
SimpleS
alar Simulation of the PowerPC Instru
tionSet Ar
hite
tureKarthikeyan Sankaralingam Ramadass Nagarajan Stephen W. Ke
kler Doug BurgerComputer Ar
hite
ture and Te
hnology LaboratoryDepartment of Computer S
ien
esTe
h Report TR2000-04The University of Texas at Austin
art�
s.utexas.edu | www.
s.utexas.edu/users/
art
ABSTRACTIn this report, we des
ribe a modi�
ation to the SimpleS
alar tool set to support the PowerPCISA. Our work is based on Version 3.0 of the publi
ly available SimpleS
alar tool set. We brie
ydes
ribe features of the PowerPC ISA relevant to the simulator and provide operating systemspe
i�
 implementation details. We made modi�
ations to the suite of �ve simulators that modelthe mi
ro-ar
hite
ture at di�erent levels of detail. The timing simulator sim-outorder simulatesPowerPC binaries on the Register Update Unit (RUU) mi
ro-ar
hite
ture. The �ve simulators weretested by simulating the SPEC CPU95 ben
hmarks to
ompletion. The tool set simulates binaries
ompiled for 32{bit IBM AIX running on PowerPC.

1 OverviewThe SimpleS
alar tool set (release 3.0)
an simulate the Alpha ISA and the PISA ISA [1℄. In thiswork, we extend this tool set to support the PowerPC ISA whi
h is de�ned in The PowerPC Ar
hi-te
ture Spe
i�
ation [2℄. Currently, only the 32{bit implementation of the PowerPC ar
hite
ture issupported. Future versions may support the 64{bit ar
hite
ture. Binaries
ompiled for 32{bit IBMAIX
an be run on one of the several provided simulators on an IBM AIX ma
hine. The targetoperating system we support in this release is IBM AIX. However, we also provide a minimallytested
ross{platform simulator running on Sun Solaris, simulating PowerPC binaries
ompiled onan IBM AIX ma
hine.The remainder of this report is organized as follows. Se
tion 2 explains the features of thePowerPC ISA and its di�eren
es from the Alpha and PISA ISAs. In Se
tion 3, we explain thema
hine/Operating System (OS) spe
i�
 details that should be addressed in a simulator. Se
tion 4provides an overview of the di�erent simulators in the tool set and brie
y des
ribes the modi�-
ations we made to ea
h of the simulators. In Se
tion 5, we provide the details on instru
tionemulation. The fun
tioning and simulation of the loader is explained in Se
tion 6 and in Se
tion 7,we provide the details of exe
uting system
alls. Mis
ellaneous operating system issues handled bythe simulator are dealt with in Se
tion 8. The working of the timing simulator (sim-outorder) isexplained in Se
tion 9. Instru
tions for building and using the simulator are provided in Se
tion 10.In the remainder of this do
ument, target will refer to the ISA being simulated (PowerPC) andhost will refer to the ma
hine on whi
h the simulator is exe
uted.2 ISA Des
riptionThe PowerPC ISA has some features that make it di�erent from the Alpha and PISA ISAs. Forexample, the Alpha ISA has 215 instru
tions with 4 instru
tion formats and the PISA ISA has 135instru
tions with 4 instru
tion formats. The PowerPC ISA on the other hand has 224 instru
tionswith 15 instru
tion formats. Not all of these instru
tions are implemented in the simulator. In thisse
tion, we des
ribe features of the ISA that are implemented in the simulator.2.1 RegistersThe PowerPC ar
hite
ture de�nes 32 General Purpose Registers (GPR) and 32 Floating PointRegisters (FPR). The GPRs are 32 bits wide and the FPRs are 64 bits wide. A 32-bit ConditionRegister (CR) is logi
ally divided into 8 sub�elds CR0 to CR7 ea
h sub�eld being 4 bits long. Thisregister holds
ondition
odes. The 32-bit Link Register (LR) is used for transferring program
owand a 32-bit Count Register (CTR) is used for loops. Certain instru
tions impli
itly
ompare theCTR to zero to dete
t loop termination
ondition. The CTR
an also be used for transferringprogram
ow. The status of the
oating point unit is saved in a 32-bit wide Floating Point StatusControl Register (FPSCR). A 32-bit wide Fixed Point Ex
eption (XER)
ontains the status andex
eptions generated while exe
uting �xed point instru
tions. This 27 �elds of the FPSCR and the5 �elds of the XER are des
ribed in pages 137{141 and pages 48{49 of The PowerPC Ar
hite
tureSpe
i�
ation [2℄. Figure 1 outlines all of the user registers in the SimpleS
alar implementation ofthe PowerPC ISA. The ma
hine spe
i�
 registers de�ned in the PowerPC ISA are not shown andare not handled in the simulator.
1

0 31

CR GPR00

GPR02

GPR31

........
0 31

0 31

LR

0 31

0 31

FPSCR

XER

CTR

0 31

GPR01

FPR00

0 63

FPR01

FPR02

........

FPR31

Figure 1: PowerPC user register set2.2 Instru
tionsPowerPC instru
tions are four bytes long and always word aligned. Thus for a given instru
tionaddress, the two lower order bits are ignored. Bits 0-5 always provide the op
ode. Many instru
-tions also have an extended op
ode. Some instru
tions have reserved �elds whi
h must be set tozero. Illegal instru
tions that are not de�ned invoke the system illegal instru
tion handler. In thesimulator, a pani

all halting the simulator is invoked during instru
tion de
ode. Not all of theinstru
tions de�ned in the ISA are implemented by the simulator. Only the user level instru
tionsallowed on a 32-bit target are implemented.2.3 Storage ModelPowerPC provides for bytes, halfwords and words as its primitive data types. Bytes in memory arenumbered
onse
utively starting with 0. Ea
h number is the address of the
orresponding byte.Storage operands may be bytes, halfwords, words or double words, or for the Load/Store Multipleand Move Assist instru
tions, a sequen
e of bytes or words. The address of a storage operand isthe address of its �rst byte. Misaligned addresses are allowed for data a

esses. The PowerPCar
hite
ture supports both little endian | MSB at bit 32/64 and big-endian | MSB at bit 0, byteordering. Only the big-endian byte ordering, is supported in the simulator.3 AIX Operating System OverviewTwo main operating system issues involved in porting SimpleS
alar to a new ar
hite
ture are:1. Loader2. System
allsLoader: Sin
e the simulator takes a binary �le as input, we need to know the binary �le formatand the tasks performed by the OS loader before it starts exe
uting the program. The AIX loaderloads the program into memory and resolves relo
atable referen
es to memory addresses. System
alls whi
h are embedded in the binary �le as relo
atable referen
es are also resolved by the loader.2

