrent system U1k : : : kUn comprisedof the n isomorphic (up to re-indexing) processes U i running in parallel asynchronously. For a sys-tem with k classes associated with given templates U1; U2; :::; Uk, we have corresponding (disjoint)index sets I1; I2; : : : Ik. Each index set Ij = (a copy of) an interval f1; : : : ; cg of natural numbers,denoted f1j ; : : : ; cjg for emphasis. 1 In practice, we assume the k index sets are speci�ed by givinga k-tuple (n1; :::; nk) of natural numbers, corresponding to I1 being (a copy of) interval f1; : : : n1gthru Ik being (a copy of) interval f1; : : : ; nkg.Given family (U1; :::; Uk) of k template processes, and a k-tuple (n1; :::; nk) of natural numbers,we let (U1; :::; Uk)(n1 ;:::;nk) denote the concrete system composed on n1 copies of U1 through nkcopies of Uk running in parallel asynchronously (i.e., with interleaving semantics). A templateprocess Ul = (Sl, Rl, il) for class l, is comprised of a �nite set Sl of (local) states, a set of transitionedges Rl, and an initial (local) state il. Each transition in Rl is labelled with a guard, a booleanexpressions over atomic propositions corresponding to the local states of other template processes.Then given index i and template process Ul, U il = (Sil ; Ril ; iil) is used to denote the ith copy of thetemplate process Ul. Here Sil , the state set of U il , Ril its transition relation and iil its initial state areobtained from Sl, Rl and il respectively by uniformly superscripting the states of Ul with i. Thus,for local states sl; tl of Sl, sil; til denote local states of U il and (sl; tl) 2 Rl i� (sil ; til) 2 Ril .Given, the guard of the transitions in the template process, we now describe how to get thecorresponding guards for the concrete process U il of (U1; :::; Uk)(n1;:::;nk). In this paper, we considerthe following two types of guards.i) Disjunctive guards { of the general form (a1 + ::: + b1)W :::W(ak + ::: + bk), where the vari-ous al; :::bl are (propositions identi�ed with the) local states of template Ul, label each transition1E.g., if I1 is a copy of f1; 2; 3g, the copy is denoted f11; 21; 31g. Informally, subscripted index 31 means process3 of class 1; formally, it is the ordered pair (3; 1) as is usual with indexed logics.2



(sl; tl) 2 Rl. In concrete process i of class l, U il , in the system (U1; :::; Uk)(n1;:::;nk), the correspond-ing transition (sil ; til) 2 Ril is then labelled by the guardWr 6=i(arl + :::+ brl ) _Wj 6=l(Wk2[1::nj] (akj + :::+ bkj ))where proposition akj is understood to be true when process k in class Uj, Ukj , is in local state ajfor template process Uj.ii) conjunctive guards with initial state { of the general form (i1 + a1 + :::+ b1)V :::V(ik + ak +::: + bk). In concrete process i of class l, U il , in the system (U1; :::; Uk)(n1;:::;nk), the correspondingtransition (sil; til) 2 Ril is then labelled by the guardVr 6=i(irl + arl + :::+ brl ) ^Vj 6=l(Vk2[1::nj ] (ikj + akj + :::+ bkj ))Note that the initial local states of processes must be present in these guards. Thus, the initialstate of a process has a \neutral" character so that when another process, say, r is in its initialstate, it does not prevent a move by given process i. This natural condition permits modeling abroad range of applications (and is helpful technically).We now formalize the asynchronous concurrent (interleaving) semantics. A process transitionwith guard g is enabled in global state s i� s j= g, i.e., g is true over the local states in s. Atransition can be �red in global state s i� its guard g is enabled. Let, (U1; :::; Uk)(n1;:::;nk) =(S(n1;:::;nk); R(n1;:::;nk); i(n1;:::;nk)) be the global state graph of the system instance (n1; n2; :::; nk). Astate s 2 S(n1;:::;nk) is an (n1 + ::: + nk)-tuple (u11; :::; un11 ; :::; unkk ) where the projection of s ontoprocess i of class l, denoted s(l; i), equals uil , the local state of the ith copy of the template processUl. The initial state i(n1;:::;nk) = (i11; :::; inkk ). A global transition (s; t) 2 R(n1;:::;nk) i� t results from sby �ring some enabled transition of some process, i.e., there exist i; l such that the guard labelling(uil ; vil) 2 Ril is enabled at s, s(i; l) = uil, t(i; l) =vil , and for all (j; k) 6= (i; l), s(k; j) = t(k; j). Wewrite (U1; :::; Uk)(n1;:::;nk) j= f to indicate that the global state graph of (U1; :::; Uk)(n1;:::;nk) satis�esf at initial state i(n1 ;:::;nk).Finally, for global state s, de�ne Set(s) = ft j s contains an indexed local copy of tg. Forcomputation path x = x0; x1:::, we de�ne PathSet(x) = Si Set(xi) . We say that the sequence ofglobal states y = y0; y1::: is a stuttering of computation path x i� there exists a parsing P0P1::: ofy such that for all j � 0 there is some r > 0 with Pj = (xj)r. Also, we extend the de�nition ofprojection to include computation sequences as follows: for i 2 [1::nl], the sequence of local statesx0(l; i); x1(l; i); ::: is denoted by x(l; i).3 Appeals to SymmetryWe can exploit symmetry inherent in the system model and the properties in the same spiritcharacterized as \state symmetry" [9] (cf. [18], [13]) to simplify our proof obligation. To establishformulas of types Vil f(il);Vil 6=jl f(il; jl) and Vil;jm f(il; jm), it su�ces to show the results with theformulas replaced by f(1l); f(1l; 2l) and f(1l; 1m), respectively. The basic idea is that in a systemcomprised of fully interchangeable processes 1 through n of a given class, symmetry considerationsdictate that process 1 satis�es a property i� each process i satis�es the property, for all i in [1::n].Consult the appendix for details.4 Systems with Disjunctive GuardsIn this section we show how, for systems with disjunctive guards, to reduce the PMCP to modelchecking systems of size bounded by a small cuto�, where the size of the cuto� for each processclass is essentially the number of local states of individual process template for the class. Thisyields decidability for this formulation of PMCP, a pleasant result since PMCP is undecidable in3



