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Abstract significant heterogeneity and may not achieve certain-desir

Multicast sessions may have a large number of receivers@pl€ fairness properties [18]. _
with heterogeneous reception capacities. To accommodate !N @ multi-rateapproach, the sender transmits at several
this heterogeneity, various multi-rate schemes, basea upo rates to different sets of receivers using either a re@itat
the use of layering or replication, have been proposed. WeScheme [5] or a layering scheme [19, 15, 13, 20, 12, 22].
consider in this paper the optimal partitioning of receiger N the replicated scheme [5], receivers are partitioned
into groups for multi-rate schemes. For a general class of into groups. _The sender generates and. sends separate data
utility functions, we formulate the partitioning problers a ~ Stréams to different groups. The sending rate to a group
an optimization problem to maximize the sum of receiver iS adjusted according to the capacities of receivers in the
utilities. We present an efficient dynamic programming al- 9roup, and is restricted to be in some fixed range. Note
gorithm to solve the partitioning problem, and prove that that replicated schemes are not bandwidth efficient due to
the solution it finds is optimal. We also show that the ma- fédundant data transmission vyhenever data streams to dif-
jority of the benefit of a multi-rate scheme can be gained ferent groups share the same link [11].
by using a small number of groups (or layers), say 4 to N a layering scheme, the sender provides data in several
5. To illustrate our solution approach, we apply it to the layers organized in a hierarchy. Receivers subscribe to the
case where receiver capacities are determined by mulé-rat layers cumulatively, i.e., if a receiver subscribes to faye
max-min fair rates. A complete protocol for receiver rates it also subscribes to layets. .. ,k — 1. In some layering
computation, rates collection, optimal receiver partitio ~ Schemes, the sending rate of each layer is assumed to be
ing, and receiver adaptation is presented. We then compareﬁxed- As a result, the sending rates may not match receiver
our approach with other multi-rate approaches as well as capacities very well.
a single-rate approach. Experimental results show that our ~ Recently, Jiang et al. studied an approach to partition re-

approach provides substantial performance improvements. C€ivers into groups and determine group transmission rates
dynamically [10]. They formulated the problem of parti-

1 Introduction tioning receivers as an optimization problem and proposed
the use of three heuristics as guidelines for partitionieg d
A multicast session may have numerous receivers with cisions, rather than finding an optimal one.
heterogeneous data reception capacities. The reception ca |n this paper, we consider the partitioning of multicast
pacity of a receiver may be limited by its own bottleneck receivers in a general framework, and present an efficient
or by the sender-to-receiver network path. To accommo- glgorithm to find an optimal solution to the problem. For
date such heterogeneity, both single-rate and multi-fate @ any multi-rate scheme, based upon the use of either layer-

proaches have been proposed. ing or replication, the following two problems need to be
In asingle-rateapproach [6, 24, 8, 2], the sender trans- gddressed:

mits at a fixed rate to all receivers. The rate is chosen
either to conform to the slowest receiver or to maximize 1. How many groups? session with a large number of

an inter-receiver fairness function [9]. Single-rate maech groups can accommodate wide receiver heterogeneity.

nisms, however, are inherently limited in accommodating However, a large number of groups would incur high
*Research sponsored in part by National Science Foundaton iyo. Ove.rheads in sender encodmg, .mUItlcaSt E!ddress allo-

ANI-9977267 and grant no. ANI-9506048. Experiments wendqumed cation, network state, and receiver decoding. There-

on equipment procured with NSF grant no. CDA-9624082. fore, the number of groups should be determined to



achieve as much benefit as possible without incurring Section 2 we formulate the optimal receiver partition prob-
excessive overheads. lem. We present an efficient algorithm for its solution and
prove that the solution is optimal. In Section 3, we apply it

2. What are the sending rates¥or some applications, g the case where receiver “isolated” rates are their multi-
the group rates are determined regardless of receiverate max-min fair rates. In Section 4, we show experimen-

capacities; for example, in a layered transmission, the | evaluation results and compare with other schemes. We
rates may be determined by encoding considerations.conclude in Section 5.

However, for applications with diverse and changing

receivers, it is desirable to determine group or layer . o .
rates dynamically according to receiver capacities. 2 The Optimal Partitioning Problem

In this paper, we investigate and present solutions 105 1 proplem formulation
these problems. We first consider a fixed number of groups
and pose the problem of determining the sending rates
for the groups as an optimal receiver partitioning problem.
Specifically, letK denote the number of groups. Receivers
are to be partitioned into grous;, Gs, ... , Gk with the
objective of maximizing the sum of receiver utilities. (The
notion of utility is motivated and defined in Section 2. As
an example, the utility of a receiver may be the data rate
it receives.) We show that there is an efficient dynamic
programming algorithm to find an optimal partition. For
a given partition, an optimal group transmission rgtefor
the receivers in grou@;, can be determined.

