General AIMD Congestion Control

Y. Richard Yang, Simon S. Lam
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1188

{yangyang,lam} @cs.utexas.edu

TR-2000-09
May 9, 2000

Abstract

Instead of the increase-by-one decrease-to-half strasgyin TCP Reno
for congestion window adjustment, we consider the genasa such that the
increase value and decrease ratio are parameters. Thatl® congestion
avoidance state, the window size is increasedvlpyer window of packets
acknowledged and it is decreasegtof the current value when there is con-
gestion indication. We refer to this window adjustmenttsigg asgeneral
additive increase multiplicative decrease (GAIMD). We present the (mean)
sending rate of a GAIMD flow as a function of 3, loss rate, mean round-
trip time, mean timeout value, and the number of packets@eladged by
each ACK. We conducted extensive experiments to valid&esénding rate
formula. We found the formula to be quite accurate for a lass of up to
20%. We also present in this paper a simple relationship detw and g
for a GAIMD flow to be TCP-friendly, that is, for the GAIMD flow to have
approximately the same sending rate as a TCP flow under the gatin con-
ditions. We present results from simulations in which T@Erdly GAIMD
flows (@ = 0.31, 8 = 7/8) compete for bandwidth with TCP Reno flows
and with TCP SACK flows, on a DropTail link as well as on a REXlikVe
found that the GAIMD flows were highly TCP-friendly. Furtineore, with
0§ at 7/8 instead of 1/2, these GAIMD flows have reduced ratelfat@ins
compared to TCP flows.

*Research sponsored in part by National Science Foundatéom jo. ANI-9977267 and grant
no. ANI-9506048. Experiments were performed on equipmentyred with NSF grant no. CDA-
9624082.

1 Introduction

In a shared network, such as the Internet, end systems steadtto congestion
by adapting their transmission rates to avoid congestitiafgse and keep network
utilization high [8]. The robustness of the current Interisalue in large part to the
end-to-end congestion control mechanisms of TCP [13]. ttiquaar, TCP uses an
additive increase multiplicative decrease (AIMD) algorithm [4]; the TCP sending
rate is controlled by a congestion window which is halved deery window of
data containing a packet drop, and increased by one packetipgow of data
acknowledged.

Today, a wide variety of new applications such as streaminljmmedia are be-
ing developed to satisfy the growing demands of Internatsudéany of these new
applications use UDP because they do not require relialileedeand they are not
responsive to network congestion [27]. There is great aonitet widespread de-
ployment of such unresponsive applications may harm thieipeance of respon-
sive TCP applications and ultimately lead to congestiotapsk of the Internet.

To address this concern one approach is to entice thesecappts to use
reservations [5] or differentiated services [6] that pdeviQoS. However, even if
such services become available, we expect that many nevcatighs will still
want to use best-effort service because of its low cost. Ars@pproach is to
promote the use of end-to-end congestion control mechanfisnbest effort traf-
fic and to deploy incentives for its use [8]. However while T€&fgestion control
is appropriate for applications such as bulk data trangfieny real-time applica-
tions would find halving the sending rate of a flow to be too se\&response
to a congestion indication, as it can noticeably reduce th&'$luser-perceived
quality [25].

In the past few years, many unicast congestion control sekdrave been pro-
posed and investigated [12, 16, 28, 23, 3, 18, 22, 25, 20, 29T®e common
objective of these studies is to find a good alternative toctiregestion control
scheme of TCP. Since the dominant Internet traffic is TCRM$26], it is impor-
tant that new congestion control schemesla®-friendly. By this, we mean that
the sending rate of a non-TCP flow should be approximatelysdnee as that of a
TCP flow under the same conditions of round-trip time and paldss [16].