full generality. But it is not e�cient decidability. We go on to show that in the case of universal-path-quanti�ed speci�cation formulas (Ah), e�cient decidability can be obtained.4.1 Properties ranging over all processes in a single class: Vil g(il)We will �rst establish theCuto� Theorem Let f be Vil Ah(il) or Vil Eh(il), for any LTLnX formula h and l 2 [1::k]. Thenwe have the following equivalence:8(n1; : : : ; nk) � (1; : : : ; 1): (U1; : : : ; Uk)(n1;:::;nk) j= f i�8(d1; : : : ; dk) � (c1; : : : ; ck) : (U1; : : : ; Uk)(d1;:::;dk) j= f ,where the cuto� (c1; : : : ; ck) is given by cl = jUlj+ 1, and for i 6= l : ci = jUij.As a corollary we will have the:Decidability Theorem PMCP for systems with disjunctive guards and single-index assertions asabove is decidable in exponential time.Proof idea By the cuto� theorem it is enough to model check each of the exponentially manyexponential size state graphs corresponding to systems (U1; : : : ; Uk)(d1;:::;dk) for all (d1; : : : ; dk) �(c1; : : : ; ck). QEDFor notational brevity, we establish the above results for systems with just two process classes.We begin by proving the following lemmas.Monotonicity Lemma(i) 8n � 1 : (V1; V2)(1;n) j= Eh(12) implies (V1; V2)(1;n+1) j= Eh(12).(ii) 8n � 1 : (V1; V2)(1;n) j= Eh(11) implies (V1; V2)(1;n+1) j= Eh(11).Proof idea We formalize the intuition that, in a system comprised of processes with disjunctiveguards, if there is a certain computation, then in the system resulting from adding an aditionalprocess, there is an analogous computation. See the appendix for details. QEDThe following Bounding Lemma allows reduction in system size, one coordinate at a time.Bounding Lemma(i) 8n � jS2j+ 1; (V1; V2)(1;n) j= Eh(12) i� (V1; V2)(1;c2) j= Eh(12), where c2 = jS2j+ 1.(ii) 8n � jS2j; (V1; V2)(1;n) j= Eh(11) i� (V1; V2)(1;jS2j) j= Eh(11).Proof (i): ()) Let x = x0x1:::, be a valid computation sequence of (V1; V2)(1;n). De�ne Reach � S2,to be the set of all local states(ignoring indices) of V2 occuring in the local computation sequencesof process V j2 ; j 2 [2::n], in x. It is clear that for each state t 2 Reach, there exists a �nite localcomputation t1; t2; :::; tm, say, of minimal length ending in t. Then let MinLength(t) denote m andMinComputation(t) denote t1; t2; :::; tm�1; (tm)!. For de�niteness, let Reach = fs1; :::; stg.De�ne y = y0y1:::, where y(1; 1) = x(1; 1); y(2; 1) = x(2; 1) and 8j 2 [1::m] : x(2; j + 1) =MinComputation(sj). Note that in assigning MinComputation(sj) to x(2; j + 1), we have toindex all states in it by j + 1. Then, we claim that y is a valid \stuttering" computation sequenceof (V1; V2)(1;jS2j+1).To prove this, it su�ces to show that for any any i such that yi 6= yi+1, the guard gi labellingthe �red transition is satis�ed by yi i.e. yi j= gi. From our construction of y, it follows that thereexists a corresponding transition from xi to xi+1 labelled by the guard g0i, say. Then, it is plain thatxi j= g0i. Now, t 2 Set(xi) implies that MinLength(t) � i. Also, t 2 Set(xi) implies that t 2 Reachi.e. t = sq for some q 2 [1::m]. Then, yi(2; q + 1) is an indexed copy of sq, i.e. t 2 Set(yi). Thus,t 2 Set(xi) implies that t 2 Set(yi) i.e. Set(xi) � Set(yi) and hence, by the existential nature ofguards, it follows that yi j= gi.But, by our construction, y(2; 1) = x(2; 1). Thus we have proved that for every computationsequence x of (V1; V2)(1;n), there exists a computation sequence y of (V1; V2)(1;c2), such that the localcomputation sequences of process V 12 are same in both x and y. >From this path correspondence,the result follows easily. 4



(() The proof follows by repeated application of the Monotonicity Lemma.(ii): This part follows by using a similar argument. QEDThe following Truncation Lemma allows reduction in system size over multiple coordinatessimultaneously (2 coordinates for notational brevity).Truncation Lemma 8n1; n2 � 1 : (U1; U2)(n1;n2) j= Eh(12) i� (U1; U2)(n01;n02) j= Eh(12), wheren02 = min(n2; jS2j+ 1) and n01 = min(n1; jS1j).Proof If n2 > jS2j+1, set V1 = Un11 and V2 = U2. Then, (U1; U2)(n1;n2) j= Eh(12) i� (V1; V2)(1;n2) j=Eh(12) i� (V1; V2)(1;n02) j= Eh(12) (by the Bounding Lemma) i� (U1; U2)(n1;n02) j= Eh(12).If n1 � jS1j, then n1 = n01 and we are done, else set V1 = Un022 and V2 = U1. Then,(U1; U2)(n1;n02) j= Eh(12) i� (U2; U1)(n02;n1) j= Eh(11) i� (V1; V2)(1;n1) j= Eh(11) i� (V1; V2)(1;jS1j) j=Eh(11) (by the Bounding Lemma) i� (U1; U2)(n01;n02) j= Eh(12). QEDAn easy but important consequence of the Truncation Lemma is the followingCuto� Result Let