Our main results presented in Section 2 do not depend
upon whether layering or replication is used in the multi-
rate scheme. However, our implementation and experimen-
tal evaluation have been carried out for a layered approach
(because layering is more bandwidth efficient than replica-
tion). In what follows, we use the tergroup ratefor a
particular group to denote the aggregate sending rate to a
receiver in the group, and the tefayer rateto denote the
rate of a particular layer in a layered transmission. Suppos
the receivers are partitioned inf6 groups, with group rates
g7 < g5 < -+ < gk. Then there would bé transmis-
sion layers, with layer rateg;, 95 — 97,--- , 9% — 95 _1-

A receiver in groupk subscribes to layers fromto & and
receives an aggregate data ratgpf

We also evaluate the impact of the number of groups on
the utility of a session. We show that for a session of a

We first consider a predetermined number of groups. The
impact of the number of groups is evaluated in the last sub-
section. Before defining the problem, we first introduce
some terms. LefV denote the number of receivers akd
the number of groups.

Receiver partition Given receivers{1,2,... ,N}, a set
P ={G1,Gs,...,Gk} is said to be aeceiver parti-
tionif P is a partition of{1,2,... , N}.

Isolated rate This is the reception rate of a receiver in a
multicast session if there is no constraint from other
receivers in the same session. The reception rate may
be limited by a bottleneck in the receiver itself, or by
the sender-to-receiver network path. ketlenote the
isolated rate of receivér For ease of presentation, the
receivers are numbered such that their isolated rates are
sorted in nondecreasing order, i, < ro < --- <

TN-

Loss toleranceL This specifies the largest loss rate a re-
ceiver can tolerate. Consider a receiver with isolated
rater. If the sending rate to this receiveris> r, then
itis possible for the receiver to have a loss ratépf.

A loss tolerance ol requires** < L. Rearranging,
we haver < 7. Therefore, the receiver should not
be included in a group with sending rate higher than

reasonable size, the majority of the benefit of a multi-rate o

scheme can be gained even with a small number of groups, =L

say 410 5. Receiver utility function u(r, g) The utility of a receiver
To demonstrate the usage of our method for optimal re-  ig determined by its isolated rateand the sending rate

ceiver partitioning, we apply it to the case where receiver g of its group. Ifg is equal tor, the receiver’s capacity

capacities are determined by multi-rate max-min fair rates is fully utilized. Otherwise the capacity of the receiver

A complete protocol for rates computation, rates collec- is either underutilized or overutilized.

tion through aggregation, optimal receiver partition, asd

ceiver adaptation is presented. We also compare our apGroup utility U(G4,g) Fora groupG; with sending rate

proach with other multi-rate approaches as well as a single- g, its utility U (G, g) is defined to biieak u(ri, g).

rate scheme. Experimental results show that our approach

provides substantial performance improvements over theOptimal group transmission rate g*(Gy) For a group

other approaches. Gy, its optimal transmission rate*(Gy.) is defined
The balance of this paper is organized as follows. In to be the rate that maximizes the group utility subject



to the constraint that the loss tolerance of every group

member is satisfied, i.e.,

U(Gg, 9" (Gr)) =
0<g<

max
minje g, 7
i-L

U(Gkag)

When multiple rates exist that satisfy the above re-
quirementg*(G},) is chosen to be the smallest.

Maximum group utility U*(Gy) This is the value of
U(Gr, 9" (Gr)).

Session utility V (P) of a partition P = {G1,Ga3,... ,Gk}
ThliKs is the sum of maximum group utilities,
> k1 U™ (G).

Definition 1 (Optimal Receiver Partition) Given a set of
receivers with isolated rates,rs, ... ,ry, K groups, re-
ceiver utility functionu(r, g), and loss tolerancd., a re-

ceiver partitionP* = {G7,G3, ... ,G3 } is anoptimal re-

ceiver partitiorif V (P*) > V(P) for any receiver partition
P.

It is obvious that the optimal solution will depend upon
the receiver utility functioru(r, g). Before we proceed to
present an algorithm to find an optimal receiver partition,
we first discuss what is desired of the functiofr, g), de-
fined forr > 0 andg > 0. Intuitively, the closer are and
g to each other, the larger shoulr, g) be. And the farther
apart are andg, the smaller should(r, g) be. In particu-
lar, u(r, g) should achieve its maximum value wheg= g.
This intuition is formalized below.

Receiver Utility Property For a fixedr, u(r, g) is nonde-
creasing in the intervdD, g] and nonincreasing in the
interval[g, 00). For a fixedy, u(r, g) is nondecreasing
in the interval[0, r] and nonincreasing in the interval
[r, 00).

