Java Layers:

Extending Java to Support Component-Based
Programming

Richard Cardone Don Batory Calvin Lin
Department of Computer Sciences
University of Texas at Austin
{richcar, batory, lin} @cs.utexas.edu

June 28, 2000

Abstract

Java Layers extends the Java programming language by implementing a software
component model based on layer composition. Each layer implements a single design
feature and may contain code that crosscuts multiple classes. Layer composibtas

large software applications to be constructed in a more modular way, and with a higher
level of semantic checking, than is typically achieved using current programming
techniques such as object-oriented frameworks. This paper descrikksvéhkayers
language extension.

1 Introduction

A fundamental goal of software engineering is to reduce the complexity of creatimgaamtdining large
software applications. The need to accommodate variation has made this a difficult andgekilsive
There are at least two types of variation. First, the need to change applications otendsrte degrade
software quality. As features are added, removed or modified, unanticipated inheraatic co-
dependencies between feature implementations decrease the overall modulaispfifvre. The design
decays with each change until an expensive redesign is forcetldhermpplication becomes so resistant
to change it must simply be discarded. Second, variation over feature sets allowastdiffesions of an
application to satisfy different users, execution environments or market dsgnidime desire to easily
provide distinct feature sets leads to the development of families of applicatisoféveare product lines
[9]. The challenge here is to build and maintain product lines that maximize code reuse withatihgacrif
performance or maintainability.

An ideal solution to both of these problems would be a programming model in which appéicatidd be
trivially composed fromcomponents Components would be composed in various ways to easily produce
the multiple application instances of a software product line, each with preceselgdined set of features.
Similarly, as an application’s requirements evolve, the application would béieddul either composing
components in different ways or by writing new components that wouldodgeombined with those that
already exist.

We speak oflesign featurgsor simply features, as high-level requirements that define some application
attribute or capability. For example, applications might have features that make themmsatable, fail-
safe, able to use multiple protocols, dependant on certain libraries, etc. A Keyteatdf our software
component model is that each component encapsulates exactly one design featurgropenty
maximizes code reuse, since each feature is implemented only once. This propeeyildbes the

composition of components, making it easy to include or exclude individual featArel of course, the
one-feature/one-component property preserves code and design mpdularit

This paper introduces Java Layers (JL), an extension of Java that providesaaesoftmuponent model
based on components callegers Each layer supplies the code for a single design feature, and layers can
be composed usingpeequations Layers are restricted forms of Java classes, so the corstrattayers

is similar in complexity to the construction of standard Java classes. Type equationficiently
succinct that layer composition is trivial. From layers and type equations, thenjlilezoproduces a
collection of Java class definitions and interface definitions.

JL is a Java source code generator based on the GenVoca megeted Isoftware development [3][32].
JL differentiates itself from previous GenVoca efforts by combining domain émdiemce with a central
role for interface definitions in the code generation process, language support fdevieigbemantic
checking, and use of a class hierarchy optimization algorithm.

This paper proceeds as follows. Section 2 describes in mtaié tthe problems that JL is designed to
solve, contrasting JL with current practice. Section 3 gives a high-legeliew of JL and Section 4
provides an illustrative example. Sections 5 and 6 describe the JL language exdadsitmcompiler
optimizations, respectively. Related work and conclusions are discussediam$S#and 8.

2 Motivation

Current programming technologies do not have the power to encapsulate comgitgtefadgures in one
language construct. Code that implements a single design feature is oftesedisheoughout multiple
classes or functions¢attering, and code at a single location often participates in the implementation of
multiple featuresténgling) [14][23][35]. When scattering and tangling happen, there no longer is a clean
separation of concern§26] as code performing various functions is intermixed. This intengixi
diminishes both the ability to reuse the feature code and the modularity of the program.

Software libraries, macros, parameterized types, and the object-orientegtsooicénheritance and
polymorphism are examples of current programming technologies that exhibiangtiag and scattering.

The first three techniques can only promulgate a single change at a time and, theaefooé easily
encapsulate features that change different procedures, methods es @tashfferent ways. Object-
oriented technology provides a more powerful refinement capability: The class &stheihit of reuse

and subclassing allows multiple methods to be maodified in a single refinement. Uatfeltumany

design features require changes to multiple collaborating classes [20][23][25] and cannot be accommodated
by the creation of a single subclass.

JL programming avoids code tangling and scattering by encapsulating all of tlifcatiods that
implement a design feature inside a single layer. Since the addition or removal ef aalayinduce
changes throughout an application’s code base, layers can be desciirgg:-asale refinementsNot

only do layers preserve the modularity of an application, but compaesatg és at the design level leads to
the kind of configurability acessary for building software product lines. We note that JL only provides
first order protection against code tangling/scattering: Feature code thatsetyainges to multiple layers
would become scattered. Since the features encapsulated by layers are fort thartniodependent of
each other, code scattering among layers should not be a serious proptatice.

Object-oriented frameworks, a common reuse technology for developiyey daplications and software
product lines [29][28], exhibit their own limitations. Frameworks are a set of abstraesdlaasembody

an abstract design. Applications are built by extending these general, abstract éthsappliwation-
specific, concrete implementations. The rigid distinction between framework and applafteioleads to
problems as both evolve [7]. Putting too many features in the framework leadsrt@aturizationthat
complicates the use of the framework and ultimately bloats applications with unneeded feature code [15].
Conversely, omitting features from a framework can leacbtte replicationacross applications and the
predictable maintenance problem that this causes.

Object-oriented frameworks are also susceptible téetteire combinatoricproblem [4]. Given a domain

with n optional features, the feature combinatorics problem occurs when all valid featurieat@nb

must be predefined or in some way materialized in advance. In the worst! cem®;rete programs would

have to be instantiated. In frameworks, each abstract class that defines a variation poiat can b
implemented by a unique concrete class for each desired mix of features. Bfistasdard subclassing
alone can lead to an exponential explosion in the number of required .cl@sseslternative is to employ
dynamic composition to avoid the combinatorial problem at the expense of higtiereromerhead.