f be Vil Ah(il) or Vil Eh(il), for any LTLnX formula h and l 2 [1::2].Then we have the following equivalence:8(n1; n2) � (1; 1): (U1; U2)(n1;n2) j= f i� 8(d1; d2) � (c1; c2) : (U1; U2)(d1 ;d2) j= f ,where the cuto� (c1; c2) is given by cl = jUlj+ 1, and for i 6= l : ci = jUij.Proof By appeal to symmetry and the fact that A and E are duals, it su�ces to prove the resultfor formulas of the type Eh(12). The ()) direction is trivial. For the (() direction, let n1; n2 � 1.De�ne n01 =min(n1; jS1j), n02 =min(n2; jS2j+1). Then, (U1; U2)(n1;n2) j= f(12) i� (U1; U2)(n01;n02) j=f(12) by the Truncation Lemma. The latter is true since (n01; n02) � (c1; c2). This proves the cuto�result. QEDThe earlier-stated Cuto� Theorem re-articulates the above Cuto� Result more generally forsystems with k, k � 1, di�erent classes of processes; since its proof is along similar lines but isnotationally more complex, we omit it for the sake of brevity.4.2 E�cient decidability for \for all future" properties: VAhIt can be shown that \for some future" properties, corresponding to formulas of the type VEh,the reduction entailed in the previous result is, in general, the best possible. (See the appendix inthe full paper.)However, for universal-path-quanti�ed single index properties, Vil Ah(l; il), it is possible to bemuch more e�cient. We will establish theReduction Theorem (U1; :::; Uk)(c1;:::;ck) j= Vil Ah(il) i� U 0l (1) j= Ah(i1), where cl = jSlj+ 1 andci = jSij for i 6= l and U 0l is the simpli�ed process that we get from Ul by the reduction techniquedescribed below.This makes precise our claim that for formulas of the type Vil Ah(il), it is possible to givee�cient decision procedures for the PMCP at hand, by reducing it to model checking systemsconsisting of one or two template processes.To this end, we �rst prove the following lemma which states that the PMCP problem for theabove reduces to model checking them for just the single system instance of size equal the (small)cuto� (as opposed to all systems of size less than or equal to the cuto�).Single-Cuto� Lemma 8n1; n2 � 1 : (U1; U2)(n1;n2) j= Ah(12) i� (U1; U2)(c1;c2) j= Ah(12), wherec1 = jS1j; c2 = jS2j+ 1.Proof ()) This direction follows easily by instantiating n1 = c1 and n2 = c2, on the left hand side.(() Choose arbitrary k1; k2 � 1. Set k01 =min(k1; c1); k02 = min(k2; c2). Then, (U1; U2)(k1;k2) j=Eh(12) i� (U1; U2)(k01;k02) j= Eh(12) (by the Truncation Lemma) implies (U1; U2)(c1;c2) j= Eh(12) (byMonotonicity Lemma). Now, by contraposition, (U1; U2)(c1;c2) j= Ah(12) implies (U1; U2)(k1;k2) j=5



Ah(12). Since k1; k2 were arbitrarily chosen, the proof is complete. QEDNext, we transform the given template processes and follow it up with lemmas giving thesoundness and completeness proofs for the transformation. Given template processes U1; :::; Uk ,de�ne ReachableStates(U1; :::; Uk) = (S01; :::; S0k), where S0i = f t j t 2 Si; such that for somen1; n2; :::; nk � 1, there exists a computation path of (U1; :::; Uk)(n1;:::;nk), leading to a global statethat contains a local indexed copy of tg. ! 8j � 0, 8l 2 [1::k], we de�ne P jl as follows.P 0l = filg.P j+1l = P jl Sfp0 : 9p 2 P jl : 9p g! p0 2 Rl and expression g contains a state in St P jt g.Soundness Lemma Let al = jP jl j. Then, there exists a �nite computation sequence x =x0; x1; :::; xm of (U1; :::; Uk)(a1;:::;ak), such that 8sl 2 P jl : (9p 2 [1::al] : xm(l; p) = spl ).Proof See appendix. QEDCompleteness Lemma (S01; :::; S0k) = (P1; :::; Pk).Proof See appendix. QEDWe now modify the k-tuple of template processes (U1; :::; Uk) to get the k-tuple (U 01; :::; U 0k),where U 0i = (S0i ; R0i; ii), with (si; ti) 2 R0i i� the guard gi labelling (si; ti) in Ui contains an indexedcopy of a state in Si2[1::k] S0i . Furthermore, any transition in the new system is labelled with gU ,a \Universal" guard that evaluates to true irrespective of the global state the system is in. Themotivation behind these de�nitions is that since for any n1; n2; :::; nk � 1, no indexed copy of statesin Si n Ri is reachable in any computation of (U1; :::; Uk)(n1 ;:::;nk), we can safely delete these statesfrom their respective template process. Also, any guard of a template process involving only statesin Si n Ri, will always evaluate to false and hence the transition labelled by this guard will neverbe �red. This justi�es deleting such transitions from the transition graph of respective templateprocesses. This brings us to the following Reduction Result, which by appeal to symmetry yieldsthe Reduction Theorem stated before.Reduction Result (U1; :::; Uk)(c1;:::;ck) j= Ah(1p) i� U 0p(1) j= Ah(11), where cp = jSpj + 1 andci = jSij for i 6= p.Proof We show that (U1; :::; Uk)(c1;:::;ck) j= Eh(1p) i� U 0p(1) j= Eh(11).()) Let (s1p; t1p) be any transition of U1p in (U1; :::; Uk)(c1;:::;ck) labelled by guard g, say. Then,since by de�nition of S0i; Set(s) � Si S0i for any global state s of (U1; :::; Uk)(c1;:::;ck), therefore gmust have an indexed copy of a state in Si S0i, which implies that (sp; tp) is a transition of U 0p(1).Also, ip 2 S0p. It follows that for any computation sequence x of (U1; :::; Uk)(c1;:::;ck), there existsa computation sequence y of U 0p, such that x(p; 1) and y are same up to re-indexing of the states.From this, the result follows easily.