The congestion control schemes investigated can be dividedtwo cate-
gories: AIMD-based [12, 23, 3, 22, 18] and formula-based P& 25, 20, 29,
9]. Roughly speaking, AIMD-based schemes emulate the aserdy-one and
decrease-to-half window behavior of TCP. Formula-baséérses use a stochas-
tic model [16, 17, 19] to derive a formula that expresses @ Fending rate as a
function of packet loss rate, round-trip time, and timedtgsentially, all of these
schemes are based upon the increase-by-one and decrdwsbstvategy of TCP.

We observe that decrease-to-half is not a fundamentalreggent of congestion
control. In DECbit, also based on AIMD, a flow reduces its seqadate to 7/8 of
the old value in response to a packet drop [15].

In this paper, we consider a more general version of AIMD ieamplemented
in TCP; specifically, the sender’s window size is increased lf there is no packet
loss in a round-trip time, and the window size is decreasetidbcurrent value if
there is a loss indication, wheteand 3 are parameters. Since the name AIMD is
often used in the literature to refer to TCP Reno congestorol (witha: = 1 and
B = 1/2), we call our approacheneral additive increase multiplicative decrease
(GAIMD) congestion control.

GAIMD was first considered by Chiu and Jain [4]. Their studgniginly about
stability and fairness properties. They showed thataind$ satisfy the following
relationships,

0 < «

{ 0 < pB<1 @
then GAIMD congestion control is “stable” and “fair.” Howew their study only
considered the case when all flows using the samg parameters. Also, they
provided no quantitative study of the effectscofand 8 on performance metrics.
In our study, we consider in detail the relationships betwesrious performance
metrics and the parametesisand 3, assuming thaty and g3 satisfy (1). In the
balance of this paper, we assume thatndg satisfy (1) unless otherwise stated.

In particular, we are interested in the sending rate as dt®ate metric, and
responsiveness and rate fluctuations as transient melnic¢his paper, we report
results on the GAIMD sending rate. Our results on transiehilior, as well as
integration of coarse-grained GAIMD window size controtidime-grained round-
trip time control will be reported in [31].

Our first result is a formula showing the (mean) sending rata &unction of
the control parameters, and 3, the loss rate, mean round-trip time, mean timeout
value, and the number of packets each ACK acknowledges. W dunducted
extensive experiments to validate this formula. The expenits show that the
formula is accurate over a wide range@fand 8 values for a loss rate of up to
20%.

With the formula, we obtain our second result: a simple ietship betweeia
andg for a GAIMD flow to be TCP-friendly, that is, for the GAIMD flowothave
approximately the same sending rate as a TCP flow. The neiilp betweeny
andg to be TCP-friendly is

4(1 - 5%

o=

3

This relationship offers a wide selection of possible vali®r o and 5 to achieve
desired transient behaviors, such as responsiveness dunckcerate fluctuations.
For example, we can choogdo be% so that a GAIMD sender has a less dramatic
rate drop than that of TCP given one loss indication. Fordh@ce of3, if we use
a = 0.31, the GAIMD flow is TCP-friendly.

The balance of this paper is as follows. In Section 2, we mitdbe sending rate
formula for a GAIMD flow. Experiments to validate the formaee also presented
in this section. In Section 3, we use the formula to derivedd@ns under which
a GAIMD flow is TCP-friendly. In Section 4, we present expegimal results
for the TCP-friendliness conditions. We give a summary tdtesl TCP-friendly
congestion control schemes in Section 5. Conclusion anddgutork are presented
in Section 6.

2 Modding Sending Rate

The motivation of this paper is to consider a general clasoofjestion window
adjustment policies. Window adjustment policy, howevemmly one component
of a complete congestion control protocol. Other mechasisath as congestion
detection and round-trip time estimation are needed to naakemplete proto-
col. Since TCP congestion control has been studied exwpdior many years,
GAIMD adopts these other mechanisms from TCP Reno [13, 141R4In the
next subsection, we give a brief description of the GAIMD gestion window
adjustment algorithm. All other algorithms are the saméiase of TCP Reno.