2.2 Optimal partition and ordered optimal parti-
tion

A straightforward way to find the optimal partition is to

enumerate all possible partitions and choose the one thatg

maximizes the session utility. This is impractical because
of the required computational complexity.

For a better solution, we first define an ordered receiverq1

partition and ordered optimal receiver partition:

Definition 2 (Ordered Receiver Partition) A partition
P ={G,1,G,,...,Gk} is anorderedreceiver partition if
ri, foralli € Gy, is less than or equal te;, for all j € Gy,
for any two group<7;, andG,, wherek < [.

Definition 3 (Ordered Optimal Receiver Partition) A
partition P* = {G7,G5,... ,G}} is anordered optimal
receiver partition if V(P*) > V(P) for any ordered
receiver partitionP.

In the next subsection, we present an efficient algorithm
to find an ordered optimal partition. Furthermore, by the
following theorem, Receiver Utility Property guarantees
that there exists an optimal partition which is also ordered
Thus, the ordered optimal receiver partition found by our al
gorithm will indeed be optimal over all possible partitions

Theorem 1 For any receiver utility function(r, g) satis-
fying Receiver Utility Property, there exists a receiver-pa
tition that is both ordered and optimal.

A proofis shown in Appendix A. By Theorem 1, an ordered
optimal partition is also an optimal partition.

2.3 Dynamic programming algorithm to find an
ordered optimal partition

In this section, we describe a dynamic programming al-
gorithm to find an ordered optimal partition.

Let V*(i, m) denote the maximum session utility of
an ordered partition of receivelfs... ,: into m groups.
The key observation is that

V*(im) = max [V (j,m 1) + U ({j + 1., i})]
1<j<i
This equation is in the classic form solvable using a
dynamic programming algorithm. Algorithm details are
shown in Figure 1. Note that this algorithm is applicable
to any optimal receiver partition problem when the receiver
utility function u(r, g) satisfies Receiver Utility Property.

OPTIMALPARTITION(K;71,72,... ,TN)
1 » Assume that is sorted in nondecreasing order.
2fori+< 1toN
3 V*i,1) <« U*({L,...,i})
4  p(i, 1)« -1
5 form <+ 2t0 K
6 fori<1toN
7 V*(i,m) < V*(i,m — 1)
p(i,m) < i
forj« 1toi—1
veV(G,m-1)+U*{j+1,...
if V*(¢,m) < vthen

9

10 y1})

12 V*(i,m) < v
13 p(i,m) < j
14 j « N

15 for m + K downto 1
16 i« j

17 j+ p(i,m)

18 G« {j+1,...,i}

Figure 1. Optimal Partition Algorithm



The complexity of the algorithm isO(KN?) if Therefore, we know that for a given gro@p U (G, g)

U*({j,7+1,...,i}) is pre-computed for ali andi, j < i. has a maximum value whenis equal to the isolated rates
However, to computé/*({j,j5 + 1,...,i}), we need to  of one of the receivers in grou. Thus, a straight-
know the definition ofu(r,g). Moreover, the complex- forward way to determine the optimal group sending rate
ity also depends on rate constraints from loss tolerdhce g¢*({j,... ,i}) is to compute the value &f ({j, ... , i}, r¢)

and from the set of possible sending rates. In the next subfor all £, j < k < 4, and choose the largest one. Then the
section, we first consider the case when the receiver utility time complexity to calculat&*({j, . . . ,¢}) for each pair of
function is piecewise convex. We consider partitioningwit j andi is O(N?), and the total complexity for ali, 7 pairs
constraints in Section 2.5. become®)(N*) if carried out in a straightforward manner.

However, we have found a more efficient algorithm
2.4 Computing group utility for piecewise convex by removing redundant computations. The details of the

functions algorithm are shown in Figure 3. For this algorithm
pre-computation take®(N?3) and CPTIMAL PARTITION()
We first study the following utility function, takesO(K N?). Therefore, the total complexity 8(N? +
K N?). SinceK is much smaller thav, the total complex-
min(r, ity is O(N?3).
urr (1, 9) = 7( 9) 1) Y (V%)
max(r, g)
COMPUTEGROUPUTILITY (71,72,... ,TN)

which was first defined in [9]. The authors introduced itin 1 » Assume that is sorted in nondecreasing order.
the context ofinter-Receiver-FairnesdRF); therefore, we 2fori—1toN

refer to this utility function asugr(r, g). Figure 2 shows 3 M(i,i) < 0
the shape of the utility function. It is clear thairr (7, g) 4 forj«i+1toN
5 M(l,j)(—M(l,j—l)'i'U,(’f'J,Tl)
Inter-Reveiver Fairness receiver utility function Uipp (r s g) 6 M (i, Z) — 'u,(’ri7 Ti)
1 N 7 for j < i —1downto1l
VRN 8 M (i, j) « M(i,j +1) +u(rj, )
/ 9fori+ 1toN
/ 10 m <+ 0
/ 11 for j <« ito N
u(r,9) / 12 G+ {i,...,j}
// 13 m < m +u(r;,r;/(1 — L))
y 14 9" (G) +ri/(1-L)
/ 15 U*(G) « m
! 16 for k < itoy
r 17 if r, > r;/(1 — L) then break
g 18 u < M(k,i) + M(k,7)
19 if U*(G) < wthen
; : o : 20 U*(G) +u
Figure 2. Receiver utility function urr(r, g) 21 7 (G) —

satisfies Receiver Utility Property. Hence, we can apply our
dynamic programming algorithm to solve it.