(() We de�ne a relation \v" from U 0p(1) to (U1; :::; Uk)(c1;:::;ck) as follows: for s 2 S0p; t 2S(c1;:::;ck), s v t i� s = t(p; cp), modulo indices, and 8j 2 [1::k] : 8qj 2 S0j : 9u 2 [1::jSj j] : t(j; u) =qj. Thus, s v t, implies that Si S0i � Set(t).Now, let (s; u) be a transition of U 0p(1) labelled with guard g0 , say. By our construction, theexpression for g0 must contain some state in Si S0i. But since Si S0i � Set(t), it follows that thetransition (s(p; cp); u(p; cp)) can be �red, to reach state v of (U1; :::; Uk)(c1;:::;ck), with the propertythat u = v(p; cp), modulo indices, and 8j 2 [1::k] : 8qj 2 S0j : 9u 2 [1::jSj j] : t(j; u) = qj. Henceu v v.Also, it follows from the Soundness and Completeness Lemmas, that there exists a �nite compu-tation path x = x0; x1; :::; xm of (U1; :::; Uk)(c1;:::;ck) starting at i(c1;:::;ck), such that x(p; cp) = (icpp )m+1and 8j 2 [1::k] : 8qj 2 S0j : 9u 2 [1::jSjj ] : xm(j; u) = qj.So, for each computation path y of (U 0p)(1), there exists a computation path z of (U1; :::; Uk)(c1;:::;ck),6



such that, modulo stuttering, z(p; cp) is the same as y, up to re-indexing of states. This completesthe proof of the result. QEDFinally, we get theE�cient Decidability Theorem For systems with disjunctive guards and properties of the typeVil Ah(il), the PMCP is decidable in time quadratic in the size of the given family (U1; :::; Uk),where size is de�ned as Pj(jSj j+ jRjj), and linear in the size of the B�uchi Automaton for :h(1l).Proof See the appendix. QED4.3 Properties ranging over pairs of processes from two classes l;m: Vil;jm g(il; jm)Using similar kinds of arguments as were used in proving assertions in the sections 4.1 and 4.2,we can prove the following results.Cuto� Theorem Let f be Vil;jm Ah(il; jm) or Vil;jm Eh(il; jm), for LTLnX formula h and l 2 [1::k].Then we have the following equivalence:8(n1; : : : ; nk) � (1; : : : ; 1): (U1; : : : ; Uk)(n1;:::;nk) j= f i�8(d1; : : : ; dk) � (c1; : : : ; ck) : (U1; : : : ; Uk)(d1;:::;dk) j= f ,where the cuto� (c1; : : : ; ck) is given by cl = jUlj+ 1, cm = jUmj+ 1 and for i 6= l;m : ci = jUij.Reduction Theorem (U1; :::; Uk)(c1;:::;ck) j= Vil;jm Ah(il; jm) i� (U 0l ; U 0m)(1;1) j= Vil;jm Ah(il; jm),where cl = jSlj+ 1; cm = jSmj+ 1 and 8i 6= l;m : ci = jUij.Again we get the analogous Decidability Theorem and E�cient Decidability Theorem. More-over, we can specialized these results to apply when l=m. This permits reasoning about formulas fbeing Vil 6=jl Ah(il; jl) or Vil 6=jl Eh(il; jl), for properties ranging over all pairs of processes in a singleclass l.5 Systems with Conjunctive GuardsThe development of results for conjunctive guards closely resembles that for disjunctive guards.Hence, for the sake of brevity, we only provide a proof sketch for each of the results.Conjunctive Monotonicity Lemma(i) 8n � 1 : (V1; V2)(1;n) j= Eh(12) implies (V1; V2)(1;n+1) j= Eh(12).(ii) 8n � 1 : (V1; V2)(1;n) j= Eh(11) implies (V1; V2)(1;n+1) j= Eh(11).Proof Sketch The intuition behind this lemma is that for any computation x of (V1; V2)(1;n) thereexists an analogous computation x0 of (V1; V2)(1;n+1) wherein the (n+1)st copy of template processV2 stutters in its initial state and the rest of the processes behave as in x. QEDConjunctive Bounding Lemma(i) 8n � jS2j+ 1; (V1; V2)(1;n) j= Eh(12) i� (V1; V2)(1;c2) j= Eh(12), where c2 = jS2j+ 1.(ii) 8n � jS2j; (V1; V2)(1;n) j= Eh(11) i� (V1; V2)(1;jS2j) j= Eh(11).Proof Sketch For an \in�nite" computation x of (V1; V2)(1;n) we can construct an in�nite com-putation X 0 of (V1; V2)(1;c2) by letting process V 12 behave as in x and in case there exists anotherprocess that performs an in�nite local computation by letting that process behave as before. We letthe rest of the processes stutter in their initial states. Then it can be proved that x0 is a stutteringof a valid in�nite computation of (V1; V2)(1;c2).In case x = x0x1:::xd is a deadlocked computation sequence of (V1; V2)(1;n), we construct adeadlocked computation x0 of (V1; V2)(1;c2) as follows. For each state s in Set(xd) n fxd(2; 1)g picka process Ps of (V1; V2)(1;n) in local state s in xd and make Ps behave as in x. Also let processV 12 behave as in x. Then one can show that x0 is a stuttering of a deadlocked computation of(V1; V2)(1;c2).Note that in both cases, when constructing x0 from x, we preserved the local computationsequence of process V 12 . This easily gives us the result. QEDAgain as before, the following Truncation Lemma allows reduction in system size over multiplecoordinates simultaneously (2 coordinates for notational brevity).7