There are also other minor issues like passing environment variables and program arguments whi
hneed to be handled by the loader. These implementation details for our simulator are explained inSe
tion 6.System
alls: Sin
e we implement only user level instru
tions, system
alls are implementedusing the host ma
hine as a proxy to exe
ute the system
all. When a system
all is made by thesimulated program, the simulator obtains the arguments passed to the
all and makes the
all atthe sour
e level by
alling the
orresponding user level fun
tion
all. The details of dete
ting andexe
uting the system
alls are explained in Se
tion 7.4 Implementation OverviewThe SimpleS
alar tool set is modular and
an be modi�ed to provide support for new ISAs andmi
ro-ar
hite
ture features. The di�erent \stru
tures" simulated like the
a
he, memory, registers,instru
tion emulation and mi
ro-ar
hite
ture are pla
ed in separate �les. The �ve simulators |sim-fast, sim-
a
he, sim-pro�le, sim-bpred and sim-outorder in the tool set share these
ommon�les. The obje
tive of the proje
t was to
reate a fun
tional simulator and a timing simulator usingthe register update unit(RUU) mi
ro{ar
hite
ture and exe
uting the PowerPC instru
tion set.Getting the fun
tional simulator to work involves
hanging the register de�nitions, register �lesizes, instru
tion emulation, the loader and the system
all interfa
e. The
a
he simulator andbran
h predi
tion simulator are based on the fun
tional simulator and worked right away when we
ompleted the fun
tional simulator. We needed to make relatively minor
hanges for getting thefull timing simulator (sim-outorder) to work be
ause of several idiosyn
rasies in the PowerPC ISAwhi
h were in
ompatible with the RUU mi
ro-ar
hite
ture
apability. The problems we fa
ed andthe solutions are explained in Se
tion 9.5 Instru
tion EmulationAll of the �ve simulators share the instru
tion de�nitions from the same �le
alled ma
hine.def.This �le
ontains the
ode for instru
tion emulation (in C or inline assembly) and the register andfun
tional dependen
ies of the instru
tion. The
orre
tness of the dependen
ies in an instru
tiondoes not a�e
t its de�nition. Even if some dependen
ies are wrong, the fun
tional simulator,
a
hesimulator and bran
h predi
tion simulator will work. However, for the
orre
t fun
tioning of thetiming simulator, these dependen
ies must be de�ned
orre
tly.The me
hanism of de�ning an instru
tion's dependen
ies and its implementation are explainedin [1℄ and we will not dwell on those details. Instru
tion de
oding and the me
hanism for supportingextended op
odes for a single primary op
ode are also explained in the te
hni
al report. We mademinor modi�
ations to the tool set to support instru
tion de
ode for the PowerPC ISA. These
hanges are do
umented in the provided sour
e
ode.The instru
tions de�ned are listed appendix A. As previously mentioned, a few instru
tions arede�ned only in the 64-bit mode, and the simulator halts with an illegal instru
tion error when anyof these instru
tions are en
ountered.The PowerPC ar
hite
ture implements the IEEE Standard 751-1985
oating point arithmeti
spe
i�
ation. The
oating point pro
essor raises a number of ex
eptions and supports four roundingmodes. To simulate the
oating point pro
essor we adopted a two pronged approa
h. On an IBMAIX host, all the
oating point instru
tions are exe
uted natively using inline assembly
ode. On3

a non-native host, the instru
tions are emulated at the sour
e level. This emulation is in
ompleteand does not emulate all of the behavior of the pro
essor being simulated. All the information thatis stored in the FPSCR whi
h
ontrols rounding modes and ex
eption status is ignored. The hosttype is dete
ted when the simulator is
ompiled and the appropriate implementation is sele
ted.5.1 Native Floating Point ImplementationMost of the
omputational
oating point instru
tions modify a large number of �elds/
ags in theFPSCR. Computational instru
tions are those that perform addition, subtra
tion, multipli
ation,division, extra
ting the square root, rounding,
onversion,
omparison, and
ombinations of theseoperations. On a native host, a true emulation of the
oating point pro
essor
an be a
hievedby exe
uting the instru
tion natively. By true emulation, what we mean is the
hange of statein the simulated ma
hine after the exe
ution of the instru
tion will be same as the
hange ofstate|registers and memory, of a real ma
hine.In the simulator, true emulation is a
hieved by exe
uting the instru
tion using inline assembly.The state variables a�e
ted by a
omputational
oating point instru
tion are:1. One of the Floating Point registers (FPR)2. Floating point status and
ontrol register (FPSCR)3. Condition Register (CR)The register �le of the simulated ma
hine is saved as a variable in the simulator. The FPSCRand CR are �elds in this register �le. The following steps are done to exe
ute a
omputational
oating point instru
tion:1. Copy the simulated ma
hine's FPSCR (from register �le variable) into the host ma
hine'sFPSCR.2. Exe
ute the
oating point instru
tion in the host ma
hine|ma
hine on whi
h the simulatoris running. This will a�e
t the state of the FPSCR in the real ma
hine. The output generatedby exe
ution is
opied to the simulator's register �le.3. Copy the value of the FPSCR from the host ma
hine into the FPSCR �eld in the targetma
hine's register �le data stru
ture.Figure 2 shows a typi
al Floating Point instru
tion emulation. It shows the
ode fragment forthe FADD instru
tion.Lines 8 to 11 exe
ute the instru
tion natively. The original FPSCR value is passed usingfps
rin and the updated value is written to fps
rout. This value is
opied to the register �levariable maintained by the simulator using the ma
ro on line 16. The mtfsf and mffs instru
tions
opy values into the FPSCR and from the FPSCR respe
tively. Lines 14 and 15
opy the outputregister value generated by the exe
ution of this instru
tion to the register �le in simulator.5.2 Non-native Floating-Point ImplementationFigure 3
ontains the
ode listing for the non-native implementation of the FADD instru
tion. As
an be seen from the
ode, the modi�
ations to FPSCR are ignored. On a non-native host, the
ontents of the FPSCR are ignored and the rounding mode of the
ompiler whi
h is used to
ompile4

