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Abstract 
Java Layers extends the Java programming language by implementing a software 
component model based on layer composition.  Each layer implements a single design 
feature and may contain code that crosscuts multiple classes.  Layer composition enables 
large software applications to be constructed in a more modular way, and with a higher 
level of semantic checking, than is typically achieved using current programming 
techniques such as object-oriented frameworks.  This paper describes the Java Layers 
language extension.  

1 Introduction 
A fundamental goal of software engineering is to reduce the complexity of creating and maintaining large 
software applications.  The need to accommodate variation has made this a difficult and elusive goal.  
There are at least two types of variation.  First, the need to change applications over time tends to degrade 
software quality.  As features are added, removed or modified, unanticipated interactions and co-
dependencies between feature implementations decrease the overall modularity of the software.  The design 
decays with each change until an expensive redesign is forced or until the application becomes so resistant 
to change it must simply be discarded.  Second, variation over feature sets allows different versions of an 
application to satisfy different users, execution environments or market segments.  The desire to easily 
provide distinct feature sets leads to the development of families of applications or software product lines 
[9].  The challenge here is to build and maintain product lines that maximize code reuse without sacrificing 
performance or maintainability. 
 
An ideal solution to both of these problems would be a programming model in which applications could be 
trivially composed from components.  Components would be composed in various ways to easily produce 
the multiple application instances of a software product line, each with precisely the desired set of features.  
Similarly, as an application’s requirements evolve, the application would be modified by either composing 
components in different ways or by writing new components that would then be combined with those that 
already exist.   
 
We speak of design features, or simply features, as high-level requirements that define some application 
attribute or capability.  For example, applications might have features that make them secure, portable, fail-
safe, able to use multiple protocols, dependant on certain libraries, etc.  A key attribute of our software 
component model is that each component encapsulates exactly one design feature.  This property 
maximizes code reuse, since each feature is implemented only once.  This property also facilitates the 
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composition of components, making it easy to include or exclude individual features.  And of course, the 
one-feature/one-component property preserves code and design modularity. 
 
This paper introduces Java Layers (JL), an extension of Java that provides a software component model 
based on components called layers.  Each layer supplies the code for a single design feature, and layers can 
be composed using type equations.  Layers are restricted forms of Java classes, so the construction of layers 
is similar in complexity to the construction of standard Java classes. Type equations are sufficiently 
succinct that layer composition is trivial.  From layers and type equations, the JL compiler produces a 
collection of Java class definitions and interface definitions.  
 
JL is a Java source code generator based on the GenVoca model of layered software development [3][32].   
JL differentiates itself from previous GenVoca efforts by combining domain independence with a central 
role for interface definitions in the code generation process, language support for high-level semantic 
checking, and use of a class hierarchy optimization algorithm.     
 
This paper proceeds as follows.  Section 2 describes in more detail the problems that JL is designed to 
solve, contrasting JL with current practice.  Section 3 gives a high-level overview of JL and Section 4 
provides an illustrative example.  Sections 5 and 6 describe the JL language extension and its compiler 
optimizations, respectively.  Related work and conclusions are discussed in Sections 7 and 8. 

2 Motivation  
Current programming technologies do not have the power to encapsulate complete design features in one 
language construct.  Code that implements a single design feature is often dispersed throughout multiple 
classes or functions (scattering), and code at a single location often participates in the implementation of 
multiple features (tangling) [14][23][35].  When scattering and tangling happen, there no longer is a clean 
separation of concerns [26] as code performing various functions is intermixed.  This intermixing 
diminishes both the ability to reuse the feature code and the modularity of the program.   
 
Software libraries, macros, parameterized types, and the object-oriented concepts of inheritance and 
polymorphism are examples of current programming technologies that exhibit code tangling and scattering.  
The first three techniques can only promulgate a single change at a time and, therefore, cannot easily 
encapsulate features that change different procedures, methods or classes in different ways.  Object-
oriented technology provides a more powerful refinement capability:  The class is the basic unit of reuse 
and subclassing allows multiple methods to be modified in a single refinement.  Unfortunately, many 
design features require changes to multiple collaborating classes [20][23][25] and cannot be accommodated 
by the creation of a single subclass. 
 
JL programming avoids code tangling and scattering by encapsulating all of the modifications that 
implement a design feature inside a single layer.  Since the addition or removal of a layer can induce 
changes throughout an application’s code base, layers can be described as large-scale refinements.  Not 
only do layers preserve the modularity of an application, but composing features at the design level leads to 
the kind of configurability necessary for building software product lines.  We note that JL only provides 
first order protection against code tangling/scattering:  Feature code that requires changes to multiple layers 
would become scattered.  Since the features encapsulated by layers are for the most part independent of 
each other, code scattering among layers should not be a serious problem in practice.   
 