Conjunctive Truncation Lemma 8n1; n2 � 1 : (U1; U2)(n1;n2) j= Eh(12) i� (U1; U2)(n01;n02) j=Eh(12), where n02 = min(n2; jS2j+ 1) and n01 = min(n1; jS1j).Proof Idea Use the Reduction Lemma and associativity of the jj operator. QEDConjunctive Cuto� Result Let f be Vil Ah(il) or Vil Eh(il), for any LTLnX formula h andl 2 [1::2]. Then we have the following equivalence:8(n1; n2) � (1; 1): (U1; U2)(n1;n2) j= f i� 8(d1; d2) � (c1; c2) : (U1; U2)(d1 ;d2) j= f ,where the cuto� (c1; c2) is given by cl = jUlj+ 1, and for i 6= l : ci = jUij.Proof Sketch Follows easily from the Truncation Lemma. QEDMore generally, for systems with k � 1 class of processes we haveConjunctive Cuto� Theorem Let f be Vil Ah(il) or Vil Eh(il), for any LTLnX formula h andl 2 [1::k]. Then we have the following equivalence:8(n1; :::; nk) � (1; :::; 1): (U1; :::; Uk)(n1;:::;nk) j= f i�8(d1; :::; dk) � (c1; :::ck) : (U1; :::; Uk)(d1;:::;dk) j= f ,where the cuto� (c1; :::; ck) is given by cl = jUlj+ 1, and for i 6= l : ci = jUij.Although the above results yield decidability for PMCP in the Conjunctive guards case, it isnot e�cient decidability.We now show that if we limit path quanti�cation to range over in�nite paths only (i.e. ignoredeadlocked paths) { or �nite paths only { then we can give an e�cient decision procedure for thisversion of the PMCP. We use Ainf for \for all in�nite paths", Einf for \for some in�nite path", A�nfor \for all �nite paths", and E�n for \for some �nite path".In�nite Conjunctive Reduction Theorem For any LTLnX formula h, and l 2 [1::k] we have:(a) 8(n1; : : : ; nk) � (1; : : : ; 1) (U1; :::; Uk)(n1;:::;nk) j= Vil Einfh(il), i� (U1; :::; Uk)(1;:::;1) j= Einfh(1l);(b) 8(n1; : : : ; nk) � (1; : : : ; 1) (U1; :::; Uk)(n1;:::;nk) j= Vil Ainfh(il), i� (U1; :::; Uk)(1;:::;1) j= Ainfh(1l).Proof Sketch To obtain (a), by appeal to symmetry, it su�ces to establish that for each (n1; : : : ; nk)� (1; : : : ; 1), (U1; :::; Uk)(n1;:::;nk) j= Eh(1l) i� (U1; :::; Uk)(1;:::;1) j= Eh(1l). Using the duality betweenAinf and Einf on both sides of the latter equivalence, we can also appeal to symmetry to obtain (b).We establish the latter equivalence as follows.()) Let x = x0 b0;g0�! x1 b1;g1�! : : : denote an \in�nite" computation of (U1; :::; Uk)(n1;:::;nk), wherebi indicates which process �red the transition driving the system from global states xi to xi+1 andgi is the guard enabling transition. Since x is in�nite, it follows that there exists some processsuch that the result of projecting x onto that process results in a stuttering of an in�nite localcomputation of the process. By appeal to symmetry, we can without loss of generality, assume thatfor each process class Up, if a copy of Up in (U1; :::; Uk)(n1;:::;nk) has the above property then thatcopy is in fact the concrete process U1p .De�ne a (formal) sequence y = y0 b00;g00�! y1 b01;g01�! : : : by projecting each global state xi onto theprocess 1 coordinate for each class to get a state yi and by letting b0i = 1l if bi = 1l else �, while g0i isthe syntactic guard resulting from gi by deleting all conjuncts corresponding to indices not preservedin the projection. Then, by our construction and the fact that x was an in�nite computation wehave that y denotes a stuttering of a genuine in�nite computation of (U1; :::; Uk)(1;:::;1). To see this,note that for any i such that yi 6= yi+1, the associated (formal) transitions labelled with b0i = 1l havetheir guard g0i true, since for conjunctive guards gi and their projections g0i we have xi j= gi impliesyi j= g0i, and can thus �re in (U1; :::; Uk)(1;:::;1). For any stuttering i where yi = yi+1, the (formal)transition is labelled by b0i = �. Thus, we have shown that for every in�nite computation path of(U1; :::; Uk)(n1;:::;nk), there exists a stuttering of an in�nite computation path of (U1; :::; Uk)(1;:::;1),such that the local computation path of U1l is the same in both. This path correspondence provesthe result.(() Let y = y0; y1; ::: be a valid in�nite computation path of (U1; :::; Uk)(1;:::;1). Then consider8



the sequence of states = x0; x1; :::;, where x(l; 1) = y(l; 1), and 8(k; j) 6= (l; 1) : x(k; j) = (ijk)!.Let gi be the guard labelling the transition s1l ! t1l in state �i. Then all the other processes arein their initial states in xi, and since the guards do allow initial states of all template process as\nonblocking" states in that there being present the global state does not falsify any guards, wehave xi j= gi. Thus, we have shown that for every in�nite computation path y of (U1; :::; Uk)(1;:::;1),there exists an in�nite computation path x of (U1; :::; Uk)(n1;:::;nk), such that the local computationpath of U1l is the same in both. This path correspondence easily gives us the desired result. QEDIn a similar fashion we may prove the following result.Finite Conjunctive Reduction Theorem For any LTLnX formula h, and l 2 [1::k] we have:(a) 8(n1; : : : ; nk) � (1; : : : ; 1) (U1; :::; Uk)(n1;:::;nk) j= Vil E�nh(il), i� (U1; :::; Uk)(1;:::;1) j= E�nh(1l);(b) 8(n1; : : : ; nk) � (1; : : : ; 1) (U1; :::; Uk)(n1;:::;nk) j= Vil A�nh(il), i� (U1; :::; Uk)(1;:::;1) j= A�nh(1l).Note that the above theorem permits us to verify safety properties e�ciently. Informally, thisis because if there is a �nite path leading to a \bad" state in the system (U1; :::; Uk)(n1;:::;nk), thenthere exists a �nite path leading to a bad state in (U1; :::; Uk)(1;:::;1). Thus checking that there is no�nite path leading to bad state in (U1; :::; Uk)(n1 ;:::;nk) reduces to checking it for (U1; :::; Uk)(1;:::;1).We can use this to obtain an E�cient Conjunctive Decidability Theorem. Moreover, the resultscan be readily extended to formulas with multiple indices as in the disjunctive guard case.6 ApplicationsIn the full paper, we will apply our method to the readers-writers problem, and a cache coherenceprotocol. Here, we consider a solution to the mutual exclusion problem. The template process isgiven below.