Further, observe thatigrr (r, g) is a convex function of
g inintervals|0, r] and[r, o0). For this type of utility func-
tions Theorem 2 says that we can complitg() by con- 2 5 Computing group utility for discrete sending

sidering only the points whergis equal to one of the iso- rates and zero loss tolerance
lated rates in groug.

Figure 3. Algorithm to compute group utilities

Theorem 2 If G is given and the receiver utility function We first consider the constraint of discrete sending rates.

u(r, g) is a convex function of in interval [0,r] and in The algorithm in Figure 3 assumes that the sender can

interval [r, c0), U(G, g) is maximized whep is equal to control its sending rate with fine granularity. While some
one of the rates il{ri’: ica) encoding schemes such as PVH [14] and H.261 [3] can

control sending rates by adjusting refresh rate, quantizer
A proof is shown in Appendix B. and movement detection threshold, some others such as



WWHVQ [23] cannot send at an arbitrary rate. For exam-  Clearly we can still use the utility functiogigr(r, g)
ple, the sending rates can only be 16kbps, 32kbps, 64kbpswhen there are both types of constraints. However, to
128kbps, and so on, or they must be multiples of a fixed demonstrate the versatility of our framework, we next in-
value like 16kbps. When usingrr(r, g), our algorithm troduce a different utility function. One possible intes{ar-
chooses one of the isolated rates as a group rate, which magion of the utility of a multicast session is the total reezv
not be one of the possible sending rates. Next, we showbandwidth. To achieve this session utility, the receivér ut
that our algorithm can handle this constraint with just mi- ity function can be defined as
nor modifications.

Consider any grou@ = {j,...,i}, wherej < i. w(r, g) £ Urate(r, g) = min(r, g) (2)
We know from the proof in Appendix B thdl (G, g) is
a convex function ofy in any interval[ry, 1], where Figure 5 shows the shape of this utility function. It is easy
Jj < k < i. Suppose there ar¥}, possible sending rates
in the interval[rk, T‘k-‘rl]l Rk71 < Rk,2 S Rk,Nk- Then Rate receiver utility function Urate (7‘, g)
we knowU(G, g) is convex in[Ry 1, Rk.n,]. Therefore, |
U(G, g) will have its maximum value whep = Ry 1 or
g = Ry n,. Thus, in order to find the optimal sending rate
g*(G), we should comput& (G, Ry, 1) andU (G, R~ ) rk
instead ofU (G, r1,) in the algorithm. Although the required
amount of computation doubles with this modification, the u(r, g)
time complexity remains the same.

We next consider the loss tolerance constraint. We note
that under certain circumstances it is undesirable for the
group rate to be higher than the isolated rates of some re- !
ceivers, not only because these receivers experiencetpacke r
loss, but also because it hurts network fairness by taking 9
bandwidth from other sessions. |If this is considered to
be important, we can speciff to be 0 so that the op-
timal group rate is always the lowest isolated rate in the
group. As a result, we do not need the innermost loop in
COMPUTEGROUPUTILITY (), and the time complexity to
compute group utilities is reduced @(N?2). The over-
all complexity of optimal receiver partitioning is reducied )

all receivers.

O(KN?). . . I :
(N t) ider th including both | ol For the rate utility function, the partitioning algorithm
ex Wz conﬂl er te case:ngt: mg ° :erho 0SS 101" can be simplified by first changing each receiver isolated
erance and sending rate constraints. Figure 4 SNOWS an €xe,q 44 the largest possible sending rate just below it. Ob-
ample of a partitioning of receivers with sending rate con- erve that this change will not affect the utility of any
straints. Given zero loss tolerance, the group rate ShOUIdfeceiver Then we apply our algorithm to find the opti-
be the _Iargest possible sending rate that is smaller than th%al receiver partition. Observe also that we can compute
lowest isolated rate in the group. the group utilities in @TIMAL PARTITION() without pre-
computation as follows:

Figure 5. Receiver utility function u,ase(r, 9)

to see that with this utility function and zero loss toleranc
the session utility is the sum of the bandwidth received at

1 2 3 ‘4 | 5
[ i 7 receiver U'{j+1,...,i}) =rjp1- (0 —7)
[ K% , isolated
i rates Although it does not require @WPUTEGROUPUTILITY (),
;/// / 5’/ , the time complexity of optimal receiver partitioning islisti
’ 2 O(KN?).

| [ | \
R1 R2 R3 R4 R5 possible
= sending

selected sending rates rates 2.6 How many groups?

