
SimpleSalar Simulation of the PowerPC InstrutionSet ArhitetureKarthikeyan Sankaralingam Ramadass Nagarajan Stephen W. Kekler Doug BurgerComputer Arhiteture and Tehnology LaboratoryDepartment of Computer SienesTeh Report TR2000-04The University of Texas at Austinart�s.utexas.edu | www.s.utexas.edu/users/art
ABSTRACTIn this report, we desribe a modi�ation to the SimpleSalar tool set to support the PowerPCISA. Our work is based on Version 3.0 of the publily available SimpleSalar tool set. We brieydesribe features of the PowerPC ISA relevant to the simulator and provide operating systemspei� implementation details. We made modi�ations to the suite of �ve simulators that modelthe miro-arhiteture at di�erent levels of detail. The timing simulator sim-outorder simulatesPowerPC binaries on the Register Update Unit (RUU) miro-arhiteture. The �ve simulators weretested by simulating the SPEC CPU95 benhmarks to ompletion. The tool set simulates binariesompiled for 32{bit IBM AIX running on PowerPC.

1 OverviewThe SimpleSalar tool set (release 3.0) an simulate the Alpha ISA and the PISA ISA [1℄. In thiswork, we extend this tool set to support the PowerPC ISA whih is de�ned in The PowerPC Arhi-teture Spei�ation [2℄. Currently, only the 32{bit implementation of the PowerPC arhiteture issupported. Future versions may support the 64{bit arhiteture. Binaries ompiled for 32{bit IBMAIX an be run on one of the several provided simulators on an IBM AIX mahine. The targetoperating system we support in this release is IBM AIX. However, we also provide a minimallytested ross{platform simulator running on Sun Solaris, simulating PowerPC binaries ompiled onan IBM AIX mahine.The remainder of this report is organized as follows. Setion 2 explains the features of thePowerPC ISA and its di�erenes from the Alpha and PISA ISAs. In Setion 3, we explain themahine/Operating System (OS) spei� details that should be addressed in a simulator. Setion 4provides an overview of the di�erent simulators in the tool set and briey desribes the modi�-ations we made to eah of the simulators. In Setion 5, we provide the details on instrutionemulation. The funtioning and simulation of the loader is explained in Setion 6 and in Setion 7,we provide the details of exeuting system alls. Misellaneous operating system issues handled bythe simulator are dealt with in Setion 8. The working of the timing simulator (sim-outorder) isexplained in Setion 9. Instrutions for building and using the simulator are provided in Setion 10.In the remainder of this doument, target will refer to the ISA being simulated (PowerPC) andhost will refer to the mahine on whih the simulator is exeuted.2 ISA DesriptionThe PowerPC ISA has some features that make it di�erent from the Alpha and PISA ISAs. Forexample, the Alpha ISA has 215 instrutions with 4 instrution formats and the PISA ISA has 135instrutions with 4 instrution formats. The PowerPC ISA on the other hand has 224 instrutionswith 15 instrution formats. Not all of these instrutions are implemented in the simulator. In thissetion, we desribe features of the ISA that are implemented in the simulator.2.1 RegistersThe PowerPC arhiteture de�nes 32 General Purpose Registers (GPR) and 32 Floating PointRegisters (FPR). The GPRs are 32 bits wide and the FPRs are 64 bits wide. A 32-bit ConditionRegister (CR) is logially divided into 8 sub�elds CR0 to CR7 eah sub�eld being 4 bits long. Thisregister holds ondition odes. The 32-bit Link Register (LR) is used for transferring program owand a 32-bit Count Register (CTR) is used for loops. Certain instrutions impliitly ompare theCTR to zero to detet loop termination ondition. The CTR an also be used for transferringprogram ow. The status of the oating point unit is saved in a 32-bit wide Floating Point StatusControl Register (FPSCR). A 32-bit wide Fixed Point Exeption (XER) ontains the status andexeptions generated while exeuting �xed point instrutions. This 27 �elds of the FPSCR and the5 �elds of the XER are desribed in pages 137{141 and pages 48{49 of The PowerPC ArhitetureSpei�ation [2℄. Figure 1 outlines all of the user registers in the SimpleSalar implementation ofthe PowerPC ISA. The mahine spei� registers de�ned in the PowerPC ISA are not shown andare not handled in the simulator.
1

0 31

CR GPR00

GPR02

GPR31

........
0 31

0 31

LR

0 31

0 31

FPSCR

XER

CTR

0 31

GPR01

FPR00

0 63

FPR01

FPR02

........

FPR31

Figure 1: PowerPC user register set2.2 InstrutionsPowerPC instrutions are four bytes long and always word aligned. Thus for a given instrutionaddress, the two lower order bits are ignored. Bits 0-5 always provide the opode. Many instru-tions also have an extended opode. Some instrutions have reserved �elds whih must be set tozero. Illegal instrutions that are not de�ned invoke the system illegal instrution handler. In thesimulator, a pani all halting the simulator is invoked during instrution deode. Not all of theinstrutions de�ned in the ISA are implemented by the simulator. Only the user level instrutionsallowed on a 32-bit target are implemented.2.3 Storage ModelPowerPC provides for bytes, halfwords and words as its primitive data types. Bytes in memory arenumbered onseutively starting with 0. Eah number is the address of the orresponding byte.Storage operands may be bytes, halfwords, words or double words, or for the Load/Store Multipleand Move Assist instrutions, a sequene of bytes or words. The address of a storage operand isthe address of its �rst byte. Misaligned addresses are allowed for data aesses. The PowerPCarhiteture supports both little endian | MSB at bit 32/64 and big-endian | MSB at bit 0, byteordering. Only the big-endian byte ordering, is supported in the simulator.3 AIX Operating System OverviewTwo main operating system issues involved in porting SimpleSalar to a new arhiteture are:1. Loader2. System allsLoader: Sine the simulator takes a binary �le as input, we need to know the binary �le formatand the tasks performed by the OS loader before it starts exeuting the program. The AIX loaderloads the program into memory and resolves reloatable referenes to memory addresses. Systemalls whih are embedded in the binary �le as reloatable referenes are also resolved by the loader.2

