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Abstract

We refine an active-database application taxonomy, proposed by Stonebraker, to include
monotonic log monitoring applications (MLM).   MLMs are a subclass of hard rule sys-
tems where triggering events are restricted to monotonic relations.  We develop a formal
semantic model for the MLM class.  We then prove the correctness of  concurrency
schemes for applications within the model.  Our results demonstrate that only minimal
coupling mode support is necessary for the database integration of hard rule systems obey-
ing the MLM restrictions.  

1.  INTRODUCTION
Active database technology enhances traditional databases with rules that react to database events.  
Applications of the technology range from simple rule systems (applications with few rules that 
rarely interact such as integrity constraints) to hard rule systems (applications with many rules that 
significantly interact such as real-time decision control systems) [7,13,21,26].  

Active database applications, however, are not merely production systems applied to data within a 
database; rule computation must obey the ACID properties (Atomicity, Concurrency, Indepen-
dence, and Durability) of a database.  The most widely accepted approach, introduced by the 
HiPAC project [12], is for active database developers to relate rule processing to database transac-
tions through a pair of coupling modes.  The modes specify the transaction relationship of 1) data-
base events to condition evaluation and 2) condition evaluation to action execution.  This explicit 
specification of coupling modes by application programmers promises to increase system through-
put by maximizing flexibility.  However, the progression of research has lead to a proliferation of 
the number of coupling modes [6,8,12].  As a result, coupling modes often burden application pro-
grammers with extremely difficult conceptual specifications.  In this paper, we begin deciphering 
which coupling modes are necessary to achieve useful active database programming.

We have observed that a number of our active database applications that we have developed rang-
ing across point of sale, medical patient, network security monitors, real-time decision control sys-
tems, and process control monitors can be classified into a subclass of hard rule systems called 

monotonic log monitoring (MLM) applications [5,11,20,24,25,26]1.  MLMs process real-time data 
logged to a database. The primary reason a DBMS is chosen is to exploit the database’s query and 
data durability services as a platform for decision-support.  A fundamental property of the MLM 
logs is that they are inserted to, but never updated nor deleted.  It is this write-once nature of the 

1. It is our conjecture that many other active database programs that are not intrinsically monotone are also mappable to 
the MLM class. 
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logs that we exploit to reduce the number of applicable coupling modes. This paper presents a for-
mal study, using active constructions, of the resulting simplifications that can be made of active 
database programs that obey the MLM restrictions.  

1.1.  APPROACH

Our starting point is a formal specification of the active database languages presented in [2,18,28].  
Section 3 presents the definition of this unified general-purpose active database language.  Section 
4 expands this language with three increasingly concurrent active execution models.  In all three 
models, rules execution is triggered by an external event - an atomic state change to the database 
performed by a database user or application program.

The first, and most basic execution model, is the sequential execution model.  This model forms 
the basis of correctness by reflecting the behavior of active database programs executing as a stand 
alone application with no other database activity.   As such, rules are evaluated sequentially until a 
quiescent state -  a state in which no more rules are triggered.  Though this model is simple and 
straightforward, this single user environment is impractical.  Further, the simplicity of the model 
eliminates the need for coupling modes.  

The second model presented is the parallel execution model.  This model expands upon the 
sequential execution model by allowing concurrent rule execution.  Although restricting external 
event behavior reduces the usefulness of this model, the properties we prove about the parallel 
model are used as a stepping stone to prove properties about concurrent MLM rule processing.

The most general execution model presented is the active database execution model.  This model 
is an unrestricted model in which both external events and rules execute concurrently [18].  As 
such, the active database execution model accurately portrays modern active database systems 
executing within a multi-user environment.

Using our three execution models, we present a series of proofs that specify the concurrency 
schemes for MLM programs.  These schemes meet the sufficient conditions for program correct-
ness.  A program is said to be correct under an execution model iff every possible execution path 
within the model is equivalent to a path within the sequential execution model (Section 4.3).  We 

divide our analysis into two categories.  The first category consists of MLM+ programs - MLMs 

that contain only positive variables2.  The second category consists of MLM- programs - MLMs 

that contain both positive and negative variables3.  It follows from these definitions that the logical 

database language Datalog is a proper subset of MLM- programs [23].  Our proofs exploit the pre-
vious results and proof techniques in serializability theory, rule dependency graphs and confluent 
rules systems [1,9,16,23]. 