In the previous subsections, the number of groups is as-
sumed to be given and fixed. We next study quantitatively
the impact of the number of groups on session utility.

Figure 4. A receiver partition with sending
rate constraints



To quantify this impact, for a given configuration of re- (a) u(r, g) = urp(r, 9)
ceivers, we define 100

_V*(K;Tl,...,T'N) 80
Qk =
V*(N;r1,...,TN)

60 —

whereV*(K;r,... ,ry) is the maximum session utility QOK

when we haveX groups. With Receiver Utility Property, it (%) 40 | Uniform —
is easy to see that the number of groups needed to achieve 4 B}\Tl%l;ﬁ:i e

the maximum utility isV, the number of receivers. 20 - —

Qi depends on the distribution of receiver isolated rates.
In our experiments, we used the following distributions: 0 ! ' '

¢ A uniform distribution over the intervadl, 10). K
e A normal distribution with mean 5 and standard devi-

ation 2. 100
¢ A bi-modal distribution consisting of two normal dis- 80 -

tributions. The means are 2 and 8 respectively, and the
variance is 1 in both distributions. One third of the Ok 60 -

receivers belong to the first normal distribution. (%)
40 Uniform —
Figure 6 demonstrates how much improvement we can Bll\fl%ﬁ:i o
achieve through increasing the number of groups for each 20 § —
distribution of 300 receivers. We usedgrr(r, g) as the
receiver utility function in (a), an@.a.c(r, g) in (b). Qx 0 L L

1 2 3 4 6 7 8 9

|
increases in each case as we add more groups. However, ;(
most of the benefit is obtained with about 4 groups. We be-
lieve that applications are unlikely to provide more than 5
groups because of encoding complexity, e.g., the number of Figure 6. Effects of the number of groups
filters required. Also, the higher is the number of groups,

the higher the network overhead will be to keep routing

states. Therefore, we think 4 or 5 is the most reasonable In the experiments to be presented, we consider the iso-

number of groups for most applications. With 4 groups, OUr |so rate of a receiver to be its multi-rate max-min fair
algorithm achieves about 80% of the maximum utility. rate [18]

Our protocol consists of four steps: isolated rates com-
3 Protocol for Max-min Fair Rates putation, rates collection, optimal receiver partitiapiand
receiver adaptation. In the following subsections we gpeci
The optimal partitioning algorithm presented in the pre- each step of the protocol. Figures 7, 8, and 9 summarize the
vious section is applicable to any network environment sender, router, and receiver algorithms.
where receivers can compute their isolated rates; it does no
depend on how to compute those rates. 3.1 Isolated rates computation
Receiver isolated rates are generally determined by re-
ceiver device constraints or network fairness requiresient We use the algorithm proposed in [17] to calculate max-
As an example, we can define the isolated rate of a re-min fair rates. The sender initiates the protocol eveésec-
ceiver to be its TCP-fair rate. In this case, the receiver onds by multicasting a messageompute-rates), where
measures the loss rate and round-trip time between itselfr is its desired sending rate. When sendinfpr the first
and the sender, and calculates its TCP-fair rate using a TCRime, the sender setgo its maximum sending rate. Once it
throughput formula [16, 7]. In a high multiplexing envi- has received feedbacks from all receivers, it adjugte be
ronment, the rate calculated this way would be accurate be-used in the next round). If the highest reported rate is equal
cause the loss rate is independent of the sending rate. Howto ther just sent, it indicates that some receivers are likely
ever, in a low multiplexing environment, the loss rate would to have higher isolated rates than the reported rate, and the
depend on the sending rate, and an iterative algorithm is re-sender increases
quired to find TCP-fair rates. The multicast messageompute-rates) is propagated



1 > M is the number of intervals. 1 Upon receiving compute-ratg-):

2 v I, is theith interval [left, right]. 2 Calculate the fair share.
3 > n, is the number of receivers in thith interval. 3 Multicast({compute-ratanin(r, o)) to all children.
4 Upon everyl' seconds: 4 Upon receivingrate intervaldI,n1), ... ,(Ins,npr)):
5 Determine the desired rate 5 Mark the child as received.
6 Multicast{compute-ratg) to all children. 6 Store the message.
7 if all children are markethen
7 Upon receivingrate intervalg Iy, ny),... , Irm,nm)): 8 Retrieve all messages and distribute rates into
8 Mark the child as received. new intervals assuming uniform distribution
9 Store the message. in each interval.
10 if all children are markethen 9 Send(rate intervals(I{,n}),... , (I, 7))
11 Retrieve all messages and sort ratespto to the parent.
1 < < N assuming uniform distribution 10 Unmark all children.
in each interval.
12 Call COMPUTEGROUPUTILITY (T1,... ,7N) ) )
and CPTIMAL PARTITION(K;7q,... ,TN). Figure 8. Router Algorithm
13 Unmark all children. . .
14 Multicast(group-rateg, ... ,gk)- Upon receiving compute-ratg):

