
General AIMD Congestion Control�
Y. Richard Yang, Simon S. Lam

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1188fyangyang,lamg@cs.utexas.edu

TR-2000-09
May 9, 2000

Abstract

Instead of the increase-by-one decrease-to-half strategyused in TCP Reno
for congestion window adjustment, we consider the general case such that the
increase value and decrease ratio are parameters. That is, in the congestion
avoidance state, the window size is increased by� per window of packets
acknowledged and it is decreased to� of the current value when there is con-
gestion indication. We refer to this window adjustment strategy asgeneral
additive increase multiplicative decrease (GAIMD). We present the (mean)
sending rate of a GAIMD flow as a function of�, �, loss rate, mean round-
trip time, mean timeout value, and the number of packets acknowledged by
each ACK. We conducted extensive experiments to validate this sending rate
formula. We found the formula to be quite accurate for a loss rate of up to
20%. We also present in this paper a simple relationship between� and�
for a GAIMD flow to beTCP-friendly, that is, for the GAIMD flow to have
approximately the same sending rate as a TCP flow under the same path con-
ditions. We present results from simulations in which TCP-friendly GAIMD
flows (� = 0:31, � = 7=8) compete for bandwidth with TCP Reno flows
and with TCP SACK flows, on a DropTail link as well as on a RED link. We
found that the GAIMD flows were highly TCP-friendly. Furthermore, with� at 7/8 instead of 1/2, these GAIMD flows have reduced rate fluctuations
compared to TCP flows.�Research sponsored in part by National Science Foundation grant No. ANI-9977267 and grant

no. ANI-9506048. Experiments were performed on equipment procured with NSF grant no. CDA-
9624082.

1



1 Introduction

In a shared network, such as the Internet, end systems shouldreact to congestion
by adapting their transmission rates to avoid congestion collapse and keep network
utilization high [8]. The robustness of the current Internet is due in large part to the
end-to-end congestion control mechanisms of TCP [13]. In particular, TCP uses an
additive increase multiplicative decrease (AIMD) algorithm [4]; the TCP sending
rate is controlled by a congestion window which is halved forevery window of
data containing a packet drop, and increased by one packet per window of data
acknowledged.

Today, a wide variety of new applications such as streaming multimedia are be-
ing developed to satisfy the growing demands of Internet users. Many of these new
applications use UDP because they do not require reliable delivery and they are not
responsive to network congestion [27]. There is great concern that widespread de-
ployment of such unresponsive applications may harm the performance of respon-
sive TCP applications and ultimately lead to congestion collapse of the Internet.

To address this concern one approach is to entice these applications to use
reservations [5] or differentiated services [6] that provide QoS. However, even if
such services become available, we expect that many new applications will still
want to use best-effort service because of its low cost. A second approach is to
promote the use of end-to-end congestion control mechanisms for best effort traf-
fic and to deploy incentives for its use [8]. However while TCPcongestion control
is appropriate for applications such as bulk data transfer,many real-time applica-
tions would find halving the sending rate of a flow to be too severe a response
to a congestion indication, as it can noticeably reduce the flow’s user-perceived
quality [25].

In the past few years, many unicast congestion control schemes have been pro-
posed and investigated [12, 16, 28, 23, 3, 18, 22, 25, 20, 29, 9]. The common
objective of these studies is to find a good alternative to thecongestion control
scheme of TCP. Since the dominant Internet traffic is TCP-based [26], it is impor-
tant that new congestion control schemes beTCP-friendly. By this, we mean that
the sending rate of a non-TCP flow should be approximately thesame as that of a
TCP flow under the same conditions of round-trip time and packet loss [16].

The congestion control schemes investigated can be dividedinto two cate-
gories: AIMD-based [12, 23, 3, 22, 18] and formula-based [16, 28, 25, 20, 29,
9]. Roughly speaking, AIMD-based schemes emulate the increase-by-one and
decrease-to-half window behavior of TCP. Formula-based schemes use a stochas-
tic model [16, 17, 19] to derive a formula that expresses the TCP sending rate as a
function of packet loss rate, round-trip time, and timeout.Essentially, all of these
schemes are based upon the increase-by-one and decrease-to-half strategy of TCP.