There are also other minor issues like passing environment variables and program arguments whihneed to be handled by the loader. These implementation details for our simulator are explained inSetion 6.System alls: Sine we implement only user level instrutions, system alls are implementedusing the host mahine as a proxy to exeute the system all. When a system all is made by thesimulated program, the simulator obtains the arguments passed to the all and makes the all atthe soure level by alling the orresponding user level funtion all. The details of deteting andexeuting the system alls are explained in Setion 7.4 Implementation OverviewThe SimpleSalar tool set is modular and an be modi�ed to provide support for new ISAs andmiro-arhiteture features. The di�erent \strutures" simulated like the ahe, memory, registers,instrution emulation and miro-arhiteture are plaed in separate �les. The �ve simulators |sim-fast, sim-ahe, sim-pro�le, sim-bpred and sim-outorder in the tool set share these ommon�les. The objetive of the projet was to reate a funtional simulator and a timing simulator usingthe register update unit(RUU) miro{arhiteture and exeuting the PowerPC instrution set.Getting the funtional simulator to work involves hanging the register de�nitions, register �lesizes, instrution emulation, the loader and the system all interfae. The ahe simulator andbranh predition simulator are based on the funtional simulator and worked right away when weompleted the funtional simulator. We needed to make relatively minor hanges for getting thefull timing simulator (sim-outorder) to work beause of several idiosynrasies in the PowerPC ISAwhih were inompatible with the RUU miro-arhiteture apability. The problems we faed andthe solutions are explained in Setion 9.5 Instrution EmulationAll of the �ve simulators share the instrution de�nitions from the same �le alled mahine.def.This �le ontains the ode for instrution emulation (in C or inline assembly) and the register andfuntional dependenies of the instrution. The orretness of the dependenies in an instrutiondoes not a�et its de�nition. Even if some dependenies are wrong, the funtional simulator, ahesimulator and branh predition simulator will work. However, for the orret funtioning of thetiming simulator, these dependenies must be de�ned orretly.The mehanism of de�ning an instrution's dependenies and its implementation are explainedin [1℄ and we will not dwell on those details. Instrution deoding and the mehanism for supportingextended opodes for a single primary opode are also explained in the tehnial report. We mademinor modi�ations to the tool set to support instrution deode for the PowerPC ISA. Thesehanges are doumented in the provided soure ode.The instrutions de�ned are listed appendix A. As previously mentioned, a few instrutions arede�ned only in the 64-bit mode, and the simulator halts with an illegal instrution error when anyof these instrutions are enountered.The PowerPC arhiteture implements the IEEE Standard 751-1985 oating point arithmetispei�ation. The oating point proessor raises a number of exeptions and supports four roundingmodes. To simulate the oating point proessor we adopted a two pronged approah. On an IBMAIX host, all the oating point instrutions are exeuted natively using inline assembly ode. On3

a non-native host, the instrutions are emulated at the soure level. This emulation is inompleteand does not emulate all of the behavior of the proessor being simulated. All the information thatis stored in the FPSCR whih ontrols rounding modes and exeption status is ignored. The hosttype is deteted when the simulator is ompiled and the appropriate implementation is seleted.5.1 Native Floating Point ImplementationMost of the omputational oating point instrutions modify a large number of �elds/ags in theFPSCR. Computational instrutions are those that perform addition, subtration, multipliation,division, extrating the square root, rounding, onversion, omparison, and ombinations of theseoperations. On a native host, a true emulation of the oating point proessor an be ahievedby exeuting the instrution natively. By true emulation, what we mean is the hange of statein the simulated mahine after the exeution of the instrution will be same as the hange ofstate|registers and memory, of a real mahine.In the simulator, true emulation is ahieved by exeuting the instrution using inline assembly.The state variables a�eted by a omputational oating point instrution are:1. One of the Floating Point registers (FPR)2. Floating point status and ontrol register (FPSCR)3. Condition Register (CR)The register �le of the simulated mahine is saved as a variable in the simulator. The FPSCRand CR are �elds in this register �le. The following steps are done to exeute a omputationaloating point instrution:1. Copy the simulated mahine's FPSCR (from register �le variable) into the host mahine'sFPSCR.2. Exeute the oating point instrution in the host mahine|mahine on whih the simulatoris running. This will a�et the state of the FPSCR in the real mahine. The output generatedby exeution is opied to the simulator's register �le.3. Copy the value of the FPSCR from the host mahine into the FPSCR �eld in the targetmahine's register �le data struture.Figure 2 shows a typial Floating Point instrution emulation. It shows the ode fragment forthe FADD instrution.Lines 8 to 11 exeute the instrution natively. The original FPSCR value is passed usingfpsrin and the updated value is written to fpsrout. This value is opied to the register �levariable maintained by the simulator using the maro on line 16. The mtfsf and mffs instrutionsopy values into the FPSCR and from the FPSCR respetively. Lines 14 and 15 opy the outputregister value generated by the exeution of this instrution to the register �le in simulator.5.2 Non-native Floating-Point ImplementationFigure 3 ontains the ode listing for the non-native implementation of the FADD instrution. Asan be seen from the ode, the modi�ations to FPSCR are ignored. On a non-native host, theontents of the FPSCR are ignored and the rounding mode of the ompiler whih is used to ompile4