Serializability theory states the conditions upon which concurrent processing is equivalent to a 
serial interleaving of operations.  A well known application of the theory is within database trans-
action models [15].  In [4], Bernstein states a set of conditions that specify when the order of inter-
fering operations matter (RAW, WAW, and RAW).  These conditions are violated when interfering 
operations are executed  in parallel without restrictions.  The results of violating the Bernstein con-
ditions is that the database may move to an incorrect state.  

2. A positive variable is a database query on the existence of values within a database.
3. A negative variable is a database query that uses the closed world assumption to test for the 

absence of values within a database.
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We exploit serializability theory to describe when the parallel execution of rules interfere with one 
and another.  Rule interference is synonymous to the Bernstien’s conditions where if certain condi-
tions are violated, the order of rule execution matters.  In this paper, we use Kuo, Miranker and 
Browne’s rule serializability theory based on bipartite rule dependency graphs (Section 5) [14,16].  

In Kuo et al, a graph in which a cycle of rules interfere with one and another is called a cycle of 
dependency, and the set of rules in a cycle of dependency form a mutual exclusion set.  Two key 
theorems presented in [16] describe execution cycles in terms of cycle serializability, an execution 
cycle that is equivalent to some serial execution of rules.  These two theorems are 1) the cycle seri-
alizability theorem which states the parallel execution of all rules in a mutual exclusion set may 
lead to a non-cycle serializable execution cycle and 2) the serializability theorem which states that 
a parallel execution cycle that does not contain all the rules in a mutual exclusion set is guaranteed 
to be cycle serializable. 

In contrast to serializability theory which describes the properties of interfering rules, confluent 
rule systems explain the properties of quiescent states [1,9,19,23].  A rule system is confluent 
when the quiescent state is unique despite rule ordering.  Towards this end, we present the program 
characteristics and concurrency models that are sufficient for MLMs to be confluent.     

1.2.  RESULTS

Our first result establishes a concurrency scheme for MLM+ programs.  Theorems 2 and 4 prove 

that a MLM+ program is correct when all rules in the program are specified in E-C and C-A decou-

pled modes (Section 6).  In fact, MLM+ programs have been proven to be confluent in the sequen-
tial execution model [9].  Theorems 1 and 3 demonstrate that confluence still holds for active 

database MLM+ programs with concurrent rules and external events.  

Our next findings concern the more general MLM- programs (Section 7).  Concurrency models for 

MLM - programs are difficult to assign since they do not contain unique quiescent states [9,23].  
Further, active database developers expect external events and the rules that they trigger to appear 
as atomic state transitions.  This assumption necessitates the consideration of the time ordering 
sequence of external events (Section 7.1).  These complications become apparent within applica-
tions where it is possible for an incorrect program execution to contain only cycle serializable exe-
cution cycles.  

Our MLM- analysis begins with the concurrency scheme for programs executing the parallel exe-
cution model (Section 7.2).  We exploit Kuo, Miranker, and Browne’s work to identify rules that 

must be stated in E-C and C-A immediate modes.  Specifically, Theorem 5 proves that an MLM- 
program executing with the parallel execution model is correct when at least one rule in every 
mutual exclusion set is stated in E-C and C-A immediate modes.  

We next analyze MLM- programs executing with the active database execution model (Section 
7.3).  We present three decreasingly restrictive concurrency schemes.  All schemes exploit the 
interactions of external event closures - the set of all rules that may become active due to the exe-
cution of an external event.  Graphically, the external event closure is all rules reachable by a depth 
first traversal in the rule dependency graph rooted by the external event.  

The first concurrency scheme for MLM- programs executing with the active database execution 

model is overly restrictive.  Theorem 6 proves that a MLM- program is correct when at least one 
rule in every mutual exclusion set is stated in E-C and C-A immediate modes and all rules in all 
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external event closures that contain a rule that is connected with a negative edge in the dependency 
graph are stated in E-C and C-A immediate modes.  

