
 1

Java Layers:

Extending Java to Support Component-Based
Programming

Richard Cardone Don Batory Calvin Lin

Department of Computer Sciences
University of Texas at Austin

{richcar, batory, lin} @cs.utexas.edu

June 28, 2000

Abstract
Java Layers extends the Java programming language by implementing a software
component model based on layer composition. Each layer implements a single design
feature and may contain code that crosscuts multiple classes. Layer composition enables
large software applications to be constructed in a more modular way, and with a higher
level of semantic checking, than is typically achieved using current programming
techniques such as object-oriented frameworks. This paper describes the Java Layers
language extension.

1 Introduction
A fundamental goal of software engineering is to reduce the complexity of creating and maintaining large
software applications. The need to accommodate variation has made this a difficult and elusive goal.
There are at least two types of variation. First, the need to change applications over time tends to degrade
software quality. As features are added, removed or modified, unanticipated interactions and co-
dependencies between feature implementations decrease the overall modularity of the software. The design
decays with each change until an expensive redesign is forced or until the application becomes so resistant
to change it must simply be discarded. Second, variation over feature sets allows different versions of an
application to satisfy different users, execution environments or market segments. The desire to easily
provide distinct feature sets leads to the development of families of applications or software product lines
[9]. The challenge here is to build and maintain product lines that maximize code reuse without sacrificing
performance or maintainability.

An ideal solution to both of these problems would be a programming model in which applications could be
trivially composed from components. Components would be composed in various ways to easily produce
the multiple application instances of a software product line, each with precisely the desired set of features.
Similarly, as an application’s requirements evolve, the application would be modified by either composing
components in different ways or by writing new components that would then be combined with those that
already exist.

We speak of design features, or simply features, as high-level requirements that define some application
attribute or capability. For example, applications might have features that make them secure, portable, fail-
safe, able to use multiple protocols, dependant on certain libraries, etc. A key attribute of our software
component model is that each component encapsulates exactly one design feature. This property
maximizes code reuse, since each feature is implemented only once. This property also facilitates the

 2

composition of components, making it easy to include or exclude individual features. And of course, the
one-feature/one-component property preserves code and design modularity.

This paper introduces Java Layers (JL), an extension of Java that provides a software component model
based on components called layers. Each layer supplies the code for a single design feature, and layers can
be composed using type equations. Layers are restricted forms of Java classes, so the construction of layers
is similar in complexity to the construction of standard Java classes. Type equations are sufficiently
succinct that layer composition is trivial. From layers and type equations, the JL compiler produces a
collection of Java class definitions and interface definitions.

JL is a Java source code generator based on the GenVoca model of layered software development [3][32].
JL differentiates itself from previous GenVoca efforts by combining domain independence with a central
role for interface definitions in the code generation process, language support for high-level semantic
checking, and use of a class hierarchy optimization algorithm.

This paper proceeds as follows. Section 2 describes in more detail the problems that JL is designed to
solve, contrasting JL with current practice. Section 3 gives a high-level overview of JL and Section 4
provides an illustrative example. Sections 5 and 6 describe the JL language extension and its compiler
optimizations, respectively. Related work and conclusions are discussed in Sections 7 and 8.

2 Motivation
Current programming technologies do not have the power to encapsulate complete design features in one
language construct. Code that implements a single design feature is often dispersed throughout multiple
classes or functions (scattering), and code at a single location often participates in the implementation of
multiple features (tangling) [14][23][35]. When scattering and tangling happen, there no longer is a clean
separation of concerns [26] as code performing various functions is intermixed. This intermixing
diminishes both the ability to reuse the feature code and the modularity of the program.

Software libraries, macros, parameterized types, and the object-oriented concepts of inheritance and
polymorphism are examples of current programming technologies that exhibit code tangling and scattering.
The first three techniques can only promulgate a single change at a time and, therefore, cannot easily
encapsulate features that change different procedures, methods or classes in different ways. Object-
oriented technology provides a more powerful refinement capability: The class is the basic unit of reuse
and subclassing allows multiple methods to be modified in a single refinement. Unfortunately, many
design features require changes to multiple collaborating classes [20][23][25] and cannot be accommodated
by the creation of a single subclass.

JL programming avoids code tangling and scattering by encapsulating all of the modifications that
implement a design feature inside a single layer. Since the addition or removal of a layer can induce
changes throughout an application’s code base, layers can be described as large-scale refinements. Not
only do layers preserve the modularity of an application, but composing features at the design level leads to
the kind of configurability necessary for building software product lines. We note that JL only provides
first order protection against code tangling/scattering: Feature code that requires changes to multiple layers
would become scattered. Since the features encapsulated by layers are for the most part independent of
each other, code scattering among layers should not be a serious problem in practice.

Object-oriented frameworks, a common reuse technology for developing large applications and software
product lines [29][28], exhibit their own limitations. Frameworks are a set of abstract classes that embody
an abstract design. Applications are built by extending these general, abstract classes with application-
specific, concrete implementations. The rigid distinction between framework and application often leads to
problems as both evolve [7]. Putting too many features in the framework leads to overfeaturization that
complicates the use of the framework and ultimately bloats applications with unneeded feature code [15].
Conversely, omitting features from a framework can lead to code replication across applications and the
predictable maintenance problem that this causes.

 3

Object-oriented frameworks are also susceptible to the feature combinatorics problem [4]. Given a domain
with n optional features, the feature combinatorics problem occurs when all valid feature combinations
must be predefined or in some way materialized in advance. In the worst case, n! concrete programs would
have to be instantiated. In frameworks, each abstract class that defines a variation point can be
implemented by a unique concrete class for each desired mix of features. The use of standard subclassing
alone can lead to an exponential explosion in the number of required classes. One alternative is to employ
dynamic composition to avoid the combinatorial problem at the expense of higher runtime overhead.