Object-oriented frameworks, a common reuse technology for developing large applications and software 
product lines [29][28], exhibit their own limitations.  Frameworks are a set of abstract classes that embody 
an abstract design.   Applications are built by extending these general, abstract classes with application-
specific, concrete implementations.  The rigid distinction between framework and application often leads to 
problems as both evolve [7].  Putting too many features in the framework leads to overfeaturization that 
complicates the use of the framework and ultimately bloats applications with unneeded feature code [15].  
Conversely, omitting features from a framework can lead to code replication across applications and the 
predictable maintenance problem that this causes. 
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Object-oriented frameworks are also susceptible to the feature combinatorics problem [4].  Given a domain 
with n optional features, the feature combinatorics problem occurs when all valid feature combinations 
must be predefined or in some way materialized in advance.  In the worst case, n! concrete programs would 
have to be instantiated.  In frameworks, each abstract class that defines a variation point can be 
implemented by a unique concrete class for each desired mix of features.  The use of standard subclassing 
alone can lead to an exponential explosion in the number of required classes.  One alternative is to employ 
dynamic composition to avoid the combinatorial problem at the expense of higher runtime overhead.       
 
An important goal of JL is to improve upon the current use of object-oriented frameworks in building 
applications.  JL avoids the problems of overfeaturing and code replication by using layer composition to 
tailor each application with only those features that it actually requires.  Moreover, the code for a specific 
feature needs to be implemented only once in its own reusable layer.  JL also avoids the feature 
combinatorics problem by generating code with the required combination of features only on demand.  JL’s 
static compositional approach solves the scalability problem without incurring the runtime overhead of 
dynamic composition.   
 
In the idealized plug and play environment described in the Introduction, code specification is a feature 
selection and composition activity.  The ability to compose high-level components in this manner must be 
accompanied by an equally high-level way to restrict invalid component combinations.  To illustrate this 
point, consider the semantics of a feature that implements mutual exclusion in JL.  Since locks typically 
need to be acquired only once, a layer that implements synchronization should appear at most once in a 
layer composition.  Multiple appearances may not violate type correctness, but would certainly violate the 
design intent of the feature.  This paper will describe a preliminary version of JL’s design rules, which are 
used to express this type of semantic constraint on layer composition.   
 
Lastly, JL is motivated by the desire to raise the level of programming abstraction while still producing 
efficient code.  The goal in JL is that the effects of design-time layering should not significantly affect the 
performance of the runtime code.  

3 Java Layers Overview 
JL extends standard Java and has the following design goals: 
 

• Domain independence – One model and language should suffice for all domains.  
• Easy component composition – Even novice programmers should be able to specify layer 

compositions. 
• Easy component creation – Layer writing should be similar in difficulty to writing Java 

classes.  
• Efficiency – Design-time layering should not appreciably impact runtime performance. 
• Effectiveness – JL should provide compelling advantages in handling program variation. 

 
JL is used to define and compose layers.  Each JL layer can supply the code for a single, complete, design-
level feature and, in doing so, may generate code that ultimately resides in multiple classes.  A layer 
exports (implements) one or more Java interfaces and imports zero or more types (classes or other layers).  
Two layers can be composed or stacked only if they have compatible import/export interfaces.   
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Figure 1 – JLC Input/Output 

 
Figure 1 shows that the JL compiler accepts layer definitions, Java classes and interfaces, and type 
equations as input and produces Java class and interface definitions as output.  Type equations specify layer 
compositions and are typically extremely succinct.  We will refer to the compilation of these type equations 
as layer composition, and we will refer to the time at which this compilation occurs as composition time.  
After layer composition occurs, the code generated is automatically compiled with a standard Java compiler 
to produce the final executable program. 

4 Examples 
This section introduces the basic concepts of JL by developing a running example.  We begin by defining a 
standard Java interface and three layers that export it.  We then show how those layers can be composed, 
how the compositions can be annotated with semantic checks, and how interfaces can be easily extended.  
Finally, we use a client/server example to illustrate how JL can use nested classes and interfaces to 
implement large-scale refinements and build applications in a stepwise manner.   

4.1 Transport Example 
To understand how an application can be constructed from a set of layers, consider the following Java 
interface which contains only public methods (throws clauses are not shown): 
 

public interface TransportIfc          
{ 
 int send(byte[] outBuf);          
 int recv(byte[] inBuf);            
 void disconnect(); 
}    

Figure 2 

 
Suppose we develop layers TCP, UDP, and UnixPipe, which export TransportIfc and provide the basic 
connectivity suggested by their names.  We might also develop a Secure layer, which provides data 
authentication and encryption, and a KeepAlive layer which automatically sends liveness notifications 
between communicating peers.  Assume that the last two layers both import and export the TransportIfc 
interface. 

 
layer TCP exports TransportIfc     
{                                  
 public int send(byte[] outBuf){…}           
 public int recv(byte[] inBuf){…}     
 public void disconnect(){…}       
} 
                                   
layer Secure<mixin M implements TransportIfc> 
 exports TransportIfc 
{ 
 public int send(byte[] outBuf){…}           
 public int recv(byte[] inBuf){…}    
 public void disconnect(){…}       
} 

Figure 3 
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Figure 3 shows that the TCP and Secure layers both explicitly export the TransportIfc interface.  The 
Secure layer also imports either a class that implements TransportIfc or a layer that exports TransportIfc 
(which, we will see shortly, amounts to the same thing).  The mixin  keyword indicates that the imported 
type will be used as a superclass in the generated code.  The ellipses represent code that actually 
implements the required function and may include calls to superclass methods.  The actual generated code 
is described in the next section. 
 