The second concurrency scheme for MLM- programs executing the active database execution 
model improves concurrency based on transaction characteristics.  Our definition of external 
events are that they are atomic and committed.  Theorem 7 exploits this definition by proving that 

a MLM- program is correct when at least one rule in every mutual exclusion set is stated in E-C 
and C-A immediate modes, and all rules in all external event closures that contain a rule that is 
connected with a negative edge in the dependency graph are stated in E-C and C-A deferred modes 
or stronger.  It is important to note that deferred coupling mode semantics allow for rule execution 
to continue in parallel.  

Our third and most general concurrency scheme for MLM - programs executing the active database 
execution model further improves concurrency based external event interference - the situation in 
which the parallel execution of the closure of rules triggered by two or more external events may 
violate external event sequencing.  Lemma 5 establishes dependency graph regions where external 

event interference may occur. Theorem 8 proves that a MLM- program is correct when at least one 
rule in every mutual exclusion set is stated in E-C and C-A immediate modes, and all rules in all 
external event closures in which external events interfere with one and another are stated in E-C 
and C-A deferred modes or stronger.  It is important to note that many MLMs are embedded appli-
cations that have a limited number of external events.  This last concurrency scheme exploits this 
property to improve system throughput.  

2.  BACKGROUND

2.1.  Active Database Rules and Coupling Modes

Expert system rules are Condition-Action rules (CA rules).  CA rules are evaluated on every 
update to working memory.  Within the active database paradigm, such evaluation may be prohib-
itive since numerous external events may occur in a multi-user database.  Thus, active database 
rules follow the model proposed by HiPAC [12].  This model extends rules to include an event sec-
tion that describes when to evaluate a rule. The resulting rules are called Event-Condition-Action 
rules (ECA-rules).  

The relationship between events, rule execution and database transactions has been addressed in a 
series of coupling modes [12,28].  An ECA rule contains two classes of coupling modes.  The first 
class is the E-C coupling mode - the transaction relationship between the occurrence of an event 
and the condition evaluation.  The second class is the C-A coupling mode - the transaction relation-
ship between the evaluation of the rule’s condition and its action’s execution.  

Many coupling modes have been proposed.  The first and most predominately used modes are 
immediate, deferred, and decoupled [12].  In immediate mode, execution of the pair occurs in the 
same transaction; in deferred mode, execution of the second part of the pair occurs just prior to 
transaction completion; and in decoupled mode, execution of the pair occurs in separate transac-
tions.  Other coupling modes that have been proposed include the detached causally dependent in 
either of parallel, sequential or exclusive modes to give abort and commit semantics for decoupled 
transactions [6].  
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2.2.  Monotonic Log Monitors (MLM)

This paper presents the simplifications that can be discerned from a class of applications called 
monotonic log monitors (MLM).  MLMs are a class of real-time active-database applications 
[17,24].  Such systems process some form of real-time data logged to a central database.  The pri-
mary reason a DBMS is chosen as a storage method is to exploit the database’s decision-support 
services.  We use this write-once nature of logs to restrict the number of useful coupling modes and 
to simplify the transactional interface elements.   

We believe MLMs represent a significant class of active database applications. Examples range 
across point of sale, medical patient and process monitoring, and intrusion detection systems [26] .  
In each of these application areas, there is need to move decision support out of batch-mode and/or 
human-in-the-loop processing towards increasingly timely trigger driven analysis.  

MLMs form a subset of the most complex region of a two-axis active-database application taxon-
omy.  This taxonomy is organized by the complexity of applications’ rule components.  On one 
axis of this taxonomy,  Michael Stonebraker proposed a classification based on the amount of 
search of the applications’ rule systems [21].  Simple rule systems have few rules with little inter-
action; hard rule systems have many rules with significant interaction.  On the other axis, proposed 
by Lance Obermeyer [17], is a taxonomy based on the size of the data being analyzed.