#define FADD_IMPL{1: qword_t _a, _b;2: qword_t *dest;3: double double_a, double_b, double_dest;4: _a = PPC_FPR_DW(RA); /*
opy sour
e registers into temporary */5: _b = PPC_FPR_DW(RB); /* register type variables */6: mem
py(&double_a, &_a, sizeof(double)); /*
opy temporary reg. type */7: mem
py(&double_b, &_b, sizeof(double)); /* variables into doubles */8: asm ("mtfsf 0xFF,%2; fadd %0,%3,%4; mffs %1"9: : "=f" (double_dest), "=f" (fps
rout) /*
opy in FPSCR */10: : "f" (fps
rin), "f" (double_a), /* add */11: "f" (double_b)); /*
opy out resulting FPSCR */12: fp1 = (int *) (&fps
rout); /* and output value */13: mem
py(&_fp, (fp1+1), 4);14: dest = (qword_t *) (&double_dest);15: PPC_SET_FPR_DW(FD, *dest); /* write output value to reg. */16: PPC_SET_FPSCR(*(int *) (fp1+1)); /* write resulting FPSCR */} Figure 2: FADD implementation on IBM AIX hostthe simulator is always a
tive. In our simulation of the SPEC CPU95 ben
hmarks, we noted thatignoring
hanges to FPSCR did not a�e
t exe
ution.A few of the
omputational
oating point instru
tions modify the Condition Register (CR).A

ording to the result of the instru
tion - <;>;= 0 or over
ow, CR1 (se
ond 4 bits of CR) is setto 0, 1, 2 or 3. On the simulator this is done by
omparing the result generated after exe
ution.This step does not vary between native IBM AIX and non-native hosts.5.3 Misaligned A

essesThe PowerPC ar
hite
ture allows misaligned addresses to a

ess data. To support this in thesimulator, the alignment of every memory read and write is
he
ked and for every misalignedread/write, the two
onse
utive words are read and the
orre
t bytes are stit
hed together andreturned.Every misaligned memory read-word results in two simulated memory reads and
onsequentsimulated page-faults and
a
he-misses if any. Every misaligned memory write-word results in twosimulated memory reads to read the two words aligned on word boundaries that are a�e
ted bythe write, two memory writes to write ba
k both the modi�ed words and the
onsequent simulatedpage-faults and
a
he-misses of all these four a

esses.A misaligned memory read/write of a half-word (16 bits) spanning two words, results in tworeads for a memory read and two reads and two writes for a memory write. A misaligned memoryread/write of a half-word that does not span a word, does not in
ur any extra reads or writes.
5

#define FADD_IMPL \1: { \2: qword_t _a, _b; \3: qword_t *dest; \4: double double_a, double_b, double_dest; \5: _a = PPC_FPR_DW(RA); \6: _b = PPC_FPR_DW(RB); \7: mem
py(&double_a, &_a, sizeof(double)); \8: mem
py(&double_b, &_b, sizeof(double)); \9: double_dest = double_a + double_b; \10: dest = (qword_t *) (&double_dest); \11: PPC_SET_FPR_DW(FD, *dest); \} Figure 3: FADD implementation on non-AIX host5.4 Little Endian HostsSupport for little endian hosts is based on the
ross endian memory a

ess ma
ros provided inSimpleS
alar 3.0. Little endian hosts are supported by reordering the bytes before they are writtento or read from simulated memory. During program exe
ution memory is a

essed in four ways.1. Loading the program: The OS loader
opies the program
ode segment to memory when theprogram is loaded. In the simulator the
ode segment is read from the program binary �leand written to simulated memory.2. Data segment, program arguments and environment variables: These values are also writtenby the loader to memory.3. System
alls: Some system
alls read or write data to bu�ers. The fread system
all forexample reads a blo
k from a �le and writes it to a bu�er in memory4. Load/Store instru
tions: Instru
tions that read or write register values to memory.All four types of memory a

esses pass through the same memory a

ess ma
ros in the simulator.To provide
ross endian support the bytes written to memory are reordered before writing andafter reading from simulated memory on little endian hosts. Reordering the bytes in this manner,guarantees that the
ontents of simulated memory is big endian irrespe
tive of endianness of thehost. Reordering the
ontents using the ma
ros provides the
orre
t values on little endian hostwhen the values are used in
omputation in the instru
tion emulation se
tions of the simulator.The memory a

ess ma
ros are de�ned in memory.h. The fun
tional simulator has been tested onlyfor a few of the integer SPEC ben
hmarks on X86 Linux.6 LoaderAs previously mentioned, there are two main fun
tions that are performed by the loader:1. Loading the program into memory, setting up its environment variables and arguments6

BOTTOM OF STACK

Addresses

Addresses

TOP OF STACK

String values
Pointers to the strings

argv[N−1]

argv[0]

NULL

envp[0]

NULL

Envp[N−1]