#define FADD_IMPL{1: qword_t _a, _b;2: qword_t *dest;3: double double_a, double_b, double_dest;4: _a = PPC_FPR_DW(RA); /* opy soure registers into temporary */5: _b = PPC_FPR_DW(RB); /* register type variables */6: mempy(&double_a, &_a, sizeof(double)); /* opy temporary reg. type */7: mempy(&double_b, &_b, sizeof(double)); /* variables into doubles */8: asm ("mtfsf 0xFF,%2; fadd %0,%3,%4; mffs %1"9: : "=f" (double_dest), "=f" (fpsrout) /* opy in FPSCR */10: : "f" (fpsrin), "f" (double_a), /* add */11: "f" (double_b)); /* opy out resulting FPSCR */12: fp1 = (int *) (&fpsrout); /* and output value */13: mempy(&_fp, (fp1+1), 4);14: dest = (qword_t *) (&double_dest);15: PPC_SET_FPR_DW(FD, *dest); /* write output value to reg. */16: PPC_SET_FPSCR(*(int *) (fp1+1)); /* write resulting FPSCR */} Figure 2: FADD implementation on IBM AIX hostthe simulator is always ative. In our simulation of the SPEC CPU95 benhmarks, we noted thatignoring hanges to FPSCR did not a�et exeution.A few of the omputational oating point instrutions modify the Condition Register (CR).Aording to the result of the instrution - <;>;= 0 or overow, CR1 (seond 4 bits of CR) is setto 0, 1, 2 or 3. On the simulator this is done by omparing the result generated after exeution.This step does not vary between native IBM AIX and non-native hosts.5.3 Misaligned AessesThe PowerPC arhiteture allows misaligned addresses to aess data. To support this in thesimulator, the alignment of every memory read and write is heked and for every misalignedread/write, the two onseutive words are read and the orret bytes are stithed together andreturned.Every misaligned memory read-word results in two simulated memory reads and onsequentsimulated page-faults and ahe-misses if any. Every misaligned memory write-word results in twosimulated memory reads to read the two words aligned on word boundaries that are a�eted bythe write, two memory writes to write bak both the modi�ed words and the onsequent simulatedpage-faults and ahe-misses of all these four aesses.A misaligned memory read/write of a half-word (16 bits) spanning two words, results in tworeads for a memory read and two reads and two writes for a memory write. A misaligned memoryread/write of a half-word that does not span a word, does not inur any extra reads or writes.
5

#define FADD_IMPL \1: { \2: qword_t _a, _b; \3: qword_t *dest; \4: double double_a, double_b, double_dest; \5: _a = PPC_FPR_DW(RA); \6: _b = PPC_FPR_DW(RB); \7: mempy(&double_a, &_a, sizeof(double)); \8: mempy(&double_b, &_b, sizeof(double)); \9: double_dest = double_a + double_b; \10: dest = (qword_t *) (&double_dest); \11: PPC_SET_FPR_DW(FD, *dest); \} Figure 3: FADD implementation on non-AIX host5.4 Little Endian HostsSupport for little endian hosts is based on the ross endian memory aess maros provided inSimpleSalar 3.0. Little endian hosts are supported by reordering the bytes before they are writtento or read from simulated memory. During program exeution memory is aessed in four ways.1. Loading the program: The OS loader opies the program ode segment to memory when theprogram is loaded. In the simulator the ode segment is read from the program binary �leand written to simulated memory.2. Data segment, program arguments and environment variables: These values are also writtenby the loader to memory.3. System alls: Some system alls read or write data to bu�ers. The fread system all forexample reads a blok from a �le and writes it to a bu�er in memory4. Load/Store instrutions: Instrutions that read or write register values to memory.All four types of memory aesses pass through the same memory aess maros in the simulator.To provide ross endian support the bytes written to memory are reordered before writing andafter reading from simulated memory on little endian hosts. Reordering the bytes in this manner,guarantees that the ontents of simulated memory is big endian irrespetive of endianness of thehost. Reordering the ontents using the maros provides the orret values on little endian hostwhen the values are used in omputation in the instrution emulation setions of the simulator.The memory aess maros are de�ned in memory.h. The funtional simulator has been tested onlyfor a few of the integer SPEC benhmarks on X86 Linux.6 LoaderAs previously mentioned, there are two main funtions that are performed by the loader:1. Loading the program into memory, setting up its environment variables and arguments6

BOTTOM OF STACK

Addresses

Addresses

TOP OF STACK

String values
Pointers to the strings

argv[N−1]

argv[0]

NULL

envp[0]

NULL

Envp[N−1]