1

2 Tisolated <~ T

3 I < [r,r]foralls, 1 <i < M.

4 Send(isolated-rateg1;, 1), (I2,0), ..., (Im,0))
to the parent.

Figure 7. Sender Algorithm

throughout the multicast tree. Each intermediate router 5 Upon receivinggroup-rategy, . .. , gk):
computes the max-min fair shacefor each downstream 6 for k —~1ltoK
link [21], and, if « is less tham, replaces: with « before it 7 if g < Pisolatea/ (1 — L) then
forwards the message through that link. 8 Subscribe to layek.

When a receiver getécompute-rates), it knows that 9 else _
r is its max-min fair rate. It assigns, ] to each of the 10 Unsubscribe to layer.
intervalsI;, 1 < i < M, and sets the number of receivers
ny for I; to be 1. The number of receivers in every other
intervaln;, 1 < i < M is setto 0. Figure 9. Receiver Algorithm
3.2 Rates collection 3.4 Receiver adaptation

Receivers report their isolated rates to their parent A receiver compares its isolated rate with the group rates
routers in the multicast tree. However, if there is a large @nnounced by the sender, and joins a layer such that its loss
number of receivers, these messages should be aggregatd@lerance will not be exceeded.
to avoid feedback implosion. When a router receives inter-
val reports from all its children, it distributes all the tefed 4 Experimental Evaluation
intervals intoM new intervals, assuming uniform distribu-

tion. In this section we first examine errors introduced by ag-

gregation at routers, and then compare our optimal parti-
3.3 Optimal partitioning t@oning. algorithm (using the protocol in the previous sec-
tion) with other approaches.
For all experiments in this section, we show results
After receiving rates from all child nodes, the sender de- for two different receiver utility functionsyrr(r, g) and
termines the optimal partition and the group rates using theu,.:(r, g), defined in equations (1) and (2), respectively.
algorithm proposed in Section 2. The determined rates areThe loss tolerancé is set to) because a nonzedo makes
sent to all receivers by multicast so that they can make de-some receivers use more bandwidth than their max-min fair
cisions to join the appropriate layers. rates and violates max-min fairness.



4.1 Aggregation accuracy (a) Normal distribution
6 | | |

Our partitioning algorithm finds the optimal rates for URE —e—
groups (layers) given receiver isolated rates. Howevacgsi Urate —o—
routers in our protocol aggregate reported rates for sitalab 4+ —
ity, it may introduce inaccuracy. In this section, we exaein Error
aggregation accuracy for different distributions of iseth (%)
rates. 2 |

Because a router assumes a uniform distribution of rates
in an interval, the aggregation is accurate for flat distri-
butions. For example, when isolated rates distribute uni- 0 | ! I I
formly, the inaccuracy was less than 3% even with only one 0 2 4 6 8 10
interval. But uniform distribution may not always be the Number of intervals
case. In most networks, the actual distribution is mordyike
to have several peaks because receivers are grouped by their
connection types, e.g., dial-up modems, ISDN, DSL, etc. ’ ' ' ' '

We next evaluate the effect of distributions on aggrega- 6 ZIRF ——
tion accuracy. We use the same normal distribution and bi- 5L rate e
modal distribution as in Section 2.6. The aggregation accu- ,
racy is measured by the difference between maximum ses- Eg;o" i
sion utility achieved with aggregatiol,,, and that without ) 5L

[
I

(b) Bi-modal distribution

aggregation},,,,. Figure 10 shows the error :‘a‘il;:ag, 2+ |

induced by aggregation. In this experiment, the number of 1L 3

receivers is 200, and the number of groups is 4. | | | |
Although the results in Figure 10 have some randomness, 0 0 9 4 6 8 10

it is clear that the error decreases as we increase the number
of intervals. From the figure we can see that 4 or 5 is a
reasonable number of intervals to use, because the error is
less than 3% with 4 intervals and further increase would Figure 10. Aggregation Accuracy
not have enough benefit to justify the additional overhead

imposed on routers.

