Hoard: A Scalable Memory Allocator for Multithreaded Applications

Emery D. Berget Kathryn S. McKinley

*Department of Computer Sciences
The University of Texas at Austin
Austin, Texas 78712

{ermery, rdb, wilson}@s. utexas.edu

Abstract

Parallel, multithreaded programs such as web servershakda
managers, news servers, and scientific applications a@ieg
increasingly prevalent. For these C and C++ applicatidresptem-
ory allocator is often a bottleneck that severely limitsgyeon per-
formance and scalability on multiprocessor systems. Bosvallo-
cators suffer from problems that include poor performamekszal-
ability, and heap organizations that introduce false sigatorse,
many allocators exhibit &lowup in memory consumption when
confronted with a producer-consumer pattern of objectcation
and freeing. This blowup can increase memory consumptioa by
factor of P (the number of processors) or lead to unbounded mem-
ory consumption. Such pathological behavior can cause girem
program termination by exhausting all available swap space

This paper introduces Hoard, a fast, highly scalable aftvca
that avoids false sharing and blowup. Hoard is the first atimc
to simultaneously solve the above problems. Hoard comhines
global heap and per-processor heaps with a novel discipline that
provably bounds blowup and has near zero synchronizatiets co
in the common case. Our results on eleven programs demtmstra
that Hoard yields low average fragmentation and improvesailv
program performance over the standard Solaris allocatophip a
factor of 60 on 14 processors, and up to a factor of 18 overeke n
best allocator we tested.

1

Parallel, multithreaded programs are becoming increfsjmgva-
lent. These applications include web servers [33], datbaen-
agers [26], news servers [3], as well as more traditionadlfsr
applications such as scientific applications [7]. For theysglica-
tions, high performance is critical. They are generallyti®n in
C or C++ to run efficiently on modern shared-memory multipro-
cessor servers. Many of these applications make intensieeofl
dynamic memory allocation. Unfortunately, the memory cdlor
is often a bottleneck that severely limits program scaiigtoih mul-
tiprocessor systems [21]. Existing serial memory alloatio not
scale well for multithreaded applications, and existingaorent
allocators do not provide one or more of the following featyrall
of which are key in order to attain scalable and memory-eifici
allocator performance:

Introduction

Speed. A memory allocator should perform memory operations
(i.e., malloc andfree) about as fast as a state-of-the-art se-
rial memory allocator. This feature guarantees good ditwca

This work is supported in part by the Defense Advanced Rebdnojects Agency
(DARPA) under Grant F30602-97-1-0150 from the U.S. Air FoResearch Labora-
tory. Kathryn McKinley was supported by DARPA Grant 5-214REF Grant EIA-
9726401, and NSF CAREER Award CCR-9624209. In addition, igrBerger was
supported by a Novell Corporation Fellowship. Multiprae@scomputing facilities
were provided through a generous donation by Sun Microsyste

This paper has been submitted for publication.

Robert D. Blumofé Paul R. Wilsori

tDepartment of Computer Science
University of Massachusetts
Amherst, Massachusetts 01003

ncki nl ey@s. unass. edu

performance even when a multithreaded program executes on
a single processor.

Scalability. As the number of processors in the system grows, the
performance of the allocator must scale linearly to ensure
scalable application performance.

False sharing avoidance. The allocator should not introduce false
sharing of cache lines in which threads on distinct proassso
inadvertently share data on the same cache line.

Low fragmentation. We definefragmentation as the maximum
amount of memory allocated from the operating system di-
vided by the maximum amount of memory required by the ap-
plication. Excessive fragmentation can degrade perfooman
by causing poor data locality, leading to paging.

Certain classes of memory allocators (described in Se@)on
exhibit a special kind of fragmentation that we chllbwup. In-
tuitively, blowup is the increase in memory consumption seali
when an allocator systematically makes memory unavailédyle
future memory requests (we define blowup formally in Sectipn
As we show in Section 2.2, the common producer-consumer pro-
gramming idiom causes blowup. In many allocators, blowumges
from a factor of P (the number of processors) to unbounded mem-
ory consumption (the longer the program runs, the more mgihor
consumes). Such a pathological increase in memory congumpt
can be catastrophic, resulting in premature applicatiomiteation
due to exhaustion of swap space.

The major contribution of this paper is to introduce the Hbar
allocator and show that it enables parallel multithreadedams
to achieve scalable performance on shared-memory muitigro
sors. Hoard achieves this result by simultaneously solaihof the
above problems. In particular, Hoard solves the blowup afsbf
sharing problems, which, as far as we know, have never been ad
dressed in the literature. As we demonstrate, Hoard alsieash
nearly zero synchronization costs in practice.

