
Hoard: A Scalable Memory Allocator for Multithreaded Applications

Emery D. Berger� Kathryn S. McKinleyy Robert D. Blumofe� Paul R. Wilson��Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712femery, rdb, wilsong@cs.utexas.edu yDepartment of Computer Science
University of Massachusetts

Amherst, Massachusetts 01003
mckinley@cs.umass.edu

Abstract

Parallel, multithreaded programs such as web servers, database
managers, news servers, and scientific applications are becoming
increasingly prevalent. For these C and C++ applications, the mem-
ory allocator is often a bottleneck that severely limits program per-
formance and scalability on multiprocessor systems. Previous allo-
cators suffer from problems that include poor performance and scal-
ability, and heap organizations that introduce false sharing. Worse,
many allocators exhibit ablowup in memory consumption when
confronted with a producer-consumer pattern of object allocation
and freeing. This blowup can increase memory consumption bya
factor ofP (the number of processors) or lead to unbounded mem-
ory consumption. Such pathological behavior can cause premature
program termination by exhausting all available swap space.

This paper introduces Hoard, a fast, highly scalable allocator
that avoids false sharing and blowup. Hoard is the first allocator
to simultaneously solve the above problems. Hoard combinesone
global heap andP per-processor heaps with a novel discipline that
provably bounds blowup and has near zero synchronization costs
in the common case. Our results on eleven programs demonstrate
that Hoard yields low average fragmentation and improves overall
program performance over the standard Solaris allocator byup to a
factor of 60 on 14 processors, and up to a factor of 18 over the next
best allocator we tested.

1 Introduction

Parallel, multithreaded programs are becoming increasingly preva-
lent. These applications include web servers [33], database man-
agers [26], news servers [3], as well as more traditional parallel
applications such as scientific applications [7]. For theseapplica-
tions, high performance is critical. They are generally written in
C or C++ to run efficiently on modern shared-memory multipro-
cessor servers. Many of these applications make intensive use of
dynamic memory allocation. Unfortunately, the memory allocator
is often a bottleneck that severely limits program scalability on mul-
tiprocessor systems [21]. Existing serial memory allocators do not
scale well for multithreaded applications, and existing concurrent
allocators do not provide one or more of the following features, all
of which are key in order to attain scalable and memory-efficient
allocator performance:

Speed. A memory allocator should perform memory operations
(i.e., malloc and free) about as fast as a state-of-the-art se-
rial memory allocator. This feature guarantees good allocator

This work is supported in part by the Defense Advanced Research Projects Agency
(DARPA) under Grant F30602-97-1-0150 from the U.S. Air Force Research Labora-
tory. Kathryn McKinley was supported by DARPA Grant 5-21425, NSF Grant EIA-
9726401, and NSF CAREER Award CCR-9624209. In addition, Emery Berger was
supported by a Novell Corporation Fellowship. Multiprocessor computing facilities
were provided through a generous donation by Sun Microsystems.

This paper has been submitted for publication.

performance even when a multithreaded program executes on
a single processor.

Scalability. As the number of processors in the system grows, the
performance of the allocator must scale linearly to ensure
scalable application performance.

False sharing avoidance. The allocator should not introduce false
sharing of cache lines in which threads on distinct processors
inadvertently share data on the same cache line.

Low fragmentation. We definefragmentation as the maximum
amount of memory allocated from the operating system di-
vided by the maximum amount of memory required by the ap-
plication. Excessive fragmentation can degrade performance
by causing poor data locality, leading to paging.

Certain classes of memory allocators (described in Section2)
exhibit a special kind of fragmentation that we callblowup. In-
tuitively, blowup is the increase in memory consumption caused
when an allocator systematically makes memory unavailablefor
future memory requests (we define blowup formally in Section4).
As we show in Section 2.2, the common producer-consumer pro-
gramming idiom causes blowup. In many allocators, blowup ranges
from a factor ofP (the number of processors) to unbounded mem-
ory consumption (the longer the program runs, the more memory it
consumes). Such a pathological increase in memory consumption
can be catastrophic, resulting in premature application termination
due to exhaustion of swap space.

The major contribution of this paper is to introduce the Hoard
allocator and show that it enables parallel multithreaded programs
to achieve scalable performance on shared-memory multiproces-
sors. Hoard achieves this result by simultaneously solvingall of the
above problems. In particular, Hoard solves the blowup and false
sharing problems, which, as far as we know, have never been ad-
dressed in the literature. As we demonstrate, Hoard also achieves
nearly zero synchronization costs in practice.