Figure 4: Stak layout with environment variables and program arguments2. Reloatable referenes in the loader segment of the program are assigned to loations inmemory. Reloatable referenes are addresses to objets whose memory address is determinedand alloated at run time by the loader.The IBM AIX system alls are present as reloatable referenes in the loader segment. Theloader determines the addresses of these system alls and writes those values in memory when theprogram is loaded.6.1 Environment Variables and Program ArgumentsOn a real mahine, environment variables are passed as an array of string pointers to the mainfuntion all (for a C program). The loader deides where to alloate spae for the environmentvariables and reates the array of pointers and passes the �rst element of the array to main. Theend of the array is denoted by a NULL value. Every environment variable is a single string withan \=" separating the variable name and its value.In the simulator, the environment variables and the array of pointers to the variables are savedon the stak. The environment passed to the program being simulated is the environment inwhih the simulator is running. First, all the environment variables are pushed on the stak one7

after another. These variables are null-terminated strings (harater arrays). Then the programarguments are pushed on the stak one after the other in reverse order, argv[0℄ (the full path of theprogram being simulated) pushed as the last argument. These arguments are also null-terminatedstring values.A zero (NULL) is then pushed on the stak. Then the address of eah environment variable ispushed on the stak. The zero pushed earlier is used to determine end of environment variableswhen the values are popped by the program from the top of the stak. The top of stak at thisstage is saved as the pointer to the environment variables. Another zero (NULL) is pushed on thestak to indiate end of array of program argument pointers. Then the address of eah argument ispushed on the stak. The top of stak at this stage is saved as the pointer to the program arguments.Figure 4 shows the layout of the stak when the loader has ompleted storing environment variablesand program arguments.Figure 5 shows the atual ontents of the stak for a simulated program. Note that the list ofenvironment variables has been trunated.0x7fff ffff HOME=/home/karu\0 # envp[4℄0x7fff ffef TERM=xterm-olor\0 # envp[3℄0x7fff ffde PWD=/home/karu/ss3pp\0 # envp[2℄0x7fff ff8 SHELL=/bin/bash\0 # envp[1℄0x7fff ffb8 PS1=\h:\w>\0 # envp[0℄0x7fff ffad ijpeg1\0 # argv[1℄0x7fff ffa6 ./sim-outorder\0 # argv[0℄0x7fff ff97 \0\0\0 # 3 zeros for padding# remaining values on stak# are all addresses of values above0x7fff ff94 0x0000 0000 # NULL (4 bytes of zero)# Denotes end of array to follow0x7fff ff90 0x7fff ffff0x7fff ff8 0x7fff ffef0x7fff ff88 0x7fff ffde0x7fff ff84 0x7fff ff80x7fff ff80 0x7fff ffb80x7fff ff7 0x0000 0000 # Denotes end of array to follow0x7fff ff78 0x7fff ffad0x7fff ff74 0x7fff ffa6R4 = 0x7fff ff74R5 = 0x7fff ff80Bottom of stak = 0x7fff ffffTop of stak = 0x7fff ff74Figure 5: Stak ontents at program startupAs spei�ed by the AIX alling onventions, registers 3 onwards are used to pass arguments.The loader sets register 3 to the number of program arguments (arg), register 4 to the address of8

4 bytes 4 bytes System call code

kread

kwrite

open

close

sbrk

kioctl

A
D

D
R

E
S

S

TOC MEMORY

kread

kwrite

open close sbrk

kioctl

OS MEMORY
U

N
IQ

U
E

 N
U

M
B

E
R

Figure 6: System Call Mehanism. The �rst memory blok is alloated by the loader and eahentry is 8 bytes long. The seond memory blok is the entire system memory and the OS systemall ode resides there.0x10007f40 <sbrk>: lwz r12,188(r2) # Read an address from TOC+1880x10007f44 <sbrk+4>: stw r2,20(r1) # Save R2 on stak0x10007f48 <sbrk+8>: lwz r0,0(r12) # Load first word from address# pointed to by R12 into R00x10007f4 <sbrk+12>: lwz r2,4(r12) # Load seond word into R20x10007f50 <sbrk+16>: mttr r0 # Copy R0 into CTR0x10007f54 <sbrk+20>: btr # Jump to CTR# The atual system all ode# is at address CTRFigure 7: Instrutions for SBRK system allprogram arguments (argv[℄), and register 5 to the address of environment variables (envp[℄).6.2 System allsSystem alls are listed as reloatable referenes in the loader segment of the binary �le. Every suhentry in the loader segment has a name, address and various other �elds. The address �eld pointsto an entry in the Table of Contents (TOC), whih ontains a unique entry for every system all.On a real mahine 8 bytes (2 words) of memory are alloated by the loader and the start addressof these 8 bytes is written into the TOC entry for that system all. The loader also �lls in thevalues of the two words that it has alloated. The �rst word is a unique number that identi�esthe system all and the seond word is the address where the atual system all ode resides inmemory. Figure 6 explains the system all mehanism.For eah system all a sequene of user level instrutions are exeuted. Figure 7 ontains allof the user level ode exeuted for the sbrk system all. Every system all ontains the same sixuser level instrutions exept for the o�set in the �rst instrution. Adding this o�set to the start9