An important goal of JL is to improve upon the current use of object-oriented frameworks in building
applications. JL avoids the problems of overfeaturing and code replication by using layer composition to
tailor each application with only those features that it actually requires. Moreover, the code for a specific
feature needs to be implemented only once in its own reusable layer. JL also avoids the feature
combinatorics problem by generating code with the required combination of features only on demand. JL’s
static compositional approach solves the scalability problem without incurring the runtime overhead of
dynamic composition.

In the idealized plug and play environment described in the Introduction, code specification is a feature
selection and composition activity. The ability to compose high-level components in this manner must be
accompanied by an equally high-level way to restrict invalid component combinations. To illustrate this
point, consider the semantics of a feature that implements mutual exclusion in JL. Since locks typically
need to be acquired only once, a layer that implements synchronization should appear at most once in a
layer composition. Multiple appearances may not violate type correctness, but would certainly violate the
design intent of the feature. This paper will describe a preliminary version of JL’s design rules, which are
used to express this type of semantic constraint on layer composition.

Lastly, JL is motivated by the desire to raise the level of programming abstraction while still producing
efficient code. The goal in JL is that the effects of design-time layering should not significantly affect the
performance of the runtime code.

3 Java Layers Overview
JL extends standard Java and has the following design goals:

• Domain independence – One model and language should suffice for all domains.
• Easy component composition – Even novice programmers should be able to specify layer

compositions.
• Easy component creation – Layer writing should be similar in difficulty to writing Java

classes.
• Efficiency – Design-time layering should not appreciably impact runtime performance.
• Effectiveness – JL should provide compelling advantages in handling program variation.

JL is used to define and compose layers. Each JL layer can supply the code for a single, complete, design-
level feature and, in doing so, may generate code that ultimately resides in multiple classes. A layer
exports (implements) one or more Java interfaces and imports zero or more types (classes or other layers).
Two layers can be composed or stacked only if they have compatible import/export interfaces.

 4

Figure 1 – JLC Input/Output

Figure 1 shows that the JL compiler accepts layer definitions, Java classes and interfaces, and type
equations as input and produces Java class and interface definitions as output. Type equations specify layer
compositions and are typically extremely succinct. We will refer to the compilation of these type equations
as layer composition, and we will refer to the time at which this compilation occurs as composition time.
After layer composition occurs, the code generated is automatically compiled with a standard Java compiler
to produce the final executable program.

4 Examples
This section introduces the basic concepts of JL by developing a running example. We begin by defining a
standard Java interface and three layers that export it. We then show how those layers can be composed,
how the compositions can be annotated with semantic checks, and how interfaces can be easily extended.
Finally, we use a client/server example to illustrate how JL can use nested classes and interfaces to
implement large-scale refinements and build applications in a stepwise manner.

4.1 Transport Example
To understand how an application can be constructed from a set of layers, consider the following Java
interface which contains only public methods (throws clauses are not shown):

public interface TransportIfc
{
 int send(byte[] outBuf);
 int recv(byte[] inBuf);
 void disconnect();
}

Figure 2

Suppose we develop layers TCP, UDP, and UnixPipe, which export TransportIfc and provide the basic
connectivity suggested by their names. We might also develop a Secure layer, which provides data
authentication and encryption, and a KeepAlive layer which automatically sends liveness notifications
between communicating peers. Assume that the last two layers both import and export the TransportIfc
interface.

layer TCP exports TransportIfc
{
 public int send(byte[] outBuf){…}
 public int recv(byte[] inBuf){…}
 public void disconnect(){…}
}

layer Secure<mixin M implements TransportIfc>
 exports TransportIfc
{
 public int send(byte[] outBuf){…}
 public int recv(byte[] inBuf){…}
 public void disconnect(){…}
}

Figure 3

Type
Equations

JL Compiler Java Classes
and Interfaces

Layer
Definitions

Java Classes
and Interfaces+ +

 5

Figure 3 shows that the TCP and Secure layers both explicitly export the TransportIfc interface. The
Secure layer also imports either a class that implements TransportIfc or a layer that exports TransportIfc
(which, we will see shortly, amounts to the same thing). The mixin keyword indicates that the imported
type will be used as a superclass in the generated code. The ellipses represent code that actually
implements the required function and may include calls to superclass methods. The actual generated code
is described in the next section.

Mixins [10][32] are an important concept in JL that are available in C++ [34] but not Java. Mixins are
types whose supertypes are parameterized. Mixins are useful because they allow a set of classes to be
specialized in the same manner, with the specialized code residing in a single class definition. For
example, suppose we wish to extend three unrelated classes–Car , Chest and House–to be "lockable" by
adding two methods, lock() and unlock() . Without mixins, we would define subclasses of Car ,
Chest , and House that each extended their respective superclasses with the lock() and unlock()
methods. The result is code replication. With mixins, we would instead write a single class called
Lockable that could extend Car , Chest , House or any other superclass. In C++ syntax this class
would be defined as follows, where lock() and unlock() would only have to be defined once:

// Mixins in C++
template <class T>
 class Lockable : public T
{
 public lock();
 public unlock();
}

The syntactic resemblance between layer definitions and standard Java class definitions hints at their
deeper connection. Intuitively, each layer definition can be thought of as generating a Java class and a Java
interface in which the semantics of import, export and composition constraints are enforced.