An important goal of JL is to improve upon the current use of object-oridérasgworks in building
applications. JL avoids the problems of overfeaturing and code replicatioingylayger composition to
tailor each application with only those features that it actually requires. Moréoeeode for a specific
feature needs to be implemented only once in its own reusable layer. JL also theoifgature
combinatorics problem by generating code with the required combinaticstafeéfe only on demand. JL's
static compositional approach solves the scalability problem without incurring ttimeuoverhead of
dynamic composition.

In the idealized plug and play environment described in the Introduction, pedécation is a feature
selection and composition activity. The ability to compose high-level components in thisrnmarstée
accompanied by an equally high-level way to restrict invalid component combinationkusirate this
point, consider the semantics of a feature that implements mutual exclusion in JL. Sincepioaky ty
need to be acquired only once, a layer that implements synchronization shaad ajpmost once in a
layer composition. Multiple appearances may not violate type correctnesguid certainly violate the
design intent of the feature. This paper will describe a preliminary wenbitl.'sdesign ruleswhich are
used to express this type of semantic constraint on layer composition.

Lastly, JL is motivated by the desire to raise the level of programming abstraction whileosiiitipg
efficient code. The goal in JL is that the effects of design-time layering should mificaigly affect the
performance of the runtime code.

3 Java Layers Overview
JL extends standard Java and has the following design goals:

¢ Domain independence One model and language should suffice for all domains.

« Easy component compositien Even novice programmers should be able to specify layer
compositions.

« Easy component creation Layer writing should be similar in difficulty to writing Java
classes.

« Efficiency— Design-time layering should not appreciably impact runtime performance.

« Effectiveness- JL should provide compelling advantages in handling program variation.

JL is used to define and compose layers. Each JL layeupatyshe code for a single, complete, design-
level feature and, in doing so, may generate code that ultimately resides in multipde. clastayer
exports (implements) one or more Java interfaces and imports zero or more tyges (nlasher layers).
Two layers can be composed or stacked only if they have compatible import/exgdaices.

Layer Java Classes Type JL Compiler Java Classes
Definitions + | andInterfaces| -+ Equations > and Interfaces

Figure 1— JLC Input/Output

Figure 1 shows that the JL compiler accepts layer itiefis, Java classes and interfaces, &k
equationsas input and produces Java class and interface definitions as output. Type equaifyriayspe
compositions and are typically extremely succinct. We will refer to the compilatioasef type equations
aslayer compositionand we will refer to the time at which this compilation occurscespositiortime.
After layer composition occurs, the code generated is automatically compiled with a stEvdacdmpiler
to produce the final executable program.

4 Examples

This section introduces the basic concepts of JL by developing a ruewdngple. We begin by defining a
standard Java interface and three layers that export it. We then show how thosmfapersomposed,

how the compositions can be annotated with semantic checks, and how interfacesasily batended.

Finally, we use a client/server example to illustrate how JL can use nested elagsederfaces to

implement large-scale refinements and build applications in a stepwise manner.

4.1 Transport Example

To understand how an application can be constructed from a set of layerserctinsitbllowing Java
interface which contains only public methods (throws clauses are not shown):

public interface Transportlfc

{

int send(byte[] outBuf);
int recv(byte[] inBuf);
void disconnect();

}
Figure 2

Suppose we develop layers TCP, UDP, and UnixPipe, which export Trdftspod provide the basic
connectivity suggested by their names. We might also develop a Secure layer, whidespdata
authentication and encryption, and a KeepAlive layer which automatically sends livenifisations
between communicating peeréssume that the last two layers both import and export the Tratsport
interface.

layer TCP exports Transportlfc

public int send(byte[] outBuf){...}
public int recv(byte[] inBuf){...}
public void disconnect(){...}

}

layer Secure<mixin M implements Transportlfc>
exports Transportlfc

public int send(byte[] outBuf){...}
public int recv(byte[] inBuf){...}
public void disconnect(){...}

}
Figure 3

Figure 3 shows that the TCP and Secure layers both explicitly export the Trdosptetface. The
Secure layer also imports either a class that implements Transportlfc or a layepdnts €ransportlfc
(which, we will see shortly, amounts to the same thing). mixen keyword indicates that the imported
type will be used as a superclass in the generated code. The ellipsesntepodeethat actually
implements the required function and may include calls to superclass mefttmactual generated code
is described in the next section.

Mixins [10][32] are an important concept in JL that are available in C++ [34] but not Java. Mixins are
types whose supertypes are parameterized. Mixins are usefubbdbay allow a set of classes to be
specialized in the same manner, with the specialized code residing in a single classndefifor
example, suppose we wish to extend three unrelated el@ssehest andHouse—to be "lockable" by
adding two methoddpck() andunlock() . Without mixins, we would define subclasseCair,

Chest , andHouse that each extended their respective superclasses witbcl(andunlock()

methods. The result is code replication. With mixins, we would instead write a singleallasls
Lockable that could extendCar, Chest , House or any other superclass. In C++ syntax this class
would be defined as follows, whelaek() andunlock() would only have to be defined once:

/I Mixins in C++
template <class T>
class Lockable : public T

public lock();
public unlock();

}

The syntactic resemblance between layer definitions and standard Java classrdefimitie at their
deeper connection. Intuitively, each layer definition can be thought of amtege Java class and a Java
interface in which the semantics of import, export and composition constraints aceénfo

4.1.1 Composing Layers

public class Trl = UnixPipe;
class Tr2 = Secure[UDP];
class Tr3 = KeepAlive[Secure[TCP]];

Figure 4

Once compatible layers have been defined, they can easily be compose®. 4Higpicts three JL classes
that are defined using type equations. A type equation consists of an identiffex left, followed by an
equals sign, followed by a layer composition on the right. The Trl class is pubbelysible and only
includes the functionality built into the UnixPipe layer. The UnixPipe layer, li&élt®P layer shown in
Figure 3, exports the Transportlfc interface and doesn’t imporirdesface. Layers without imports are
calledterminal layers.

