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Abstract

We refine an active-database application taxonomy, proposed bgbBaser, to include
monotonic log monitoring applications (MLM). MLMs are a dals of hard rule sys-
tems where triggering events are restricted to monotonicaesatiWe develop a formal
semantic model for the MLM class. We then prove the comess of concurrency
schemes for applications within the model. Our results dam@ghat only minimal

coupling mode support is necessary for the database integratiardafule systems obey-
ing the MLM restrictions.

1. INTRODUCTION

Active database technology enhances traditionabdestes with rules that react to database events.
Applications of the technology range frasimple rule system@pplications with few rules that
rarely interact such as integrity constraints)aeod rule system@pplications with many rules that
significantly interact such as real-time decisionttol systems) [7,13,21,26].

Active database applications, however, are not ipereduction systems applied to data within a
database; rule computation must obey the ACID piigse(Atomicity, Concurrency, Indepen-
dence, and Durability) of a database. The mosthyidccepted approach, introduced by the
HIPAC project [12], is for active database develsgge relate rule processing to database transac-
tions through a pair afoupling modes The modes specify the transaction relationship) data-
base events to condition evaluation and 2) comdiialuation to action execution. This explicit
specification of coupling modes by application pesgmers promises to increase system through-
put by maximizing flexibility. However, the progrgion of research has lead to a proliferation of
the number of coupling modes [6,8,12]. As a resaltipling modes often burden application pro-
grammers with extremely difficult conceptual spiegifions. In this paper, we begin deciphering
which coupling modes are necessary to achieve luaetive database programming.

We have observed that a number of our active dagasjaplications that we have developed rang-
ing across point of sale, medical patient, netvgagurity monitors, real-time decision control sys-
tems, and process control monitors can be cladsiiie a subclass of hard rule systems called

monotonic log monitoringVILM) applications [5,11,20,24,25,26] MLMs process real-time data
logged to a database. The primary reason a DBMBadsen is to exploit the database’s query and
data durability services as a platform for decissapport. A fundamental property of the MLM
logs is that they are inserted to, but never ugpblate deleted. It is this write-once nature of the

1. Itis our conjecture that many other active database progranasehrmait intrinsically monotone are also mappable to
the MLM class.
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logs that we exploit to reduce the number of apjlie coupling modes. This paper presents a for-
mal study, using active constructions, of the tasglisimplifications that can be made of active
database programs that obey the MLM restrictions.

1.1. APPROACH

Our starting point is a formal specification of tietive database languages presented in [2,18,28].
Section 3 presents the definition of this unifieshgral-purpose active database language. Section
4 expands this language with three increasinglggoent active execution models. In all three
models, rules execution is triggered byextternal event an atomic state change to the database
performed by a database user or application program

The first, and most basic execution model, isstbguential execution moderhis model forms

the basis of correctness by reflecting the behafiactive database programs executing as a stand
alone application with no other database activifys such, rules are evaluated sequentially until a
guiescent state a state in which no more rules are triggerédough this model is simple and
straightforward, this single user environment ipiiattical. Further, the simplicity of the model
eliminates the need for coupling modes.

The second model presented is plaeallel execution modelThis model expands upon the
sequential execution model by allowing concurreid execution. Although restricting external
event behavior reduces the usefulness of this mtdeproperties we prove about the parallel
model are used as a stepping stone to prove piegpatiout concurrent MLM rule processing.

The most general execution model presented iadtiee database execution maddlhis model
is an unrestricted model in which both externalntsy@nd rules execute concurrently [18]. As
such, the active database execution model accyreirays modern active database systems
executing within a multi-user environment.

Using our three execution models, we present asefiproofs that specify the concurrency
schemes for MLM programs. These schemes meetiffieient conditions foprogram correct-
ness A program is said to be correct under an exeautiodel iff every possible execution path
within the model is equivalent to a path within gegjuential execution model (Section 4.3). We

divide our analysis into two categories. The fiategory consists of MLMprograms - MLMs
that contain onlyositivevariabled. The second category consists of MLMograms - MLMs
that contain both positive amrdagativevariable§. It follows from these definitions that the logic

database language Datalog is a proper subset of Ndkddirams [23]. Our proofs exploit the pre-
vious results and proof techniques in serializgbtheory, rule dependency graphs and confluent
rules systems [1,9,16,23].

Serializability theory states the conditions updmiali concurrent processing is equivalent to a
serial interleaving of operations. A well knowrpéipation of the theory is within database trans-
action models [15]. In [4], Bernstein states acdetonditions that specify when the order of inter
fering operations matter (RAW, WAW, and RAW). The®nditions are violated when interfering
operations are executed in parallel without restms. The results of violating the Bernstein-con
ditions is that the database may move to an incostate.

2. A positive variable is a database query on theexi® of values within a database.

3. A negative variable is a database query that ireslbsed world assumption to test for the
absence of values within a database.
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We exploit serializability theory to describe wite parallel execution of rules interfere with one
and another. Rule interference is synonymousad#rnstien’s conditions where if certain condi-
tions are violated, the order of rule executiontarat In this paper, we use Kuo, Miranker and

Browne’s rule serializability theory based on btgiarule dependency graphs (Section 5) [14,16].

In Kuo et al, a graph in which a cycle of rulegerferewith one and another is calledgcle of
dependengyand the set of rules in a cycle of dependenay famutual exclusion setTwo key
theorems presented in [16] describe execution syinleerms otycle serializabilityan execution
cycle that is equivalent to some serial executiomles. These two theorems are 1) theleseri-
alizability theoremwhich states the parallel execution of all rutea imutual exclusion set may
lead to a non-cycle serializable execution cyck 2ntheserializability theoremwhich states that

a parallel execution cycle that does not contdithalrules in a mutual exclusion set is guaranteed
to be cycle serializable.

In contrast to serializability theory which desesithe properties of interfering rules, confluent
rule systems explain the properties of quiesceies1,9,19,23]. A rule system is confluent
when the quiescent state is unique despite rulerimgl Towards this end, we present the program
characteristics and concurrency models that afeiguit for MLMs to be confluent.

1.2. RESULTS

Our first result establishes a concurrency scheam#fM™* programs. Theorems 2 and 4 prove
that a MLM" program is correct when all rules in the prograenspecified in E-C and C-A decou-

pled modes (Section 6). In fact, M'Nbrograms have been proven to be confluent in¢bj@en-
tial execution model [9]. Theorems 1 and 3 denratsthat confluence still holds for active

database MLM programs with concurrent rules and external events.

Our next findings concern the more general Mlgvbgrams (Section 7). Concurrency models for

MLM ~ programs are difficult to assign since they doamttain unique quiescent states [9,23].
Further, active database developers expect extevealts and the rules that they trigger to appear
as atomic state transitions. This assumption iséegéss the consideration of the time ordering
sequence of external events (Section 7.1). Thasplications become apparent within applica-
tions where it is possible for an incorrect progmeacution to contain only cycle serializable exe-
cution cycles.

Our MLM™ analysis begins with the concurrency scheme foggams executing the parallel exe-
cution model (Section 7.2). We exploit Kuo, Mirankand Browne’s work to identify rules that

must be stated in E-C and C-A immediate modescifigadly, Theorem 5 proves that an MLM
program executing with the parallel execution masl€orrect when at least one rule in every
mutual exclusion set is stated in E-C and C-A imiatedmodes.