Hoard maintains per-processor heaps and one global heap. When
a per-processor heap’s usage drops below a certain fraction, Hoard
transfers a large fixed-size chunk of its memory from the per-
processor heap to the global heap, where it is then availablefor
reuse by another processor. We show that this algorithm bounds
blowup and has very low synchronization costs for most programs.
This algorithm also avoids false sharing, because pieces ofa cache
line are available for reuse by only one processor (by a subsequent
call tomalloc). Results on eleven programs demonstrate that Hoard
scales linearly as the number of processors grows and that its frag-
mentation costs are low. On 14 processors, Hoard improves perfor-
mance over the standard Solaris allocator by up to a factor of60 and
a factor of 18 over the next best allocator we tested. These features
have led to its incorporation in a number of high-performance com-
mercial applications, including the Twister, Typhoon, Breeze and

1



Cyclone chat and USENET servers [3] and BEMSolver, a high-
performance scientific code [7].

The rest of this paper is organized as follows. In Section 2.1, we
explain in detail the issues of blowup and allocator-induced false
sharing. In Section 2, we classify previous work into a taxonomy
of memory allocators and show why no previous work solves all
the speed, scalability, false sharing and fragmentation problems de-
scribed above. In Section 3, we motivate and describe in detail the
algorithms used by Hoard to simultaneously solve these problems.
We sketch proofs of the bounds on blowup and contention in Sec-
tion 4. We demonstrate Hoard’s speed, scalability, false sharing
avoidance, and low fragmentation empirically in Section 5,includ-
ing comparisons with serial and concurrent memory allocators. We
also show that Hoard is robust with respect to changes of its key
parameter. Finally, we discuss future directions for this research in
Section 6, and conclude in Section 7.

2 Related Work

In this section, we first focus special attention on the key issues
of allocator-induced false sharing of heap objects and blowup to
motivate our work. These issues must be addressed to achieveef-
ficient memory allocation for scalable multithreaded applications
but have been ignored in the memory allocation literature. We then
place past work into a taxonomy of memory allocator algorithms
and compare each to Hoard.

2.1 Allocator-Induced False Sharing of Heap Objects
False sharing occurs when multiple processors share words in the
same cache line without actually sharing data and is a notorious
cause of poor performance in parallel applications [20, 15,34]. Al-
locators can cause false sharing of heap objects by dividingcache
lines into a number of small objects that distinct processors then
write. A program may introduce false sharing by allocating anum-
ber of objects within one cache line and passing an object to adif-
ferent thread. It is thus impossible to completely avoid false sharing
of heap objects unless the allocator pads out every memory request
to the size of a cache line. However, no allocator we know of pads
memory requests to the size of a cache line, and with good rea-
son; padding could cause a dramatic increase in memory consump-
tion (for instance, 8 byte objects would be padded to 64 byteson
a SPARC) and significantly degrade spatial locality and cache uti-
lization.

Unfortunately, an allocator canactively induce false sharing even
on objects that the program does not pass to different threads. For
instance, single-heap allocators can give many threads parts of the
same cache line. The allocator may divide a cache line into 8-byte
chunks. If multiple threads request 8-byte objects, the allocator will
give each thread one 8-byte object in turn. This splitting ofcache
lines can lead to false sharing.

Allocators may alsopassively induce false sharing. If apro-
gram introduces false sharing by spreading the pieces of a cache
line across processors, the allocator may then passively induce false
sharing after afree by letting each processor reuse these pieces,
which can then lead to false sharing.

2.2 Blowup
Many of the allocators described in Section 2.3 suffer from blowup.
While Hoard keeps blowup to a constant factor, the blowup of many
existing concurrent allocators is eitherunbounded [6, 29] (memory
consumption grows without bound while the memory required is
fixed) or can grow linearly withP , the number of processors [9, 22].
It is important to note that these worst cases are not just theoretical.
Threads in a producer-consumer relationship, a common program-
ming idiom, may induce this blowup. To the best of our knowledge,
the literature does not address this problem. For example, consider
a program in which a producer thread repeatedly allocates a block

of memory and gives it to a consumer thread which frees it. Since
the memory freed by the consumer is unavailable to the producer,
the program consumes more and more memory as it runs.