of the TOC gives the address of the system all in the TOC. This is the address that is saved inthe loader segment of the binary �le.In the simulator, a predeode is done before the simulation starts. In this predeode step,the entire instrution stream is sanned word by word and when this sequene of 6 instrutions isdeteted, the last of these instrutions - btr is replaed with a new instrution alled s. Thiss instrution is the System Call instrution that the PowerPC de�nes. A user level program isguaranteed to not have this in its instrution sequene. So it is safe to use this opode to indiatea system all.The loader in the simulator does things a bit di�erently ompared to a real loader. Everyelement in the loader segment is examined. Whenever a reloatable entry is deteted the name ofthe �eld is ompared with the names of system alls emulated by the simulator. If this system allis implemented in the simulator, eight bytes are alloated on the stak. The �rst word is set to aunique number identifying the system all, the seond word is ignored. The unique numbers forthe system alls are hosen arbitrarily and are listed in sysalls.h. The address of the �rst wordis written to the TOC address present as a �eld in the loader segment entry. If a system all isenountered that is not supported, the unique number stored for the system all is -1.When the s instrution is enountered, the simulator is in exatly the same state as a realmahine would have been exept for the values in CTR, R0 and R2. While a real mahine wouldhave had a valid memory address pointing to the system all ode in CTR and R0, the simulatedmahine has a unique number identifying the system all in R0. We ompare R0 with the knownunique values and appropriate system all ode is \simulated". A value of -1 in R0 indiates thatthe simulated program is making an unsupported system all. When this happens, the return valuefrom the system all is set to zero and a warning is printed to stderr.7 Exeuting System CallsA system all is exatly like a funtion all, exept that it is OS ode and not visible to the user.On the simulator, a system all results in the s instrution being emulated as explained in theprevious setion. We �rst examine R0 to determine what system all has been made. System allsare passed arguments like any user level funtion, in the registers R3-R31. The arguments are readinto variables in the simulator and the user level funtion all orresponding to the system all isalled from the simulator with the arguments. Return values if any, are passed bak by setting R3.Changes if any, that are made to the bu�ers are simulated by opying hanges to the simulatedmemory. Figure 8 ontains the ode exeuted by s when a kread system all is enountered.System alls ags ontain impliit meaning based on their values whih vary aross operatingsystems. Hene, on a non-AIX host, the system ags if any, have to be translated from the AIXvalues to the host OS values before the system all is made and bak from host values to theorresponding AIX values. On Solaris for example, the seond argument to the fseek system all isone of 0,1 or 2 meaning beginning, urrent or end of �le respetively. On AIX the same argumentontains the maro SEEK SET, SEEK END or SEEK CUR to indiate the whene argument.For eah system all, its system ags should be translated. This proedure is doumented forSimpleSalar 3.0 and is explained in [1℄.
10

har *buf;int retval;buf = (har *) mallo(regs->regs_R[5℄+1);assert (buf != NULL);retval = read(regs->regs_R[3℄, buf, regs->regs_R[5℄);/* write bak output to simulated memory */mem_bopy(mem_aess, mem, Write, regs->regs_R[4℄, buf, retval);regs->regs_R[3℄ = retval;free(buf);Figure 8: Emulated soure ode for read system allName Funtion Addressdivss a = a % b return remainder 0x3200divus a = a % b (unsigned) return remainder 0x3280quoss a = a / b return quotient 0x3380quous a = a / b (unsigned) return quotient 0x3300mulh a = a * b (return high 32 bits) 0x3100mull a = a * b (return low 32 bits) 0x3200Table 1: Milliode instrutions8 Other OS spei� details8.1 MilliodeA few operations in PowerPC are implemented using milliode. These are like funtion alls andthe meaning of the arguments is impliit. There are 6 milliode instrutions whose funtions arede�ned in Table 1. On a real mahine their loation is �xed in memory and they are alled bybranhing to their address. Program ow is resumed by saving the next Program Counter in theLink Register (LR) before branhing and transferring program ow to the LR at the end of themilliode routine.This behavior is faithfully simulated inluding the address where the milliode is loated. Themilliode is written to memory by the loader by alling the writemilliode funtion in loader..8.2 System Con�gurationAIX maintains a data struture alled system-onfiguration whih ontains a number of �eldsdesribing the on�guration of the system. The de�nition of the strut an be found at/usr/inlude/sys/systemfg.h on an IBM AIX system. In the simulator we do not de�ne allthe �elds of this strut. Only the arhiteture and implementation �elds are set. Arhiteture isset to 0x02 and implementation is set to 0x10 orresponding to POWER-604.
11

lwzx rd,ra,rbInput Dependenies: DNA,PPC_DGPR(RA),PPC_DGPR(RB),DNA,DNAOutput Dependenies: PPC_DGPR(RD),DNA,DNA,DNA,DNAstwx rs,ra,rbInput Dependenies:PPC_DGPR(RS),PPC_DGPR(RA),PPC_DGPR(RB),DNA,DNAOutput Dependenies: DNA,DNA,DNA,DNA,DNADNA means no dependeny.PPC_DGPR is a maro that refers to the register file datastruture in the simulator.RA, RB, RS are impliit arguments whose values aredetemined by deoding the instrution.Figure 9: Example to illustrate input and output dependenies for the PowerPC ISA9 Full Timing Simulationsim-outorder is the detailed out-of-order pipeline simulator of the SimpleSalar's suite of simula-tors. Existing versions of SimpleSalar support the PISA and the Alpha ISA. We desribe a portof sim-outorder to support the PowerPC arhiteture. The omplexities of the PowerPC ISAas opposed to the simple PISA and Alpha ISA's present implementation hallenges. This setiondesribes the problems faed and onsequent hanges that were made to sim-outorder in order toport it to the PowerPC arhiteture. We made modi�ations in the timing simulator to handle theinreased number of dependenes an instrution is allowed to have in the PowerPC ISA. We alsomade several modi�ations to support misaligned aesses, omplex memory instrutions whihwrite to memory and modify registers and a few omplex oating point instrutions that performmore than one simple oating point operation.9.1 mahine.defmahine.def ontains the input/output dependenies and funtional unit requirements for everysupported PowerPC instrution. These spei�ations are ruial to ensure a orret and deadlokfree timing simulation. These spei�ations are read by the timing simulator to enfore dependenesand simulate out-of-order exeution. Integer instrutions are allowed up to have 5 input and 5output dependene. For memory operations, a partiular order was enfored in the spei�ation ofinput dependenies. The �rst input dependene is the register value to be written to the memory(only for a store, no dependenes for a load) and the seond and the third input dependeniesspeify the input operands for e�etive address omputation as shown in Figure 9 for an exampleload and store instrution.9.2 Register and Memory Aess FuntionsThe oating point and ondition register aess funtions were rewritten for PowerPC as they weredi�erent from PISA and Alpha. Memory aess funtions were modi�ed to ignore ertain type of12