N T C

U

U G

Initially, every process is in local state N , the non-critical region. U = T + N + C denotes the\universal" guard, which is true independent of the local states of other processes. If a processwants to enter the critical section C, it goes into the trying region T which it can always dosince U is always true. Guard G = N + T , instantiated for process i of n processes, takes theconjunctive form ^j 6=i(Nj +Tj). When G is true, no other process is in the critical section, and thetransition from T to C can be taken. Note that all the guards are conjunctive with neutral (i.e.,non-blocking) initial state N . Thus, by the the Finite Conjunctive Reduction Theorem for multi-indexed properties, PMCP for all sizes n with mutual exclusion property Vi;j;i6=j A�nG:(Ci ^ Cj)can be reduced to checking a 2 process instance. Using the Conjunctive Cuto� Theorem, thestarvation-freedom property Vi A(G(Ti ) FCi)) can be reduced to checking a 4 process instance.In this simple example, mutual exclusion is maintained but starvation-freedom fails.7. Concluding RemarksPMCP is, in general, undecidable [1]. However, under various restrictions, a variety of posi-tive results have been obtained. Early work includes [16] which uses an exponential-size abstractgraph \downstairs" to capture then behavior of arbitrary sized parameterized asynchronous pro-grams \upstairs" over Fetch-and-Add primitives; however, while it caters for partial automation,the completeness of the method is not established, and it is not clear that it can be made fullyautomatic. A semi-automated method requiring construction of a closure process which represents9



computations of an arbitrary number of processes is described in [4]; it is shown that, if for somek;CjjUk is appropriately bisimilar to CjjUk+1, then it su�ces to check instances of size at mostk to solve the PMCP. But it is not shown that such a cuto� k exists, and the method is notguaranteed to be complete. Kurshan and McMillan [14] introduce the related notion of a processinvariant (cf. [24]). Ip and Dill [13] describe another approach to dealing with many processesusing an abstract graph; it is sound but not guaranteed to be complete; [20] proposes a similarconstruction for veri�cation of safety properties of cache coherence protocols, which is also soundbut not complete. A theme is that most these methods su�er, �rst, from the drawback of beingonly partially automated and hence requiring human ingenuity, and, second, from being sound butnot guaranteed complete (i.e., a path \upstairs" maps to a path \downstairs", but paths downstairsdo not necessarily lift). Other methods can be fully automated but do not appear to have a clearlyde�ned class of protocols on which they are guaranteed to terminate successfully (cf. [5], [23], [21]). For systems with CCS processes German and Sistla [11] combine automata-theoretic methodwith process closures to permit e�cient solution to PMCP for single index properties, modulodeadlock. But e�cient solution is only yielded for processes in a single class. Even for systemsof the form CjjUn a double exponential decision procedure results, which likely limits its practicaluse. Emerson and Namjoshi [8] show that in a single class (or client-server) synchronous frame-work PMCP is decidable but with PSPACE-complete complexity. Moreover, this framework isundecidable in the asynchronous case. bounds in considered in [10].In some sense, the closest results might be those of Emerson and Namjoshi [7], who for the tokenring model, reduce reasoning, for multi-indexed temporal logic formulas, for rings of arbitrary sizeto rings up to a small cuto� size. These results are signi�cant in that, like ours, correctness over allsizes holds i� correctness of (or up to) the small cuto� size holds. But these results were formulatedonly for a single process class and, for a restricted version of the token ring model, namely onewhere the token cannot be used to pass values. Also, related are the results of Attie and Emerson[2]. In the context of program synthesis, rather than program veri�cation, it is shown how certain2 process solutions to synchronization problems could be in
ated to n process solutions. However,the correpondence is not an \i�", but is established in only one direction for conjuntive-type guards.Disjunctive guards are not considered, nor are multiple process classes.We believe that our positive results on PMCP are signi�cant for several reasons. Because PMCPsolves (a major aspect of) the state explosion problem and the scalability problem in one fell swoop,many researchers have attempted to make it more tractable, despite its undecidability in general.Of course, PMCP seems to be prone to undecidability in practice as well, as evidenced by thewide range of solution methods proposed that are only partially automated or incomplete or lack awell-de�ned domain of applicability. Our methods are fully automated returning a yes/no answer,they are sound and complete as they rely on establishing exact (up to stuttering) correpondences(yes upstairs i� yes downstairs). In many cases, our methods are e�cient, making the problemgenuinely tractable. An additional advantage, is that downstairs we have a small system of cuto�size that looks just like a system of size n, but for its size. This constrasts with methods thatconstruct an abstract graph downstairs which may have a complex and non-obvious organization.