Hoard maintains per-processor heaps and one global heagn Wh
a per-processor heap’s usage drops below a certain frattamard
transfers a large fixed-size chunk of its memory from the per-
processor heap to the global heap, where it is then avaifable
reuse by another processor. We show that this algorithmdsoun
blowup and has very low synchronization costs for most @ogr.
This algorithm also avoids false sharing, because piecasathe
line are available for reuse by only one processor (by a sjulese
call tomalloc). Results on eleven programs demonstrate that Hoard
scales linearly as the number of processors grows and shfahg-
mentation costs are low. On 14 processors, Hoard improvésrpe
mance over the standard Solaris allocator by up to a facte® ahd
a factor of 18 over the next best allocator we tested. Theserkes
have led to its incorporation in a number of high-perforneaoem-
mercial applications, including the Twister, Typhoon, &e and

Cyclone chat and USENET servers [3] and BEMSolver, a high-
performance scientific code [7].

The rest of this paper is organized as follows. In Section\&el
explain in detail the issues of blowup and allocator-indutase
sharing. In Section 2, we classify previous work into a taag
of memory allocators and show why no previous work solves all
the speed, scalability, false sharing and fragmentatiohlpms de-
scribed above. In Section 3, we motivate and describe inldieta
algorithms used by Hoard to simultaneously solve thesel@nuh
We sketch proofs of the bounds on blowup and contention in Sec
tion 4. We demonstrate Hoard's speed, scalability, falsgish
avoidance, and low fragmentation empirically in Sectiomblud-
ing comparisons with serial and concurrent memory allasatd/e
also show that Hoard is robust with respect to changes ofeys k
parameter. Finally, we discuss future directions for thsearch in
Section 6, and conclude in Section 7.

2 Related Work

In this section, we first focus special attention on the keyés
of allocator-induced false sharing of heap objects and tjoto
motivate our work. These issues must be addressed to adfieve
ficient memory allocation for scalable multithreaded apgtions
but have been ignored in the memory allocation literature.th'én
place past work into a taxonomy of memory allocator algonih
and compare each to Hoard.

2.1 Allocator-Induced False Sharing of Heap Objects

False sharing occurs when multiple processors share words in the
same cache line without actually sharing data and is a roatsri
cause of poor performance in parallel applications [20 345, Al-
locators can cause false sharing of heap objects by divichiche
lines into a number of small objects that distinct processben
write. A program may introduce false sharing by allocatingien-

ber of objects within one cache line and passing an objectlib a
ferent thread. It is thus impossible to completely avoiddaharing

of heap objects unless the allocator pads out every memaquese

to the size of a cache line. However, no allocator we know dpa

memory requests to the size of a cache line, and with good rea-

son; padding could cause a dramatic increase in memory ogisu
tion (for instance, 8 byte objects would be padded to 64 bgtes
a SPARC) and significantly degrade spatial locality and eadh
lization.

Unfortunately, an allocator cattively induce false sharing even
on objects that the program does not pass to different terear
instance, single-heap allocators can give many threads paihe
same cache line. The allocator may divide a cache line irigt8-
chunks. If multiple threads request 8-byte objects, thacatior will
give each thread one 8-byte object in turn. This splittingadhe
lines can lead to false sharing.

Allocators may alsgassively induce false sharing. If goro-

of memory and gives it to a consumer thread which frees itce&Sin
the memory freed by the consumer is unavailable to the perduc
the program consumes more and more memory as it runs.

This unbounded memory consumption is plainly unacceptable
but aP-fold increase in memory consumption is also cause for con-
cern. The scheduling of multithreaded programs can caese th
requiremuch more memory when run on multiple processors than
when run on one processor [27, 6]. Consider a program With
threads. Each thread cakksmalloc(s); free(x). If these threads
are serialized, the total memory requiredifHowever, if they ex-
ecute onP processors, each call toalloc may run in parallel, in-
creasing the memory requirements. If the allocator multiplies
this consumption by another factor #f, then memory consump-
tion increases by?.

2.3 Taxonomy of Memory Allocator Algorithms
Our taxonomy consists of the following five categories:

Serial singleheap. Only one processor may access the heap at a
time (Solaris, Windows NT/2000 [21]).

Concurrent singleheap. Many processors may simultaneously
operate on one shared heap ([5, 16, 17, 13, 14]).