We next analyze MLMprograms executing with the active database eigcaotodel (Section
7.3). We present three decreasingly restrictiveeaaency schemes. All schemes exploit the
interactions of external eveadlbsures- the set of all rules that may become activetdube exe-
cution of an external event. Graphically, the exatevent closure is all rules reachable by aldept
first traversal in the rule dependency graph rotigthe external event.

The first concurrency scheme for MLMrograms executing with the active database eimtut

model is overly restrictive. Theorem 6 proves tadLM™ program is correct when at least one
rule in every mutual exclusion set is stated in BAd C-A immediate modes and all rules in all
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external event closures that contain a rule thabimected with a negative edge in the dependency
graph are stated in E-C and C-A immediate modes.

The second concurrency scheme for Miivograms executing the active database execution
model improves concurrency based on transactioractexistics. Our definition of external
events are that they are atomic and committed.ofEime 7 exploits this definition by proving that

a MLM™ program is correct when at least one rule in evaujual exclusion set is stated in E-C
and C-A immediate modes, and all rules in all exdeevent closures that contain a rule that is
connected with a negative edge in the dependeraphgre stated in E-C and Cdaferredmodes

or stronger. It is important to note that defertedpling mode semantics allow for rule execution
to continue in parallel.

Our third and most general concurrency scheme tdviMprograms executing the active database
execution model further improves concurrency basédrnal event interferencehe situation in
which the parallel execution of the closure of sulieggered by two or more external events may
violateexternal event sequencingemma 5 establishes dependency graph regioneweteernal

event interference may occur. Theorem 8 provesahéitM™ program is correct when at least one
rule in every mutual exclusion set is stated in BAd C-A immediate modes, and all rules in all
external event closures in which external evertexferewith one and another are stated in E-C
and C-A deferred modes or stronger. It is impdrtamote that many MLMs are embedded appli-
cations that have a limited number of external &eithis last concurrency scheme exploits this
property to improve system throughput.

2. BACKGROUND

2.1. Active Database Rules and Coupling Modes

Expert system rules afeondition-Action rulegCA rules). CA rules are evaluated on every
update to working memory. Within the active datsbparadigm, such evaluation may be prohib-
itive since numerous external events may occurrinulii-user database. Thus, active database
rules follow the model proposed by HIPAC [12]. §hiodel extends rules to includeearent sec-
tion that describes when to evaluate a rule. The iagultiles are calleBvent-Condition-Action
rules (ECA-rules).

The relationship between events, rule executiondatabase transactions has been addressed in a
series otoupling mode§l2,28]. An ECA rule contains two classes of dougpmodes. The first
class is thé&-C coupling mode the transaction relationship between the ocoggef an event

and the condition evaluation. The second clagsi€-A coupling mode the transaction relation-
ship between the evaluation of the rule’s condifiad its action’s execution.

Many coupling modes have been proposed. Thedimdtmost predominately used modes are
immediatedeferred anddecoupled12]. In immediate mode, execution of the paicws in the
same transaction; in deferred mode, executioneoéitond part of the pair occurs just prior to
transaction completion; and in decoupled mode, i@t of the pair occurs in separate transac-
tions. Other coupling modes that have been prapisdtude the detached causally dependent in
either of parallel, sequential or exclusive modegitve abort and commit semantics for decoupled
transactions [6].
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2.2. Monotonic Log Monitors (MLM)

This paper presents the simplifications that cadibeerned from a class of applications called
monotonic log monitor@MLM). MLMs are a class of real-time active-dadak applications
[17,24]. Such systems process some form of read-tlata logged to a central database. The pri-
mary reason a DBMS is chosen as a storage methoaigloit the database’s decision-support
services. We use this write-once nature of logestrict the number of useful coupling modes and
to simplify the transactional interface elements.

We believe MLMs represent a significant class divecdatabase applications. Examples range
across point of sale, medical patient and processtoring, and intrusion detection systems [26] .
In each of these application areas, there is reegwte decision support out of batch-mode and/or
human-in-the-loop processing towards increasinighely trigger driven analysis.

MLMs form a subset of the most complex region tiva-axis active-database application taxon-
omy. This taxonomy is organized by the complegitapplications’ rule components. On one
axis of this taxonomy, Michael Stonebraker proplaselassification based on the amount of
searchof the applications’ rule systems [213imple rule systentsave few rules with little inter-
action;hard rule systemBave many rules with significant interaction. e other axis, proposed
by Lance Obermeyer [17], is a taxonomy based owsitecof thedata being analyzed.

This two-axis taxonomy of active database
problems yields four distinct regions (Figure
1). Regions | and Il are applications that
investigate small amounts of data. Such appli-

Two-Axis Classification

little [ = :>dataanalysis:.-~ extensive
simple

Programming

Simple Active

Languages Databases

| 1
Main Memory Hard Active
Expert Systems Databases

cations do not necessitate the full functionality
of a database, and therefore, coupling modes
may be omitted.

Regions Il and IV, however, are applications

that search through large amounts of data.
These problems require the data management
services of databases, and as such, necessitate
coupling modes for transaction processing.
Region Il consists of “simple” rule systems
incorporating applications such as view main-
tenance, integrity constraint and workflow sys-
tems [7,13}. Such applications generally treat each ruleseparate program. Consequently, the
number of coupling modes for Region Il applicatisheelatively minimal. Region IV consists of
“hard” rule systems of which MLMs represent a sfigaint subset. Such applications contain hun-
dreds if not thousands of rules interacting intaaloy ways. The already complex nature of hard
rule systems become unmanageable with the addifioaupling mode semantics [2]. A goal of
this paper is to begin deciphering the necessarplow modes to achieve useful active database
programming of Region IV applications.

1 v

FIGURE 1. Two Axis Taxonomy of Active
Databases

4. The word “simple” in this context by no means implies that thesmbdogies are trivial.
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2.2.1. MLMs, Datalog, and Confluence

MLMs have been shown to have similar charactegsgtgprograms stated in the logical database
language Datalog [9]. Datalog programs are ruketgrograms with the following properties
[23]:

* Rules aresafe- range restricted.
* Data is monotonic.
* Data is stored in a database.
* Pure Datalog rules are Horne clauses.
The properties of MLM programs obey the first threstrictions.

[1,9,19,23] use these characteristics to estabiisisufficient conditions for MLMs to beonflu-
ent A rule program is confluent when all eligibleiakexecutions of the program terminate in a
unique state regardless of the ordering of rulads [1]. In particular, MLMs in which no rule
conditions contain a negative variable (a testherabsence of facts in a database) have been
proven confluent. Furthestratified MLMs have also proven confluent [9,19].

This theory is a foundation upon which we build oancurrency models. Yet, it is not all encom-
passing. First, an underlying assumption of tle@th of confluence is that rules are executed
atomically and in isolation from other databasévigt Active databases, on the other hand,
assume an opposite model in which rules execyparallel with external events and operate
according to the semantics of coupling modes.

Secondly, confluence cannot be guaranteed for E@RAprograms in which rules do not monitor
for all events (as do expert system rules). Howewvighout loss of generality, we ignore this situ-
ation. The justification is that omitting extermalents can be characterized into either 1) omis-
sions purposefully introduced for efficiency impeswents (the developers are not concerned with
the undefined behavior that may result), or 2) watbnt bugs introduced by the active database
developer (similar to a semantic bug in a procddan@gram). In either case, an omission of an
event does not represent incorrect behavior inttedupy the active database execution model.