This two-axis taxonomy of active database 
problems yields four distinct regions (Figure 
1).  Regions I and III are applications that 
investigate small amounts of data.  Such appli-
cations do not necessitate the full functionality 
of a database, and therefore, coupling modes 
may be omitted.  

Regions II and IV, however, are applications 
that search through large amounts of data.  
These problems require the data management 
services of databases, and as such, necessitate 
coupling modes for transaction processing.  
Region II consists of “simple” rule systems 
incorporating applications such as view main-
tenance, integrity constraint and workflow sys-

tems [7,13]4.  Such applications generally treat each rule as a separate program.  Consequently, the 
number of coupling modes for Region II applications is relatively minimal.  Region IV consists of 
“hard” rule systems of which MLMs represent a significant subset.  Such applications contain hun-
dreds if not thousands of rules interacting in arbitrary ways.  The already complex nature of hard 
rule systems become unmanageable with the addition of coupling mode semantics [2].  A goal of 
this paper is to begin deciphering the necessary coupling modes to achieve useful active database 
programming of Region IV applications. 

4. The word “simple” in this context by no means implies that these technologies are trivial.

FIGURE 1. Two Axis Taxonomy of Active 
Databases
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2.2.1.  MLMs, Datalog, and Confluence

MLMs have been shown to have similar characteristics to programs stated in the logical database 
language Datalog [9].  Datalog programs are rule-based programs with the following properties 
[23]:

• Rules are safe - range restricted.

• Data is monotonic.

• Data is stored in a database.

• Pure Datalog rules are Horne clauses.

The properties of MLM programs obey the first three restrictions.  

[1,9,19,23] use these characteristics to establish the sufficient conditions for MLMs to be conflu-
ent.  A rule program is confluent when all eligible serial executions of the program terminate in a 
unique state regardless of the ordering of rule firings [1].  In particular, MLMs in which no rule 
conditions contain a negative variable (a test for the absence of facts in a database) have been 
proven confluent.  Further, stratified MLMs have also proven confluent [9,19].  

This theory is a foundation upon which we build our concurrency models.  Yet, it is not all encom-
passing.  First, an underlying assumption of the theory of confluence is that rules are executed 
atomically and in isolation from other database activity.  Active databases, on the other hand, 
assume an opposite model in which rules execute in parallel with external events and operate 
according to the semantics of coupling modes.  

Secondly, confluence cannot be guaranteed for ECA rule programs in which rules do not monitor 
for all events (as do expert system rules).  However, without loss of generality, we ignore this situ-
ation.  The justification is that omitting external events can be characterized into either 1) omis-
sions purposefully introduced for efficiency improvements (the developers are not concerned with 
the undefined behavior that may result), or 2) inadvertent bugs introduced by the active database 
developer (similar to a semantic bug in a procedural program).  In either case, an omission of an 
event does not represent incorrect behavior introduced by the active database execution model.

2.3.  Concurrency Control in Active Database Systems

Concurrency control issues for general purpose active database systems are largely ignored.  There 
are two reasons for this.  First, the underlying extensional database can be relied upon to imple-
ment the concurrency control features necessary for rule condition evaluation and action execution 
(especially if the rule’s constituents are implemented using the extensional database’s query lan-
guage).  Second, most active database systems are designed to address “simple” rule systems.  In 
such systems, program correctness can be ensured if the rules acquire the necessary locks [17,28]. 

One approach to addressing concurrency control for general purpose active database programs is 
presented in Correl and Miranker [10].  This scheme attaches isolation specifications to individual 
rules and collections of rules called modules.  Three categories of data isolation are proposed 
called guard stability, serializable, and exclusive.  Guard stability allows the greatest amount of 
concurrency, but provides the least amount of isolation from other users. This mode dictates that, 
at minimum, a tuple accessed during condition evaluation will be available during action execu-
tion.  Exclusive mode ensures no other transactions will affect the rule system.  Serializable mode 
contains properties in between guard stability mode and exclusive mode.  
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Though a significant step, a serious deficiency of Correl’s method is that it requires the application 
programmer to determine the system requirements and sensitivity to external state transitions.  
This paper addresses this deficiency. 