10



References[1] K. Apt and D. Kozen. Limits for automatic veri�cation of �nite-state concurrent systems. InformationProcessing Letters, 15, pages 307-309, 1986.[2] P.C. Attie and E.A. Emerson. Synthesis of Concurrent Systems with Many Similar Processes. ACMTransactions on Programming Languages and Systems, Vol. 20, No. 1, January 1998, pages 51-115.[3] M.C. Browne, E.M. Clarke and O. Grumberg. Reasoning about Networks with Many Identical FiniteState Processes. Information and Control, 81(1), pages 13-31, April 1989.[4] E.M. Clarke and O. Grumberg. Avoiding the State Explosion Problem in Temporal Logic Model Check-ing Algorithms. In Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Com-puting, pages 294-303, 1987.[5] E.M. Clarke, O. Grumberg and S. Jha. Verifying Parametrized Networks using Abstracion and RegularLanguages. In CONCUR '95: Concurrency Theory, Proceedings of the 6th International Conference,LNCS 962, pages 395-407, Springer-Verlag, 1995.[6] E.A. Emerson. Temporal and Modal Logic. In Handbook of Theoretical Computer Science, Vol. B,(J.van Leeuwen, ed.), Elsevier/North Holland, pages 997-1072, 1991.[7] E.A. Emerson and K.S. Namjoshi. Reasoning about Rings. In Conference Record of POPL '95: 22ndACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 85-94, 1995.[8] abstract E.A. Emerson and K.S. Namjoshi. Automatic Veri�cation of Parameterized Synchronous Sys-tems. CAV, 1996.XSXS[9] E.A. Emerson and A.P. Sistla. Symmetry and Model Checking. Formal Methods in Systems Design,1996.[10] E. Emerson and R. Tre
er, Parametric Quantitative Temporal Reasoning. LICS 1999: 336-343.[11] S.M. German and A.P. Sistla. Reasoning about Systems with Many Processes. J. ACM,39(3), July 1992.[12] C. Ip and D. Dill. Better veri�cation through symmetry. In Proceedings of the 11th International Sym-posium on Computer Hardware Description Languages and their Applications.1993.[13] C. Ip, D. Dill, Verifying Systems with Replicated Components in Murphi, pp. 147-158 CAV 1996.[14] R.P. Kurshan and L. McMillan. A Structural Induction Theorem for Processes. In Proceedings of theEight Annual ACM Symposium on Principles of Distributed Computing, pages 239-247, 1989.[15] O. Lichtenstein and A. Pnueli. Checking that �nite state concurrent programs satisfy their linear speci-�cations. In Conference Record of POPL '85: 12nd ACM SIGPLAN-SIGACT Symposium on Principlesof Programming Languages, pages 97-107, 1985.[16] B. Lubachevsky. An Approach to Automating the Veri�cation of Compact Parallel Coordination Pro-grams I.Acta Informatica 21, 1984.[17] Z. Manna and A. Pnueli.Temporal Logic of Reactive and Concurrent Systems: Speci�cation. Springer-Verlag, 1992.[18] K. McMillan, Veri�cation of In�nite State Systems by Compositional Model Checking, CHARME'99.[19] A. Pnueli. The Temporal Logic of Programs. In Proceedings of the eighteenth Symposium on Foundationsof Computer Science. 1977.[20] F. Pong and M. Dubois. A New Approach for the Veri�cation of Cache Coherence Protocols. IEEETransactions on Parallel and Distributed Systems, August 1995.[21] A. P. Sistla, Parametrized Veri�cation of Linear Networks Using Automata as Invariants, CAV, 1997,412-423.[22] M. Vardi and P. Wolper. An Automata-theoretic Approach to Automatic Program Veri�cation. InProceedings, Symposium on Logic in Computer Science, pages 332-344, 1986.[23] I. Vernier. Speci�cation and Veri�cation of Parametrized Parallel Programs. In Proceedings of the 8thInternational Symposium on Computer and Information Sciences, Istanbul, Turkey, pages 622-625,1993.[24] P. Wolper and V. Lovinfosse. Verifying Properties of Large Sets of Processes with Network Invariants.In J. Sifakis(ed) Automatic Veri�cation Metods for Finite State Systems, Springer-Verlag, LNCS 407,1989. 11



Optional AppendixA3 Appeals to SymmetryThe aim of the following lemmas is to exploit symmetry inherent in the system model and theproperties in the spirit of \state symmetry" codi�ed by Emerson-Sistla [9]. Let Sym n denote theset of all permutations over the set [1::n].Lemma 8nl � 1, (U1; :::; Uk)(n1 ;:::;nk) j= Vjl f(jl) i� (U1; :::; Uk)(n1;:::;nk) j= f(1l).Proof ()) Follows directly from the de�nition of Vjl .(() (U1; :::; Uk)(n1;:::;nk) j= f(1l) implies that �l((U1; :::; Uk)(n1;:::;nk)) j= f(�l(1l)), where �l 2Sym nl just permutes copies of the template process Ul, leaving the other processes unchanged.Since the initial state i(n1;:::;nk) is completely symmetric, �l(i(n1;:::;nk)) = i(n1 ;:::;nk). Also, becauseof the symmetric nature of guards, for both the disjunctive and the conjunctive cases, it is nothard to see that �((U1; :::; Uk)(n1;:::;nk)) = (U1; :::; Uk)(n1;:::;nk). Thus, for any �l 2 Sym nl, wehave that (U1; :::; Uk)(n1 ;:::;nk); j= f(�l(1l)). So, given il, by choosing �l such that �l(1l) = il,we see that (U1; :::; Uk)(n1;:::;nk) j= f(il). This implies that 8il; (U1; :::; Uk)(n1;:::;nk) j= f(il) i.e.