2.3. Concurrency Control in Active Database System

Concurrency control issues for general purposead@tabase systems are largely ignored. There
are two reasons for this. First, the underlyinggegional database can be relied upon to imple-
ment the concurrency control features necessanmyfeicondition evaluation and action execution
(especially if the rule’s constituents are impleteerusing the extensional database’s query lan-
guage). Second, most active database systemssigned to address “simple” rule systems. In
such systems, program correctness can be ensuhedrifles acquire the necessary locks [17,28].

One approach to addressing concurrency contradoeral purpose active database programs is
presented in Correl and Miranker [10]. This schettaches isolation specifications to individual
rules and collections of rules called modules. eElrategories of data isolation are proposed
calledguard stability serializable andexclusive Guard stability allows the greatest amount of
concurrency, but provides the least amount of igmidrom other users. This mode dictates that,
at minimum, a tuple accessed during condition eatan will be available during action execu-
tion. Exclusive mode ensures no other transactiolhaffect the rule system. Serializable mode
contains properties in between guard stability menu# exclusive mode.
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Though a significant step, a serious deficiencgoifrel’'s method is that it requires the application
programmer to determine the system requirementsamsitivity to external state transitions.
This paper addresses this deficiency.

3. Definitions

This section presents the active database langlefgetions used in this paper.
We define alatabase tableas an active database relationtuple is a row in a database table that
represents data. Tlextensional databasgf, is the non-empty collection of database tables

(T Ty Thog -

A database events defined ad/ O { Insert Modify Delefe whedasert Modify, andDelete
are labels.

Modifications to the database occur using data pdaiion commands [2]. A data manipulation
command is the paiM(T) whereV is a database event, ald] € . The data manipuledion
mandsa andb are equaiff a=(x,y) andb=(X,y')andx = X Oy = VY.

Though usually omitted in this study, data manipaolfacommands contain data. For example, a

database insertion contains an inserted tuple. fMideeessary, our examples refer to data in the
following ways:

(Insert T(a)) - Insert tuplea into tableT.
(Delete T(a)) - Delete tuples from tableT.
(Modify, T(a),T(b)) - Modify tuplesa in tableT to b.

We define an active databasee base R, as a non-empty finite set of active databasesrufn
active database rulds the triplet E,C,A where:

* Theevent clausek, is a hon-empty collection of data manipulatiomogands,
(Vo To)s (V1, T9)s s (V.1 T,,_ 1) » In which a rule monitors for modifications to the

database. The execution of any one of the data@pulation commands instigates fur-
ther processing of the rule.

* Thecondition clauseC , is a condition over some stateff (To be defined below.)

* Theaction clauseA, is a non-empty sequence of data manipulation camais
(Vo To)s (V1, T)s ooy (M _ 15 T, _ 1) performed wheit is satisfiedin some state d.
(Rule satisfaction is discussed below.)

We define aractive databaseas the pair§,®). Depending on context, we often refer to anvacti
database as an active database program. Thesertezam the same thing and are used inter-
changeably.

For aruleR = (E,C,A, we sometimes use the notat®R CR AR to denote the rule’s constituents.

An active database rulet®ndition clauseis a relational calculus predicate ranging over th

extensional databaeVariables within the predicates may be eithgrdsjitiveor 2) negated
Positive variables are existentially quantifiediaales. Negated variables are identical to classi-

5. Relational calculus predicates are assumed to be safe [23].
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cal negation used in Datalog and expert systengaibsges that use the closed world assumption to
test for the absence of values[{ ).

Modifications to the database may occur outsideilef execution through axternal event We
define an external everft, as a nonempty sequence of data manipulation cowfgna

(Vo To)s (V1, T9)s oo (V,_ 1, T,,_ 1) performed atomically at a particular time. Extdrevents

initiate rule processing. Therefore, with regardransaction boundaries, we assume that external
events are committed. Otherwise, external eveatsouacur in nested subtransactions that can be
rolled back. The rolling back of rule executiorb&syond the scope of this paper.

Active databases change state over time. Towhislend, we define aextensional database
state P, as the state that consists of all the tuplesiwih the extensional database tables at a

particular time. As such,table stateis the set of all tuples belonging to a tablel £ a partic-
ular time. Anactive database statés defined as the paifXJ) where

D is a extensional database state.

g O &R is the set of triggered rules. (To be discussdadvi)

An active database is inquiescent state(9, ), when the set of triggered rules is empty. Two
active database state®,§) and @',5") are equivalent iff all tuplesin all table states of 9 and 9’
areequivdentand 5 = 9.

Changes to database state spawn rule evaluation. We say that arule R monitors atable T when
[(V, T) DEX. Likewise, we say that atable T is monitored if LR ® such that ({V, T) D E".
Without loss of generality we make the following assumption:

Assumption: OT O &, RO R such that R monitorsT.

Our assumption implies that all data manipulation commands within rule actions operate on moni-
tored tables. In practice, actions may contain operations on unmonitored tables and/or outside
sources (such as printing to a user interface). Such operations do not effect our study and are
henceforth ignored.

3.1. Functions

Following isalist of functions used in this paper.

CR(®): Where RO R and D is an extensional database state.
CR(®) = true if CR evaluatesto truein state D. In this case, we say that CR is satisfied
CR(®) = falseotherwise.

AR®): Where RO R and D is an extensional database state.

AR(D) = D', whereAR(D) executes the sequence of data manipulation contsAdistart-
ing from stated resulting in a new database st@e

TOPog &): WhereROR andr [0 &

TOPog dq) =true if the tableT is bound to a positive variable @G,

TOPoYg C,R) = falseotherwise.
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TONed ¢): WhereROR andr [0 €
TO Ned Cl,:{) = true if the tableT is bound to a negated variabledR.
TONed C?) =falseotherwise.

Triggerqd): Whered is a sequence of data manipulation commands
Vo To) (Vi T eoen (Ve Z 1 T p) -

Triggerdd) is the setruleR 0 R suchthat 0<i<n-1,(V,T,) O ER . For purposes

of analysis, a data manipulation command that doésreate a state change (e.g.,
inserting a repeated copy of a tuple) does nofitaddonitoring rule to the result set.

ApplX,D): WhereX is an external event ailis an extensional database state.

AppY,D) = D', whereApplyX,D) executest starting in staté® resulting in a new data-
base stat®’.

3.2. Sequence of States

The database moves from an active database $XtgtéJ to (D,+1,91+1) in the following ways.

1). AruleRO R linksthe states?,,9,) D, ,.9,,4) iff ROJ, and eithef

i. CR(Q)n) is true, and

i. A%®@,) =9, and

iii. (7, —R) 0 Triggerg A) = 9., ,
or

i. CR(ﬁ)n) is false and
ii. ?2,=9, 1,and

—+
G or Do
. §,-R=9,,4

2). An external everit links the state¢?,,.9,) D, ,9,,,) Iff

i. AppI¥(L,D,) = D and

i. 5,0Trigger(X) = 9,,4

n+1’

We define arexecution graphas the grapks, = (V, E) where the vertices/ 1 G,  represent

active database states and the edgés G, are stat@sdhinked as described above. An

active database program’s execution pathis the path through an execution graph taken by a par-
ticular execution.

6. Due to the properties of MLMs, we do not have to consider rulearéhan-triggered as described in [27].
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3.3. Monotonic Log Monitor Definitions

Consider an active database progré&r] that executes the sequence of external events
X ={Xy Xy, ..., %,_4y . FOrUROR andIXO X ,atabl@ €& monotoniciff

OV, H 0{ARO X , Vv = Insert (EQ 1)

Informally, a tableT is monotonic iff all rules and all external evep&form only insertions into
T. Note, it is not necessary to know the entiretsatpriori; it is sufficient to constraifi to con-
tain only insertions td@. Notationally, we say:

MonotonicTabl€T): WhereT is satisfied by the Equation 1.