The Tr2 class has package scope and allows for secure communication oveA&J@¢xcribedl@ove, the
UDP layer is a terminal layer that exports Transportlfc. The Secure lagem &h Figure 3, is said to be
symmetridoecause it both imports and exports the same interface (Transportlfc). p&hatgmeter M in
the Secure layer’'s mixin clause is bound to the class generated from the UDPTlagdninding of type
parameters in JL is similar to the binding that takes place during C++ template processing.

The Tr3 class implements the automatic keep alive feature over a secure TCP connectiddP [Hyer is
terminal; KeepAlive and Secure are symmetric. Type parameters in KeepAlive and &eclbioend to
the classes generated from their imported layers, Secure and TCP, rdgpective

Tr3 could, alternately, have been defined with the Secure and KeepAlive ilayesserse order. The
result would be a class in which liveness messages would be sent in the clear rattrecrypad as in the
original Tr3 configuration. In this example, each of the three terminal transpers kegn be combined

with any combination of Secure and KeepAlive layers. If we discount type equatiorthpiitate layers,
there are still 15 possible feature combinations that we can easily define usisrgaliaumber of layers.

Generated Class Hierarchy

Tr3 Type Equation
YPeEd (Unoptimized)

Tr3 = KeepAlive[Secure[TCP]]

TCP-3 Parent

Tr3 Layer Composition Secure-2

Top KeepAlive KeepAlive-1
$ Secure
Bottom TCP Tr3 Child
Figure 5

Figure 5 shows the relationship between the Tr3 type equation, the layer tmnpbepresents, and the
Java class hierarchy generated to implement it. The ultimate result of compiling the TeQusgpen is a
Java class named Tr3 that implements the generated Tr3Ifc interface (not showiigur¢he

Compilation can also be seen as generating classes and interfaces for each afstlagpaygeing in the
Tr3 layer composition. Figure 5 depicts the unoptimized class hierarchyagghdor the Tr3 type
equation, assuming that the KeepAlive layer also mixes in its imported type. By dedatltgenerated
class name contains a unique layer number that allows layers to appear more thara @orepasition.
Each of these generated classes implements a custom interface that extendstifcaasgbeach class
body is derived from its corresponding layer body.

It's common for a method to perform some work and then invoke the superclass migthtite same
signature for further processing. For example, the send() method in-Semoukl encrypt the data then

call send() in TCP-3 for data transmission. In this way, each layer can perform ite-fgzaific work

and then pass control to its mixed-in superclass. JL uses mixins as a design pattern in support of th
stepwise refinemerdf a program. Of course, the choice to call a superclass method is purely at the
discretion of the layer programmer who chooses how each method will be impdment

Note that the bottom mixin layer in the layer composition (TCP) becomes the rootgefrtbated class

hierarchy (TCP-3). Layers can be thought of as a stack a of virtualmeachith the highest level service
being exposed on top and the most basic service residing at the bottom. Whlatetiento an object-

oriented model, the most basic service occupies the root of a class hierarchyhasubekss provides a
more specialized implementation. When laid out pictorially as in Figure 5, genelladees appear in an
order opposite that of the associated type equation.

Compiler optimizations that eliminate artifacts of layer specification from the generated dlasshyiare
described in Section 6. When optimized, the four classes shownureFgwould be collapsed into a
single, optimized Tr3 class.

4.2 Adding Design Rules

Design rules allow semantic information to be manipulated, propagated and chetayet composition
time. The leftmost layer in a layer composition is said to béaheode in a tree that contains all other
parameters in the composition. The KeepAlive layer is the top node in the Tr3 compdsition is
Figure 5. Design rule processing is modeled as two separate flalgsigh rule variables within a type

equation. Theipflowbegins at leaf nodes and propagate upwards to the top noddowitfiowbegins at
the top node and propagates downwards to all leaf nodes.

layer TCP exports Transportlfc
upflow { transport = true; }

{

public int send(byte[] outBuf){...}
public int recv(byte[] inBuf){...}
public void disconnect(){...}

}

layer Secure<mixin M implements Transportlfc>

exports Transportlfc

uptest (exists(transport)&& !exists(secure))
upflow { secure = true; }

public int send(byte[] outBuf){...}
public int recv(byte[] inBuf{...}
public void disconnect(){...}

}
Figure 6

In Figure 6, the TCP and Secure layers have been augmentedipflitv definitions; downflow
definitions can be similarly defined. The TCP layer creates and assigosothan variablé&ransport

in the upflow. This variable is propagated up to the next layer in any type eqguatibith the TCP layer
appears. In the case of the Tr3 class in Figure 5, the Secure layer receigéeiitdrom the TCP layer,
which contains only thgansport ~ variable.

The Secure layer definition has been augmented withpgest clause that must evaluate to true before
layer composition is allowed to preed;downtest clauses are similar in structure. In this example, we
only attach meaning to the existence of variables in a flow and ignore their v8kmge’s uptest clause
can be interpreted as requiring that some lower layer provide the actual tramsgtoohfand that no lower
layer already provide the secure function. Secure’s uptest would faihstance, if two Secure layers
appear along the same path in a type equation. In Tr3, the uptest expressiategtaltrue, so design
rule processing would proceed. The next step would be to process Secumisalgfise by adding the
new variablesecure , to the existing upflow. The cycle of uptest/upflow processing continutbssimvay

up to the top node in a type equation. Though not shown, downtest/dowmfioesging operates in
essentially the same manner.