2



We observe that decrease-to-half is not a fundamental requirement of congestion
control. In DECbit, also based on AIMD, a flow reduces its sending rate to 7/8 of
the old value in response to a packet drop [15].

In this paper, we consider a more general version of AIMD thanis implemented
in TCP; specifically, the sender’s window size is increased by � if there is no packet
loss in a round-trip time, and the window size is decreased to� of current value if
there is a loss indication, where� and� are parameters. Since the name AIMD is
often used in the literature to refer to TCP Reno congestion control (with� = 1 and� = 1=2), we call our approachgeneral additive increase multiplicative decrease
(GAIMD) congestion control.

GAIMD was first considered by Chiu and Jain [4]. Their study ismainly about
stability and fairness properties. They showed that if� and� satisfy the following
relationships, � 0 < �0 < � < 1 (1)

then GAIMD congestion control is “stable” and “fair.” However, their study only
considered the case when all flows using the same�, � parameters. Also, they
provided no quantitative study of the effects of� and� on performance metrics.
In our study, we consider in detail the relationships between various performance
metrics and the parameters� and�, assuming that� and� satisfy (1). In the
balance of this paper, we assume that� and� satisfy (1) unless otherwise stated.

In particular, we are interested in the sending rate as a steady state metric, and
responsiveness and rate fluctuations as transient metrics.In this paper, we report
results on the GAIMD sending rate. Our results on transient behavior, as well as
integration of coarse-grained GAIMD window size control and fine-grained round-
trip time control will be reported in [31].

Our first result is a formula showing the (mean) sending rate as a function of
the control parameters,� and�, the loss rate, mean round-trip time, mean timeout
value, and the number of packets each ACK acknowledges. We have conducted
extensive experiments to validate this formula. The experiments show that the
formula is accurate over a wide range of� and� values for a loss rate of up to
20%.

With the formula, we obtain our second result: a simple relationship between�
and� for a GAIMD flow to be TCP-friendly, that is, for the GAIMD flow to have
approximately the same sending rate as a TCP flow. The relationship between�
and� to be TCP-friendly is � = 4(1 � �2)3

3



This relationship offers a wide selection of possible values for� and� to achieve
desired transient behaviors, such as responsiveness and reduced rate fluctuations.
For example, we can choose� to be 78 so that a GAIMD sender has a less dramatic
rate drop than that of TCP given one loss indication. For thischoice of�, if we use� = 0:31, the GAIMD flow is TCP-friendly.

The balance of this paper is as follows. In Section 2, we present the sending rate
formula for a GAIMD flow. Experiments to validate the formulaare also presented
in this section. In Section 3, we use the formula to derive conditions under which
a GAIMD flow is TCP-friendly. In Section 4, we present experimental results
for the TCP-friendliness conditions. We give a summary of related TCP-friendly
congestion control schemes in Section 5. Conclusion and future work are presented
in Section 6.

2 Modeling Sending Rate

The motivation of this paper is to consider a general class ofcongestion window
adjustment policies. Window adjustment policy, however, is only one component
of a complete congestion control protocol. Other mechanisms such as congestion
detection and round-trip time estimation are needed to makea complete proto-
col. Since TCP congestion control has been studied extensively for many years,
GAIMD adopts these other mechanisms from TCP Reno [13, 14, 24, 1]. In the
next subsection, we give a brief description of the GAIMD congestion window
adjustment algorithm. All other algorithms are the same as those of TCP Reno.