For an active databas&f) and a ruleR[J R R is amonotonic active database ruleff

OV, Y DAR, v = Insert (EQ 2)
Informally, a ruleR is monotonic iff all data manipulation commandsténaction are insertions.

Monotonic Log Monitor (MLM) - Consider an active database progr&R) that executes the
sequence of external eveis= { Ly, L4, ..., L,,_¢ ER) is aMLM iff:

OT O &, MonotonicTabl¢ (EQ 3)
Equation 3 implies that all rules in a MLM programe monotonic.

We distinguish two categories of MLMs. The firstegoryMLM *, are MLMs containing only

positive condition variables. The second cateddiyM -, are MLMs containing both positive
and negated condition variables.

4. Active Database Execution

This section formalizes the active database exatntiodels presented in [2,18]. We present three
slightly different models that vary depending oaithiestrictiveness with respect to concurrency.
In all three models, rule execution begins withabeurrence of an external event.

The first model, th&equentiamodel, is based on algorithms presented in [2]3,2ie model
execution proceeds by locking the database froereat events and serially executing until quies-
cence.

Though straightforward, th®equentiamodel forfeits concurrency. Therefore, we introglthe
theParallel and theActiveDatabasexecution models. THearallel model allows for concurrent
rule execution but locks the database from exteswahts during rule processing. The general
ActiveDatabasenodel, based on an aggregation of the models mexsén [2,18], allows for con-
current execution of both external events and rules

We begin our discussion by introducing the semartfarallel execution of active database
rules and external events.

4.1. Atomicity and Parallel Rule Execution

Section 3.2 presented the linking of active datalstates as if rules are executed atomically.
However, this is not the case. Operations withirgtensional database are gauranteed to be
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atomic iff the operations live within a transactioim an active database, the set of atomic opera-
tions are expanded to include rule conditions, agiiions and an external events (but not entire
rules) since each such operation must be executbihwa transaction. This atomicity does not
come at the expense of concurrency. The lockincharg@isms of the underlying database allow
for concurrent execution of transactions. Yetcsiantire rules do not necessarily live in a single
transaction, parallel rule execution may lead tinaorrect database state.

Coupling modes handle the issue of rule atomigjtallowing the user to force the desired execu-
tion sequence. The database locking mechanisomjonction with coupling modes result in the
following semantics:

1. Conditions in E-C immediate mode are executegkquentiahested sibling transactions from
the spawning transaction.

2. Conditions in E-C deferred mode are delayed timilend of the spawning transaction and then
executed in parallel.

3. Conditions in E-C decoupled mode are execut@adiependent top transactions.
Statements 1 through 3 are identical for rule astid2].
The above semantics result in following two conenay semantics for linking states.

1. Atomic transition. Coupling mode semantics inmpbigt rules stated in E-C and C-A immediate
modes are executed atomically (within the sames&etion). Therefore, we write,

DI X D\ + 19 + 1) WhereXis either an external event or rule stated in &@

C-A immediate modes, an@®, , ,9,,,) Iis the resulting databtse.

2. Parallel transition (also calledharallel execution cycle We write,
X =
(®k15k) (®k+1’5k+1) whereX {320, veey ‘%X O .‘ro, veey .‘ry‘} "%m OR ,
X,0Z,and(D,,,,9,,1) Iistheresulting database state. The dhgoffor a parallel tran-

sition with the above sétis as follows:
while(X#{} )

do_in_parallel
chooser from X, and remove it fronX.

Rlinks (9,,9,) to(®,'.9,') whereRis spawned in the transaction

model specified by its coupling modes (or execu@ically ifR is an
external event or a rule stated in E-C and C-A iiste modes).

Much of the remaining focus of the paper is toiffadhe meaning o{®, , 1.9, , 1) -

We are now ready to present our three executiorefaod
4.2. Execution Models

4.2.1. Sequential execution model

Method Name:  Sequential
Input: D, %
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Output: D, wherek>i.

Algorithm:  For eachi executed, the following algorithm is spawned:
0. (@,0) 4 _(
1) while g, # 0

Begin loop
2). SelecR0 g,

Dy Tieg), i=itl

3. @.9) R _(@,.9,p).i=i+1

End loop
4). return®,

4.2.2. Parallel execution model

Method Name: Parallel

Input: D, ,xj
Outpult: D, wherek > i.
Algorithm:  For each executed, the following algorithm is spawned:
0) ('{DI’D) i»(2)| +1’5i +1) ,i =i+ 1
1) while g, # 0

Begin loop

2). SelecR = g,

3). ("Di’gi) R ('(Di+1’5i+1) Jdi=i+l

End loop
5). return®,

Step 2 of thd”arallel model has been the subject of much research fg2,Many of the first
active database languages modeledSibguentiablgorithm; one rule is selected frofpon each
cycle [27]. Parallel improves system throughput by allowing rules teame concurrently. The
Parallel model, similar to the REACH rule system [6], s&dedl rules inT for concurrent execu-
tion on each cycle. This choice may seem overaggre since if all the rules were really exe-
cuted in parallel, incorrect behavior could resttowever, coupling modes handle the issue of
rule atomicity by providing a mechanism to force tiecessary execution sequence in cooperation
with underlying database’s ocking mechanisms that manage the detailed data interactions.

4.2.3. ActiveDatabase execution model

Method Name: ActiveDatabase

Input: ﬂ)i , 5(1-

Output: D, wherek > i.

Algorithm:  Each & executed in a quiescent state spawns the following algorithm:
0.(@.0) & _ (D,Ti,p),i=i+1
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1) while g, # 0
Begin loop
2). SelecR = J;
3). (9,9, {ROX,,0...0 xjmi (Diy1 Ti4q) =i+l

End loop
5). return®,

The ActiveDatabas@xecution model selects a set of rules at Stepb2 toncurrently evaluated
and executed with external events in Step 3.

Notationally, we refer to an active database pnwgrahat executes using the execution moglel
beginning in stat®, executing a sequence of extexeats and terminating in sta@j as:

Xy(D;, X) O D, (EQ4)

4.3. Correct Active Database Execution

We define an active database stBf@s asequential database statéf 9; is the initial database
state(D,l) o1, is a state that is linked froff, through the sequential application of data
manipulation commands. We note that the initiahtase statg?,[1) , is a correct active data-
base state: it the state in which no data manijpunl@ommands have occurred.

Corollary 1. All active database states in all execution pafteactive database program exe-
cuting using th&sequentiakxecution model are sequential database states.

Proof. The reader can verify using induction that sisaine case.[]

As a consequence of Corallary 1, we define a prograrrectness per its executias defined by

the Sequentiakxecution model. An active database programnscbiff all eligible execution
paths contain only sequential active databasesstaie all possible quiescent states are producible
by theSequentiabxecution model. Since Step 23equentials nondeterministic, thBequential
execution model may terminate in more than onesgeiet state. We defir@orrect(9,,,&X) as

thesetof active database states reachable by all pessigicution paths @equential(?,, L)
We refer to the states @orrect(D,,X) as correct database states. More formally,

Correct(D,,,X) = {statesS| J an execution cbequential(?, L) thatyiel& (EQ 5)

Correct Active Database Program- Consider an active database proghathat begins in state
D, and processes the sequence of external eslents{ X, ..., L, _ 4} et the_total set of pos-

sible quiescent states after sequentially procgsdim events using thBequentiakxecution
model beCorrect (D, L) .