4.3 Adding Methods

Up to this point, we have focused on implementing existing interfaces and we have tingitteethods
needed to establish a communication session. Figure 7 shows the signbtwessession-oriented
methods (excluding throws clauses). Tdoenect() method allows a client to initiate a session. The
createPassive() method allows a server to create a communication endpointategita new sessions
using theaccept() method.

public boolean connect(Address addr);
public boolean createPassive(Address addr);
public Transportlfc accept();

Figure 7

layer Active<mixin M implements Transportlfc>
exports Transportlfc

public boolean connect(Address addr){...}

}
Figure 8

There are a number of ways in which a layer can augment the set of methods that it &pmoAstive
layer in Figure 8 introduces the new connect() method by simply definingutiie pmethod in its body.
JL will automatically incorporate new public methods into the interface generated fayehe Also note
that layers do not need to implement all methods of their exported interfaces.

public interface Passivelfc

boolean createPassive(Address addr);
Transportlfc accept();

}

layer Passive<mixin M implements Transportlfc>
exports Transportlfc, Passivelfc

public boolean createPassive(Address addr){...}
public Transportlfc accept(){...}

Figure 9

A layer may also export new public methods by exporting multiple interfaldes Passive layer in Figure
9 exports both the Transportlfc and Passivelfc interfaces.

class TrClt = Active[Secure[TCP]];
class TrSvr = Passive[Secure[TCP]];

Figure 10

Figure 10 shows two new class definitions that we will use in the next example. The TrQrolédss
secure TCP transport to clients that can initiate sessions. The TrSvr class allowsteemeate TCP
endpoints and accept new secure TCP sessions.

4.4 Client/Server Example

We now illustrate how a layer can represent a large-scale refinement that mouifigde classes
simultaneously. We describe the central role that nested interfaces play in hilildipglications and the
expressive power that nested structures bring to the JL programminly mode

public interface CSlfc
{

public interface Client

{
Address findServer();
}

public interface Server

boolean start();

Figure 11

Complex applications can be built in a stepwise fashion in JL by using nested isteritlve CSlfc
interface in Figure 11 contains two nested public interfaces, Client and.Sé&wasider the following
layer that exports the CSlfc interface and uses definitions developed inewigus examples:

layer CSBase<class CltTransport implements Transportlfc,

class SvrTransport implements Transportlfc, Passivelfc>
exports CSlfc
upflow { dispatchLoop = true; }

public class Client

private CltTransport ctran; // Private field using type par ameter
public Client(){...} /I Constructor
public Address findServer(){...} // Query a server location
}
public class Server
{
private SvrTransport stran; // Private field using type par ameter
public Server(){...} /I Constructor
public start(){...} /l Command dispatch loop
}
}
Figure 12

The CSBase layer in Figure 12 provides the base layer for a client/server appliddteoimported type
bound to the CltTransport type parameter must be a class that implements Transportifceorttzatay
exports Transportlfc. The SvrTransport type parameter is similarly constrainethbyrbosportifc and
Passivelfc. The CSBase Layer provides the base implementation for the mettladsddin the CSlfc
interface. We can assume that the nested class constructors in this baseoldgeinitialize their
transport objects. Other layers that export CSlfc can provide applicationiesfeaidtion and rely on
CSBase for common functionality.

Type parameters introduced by tblasskeyword, such as those in the CSBase layer, do not imply the
inheritance relationship that thmixin keyword does. Class type parameters are simply bound at
composition time and available for use within the layer body wherever a class type is permitted

layer CSCmd1<mixin M implements CSlfc>
exports CSlfc
uptest (dispatchLoop)

public class Client

{
public Boolean cmd1(){...}
}

public class Server

{

private void cmd1Processor{...}

}
}

Figure 13

The CSCmd1l layer represents an application-specific layer that provides botletiteside method
cmdl() and its associated server-side command processor. Though no code detaithaesgime that
cmdlProcessor() is invoked from the dispatch loop in the servet&st() method upon receipt of a
client cmdl request. CSCmdl uses a design rule to guarantee that another layeas S08Base,

implements the core dispatch loop. Any number of new command®aaddbd in the same way to build
a more complex client/server application.

class CS = CSCmd1[CSBase[TrClt, TrSvr]];
Figure 14

In Figure 14, the CS class defines a client/server application that implementsdti(e function. The
Transport layer’s TrCIt and TrSvr classes, as defined in Figure 10, are usedéotdabre application’s

front end to its back end. To create a CS server, one would instantiate an objeet@&t$erver. To

obtain a runtime instance of the CS client interface, one would instantiate an object OSt@ient.
Invoking the cmd1() method on the client object would cause the associated b@gwttmexecute the
cmdl1Processor() method. JL guarantees that the nested interfaces, (Exiemr) exported by the
composition’s top layer (CSCmd1) correspond to public nested classes with the same names in the
generated class (CS).

5 Java Layers Language

This section describes in more detail the JL language constructs and progranodétgntroduced in the
examples of the previous section. To explain the semantics of layer compositaefingehe concepts of
interface propagation, genericity, constructor propagation, deep subtgpohdeep interface conformance.
The presentation should be of practical use to those interested in JL programming.

5.1 The Layer Definition
The simplest form of a layer definition is as follows:

layer L1 exports Ifc {}

The interfaces that a layer exports define the laygps signaturé. L1’s type signature consists of Ifc.

layer L2<mixin M implements Ifc2> exports Ifc {}

The L2 layer'smports clauseonsists of everything that appears within the angular brackets. We've seen
how JL uses mixins [18][32], or parameterized superclasses, to genevatse hierarchies. The class
generated from the L2 layer will inherit from a superclass specified at compasit@and bound to the

type parameter M. L2’s superclass must implement the Ifc2 interface. A layer may haveatemixin
clause. Mixins allow for stepwise refinement as described in Sectidh €dmposing Layers, on page 5.