Mixins [10][32] are an important concept in JL that are available in C++ [34] but not Java.  Mixins are 
types whose supertypes are parameterized.  Mixins are useful because they allow a set of classes to be 
specialized in the same manner, with the specialized code residing in a single class definition.  For 
example, suppose we wish to extend three unrelated classes–Car , Chest  and House–to be "lockable" by 
adding two methods, lock()  and unlock() .  Without mixins, we would define subclasses of Car , 
Chest , and House  that each extended their respective superclasses with the lock()  and unlock()  
methods.  The result is code replication.  With mixins, we would instead write a single class called 
Lockable  that could extend Car , Chest , House  or any other superclass.  In C++ syntax this class 
would be defined as follows, where lock()  and unlock()  would only have to be defined once: 
 

// Mixins in C++ 
template <class T> 
 class Lockable : public T  
{ 
 public lock(); 
 public unlock(); 
}  

 
The syntactic resemblance between layer definitions and standard Java class definitions hints at their 
deeper connection.  Intuitively, each layer definition can be thought of as generating a Java class and a Java 
interface in which the semantics of import, export and composition constraints are enforced.      

4.1.1 Composing Layers 
 
public class Tr1 = UnixPipe; 
class Tr2 = Secure[UDP];    
class Tr3 = KeepAlive[Secure[TCP]]; 

Figure 4 

Once compatible layers have been defined, they can easily be composed.  Figure 4 depicts three JL classes 
that are defined using type equations.  A type equation consists of an identifier on the left, followed by an 
equals sign, followed by a layer composition on the right.  The Tr1 class is publicly accessible and only 
includes the functionality built into the UnixPipe layer.  The UnixPipe layer, like the TCP layer shown in 
Figure 3, exports the TransportIfc interface and doesn’t import any interface.  Layers without imports are 
called terminal layers.    
 
The Tr2 class has package scope and allows for secure communication over UDP.  As described above, the 
UDP layer is a terminal layer that exports TransportIfc.  The Secure layer, shown in Figure 3, is said to be 
symmetric because it both imports and exports the same interface (TransportIfc).  The type parameter M in 
the Secure layer’s mixin clause is bound to the class generated from the UDP layer.  The binding of type 
parameters in JL is similar to the binding that takes place during C++ template processing.   
 
The Tr3 class implements the automatic keep alive feature over a secure TCP connection.  The TCP layer is 
terminal; KeepAlive and Secure are symmetric.  Type parameters in KeepAlive and Secure are bound to 
the classes generated from their imported layers, Secure and TCP, respectively. 
 
Tr3 could, alternately, have been defined with the Secure and KeepAlive layers in reverse order.   The 
result would be a class in which liveness messages would be sent in the clear rather than encrypted as in the 
original Tr3 configuration.  In this example, each of the three terminal transport layers can be combined 
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with any combination of Secure and KeepAlive layers.  If we discount type equations with duplicate layers, 
there are still 15 possible feature combinations that we can easily define using this small number of layers. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

Figure 5 

 
Figure 5 shows the relationship between the Tr3 type equation, the layer composition it represents, and the 
Java class hierarchy generated to implement it.  The ultimate result of compiling the Tr3 type equation is a 
Java class named Tr3 that implements the generated Tr3Ifc interface (not shown in the figure).  
 
Compilation can also be seen as generating classes and interfaces for each of the layers appearing in the 
Tr3 layer composition.  Figure 5 depicts the unoptimized class hierarchy generated for the Tr3 type 
equation, assuming that the KeepAlive layer also mixes in its imported type.  By default, each generated 
class name contains a unique layer number that allows layers to appear more than once in a composition.  
Each of these generated classes implements a custom interface that extends TransportIfc, and each class 
body is derived from its corresponding layer body.   
 
It’s common for a method to perform some work and then invoke the superclass method with the same 
signature for further processing.  For example, the send() method in Secure-2 could encrypt the data then 
call send() in TCP-3 for data transmission.  In this way, each layer can perform its feature-specific work 
and then pass control to its mixed-in superclass.  JL uses mixins as a design pattern in support of the 
stepwise refinement of a program.  Of course, the choice to call a superclass method is purely at the 
discretion of the layer programmer who chooses how each method will be implemented.     
 
Note that the bottom mixin layer in the layer composition (TCP) becomes the root of the generated class 
hierarchy (TCP-3).  Layers can be thought of as a stack a of virtual machines with the highest level service 
being exposed on top and the most basic service residing at the bottom.  When translated into an object-
oriented model, the most basic service occupies the root of a class hierarchy and each subclass provides a 
more specialized implementation.  When laid out pictorially as in Figure 5, generated classes appear in an 
order opposite that of the associated type equation.     
 
Compiler optimizations that eliminate artifacts of layer specification from the generated class hierarchy are 
described in Section 6.  When optimized, the four classes shown in Figure 5 would be collapsed into a 
single, optimized Tr3 class. 