Definition: A programyY is correctunder a execution modxliff
* All eligible execution paths contain only sequentighdase states, and

e fFXy(2,0)0 D then®d ., 0O Correct (D, X) .

n+k’
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5. Serializability of Rules

We heavily exploit the standard definitions andmoeiblogy surrounding the serializability theo-
rem [15]. However, its manifestation in activealsses and our presentation requires some
review and adaptation.

Serializability theory states the conditions updmicli concurrent processing is equivalent to a
serial interleaving of operations. A well knowrpéipation of the theory is within database trans-
action models [15]. In [4], Bernstein states acdetonditions that specify when the order of inter
fering operations matter (RAW, WAW, and RAW). The®nditions are violated when interfering
operations are executed in parallel without restms. The results of violating the Bernstein-con
ditions is that the database may move to an incostate.

Rule interference is synonymous to the Bernstien's conditions. In this case, the parallel execution
of interfering rules may produce an incorrect state. Formally, foraMLM active database program,
arule Ry interfereswith arule Ry iff
Ro R
Olinsert HTOA 7| dInsert IO Neg C) (EQ 6)

External events may also interfere with rules. An external event X interfereswith arule Riff

HInsert T) O xo’ dInsert T) O Ned CB) (EQ7)

In this paper, we use asimplified version of the bipartite dependency graphs developed in [16] to
statically determinerule interferences’. A dependency graph G, isdefined as (V,E) where the ver-
tices VO G, represent either rules, represented as “circles’ (O), or external events, represented

as “diamonds’ (Q). Edges E U G,,,, presented in Figure 2, represent the data dependency
between rules and external events.

Edge Validating Condition
+ : . .
1). R, monitors Ry; Ry and R, do not interfere with one
and another.
2). @ - @ Ry monitors Ry; Ry and Ry interfere with one and
another.
3). @ + @ Ro monitors for eventsin Ly; Lo and Ry do not

interfere with one and another.

4). Rp monitors for eventsin Lo; Lo and R interfere with

one and another.

FIGURE 2. Bipartite Graph Constructs

7. The simplifications result from the properties of MLMs
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Kuo et. al. identify a region in a dependency griqatt may lead to erroneous behavior. They call
this region aycle of interference- a cycle in a dependency graph in which all edgesegative.
The set of rules in a cycle of interference formwatual exclusion set

Kuo et. al. present two theorems based on ruldsmibutual exclusion sets. The theorems are
based an the conceptsayfcle serializability andexecution serializability which are defined as
follows: A parallel execution cycle, is cycle serializable iff there exists a seria@xtion ofc,

call thisc,*, such that execution @ in state ;, 5;) moves the database to a st&#g {, 5j.1)

and the execution af* in state 9}, ;) moves the database to a sta¥®(y, 5*j+nn) andD;,1 =
D*.m AN active database program with an executioh pb parallel execution cycles is execu-
tion serializable iffJj O [0, ...,n-1], cyclej is cycle serializable.

The theorems from [16] used in this paper are:

Cycle Serializability Theorem The parallel execution of all the rules withimatual exclu-
sion set may not beycle serializable Proof is given in [16].

Serializability Theorem. A parallel execution cycle that does not congditthe rules within a
mutual exclusion set is guaranteed tahele serializable Proof is given in [16].

We use these theorems to establish concurrencynsshinat force parallel execution cycles to
become cycle serializable. As such, an activebdataexecution path in which all execution
cycles are cycle serializable contains only sedqakdatabase states.

6. Concurrency Schemes for MLM Programs

This section presents the concurrency schemes i Vprograms. We begin with a discussion
on programs executing tiarallel execution model and conclude with thetivedatabase exe-
cution model. Each section contains the threefprobl) the sufficient conditions for all execu-
tion cycles to be cycle serializable, 2) the sidfit conditions for confluence, and 3) the sufiitie

conditions for programs correctness. Our resultimacurrency schemes demonstrate that MLM
programs with all rules stated in E-C and C-A dgded modes are correct and confluent.

6.1. Parallel Execution Model

6.1.1. Cycle Serializable

Lemma 1. Given a MLM" program in which all rules are specified in th€E&nd C-A decou-
pled modes, all parallel execution cycles in ab@xion paths using thearallel
execution model are cycle serializable.

Proof. Instead of a direct proof of Lemma 1, it wilffsce to prove the more general claim stating

that for a MLM' program, all parallel execution cycles in all extaan paths using thearallel

execution model are cycle serializable (regardiés®upling modes). Therefore, it will be vacu-
ously true that the E-C decoupled and C-A decoupledes are sufficient.

Step 0 in the parallel execution modetycle serializable by definition. Now it is remsary to

prove that Step 3 in the parallel execution moadeadILM" program is cycle serializable. Con-

struct 1 in Figure 2 is the only edge notation @mimg MLM" rules. Dependency graphs with
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only positive edges contain no mutual exclusion sets. Kuo et. al.’s Serializability Theorem says
that such Parallel execution cycles are guaranteed to be cycle serializable. Thus, a Parallel execu-
tion cycle containing any subset of ruleswithin R is guaranteed to be cycle serializable and Step 3
must be cycle serializable. By induction, all execution cycles are cycle serializable and the claim

has been proven. O

6.1.2. Confluence

Theorem 1. The execution of aMLM* program using the Parallel execution model in which all
rules are specified in E-C and C-A decoupled modes is confluent.

Proof. Lemma 1 provesthat all parallel execution cyclesin all execution paths of an MLM™ pro-
gram executing the Parallel execution model (with the stated coupling modes) are cycle seriaiz-

able. Therefore, MLM™ programs executing the Parallel execution model are execution

serializable by definition. Execution seriaizability impliesthat all execution paths are equivalent
to some sequential execution path. As such, active database programs executing the Parallel exe-
cution model are equivaent to some sequential execution. [9] provesthat sequential executions of

MLM* programs are confluent, and therefore, MLM* programs using the Parallel execution
model are confluent. O

6.1.3. Program Correctness

Theorem 2. The execution of aMLM* program using the Parallel execution model in which all
rules are specified in E-C and C-A decoupled modesis correct.

Proof. Given any MLM™ program Y in which all rules are stated in E-C and C-A decoupled
modes, Y is correct under the Parallel execution model iff all parallel execution cyclesin all exe-

cution paths are cycle serializable, and all executions of Parallel(D,,, L) O Correct (D, L)
for any initia state D, and external event .
Lemma 1 satisfies the first conjunct by proving that all parallel execution cyclesin al execution

paths of Y (with the stated coupling modes) using the Parallel execution model are cycle serializ-
able.

Now it is necessary to prove the second conjunct. [9] proves that datjeretutions of

MLM * programs are confluent. Lemma 1 proves that Mipvbgrams using thearallel
execution model are also confluent. Therefore, together the statements imply that

Parallel (D, X) = Correcty(?,, ) .

Both conjuncts have been proven, and the theorem is satisfied. O
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6.2. Active Database Execution Model

6.2.1. Cycle Serializable

Lemma 2. Given a MLM' program in which all rules are specified in th€End C-A decou-
pled modes, all parallel execution cycles in ab@xion paths using th&ctiveData-
baseexecution model are cycle serializable.

Proof. Noting that external events add only constru@ad5 to the dependency graphs, the proof
of Lemma 2 is almost identical to that of LemmaShecifically, it will suffice to prove the more

general claim that all parallel execution cyclealirexecution paths of a MLMprogram using
the ActiveDatabasexecution model are cycle serializable (regardiés®upling modes).