Number of intervals

) ) Among replicated schemes, the representative approach
4.2 Comparison with other approaches is DSG [1, 4]. Jiang et al. extended DSG to partition re-
ceivers and determine group transmission rates dynamicall
In this section, we first highlight the differences between [10]. They formulated the problem of partitioning receer
our approach and two other approaches: one layering ancis an optimization problem by using receiver utility func-
one replicated. Then we compare the achieved session utiltion urr(r,g). However, they used three heuristics as
ities of our approach and other approaches. guidelines for partitioning decisions, rather than findimg
Most layering schemes use fixed layer rates. optimal one. Itis easy to come up with examples that do
Shacham [19] presented a method to assign bandwidth tcnot work well using their heuristics. From Section 2 ob-
layers to maximize the average signal quality of receivers. serve that we solved their problem optimally as a special
Although he did not explicitly define the concept of utility case.
function, his average signal quality can be considered an
instance of our utility function and thus his paper was
possibly the first to address the problem of partitioning re-
ceivers. He did not, however, adequately address optinalit
because he did not try to show the existence of an optimalln this section, we compare our approach with a single-rate
partition that is ordered. In comparison, we solved the scheme and a layering scheme with equal partition. The
optimal receiver partitioning problem for a general class sending rate of the single-rate scheme is the isolated rate
of utility functions. Our Theorem 1 shows the existence of the slowest receiver,,;,. For the layering scheme with
of an optimal partition that is ordered, which gives rise to equal partition the first (base) layer has ratg,; the rates
efficient algorithms to find an optimal partition based upon of the other layers aré=s="=is  wherer,,., is the largest
dynamic programming. isolated rate. This scheme is better than sending at a fixed

4.2.1 Comparison with a single-rate scheme and a lay-
ering scheme with equal partition



rate because it adapts to receiver capacities.

In the experiments presented below, the receiver isolated
rates have the same distributions as in the aggregation ac-
curacy experiments. The number of receivers is 200, and

the number of layers is 4. We ran simulations for receiver s1

utility functionsurp(r, g) andu,ate(r, g).

Figure 11 shows the achieved session utilities of the three
layered approaches: equal partition, optimal partitiothwi
aggregation, and optimal partition without aggregatidme T

optimal parition without aggregation scheme gives the high
est achievable session utility.

Not shown in the figures are the session utilities achieved
with the single-rate scheme. The session utilities of the
single-rate scheme ab@®.2, 200, 54.6, and200 for (a), (b),

(c), and (d), respectively, which are substantially lovert Although both the replicated and layering schemes sig-
session utilities of the layered approaches. Both optimalnificantly improve utilities compared with the single-rate
partition and equal partition achieve a session utility enor scheme, layering always achieves a higher utility because,
than three times of the utility achieved by the single-rate With a replicated scheme, each receiver utilizes only a por-
scheme. This is expected because the session utility of thdion of the bandwidth in links shared by several groups.
single-rate scheme is determined by the slowest receiverConsider the case where receivelis Az, and Az are par-
therefore its utility is usually much lower than that of laye titioned into three groups. In our topology, the link betwee
ing unless the isolated rates are very close to each other. A andsS; is shared by all three groups with shares of 0.10,

Notice that equal partition would be an optimal partition 0.23, and 0.57. In a replicated scheme, since a receiver can
if the isolated rates are distributed uniformly. Since igis  join only one group, its achieved rate is limited by these
not the case in general, there is always a gap between théates. However, in a layering scheme, a receiver can sub-
highest achievable utility and the utility obtained wittuety ~ Scribe to more layers incrementally as long as the cumula-
partition. We can clearly see the gaps in the figures of Fig- tive rate does not exceed its isolated rate.
ure 11. This gap becomes bigger as the distribution of iso- ~ Figure 12 is a very simple topology. For a more complex
lated rates deviates more from the uniform distributione Th  topology where there are many receivers sharing links, the
optimal partition (with aggregation) achieves utility inig ~ benefit of our approach is even more pronounced.
gap and outperforms the equal partition for both receiver
isolated rate distributions. Furthermore, even with a §mal 5§ Conclusion
number of intervals for aggregation, our approach achieves
a utility close to the maximum.

1.0

Figure 12. Network Topology

To accommodate multicast sessions with diverse receiver
capacities, various multi-rate schemes, based upon the use
4.2.2 Comparison with replicated scheme of layering or replication, have been proposed. We con-

sidered the optimal partitioning of receivers into groups f
To compare our approach with the replicated scheme DSG multi-rate schemes. For a general class of utility func-
we use the same network topology as the one in [10], whichtions, we formulated the partitioning problem as an opti-
is shown in Figure 124 is the sender of a multicast session, mization problem to maximize the sum of receiver utilities.
andA;, A2, andAs are receiversB andC are sets of two  \We proved that there exists an an optimal partition that-s or

and nine unicast sessions, respectively. dered (Theorem 1). We then presented an efficient dynamic
Table 1 shows the sending rates of all sessions with dif- programming algorithm to find an optimal ordered receiver
ferent multicast mechanisms. It also shogr andV; . partition. We also showed that the majority of the benefit of