3.  Definitions
This section presents the active database language definitions used in this paper.

We define a database table as an active database relation.  A tuple is a row in a database table that 
represents data.  The extensional database, (, is the non-empty collection of database tables 

.  

A database event is defined as  where Insert, Modify, and Delete 
are labels.

Modifications to the database occur using data manipulation commands [2]. A data manipulation 
command is the pair (V,T) where V is a database event, and .  The data manipulation com-

mands a and b are equal iff a = (x,y) and b = (x’,y’) and .  

Though usually omitted in this study, data manipulation commands contain data.  For example, a 
database insertion contains an inserted tuple.  When necessary, our examples refer to  data in the 
following ways:

(Insert, T(a)) - Insert tuple a into table T.
(Delete, T(a)) - Delete tuples a from table T.
(Modify, T(a),T(b)) - Modify tuples a in table T to b.  

We define an active database rule base, 5, as a non-empty finite set of active database rules.  An 
active database rule is the triplet (E,C,A) where:

• The event clause, E, is a non-empty collection of data manipulation commands, 
, in which a rule monitors for modifications to the 

database.  The execution of any one of the data manipulation commands instigates fur-
ther processing of the rule.

• The condition clause, C , is a condition over some state of (.  (To be defined below.)   

• The action clause, A, is a non-empty sequence of data manipulation commands 
 performed when C is satisfied in some state of (.  

(Rule satisfaction is discussed below.)

We define an active database as the pair ((,5).  Depending on context, we often refer to an active 
database as an active database program.  These terms mean the same thing and are used inter-
changeably. 

For a rule R = (E,C,A), we sometimes use the notation ER, CR, AR to denote the rule’s constituents.

An active database rule’s condition clause is a relational calculus predicate ranging over the 

extensional database5.  Variables within the predicates may be either 1) positive or 2) negated.  
Positive variables are existentially quantified variables.  Negated variables are identical to classi-

5. Relational calculus predicates are assumed to be safe [23].

T0 T1 … Tn 1–, , ,{ }

V Insert Modify Delete,,{ }∈

T (∈
x x'  y∧ y'= =

V0 T0,( ) V1 T1,( ) … Vn 1– Tn 1–,( ), , ,

V0 T0,( ) V1 T1,( ) … Vn 1– Tn 1–,( ), , ,
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cal negation used in Datalog and expert systems languages that use the closed world assumption to 
test for the absence of values ( ).

Modifications to the database may occur outside of rule execution through an external event.  We 
define an external event, ;, as a nonempty sequence of data manipulation commands 

 performed atomically at a particular time.  External events 

initiate rule processing.  Therefore, with regard to transaction boundaries, we assume that external 
events are committed.  Otherwise, external events may occur in nested subtransactions that can be 
rolled back.  The rolling back of rule execution is beyond the scope of this paper.  

Active databases change state over time.  Towards this end, we define an extensional database 
state, ', as the state that consists of all the tuples within all the extensional database tables at a 
particular time.  As such, a table state is the set of all tuples belonging to a table  at a partic-
ular time.  An active database state is defined as the pair (',7) where

' is a extensional database state.

 is the set of triggered rules.  (To be discussed below.)

An active database is in a quiescent state, , when the set of triggered rules is empty. Two 
active database states (',7) and ('’,7’) are equivalent iff all tuples in all table states of ' and '’ 
are equivalent and 7 = 7’.

Changes to database state spawn rule evaluation.  We say that a rule R monitors a table T when 

.  Likewise, we say that a table T is monitored if  such that .  

Without loss of generality we make the following assumption:

Assumption:  ,  such that R monitors T.  

Our assumption implies that all data manipulation commands within rule actions operate on moni-
tored tables.  In practice, actions may contain operations on unmonitored tables and/or outside 
sources (such as printing to a user interface).  Such operations do not effect our study and are 
henceforth ignored.  

3.1.  Functions  

Following is a list of functions used in this paper.

CR('):  Where  and ' is an extensional database state.

CR(') = true if CR evaluates to true in state '.  In this case, we say that CR is satisfied. 

CR(') = false otherwise.