Step 0 in théActiveDatabas@xecution model is cycle serializable by defimiticNow it is neces-
sary to prove that Step 3 in tAetiveDatabas@xecution model on a MLMprogram is cycle seri-
alizable. Constructs 1, 3 and 5 in Figure 2 aeeothly edges connecting MLMtules executing
the ActiveDatabas@xecution model. Dependency graphs with onlytp@sedges contain no
mutual exclusion sets. Kuo et. al.’s Serializability Theorem says that such parallel execution

cycles are guaranteed to be cycle serializable. Thus, aparallel execution cycle containing any sub-
set of ruleswithin & and any number of external eventsis guaranteed to be cycle serializable and
Step 3 must be cycle seriaizable. By induction, all execution cycles are cycle serializable and the

claim has been proven. O

6.2.2. Confluence

Theorem 3. The execution of aMLM™* program using the ActiveDatabasexecution mode! in
which all rules are specified in E-C and C-A decoupled modes is confluent.

Proof. Lemma 2 provesthat all parallel execution cyclesin all execution paths of an MLM™ pro-
gram executing the ActiveDatabasexecution model (with the stated coupling modes) are cycle

serializable. Therefore, MLM™ programs executing the ActiveDatabasexecution model are exe-
cution seridizable by definition. Execution serializability impliesthat all execution paths are
equivalent to some sequential execution path. As such, active database programs executing the
ActiveDatabas@xecution model are equivalent to some sequential execution. [9] proves that
sequential executions of MLM™ programs are confluent, and therefore, MLM™* programs using the
ActiveDatabasexecution model are confluent. [

6.2.3. Program Correctness

Theorem 4. The execution of aMLM™* program using the ActiveDatabasexecution mode! in
which al rules are specified in E-C and C-A decoupled modesis correct.

Proof. Given any MLM™ program Y in which al rules are stated in E-C and C-A decoupled
modes, Y is correct under the ActiveDatabasexecution model iff all parallel execution cyclesin
all execution paths are cycle serializable, and all executions of

ActiveDatasg(9D,, &) U Correct (D,, &) for any initial state D, and sequence of external

events L.
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Lemma 3 satisfies the first conjunct by provingtthidparallel execution cycles in all execution
paths ofY (with the stated coupling modes) using AwiveDatabasexecution model are cycle
serializable.

Now it is necessary to prove the second conjunct. [9] proves that datjeretutions of

MLM * programs are confluent. Lemma 1 proves that Migvbgrams executing the
ActiveDatabas@xecution model are also confluent. Therefore, together the statements

imply thatActiveDatabasg(®D,, L) = Correcty (9, ).

Both conjuncts have been proven, and the theoraatisfied. [

7. Concurrency Schemes of MLMPrograms

We now consider MLMprograms. In general, MLMrograms are not confluent since rules and
external events may interfere with one and and2®28].

Our definition of program correctness stipulates thprogram is correct iff the quiescent state is
reproducible by th&equentiakxecution model. With regard to ordering, 8exjuentiabxecu-

tion model sequentially processes each externaitewdil quiescence. Consequently, in addition
to presenting the sufficient conditions for cyadgializability, we present the sufficient conditon

to maintain the ordering of external evénts

We begin with a discussion on event sequencing.

7.1. Event Sequencing

To define event sequencing, we must present twodedinitions. First, we say that a set of rules,
A, executes ifisolation from another set of ruld® when there does not exist a rule within either
or B that interferes with one and another. Secondlyafset of ruleR 0 R , we define the set of
rules within theClosure(R) as follows:

rule Ry Xy, ={dsertTp(1)) } X, ={(InsertTy(3)) }
E: { (InsertTy) }
C:=Ty(3) Do ={}

A: {(InsertTy(2)) }

&

FIGURE 3. External Event Sequencing.

8. This sequencing has not been necessary in our previous sections.iolm Gage presented MLMprograms that
are confluent. Confluence means sequence is irrelevant.
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Algorithm: Closure
Input: ROR
Ouput: SOR

S-{R

Repeat untiSis unchanged:
S~ SOXUOR | XOTriggers( AY) forsomeY O S .

Graphically, theClosurgR) contains all rules reachable by a depth firstaraal of the depen-
dency graph starting from the rules in Ret

We now defineevent sequencing EventX, is processed sequencéefore an even; iff all
rules triggered by th€losurg Trigger¢X,)) are evaluated before ifne}ior inisolationfrom
the rules triggered bgZlosure Trigger$X,))

Theclosureis interesting since th@equentiabxecution model processes an external edent by

locking the active database and evaluating altdles triggered in th€losurg Trigger$X))
until quiescence. Therefore, a proof of programesziness for an execution model must prove
that all external events are sequenced.

The following example demonstrates the necessitgxternal event sequencing.
Example 1 Consider Figure 3. Let, be applieddgandX; be applied i®,. As
such, X, triggerK,in Dgand, triggerdR, again ind,. If Ry is stated in E-C and C-A imme-

diate modesR, will be evaluated i®;. CRO(Q)l) =true andR, will insert the number 2 t®;.

Upon &, ,Ry will again be evaluated i#;. CR(.@3) = false andRy will not fire a second time.
The resulting quiescent state will Bg, = {T,(1), To(2), T,(3)}

Now, consideR; in E-C and C-A decoupled mode. In this cakg, |mggerR,in Dgandd,

may triggerRy again in®,. Due toRy's E-C decoupled mode, the database scheduler may delay
condition evaluation of Ry until after D,. Therefore, X, will be applied in D, and

D, = {Tp(1), To(3)} , CRO(EI)Z) = false and Ry will not executeitsaction. Thefinal state after

processing will be D, = {Ty(1), To(3)} , x> 2. Thisexecution is not consistent with any
sequential application of the external events, and therefore, isincorrect.

7.2. Parallel Execution Model
7.2.1. Cycle Serializability

Lemma 3. Givenan MLM™ application, all parallel execution cyclesin all execution paths using
the Parallel execution model are cycle serializable under the following condition:

* At least one rule within all mutual exclusion sistspecified in E-C and C-A imme-
diate modes.
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rule R, rule Ry Do={}

E: { (InsertTy) } E:{ (InsertT,) } Lo ={ (InsertTy(3)),
C: =Tp(1) C =T(1) (InsertT4(3)) }
A: { (InsertT4(1)) } A: { (InsertTy(1)) }

FIGURE 4. An example cycle of dependency.

Proof. The proof of Lemma 3 uses the same logic apibef of Lemma 1.

Execution begins in Step 0 of tRarallel execution model. Step 0 is cycle serializablel&fjni-

tion. Now it is necessary to prove that Step B@Parallel execution model on a MLMprogram
is cycle serializable.

Consider a parallel execution cycle that contalhtha rules within a mutual exclusion set.
Lemma3'scondition setsat least one theserulesto E-C and C-A immediate modes. According to
the definitions in Section 4.1, rules become atomic when they are set to E-C and C-A immediate
modes. Atomic operations take the necessary locks to execute serially in the face of conflicting
operations. Therefore, the mutual exclusion set will not truly execute in paralld if interference
occurs. Kuo et. al.’s Serializability Theorem tells us that such parallel execution cycles are cycle
seriadlizable. Thus, aparallel execution cycle containing any subset of ruleswithin R is guaranteed
to be cycle seridizable and Step 3 must be cycle serializable. By induction, all execution cycles

are cycle seriadizable, and the claim has been proven. O

Lemma 3 gives rise to the following corollary.