of the multicast sessiod, which are the session utilities a multi-rate scheme can be gained by using a small number
for two different receiver utility functionsgr(r,g) and of groups (or layers), say 4 to 5.
Urate (T, 9)- To illustrate our solution approach, we applied it to the
The first row is for the single-rate case where the mul- case where receiver capacities are determined by multi-
ticast rate is determined by the lowest rate among all re-rate max-min fair rates. A complete protocol for receiver
ceivers’ rates. The table has two rows for the 2 layer opti- rates computation, rates collection, optimal receivetipar
mal partition because there are two ways to partition threetioning, and receiver adaptation was designed. For scal-
receivers into two groups: the first one maximi¥gsr and ability, receiver rates information is aggregated at rmite
the second maximiz&g... We showed that error introduced by aggregation is smaller
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Figure 11. Comparison of layering schemes

Mechanism Sending rates Virr(A) | Viate(A)
A Ay As B C
single-rate 0.10| 0.10| 0.10| 0.45| 0.10 1.41 0.30
DSG:{A4;},{A42,43} | 0.10| 0.23| 0.23| 0.33| 0.10 1.95 0.56
2 layers 0.10| 0.33| 0.33| 0.33| 0.10 2.37 0.77

0.10] 0.10] 0.90| 0.33| 0.10| 2.30 1.10
DSG:{A,},{4:},{A4;} | 0.10] 0.23] 057 | 0.33] 0.10| 2.33 0.90
3 layers 0.10] 0.33] 0.90| 0.33] 0.10| 3.00 1.33

Table 1. Comparison with replicated scheme
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than 3% when more than 4 aggregation intervals are used. For each casé/(P') — V(P) = AV > 0, whereP’
We then compared our approach with other multi-rate ap- (P—{G., G»})U{G",

» 1. However, sinceP is an optimal

proaches as well as a single-rate approach. Experimentapartition,V (P’) cannot exceelf (P). ThusV (P') is equal

results showed that our approach provides substantial perto V(P).

formance improvements.
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A Proof of Theorem 1

First, we restate Receiver Utility Property using formal
notation as follows:

1. Vg,Vi,Vj,1<i,j <N,

ri<r;<g — u(r,g) <u(rj,g)
g<ri<r; — u(ri,g) >u(rj,g)

2.V, Vi, Vj,1<i,j <K,

9i<gj<r
r<9i<gj

- U(T‘, gz)

S U,(T', g])
- U(T, gl) Z U

(Ta gj)

Consider an optimal partitio®® and choose any two
groupsG, and G, in P, whose group rates arg, and
g, Whereg, < ¢p. Letr,, = maxieq, rt, andr,
mingeg, rg. If r, < r, for any two groupsG, and

Gy, then P is already ordered. Otherwise there are three
possibilities. For each of the following cases, we make a

new partitionP’ by removing a misordering and show that
AV =V(P')-V(P)>0.

i. Tm Z 9

G, = Ga—{m}

Gf) = GpU {m}

AV > u(rmvgb) - u(rmvga) > 0
i. 7, < ga

G, = G,u{n}
» = Gp—{n}

AV > U’(rnvga) - u(rnvgb) > 0

. go <7 <rm < gp

G, = (GaU{n})—{m}

Gy, = (Gyu{m})—{n}
AU(Ga) > —u(Tm;9a) + u(rn, ga) >0
AU(Gy) > —u(rp,gp) +u(rm,gs) >0

AV > AU(G,) +AU(Gy) >0

11

By repeating this until there are ®, andGj
such thatr,, > r,, wherer,, = maxgeg, rr andr, =
mingeg, rr, We get an ordered optimal receiver partition.
(]

B Proof of Theorem 2

Without loss of generality, assun@é = {1,2,... ,m}.
Following our convention, we assumg< ro < --- < rpp,.

Consider any receiver, wherei € G. We notice that
with Receiver Utility Propertyu(r;,g) is nondecreasing
with respect tog in the interval[0,r;] and nonincreasing
in the interval[r,,, o). SinceU(G,g) = > ;cqu(ri,9),
we know U (G, g) is nondecreasing in the intervl, ]
and nonincreasing in the intervpd,,, c0). Therefore, to
find the maximum o/ (G, ¢), we only need to consider the
interval[ry, ry,].

Next, again consider any receivemwherei € G. Con-
sider any intervalr;, ;1] for 1 < j < m. We know
that in this intervak(r;, g) is a convex function o§. Since
U(G,g) is the sum ofu(r;,g), fori € G, it is also con-
vex in each of the intervals. According to the property of
convex functions, we know thaf(G, g) will have a maxi-
mum value ay = r; or g = r;4+1 wheng is in the interval
[rj> il O
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