4.1.1 Composing Layers

public class Tr1 = UnixPipe;
class Tr2 = Secure[UDP];
class Tr3 = KeepAlive[Secure[TCP]];

Figure 4

Once compatible layers have been defined, they can easily be composed. Figure 4 depicts three JL classes
that are defined using type equations. A type equation consists of an identifier on the left, followed by an
equals sign, followed by a layer composition on the right. The Tr1 class is publicly accessible and only
includes the functionality built into the UnixPipe layer. The UnixPipe layer, like the TCP layer shown in
Figure 3, exports the TransportIfc interface and doesn’t import any interface. Layers without imports are
called terminal layers.

The Tr2 class has package scope and allows for secure communication over UDP. As described above, the
UDP layer is a terminal layer that exports TransportIfc. The Secure layer, shown in Figure 3, is said to be
symmetric because it both imports and exports the same interface (TransportIfc). The type parameter M in
the Secure layer’s mixin clause is bound to the class generated from the UDP layer. The binding of type
parameters in JL is similar to the binding that takes place during C++ template processing.

The Tr3 class implements the automatic keep alive feature over a secure TCP connection. The TCP layer is
terminal; KeepAlive and Secure are symmetric. Type parameters in KeepAlive and Secure are bound to
the classes generated from their imported layers, Secure and TCP, respectively.

Tr3 could, alternately, have been defined with the Secure and KeepAlive layers in reverse order. The
result would be a class in which liveness messages would be sent in the clear rather than encrypted as in the
original Tr3 configuration. In this example, each of the three terminal transport layers can be combined

 6

with any combination of Secure and KeepAlive layers. If we discount type equations with duplicate layers,
there are still 15 possible feature combinations that we can easily define using this small number of layers.

Figure 5

Figure 5 shows the relationship between the Tr3 type equation, the layer composition it represents, and the
Java class hierarchy generated to implement it. The ultimate result of compiling the Tr3 type equation is a
Java class named Tr3 that implements the generated Tr3Ifc interface (not shown in the figure).

Compilation can also be seen as generating classes and interfaces for each of the layers appearing in the
Tr3 layer composition. Figure 5 depicts the unoptimized class hierarchy generated for the Tr3 type
equation, assuming that the KeepAlive layer also mixes in its imported type. By default, each generated
class name contains a unique layer number that allows layers to appear more than once in a composition.
Each of these generated classes implements a custom interface that extends TransportIfc, and each class
body is derived from its corresponding layer body.

It’s common for a method to perform some work and then invoke the superclass method with the same
signature for further processing. For example, the send() method in Secure-2 could encrypt the data then
call send() in TCP-3 for data transmission. In this way, each layer can perform its feature-specific work
and then pass control to its mixed-in superclass. JL uses mixins as a design pattern in support of the
stepwise refinement of a program. Of course, the choice to call a superclass method is purely at the
discretion of the layer programmer who chooses how each method will be implemented.

Note that the bottom mixin layer in the layer composition (TCP) becomes the root of the generated class
hierarchy (TCP-3). Layers can be thought of as a stack a of virtual machines with the highest level service
being exposed on top and the most basic service residing at the bottom. When translated into an object-
oriented model, the most basic service occupies the root of a class hierarchy and each subclass provides a
more specialized implementation. When laid out pictorially as in Figure 5, generated classes appear in an
order opposite that of the associated type equation.

Compiler optimizations that eliminate artifacts of layer specification from the generated class hierarchy are
described in Section 6. When optimized, the four classes shown in Figure 5 would be collapsed into a
single, optimized Tr3 class.

4.2 Adding Design Rules
Design rules allow semantic information to be manipulated, propagated and checked at layer composition
time. The leftmost layer in a layer composition is said to be the top node in a tree that contains all other
parameters in the composition. The KeepAlive layer is the top node in the Tr3 composition shown in
Figure 5. Design rule processing is modeled as two separate flows of design rule variables within a type

Tr3 Type Equation
Generated Class Hierarchy

(Unoptimized)

TCP-3

KeepAlive-1

Secure-2

Tr3

Parent

Child

KeepAlive

Secure

TCP

Tr3 Layer Composition

Top

Bottom

Tr3 = KeepAlive[Secure[TCP]]

Tr3 Type Equation

 7

equation. The upflow begins at leaf nodes and propagate upwards to the top node. The downflow begins at
the top node and propagates downwards to all leaf nodes.

layer TCP exports TransportIfc
 upflow { transport = true; }
{
 public int send(byte[] outBuf){…}
 public int recv(byte[] inBuf){…}
 public void disconnect(){…}
}

layer Secure<mixin M implements TransportIfc>
 exports TransportIfc
 uptest (exists(transport)&& !exists(secure))
 upflow { secure = true; }
{
 public int send(byte[] outBuf){…}
 public int recv(byte[] inBuf{…}
 public void disconnect(){…}
}

Figure 6

In Figure 6, the TCP and Secure layers have been augmented with upflow definitions; downflow
definitions can be similarly defined. The TCP layer creates and assigns the boolean variable transport
in the upflow. This variable is propagated up to the next layer in any type equation in which the TCP layer
appears. In the case of the Tr3 class in Figure 5, the Secure layer receives its upflow from the TCP layer,
which contains only the transport variable.

The Secure layer definition has been augmented with an uptest clause that must evaluate to true before
layer composition is allowed to proceed; downtest clauses are similar in structure. In this example, we
only attach meaning to the existence of variables in a flow and ignore their values. Secure’s uptest clause
can be interpreted as requiring that some lower layer provide the actual transport function and that no lower
layer already provide the secure function. Secure’s uptest would fail, for instance, if two Secure layers
appear along the same path in a type equation. In Tr3, the uptest expression evaluates to true, so design
rule processing would proceed. The next step would be to process Secure’s upflow clause by adding the
new variable, secure , to the existing upflow. The cycle of uptest/upflow processing continues in this way
up to the top node in a type equation. Though not shown, downtest/downflow processing operates in
essentially the same manner.