AR('):  Where  and ' is an extensional database state. 

AR(') = '’,  where AR(') executes the sequence of data manipulation commands AR start-
ing from state ' resulting in a new database state '’ .

:  Where  and .  

 = true if the table T is bound to a positive variable in CR.

 = false otherwise.

 ∃¬

V0 T0,( ) V1 T1,( ) … Vn 1– Tn 1–,( ), , ,

T (∈

7 5⊆

' ∅,( )

V T,( )∃ E
R∈ R∃ 5∈ V T,( )∃ E

R∈

T∀ (∈ R 5∈∃

R 5∈

R 5∈

T Pos C
R( )∈ R 5∈ T (∈

T Pos C
R( )∈

T Pos C
R( )∈
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:  Where  and .  

 = true if the table T is bound to a negated variable in CR.

 = false otherwise.

Triggers(d): Where d is a sequence of data manipulation commands 
.  

Triggers(d) is the set rules  such that .  For purposes 

of analysis, a data manipulation command that does not create a state change (e.g., 
inserting a repeated copy of a tuple) does not add its monitoring rule to the result set.  

Apply(;�'):  Where ; is an external event and ' is an extensional database state.

Apply(;�') = '’,  where Apply(;�') executes ; starting in state ' resulting in a new data-
base state '’ .

3.2.  Sequence of States

The database moves from an active database state ('n,7n) to ('n+1,7n+1) in the following ways.

1).  A rule  links the states  to  iff  and either6

i.  is true, and

ii. , and

iii.

or

i.  is false, and

ii. , and

iii.

2).  An external event ; links the states  to  iff

i. , and

ii.

We define an execution graph as the graph Ge = (V, E) where the vertices  represent 

active database states and the edges  are states that are linked as described above.  An 

active database program’s execution path is the path through an execution graph taken by a par-
ticular execution. 

6. Due to the properties of MLMs, we do not have to consider rules that are un-triggered as described in [27].

T Neg C
R( )∈ R 5∈ T (∈

T Neg C
R( )∈

T Neg C
R( )∈

V0 T0,( ) V1 T1,( ) … Vn 1– Tn 1–,( ), , ,

R 5∈ i 0 i n 1 Vi Ti,( ) E
R∈,–≤ ≤,∃

R 5∈ 'n 7n( , ) 'n 1+ 7n 1+( , ) R 7n∈

C
R
'n( )

A
R
'n( ) 'n 1+=

7n R–( ) Triggers A
R( )∪ 7n 1+=

C
R
'n( )

'n 'n 1+=

7n R– 7n 1+=

'n 7n( , ) 'n 1+ 7n 1+( , )

Apply ; 'n,( ) 'n 1+=

7n Triggers ;( )∪ 7n 1+=

V Ge∈

E Ge∈
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3.3.  Monotonic Log Monitor Definitions

Consider an active database program ((,5) that executes the sequence of external events 
.  For  and , a table  is monotonic iff

,  (EQ 1)

Informally, a table T is monotonic iff all rules and all external events perform only insertions into 
T.  Note, it is not necessary to know the entire set ; a priori;  it is sufficient to constrain ; to con-
tain only insertions to T.  Notationally, we say:

MonotonicTable(T):  Where T is satisfied by the Equation 1.

For an active database ((,5) and a rule , R is a monotonic active database rule iff

,  (EQ 2)

Informally, a rule R is monotonic iff all data manipulation commands in its action are insertions. 

Monotonic Log Monitor (MLM)  - Consider an active database program ((,5) that executes the 
sequence of external events . ((,5) is a MLM iff:

 , (EQ 3)

Equation 3 implies that all rules in a MLM program are monotonic.

We distinguish two categories of MLMs.  The first category, MLM +, are MLMs containing only 

positive condition variables.  The second category, MLM -, are MLMs containing both positive 
and negated condition variables. 

4.  Active Database Execution
This section formalizes the active database execution models presented in [2,18].  We present three 
slightly different models that vary depending on their restrictiveness with respect to concurrency.  
In all three models, rule execution begins with the occurrence of an external event. 