4.2 Adding Design Rules 
Design rules allow semantic information to be manipulated, propagated and checked at layer composition 
time.  The leftmost layer in a layer composition is said to be the top node in a tree that contains all other 
parameters in the composition.  The KeepAlive layer is the top node in the Tr3 composition shown in 
Figure 5.  Design rule processing is modeled as two separate flows of design rule variables within a type 

Tr3 Type Equation 
Generated Class Hierarchy 

(Unoptimized) 

TCP-3 

KeepAlive-1 

Secure-2 

Tr3 

Parent 

Child 

KeepAlive 

Secure 

TCP 

Tr3 Layer Composition 

Top 
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Tr3 = KeepAlive[Secure[TCP]]  

Tr3 Type Equation 
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equation.  The upflow begins at leaf nodes and propagate upwards to the top node.  The downflow begins at 
the top node and propagates downwards to all leaf nodes.   
 

layer TCP exports TransportIfc    
 upflow { transport = true; }     
{                                 
 public int send(byte[] outBuf){…}                
 public int recv(byte[] inBuf){…}         
 public void disconnect(){…}             
}                                  
 
layer Secure<mixin M implements TransportIfc> 
 exports TransportIfc 
 uptest (exists(transport)&& !exists(secure)) 
 upflow { secure = true; }           
{    
 public int send(byte[] outBuf){…} 
 public int recv(byte[] inBuf{…}  
 public void disconnect(){…} 
}  

Figure 6 

 
In Figure 6, the TCP and Secure layers have been augmented with upflow definitions; downflow 
definitions can be similarly defined.  The TCP layer creates and assigns the boolean variable transport 
in the upflow.  This variable is propagated up to the next layer in any type equation in which the TCP layer 
appears.  In the case of the Tr3 class in Figure 5, the Secure layer receives its upflow from the TCP layer, 
which contains only the transport  variable.   
 
The Secure layer definition has been augmented with an uptest clause that must evaluate to true before 
layer composition is allowed to proceed; downtest clauses are similar in structure.  In this example, we 
only attach meaning to the existence of variables in a flow and ignore their values.  Secure’s uptest clause 
can be interpreted as requiring that some lower layer provide the actual transport function and that no lower 
layer already provide the secure function.  Secure’s uptest would fail, for instance, if two Secure layers 
appear along the same path in a type equation.  In Tr3, the uptest expression evaluates to true, so design 
rule processing would proceed.  The next step would be to process Secure’s upflow clause by adding the 
new variable, secure , to the existing upflow.  The cycle of uptest/upflow processing continues in this way 
up to the top node in a type equation.  Though not shown, downtest/downflow processing operates in 
essentially the same manner.      

4.3 Adding Methods 
Up to this point, we have focused on implementing existing interfaces and we have omitted the methods 
needed to establish a communication session.  Figure 7 shows the signatures of new session-oriented 
methods (excluding throws clauses).  The connect()  method allows a client to initiate a session.  The 
createPassive()  method allows a server to create a communication endpoint that accepts new sessions 
using the accept()  method.  
 
 

public boolean connect(Address addr); 
public boolean createPassive(Address addr); 
public TransportIfc accept();    

Figure 7 
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layer Active<mixin M implements TransportIfc>  
 exports TransportIfc 
{ 
 public boolean connect(Address addr){…}    
} 

Figure 8 

    
There are a number of ways in which a layer can augment the set of methods that it exports.  The Active 
layer in Figure 8 introduces the new connect() method by simply defining the public method in its body.  
JL will automatically incorporate new public methods into the interface generated for the layer.  Also note 
that layers do not need to implement all methods of their exported interfaces.  
  

public interface PassiveIfc     
{ 
 boolean createPassive(Address addr); 
 TransportIfc accept(); 
}                                           
  
layer Passive<mixin M implements TransportIfc> 
 exports TransportIfc, PassiveIfc 
{ 
 public boolean createPassive(Address addr){…} 
 public TransportIfc accept(){…} 
}  

Figure 9 

    
A layer may also export new public methods by exporting multiple interfaces.  The Passive layer in Figure 
9 exports both the TransportIfc and PassiveIfc interfaces. 
 

class TrClt = Active[Secure[TCP]];    
class TrSvr = Passive[Secure[TCP]]; 

Figure 10 

 
Figure 10 shows two new class definitions that we will use in the next example.  The TrClt class provides 
secure TCP transport to clients that can initiate sessions.  The TrSvr class allows servers to create TCP 
endpoints and accept new secure TCP sessions. 

4.4 Client/Server Example 
We now illustrate how a layer can represent a large-scale refinement that modifies multiple classes 
simultaneously.  We describe the central role that nested interfaces play in building JL applications and the 
expressive power that nested structures bring to the JL programming model.   
 

public interface CSIfc 
{ 
 public interface Client 
 { 
  Address findServer(); 
 } 
 
 public interface Server 
 { 
  boolean start(); 
 } 
}  

Figure 11 
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Complex applications can be built in a stepwise fashion in JL by using nested interfaces.  The CSIfc 
interface in Figure 11 contains two nested public interfaces, Client and Server.  Consider the following 
layer that exports the CSIfc interface and uses definitions developed in our previous examples: 
 

layer CSBase<class CltTransport implements TransportIfc, 
             class SvrTransport implements TransportIfc, PassiveIfc> 
 exports CSIfc 
 upflow { dispatchLoop = true; } 
{ 
 public class Client 
 { 
  private CltTransport ctran;      // Private field using type par ameter 
  public Client(){…}               // Constructor  
  public Address findServer(){…}   // Query a server location 
 } 
 
 public class Server 
 { 
  private SvrTransport stran;      // Private field using type par ameter 
  public Server(){…}               // Constructor 
  public start(){…}                // Command dispatch loop     
 } 
}  

Figure 12 

 
The CSBase layer in Figure 12 provides the base layer for a client/server application.  The imported type 
bound to the CltTransport type parameter must be a class that implements TransportIfc or a layer that 
exports TransportIfc.  The SvrTransport type parameter is similarly constrained by both TransportIfc and 
PassiveIfc.  The CSBase Layer provides the base implementation for the methods declared in the CSIfc 
interface.  We can assume that the nested class constructors in this base layer would initialize their 
transport objects.  Other layers that export CSIfc can provide application-specific function and rely on 
CSBase for common functionality.    
 