4.3 Adding Methods
Up to this point, we have focused on implementing existing interfaces and we have omitted the methods
needed to establish a communication session. Figure 7 shows the signatures of new session-oriented
methods (excluding throws clauses). The connect() method allows a client to initiate a session. The
createPassive() method allows a server to create a communication endpoint that accepts new sessions
using the accept() method.

public boolean connect(Address addr);
public boolean createPassive(Address addr);
public TransportIfc accept();

Figure 7

 8

layer Active<mixin M implements TransportIfc>
 exports TransportIfc
{
 public boolean connect(Address addr){…}
}

Figure 8

There are a number of ways in which a layer can augment the set of methods that it exports. The Active
layer in Figure 8 introduces the new connect() method by simply defining the public method in its body.
JL will automatically incorporate new public methods into the interface generated for the layer. Also note
that layers do not need to implement all methods of their exported interfaces.

public interface PassiveIfc
{
 boolean createPassive(Address addr);
 TransportIfc accept();
}

layer Passive<mixin M implements TransportIfc>
 exports TransportIfc, PassiveIfc
{
 public boolean createPassive(Address addr){…}
 public TransportIfc accept(){…}
}

Figure 9

A layer may also export new public methods by exporting multiple interfaces. The Passive layer in Figure
9 exports both the TransportIfc and PassiveIfc interfaces.

class TrClt = Active[Secure[TCP]];
class TrSvr = Passive[Secure[TCP]];

Figure 10

Figure 10 shows two new class definitions that we will use in the next example. The TrClt class provides
secure TCP transport to clients that can initiate sessions. The TrSvr class allows servers to create TCP
endpoints and accept new secure TCP sessions.

4.4 Client/Server Example
We now illustrate how a layer can represent a large-scale refinement that modifies multiple classes
simultaneously. We describe the central role that nested interfaces play in building JL applications and the
expressive power that nested structures bring to the JL programming model.

public interface CSIfc
{
 public interface Client
 {
 Address findServer();
 }

 public interface Server
 {
 boolean start();
 }
}

Figure 11

 9

Complex applications can be built in a stepwise fashion in JL by using nested interfaces. The CSIfc
interface in Figure 11 contains two nested public interfaces, Client and Server. Consider the following
layer that exports the CSIfc interface and uses definitions developed in our previous examples:

layer CSBase<class CltTransport implements TransportIfc,
 class SvrTransport implements TransportIfc, PassiveIfc>
 exports CSIfc
 upflow { dispatchLoop = true; }
{
 public class Client
 {
 private CltTransport ctran; // Private field using type par ameter
 public Client(){…} // Constructor
 public Address findServer(){…} // Query a server location
 }

 public class Server
 {
 private SvrTransport stran; // Private field using type par ameter
 public Server(){…} // Constructor
 public start(){…} // Command dispatch loop
 }
}

Figure 12

The CSBase layer in Figure 12 provides the base layer for a client/server application. The imported type
bound to the CltTransport type parameter must be a class that implements TransportIfc or a layer that
exports TransportIfc. The SvrTransport type parameter is similarly constrained by both TransportIfc and
PassiveIfc. The CSBase Layer provides the base implementation for the methods declared in the CSIfc
interface. We can assume that the nested class constructors in this base layer would initialize their
transport objects. Other layers that export CSIfc can provide application-specific function and rely on
CSBase for common functionality.

Type parameters introduced by the class keyword, such as those in the CSBase layer, do not imply the
inheritance relationship that the mixin keyword does. Class type parameters are simply bound at
composition time and available for use within the layer body wherever a class type is permitted.

layer CSCmd1<mixin M implements CSIfc>
 exports CSIfc
 uptest (dispatchLoop)
{
 public class Client
 {
 public Boolean cmd1(){…}
 }

 public class Server
 {
 private void cmd1Processor{…}
 }
}

Figure 13

The CSCmd1 layer represents an application-specific layer that provides both the client-side method
cmd1() and its associated server-side command processor. Though no code details are given, assume that
cmd1Processor() is invoked from the dispatch loop in the server’s start() method upon receipt of a
client cmd1 request. CSCmd1 uses a design rule to guarantee that another layer, such as CSBase,

 10

implements the core dispatch loop. Any number of new commands can be added in the same way to build
a more complex client/server application.

class CS = CSCmd1[CSBase[TrClt, TrSvr]];

Figure 14

In Figure 14, the CS class defines a client/server application that implements the cmd1() function. The
Transport layer’s TrClt and TrSvr classes, as defined in Figure 10, are used to connect the application’s
front end to its back end. To create a CS server, one would instantiate an object of type CS.Server. To
obtain a runtime instance of the CS client interface, one would instantiate an object of type CS.Client.
Invoking the cmd1() method on the client object would cause the associated server object to execute the
cmd1Processor() method. JL guarantees that the nested interfaces (Client, Server) exported by the
composition’s top layer (CSCmd1) correspond to public nested classes with the same names in the
generated class (CS).

5 Java Layers Language
This section describes in more detail the JL language constructs and programming model introduced in the
examples of the previous section. To explain the semantics of layer composition, we define the concepts of
interface propagation, genericity, constructor propagation, deep subtyping, and deep interface conformance.
The presentation should be of practical use to those interested in JL programming.

5.1 The Layer Definition
The simplest form of a layer definition is as follows:

layer L1 exports Ifc {}

The interfaces that a layer exports define the layer’s type signature.1 L1’s type signature consists of Ifc.

layer L2<mixin M implements Ifc2> exports Ifc {}

The L2 layer’s imports clause consists of everything that appears within the angular brackets. We’ve seen
how JL uses mixins [18][32], or parameterized superclasses, to generate new class hierarchies. The class
generated from the L2 layer will inherit from a superclass specified at composition time and bound to the
type parameter M. L2’s superclass must implement the Ifc2 interface. A layer may have at most one mixin
clause. Mixins allow for stepwise refinement as described in Section 4.1.1, Composing Layers, on page 5.