A layer’s type signature is automatically augmented with all interfaces specified in its mixin dlaises
calledstatic interface propagatiohecause it can be computed before composition time with just the layer
definition. The L2 layer’'s generated class will implement Ifc, as specified inxfieete clause, and the
interface of the mixed-in superclass, Ifd2ynamic interface propagatioiakes place at composition time
and ensures that all interfaces actually implemented—not just those specified as comstthemtayer
definition—are reflected in a layer’s type signature.

layer L3<mixin M implements Mlfcl, Mifc2,
classC extendsCBasdamplements Clfcl, Clfc2>
exports Ifc, Ifc2 {}

We now consider non-public constraints that may be specifiad tiseextendssubclause. The L3 layer
imports both a mixin type parameter and a class type parameter. A class type panaayets
constrained by an implements subclause and/or an extends subclause. THaeaypser, C, in the L3

! Remember that Java interfaces can only contain non-static public methods and pshaictdlds.

10

layer defines both kinds of constraints. A mixin type parameter must by constrainednbyl@ements
subclause and may also be constrained by an extends subclause.

An extends constraint can only be satisfied by the specifiesl @tame of its subclasses and, therefore, can
be used to specify required constructors, non-static fistdtic methods, protected members, etc. In the
L3 layer, only classes that extend CBase, or the CBase class itself, can béohiwenype parameter, C.
In this case, the actual parameter bound to C is also constrained to implement émel Q2 interfaces.

The class generated from the L3 layer’s definition will implement the explicitly expoterfbices, Ifc and
Ifc2, as well as the statically propagated interfaces, Mifcl and Mifc2. Inégufapagation never involves
class type parameters or their interface constraints.

5.1.1 Importing Literals and Generics

JL layers can be parameterized by any primitive Java typaean, byte, char, double, float, int, long,
short) or by strings (java.lang.String).

layer L4<mixin M implementslfc, int _i, string _s> exports Ifc {}

JL will insert private instance fields _i and _s in the class generated fromabedefiiition of layer L4.
The actual parameters specified in type equations must be literals that conform pesrdetfared in the
layer definition. The inserted fields are initialized with their actual literal values at objesttietiion
time.

layer L5<mixin M implements <T>> exports T {}

Layer L5 is ageneric layemecause its imports clause contains a parametenggeimentssubclause. L5
imports a single class or layer parameter as prescribed by its single mixin clausepeTjar&ymeter T
will bind at composition time to any non-empty set of interfaces implemented or expyritsdalotual
parameter. T is @eneric interface type parameténat acts as a placeholder for a set of interfaces
determined at composition time. Once T is bound, type equation processing emiatinifithe interface
constraints were explicitly specified in the layer definition.

Layers such as L5 that mix in a generic interface type parameter can agaydeefinement to any type
(layer or class) and still preserve that type’s exported interface. The scapgengric interface type
parameter is the layer definiti@xcludingthe layer body. Generic interface type parameters can also be
used in the implements clauses of class type parameters. If the same generic irterfaegepappears in
multiple implements subclauses in a layer definition, the leftmost instance (ignoring ngwidibeund

first and all other instances are immediately bound to the same set of interfaces.

5.1.2 Layer Body Contents

The essential principle of layer programming is that each layer in a composition conceuatbtes (1)
a Java class in which the layer body becomes the class body and (2) a J&aeeinTdre transformation of
a layer body into a class body leaves most statements unchanged and requires that af mamiieg
conventions and other restrictions be observed.

All Java control flow statements, data manipulation statements, and expressions are availaliégeo th
programmer. A programmer may add initializer blocks aod-public fields, methods, constructors,
nested class declarations and nested interface declarations to a layer definitiohregtniztion.

Public members of a layer are treated specially because they help define a layer'sesigsapublic
interface. New public methods and public static final fields can be added without restoaiiend the
layer’s type signature, as we saw in Section 4.3. The declaration of non-consflanfiglds in layers is
discouraged but not prohibited by JL. Such public fields are a part of a mtbliface that cannot be
captured in Java interfaces and, therefore, cannot formally contribute to a Egedture. Note that the

11

extendsconstraint in an imports clause can often be used with an appropriate abstsadefitagon to
make up for this deficiency.

A layer may declare at most one public constructor, which can take any number of dsgofraary type.

JL accumulates formal parameters of public constructors across the mixed-inofagetyge equation.
These accumulated parameters are used to create a chain of public constructor isviocHtmrlasses
generated from the layer fadgtions. Each class’ public constructor is maodified to take all the parameters
it needs plus all those needed by its superclasses. This processconfidctor propagationalso
propagates throws clauses.

5.1.3 Nested Structures

Nested interfaces and classes hold special significance in JL. The followirgydperties, defined by
Smaragdakis [33], are required in all classes and interfaces that are imported or exported from JL layers:

« Deep Subtypirfg- Type C is aleep subtypef another type B if C is a subtype of B, and for every
publicly accessible nested type B.N, there is a publicly accessible type Cibl dhdeep subtype
of B.N.

» Deep Interface ConformaneeClass Gconforms deepljo interface | if C implements I, and for
each publicly accessible nested interface I.N, there is a publicly ateetads C.N that conforms
deeply to I.N.

In JL, deep subtyping applies to both Java classes and Java interféisgproperty preserves nested
names within inheritance hierarchies of classes or interfaces. Layer definitions meyaingpexport only
interfaces that are deep subtypes. Classes used as actual parameters in type equatiEnsleeps
subtypes and all classes generated by JL are deep subtypes.