Type parameters introduced by the class keyword, such as those in the CSBase layer, do not imply the 
inheritance relationship that the mixin  keyword does.  Class type parameters are simply bound at 
composition time and available for use within the layer body wherever a class type is permitted. 

 
layer CSCmd1<mixin M implements CSIfc> 
 exports CSIfc 
 uptest (dispatchLoop) 
{ 
 public class Client 
 { 
  public Boolean cmd1(){…} 
 } 
 
 public class Server 
 { 
  private void cmd1Processor{…}  
 }   
}  

Figure 13 

 
The CSCmd1 layer represents an application-specific layer that provides both the client-side method 
cmd1()  and its associated server-side command processor.  Though no code details are given, assume that 
cmd1Processor()  is invoked from the dispatch loop in the server’s start()  method upon receipt of a 
client cmd1 request.  CSCmd1 uses a design rule to guarantee that another layer, such as CSBase, 
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implements the core dispatch loop.  Any number of new commands can be added in the same way to build 
a more complex client/server application.  
   

class CS = CSCmd1[CSBase[TrClt, TrSvr]]; 

Figure 14 

 
In Figure 14, the CS class defines a client/server application that implements the cmd1()  function.  The 
Transport layer’s TrClt and TrSvr classes, as defined in Figure 10, are used to connect the application’s 
front end to its back end.  To create a CS server, one would instantiate an object of type CS.Server.  To 
obtain a runtime instance of the CS client interface, one would instantiate an object of type CS.Client.  
Invoking the cmd1() method on the client object would cause the associated server object to execute the 
cmd1Processor() method.  JL guarantees that the nested interfaces (Client, Server) exported by the 
composition’s top layer (CSCmd1) correspond to public nested classes with the same names in the 
generated class (CS).         

5 Java Layers Language 
This section describes in more detail the JL language constructs and programming model introduced in the 
examples of the previous section.  To explain the semantics of layer composition, we define the concepts of 
interface propagation, genericity, constructor propagation, deep subtyping, and deep interface conformance.  
The presentation should be of practical use to those interested in JL programming.         

5.1 The Layer Definition 
The simplest form of a layer definition is as follows: 
 

layer L1 exports Ifc {} 

 
The interfaces that a layer exports define the layer’s type signature.1  L1’s type signature consists of Ifc.    
 

layer L2<mixin  M implements Ifc2> exports Ifc {} 

 
The L2 layer’s imports clause consists of everything that appears within the angular brackets.  We’ve seen 
how JL uses mixins [18][32], or parameterized superclasses, to generate new class hierarchies.  The class 
generated from the L2 layer will inherit from a superclass specified at composition time and bound to the 
type parameter M.  L2’s superclass must implement the Ifc2 interface.  A layer may have at most one mixin 
clause.  Mixins allow for stepwise refinement as described in Section 4.1.1, Composing Layers, on page 5.   
 
A layer’s type signature is automatically augmented with all interfaces specified in its mixin clause.  This is 
called static interface propagation because it can be computed before composition time with just the layer 
definition.  The L2 layer’s generated class will implement Ifc, as specified in the exports clause, and the 
interface of the mixed-in superclass, Ifc2.  Dynamic interface propagation takes place at composition time 
and ensures that all interfaces actually implemented—not just those specified as constraints in the layer 
definition—are reflected in a layer’s type signature.    
 

layer L3<mixin  M implements MIfc1, MIfc2,  
                class C extends CBase implements CIfc1, CIfc2> 
  exports Ifc, Ifc2 {} 

  
We now consider non-public constraints that may be specified using the extends subclause.  The L3 layer 
imports both a mixin type parameter and a class type parameter.  A class type parameter may be 
constrained by an implements subclause and/or an extends subclause.  The type parameter, C, in the L3 

                                                        
1 Remember that Java interfaces can only contain non-static public methods and public constant fields. 
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layer defines both kinds of constraints.  A mixin type parameter must by constrained by an implements 
subclause and may also be constrained by an extends subclause.     
 
An extends constraint can only be satisfied by the specified class or one of its subclasses and, therefore, can 
be used to specify required constructors, non-static fields, static methods, protected members, etc.  In the 
L3 layer, only classes that extend CBase, or the CBase class itself, can be bound to the type parameter, C.  
In this case, the actual parameter bound to C is also constrained to implement the CIf1 and CIfc2 interfaces.  
 
The class generated from the L3 layer’s definition will implement the explicitly exported interfaces, Ifc and 
Ifc2, as well as the statically propagated interfaces, MIfc1 and MIfc2.  Interface propagation never involves 
class type parameters or their interface constraints.    