The first model, the Sequential model, is based on algorithms presented in [2,3,27].  The model 
execution proceeds by locking the database from external events and serially executing until quies-
cence.  

Though straightforward, the Sequential model forfeits concurrency.  Therefore, we introduce the 
the Parallel and the ActiveDatabase execution models.  The Parallel model allows for concurrent 
rule execution but locks the database from external events during rule processing.  The general 
ActiveDatabase model, based on an aggregation of the models presented in [2,18], allows for con-
current execution of both external events and rules. 

We begin our discussion by introducing the semantics of parallel execution of active database 
rules and external events.

4.1.  Atomicity and Parallel Rule Execution

Section 3.2 presented the linking of active database states as if rules are executed atomically.  
However, this is not the case.  Operations within an extensional database are gauranteed to be 

; ;0 ;1 … ;n 1–, , ,{ }= R∀ 5∈ X∀ ;∈ T (∈

V T,( ) A
R

X∪{ }∈∀ V Insert=

R 5∈

V T,( ) A
R∈∀ V Insert=

; ;0 ;1 … ;n 1–, , ,{ }=

T (∈∀ MonotonicTable T( )
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atomic iff the operations live within a transaction.  In an active database, the set of atomic opera-
tions are expanded to include rule conditions, rule actions and an external events (but not entire 
rules) since each such operation must be executed within a transaction.  This atomicity does not 
come at the expense of concurrency.  The locking mechanisms of the underlying database allow 
for concurrent execution of transactions.  Yet, since entire rules do not necessarily live in a single 
transaction, parallel rule execution may lead to an incorrect database state.  

Coupling modes handle the issue of rule atomicity by allowing the user to force the desired execu-
tion sequence.  The database locking mechanisms in conjunction with coupling modes result in the 
following semantics:

1. Conditions in E-C immediate mode are executed in sequential nested sibling transactions from 
the spawning transaction. 

2. Conditions in E-C deferred mode are delayed until the end of the spawning transaction and then 
executed in parallel. 

3. Conditions in E-C decoupled mode are executed in independent top transactions. 

Statements 1 through 3 are identical for rule actions [12]. 

The above semantics result in following two concurrency semantics for linking states.  

1. Atomic transition.  Coupling mode semantics imply that rules stated in E-C and C-A immediate 
modes are executed atomically (within the same transaction).  Therefore, we write, 

 where X is either an external event or rule stated in E-C and 

C-A immediate modes, and  is the resulting database state.

2. Parallel transition (also called a parallel execution cycle).  We write, 

 where , , 

, and  is the resulting database state.  The algorithm for a parallel tran-

sition with the above set X is as follows: 

while( )

do_in_parallel

choose R from X, and remove  it from X.

R links  to  where R is spawned in the transaction 

model specified by its coupling modes (or executed atomically if R is an 
external event or a rule stated in E-C and C-A immediate modes).  

Much of the remaining focus of the paper is to clarify the meaning of .

We are now ready to present our three execution models.

4.2.  Execution Models

4.2.1.  Sequential execution model 

Method Name: Sequential
Input:   , ;j

'k 7k( , )   X 'k 1+ 7k 1+( , )

'k 1+ 7k 1+,( )

('k+1,7k+1)('k,7k)
X X 50 … 5, x, ;0 … ;, ,

y
∪{ }= 5m 5∈

;n ;∈ 'k 1+ 7k 1+,( )

X  { }≠

'k 7k( , ) 'k′ 7k′( , )

'k 1+ 7k 1+( , )

'i
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Output:    where k > i.

Algorithm:   For each ;j executed, the following algorithm is spawned:

0).  ,  i := i + 1

1) while  

Begin loop
2).  Select 

3).   ,  i := i + 1

End loop
4).  return 

4.2.2.  Parallel execution model 

Method Name: Parallel
Input:   , ;j

Output:    where k > i.