2.1 GAIMD congestion window adjustment

A GAIMD session begins in thdowstart state. In this state, the congestion win-
dow size is doubled for every window of packets acknowledgedon the first
congestion indication, the congestion window size is cutalf and the session
enters thecongestion avoidance state. In this state, the congestion window size is
increased byy/W for each new ACK received, whel# is the current congestion
window size. For convenience, we say that the window sizedeased by per
round-trip time. So far we have assumed that the receivarmgtone new ACK
for each received data packet. Many TCP receiver implertientasend one cu-
mulative ACK for two consecutive packets received (i.elaged ACK [24]). In
this case, the window size is increaseddy$2 per round-trip time. GAIMD re-
duces the window size when congestion is detected. SameR&K€Go, GAIMD
detects congestion by two eventiple-duplicate ACK andtimeout. If congestion

is detected by a triple-duplicate ACK, GAIMD changes thedaw size toGW. If

the congestion indication is a timeout, the window size idsé.

2.2 Modding assumptions

In the Appendix, we derive an analytic expression for thelsenrate of a GAIMD

sender as a function aef, 3, p (loss rate),RT'T (round-trip time), Ty (timeout

value), andb (number of packets acknowledged by each ACK). The deriwdto
a fairly straightforward extension of a similar formula ided for TCP by Padhye,
Firoiu, Towsley, and Kurose [19]. Various assumptions antplfications have
been made in the analysis which are summarized below.

¢ We assume that the sender always has data to send (i.e.ratesatsender).
The receiver always advertises a large enough receiveiowisize such that
the send window size is determined by the GAIMD congestiamdaw size.

e The sending rate is a random process. We have limited ourtetf® mod-
eling the mean value of the sending rate. An interestingréutopic will be
to study the variance of the sending rate which is beyond ¢bpesof this
paper.

e We focus on GAIMD’s congestion avoidance mechanisms. Thmahof
slowstart has been ignored.

¢ We model GAIMD’s congestion avoidance behavior in termsoofnds. A
round starts with the back-to-back transmissionifpackets, wheréy
is the current window size. Once all packets falling withie tongestion
window have been sent in this back-to-back manner, no mareepis sent
until the first ACK is received for one of thH& packets. This ACK reception
marks the end of the current round and the beginning of themexd. In
this model, the duration of a round is equal to the roundinpe and is
assumed to be independent of the window size. Also, it isnasduthat
the time needed to send all of the packets in a window is smidlén the
round-trip time.

¢ We assume that losses in different rounds are independenén\& packet
in a round is lost, however, we assume all packets followirig the same
round are also lost. Thereforejs defined to be the probability that a packet
is lost, given that it is either the first packet in its roundtloe preceding
packet in its round is not lost [19].

2.3 Sendingrateformula

The following analytic expression for the average GAIMD dieg rate has been
derived (see Appendix for derivation):

1

Top(p, RTT, Tp,b) =

RTT/24=L)) + Ty min <1,3 (1_2’82)bp>p(1+32p2)

a(1+8) P o
(2)
Observe that the formula has the following two terms in theoteinator:
2b(1 —)
TD RTT,b) & RTT | ——== 3
102) ol p)? 3)
1-—032)b

From the derivation in the Appendix, we know that the dena@tun consists of
only the first termI’D,, g if all congestion indications are triple-duplicate ACKs;
note thatl'D,, 3 does not depend dfy. The second terfi'O,, g is added when
congestion indications can be both timeouts and tripldicle ACKSs; note that
TO,p does not directly depend oRT'T". From these expressions, observe that
when loss rate is small, TD, 3 = o(p’®) andTO,s = o(p'®), therefore,
TD,p dominatesI'O, g, and the sending rate is mainly determinedd®,, s.
However, ag increases]'O, g becomes larger. Define

Q £ min (1, 3 %p)

Note that@ is the middle term of'O, g. From the derivation in the Appendix
we know thatQ) approximates the probability of a loss being a timeout. Ftioen
above expression @ note that whem is small, the probability of timeout is low.
However, a® increases, the probability of timeout increases rapidly.to
We next consider how the sending rate varies with the paes&1'T, Tj, «,