5.1.1 Importing Literals and Generics     
JL layers can be parameterized by any primitive Java type (boolean, byte, char, double, float, int, long, 
short) or by strings (java.lang.String).     
 

layer L4<mixin  M implements Ifc, int  _i, string _s> exports Ifc {} 

 
JL will insert private instance fields _i and _s in the class generated from the above definition of layer L4.  
The actual parameters specified in type equations must be literals that conform to the types declared in the 
layer definition.  The inserted fields are initialized with their actual literal values at object construction 
time.  
 

layer L5<mixin  M implements <T>> exports T {} 

 
Layer L5 is a generic layer because its imports clause contains a parameterized implements subclause.  L5 
imports a single class or layer parameter as prescribed by its single mixin clause.  The type parameter T 
will bind at composition time to any non-empty set of interfaces implemented or exported by its actual 
parameter.  T is a generic interface type parameter that acts as a placeholder for a set of interfaces 
determined at composition time.  Once T is bound, type equation processing continues as if the interface 
constraints were explicitly specified in the layer definition.   
 
Layers such as L5 that mix in a generic interface type parameter can apply the same refinement to any type 
(layer or class) and still preserve that type’s exported interface.  The scope of a generic interface type 
parameter is the layer definition excluding the layer body.  Generic interface type parameters can also be 
used in the implements clauses of class type parameters.  If the same generic interface parameter appears in 
multiple implements subclauses in a layer definition, the leftmost instance (ignoring new lines) is bound 
first and all other instances are immediately bound to the same set of interfaces.   

5.1.2 Layer Body Contents 
The essential principle of layer programming is that each layer in a composition conceptually generates (1) 
a Java class in which the layer body becomes the class body and (2) a Java interface.  The transformation of 
a layer body into a class body leaves most statements unchanged and requires that a number of naming 
conventions and other restrictions be observed. 
 
All Java control flow statements, data manipulation statements, and expressions are available to the layer 
programmer.  A programmer may add initializer blocks and non-public fields, methods, constructors, 
nested class declarations and nested interface declarations to a layer definition without restriction.    
 
Public members of a layer are treated specially because they help define a layer’s signature, its public 
interface.  New public methods and public static final fields can be added without restriction to extend the 
layer’s type signature, as we saw in Section 4.3.  The declaration of non-constant public fields in layers is 
discouraged but not prohibited by JL.  Such public fields are a part of a public interface that cannot be 
captured in Java interfaces and, therefore, cannot formally contribute to a layer’s signature.  Note that the 
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extends constraint in an imports clause can often be used with an appropriate abstract class definition to 
make up for this deficiency.   
 
A layer may declare at most one public constructor, which can take any number of arguments of any type.  
JL accumulates formal parameters of public constructors across the mixed-in layers of a type equation.  
These accumulated parameters are used to create a chain of public constructor invocations in the classes 
generated from the layer definitions.   Each class’ public constructor is modified to take all the parameters 
it needs plus all those needed by its superclasses.  This process, called constructor propagation, also 
propagates throws clauses.   

5.1.3 Nested Structures 
Nested interfaces and classes hold special significance in JL.  The following two properties, defined by 
Smaragdakis [33], are required in all classes and interfaces that are imported or exported from JL layers: 
 

• Deep Subtyping2 – Type C is a deep subtype of another type B if C is a subtype of B, and for every 
publicly accessible nested type B.N, there is a publicly accessible type C.N that is a deep subtype 
of B.N. 

• Deep Interface Conformance – Class C conforms deeply to interface I if C implements I, and for 
each publicly accessible nested interface I.N, there is a publicly accessible class C.N that conforms 
deeply to I.N.  

 
In JL, deep subtyping applies to both Java classes and Java interfaces.  This property preserves nested 
names within inheritance hierarchies of classes or interfaces.  Layer definitions may import and export only 
interfaces that are deep subtypes.  Classes used as actual parameters in type equations must be deep 
subtypes and all classes generated by JL are deep subtypes. 
   
Deep interface conformance is also enforced by the JL compiler.  Classes imported into layers must 
conform deeply to their implemented interfaces.  Layer definitions must conform deeply to their exported 
interfaces as do the classes generated from those layer definitions.  The JL compiler assists the layer 
programmer by automatically generating missing components of the required nested structure as needed.     
 
The current implementation of JL imposes the restriction that classes and layers may not define public 
nested interfaces.  It also restricts interfaces from defining public nested classes.  These restrictions may be 
lifted in the future.  

 
The restrictions on nested structures described in this section leave the vast majority of existing interface 
and class definition available for use in layer definitions and type equations.  At the same time, these 
restrictions support the semantics of the JL programming model by guaranteeing the regular structure 
needed for stepwise refinement.    

5.1.4 Layer Body References 
The use of the this keyword in a layer body refers to the runtime object that instantiates the layer’s 
generated class or one of its subclasses.  References to the super keyword in a layer body resolve to an 
actual mixed-in superclass if one is specified or to Object if no mixin is specified. 
 
In a composition, a layer node participates in an inheritance chain comprised of the node itself, all nodes 
recursively mixed into it, and all nodes which recursively mix it in.  We’ve seen that classes actually 
generated from a layer composition implement their own corresponding inheritance chain using standard 
Java subclassing.    
 