A layer’s type signature is automatically augmented with all interfaces specified in its mixin clause. This is
called static interface propagation because it can be computed before composition time with just the layer
definition. The L2 layer’s generated class will implement Ifc, as specified in the exports clause, and the
interface of the mixed-in superclass, Ifc2. Dynamic interface propagation takes place at composition time
and ensures that all interfaces actually implemented—not just those specified as constraints in the layer
definition—are reflected in a layer’s type signature.

layer L3<mixin M implements MIfc1, MIfc2,
 class C extends CBase implements CIfc1, CIfc2>
 exports Ifc, Ifc2 {}

We now consider non-public constraints that may be specified using the extends subclause. The L3 layer
imports both a mixin type parameter and a class type parameter. A class type parameter may be
constrained by an implements subclause and/or an extends subclause. The type parameter, C, in the L3

1 Remember that Java interfaces can only contain non-static public methods and public constant fields.

 11

layer defines both kinds of constraints. A mixin type parameter must by constrained by an implements
subclause and may also be constrained by an extends subclause.

An extends constraint can only be satisfied by the specified class or one of its subclasses and, therefore, can
be used to specify required constructors, non-static fields, static methods, protected members, etc. In the
L3 layer, only classes that extend CBase, or the CBase class itself, can be bound to the type parameter, C.
In this case, the actual parameter bound to C is also constrained to implement the CIf1 and CIfc2 interfaces.

The class generated from the L3 layer’s definition will implement the explicitly exported interfaces, Ifc and
Ifc2, as well as the statically propagated interfaces, MIfc1 and MIfc2. Interface propagation never involves
class type parameters or their interface constraints.

5.1.1 Importing Literals and Generics
JL layers can be parameterized by any primitive Java type (boolean, byte, char, double, float, int, long,
short) or by strings (java.lang.String).

layer L4<mixin M implements Ifc, int _i, string _s> exports Ifc {}

JL will insert private instance fields _i and _s in the class generated from the above definition of layer L4.
The actual parameters specified in type equations must be literals that conform to the types declared in the
layer definition. The inserted fields are initialized with their actual literal values at object construction
time.

layer L5<mixin M implements <T>> exports T {}

Layer L5 is a generic layer because its imports clause contains a parameterized implements subclause. L5
imports a single class or layer parameter as prescribed by its single mixin clause. The type parameter T
will bind at composition time to any non-empty set of interfaces implemented or exported by its actual
parameter. T is a generic interface type parameter that acts as a placeholder for a set of interfaces
determined at composition time. Once T is bound, type equation processing continues as if the interface
constraints were explicitly specified in the layer definition.

Layers such as L5 that mix in a generic interface type parameter can apply the same refinement to any type
(layer or class) and still preserve that type’s exported interface. The scope of a generic interface type
parameter is the layer definition excluding the layer body. Generic interface type parameters can also be
used in the implements clauses of class type parameters. If the same generic interface parameter appears in
multiple implements subclauses in a layer definition, the leftmost instance (ignoring new lines) is bound
first and all other instances are immediately bound to the same set of interfaces.

5.1.2 Layer Body Contents
The essential principle of layer programming is that each layer in a composition conceptually generates (1)
a Java class in which the layer body becomes the class body and (2) a Java interface. The transformation of
a layer body into a class body leaves most statements unchanged and requires that a number of naming
conventions and other restrictions be observed.

All Java control flow statements, data manipulation statements, and expressions are available to the layer
programmer. A programmer may add initializer blocks and non-public fields, methods, constructors,
nested class declarations and nested interface declarations to a layer definition without restriction.

Public members of a layer are treated specially because they help define a layer’s signature, its public
interface. New public methods and public static final fields can be added without restriction to extend the
layer’s type signature, as we saw in Section 4.3. The declaration of non-constant public fields in layers is
discouraged but not prohibited by JL. Such public fields are a part of a public interface that cannot be
captured in Java interfaces and, therefore, cannot formally contribute to a layer’s signature. Note that the

 12

extends constraint in an imports clause can often be used with an appropriate abstract class definition to
make up for this deficiency.

A layer may declare at most one public constructor, which can take any number of arguments of any type.
JL accumulates formal parameters of public constructors across the mixed-in layers of a type equation.
These accumulated parameters are used to create a chain of public constructor invocations in the classes
generated from the layer definitions. Each class’ public constructor is modified to take all the parameters
it needs plus all those needed by its superclasses. This process, called constructor propagation, also
propagates throws clauses.

5.1.3 Nested Structures
Nested interfaces and classes hold special significance in JL. The following two properties, defined by
Smaragdakis [33], are required in all classes and interfaces that are imported or exported from JL layers:

• Deep Subtyping2 – Type C is a deep subtype of another type B if C is a subtype of B, and for every
publicly accessible nested type B.N, there is a publicly accessible type C.N that is a deep subtype
of B.N.

• Deep Interface Conformance – Class C conforms deeply to interface I if C implements I, and for
each publicly accessible nested interface I.N, there is a publicly accessible class C.N that conforms
deeply to I.N.

In JL, deep subtyping applies to both Java classes and Java interfaces. This property preserves nested
names within inheritance hierarchies of classes or interfaces. Layer definitions may import and export only
interfaces that are deep subtypes. Classes used as actual parameters in type equations must be deep
subtypes and all classes generated by JL are deep subtypes.