Deep interface conformance is also enforced by the JL compiler.se€Slamported into layers must
conform deeply to their implemented interfaces. Layer definitions must conforty tieépeir exported
interfaces as do the classes generated from those layer definitions. The JL cesgisisr the layer
programmer by automatically generating missing components of the requiredstastade as needed.

The current implementation of JL imposes the restriction that classes and layers may egbud#in
nested interfaces. It also restricts interfaces from defining puldtechelasses. These restrictions may be
lifted in the future.

The restrictions on nested structures described in this section leawgsthmajority of existing interface
and class definition available for use in layer definitions and type equations. At the santhdsae,
restrictions support the semantics of the JL programming model by guarante=iregtifar structure
needed for stepwise refinement.

5.1.4 Layer Body References

The use of thahis keyword in a layer body refers to the runtime object that instantiates the layer’'s
generated class or one of its subclasses. Referencesdoprekeyword in a layer body resolve to an
actual mixed-in superclass if one is specified or to Object if no mixin is &okcif

In a composition, a layer node participates inrdreritance chaircomprised of the node itself, all nodes
recursively mixed into it, and all nodes which recursively mix it in. We've seen thaeglastially
generated from a layer composition implement their own corresponding inheritaicausing standard
Java subclassing.

JL introduces thehisClass keyword so that code in layer body can refer to the type of the nfiosidre
subclass in a generated inheritance chain. The bindihgs@iassis type equation specific. For example,
the TrSvr class defined in Figure 10 generates a single inheritance chainltidgsie Svr and the classes

2 Deep Subtyping is a slight generalization of Deep Subclassing in that it encompaasaseifaces.

12

generated from the Passive, Secure and TCP layers, in subclass to supeleiasthe use dhisClassin
the bodies of any of these layers resolves to the TrSvr typethiB#asskeyword is semantically similar
to the proposedhisType construct [12][13].

Finally, all regular type parameters imported into a layer can appear in the layer bodyewblaiss types
are appropriate, including allocation statements. Layer programmers are also free to neeteaarnd/
imported literal fields declared by the layer.

5.1.5 Design Rules

We have seen how a large number of layer compositions are possible givea swall number of
compatible layers. Easy layer composition would be impossible if an understandougleofilevel
interactions between layers was required for each possible combination. leyéddste treated as black
boxes during feature selection and composition. Import/export type chepkiwides basic syntactic
safeguards, and design rules support the semantic checking needed to detedtieinihvald feature
combinations [2][27]. The simple design rules illustrated in Section 4.2 were used to eofopasition
constraints that would be difficult if not impossible using type checking alone.

The JL design rule sublanguage is still actively being researched and is not currently implen@unted
first approximation is an imperative style language, though we are looking into more dezlarativ
approaches, including those using pattern matching. We are also considering wayd srattering
design rule information among multiple layers. Work continues on various aaby@ of associating
design rules variables with standard Java classes, incorporating the correct afistirgtctitne constraint
language, standardizing the set of built-in functions, and providing meanimgful reports when a
semantic check fails.

As currently conceived, design rules are specified in layer definition classeg theuptest, upflow,
downtest and downflow keywords. Two separate flows are modeled; the upflow and the downflow are
independent streams of variables, values and tests. In any type equation, all tests flmwdonust
evaluate to true in order for the layer composition teged.

The algorithm below is used to evaluate each flow in a type equation independ&h#yalgorithm
terminates successfully when the last layer in the flow has been processetmates with failure if any
boolean test clause returns false.

Design Rule Flow Algorithm

Evaluate the boolean test expression, if false regiluré.
Evaluate flow statements.

Propagate remaining variables.

Go to step 1 for next layer if it exists else return success.

PowbhpP

The design rule language uses a simplified Java syntax to support constraint definition &irdy.chec
Design rule variables can be added, removed, modified or checkedsienee in a flow. Variables are
typed and always bound to a non-null value. Constraint testing (step 1 in the flow alydsitdide-effect
free.

Type inference is used to create and initialize variables if they don't already existfiontheéViethods,
interfaces and classes cannot be defined, though records allow programmetttoestheir data.
Relational, logical and arithmetic expressions are supported. Most Java controtaflements are
available along with a small number of additional constructs and built-in functions.

Space limitations prohibit describing the design rule language in full, but we wiltheséllowing
example to convey the basic idea:

13

layer L6<mixin M implements Ifc>

exports Ifc

uptest(i>2 || i<0)

upflow {i--; sarray = {“stringl”, “string2"};}
downtest(recl.i > 0)

downflow nopropagate{rec2 = {j = 1, bool = false};}

{}

Variables can be of type int, boolean, char, string, and arrays esrdsef these types. Layer L6's uptest
will only return true if the variablé exists in the upflow, is of type integer, and satisfieshiba@ean
expression. If the uptest succeeds, the upflow clause decremedtsrieates or replaces the string array
namedsarray .

Layer L6's downtest checks the value of an integer field in the reemd . If this succeeds, the
downflow clause uses the nopropagate option to discard all current varialtes ttow and then creates a
new record variable with integer and boolean fields.

Variables that exist after the upflow or downflow clauses execute are propagatedéxttheyer in the
flow. Since layers may import multiple types, the design rule language and implementation must
accommodate the merging of upflows and the splitting of downflows [2].

5.2 Aliases

JL allows layer compositions to be assigned a name or alias usintpytbrelef keyword. The
importlayerdef keyword allows aliases defined in other files to be visible in the imppiiten Aliases are
macro-expanded by the JL compiler when they are encountered in type esjoateyerdefs.

layerdef TRANPORT KeepAlive[Secure[TCP]];
layerdef SERVER_TRANPORT Passive[TRANSPORT];
importlayerdef mydir.myfile;

6 JL Compiler Optimization

JL optimizes the class hierarchy generated from an extended class defimitiogh a process of class
integration and a type of semantic expansion [37]. Each generated inheritance chain is collapsed into a
single class. The associated interface definitions are similarly collapsed. TlrisstAdd loadtime and

runtime memory overhead by minimizing the number of types.