2.1 GAIMD congestion window adjustment

A GAIMD session begins in theslowstart state. In this state, the congestion win-
dow size is doubled for every window of packets acknowledged. Upon the first
congestion indication, the congestion window size is cut inhalf and the session
enters thecongestion avoidance state. In this state, the congestion window size is
increased by�=W for each new ACK received, whereW is the current congestion
window size. For convenience, we say that the window size is increased by� per
round-trip time. So far we have assumed that the receiver returns one new ACK
for each received data packet. Many TCP receiver implementations send one cu-
mulative ACK for two consecutive packets received (i.e., delayed ACK [24]). In
this case, the window size is increased by�=2 per round-trip time. GAIMD re-
duces the window size when congestion is detected. Same as TCP Reno, GAIMD
detects congestion by two events:triple-duplicate ACK andtimeout. If congestion
is detected by a triple-duplicate ACK, GAIMD changes the window size to�W . If

4



the congestion indication is a timeout, the window size is set to 1.

2.2 Modeling assumptions

In the Appendix, we derive an analytic expression for the sending rate of a GAIMD
sender as a function of�, �, p (loss rate),RTT (round-trip time),T0 (timeout
value), andb (number of packets acknowledged by each ACK). The derivation is
a fairly straightforward extension of a similar formula derived for TCP by Padhye,
Firoiu, Towsley, and Kurose [19]. Various assumptions and simplifications have
been made in the analysis which are summarized below.� We assume that the sender always has data to send (i.e., a saturated sender).

The receiver always advertises a large enough receiver window size such that
the send window size is determined by the GAIMD congestion window size.� The sending rate is a random process. We have limited our efforts to mod-
eling the mean value of the sending rate. An interesting future topic will be
to study the variance of the sending rate which is beyond the scope of this
paper.� We focus on GAIMD’s congestion avoidance mechanisms. The impact of
slowstart has been ignored.� We model GAIMD’s congestion avoidance behavior in terms of rounds. A
round starts with the back-to-back transmission ofW packets, whereW
is the current window size. Once all packets falling within the congestion
window have been sent in this back-to-back manner, no more packet is sent
until the first ACK is received for one of theW packets. This ACK reception
marks the end of the current round and the beginning of the next round. In
this model, the duration of a round is equal to the round-triptime and is
assumed to be independent of the window size. Also, it is assumed that
the time needed to send all of the packets in a window is smaller than the
round-trip time.� We assume that losses in different rounds are independent. When a packet
in a round is lost, however, we assume all packets following it in the same
round are also lost. Therefore,p is defined to be the probability that a packet
is lost, given that it is either the first packet in its round orthe preceding
packet in its round is not lost [19].

5



2.3 Sending rate formula

The following analytic expression for the average GAIMD sending rate has been
derived (see Appendix for derivation):T�;�(p;RTT; T0; b) = 1RTTq2b(1��)�(1+�) p+ T0min�1; 3q (1��2)b2� p�p(1 + 32p2)

(2)

Observe that the formula has the following two terms in the denominator:TD�;�(p;RTT; b) , RTTs2b(1 � �)�(1 + �) p (3)TO�;�(p; T0; b) , T0min 1; 3r (1� �2)b2� p!p(1 + 32p2) (4)

From the derivation in the Appendix, we know that the denominator consists of
only the first termTD�;� if all congestion indications are triple-duplicate ACKs;
note thatTD�;� does not depend onT0. The second termTO�;� is added when
congestion indications can be both timeouts and triple-duplicate ACKs; note thatTO�;� does not directly depend onRTT . From these expressions, observe that
when loss ratep is small, TD�;� = o(p0:5) and TO�;� = o(p1:5), therefore,TD�;� dominatesTO�;�, and the sending rate is mainly determined byTD�;�.
However, asp increases,TO�;� becomes larger. DefineQ , min 1; 3r (1� �2)b2� p!
Note thatQ is the middle term ofTO�;�. From the derivation in the Appendix
we know thatQ approximates the probability of a loss being a timeout. Fromthe
above expression ofQ note that whenp is small, the probability of timeout is low.
However, asp increases, the probability of timeout increases rapidly to1.