Figure 4: Sta
k layout with environment variables and program arguments2. Relo
atable referen
es in the loader segment of the program are assigned to lo
ations inmemory. Relo
atable referen
es are addresses to obje
ts whose memory address is determinedand allo
ated at run time by the loader.The IBM AIX system
alls are present as relo
atable referen
es in the loader segment. Theloader determines the addresses of these system
alls and writes those values in memory when theprogram is loaded.6.1 Environment Variables and Program ArgumentsOn a real ma
hine, environment variables are passed as an array of string pointers to the mainfun
tion
all (for a C program). The loader de
ides where to allo
ate spa
e for the environmentvariables and
reates the array of pointers and passes the �rst element of the array to main. Theend of the array is denoted by a NULL value. Every environment variable is a single string withan \=" separating the variable name and its value.In the simulator, the environment variables and the array of pointers to the variables are savedon the sta
k. The environment passed to the program being simulated is the environment inwhi
h the simulator is running. First, all the environment variables are pushed on the sta
k one7

after another. These variables are null-terminated strings (
hara
ter arrays). Then the programarguments are pushed on the sta
k one after the other in reverse order, argv[0℄ (the full path of theprogram being simulated) pushed as the last argument. These arguments are also null-terminatedstring values.A zero (NULL) is then pushed on the sta
k. Then the address of ea
h environment variable ispushed on the sta
k. The zero pushed earlier is used to determine end of environment variableswhen the values are popped by the program from the top of the sta
k. The top of sta
k at thisstage is saved as the pointer to the environment variables. Another zero (NULL) is pushed on thesta
k to indi
ate end of array of program argument pointers. Then the address of ea
h argument ispushed on the sta
k. The top of sta
k at this stage is saved as the pointer to the program arguments.Figure 4 shows the layout of the sta
k when the loader has
ompleted storing environment variablesand program arguments.Figure 5 shows the a
tual
ontents of the sta
k for a simulated program. Note that the list ofenvironment variables has been trun
ated.0x7fff ffff HOME=/home/karu\0 # envp[4℄0x7fff ffef TERM=xterm-
olor\0 # envp[3℄0x7fff ffde PWD=/home/karu/ss3pp
\0 # envp[2℄0x7fff ff
8 SHELL=/bin/bash\0 # envp[1℄0x7fff ffb8 PS1=\h:\w>\0 # envp[0℄0x7fff ffad ijpeg1\0 # argv[1℄0x7fff ffa6 ./sim-outorder\0 # argv[0℄0x7fff ff97 \0\0\0 # 3 zeros for padding# remaining values on sta
k# are all addresses of values above0x7fff ff94 0x0000 0000 # NULL (4 bytes of zero)# Denotes end of array to follow0x7fff ff90 0x7fff ffff0x7fff ff8
 0x7fff ffef0x7fff ff88 0x7fff ffde0x7fff ff84 0x7fff ff
80x7fff ff80 0x7fff ffb80x7fff ff7
 0x0000 0000 # Denotes end of array to follow0x7fff ff78 0x7fff ffad0x7fff ff74 0x7fff ffa6R4 = 0x7fff ff74R5 = 0x7fff ff80Bottom of sta
k = 0x7fff ffffTop of sta
k = 0x7fff ff74Figure 5: Sta
k
ontents at program startupAs spe
i�ed by the AIX
alling
onventions, registers 3 onwards are used to pass arguments.The loader sets register 3 to the number of program arguments (arg
), register 4 to the address of8

4 bytes 4 bytes System call code

kread

kwrite

open

close

sbrk

kioctl

A
D

D
R

E
S

S

TOC MEMORY

kread

kwrite

open close sbrk

kioctl

OS MEMORY
U

N
IQ

U
E

 N
U

M
B

E
R

Figure 6: System Call Me
hanism. The �rst memory blo
k is allo
ated by the loader and ea
hentry is 8 bytes long. The se
ond memory blo
k is the entire system memory and the OS system
all
ode resides there.0x10007f40 <sbrk>: lwz r12,188(r2) # Read an address from TOC+1880x10007f44 <sbrk+4>: stw r2,20(r1) # Save R2 on sta
k0x10007f48 <sbrk+8>: lwz r0,0(r12) # Load first word from address# pointed to by R12 into R00x10007f4
 <sbrk+12>: lwz r2,4(r12) # Load se
ond word into R20x10007f50 <sbrk+16>: mt
tr r0 # Copy R0 into CTR0x10007f54 <sbrk+20>: b
tr # Jump to CTR# The a
tual system
all
ode# is at address CTRFigure 7: Instru
tions for SBRK system
allprogram arguments (argv[℄), and register 5 to the address of environment variables (envp[℄).6.2 System
allsSystem
alls are listed as relo
atable referen
es in the loader segment of the binary �le. Every su
hentry in the loader segment has a name, address and various other �elds. The address �eld pointsto an entry in the Table of Contents (TOC), whi
h
ontains a unique entry for every system
all.On a real ma
hine 8 bytes (2 words) of memory are allo
ated by the loader and the start addressof these 8 bytes is written into the TOC entry for that system
all. The loader also �lls in thevalues of the two words that it has allo
ated. The �rst word is a unique number that identi�esthe system
all and the se
ond word is the address where the a
tual system
all
ode resides inmemory. Figure 6 explains the system
all me
hanism.For ea
h system
all a sequen
e of user level instru
tions are exe
uted. Figure 7
ontains allof the user level
ode exe
uted for the sbrk system
all. Every system
all
ontains the same sixuser level instru
tions ex
ept for the o�set in the �rst instru
tion. Adding this o�set to the start9