(U1; :::; Uk)(n1;:::;nk) j= Vjl f(jl). QEDSimilarly, one can show thatLemma 8nl � 2, (U1; :::; Uk)(n1 ;:::;nk) j= Vil 6=jl f(il; jl) i� (U1; :::; Uk)(n1;:::;nk) j= f(1l; 2l).Lemma 8nl; nm � 1, (U1; :::; Uk)(n1;:::;nk) j= Vil;jm f(il; jm) i� (U1; :::; Uk)(n1;:::;nk) j= f(1l; 1m).A direct consequence of the above lemmas is that to prove our results about properties involvingformulas of types Vil f(il);Vil 6=jl f(il; jl) and Vil;jm f(il; jm), it su�ces to show the results with theformulas replaced by f(1l); f(1l; 2l) and f(1l; 1m) respectively.A4 Proofs for Disjunctive Guard SectionMonotonicity Lemma(i) 8n � 1 : (V1; V2)(1;n) j= Eh(12) implies (V1; V2)(1;n+1) j= Eh(12).(ii) 8n � 1 : (V1; V2)(1;n) j= Eh(11) implies (V1; V2)(1;n+1) j= Eh(11).Proof (i) We de�ne de�ne a relation \v" from (V1; V2)(1;n) to (V1; V2)(1;n+1) as follows: for s 2S(1;n); t 2 S(1;n+1), s v t i� s(1; 1) = t(1; 1), t(2; 1) = t(2; 1) and 8j 2 [2::n] : s(2; j) = t(2; j).Clearly, i(1;n) v i(1;n+1). Suppose that v t and let u be such that (s; u) is a transition of(V1; V2)(1;n). Then, there exist l 2 [1::2] and i 2 [1::n], such that we transit to u from s by �ring(s(l; i); u(l; i)). The de�nition of \v", implies that Set(s) � Set(t). Consider the correspondingtransition from t(l; k) in (V1; V2)(1;n+1) and let it be labelled by guard g. >From from the existentialnature of guard g, and the fact that Set(s) � Set(t), it follows that t j= g. Then, if by �ring thetransition from t(l; i), we reach state v 2 S(1;n+1), it is easy to check that u v v.Thus, \v" is a simulation relation from (V1; V2)(1;n) to (V1; V2)(1;n+1) with the property that,s v t implies s(2; 1) = t(2; 1). This enables us to exhibit, for every compuatation sequence x of(V1; V2)(1;n), a computation sequence y of (V1; V2)(1;n+1), such that the local computation sequencesof process V 12 are same in both x and y. >From this path correspondence, the result follows easily.(ii) This part follows by using a similar argument. QED12



Soundness Lemma Let al = jP jl j. Then, there exists a �nite computation sequence x =x0; x1; :::; xm of (U1; :::; Uk)(a1;:::;ak), such that 8sl 2 P jl : (9p 2 [1::al] : xm(l; p) = spl ).Proof The proof is by induction on j. The base case, j = 0, is vacuously true. Assume that theresult holds for j v u and let y = y0; y1; :::; yt be a computation sequence of (U1; :::; Uk)(r1;:::;rk),where rl = jP ul j, with the property that 8sl 2 P ul : (9p 2 [1::rl] : xm(l; p) = spl ).Now, assume that P u+1l 6= P ul , and let sl 2 P u+1l n P ul . Furthermore let (s0l; sl) be the tran-sition that led to the inclusion of sl into P u+1l . Clearly, s0l 2 P jl . Then, by the induction hy-pothesis, 9q : yt(l; q) is an indexed copy of s0l. Consider the sequence y0 = y00; y01; :::; y02t+1 ofstates of (U1; :::; Uk)(r1;:::;rl+1;:::;rk), where for i 2 [1::k]; c 2 [1::ri], y0(i; c) = y(i; c)(yt(i; c))t+1 andy0(l; rl + 1) = (irl+1l )tz , where z is y(l; q)(srl+1l ) with the index q replaced by rl + 1. It can beseen that y0 is a valid stuttering computation path of (U1; :::; Uk)(r1;:::;rl+1;:::;rk), where y02t+1 hasthe property that 8sl 2 P ul ;9p : y2t+1(l; p) = spl and y02t+1(l; rl + 1) = srl+1l . Repeat the aboveprocedure for all states in P u+1l n P ul to get a computation path with the desired property. Thiscompletes the induction step and proves the lemma. QEDCompleteness Lemma (S01; :::; S0k) = (P1; :::; Pk).Proof By the above lemma, 8i; i 2 [1::k] : Pi � S0i. If possible, suppose that (S01; :::; S0k) 6=(P1; :::; Pk). Then, the set D = Si(Si0�Pi) 6= ;. Let sl 2 DTSl. Then by de�nition, there exists a�nite computation sequence x = x0; x1; :::; xm such that for some i,xm(l; i) = sil. Let j 2 [0::m] bethe smallest index such that Set(xj)TD 6= ;. Then, PathSet(x0; :::; xj�1) � Si Pi which impliesthat there exists a transition (s0l; sl) in Rl, with guard g such that �j�1 j= g. But this implies thatsl would be included in P tl for some t i.e. sl 2 Pl, a contradiction to our assumption that sl 2 D.Thus D = ; and we are done. QEDE�cient Decidability Theorem For systems with disjuctive guards and properties of the typeVil Ah(il), the PMCP is decidable in time quadratic in the size of the given family (U1; :::; Uk),where size is de�ned as Pj(jSj j+ jRjj), and linear in the size of the B�uchi Automaton for :h(1l).Proof We �rst argue that we can construct the simpli�ed system U 0l e�ciently. By de�nition,8j � 0 : P jl � P j+1l . Let P i = Sl P il . Then, it is easy to see that, 8j � 0 : P j � P j+1 andif P j = P j+1, then i � j : P i = P j . Also, 8i : P i � Sl S0l . Thus to evaluate sets P jl , for allj, it su�ces to evaluate them for values of j v Pl jSlj. Furthermore, given P jl to evaluate P j+1l ,it su�ces to make a pass through all the transitions leading to states in Sl n P j+1l to check if aguard leading to any of these states conatains a state in Sl P jl . This can clearly be accomplishedin time Pj(jSj j+ jRj j). The above remarks imply that evaluation of sets P jl , can be done in timeO((Pj(jSj j+ jRj j))2).The Reduction Theorem reduces the PMCP problem to model checking for a system containingjust one copy of the modi�ed template process U 0l . Now, U 0l j= Ah(11) i� U 0l j= :E:h(11). Thus itsu�ces to check whether U 0l j= E:h(11), for which we use the automata-theoretic approach of [22].We construct a B�uchi Automaton B:h for :h(11), and check that language of the product B�uchiAutomaton P, of (U 0l )(1) and B:h is non-empty(cf [15]). Since the nonemptiness check for P canbe done in time linear in the size of P, we are done. QED
13