Deep interface conformance is also enforced by the JL compiler. Classes imported into layers must
conform deeply to their implemented interfaces. Layer definitions must conform deeply to their exported
interfaces as do the classes generated from those layer definitions. The JL compiler assists the layer
programmer by automatically generating missing components of the required nested structure as needed.

The current implementation of JL imposes the restriction that classes and layers may not define public
nested interfaces. It also restricts interfaces from defining public nested classes. These restrictions may be
lifted in the future.

The restrictions on nested structures described in this section leave the vast majority of existing interface
and class definition available for use in layer definitions and type equations. At the same time, these
restrictions support the semantics of the JL programming model by guaranteeing the regular structure
needed for stepwise refinement.

5.1.4 Layer Body References
The use of the this keyword in a layer body refers to the runtime object that instantiates the layer’s
generated class or one of its subclasses. References to the super keyword in a layer body resolve to an
actual mixed-in superclass if one is specified or to Object if no mixin is specified.

In a composition, a layer node participates in an inheritance chain comprised of the node itself, all nodes
recursively mixed into it, and all nodes which recursively mix it in. We’ve seen that classes actually
generated from a layer composition implement their own corresponding inheritance chain using standard
Java subclassing.

JL introduces the thisClass keyword so that code in layer body can refer to the type of the most refined
subclass in a generated inheritance chain. The binding of thisClass is type equation specific. For example,
the TrSvr class defined in Figure 10 generates a single inheritance chain that includes TrSvr and the classes

2 Deep Subtyping is a slight generalization of Deep Subclassing in that it encompasses Java interfaces.

 13

generated from the Passive, Secure and TCP layers, in subclass to superclass order. The use of thisClass in
the bodies of any of these layers resolves to the TrSvr type. The thisClass keyword is semantically similar
to the proposed ThisType construct [12][13].

Finally, all regular type parameters imported into a layer can appear in the layer body wherever class types
are appropriate, including allocation statements. Layer programmers are also free to read and write any
imported literal fields declared by the layer.

5.1.5 Design Rules
We have seen how a large number of layer compositions are possible given even a small number of
compatible layers. Easy layer composition would be impossible if an understanding of code level
interactions between layers was required for each possible combination. Layers should be treated as black
boxes during feature selection and composition. Import/export type checking provides basic syntactic
safeguards, and design rules support the semantic checking needed to detect and restrict invalid feature
combinations [2][27]. The simple design rules illustrated in Section 4.2 were used to enforce composition
constraints that would be difficult if not impossible using type checking alone.

The JL design rule sublanguage is still actively being researched and is not currently implemented. Our
first approximation is an imperative style language, though we are looking into more declarative
approaches, including those using pattern matching. We are also considering ways to avoid scattering
design rule information among multiple layers. Work continues on various approaches of associating
design rules variables with standard Java classes, incorporating the correct abstractions into the constraint
language, standardizing the set of built-in functions, and providing meaningful error reports when a
semantic check fails.

As currently conceived, design rules are specified in layer definition clauses using the uptest, upflow,
downtest and downflow keywords. Two separate flows are modeled; the upflow and the downflow are
independent streams of variables, values and tests. In any type equation, all tests on both flows must
evaluate to true in order for the layer composition to proceed.

The algorithm below is used to evaluate each flow in a type equation independently. The algorithm
terminates successfully when the last layer in the flow has been processed or terminates with failure if any
boolean test clause returns false.

Design Rule Flow Algorithm

1. Evaluate the boolean test expression, if false return failure.
2. Evaluate flow statements.
3. Propagate remaining variables.
4. Go to step 1 for next layer if it exists else return success.

The design rule language uses a simplified Java syntax to support constraint definition and checking.
Design rule variables can be added, removed, modified or checked for existence in a flow. Variables are
typed and always bound to a non-null value. Constraint testing (step 1 in the flow algorithm) is side-effect
free.

Type inference is used to create and initialize variables if they don’t already exist in the flow. Methods,
interfaces and classes cannot be defined, though records allow programmers to structure their data.
Relational, logical and arithmetic expressions are supported. Most Java control flow statements are
available along with a small number of additional constructs and built-in functions.

Space limitations prohibit describing the design rule language in full, but we will use the following
example to convey the basic idea:

 14

layer L6<mixin M implements Ifc>
 exports Ifc
 uptest (i > 2 || i < 0)
 upflow {i-- ; sarray = {“string1”, “string2”};}
 downtest (rec1.i > 0)
 downflow nopropagate {rec2 = {j = 1, bool = false};}
{}

Variables can be of type int, boolean, char, string, and arrays and records of these types. Layer L6’s uptest
will only return true if the variable i exists in the upflow, is of type integer, and satisfies the boolean
expression. If the uptest succeeds, the upflow clause decrements i and creates or replaces the string array
named sarray .

Layer L6’s downtest checks the value of an integer field in the record rec1 . If this succeeds, the
downflow clause uses the nopropagate option to discard all current variables on this flow and then creates a
new record variable with integer and boolean fields.

Variables that exist after the upflow or downflow clauses execute are propagated to the next layer in the
flow. Since layers may import multiple types, the design rule language and implementation must
accommodate the merging of upflows and the splitting of downflows [2].

5.2 Aliases
JL allows layer compositions to be assigned a name or alias using the layerdef keyword. The
importlayerdef keyword allows aliases defined in other files to be visible in the importing file. Aliases are
macro-expanded by the JL compiler when they are encountered in type equations or layerdefs.

layerdef TRANPORT KeepAlive[Secure[TCP]];

layerdef SERVER_TRANPORT Passive[TRANSPORT];

importlayerdef mydir.myfile;

6 JL Compiler Optimization
JL optimizes the class hierarchy generated from an extended class definition through a process of class
integration and a type of semantic expansion [37]. Each generated inheritance chain is collapsed into a
single class. The associated interface definitions are similarly collapsed. This reduces JVM load time and
runtime memory overhead by minimizing the number of types.