B. Itis obvious from Equation (2) that the sending rate desgsavith increasing
RTT orTy. If gisincreased, botd' D, 3 andT'O, s will decrease, leading to a
higher sending rate. Also & is increased, boti#"D,, g andT'O, s will decrease,

6

leading to a higher sending rate. Furthermore, observeghmatst be less than
1 for the sending rate formula to be valid. dfapproache$, the denominator in
Equation (2) goes to infinity and the sending rate goes to 0.

Lastly, we note that Equation (2) reduces to other well-kmGZCP formulas
when we instantiate it withh = 1 andg = % First, if we ignore thel'O,, 5 term,
we obtain

1 3
T, 1 (p, RTT,b) = Trcp(p, RIT,b) = =7 \/%

which is the formula derived in [16, 17]. Next, if we includeetl’O,, g term, we
have

1

T, 1(p, RTT,Ty,b) =

1
2

RTT\/?2 + Ty min (1,3 %>p(1+32p2)

which is the formula derived in [19]. Therefore, our formsl#hsumes these other
formulas as special cases.

2.4 Formulavalidation

We have tested the formula in Equation (2) extensively usliegns network sim-
ulator. We have also conducted some experiments in LAN enmients. In all
cases, the accuracy of the formula is respectable over a naitge ofa and g
when the loss rate is less than 20%.

The purpose of our validation experiments, presented sgéction, is to an-
swer the following questions:

¢ Is the formula accurate? Over what range of loss paseit accurate?

e Since it is a statistical mean, when do sending rate vaniaii@come signif-
icant?

¢ What is the general trend when the formula loses accuracy?

24.1 Simulation setup

The simulation topology we chose to present results is tHekmewn single bot-
tleneck (“dumbbell”) as shown in Figure 1. We have also cateldl simulations
for other topologies; the results are similar.

In all of the experiments to be discussed in this section,bibiileneck link
bandwidth is fixed at 15Mbps and its propagation delay at 50viis have also

Figure 1: Simulation topology

conducted experiments with other link bandwidths and pyapan delays; the
results are similar. In all simulations, the access linkssaifficiently provisioned
to ensure that packet drops/delays due to congestion ootyiabthe bottleneck
link from R1 to R2.

We included three types of flows in the experiments. The fjyst is GAIMD
flows. To see sending rate variations, we placed 16 GAIMD flol@ compar-
ison purposes, we also placed 16 TCP Reno flows. Since thendatrtraffic on
the Internet is web-like traffic, we believe that it is import to model the effects
of competing web-like traffic (short TCP connections, sonigPUlows). It has
been reported in [21] that WWW-related traffic tends to bésiehilar in nature.
In [30], it has been shown that self-similar traffic can beated by using several
ON/OFF UDP sources whose ON/OFF times are drawn from a hiséeg distri-
bution such as the Pareto distribution. Therefore, we cls#gOFF UDP flows
as the third type of traffic. In these experiments, we set teamON time to be
1 second, and the mean OFF time to be 2 seconds. During ON #oteswurce
sends at 500Kbps. The shape parameter of the Pareto distnilisi set to be 1.5.
In our experiments, we varied the number of ON/OFF sourca® ft0 to 70 to
create a loss rate from about 1% to about 30%.

Another aspect of the simulations worth mentioning is howstegt the flows.
To avoid phase effects [10], we assign small random propagakelays to the
access links and start the flows randomly.

In all experiments in this section, each simulation is runlf20 seconds. The
loss rate is approximated by dividing the number of times dNHAflow or TCP
flow reduces its window size by the total number of packeterids. Notice that
this estimation of loss rate is a lower bound for the loss tia#t we defined in
model derivation. Consequently, we will see that the foanwill overestimate
and give an upper bound of the sending rate.