of the TOC gives the address of the system
all in the TOC. This is the address that is saved inthe loader segment of the binary �le.In the simulator, a prede
ode is done before the simulation starts. In this prede
ode step,the entire instru
tion stream is s
anned word by word and when this sequen
e of 6 instru
tions isdete
ted, the last of these instru
tions - b
tr is repla
ed with a new instru
tion
alled s
. Thiss
 instru
tion is the System Call instru
tion that the PowerPC de�nes. A user level program isguaranteed to not have this in its instru
tion sequen
e. So it is safe to use this op
ode to indi
atea system
all.The loader in the simulator does things a bit di�erently
ompared to a real loader. Everyelement in the loader segment is examined. Whenever a relo
atable entry is dete
ted the name ofthe �eld is
ompared with the names of system
alls emulated by the simulator. If this system
allis implemented in the simulator, eight bytes are allo
ated on the sta
k. The �rst word is set to aunique number identifying the system
all, the se
ond word is ignored. The unique numbers forthe system
alls are
hosen arbitrarily and are listed in sys
alls.h. The address of the �rst wordis written to the TOC address present as a �eld in the loader segment entry. If a system
all isen
ountered that is not supported, the unique number stored for the system
all is -1.When the s
 instru
tion is en
ountered, the simulator is in exa
tly the same state as a realma
hine would have been ex
ept for the values in CTR, R0 and R2. While a real ma
hine wouldhave had a valid memory address pointing to the system
all
ode in CTR and R0, the simulatedma
hine has a unique number identifying the system
all in R0. We
ompare R0 with the knownunique values and appropriate system
all
ode is \simulated". A value of -1 in R0 indi
ates thatthe simulated program is making an unsupported system
all. When this happens, the return valuefrom the system
all is set to zero and a warning is printed to stderr.7 Exe
uting System CallsA system
all is exa
tly like a fun
tion
all, ex
ept that it is OS
ode and not visible to the user.On the simulator, a system
all results in the s
 instru
tion being emulated as explained in theprevious se
tion. We �rst examine R0 to determine what system
all has been made. System
allsare passed arguments like any user level fun
tion, in the registers R3-R31. The arguments are readinto variables in the simulator and the user level fun
tion
all
orresponding to the system
all is
alled from the simulator with the arguments. Return values if any, are passed ba
k by setting R3.Changes if any, that are made to the bu�ers are simulated by
opying
hanges to the simulatedmemory. Figure 8
ontains the
ode exe
uted by s
 when a kread system
all is en
ountered.System
alls
ags
ontain impli
it meaning based on their values whi
h vary a
ross operatingsystems. Hen
e, on a non-AIX host, the system
ags if any, have to be translated from the AIXvalues to the host OS values before the system
all is made and ba
k from host values to the
orresponding AIX values. On Solaris for example, the se
ond argument to the fseek system
all isone of 0,1 or 2 meaning beginning,
urrent or end of �le respe
tively. On AIX the same argument
ontains the ma
ro SEEK SET, SEEK END or SEEK CUR to indi
ate the when
e argument.For ea
h system
all, its system
ags should be translated. This pro
edure is do
umented forSimpleS
alar 3.0 and is explained in [1℄.
10

har *buf;int retval;buf = (
har *) mallo
(regs->regs_R[5℄+1);assert (buf != NULL);retval = read(regs->regs_R[3℄, buf, regs->regs_R[5℄);/* write ba
k output to simulated memory */mem_b
opy(mem_a

ess, mem, Write, regs->regs_R[4℄, buf, retval);regs->regs_R[3℄ = retval;free(buf);Figure 8: Emulated sour
e
ode for read system
allName Fun
tion Addressdivss a = a % b return remainder 0x3200divus a = a % b (unsigned) return remainder 0x3280quoss a = a / b return quotient 0x3380quous a = a / b (unsigned) return quotient 0x3300mulh a = a * b (return high 32 bits) 0x3100mull a = a * b (return low 32 bits) 0x3200Table 1: Milli
ode instru
tions8 Other OS spe
i�
 details8.1 Milli
odeA few operations in PowerPC are implemented using milli
ode. These are like fun
tion
alls andthe meaning of the arguments is impli
it. There are 6 milli
ode instru
tions whose fun
tions arede�ned in Table 1. On a real ma
hine their lo
ation is �xed in memory and they are
alled bybran
hing to their address. Program
ow is resumed by saving the next Program Counter in theLink Register (LR) before bran
hing and transferring program
ow to the LR at the end of themilli
ode routine.This behavior is faithfully simulated in
luding the address where the milli
ode is lo
ated. Themilli
ode is written to memory by the loader by
alling the writemilli
ode fun
tion in loader.
.8.2 System Con�gurationAIX maintains a data stru
ture
alled system-
onfiguration whi
h
ontains a number of �eldsdes
ribing the
on�guration of the system. The de�nition of the stru
t
an be found at/usr/in
lude/sys/system
fg.h on an IBM AIX system. In the simulator we do not de�ne allthe �elds of this stru
t. Only the ar
hite
ture and implementation �elds are set. Ar
hite
ture isset to 0x02 and implementation is set to 0x10
orresponding to POWER-604.
11

lwzx rd,ra,rbInput Dependen
ies: DNA,PPC_DGPR(RA),PPC_DGPR(RB),DNA,DNAOutput Dependen
ies: PPC_DGPR(RD),DNA,DNA,DNA,DNAstwx rs,ra,rbInput Dependen
ies:PPC_DGPR(RS),PPC_DGPR(RA),PPC_DGPR(RB),DNA,DNAOutput Dependen
ies: DNA,DNA,DNA,DNA,DNADNA means no dependen
y.PPC_DGPR is a ma
ro that refers to the register file datastru
ture in the simulator.RA, RB, RS are impli
it arguments whose values aredetemined by de
oding the instru
tion.Figure 9: Example to illustrate input and output dependen
ies for the PowerPC ISA9 Full Timing Simulationsim-outorder is the detailed out-of-order pipeline simulator of the SimpleS
alar's suite of simula-tors. Existing versions of SimpleS
alar support the PISA and the Alpha ISA. We des
ribe a portof sim-outorder to support the PowerPC ar
hite
ture. The
omplexities of the PowerPC ISAas opposed to the simple PISA and Alpha ISA's present implementation
hallenges. This se
tiondes
ribes the problems fa
ed and
onsequent
hanges that were made to sim-outorder in order toport it to the PowerPC ar
hite
ture. We made modi�
ations in the timing simulator to handle thein
reased number of dependen
es an instru
tion is allowed to have in the PowerPC ISA. We alsomade several modi�
ations to support misaligned a