faults suh as mis-alignment faults, sine PowerPC allows addresses to be misaligned unlike PISAand Alpha. The PowerPC ISA supports a few omplex oating point instrutions that performmore than one simple oating point operations. We made a few modi�ations to aount for themultiple yles these instrution would require to exeute.9.3 Register DependeniesPowerPC instrutions may have up to �ve input and up to �ve output dependenies. For example,the fnmsubsd rd,ra,r,rb instrution(Floating Negative Multiply-Subtrat Single) uses all the�ve input dependenies (three soure operands, FPSCR and CR). The ruu dispath and ruu issuemodules were augmented to hek for these extra dependenies before �ring the instrution exeu-tion.9.4 Stores with UpdatesPrevious versions of SimpleSalar required that a store instrution does not modify the arhitetedregister �le. When a store instrution is issued, it has all the information required from thearhitetural state (a register value) and the writebak pipeline stage is bypassed. In PowerPC,store instrutions ould modify the register �le. For example, the stwu instrution stores a wordin the memory and writes the e�etive address into a spei�ed register. (stwu rs,4(ra) writes4+(ra) bak into ra). To aount for these register updates, in our implementation, all stores weremade to go through the writebak stage.9.5 MilliodeThe Program Counter (PC) nearly always points to an address within the text segment. However,on a mis-speulated path, the PC an point to an address that lies outside the text boundary.sim-outorder puts in a semanti hek to reognize these invalid addresses, and when these areenountered a NOP (ori r0,r0,r0)instrution is passed down the pipeline, instead of the invalidinstrution. This behavior prevents invalid instrutions from rashing the simulator. This hek isdone for every fethed instrution.As desribed in setion 8.1, PowerPC uses milliode to exeute some arithmeti operations.Milliode resides in the lower memory whih is outside the text area. During the exeution ofa milliode instrution, say the mull instrution, the PC ontains the address orresponding tothis milliode. This address must be interpreted as legal, even though it does not fall in the textsegment. Hene, the semanti hek desribed earlier should be augmented to reognize addressesthat fall in the milliode area. There are a total of six milliode instrutions and the ode forthese do not lie in one ontiguous blok. Instead of heking for eah milliode address, only theboundaries are heked. This is an optimization to save simulation time, as this hek needs to beperformed every yle.9.6 PredeodeIn SimpleSalar 3.0 predeode of the instrution stream is not done in sim-outorder. However,for reasons desribed in the previous setions we require a predeode for eah of the simulators tomake minor ode modi�ations to handle system alls.
13

9.7 Load and Store Multiple WordsPowerPC has two �xed-point load and store multiple instrutions (LMW and STMW) and 4 �xed-pointmove assist instrutions (LWSI,LSWX,STSWI, STSWX). On PowerPC systems operating in little-endian byte order, exeuting these instrutions auses the system alignment error handler to beinvoked. On systems operating in big-endian byte order, they feth/store one or more words from/tostorage. Sine these instrutions aess one or more words and hene one or more registers in asingle instrution, they ould ause a lot of register dependenies, potentially up to 32.These instrutions have been implemented as bloking instrutions in the simulator and followthe big-endian behavior. We do not implement little-endianmode. Before an instrution of this lassis dispathed, the pipeline is drained so that all the previous instrutions are ommitted. No otherinstrution that follows this instrution is dispathed until this instrution has ommitted. Suhan implementation makes sure that all dependenies with respet to previous and later instrutionsare satis�ed orretly.In order to orretly aount for the memory stalls that may be aused by these instrutions,the following has been done.1. Eah of the addresses that an instrution of this form aesses, is presented to the memorysystem one by one to hek for tlb and ahe hits.2. The aess lateny for eah address is omputed and the total aess lateny for this instru-tion is found.However, there is one problem with this implementation. All stores go to the Load/Storequeue(LSQ) and loads �rst hek this queue before going to the memory system. But aording tothe urrent implementation, for a STMW instrution, only the �rst word in the sequene of aessesis stored in the LSQ, subsequent words are not stored. Hene, the memory aess penalty may notbe aptured aurately by the simulator. Most PowerPC hardware implementations use miroodeto perform the LMW and STMW instrutions and our implementation is a lose approximation towhat happens in reality.9.8 Misaligned AessesPrevious versions of SimpleSalar required memory addresses to be aligned on a word boundary andexited with a fault when a misaligned address was enountered. PowerPC however, allows memoryaddresses to be misaligned. A misaligned word aess essentially translates to two onseutiveaesses followed by a seletion and ombination of the orret set of bytes. The memory aessfuntions of sim-outorder were modi�ed to allow misaligned addresses. To orretly aountfor memory system latenies, the same solution, as desribed previously for load/store multipleinstrutions is adopted. The memory system is always presented with the orret number of aessesin ase of a misaligned aess. We have assumed here that a misaligned aess an involve at themost one more memory aess. Two onseutive addresses need to be presented only in the followingases.� Misaligned word aess� Half-word aess that spans two aligned wordsThe ruu dispath module was modi�ed to detet misaligned aesses. Sine the instrutions aree�etively exeuted in this stage, the memory address being aessed is known. Using this address14