Before classes are collapsed, superclass methods called from subclass methods with the same signatures are
usually inlined into the subclass call site(s). This optimization improves runtime performance by
eliminating method call overhead for methods that perform stepwise refinement as described in Section
4.1.1 on page 5. Unreachable methods in the inheritance chain are also detected and eliminated at
composition time.

Together, the class and method optimizations can be referred to as class flattening. Similar optimizations
implemented in previous GenVoca generators have proven effective with performance comparable to that
of hand-optimized code [22]. Intermediate classes and methods are eliminated during class flattening and,
therefore, cannot be guaranteed to exist. After optimization, JL guarantees only that the class generated by
the top layer in each inheritance chain (i.e., the layer that generates the most refined subclass in a chain)
will be present.

7 Related Work
GenVoca. JL’s lineage includes GenVoca domain-specfic [3][31][5][6] and domain-independent [30][32]
implementations. JL departs from earlier GenVoca work in the central role that interfaces play in the code

 15

generation process, the flexibility with which these interfaces can be automatically augmented, the
emphasis placed on simplifying layer construction, the language support for semantic checking, and the
emphasis placed on generating efficient, optimized code in a domain-independent setting.

Object-Oriented Frameworks. Object-oriented frameworks, especially when used in conjunction with
design patterns, represent the current state of the art for building large applications and software product
lines with standard programming languages [28][29][16]. A number of framework problems have been
documented [15][17], including overfeaturing, code replication, and the feature combinatorics problem as
described in the Motivation section. JL alleviates some of the problems associated with frameworks and
their evolution by eliminating the distinction between framework and application instance [7]. JL
augments the syntactic type checking usually found in frameworks with high-level semantic checking. To
their credit, frameworks can be developed using any modern object-oriented language without extension.

Domain-Specific Application Generators. Many domain-specific application generators or development
environments exist in today’s marketplace. Products like Microsoft’s Visual Basic GUI builder, the SAS
Institute’s data analysis suite, or SAP AG’s enterprise software can provide application solutions in specific
domains. These products can take advantage of their restricted domains to generate efficient code.
Application generators, however, often have limited flexibility and openness for technical or proprietary
reasons. JL’s building block approach is extensible and JL may be applied to any domain that’s
appropriate for Java. In theory, domain-specific application generators should always be able to generate
more efficient code than a domain-independent approach such as JL.

Parameterized Types. JL derives its compositional power from the use of supertype parameterization
(mixins) in conjunction with nested classes and interfaces. Currently, Java does not support parameterized
types of any kind and extending Java in such a manner is an active area of research [1][11] [24][36]. Since
the problem of integrating generics into the Java type system is largely orthogonal to research into large
application development, JL supports genericity only within its own layer construct. Native Java
genericity, if it becomes available and includes support for mixins, would be a natural basis for a future
version of JL.

Experimental Programming Models. JL is one of a number of research efforts that propose a new model
of programming to address fundamental software engineering issues. These proposals tend to follow the
historical trend of raising the level of programming abstraction to attain better design and code modularity.
Examples include subject-oriented programming and hyperslices [21][35], meta-class programming [19],
aspect-oriented programming [23], mixins [18], and composition filters [8]. JL distinguishes itself by
composing software components using malleable interfaces—the interface actually exported by any
component (layer) depends on the composition in which it’s included. Unlike most other proposals, JL
addresses higher-level compositional correctness by supporting programmer directed semantic checking.

8 Conclusion
We have presented the JL language and shown how complete design features can be encapsulated within a
single layer definition. Layer programming is comparable to standard Java class programming, and most
existing Java interface types can be used as is in layer definitions. Large applications and software product
lines can be built by composing sets of layers that implement precisely the features required in a particular
execution environment. Application maintenance is also reduced to an exercise in feature selection. We
saw how JL’s preliminary version of design rules provide a way for programmers to specify semantic
constraints on layer compositions. Based on past experience with GenVoca generators, JL’s class
hierarchy optimization should produce efficient object-oriented code.

JL alleviates some of the problems associated with object-oriented frameworks and their evolution. By
eliminating the rigid distinction between framework code and application code, JL generates applications
with only the code actually required. The ability to precisely customize applications for their execution
environment reduces the complexity and size of individual applications. The ability to mix and match
features on demand allows JL applications to be flexibly configured without imposing runtime overhead.

 16

The basic functionality of the JL compiler has been implemented. JL is being applied in a distributed
application environment to test scalability and the applicability of various language features. We expect to
feed changes back into JL as we gain more development experience. This experience will also help us
understand what new design methodologies are best suited to the JL programming model. Besides
investigating the design rule topics mentioned in Section 5.1.5, we are also considering the use of pattern
matching in applying the same change to multiple methods, determining the need for sublayering, and
looking for opportunities to apply more extensive compiler optimizations.

We would like to thank for Kartik Agaram, David Fink, Sam Guyer, Malcolm Haynes, Daniel Jimenez,
Dan Tecuci, Thomas Wahl, and Peter Yeh for their comments and lively discussions concerning JL.

9 References
[1] O. Agesen, S. Freund and J. Mitchell. Adding Type Parameterization to the Java Language.

OOPSLA 1997.
[2] D. Batory and B. Geraci. Composition Validation and Subjectivity in GenVoca Generators. IEEE

Transactions on Software Engineering (special issue on software reuse), February 1997.
[3] D. Batory and S. O’Malley. The Design and Implementation of Hierarchical Software Systems with

Reusable Components. ACM Transactions on Software Engineering and Methodology, Vol. 1, No. 4,
Oct. 1992.