JL introduces the thisClass keyword so that code in layer body can refer to the type of the most refined 
subclass in a generated inheritance chain.  The binding of thisClass is type equation specific.  For example, 
the TrSvr class defined in Figure 10 generates a single inheritance chain that includes TrSvr and the classes 
                                                        
2 Deep Subtyping is a slight generalization of Deep Subclassing in that it encompasses Java interfaces. 
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generated from the Passive, Secure and TCP layers, in subclass to superclass order.  The use of thisClass in 
the bodies of any of these layers resolves to the TrSvr type.  The thisClass keyword is semantically similar 
to the proposed ThisType construct [12][13].           
 
Finally, all regular type parameters imported into a layer can appear in the layer body wherever class types 
are appropriate, including allocation statements.  Layer programmers are also free to read and write any 
imported literal fields declared by the layer. 

5.1.5 Design Rules 
We have seen how a large number of layer compositions are possible given even a small number of 
compatible layers.  Easy layer composition would be impossible if an understanding of code level 
interactions between layers was required for each possible combination.  Layers should be treated as black 
boxes during feature selection and composition.  Import/export type checking provides basic syntactic 
safeguards, and design rules support the semantic checking needed to detect and restrict invalid feature 
combinations [2][27].  The simple design rules illustrated in Section 4.2 were used to enforce composition 
constraints that would be difficult if not impossible using type checking alone.   
 
The JL design rule sublanguage is still actively being researched and is not currently implemented.  Our 
first approximation is an imperative style language, though we are looking into more declarative 
approaches, including those using pattern matching.  We are also considering ways to avoid scattering 
design rule information among multiple layers.  Work continues on various approaches of associating 
design rules variables with standard Java classes, incorporating the correct abstractions into the constraint 
language, standardizing the set of built-in functions, and providing meaningful error reports when a 
semantic check fails.  
 
As currently conceived, design rules are specified in layer definition clauses using the uptest, upflow, 
downtest and downflow keywords.  Two separate flows are modeled; the upflow and the downflow are 
independent streams of variables, values and tests.  In any type equation, all tests on both flows must 
evaluate to true in order for the layer composition to proceed.   
 
The algorithm below is used to evaluate each flow in a type equation independently.  The algorithm 
terminates successfully when the last layer in the flow has been processed or terminates with failure if any 
boolean test clause returns false.   
 

Design Rule Flow Algorithm   
  
1. Evaluate the boolean test expression, if false return failure. 
2. Evaluate flow statements. 
3. Propagate remaining variables. 
4. Go to step 1 for next layer if it exists else return success. 

 
The design rule language uses a simplified Java syntax to support constraint definition and checking.  
Design rule variables can be added, removed, modified or checked for existence in a flow.  Variables are 
typed and always bound to a non-null value.  Constraint testing (step 1 in the flow algorithm) is side-effect 
free.   
 
Type inference is used to create and initialize variables if they don’t already exist in the flow.  Methods, 
interfaces and classes cannot be defined, though records allow programmers to structure their data.  
Relational, logical and arithmetic expressions are supported.  Most Java control flow statements are 
available along with a small number of additional constructs and built-in functions. 
 
Space limitations prohibit describing the design rule language in full, but we will use the following 
example to convey the basic idea: 
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layer L6<mixin  M implements Ifc>  
 exports Ifc  
 uptest (i > 2 || i < 0)  
 upflow {i-- ; sarray = {“string1”, “string2”};} 
 downtest (rec1.i > 0) 
 downflow nopropagate {rec2 = {j = 1, bool = false};} 
{} 

 
Variables can be of type int, boolean, char, string, and arrays and records of these types.  Layer L6’s uptest 
will only return true if the variable i exists in the upflow, is of type integer, and satisfies the boolean 
expression.  If the uptest succeeds, the upflow clause decrements i and creates or replaces the string array 
named sarray .  
 
Layer L6’s downtest checks the value of an integer field in the record rec1 .  If this succeeds, the 
downflow clause uses the nopropagate option to discard all current variables on this flow and then creates a 
new record variable with integer and boolean fields. 
 
Variables that exist after the upflow or downflow clauses execute are propagated to the next layer in the 
flow.  Since layers may import multiple types, the design rule language and implementation must 
accommodate the merging of upflows and the splitting of downflows [2].       

5.2 Aliases 
JL allows layer compositions to be assigned a name or alias using the layerdef keyword.  The 
importlayerdef  keyword allows aliases defined in other files to be visible in the importing file.  Aliases are 
macro-expanded by the JL compiler when they are encountered in type equations or layerdefs. 
 

layerdef TRANPORT  KeepAlive[Secure[TCP]]; 

layerdef SERVER_TRANPORT  Passive[TRANSPORT];  

importlayerdef  mydir.myfile; 

6 JL Compiler Optimization 
JL optimizes the class hierarchy generated from an extended class definition through a process of class 
integration and a type of semantic expansion [37].  Each generated inheritance chain is collapsed into a 
single class.  The associated interface definitions are similarly collapsed.  This reduces JVM load time and 
runtime memory overhead by minimizing the number of types.   
 