Corollary 2. Givenan MLM" application, all parallel execution cyclesin all execution paths
using the Parallel execution model are guaranteed to be cycle seriaizable, by
static methods, only under the following condition:

* At least one rule within all mutual exclusion setspecified in E-C and C-A
immediate modes.

Proof. For the sake of contradiction, suppose thatakereconcurrency scheme exists that guar-
antees cycle serializability within tharallel execution model. The next two concurrency
schemes that are weaker than the E-C and C-A inateediodes are the E-C immediate and C-A
deferred modes and the E-C deferred and C-A imrteediades.

First, consider the mutual exclusion set consistiigrules in which one rule is stated in E-C
immediate and C-A deferred modes with the remainihgs stated in E-C and C-A decoupled
modes. In the current case, a loose maximum bfamte possible number of legal interleaving
operationsin which the E-C immediate rule’s condition must be evaluated first is O(2n-1)!. A
parallel execution cycle may choose one such interleaving that is equivalent to evaluating the E-C
immediate rule’s condition first, followed by the remaining rules’ conditions in any order, fol-

lowed by therules” actionsin any order. Thisinterleaving isequivalent to executing all rulesin
paralel sinceal ruleswill evaluate their respective conditions in the same database state and exe-
cute their actions accordingly. Kuo et. al.’s Cycle Serializability Theorem says that the parallel
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execution of all rules in a mutual exclusion seyymat be serializable. This is a contradiction to
the claim.

Now consider the mutual exclusion set consisting fles in which one rule is stated in E-C
deferred and C-A immediate modes with the remainimgs stated in E-C and C-A decoupled
modes. In this case, a loose maximum bound fopdissible number of legal interleaving opera-
tionsin which the C-A immediate rule’s action must be executed before any other rule action is
O(2n-1)!. A parallel execution cycle may choose one such interleaving that is equivalent to eval-
uating all E-C decoupled rules’ conditionsfirst, followed by the E-C deferred rule's condition, fol-
lowed by the C-A immediate rule’s action, followed by the remaining rules’ actionsin any order.
Thisinterleaving is equivalent to executing all rulesin parallel since all rules will evaluate their
respective conditions in the same database state and execute their actions accordingly. Kuo et.
a.’s Cycle Serializability Theorem says that the parallel execution of all rulesin a mutual exclu-
sion set may not be serializable. Consequently, this also is a contradiction to the claim.

Therefore the only concurrency model that guarantees cycle seriaizability by static methodsisthe
one stated in the corollary’s condition. [

Example 2 Toillustrate Corallary 2, consider the example presented in Figure 4. In the
figure, Ry, Ry O R, Ty, T, O & and Ry and R, form acycle of interference. Consider when Ry is
stated in E-C and C-A decoupled modes and R; is stated in E-C immediate and C-A deferred
modes. Let the external event & insert the tuple 3 into both Tg and T;. Due to coupling mode
semantics, R;’s condition will immediately be evaluated while R;’s action will be evaluated right

before transaction commit. Inthe Parallel execution model, no other external events occur during
Ry and R;’s conditions and actions executions. Therefore, alegal interleaving of operationsis to

. R, . R, . R, .
apply Xy in state D, evaluate C ° in D4, evaluate C * in D,, and execute A and A in state

R
P3. Thus, both CRO(.‘Dl) and C 1(.‘1)2) evaluate to true. Upon the completion of Ryand R;’'s

actions, the database will be in an inconsistent state; specifically, both Ry and R; executed in paral-
lel inserting the tuple 1 into both Ty and T;.

7.2.2. Program Correctness

Theorem 5. The execution of an MLM ™ application using the Parallel execution mode! obeying
the following condition is correct:

* At least one rule in every mutual exclusion sesubke E-C and C-A immediate
modes.
Proof. The proof of Theorem 5 is similar in logic th@ef of Theorem 4. Specifically, given any

MLM ~ programy in which all rules are stated in E-C and C-A dgided modesy is correct under
the Parallel execution model iff all parallel execution cyciesll execution paths are cycle serial-

izable, and all executions &farallel(?,, L) O Correct (D, L) for any initial sta1,, and
external evenf

Lemma 3 satisfies the first conjunct by provingtthidparallel execution cycles in the execution
of Y (with the stated coupling modes) using Barallel execution model are cycle serializable.

Now it is necessary to prove the second conjuBgtdefinition, theParallel execution model pro-
cesses each event until quiescence. Lemma 3ugetlsat all parallel execution cycles are cycle
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serializable. Thus, all events are processed sdiallg and for any two external everfly)  occur-
ring beforeX,; , theClosure Trigger¢X,)) is evaluated to quiescence befoe
Closurg Trigger$X,)) by definition. We can therefore conclude thatdhexecutions o,

Parallel(D,, L) 0 Correct (D, ). °

Both conjuncts have been proven, and the theoraatisfied. [
7.3. ActiveDatabase Execution Model
7.3.1. Cycle Serializability

Lemma 4. Given an MLM application, all parallel execution cycles inetecution paths using
the ActiveDatabasexecution model are cycle serializable under dflewing condi-
tion:

* At least one rule within all mutual exclusion sistspecified in E-C and C-A imme-
diate modes.

Proof. The proof of Lemma 4 is similar to the prooleimma 3. Specifically, the only difference

between MLM programs using th&ctiveDatabasexecution model versus tRarallel execution
model, with respect to cycle serializability, isthparallel execution cycles may contain external
events. Yet, external events do not introduce ewalizable behavior. This is because external
events are atomic. Atomic operations take the swg locks to execute serially in the face of
conflicting operations. Therefore, a mutual exidoset containing an external event cannot truly
be executed in parallel if interference ocdlrsThus, by Kuo et. a.’s Serializability Theorem and

the same reasoning as Lemma 3, al parallel execution cycles using the ActiveDatabasexecution
model under the stated condition are cycle seridizable. O

7.3.2. Program Correctness

We present three sets of sufficient conditions for the correctness of programs executing the Active-
Databasesxecution model. Each successive set allows for more concurrency.

The first and unnecessarilyestrictive concurrency model is presented in Theorem 6.

Theorem 6. The execution of aMLM- program using the ActiveDatabasexecution model
obeying the following conditions is correct.

* At least one rule in every mutual exclusion sesube E-C immediate and C-A
immediate modes.

9. In fact, the sufficient conditions for confluent MLidrograms are shown in [9,19]. These studies demonstrate the
transformations upostratified active database rules (programs that contain no cycles of ietez to obtain con-
fluence.

10.Further, external events are never part of a cycle of dependEmeyn-degree of all external event nodes in a bipar-
tite graph is 0.
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* For every external evefdt in which theClosurd X)) contains a rule connected
with a negative edge in the dependency graphhe rules in th€losurdX) are
stated in E-C and C-A immediate modes.

Proof. The proof of Theorem 6 is similar in logic f{wof of Theorem 5. Specifically, given any

MLM ~ programY in which all rules are stated in the coupling mods dictated by the theorem
conditions,Y is correct under th&ctiveDatabasexecution model iff all parallel execution cycles
in all execution paths are cycle serializable, alhéxecutions of

ActiveDatasg(D,, &) U Correct (D, L) for any initial state® , and any sequence of exter-
nal eventst = {Xy, X4, ... L, _4}

Lemma 4 satisfies the first conjunct by provingtthidparallel execution cycles in the execution
of Y (with the stated coupling modes) using wiveDatabasexecution model are cycle serializ-
able.