and the type of memory operation (LMW/LWZ et.), the required number of aesses needed toomplete this memory instrution is omputed. This involves heking for the type of memoryinstrution and heking if the address is aligned (i.e whether the next word needs to be aessed).9.9 Floating Point InstrutionsPowerPC has, as part of its oating point instrutions, a set of instrutions that perform a oat-ing point multiply, add and possibly negate, all in one instrution. An example is the fmaddrd,ra,r,rb instrution (Floating Point multiply add). We assumed that the multiplier unit hasan add and negate blok at the end and hene the funtional unit lateny for these instrutions areassumed to be the same as that of a oating point multiply instrution.10 Using SimpleSalar-PPCThe simulator is built aording to the diretions spei�ed in [1℄ for SimpleSalar 2.0. Refer to thatdoument for installation and usage of the tool set. Currently there are two separate mahine.def�les - one for native and another for non-native oating point implementations. For building thesimulator do the following:make onfig-ppmake sim-fastmake sim-outorderIf you are building the simulator on a non-native host, you must use a di�erent mahine.def�le. To do this, issue the following ommands.rm mahine.defln -s target-pp/powerp-nonnative.def mahine.defmake leanmake sim-fastmake sim-outorder10.1 Compiler swithesA few of the instrutions are de�ned only on some PowerPC implementations. These are thelass of Floating Point rounding and onversion instrutions. To enable the simulation of theseinstrutions, the FP ROUND CONVERSION INST maro should be de�ned. If your host mahine doesnot implement these instrutions, you will not be able to build the simulator. The problem does notarise for non-native builds of the simulator where all the oating point instrutions are implementedin software. Sine, GCC an ompile for several PowerPC targets, the appropriate target shouldbe hosen. To over the entire PowerPC ISA, use the ompiler swith -mpowerp. The targetidenti�ation ag is required to provide native support for oating point instrutions on IBM AIXhosts.The FP ROUND CONVERSION INST maro and the -mpowerp swith are by default de�ned inthe Make�le.
15

10.2 Compiling Appliation ProgramsOnly programs that are statially linked an be simulated. To reate stati binary �les using g,use the ommand:g -stati file. -o file.outIf you are using the IBM AIX ompiler, use the ommand: -bnso -bI:/usr/lib/sysalls.exp file. -o file.out10.3 Bug ReportsPlease send bug reports to karu�s.utexas.edu.11 AknowledgmentsWe would like to thank Pat Bohrer, Tom Keller and Rik Simpson for their help in providing uswith details about AIX system behavior.Referenes[1℄ D. Burger and T. M. Austin, \The simplesalar tool set version 2.0," University of Wisonsin-Madison Computer Sienes Department Tehnial Report, June 1997.[2℄ C. May, E. Silha, R. Simpson, and H. Warren, The PowerPC Arhiteture: A Spei�ation fora new family of RISC proessors. Morgan Kaufmann Publishers, May 1994.

16

APPENDIX AList of instrutions implemented. When instrutions other than these are enountered, the simula-tor will ome to a halt.Instrution Name Funtions Sysallsubf[o℄, subf[o℄. Subtrat Fromsub� Subtrat From immediate arryingsubf[o℄, subf[o℄. Subtrat From arryingsubfe[o℄, subfe[o℄. Subtrat From extendedsubfme[o℄, subfe[o℄. Subtrat From minus one extendedsubfze[o℄, subfe[o℄. Subtrat From zero extendedadd[o℄, add[o℄. Addadd[o℄, add[o℄. Add arryingadde[o℄, adde[o℄. Add extendedaddi, addi. Add immediateaddi, addi. Add immediate arryingaddis Add immediate shiftedaddme[o℄, addme[o℄. Add to minus one extendedaddze[o℄, addze[o℄. Add to zero extendedmulhd, mulhd. Multiply high doublewordmulhdu, mulhdu. Multiply high doubleword unsignedmulhw, mulhw. Multiply high wordmulhwu, mulhwu. Multiply high word unsignedmulld[o℄, mulld[o℄. Multiply low doublewordmulli Multiply low immediatemullw[o℄, mullw[o℄. Multiply low worddivw[o℄, divw[o℄. Divide worddivwu[o℄, divwu[o℄. Divide word unsignedslw, slw. Shift left wordsrw, srw. Shift right wordsraw, sraw. Shift right algebrai wordsrawi, srawi. Shift right algebrai word immediatentlzw, tlnzw. Count leading zeros wordextsb, exstb. Extend sign byteextsh, exsth. Extend sign halfwordextsw, exstw. Extend sign wordmp Comparempi Compare immediatempl Compare logialmpli Compare logial immediateaddi Add immediateaddis Add immediate shiftedxori XOR immediatexoris XOR immediate shiftedand, and. ANDand, and. AND with omplement17