esses,
omplex memory instru
tions whi
hwrite to memory and modify registers and a few
omplex
oating point instru
tions that performmore than one simple
oating point operation.9.1 ma
hine.defma
hine.def
ontains the input/output dependen
ies and fun
tional unit requirements for everysupported PowerPC instru
tion. These spe
i�
ations are
ru
ial to ensure a
orre
t and deadlo
kfree timing simulation. These spe
i�
ations are read by the timing simulator to enfor
e dependen
esand simulate out-of-order exe
ution. Integer instru
tions are allowed up to have 5 input and 5output dependen
e. For memory operations, a parti
ular order was enfor
ed in the spe
i�
ation ofinput dependen
ies. The �rst input dependen
e is the register value to be written to the memory(only for a store, no dependen
es for a load) and the se
ond and the third input dependen
iesspe
ify the input operands for e�e
tive address
omputation as shown in Figure 9 for an exampleload and store instru
tion.9.2 Register and Memory A

ess Fun
tionsThe
oating point and
ondition register a

ess fun
tions were rewritten for PowerPC as they weredi�erent from PISA and Alpha. Memory a

ess fun
tions were modi�ed to ignore
ertain type of12

faults su
h as mis-alignment faults, sin
e PowerPC allows addresses to be misaligned unlike PISAand Alpha. The PowerPC ISA supports a few
omplex
oating point instru
tions that performmore than one simple
oating point operations. We made a few modi�
ations to a

ount for themultiple
y
les these instru
tion would require to exe
ute.9.3 Register Dependen
iesPowerPC instru
tions may have up to �ve input and up to �ve output dependen
ies. For example,the fnmsubsd rd,ra,r
,rb instru
tion(Floating Negative Multiply-Subtra
t Single) uses all the�ve input dependen
ies (three sour
e operands, FPSCR and CR). The ruu dispat
h and ruu issuemodules were augmented to
he
k for these extra dependen
ies before �ring the instru
tion exe
u-tion.9.4 Stores with UpdatesPrevious versions of SimpleS
alar required that a store instru
tion does not modify the ar
hite
tedregister �le. When a store instru
tion is issued, it has all the information required from thear
hite
tural state (a register value) and the writeba
k pipeline stage is bypassed. In PowerPC,store instru
tions
ould modify the register �le. For example, the stwu instru
tion stores a wordin the memory and writes the e�e
tive address into a spe
i�ed register. (stwu rs,4(ra) writes4+(ra) ba
k into ra). To a

ount for these register updates, in our implementation, all stores weremade to go through the writeba
k stage.9.5 Milli
odeThe Program Counter (PC) nearly always points to an address within the text segment. However,on a mis-spe
ulated path, the PC
an point to an address that lies outside the text boundary.sim-outorder puts in a semanti

he
k to re
ognize these invalid addresses, and when these areen
ountered a NOP (ori r0,r0,r0)instru
tion is passed down the pipeline, instead of the invalidinstru
tion. This behavior prevents invalid instru
tions from
rashing the simulator. This
he
k isdone for every fet
hed instru
tion.As des
ribed in se
tion 8.1, PowerPC uses milli
ode to exe
ute some arithmeti
 operations.Milli
ode resides in the lower memory whi
h is outside the text area. During the exe
ution ofa milli
ode instru
tion, say the mull instru
tion, the PC
ontains the address
orresponding tothis milli
ode. This address must be interpreted as legal, even though it does not fall in the textsegment. Hen
e, the semanti

he
k des
ribed earlier should be augmented to re
ognize addressesthat fall in the milli
ode area. There are a total of six milli
ode instru
tions and the
ode forthese do not lie in one
ontiguous blo
k. Instead of
he
king for ea
h milli
ode address, only theboundaries are
he
ked. This is an optimization to save simulation time, as this
he
k needs to beperformed every
y
le.9.6 Prede
odeIn SimpleS
alar 3.0 prede
ode of the instru
tion stream is not done in sim-outorder. However,for reasons des
ribed in the previous se
tions we require a prede
ode for ea
h of the simulators tomake minor
ode modi�
ations to handle system
alls.
13

9.7 Load and Store Multiple WordsPowerPC has two �xed-point load and store multiple instru
tions (LMW and STMW) and 4 �xed-pointmove assist instru
tions (LWSI,LSWX,STSWI, STSWX). On PowerPC systems operating in little-endian byte order, exe
uting these instru
tions
auses the system alignment error handler to beinvoked. On systems operating in big-endian byte order, they fet
h/store one or more words from/tostorage. Sin
e these instru
tions a

ess one or more words and hen
e one or more registers in asingle instru
tion, they
ould
ause a lot of register dependen
ies, potentially up to 32.These instru
tions have been implemented as blo
king instru
tions in the simulator and followthe big-endian behavior. We do not implement little-endianmode. Before an instru
tion of this
lassis dispat
hed, the pipeline is drained so that all the previous instru
tions are
ommitted. No otherinstru
tion that follows this instru
tion is dispat
hed until this instru
tion has
ommitted. Su
han implementation makes sure that all dependen
ies with respe
t to previous and later instru
tionsare satis�ed
orre
tly.In order to
orre
tly a

ount for the memory stalls that may be
aused by these instru
tions,the following has been done.1. Ea
h of the addresses that an instru
tion of this form a

esses, is presented to the memorysystem one by one to
he
k for tlb and
a
he hits.2. The a

ess laten
y for ea
h address is
omputed and the total a

ess laten
y for this instru
-tion is found.However, there is one problem with this implementation. All stores go to the Load/Storequeue(LSQ) and loads �rst
he
k this queue before going to the memory system. But a

ording tothe
urrent implementation, for a STMW instru
tion, only the �rst word in the sequen
e of a

essesis stored in the LSQ, subsequent words are not stored. Hen
e, the memory a

ess penalty may notbe
aptured a

urately by the simulator. Most PowerPC hardware implementations use mi
ro
odeto perform the LMW and STMW instru
tions and our implementation is a
lose approximation towhat happens in reality.9.8 Misaligned A

essesPrevious versions of SimpleS
alar required memory addresses to be aligned on a word boundary andexited with a fault when a misaligned address was en
ountered. PowerPC however, allows memoryaddresses to be misaligned. A misaligned word a

ess essentially translates to two
onse
utivea

esses followed by a sele
tion and
ombination of the
orre
t set of bytes. The memory a