Before classes are collapsed, superclass methods called from subclass methods with the same signatures are 
usually inlined into the subclass call site(s).  This optimization improves runtime performance by 
eliminating method call overhead for methods that perform stepwise refinement as described in Section 
4.1.1 on page 5.  Unreachable methods in the inheritance chain are also detected and eliminated at 
composition time.  
 
Together, the class and method optimizations can be referred to as class flattening.  Similar optimizations 
implemented in previous GenVoca generators have proven effective with performance comparable to that 
of hand-optimized code [22].  Intermediate classes and methods are eliminated during class flattening and, 
therefore, cannot be guaranteed to exist.  After optimization, JL guarantees only that the class generated by 
the top layer in each inheritance chain (i.e., the layer that generates the most refined subclass in a chain) 
will be present.             

7 Related Work 
GenVoca.  JL’s lineage includes GenVoca domain-specfic [3][31][5][6] and domain-independent [30][32] 
implementations.  JL departs from earlier GenVoca work in the central role that interfaces play in the code 
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generation process, the flexibility with which these interfaces can be automatically augmented, the 
emphasis placed on simplifying layer construction, the language support for semantic checking, and the 
emphasis placed on generating efficient, optimized code in a domain-independent setting. 
 
Object-Oriented Frameworks.  Object-oriented frameworks, especially when used in conjunction with 
design patterns, represent the current state of the art for building large applications and software product 
lines with standard programming languages [28][29][16].  A number of framework problems have been 
documented [15][17], including overfeaturing, code replication, and the feature combinatorics problem as 
described in the Motivation section.  JL alleviates some of the problems associated with frameworks and 
their evolution by eliminating the distinction between framework and application instance [7].  JL 
augments the syntactic type checking usually found in frameworks with high-level semantic checking.  To 
their credit, frameworks can be developed using any modern object-oriented language without extension.     
 
Domain-Specific Application Generators.  Many domain-specific application generators or development 
environments exist in today’s marketplace.  Products like Microsoft’s Visual Basic GUI builder, the SAS 
Institute’s data analysis suite, or SAP AG’s enterprise software can provide application solutions in specific 
domains.  These products can take advantage of their restricted domains to generate efficient code.  
Application generators, however, often have limited flexibility and openness for technical or proprietary 
reasons.  JL’s building block approach is extensible and JL may be applied to any domain that’s 
appropriate for Java.  In theory, domain-specific application generators should always be able to generate 
more efficient code than a domain-independent approach such as JL. 
 
Parameterized Types.  JL derives its compositional power from the use of supertype parameterization 
(mixins) in conjunction with nested classes and interfaces.  Currently, Java does not support parameterized 
types of any kind and extending Java in such a manner is an active area of research [1][11] [24][36].  Since 
the problem of integrating generics into the Java type system is largely orthogonal to research into large 
application development, JL supports genericity only within its own layer construct.  Native Java 
genericity, if it becomes available and includes support for mixins, would be a natural basis for a future 
version of JL. 
 
Experimental Programming Models.  JL is one of a number of research efforts that propose a new model 
of programming to address fundamental software engineering issues.  These proposals tend to follow the 
historical trend of raising the level of programming abstraction to attain better design and code modularity.  
Examples include subject-oriented programming and hyperslices [21][35], meta-class programming [19], 
aspect-oriented programming [23], mixins [18], and composition filters [8].  JL distinguishes itself by 
composing software components using malleable interfaces—the interface actually exported by any 
component (layer) depends on the composition in which it’s included.  Unlike most other proposals, JL 
addresses higher-level compositional correctness by supporting programmer directed semantic checking.    

8 Conclusion 
We have presented the JL language and shown how complete design features can be encapsulated within a 
single layer definition.  Layer programming is comparable to standard Java class programming, and most 
existing Java interface types can be used as is in layer definitions.  Large applications and software product 
lines can be built by composing sets of layers that implement precisely the features required in a particular 
execution environment.  Application maintenance is also reduced to an exercise in feature selection.  We 
saw how JL’s preliminary version of design rules provide a way for programmers to specify semantic 
constraints on layer compositions.   Based on past experience with GenVoca generators, JL’s class 
hierarchy optimization should produce efficient object-oriented code. 
 
JL alleviates some of the problems associated with object-oriented frameworks and their evolution.   By 
eliminating the rigid distinction between framework code and application code, JL generates applications 
with only the code actually required.  The ability to precisely customize applications for their execution 
environment reduces the complexity and size of individual applications.  The ability to mix and match 
features on demand allows JL applications to be flexibly configured without imposing runtime overhead.    
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The basic functionality of the JL compiler has been implemented.  JL is being applied in a distributed 
application environment to test scalability and the applicability of various language features.  We expect to 
feed changes back into JL as we gain more development experience.  This experience will also help us 
understand what new design methodologies are best suited to the JL programming model.  Besides 
investigating the design rule topics mentioned in Section 5.1.5, we are also considering the use of pattern 
matching in applying the same change to multiple methods, determining the need for sublayering, and 
looking for opportunities to apply more extensive compiler optimizations.   
 
We would like to thank for Kartik Agaram, David Fink, Sam Guyer, Malcolm Haynes, Daniel Jimenez, 
Dan Tecuci, Thomas Wahl, and Peter Yeh for their comments and lively discussions concerning JL.        
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