This unbounded memory consumption is plainly unacceptable,
but aP -fold increase in memory consumption is also cause for con-
cern. The scheduling of multithreaded programs can cause them to
requiremuch more memory when run on multiple processors than
when run on one processor [27, 6]. Consider a program withP
threads. Each thread callsx=malloc(s); free(x). If these threads
are serialized, the total memory required iss. However, if they ex-
ecute onP processors, each call tomalloc may run in parallel, in-
creasing the memory requirement toPs. If the allocator multiplies
this consumption by another factor ofP , then memory consump-
tion increases byP 2.

2.3 Taxonomy of Memory Allocator Algorithms
Our taxonomy consists of the following five categories:

Serial single heap. Only one processor may access the heap at a
time (Solaris, Windows NT/2000 [21]).

Concurrent single heap. Many processors may simultaneously
operate on one shared heap ([5, 16, 17, 13, 14]).

Pure private heaps. Each processor has its own heap (STL [29],
Cilk [6]).

Private heaps with ownership. Each processor has its own heap,
but memory is always returned to its “owner” processor (MT-
malloc, Ptmalloc [9], LKmalloc [22]).

Private heaps with thresholds. Each processor has its own heap
which can hold a limited amount of free memory (Vee and
Hsu [35], Hoard).

Below we discuss these single and multiple-heap algorithms, fo-
cusing on the false sharing and blowup characteristics of each.

2.3.1 Single Heap Allocation
Serial single heap allocators, can exhibit extremely low fragmenta-
tion over a wide range of real programs [19] and are quite fast[23].
However, they are inappropriate for most parallel multithreaded
programs since they typically protect the heap with a singlelock
which serializes memory operations and introduces contention. In
multithreaded programs, contention for the lock prevents allocator
performance from scaling with the number of processors. Most
modern operating systems provide such memory allocators inthe
default library, including Solaris and IRIX. Windows NT/2000 uses
64-bit atomic operations on freelists rather than locks [21] which is
also unscalable because the head of each freelist is a central bottle-
neck (see Note 1). These allocators all actively induce false sharing.

Concurrent single heap allocation implements the heap as a con-
current data structure, such as a concurrent B-tree [10, 11,13, 14,
16, 17] or a freelist with locks on each free block [5, 8, 32].1 Each
memory operation on these structures requires time linear in the
number of free blocks orO(logC) time, whereC is the number
of size classes of allocated objects. (A size class is a range of ob-
ject sizes that are grouped together (e.g., all objects between 32
and 36 bytes are treated as 36-byte objects).) Like serial single
heaps, these allocators actively induce false sharing. Another prob-
lem with these allocators is that they make use of many locks or
atomic update operations (e.g.,compare-and-swap), which are
quite expensive.

1The Windows 2000 allocator and some of Iyengar’s allocatorsuse one freelist for
each object size or range of sizes [13, 14, 21]. This approachreduces to a serial single
heap in the common case when most allocations are from a smallnumber of object
sizes. Johnstone and Wilson show that for every program theyexamined, the vast
majority of objects allocated are of only a few sizes [18].

2



Allocator algorithm fast? scalable? avoids blowup
false sharing?

serial single heap yes no no O(1)
concurrent single heap no maybe no O(1)
pure private heaps yes yes no unbounded
private heaps w/ownership

Ptmalloc [9] yes yes no O(P )
MTmalloc yes no no O(P )

LKmalloc [22] yes yes yes O(P )
private heaps w/thresholds

Vee and Hsu [35] yes yes no O(1)
Hoard yes yes yes O(1)

Table 1: A taxonomy of memory allocation algorithms discussed in this paper.

State-of-the-art serial allocators are so well engineeredthat most
memory operations involve only a handful of instructions [23]. An
uncontended lock acquire and release accounts for about half of the
total runtime of these memory operations. In order to be competi-
tive, a memory allocator can only acquire and release at mosttwo
locks in the common case, or incur three atomic operations. Hoard
requires only one lock for eachmalloc and two for eachfree and
each memory operation takes constant (amortized) time.

2.3.2 Multiple-Heap Allocation
In the discussion below, we describe three categories of allocators
which all use multiple-heaps. The allocators assign heaps to threads
either by assigning one heap to every thread (using thread-specific
data) [29], by using a currently unused heap from a collection of
heaps [9], round-robin heap assignment (as inMTmalloc), or by
providing a mapping function that maps threads onto a collection
of heaps (LKmalloc [22], Hoard). For simplicity of exposition, we
assume that there is exactly one thread bound to each processor and
one heap for each of these threads.