Now it is necessary to prove the second conjufibe theorem conditions specify that for every
external eventd in which theClosurdX) contains a rule connected with a negative edgledan
dependency graphll the rules in th€losurdX) are stated in E-C and C-A immediate modes.
Therefore, such events are necessarily sequenueglai the rules in whicl¥ may trigger are
executed atomically.

Now consider the remaining external events. Tleesats do not trigger any interfering rules. By

Theorem 3, these subregions of the dependency graptonfluent (they are MLMregions) and
are necessarily executed in isolation. Thus, uttdetheorem conditions

ActiveDatabasg(®?,, L) U Correct (D, L) for all possible execution paths.

Both conjuncts have been proven, and the theoreatisfied.[]

Though sufficient, Theorem 6 is a very restrictiemcurrency model. For one, Theorem 6 does
not take into account transaction boundaries. definition of external events are that they are
atomic and committed. Theorem 7 exploits this propand weakens the concurrency model
accordingly.

Theorem 7. The execution of a MLMprogram using thActiveDatabasexecution model
obeying the following conditions is correct.

* At least one rule in every mutual exclusion sesube E-C immediate and C-A
immediate modes.

* For every external evedtt in which theClosurdX) contains a rule connected
with a negative edge in the dependency graphhe rules in th€losurdX) are
stated in E-C and C-A deferred modes or stronger.

Proof. This proof is similar in logic to the proof oh@orem 6. Specifically, Lemma 4 says that
the first condition is sufficient for cycle serizdibility. Therefore, it is only left to prove thide
loosened conditions of Theorem 7 are sufficiersgquence external events.

The theorem conditions specify that for every exdaéeventl in which theClosurdX) contains a
rule connected with a negative edge in the deparydgraph all the rules in th€losurdX) are
stated in E-C and C-A deferred modes or stron@ierefore, the events triggering rules within
the ClosurdX) that contain a negative edge are necessarilyesegd since all the rules are exe-
cuted to quiescence before the end of the tramsgaend no other external event executes until the
transaction has been completely committed (by &imidion of an external event).
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Now consider the remaining external events. Tlegsats do not trigger any interfering rules. By

Theorem 3, these subregions of the dependency graptonfluent (they are MLMregions) and
are necessarily executed in isolation. Thus, uttdetheorem conditions

ActiveDatabasg(?,, L) U Correct (D, X) for all possible execution paths.

Both conjuncts have been proven, and the theoreatisfied.[]

Theorem 7 provides more concurrency than Theorsind® external events that trigger interfer-
ing rules do not have to execute all rules withia tlosure atomically. Therefore, rule execution
from other regions in the dependency graph mayimoatrocessing in parallel. Yet the condi-
tions in Theorem 7 can still be weakened. A ckssmination of rule dependency graphs reveals
that external events need to be sequenced only mienwithin their closures interfere with one
and another.

Towards this end, we defimxternal event interference We say that two external everfts,and
&, interfere with one and another whéi€losure(T;) n Closure(%j)} = A Az, and

[R O A such thaRis a rule connected, in either direction, withegative edge in the dependency
graph. Lemma 5 follows from this definition.

Lemma 5. External events that do not interfere with one amother may be executed in parallel
without violating event sequencing.
Proof. The proof is by contradiction. Consider theecafien two external evert and¥;,

wherei < j, must be sequenced but do not interfere with aideamother. External events need to
be sequenced when arule that istriggered from within alater external event’s closureinvalidates a
rule from an earlier external event’s closure before the earlier external event evaluates to quies-

cence. In other words, ; and &; are not sequenced when somerule Z L) Closurg;) containsa
negated variable that may be invalidated by the rules triggered in the Closure ;) before Z is eval-
uated by the rulestriggered in the ClosurgX;).

In MLM programs, Z isinvalidated by the rules within Closure)) iff Z contains arule connected
with a negative edge n the dependency graph and Z 0 Closure;) 1 Thus,
ZO{ClosurdX;) n Closure(ﬂ:j )} and & and &; interfere. Thisisa contradiction proving that
external eventsthat do not interfere with one and another may be executed in parallel without vio-
lating event sequencing. [

We are now ready to present our loosest concurrency model for MLM™ program using the Active-
Databaseexecution model.

Theorem 8. The execution of aMLM™ program using the ActiveDatabasexecution model
obeying the following conditions is correct:

* At least one rule in every mutual exclusion sesube E-C immediate and C-A
immediate modes.

11. We assume that all applicable rules evaluate on all e@tttidn 2.2.1). This assumption implies thak]l Clo-
suresK;).
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* For every external evenf§thatinterfereswith another external everl| the
rules in theClosurdX) are stated in E-C and C-A deferred modes or ggon

Proof. This proof is similar to the proof of Theorem 3pecifically, Lemma 4 says that the first
condition is sufficient for cycle serializabilityTherefore, it is only left to prove that the lopned
conditions of Theorem 8 are sufficient to sequendernal events.

The proof of the sequencing of external eventyisdmtradiction. Consider the case when two
external eventd; and®;, wherei > j, obey the conditions of Theorem 8 are not sequence

Lemma 5 says that external events that do notfareewith one and another are necessarily
sequenced. Thug; and; must interfere with one and another to violateneequencing.

The theorem conditions specify that all the rutethe ClosurgX;) are state in E-C and C-A

deferred modes or stronger whignand<; interfere with one and another. Therefore, aliles
triggered in theClosurg;) are evaluated to quiescence before the rulegeiragl in theClo-
sure(:L;) sinced; must occur in the next transaction by definitidhis forms a contradiction that
says®; and; must be sequenced. Thus, under the theorem coralit

ActiveDatabasg(®?,, L) O Correct (D, L) for all possible execution paths.

Both conjuncts have been proven, and the theoreatisfied. O

8. Conclusion and Future Work

The large number of coupling modes developed tgitatte active rules within the ACID proper-
ties of a database do not easily scale. Coupliodensemantics become unmanageable within
applications that are classified as hard rule systerule programs that have a large number of
interacting rules that search through lots of ddthis paper presents the resulting simplifications
of a significant subclass of hard rule systems aleMonotonic Log Monitor programs, active
database programs in which tuples are insertechdugr updated nor deleted. Our results demon-
strate that the number of applicable coupling madessignificantly reduced for programs obey-
ing the MLM restrictions which in turn minimizesemecessary coupling mode support of the
underlying database system.

A separate contribution of our work is that our toactive proof techniques may be exploited to
build a compiler-based concurrency implementatistesn. The compiler would operate by con-
structing a bipartite rule dependency graph fronmant rule program. The compiler then would
walk the graph and output the concurrency schemasgepted in this paper.

It is our belief that the details of transactiondals and concurrency schemes are application
dependent. This paper represents the first steppan a general purpose system. As the number of
investigated problem areas are expanded, a confyaiberd systems may be presented, computa-
tionally or otherwise, with a problem type and iepent the appropriate isolation model. We
believe that such technology attacks one of th@nwgmplexity stumbling blocks to general use
of active database systems by insulating applisgitogrammers from the details of database
integration.

Our constructive proof techniques utilize the ressirl confluent rule system, dependency graph,
and serializability theories. These techniquegeadily adapted for formal analysis. However,
we believe further parallelism may be gained thiooapgtimizing rule-based rewrites and dynamic
analysis such as the ones presented in [16]. Dignamalysis allows for coupling mode assign-
ments based on the semantic relationships thatrdyeavailable at runtime (implying dynamic
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assignment of coupling modes). The net result atlayv for closures of rules to be stated in a
weaker coupling modes than could have otherwise baen discerned. We leave this area of
work open.
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