Pureprivate heaps. Each processor has its own heap (STL [29],
Cilk [6]).

Private heapswith ownership. Each processor has its own heap,
but memory is always returned to its “owner” proces$di{
malloc, Ptmalloc [9], LKmalloc [22]).

Private heapswith thresholds. Each processor has its own heap
which can hold a limited amount of free memory (Vee and
Hsu [35], Hoard).

Below we discuss these single and multiple-heap algoritfiors
cusing on the false sharing and blowup characteristicsaf.ea

2.3.1 Single Heap Allocation

Serial single heap allocators, can exhibit extremely low fragmenta-
tion over a wide range of real programs [19] and are quite[28jt
However, they are inappropriate for most parallel muladded
programs since they typically protect the heap with a sithogé
which serializes memory operations and introduces cootentn
multithreaded programs, contention for the lock prevehtEator
performance from scaling with the number of processors. tMos
modern operating systems provide such memory allocatottsein
default library, including Solaris and IRIX. Windows NT/20uses
64-bit atomic operations on freelists rather than lockg y@dich is
also unscalable because the head of each freelist is aldewitita-
neck (see Note 1). These allocators all actively induce fstigring.
Concurrent single heap allocation implements the heap as a con-

gram introduces false sharing by spreading the pieces of a cachecyrrent data structure, such as a concurrent B-tree [1013,114,

line across processors, the allocator may then passivadlanfalse
sharing after dree by letting each processor reuse these pieces,
which can then lead to false sharing.

2.2 Blowup

Many of the allocators described in Section 2.3 suffer fréonoip.
While Hoard keeps blowup to a constant factor, the blowuparfiyn
existing concurrent allocators is eithabounded [6, 29] (memory
consumption grows without bound while the memory requied i
fixed) or can grow linearly wittP, the number of processors [9, 22].
Itis important to note that these worst cases are not justétieal.
Threads in a producer-consumer relationship, a commorramog
ming idiom, may induce this blowup. To the best of our knowled
the literature does not address this problem. For exampitesider

a program in which a producer thread repeatedly allocatésck b

16, 17] or a freelist with locks on each free block [5, 8, 38ach
memory operation on these structures requires time linednée
number of free blocks 0©(log C) time, whereC' is the number

of size classes of allocated objects. (A size class is a range of ob-
ject sizes that are grouped together (e.g., all objects dmivd2
and 36 bytes are treated as 36-byte objects).) Like senglesi
heaps, these allocators actively induce false sharingthengrob-
lem with these allocators is that they make use of many locks o
atomic update operations (e.ggnpar e- and- swap), which are
quite expensive.

1The Windows 2000 allocator and some of lyengar’s allocaisesone freelist for
each object size or range of sizes [13, 14, 21]. This approedices to a serial single
heap in the common case when most allocations are from a sonalber of object
sizes. Johnstone and Wilson show that for every program éhaynined, the vast
majority of objects allocated are of only a few sizes [18].

Allocator algorithm fast? | scalable? avoids blowup
false sharing?
serial single heap yes no no o(1)
concurrent single heap no maybe no o(1)
pure private heaps yes yes no unbounded
private heaps w/ownership
Ptmalloc [9] yes yes no O(P)
MTmalloc | yes no no O(P)
LKmalloc [22] yes yes yes O(P)
private heaps w/thresholds
Veeand Hsu [35] | yes yes no o(1)
Hoard yes yes yes o(1)

Table 1: A taxonomy of memory allocation algorithms discussed ia aper.

State-of-the-art serial allocators are so well enginetratimost
memory operations involve only a handful of instruction3][2An
uncontended lock acquire and release accounts for about half of the
total runtime of these memory operations. In order to be @iimp
tive, a memory allocator can only acquire and release at mast
locks in the common case, or incur three atomic operatioosurdi
requires only one lock for eaahalloc and two for eactiree and
each memory operation takes constant (amortized) time.

2.3.2 Multiple-Heap Allocation

In the discussion below, we describe three categories afatibrs
which all use multiple-heaps. The allocators assign heafiséads
either by assigning one heap to every thread (using thrpecific
data) [29], by using a currently unused heap from a collectib
heaps [9], round-robin heap assignment (ad/ifmalloc), or by
providing a mapping function that maps threads onto a ciidiec
of heaps (Kmalloc [22], Hoard). For simplicity of exposition, we
assume that there is exactly one thread bound to each poocess
one heap for each of these threads.