essfun
tions of sim-outorder were modi�ed to allow misaligned addresses. To
orre
tly a

ountfor memory system laten
ies, the same solution, as des
ribed previously for load/store multipleinstru
tions is adopted. The memory system is always presented with the
orre
t number of a

essesin
ase of a misaligned a

ess. We have assumed here that a misaligned a

ess
an involve at themost one more memory a

ess. Two
onse
utive addresses need to be presented only in the following
ases.� Misaligned word a

ess� Half-word a

ess that spans two aligned wordsThe ruu dispat
h module was modi�ed to dete
t misaligned a

esses. Sin
e the instru
tions aree�e
tively exe
uted in this stage, the memory address being a

essed is known. Using this address14

and the type of memory operation (LMW/LWZ et
.), the required number of a

esses needed to
omplete this memory instru
tion is
omputed. This involves
he
king for the type of memoryinstru
tion and
he
king if the address is aligned (i.e whether the next word needs to be a

essed).9.9 Floating Point Instru
tionsPowerPC has, as part of its
oating point instru
tions, a set of instru
tions that perform a
oat-ing point multiply, add and possibly negate, all in one instru
tion. An example is the fmaddrd,ra,r
,rb instru
tion (Floating Point multiply add). We assumed that the multiplier unit hasan add and negate blo
k at the end and hen
e the fun
tional unit laten
y for these instru
tions areassumed to be the same as that of a
oating point multiply instru
tion.10 Using SimpleS
alar-PPCThe simulator is built a

ording to the dire
tions spe
i�ed in [1℄ for SimpleS
alar 2.0. Refer to thatdo
ument for installation and usage of the tool set. Currently there are two separate ma
hine.def�les - one for native and another for non-native
oating point implementations. For building thesimulator do the following:make
onfig-pp
make sim-fastmake sim-outorderIf you are building the simulator on a non-native host, you must use a di�erent ma
hine.def�le. To do this, issue the following
ommands.rm ma
hine.defln -s target-pp
/powerp
-nonnative.def ma
hine.defmake
leanmake sim-fastmake sim-outorder10.1 Compiler swit
hesA few of the instru
tions are de�ned only on some PowerPC implementations. These are the
lass of Floating Point rounding and
onversion instru
tions. To enable the simulation of theseinstru
tions, the FP ROUND CONVERSION INST ma
ro should be de�ned. If your host ma
hine doesnot implement these instru
tions, you will not be able to build the simulator. The problem does notarise for non-native builds of the simulator where all the
oating point instru
tions are implementedin software. Sin
e, GCC
an
ompile for several PowerPC targets, the appropriate target shouldbe
hosen. To
over the entire PowerPC ISA, use the
ompiler swit
h -mpowerp
. The targetidenti�
ation
ag is required to provide native support for
oating point instru
tions on IBM AIXhosts.The FP ROUND CONVERSION INST ma
ro and the -mpowerp
 swit
h are by default de�ned inthe Make�le.
15

10.2 Compiling Appli
ation ProgramsOnly programs that are stati
ally linked
an be simulated. To
reate stati
 binary �les using g

,use the
ommand:g

 -stati
 file.
 -o file.outIf you are using the IBM AIX
ompiler, use the
ommand:

 -bnso -bI:/usr/lib/sys
alls.exp file.
 -o file.out10.3 Bug ReportsPlease send bug reports to karu�
s.utexas.edu.11 A
knowledgmentsWe would like to thank Pat Bohrer, Tom Keller and Ri
k Simpson for their help in providing uswith details about AIX system behavior.Referen
es[1℄ D. Burger and T. M. Austin, \The simples
alar tool set version 2.0," University of Wis
onsin-Madison Computer S
ien
es Department Te
hni
al Report, June 1997.[2℄ C. May, E. Silha, R. Simpson, and H. Warren, The PowerPC Ar
hite
ture: A Spe
i�
ation fora new family of RISC pro
essors. Morgan Kaufmann Publishers, May 1994.

16

APPENDIX AList of instru
tions implemented. When instru
tions other than these are en
ountered, the simula-tor will
ome to a halt.Instru
tion Name Fun
tions
 Sys
allsubf[o℄, subf[o℄. Subtra
t Fromsub�
 Subtra
t From immediate
arryingsubf
[o℄, subf
[o℄. Subtra
t From
arryingsubfe[o℄, subfe[o℄. Subtra
t From extendedsubfme[o℄, subfe[o℄. Subtra
t From minus one extendedsubfze[o℄, subfe[o℄. Subtra
t From zero extendedadd[o℄, add[o℄. Addadd
[o℄, add
[o℄. Add
arryingadde[o℄, adde[o℄. Add extendedaddi, addi. Add immediateaddi
, addi
. Add immediate
arryingaddis Add immediate shiftedaddme[o℄, addme[o℄. Add to minus one extendedaddze[o℄, addze[o℄. Add to zero extendedmulhd, mulhd. Multiply high doublewordmulhdu, mulhdu. Multiply high doubleword unsignedmulhw, mulhw. Multiply high wordmulhwu, mulhwu. Multiply high word unsignedmulld[o℄, mulld[o℄. Multiply low doublewordmulli Multiply low immediatemullw[o℄, mullw[o℄. Multiply low worddivw[o℄, divw[o℄. Divide worddivwu[o℄, divwu[o℄. Divide word unsignedslw, slw. Shift left wordsrw, srw. Shift right wordsraw, sraw. Shift right algebrai
 wordsrawi, srawi. Shift right algebrai
 word immediate
ntlzw,
tlnzw. Count leading zeros wordextsb, exstb. Extend sign byteextsh, exsth. Extend sign halfwordextsw, exstw. Extend sign word
mp Compare
mpi Compare immediate
mpl Compare logi
al
mpli Compare logi
al immediateaddi Add immediateaddis Add immediate shiftedxori XOR immediatexoris XOR immediate shiftedand, and. ANDand
, and
. AND with
omplement17