Instrution Name Funtionandi. AND immediateandis. AND immediate shiftedor, or. ORor, or. OR with omplementori OR immediateoris OR immediate shiftednor, nor. NORnand, nand. NANDxor, xor. XORxori XOR immediatexoris XOR immediate shiftedeqv, eqv. Equivalentneg[o℄, neg[o℄. Negatelbz Load byte and zerolbzu Load byte and zero with updatelbzux Load byte and zero with update indexedlbzx Load byte and zero indexedlfd Load Floating Point doublelfdu Load Floating Point double with updatelfdux Load Floating Point double with update indexedlfdx Load Floating Point double indexedlfs Load Floating Point singlelfsu Load Floating Point single with updatelfsux Load Floating Point single with update indexedlfsx Load Floating Point single indexedlha Load halfword algebrailhau Load halfword algebrailhaux Load halfword algebrai with update indexedlhax Load halfword algebrai indexedlhbrx Load halfword byte-reverse indexedlhz Load halfword and zerolhzu Load halfword and zero with updatelhzux Load halfword and zero with update indexedlhzx Load halfword and zero indexedlmw Load multiple wordlswi Load string word immediatelswx Load string word indexedlwa Load word algebrailwarx Load word and reserve indexedlwaux Load word algebrai with update indexedlwax Load word algebrai indexedlwbrx Load word byte-reverse indexedlwz Load word and zerolwzu Load word and zero with updatelwzux Load word and zero with update indexedlwzx Load word and zero indexedstb Store byte 18

Instrution Name Funtionstbu Store byte with updatestbux Store byte with update indexedstbx Store byte indexedstfd Store Floating Point doublestfdu Store Floating Point double with updatestfdux Store Floating Point double with update indexedstfdx Store Floating Point double indexedst�wx Store Floating Point as integer word indexedsts Store Floating Point singlestfsu Store Floating Point single with updatestfsux Store Floating Point single with update indexedstfsx Store Floating Point single indexedsth Store halfwordsthbrx Store halfword byte-reverse indexedsthu Store halfword with updatesthux Store halfword with update indexedsthx Store halfword indexedstw Store wordstwbrx Store word byte-reverse indexedstwu Store word with updatestwux Store word with update indexedstwx Store word indexedstmw Store multiple wordstswi Store string word immediatestswx Store string word indexedb[[l℄[a℄ Branhb[l℄[a℄ Branh onditionalblr[l℄ Branh onditional to Link registerbtr[l℄ Branh onditional to Count registerrand Condition register ANDrand Condition register AND with omplementror Condition register ORror Condition register OR with omplementrxor Condition register XORrnor Condition register NORrnand Condition register NANDreqv Condition register Equivalentrlwimi, rlwimi. Rotate Left Word Immediate then Mask Insertrlwinm, rlwinm. Rotate Left Word Immediate then AND with Maskrlwnm, rlwnm. Rotate Left Word then AND with Maskmrf Move Condition register �eldmrfs Move to Condition register from FPSCRmtfsb1, mtfsb1. Move to FPSCR bit 1mtfsb0, mtfsb0. Move to FPSCR bit 0mtfs�, mtfs�. Move to FPSCR �eld immediatemtfsf, mtfsf. Move to FPSCR �eldsm�s, m�s. Move from FPSCR 19

Instrution Name Funtionfdiv, fdiv. Floating Point Dividefdivs, fdivs. Floating Point Divide singlefsub, fsub. Floating Point Subtratfsubs, fsubs. Floating Point Subtrat singlefadd, fadd. Floating Point Addfadds, fadds. Floating Point Add singlefmul, fmul. Floating Point Multiplyfmuls, fmuls. Floating Point Multiply singlefres, fres. Floating Point Reiproalfneg, fneg. Floating Point Negatefabs, fabs. Floating Point Absolute valuefnabs, fnabs. Floating Point Negative Absolute valuefmsub, fmsub. Floating Point Multiply-Subtratfmsubs, fmsubs. Floating Point Multiply-Subtrat singlefnmsub, fnmsub. Floating Point Negate Multiply-Subtratfnmsubs, fnmsubs. Floating Negate Multiply-Subtrat Singlefmadd, fmadd. Floating Point Multiply-Addfmadds, fmadds. Floating Point Multiply-Add singlefnmadd, fnmadd. Floating Point Negate Multiply-Addfnmadds, fnmadds. Floating Point Negate Multiply-Add Singlefsqrt, fsqrt. Floating Point Square Rootfsqrts, fsqrts. Floating Point Square Root singlefrsqrte, frsqrte. Floating Point Reiproal Square Root Estimatefmpo Floating Point Compare orderedfmpu Floating Point Compare unorderedfrsp, frsp. Floating Point round to Single-Preisionftiw, ftiw. Floating Point onvert to integer wordftiwz, ftiwz. Floating Point onvert to integer word with round toward zerofmr, fmr. Floating Point Move Registerfsel, fsel. Floating Point SeletNotes:� For all instrutions, a dot suÆx indiates that the result of the instrution is ompared withzero and CR0 bit 0, 1 or 2 is set depending on whether the result is less than, greater, orequal to zero. Further, CR0 bit 3 is set to the Summary Overow (SO) of the XER registerafter ompletion of the instrution exeution.� A dot suÆx for a oating point instrution indiates that, CR1 is set to 0, 1 or 2 is setdepending on whether the result is less than, greater, or equal to zero.� Fixed point instrutions whih have an optional \o" suÆx update the XER register.� For the branh proessor instrutions, a suÆx of \l" indiates that the Link Register isupdated by the instrution. A suÆx of \a" denotes that the branh target address is alulatedby adding a omputed value to the address of the urrent instrution. The orrespondinginstrution without the suÆx \a", would simply ompute a branh target address and returnit. 20