Before classes are collapsed, superclass methods called from subclass migthibe: same signatures are
usually inlined into the subclass call site(s). This optimization improves runtime peréa nign
eliminating method call overhead for methods that perform stepwise refinement rdisedesc Section
4.1.1 on page 5. Unreachable methods in the inheritance chain are atteddatel eliminated at
composition time.

Together, the class and method optimizations can be referredlasadlattening Similar optimizations
implemented in previous GenVoca generators have proven effective withnpenfie comparable to that

of hand-optimized code [22]. Intermediate classes and methods are eliminated during class flattening and,
therefore, cannot be guaranteed to exist. After optimization, JL guarantgdisat the class generated by

the top layer in each inheritance chain (i.e., the layer that generates the most refined subathsin)

will be present.

7 Related Work

GenVoca. JL’s lineage includes GenVoca domain-specfic [3][31][5][6] and domain-independent [30][32]
implementations. JL departs from earlier GenVoca work in the central role that iedepfag in the code

14

generation process, the flexibility with which these interfaces can be automatioghyented, the
emphasis placed on simplifying layer construction, the language sdppsgmantic checking, and the
emphasis placed on generating efficient, optimized code in a domain-indepsettiegt

Object-Oriented Frameworks. Object-oriented frameworks, especially when used in conjunction with
design patterns, represent the current state of the art for building large apdieattbsoftware product
lines with standard programming languages [28][29][16]. A number of framework problems have bee
documented [15][17], including overfeaturing, code replication, and the feature combmptoblem as
described in the Motivation section. JL alleviates some of the problems associatédméiorks and

their evolution by eliminating the distinction between framework and application instance [7]. JL
augments the syntactic type checking usually found in frameworks withdiughsemantic checking. To
their credit, frameworks can be developed using any modern objectegfi@nguage without extension.

Domain-SpecificApplication Generators. Many domain-specific application generators or development
environments exist in today’'s marketplace. Products like Mdafts Visual Basic GUI builder, the SAS
Institute’s data analysis suite, 8AP AG’s enterprise software can provide aggilan solutions in specific
domains. These products can take advantage of their restricted domains to geffieierie code.
Application generators, however, often have limited flexibility and opennessdonical or proprietary
reasons. JL’'s building block approach is extensible and JL may be applizdy domain that's
appropriate for Java. In theory, domain-specific application generators should advwatye bo generate
more efficient code than a domain-independent approach such as JL.

Parameterized Types. JL derives its compositional power from the use of supertype parameterization
(mixins) in conjunction with nested classes and interfaces. Clyrréava does not support parameterized
types of any kind and extending Java in such a manner is ae act&v of research [1][11] [24][36]. Since
the problem of integrating generics into the Java type system is largely orthogonahtatrésto large
application development, JL supports genericity only within its own layer construct. Nate Ja
genericity, if it becomes available and includes support for mixins, would be a natusafobas future
version of JL.

Experimental Programming Models. JL is one of a number of research efforts that propose a new model
of programming to address fundamental software engineering issues. Tomsslw tend to follow the
historical trend of raising the level of programming abstraction to attain better desiggode modularity.
Examples include subject-oriented programming and hyperslices [21][35], meta-class programming [19],
aspect-oriented programming [23], mixins [18], and composition filters [8]. JL distinguishes itself by
composing software components using malleable interfaces—the interface actualifecexXpy any
component (layer) depends on the composition in which it's included. Unlike thestproposals, JL
addresses higher-level compositional correctness by supporting programmer daeeteticschecking.

8 Conclusion

We have presented the JL language and shown how complete desigesfeatube encapsulated within a
single layer definition. Layer programming is comparable to standard Java classrprigg, and most
existing Java interface types can be used as is in layer definitions. Lpligatagns and software product
lines can be built by composing sets of layers that implement precisely thedasmuired in a particular
execution environment. Application maintenance is also reduced to an exercelia §election. We
saw how JL’s preliminary version of design rules provide a way ffogrammers to specify semantic
constraints on layer compositions. Based on past experience with Genduomatgrs, JL's class
hierarchy optimization should produce efficient object-oriented code.

JL alleviates some of the problems associated with object-oriented frameworks iareddhgion. By
eliminating the rigid distinction between framework code and application code, Jlatgnapplications
with only the code actually required. The ability to precisely customize applications foexkeirtion
environment reduces the complexity and size of individual applications. The ability to mix ard matc
features on demand allows JL applications to be flexibly configured without impositimme overhead.

15

The basic functionality of the JL compiler has been implemented. JL is being appliedstnitatdd
application environment to test scalability and the applicability of various languageteate expect to
feed changes back into JL as we gain more development experienceexpérience will also help us
understand what new design methodologies are best suited to the JL programodiglg Besides
investigating the design rule topics mentioned in Section 5.1.5, we areoaksidering the use of pattern
matching in applying the same change to multiple methods, determining the neabléytering and
looking for opportunities to apply more extensive compiler optimizations.

We would like to thank for Kartik Agaram, David Fink, Sam Guyer, Malcolrgnida, Daniel Jimenez,
Dan Tecuci, Thomas Wahl, and Peter Yeh for their comments and lively disusshcerning JL.

9 References

[1] O. Agesen, S. Freund and J. MitchellAdding Type Parameterization to the Java Language.
OOPSLA 1997.

[2] D. Batory and B. Geraci.Composition Validation and Subjectivity in GenVoca GeneratdEEE
Transactions on Software Engineering (special issue on software reusejariza997.