[4] D. Batory, V. Singhal, M. Sirkin and J. Thomas. Scalable Software Libraries. Proceedings of the First
ACM Symposium on the Foundations of Software Engineering, December, 1993.

[5] D. Batory and J. Thomas. P2: A Lightwieght DBMS Generator. Technical Report TR-95-26,
Department of Computer Sciences, University of Texas at Austin, June, 1995.

[6] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for Implementing Domain-Specific Languages.
5th International Conference on Software Reuse, June 1998.

[7] D. Batory, R. Cardone and Y. Smaragdakis. Object-Oriented Frameworks and Product-Lines. To be
presented at the First Software Product Line Conference, August 2000, Denver, Colorado. Sponsored
by the Software Engineering Institute at Carnegie Mellon University.

[8] L. Bergmans. Composing Concurrent Objects. Ph.D. dissertation, University of Twente, June, 1994.
[9] J. Bosch. Product Line Architectures in Industry: A Case Study. International Conference on

Software Engineering, 1999.
[10] G. Bracha and W. Cook. Mixin-Based Inheritance. Proceeding of OOPSLA-ECOOP 1990, ACM

SIGPLAN Notices, Vol. 25, No. 10, 1990.
[11] G. Bracha, M. Odersky, D. Stoutamire and P. Wadler. Making the future safe for the past: Adding

Genericity to the Java Programming Language. OOPSLA 1998.
[12] K. Bruce. Increasing Java’s expressiveness with ThisType and match-bounded polymorphism.

Technical Report, Williams College, 1997, http:// www.cs.williams.edu./~kim/README.html.
[13] K. Bruce, M. Odersky and P. Wadler. A statically safe alternative to virtual types. European

Conference on Object-Oriented Programming, 1998.
[14] R. Cardone. On the Relationship of Aspect-Oriented Programming and GenVoca. Ninth Annual

Workshop on Software Reuse, January, 1999.
[15] W. Codenie, K. De Hondt, P. Steyaert and A. Vercammen. From Custom Applications to Domain-

Specific Frameworks. Communications of the ACM, Vol. 40, No. 10, October 1997.
[16] D. Doscher and R. Hodges. Sematech’s Experience with the CIM Framework. Communications of the

ACM, Vol. 40, No. 10, October 1998.
[17] M. Fayad and D. Schmidt. Object-Oriented Appplication Frameworks. Communications of the ACM,

Vol. 40, No. 10, October 1997.
[18] M. Flatt, S. Krishnamurthi and M. Felleisen. A Programmer’s Reduction Semantics for Classes and

Mixins. Technical report TR-97-293, Department of Computer Sciences, Rice University.
[19] I. Forman and S. Danforth. Putting Meta-Classes to Work. Addison Wesley Longman, Inc., October

1998.
[20] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns. Addison-Wesley, 1995.
[21] W. Harrison and H. Ossher. Subject-Oriented Programming (A Critique of Pure Objects). OOPSLA

1993.

 17

[22] G. Jimenez-Perez and D. Batory. Memory Simulators and Software Generators. ACM Proceedings of
the Symposium on Software Reusability, 1997, Boston.

[23] G. Kiczales , J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier and J. Irwin. Aspect-
Oriented Programming. Proceedings of the European Conference on Object-Oriented Programming,
June 1997.

[24] M. Mezini and K. Lieberherr. Adaptive Plug-and-Play Components for Evolutionary Software
Development. OOPSLA 1998.

[25] A. Myers, J. Bank and B. Liskov. Parameterized Types for Java. ACM Symposium on Principles of
Programming Languages, 1997.

[26] D. L. Parnas. On the Criteria to be Used in Decomposing Systems into Modules. Communications of
the ACM, 15(12):1053-1058, December 1972.

[27] D. E. Perry. The Inscape Environment. Proceedings of the Eleventh International Conference on
Software Engineering, May 1989.

[28] B. Rubin, A Christ and K. Bohrer. Java and the IBM San Francisco Project. IBM Systems Journal,
Vol. 37, No. 3, 1998.

[29] D. Schmidt. An Architectural Overview of the ACE Framework: A Case-study of Successful Cross-
platform Systems Software Reuse. USENIX login magazine, Tools special issue, November, 1998.

[30] V. Singhal and D. Batory. P++: A Language for Large-Scale Reusable Software Components.
Proceedings of the 6th Annual Workshop on Software Reuse, November, 1993.

[31] M. Sirkin, D. Batory and V. Singhal. Software Components in a Data Structure Pre-Compiler.
Proceeding of the 15th International Conference on Software Engineering, May 1993.

[32] Y. Smaragdakis and D. Batory. Implementing Layered Designs with Mixin Layers. European
Conference on Object-Oriented Programming, 1998.

[33] Y. Smaragdakis. Implementing Large-Scale Object-Oriented Components. Ph.D. dissertation,
University of Texas At Austin, Department of Computer Sciences, December 1999.

[34] B. Stroustrup. The C++ Porgramming Language, 3rd Edition. Addison-Wesley, 1997.
[35] P. Tarr, H. Ossher, W. Harrison and S. M. Stanley. N Degrees of Separation: Multi-Dimensional

Separation of Concerns. Proceedings of the International Conference on Software Engineering, May
1999.

[36] K. Thorup. Genericity in Java with Virtual Types. Proceedings of the European Conference on
Object-Oriented Programming, June 1997.

[37] P. Wu, S. Midkiff, J. Moreira and M. Gupta. Efficient Support for Complex Numbers in Java.
Proceedings of the ACM Conference on Java Grande, 1999.