STL’s (Standard Template Library)pthread alloc, Cilk 4.1, and
many ad hoc allocators usepure private heaps allocation [6, 29].
Each processor has its own per-processor heap that it uses for every
memory operation (the allocatormalloc’s from its heap andfree’s
to its heap). Each per-processor heap is “purely private” because
each processor never accesses any other heap for any memory op-
eration. After one thread allocates an object, a second thread can
free it; in a pure private heaps allocator, this memory is placed in
the second thread’s heap. Since parts of the same cache line may
be placed on multiple heaps, pure private-heaps allocatorspassively
induce false sharing. Worse, a pure private-heaps allocator can ex-
hibit unbounded memory consumption, as described in Section 2.2.

Private heaps with ownership returns free blocks to the heap that
allocated them. This algorithm, used byMTmalloc, Gloger’sPt-
malloc [9] and Larson and Krishnan’sLKmalloc [22], yieldsO(P )
blowup. Consider a round-robin style producer-consumer program:
each processori allocatesK blocks and processor(i + 1)modP
frees them. The program requires onlyK blocks but the allocator
will allocate PK blocks (K on all P heaps). Gloger’s allocator
andMTmalloc can actively induce false sharing (different threads
may allocate from the same heap). We believe that Larson and Kr-
ishnan’s algorithm avoids allocator-induced false sharing, although
they did not explicitly address this issue. BothPtmalloc andMT-
malloc also suffer from scalability bottlenecks. InPtmalloc, each
malloc chooses the first heap that is not currently in use (caching
the resulting choice for the next attempt). This heap selection strat-
egy limitsPtmalloc’s scalability to about 6 processors, as we show
in Section 5.MTmalloc, provided with Solaris 7 as a replacement
allocator for multithreaded applications, performs round-robin heap
assignment by maintaining a “nextHeap” global variable that is up-
dated by every call tomalloc. This variable is a source of con-
tention that makesMTmalloc unscalable.

The DYNIX kernel memory allocator by McKenney and Sling-

wine [24] and the single object-size allocator by Vee and Hsu[35]
employ aprivate heaps with thresholds algorithm. These allocators
are efficient and scalable because they move large blocks of mem-
ory between a hierarchy of per-processor heaps and heaps shared
by multiple processors. When a per-processor heap has more than a
certain amount of free memory (the threshold), some portionof the
free memory is moved to a shared heap. This strategy also bounds
blowup to a constant factor, since no heap may hold more than some
fixed amount of free memory. The mechanisms that control this
motion and the units of memory moved by the DYNIX and Vee and
Hsu allocators differ significantly from those used by Hoard. Un-
like Hoard, both of these allocators passively induce falsesharing
by allowing pieces of the same cache line to be recycled.

Table 1 presents a summary of allocator algorithms, along with
their speed, scalability, false sharing and blowup characteristics.
Hoard is the only one that solves all four problems.

3 The Hoard Memory Allocator

In this section, we describe Hoard in detail. Hoard can be viewed
as a new kind of private heaps with thresholds allocator thatavoids
false sharing and that can trade increased (but bounded) memory
consumption for reduced, or even zero, synchronization costs.

Hoard augments per-processor heaps with aglobal heap that ev-
ery thread may access (similar to Vee and Hsu [35]). Each thread
can access only its heap and the global heap. We designate heap 0 as
the global heap and heaps 1 through2P as the per-processor heaps.
We use2P heaps to decrease the probability that concurrently-
executing threads hash to the same heap. We use a simple hash
function to map thread id’s to per-processor heaps (on Solaris, we
hash on the light-weight process id). We need a mapping func-
tion because in general there is not a one-to-one correspondence
between threads and processors, and threads can be reassigned to
other processors.

Hoard maintainsusage statistics for each heap. These statistics
areui, the amount of memory in use (“live”) in heapi, andai, the
amount of memory allocated by Hoard from the operating system
held in heapi.

Hoard allocates memory from the system in chunks we callsu-
perblocks. Each superblock is an array of some number of blocks
(objects) and contains a free list of its available blocks. All su-
perblocks are the same size (S), a multiple of the system page size.
Objects larger than half the size of a superblock are manageddi-
rectly using the virtual memory system (i.e., they are allocated via
mmap and freed usingmunmap). All of the blocks in a superblock
are in the same size class. By using size classes that are a power
of b apart (whereb is greater than 1) and rounding the requested
size up to the nearest size class, we bound worst-caseinternal frag-
mentation (wasted space within an object) to a factor ofb. In order
to reduceexternal fragmentation, werecycle completely empty su-
perblocks for re-use by any size class. For clarity of exposition, we
assume a single size class in the discussion below.

3