[3] D. Batory and S. O’Malley.The Design and Implementation of Hierarchical Software Systems with
Reusable Component&CM Transactions on Software Engineering and Methodology, Vol. 1, No. 4,
Oct. 1992.

[4] D. Batory, V. Singhal, M. Sirkin and J. Thom&3calable Software Librarie?roceedings of the First
ACM Symposium on the Foundations of Software Engineerimgember1993.

[5] D. Batory and J. Thomas.P2: A Lightwieght DBMS Generator.Technical Report TR-95-26,
Department of Computer Sciences, University of Texas at Austie, 1995.

[6] D. Batory, B. Lofaso, and Y. Smaragdakil'S: Tools for Implementing Domain-Specific Languages.
5th International Conference on Software Reuse, June 1998.

[7] D. Batory, R. Cardone and Y. Smaragdakidbject-Oriented Frameworks and Product-Linéo be
presented at the First Software Product Line Conference, August 200@&rP€olorado. Sponsored
by the Software Engineering Institute at Carnegie Mellon University.

[8] L. Bergmans.Composing Concurrent Object®h.D. dissertation, University of Twente, June, 1994.

[9] J. Bosch. Product Line Architectures in Industry: A Case Study. International €urdeon
Software Engineering, 1999.

[10]G. Bracha and W. CookMixin-Based Inheritance Proceeding of OOPSLA-ECOQOP®90, ACM
SIGPLAN Notices, Vol. 25, No. 10, 1990.

[11]G. Bracha, M. Odersky, D. Stoutamire and P. WadMagking the future safe for the past: Adding
Genericity to the Java Programming Languag@OPSLA 1998.

[12]K. Bruce. Increasing Java's expressiveness with ThisType and match-bounded polymorphism.
Technical Report, Williams College, 1997, httpwiw.cs.wlliams.edu./~kim/RRADME.html.

[13]K. Bruce, M. Odersky and P. WadlerA statically safe alternative to virtual typesEuropean
Conference on Object-Oriented Programming, 1998.

[14]R. Cardone. On the Relationship of Aspect-Oriented Programming and GenVbbiath Annual
Workshop on Software Reuse, January, 1999.

[15]W. Codenie, K. De Hondt, P. Steyaert and A. Vercamnfaoem Custom Applications to Domain-
Specific Frameworks.Communications of the ACM, Vol. 40, No. 10, October 1997.

[16] D. Doscher and R. HodgeSematech’s Experience with the CIM FramewdBlommunications of the
ACM, Vol. 40, No. 10, October 1998.

[17]M. Fayad and D. SchmidDbject-Oriented Appplication Framework§&ommunications of the ACM,
Vol. 40, No. 10, October 1997.

[18] M. Flatt, S. Krishnamurthi and M. Felleised Programmer’s Reduction Semantics for Classes and
Mixins. Technical report TR-97-293, Department of Computer Sciences, Ricersityive

[19]1. Forman and S. DanforthPutting Meta-Classes to Workddison Wesley Longman, Inc., October
1998.

[20]E. Gamma, R. Helm, R. Johnson and J. Vlissid@ssign Patterns.Addison-Wesley, 1995.

[21]W. Harrison and H. OssheSubject-Oriented Programming (A Critique of Pure Objec@DPSLA
1993.

16

[22] G. Jimenez-Perez and D. BatotMemory Simulators and Software GeneratofCM Proceedings of
the Symposium on Software Reusability, 1997, Boston.

[23]G. Kiczales , J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. Loingtier amdn]. Aspect-
Oriented Programming.Proceedings of the European Conference on Object-OrientecaProgrg,
June 1997.

[24]M. Mezini and K. Lieberherr. Adaptive Plug-and-Play Components for Evolutionary Software
Development. OOPSLA 1998.

[25] A. Myers, J. Bank and B. Liskowarameterized Types for Jav&ACM Symposium on Principles of
Programming Languages, 1997.

[26]D. L. Parnas.On the Criteria to be Used in Decomposing Systems into ModGle@smunications of
the ACM, 15(12):1053-1058, éaember1972.

[27]D. E. Perry. The Inscape EnvironmentProceedings of the Eleventh Intational Conference on
Software Engineering, May 1989.

[28]B. Rubin, A Christ and K. BohrerJava and the IBM San Francisco ProjedBM Systems Journal,
Vol. 37, No. 3, 1998.

[29]D. Schmidt. An Architectural Overview of the ACE Framework: A Case-study of Successful Cross-
platform Systems Software ReustSENIX login magazine, Tools special issue, November, 1998.
[30]V. Singhal and D. Batory.P++: A Language for Large-Scale Reusable Software Components.

Proceedings of thé"6Annual Workshop on Software Reuse, November, 1993.

[31]M. Sirkin, D. Batory and V. Singhal.Software Components in a Data Structure Pre-Compiler.
Proceeding of the i5International Conference on Software Engineering, May 1993.

[32]Y. Smaragdakis and D. Batorylmplementing Layered Designs with Mixin Layer&uropean
Conference on Object-Oriented Programming, 1998.

[33]Y. Smaragdakis. Implementing Large-Scale Object-Oriented Componenih.D. dissertation,
University of Texas At Austin, Department of Computer Sciences, Deceir@bér

[34]B. Stroustrup.The C++ Porgramming Language“Edition. Addison-Wesley, 1997.

[35]P. Tarr, H. Ossher, W. Harrison and S. M. StanlbyDegrees of Separation: Multi-Dimensional
Separation of ConcernsProceedings of the Intemtional Conference on Software Engineering, May
1999.

[36]K. Thorup. Genericity in Java with Virtual TypesProceedings of the European Conference on
Object-Oriented Programming, June 1997.

[37]P. Wu, S. Midkiff, J. Moreira and M. GuptaEfficient Support for Complex Numbers in Java.
Proceedings of the ACM Conference on Java Gral@R9.

17