Instru
tion Name Fun
tionandi. AND immediateandis. AND immediate shiftedor, or. ORor
, or
. OR with
omplementori OR immediateoris OR immediate shiftednor, nor. NORnand, nand. NANDxor, xor. XORxori XOR immediatexoris XOR immediate shiftedeqv, eqv. Equivalentneg[o℄, neg[o℄. Negatelbz Load byte and zerolbzu Load byte and zero with updatelbzux Load byte and zero with update indexedlbzx Load byte and zero indexedlfd Load Floating Point doublelfdu Load Floating Point double with updatelfdux Load Floating Point double with update indexedlfdx Load Floating Point double indexedlfs Load Floating Point singlelfsu Load Floating Point single with updatelfsux Load Floating Point single with update indexedlfsx Load Floating Point single indexedlha Load halfword algebrai
lhau Load halfword algebrai
lhaux Load halfword algebrai
 with update indexedlhax Load halfword algebrai
 indexedlhbrx Load halfword byte-reverse indexedlhz Load halfword and zerolhzu Load halfword and zero with updatelhzux Load halfword and zero with update indexedlhzx Load halfword and zero indexedlmw Load multiple wordlswi Load string word immediatelswx Load string word indexedlwa Load word algebrai
lwarx Load word and reserve indexedlwaux Load word algebrai
 with update indexedlwax Load word algebrai
 indexedlwbrx Load word byte-reverse indexedlwz Load word and zerolwzu Load word and zero with updatelwzux Load word and zero with update indexedlwzx Load word and zero indexedstb Store byte 18

Instru
tion Name Fun
tionstbu Store byte with updatestbux Store byte with update indexedstbx Store byte indexedstfd Store Floating Point doublestfdu Store Floating Point double with updatestfdux Store Floating Point double with update indexedstfdx Store Floating Point double indexedst�wx Store Floating Point as integer word indexedsts Store Floating Point singlestfsu Store Floating Point single with updatestfsux Store Floating Point single with update indexedstfsx Store Floating Point single indexedsth Store halfwordsthbrx Store halfword byte-reverse indexedsthu Store halfword with updatesthux Store halfword with update indexedsthx Store halfword indexedstw Store wordstwbrx Store word byte-reverse indexedstwu Store word with updatestwux Store word with update indexedstwx Store word indexedstmw Store multiple wordstswi Store string word immediatestswx Store string word indexedb[[l℄[a℄ Bran
hb
[l℄[a℄ Bran
h
onditionalb
lr[l℄ Bran
h
onditional to Link registerb

tr[l℄ Bran
h
onditional to Count register
rand Condition register AND
rand
 Condition register AND with
omplement
ror Condition register OR
ror
 Condition register OR with
omplement
rxor Condition register XOR
rnor Condition register NOR
rnand Condition register NAND
reqv Condition register Equivalentrlwimi, rlwimi. Rotate Left Word Immediate then Mask Insertrlwinm, rlwinm. Rotate Left Word Immediate then AND with Maskrlwnm, rlwnm. Rotate Left Word then AND with Maskm
rf Move Condition register �eldm
rfs Move to Condition register from FPSCRmtfsb1, mtfsb1. Move to FPSCR bit 1mtfsb0, mtfsb0. Move to FPSCR bit 0mtfs�, mtfs�. Move to FPSCR �eld immediatemtfsf, mtfsf. Move to FPSCR �eldsm�s, m�s. Move from FPSCR 19

Instru
tion Name Fun
tionfdiv, fdiv. Floating Point Dividefdivs, fdivs. Floating Point Divide singlefsub, fsub. Floating Point Subtra
tfsubs, fsubs. Floating Point Subtra
t singlefadd, fadd. Floating Point Addfadds, fadds. Floating Point Add singlefmul, fmul. Floating Point Multiplyfmuls, fmuls. Floating Point Multiply singlefres, fres. Floating Point Re
ipro
alfneg, fneg. Floating Point Negatefabs, fabs. Floating Point Absolute valuefnabs, fnabs. Floating Point Negative Absolute valuefmsub, fmsub. Floating Point Multiply-Subtra
tfmsubs, fmsubs. Floating Point Multiply-Subtra
t singlefnmsub, fnmsub. Floating Point Negate Multiply-Subtra
tfnmsubs, fnmsubs. Floating Negate Multiply-Subtra
t Singlefmadd, fmadd. Floating Point Multiply-Addfmadds, fmadds. Floating Point Multiply-Add singlefnmadd, fnmadd. Floating Point Negate Multiply-Addfnmadds, fnmadds. Floating Point Negate Multiply-Add Singlefsqrt, fsqrt. Floating Point Square Rootfsqrts, fsqrts. Floating Point Square Root singlefrsqrte, frsqrte. Floating Point Re
ipro
al Square Root Estimatef
mpo Floating Point Compare orderedf
mpu Floating Point Compare unorderedfrsp, frsp. Floating Point round to Single-Pre
isionf
tiw, f
tiw. Floating Point
onvert to integer wordf
tiwz, f
tiwz. Floating Point
onvert to integer word with round toward zerofmr, fmr. Floating Point Move Registerfsel, fsel. Floating Point Sele
tNotes:� For all instru
tions, a dot suÆx indi
ates that the result of the instru
tion is
ompared withzero and CR0 bit 0, 1 or 2 is set depending on whether the result is less than, greater, orequal to zero. Further, CR0 bit 3 is set to the Summary Over
ow (SO) of the XER registerafter
ompletion of the instru
tion exe
ution.� A dot suÆx for a
oating point instru
tion indi
ates that, CR1 is set to 0, 1 or 2 is setdepending on whether the result is less than, greater, or equal to zero.� Fixed point instru
tions whi
h have an optional \o" suÆx update the XER register.� For the bran
h pro
essor instru
tions, a suÆx of \l" indi
ates that the Link Register isupdated by the instru
tion. A suÆx of \a" denotes that the bran
h target address is
al
ulatedby adding a
omputed value to the address of the
urrent instru
tion. The
orrespondinginstru
tion without the suÆx \a", would simply
ompute a bran
h target address and returnit. 20