STL's (Standard Template Librargthread_alloc, Cilk 4.1, and
many ad hoc allocators ugeire private heaps allocation [6, 29].
Each processor has its own per-processor heap that it useseiy
memory operation (the allocataralloc’s from its heap andree’s
to its heap). Each per-processor heap is “purely privateabse
each processor never accesses any other heap for any mepaory o
eration. After one thread allocates an object, a seconéddhcan
free it; in a pure private heaps allocator, this memory icg@dhin
the second thread’s heap. Since parts of the same cachedipe m
be placed on multiple heaps, pure private-heaps allocptmsively
induce false sharing. Worse, a pure private-heaps allocatoex-
hibit unbounded memory consumption, as described in Se2th

Private heapswith ownership returns free blocks to the heap that
allocated them. This algorithm, used MTmalloc, Gloger’s Pt-
malloc [9] and Larson and KrishnanlsKmalloc [22], yieldsO(P)
blowup. Consider a round-robin style producer-consumegam:
each processar allocatesK blocks and processdt + 1)modP
frees them. The program requires oifyblocks but the allocator
will allocate PK blocks (K on all P heaps). Gloger’s allocator
andMTmalloc can actively induce false sharing (different threads
may allocate from the same heap). We believe that Larson and K
ishnan’s algorithm avoids allocator-induced false shgraithough
they did not explicitly address this issue. Bd&tmalloc andMT-
malloc also suffer from scalability bottlenecks. Rimalloc, each
malloc chooses the first heap that is not currently in use (caching
the resulting choice for the next attempt). This heap selestrat-
egy limitsPtmalloc’s scalability to about 6 processors, as we show
in Section 5.MTmalloc, provided with Solaris 7 as a replacement
allocator for multithreaded applications, performs rouabin heap
assignment by maintaining a “nextHeap” global variablé thap-
dated by every call tonalloc. This variable is a source of con-
tention that makeMTmalloc unscalable.

The DYNIX kernel memory allocator by McKenney and Sling-

wine [24] and the single object-size allocator by Vee and [3&i
employ aprivate heapswith thresholdsalgorithm. These allocators
are efficient and scalable because they move large blockeof-m
ory between a hierarchy of per-processor heaps and heapisha
by multiple processors. When a per-processor heap has harat
certain amount of free memory (the threshold), some podfdhe
free memory is moved to a shared heap. This strategy alsadsoun
blowup to a constant factor, since no heap may hold more trae s
fixed amount of free memory. The mechanisms that control this
motion and the units of memory moved by the DYNIX and Vee and
Hsu allocators differ significantly from those used by Hoalthh-
like Hoard, both of these allocators passively induce falssring
by allowing pieces of the same cache line to be recycled.

Table 1 presents a summary of allocator algorithms, alorly wi
their speed, scalability, false sharing and blowup cherastics.
Hoard is the only one that solves all four problems.

3 The Hoard Memory Allocator

In this section, we describe Hoard in detail. Hoard can bevetde
as a new kind of private heaps with thresholds allocatorataids
false sharing and that can trade increased (but boundedprgem
consumption for reduced, or even zero, synchronizatiotscos

Hoard augments per-processor heaps wiglobal heap that ev-
ery thread may access (similar to Vee and Hsu [35]). Eaclathre
can access only its heap and the global heap. We designaté hea
the global heap and heaps 1 thro@dh as the per-processor heaps.
We use2P heaps to decrease the probability that concurrently-
executing threads hash to the same heap. We use a simple hash
function to map thread id’s to per-processor heaps (on Bplae
hash on the light-weight process id). We need a mapping func-
tion because in general there is not a one-to-one correspeed
between threads and processors, and threads can be redstign
other processors.

Hoard maintainsisage statistics for each heap. These statistics
arewu;, the amount of memory in use (“live”) in heapanda;, the
amount of memory allocated by Hoard from the operating syste
held in heap.

Hoard allocates memory from the system in chunks westall
perblocks. Each superblock is an array of some number of blocks
(objects) and contains a free list of its available blockdl sA-
perblocks are the same siz€)(a multiple of the system page size.
Objects larger than half the size of a superblock are mandged
rectly using the virtual memory system (i.e., they are ated via
mmap and freed usingrunnap). All of the blocks in a superblock
are in the same size class. By using size classes that areea pow
of b apart (where is greater than 1) and rounding the requested
size up to the nearest size class, we bound worstiotseal frag-
mentation (wasted space within an object) to a factdr. df order
to reduceexternal fragmentation, weecycle completely empty su-
perblocks for re-use by any size class. For clarity of exjmsiwe
assume a single size class in the discussion below.