We next consider how the sending rate varies with the parameters,RTT , T0, �,�. It is obvious from Equation (2) that the sending rate decreases with increasingRTT or T0. If � is increased, bothTD�;� andTO�;� will decrease, leading to a
higher sending rate. Also if� is increased, bothTD�;� andTO�;� will decrease,

6



leading to a higher sending rate. Furthermore, observe that� must be less than
1 for the sending rate formula to be valid. If� approaches0, the denominator in
Equation (2) goes to infinity and the sending rate goes to 0.

Lastly, we note that Equation (2) reduces to other well-known TCP formulas
when we instantiate it with� = 1 and� = 12 . First, if we ignore theTO�;� term,
we obtain T1; 12 (p;RTT; b) = TTCP (p;RTT; b) = 1RTTr 32bp
which is the formula derived in [16, 17]. Next, if we include theTO�;� term, we
haveT1; 12 (p;RTT; T0; b) = 1RTTq2bp3 + T0min�1; 3q 3bp8 �p(1 + 32p2)
which is the formula derived in [19]. Therefore, our formulasubsumes these other
formulas as special cases.

2.4 Formula validation

We have tested the formula in Equation (2) extensively usingthens network sim-
ulator. We have also conducted some experiments in LAN environments. In all
cases, the accuracy of the formula is respectable over a widerange of� and�
when the loss rate is less than 20%.

The purpose of our validation experiments, presented in this section, is to an-
swer the following questions:� Is the formula accurate? Over what range of loss ratep is it accurate?� Since it is a statistical mean, when do sending rate variations become signif-

icant?� What is the general trend when the formula loses accuracy?

2.4.1 Simulation setup

The simulation topology we chose to present results is the well-known single bot-
tleneck (“dumbbell”) as shown in Figure 1. We have also conducted simulations
for other topologies; the results are similar.

In all of the experiments to be discussed in this section, thebottleneck link
bandwidth is fixed at 15Mbps and its propagation delay at 50ms. We have also

7



TCP s1

TCP s16

Gaimd s1

Onoff s1

Onoff sn

Gaimd s16

R1 R2

15Mbps/50ms

TCP r1

TCP r16

Gaimd r1

Gaimd s16

Onoff r1

Onoff rn

Figure 1: Simulation topology

conducted experiments with other link bandwidths and propagation delays; the
results are similar. In all simulations, the access links are sufficiently provisioned
to ensure that packet drops/delays due to congestion occur only at the bottleneck
link from R1 toR2.

We included three types of flows in the experiments. The first type is GAIMD
flows. To see sending rate variations, we placed 16 GAIMD flows. For compar-
ison purposes, we also placed 16 TCP Reno flows. Since the dominant traffic on
the Internet is web-like traffic, we believe that it is important to model the effects
of competing web-like traffic (short TCP connections, some UDP flows). It has
been reported in [21] that WWW-related traffic tends to be self-similar in nature.
In [30], it has been shown that self-similar traffic can be created by using several
ON/OFF UDP sources whose ON/OFF times are drawn from a heavy-tailed distri-
bution such as the Pareto distribution. Therefore, we choseON/OFF UDP flows
as the third type of traffic. In these experiments, we set the mean ON time to be
1 second, and the mean OFF time to be 2 seconds. During ON time each source
sends at 500Kbps. The shape parameter of the Pareto distribution is set to be 1.5.
In our experiments, we varied the number of ON/OFF sources from 10 to 70 to
create a loss rate from about 1% to about 30%.

Another aspect of the simulations worth mentioning is how westart the flows.
To avoid phase effects [10], we assign small random propagation delays to the
access links and start the flows randomly.

In all experiments in this section, each simulation is run for 120 seconds. The
loss rate is approximated by dividing the number of times a GAIMD flow or TCP
flow reduces its window size by the total number of packets it sends. Notice that
this estimation of loss rate is a lower bound for the loss ratethat we defined in
model derivation. Consequently, we will see that the formula will overestimate
and give an upper bound of the sending rate.

8