Algorithm:   For each ;j executed, the following algorithm is spawned:

0).  , i := i + 1

1) while  

Begin loop
2).  Select 

3).  , i := i + 1

End loop
5).  return 

Step 2 of the Parallel model has been the subject of much research [6,22,27].   Many of the first 
active database languages modeled the Sequential algorithm; one rule is selected from Tk on each 
cycle [27].  Parallel improves system throughput by allowing rules to execute concurrently.  The 
Parallel model, similar to the REACH rule system [6], selects all rules in Tk for concurrent execu-
tion on each cycle.  This choice may seem overaggressive since if all the rules were really exe-
cuted in parallel, incorrect behavior could result.  However, coupling modes handle the issue of 
rule atomicity by providing a mechanism to force the necessary execution sequence in cooperation 
with underlying database’s locking mechanisms that manage the detailed data interactions.  

4.2.3.  ActiveDatabase execution model 

Method Name: ActiveDatabase
Input:   , ;j

Output:    where k > i.

Algorithm:   Each ;j executed in a quiescent state spawns the following algorithm:

0). , i := i + 1

'k

'i ∅( , ) ��;j 'i 1+ 7i 1+( , )

7i ∅≠

R 7i∈

'i 7i( , )   R 'i 1+ 7i 1+( , )

'i

'i

'k

'i ∅( , ) ��;j 'i 1+ 7i 1+( , )

7i ∅≠

R 7i=

'i 7i( , ) R 'i 1+ 7i 1+( , )

'i

'i

'k

'i ∅( , ) ��;j 'i 1+ 7i 1+( , )
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1) while  

Begin loop
2).  Select 

3). , i := i + 1

End loop
5).  return 

The ActiveDatabase execution model selects a set of rules at Step 2 to be concurrently evaluated 
and executed with external events in Step 3.

Notationally, we refer to an active database program Y that executes using the execution model X 
beginning in state  executing a sequence of external events ; and terminating in state  as:

(EQ 4)

4.3.  Correct Active Database Execution

We define an active database state 'j as a sequential database state iff 'j is the initial database 

state  or 'j is a state that is linked from '0 through the sequential application of data 

manipulation commands.  We note that the initial database state, , is a correct active data-

base state: it the state in which no data manipulation commands have occurred.

Corollary 1. All active database states in all execution paths of an active database program exe-
cuting using the Sequential execution model are sequential database states.

Proof.  The reader can verify using induction that such is the case.  

As a consequence of Corallary 1, we define a program correctness per its execution as defined by 
the Sequential execution model.  An active database program is correct iff all eligible execution 
paths contain only sequential active database states and all possible quiescent states are producible 
by the Sequential execution model.  Since Step 2 in Sequential is nondeterministic, the Sequential 
execution model may terminate in more than one quiescent state.  We define CorrectY('n,;) as 

the set of active database states reachable by all possible execution paths of .  

We refer to the states in CorrectY('n,;) as correct database states.  More formally,  

CorrectY('n,;) = {states S |  an execution of  that yields S} (EQ 5)

Correct Active Database Program -  Consider an active database program Y that begins in state 
 and processes the sequence of external events .  Let the total set of pos-

sible quiescent states after sequentially processing all n events using the Sequential execution 
model be .  

Definition :  A program Y is correct under a execution model X iff 

• All  eligible execution paths contain only sequential database states, and

• if , then .

7i ∅≠

R 7i=

'i 7i,( ) { R ∪ ;j+m ∪ ... ∪ ;j+n} 'i 1+ 7i 1+,( )

'i

'i 'j

XY 'i ;,( ) 'j⇒

'0 ∅( , )

'0 ∅( , )

 

SequentialY 'n ;,( )

 ∃ SequentialY 'n ;,( )

'i ; ;0 … ;n 1–, ,{ }=

CorrectY 'i ;,( )

XY 'n ;,( ) 'n k+⇒ 'n k+ CorrectY 'n ;,( )∈
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5.  Serializability of Rules
We heavily exploit the standard definitions and methodology surrounding the serializability theo-
rem [15].  However, its manifestation in active databases and our presentation requires some 
review and adaptation.  

Serializability theory states the conditions upon which concurrent processing is equivalent to a 
serial interleaving of operations.  A well known application of the theory is within database trans-
action models [15].  In [4], Bernstein states a set of conditions that specify when the order of inter-
fering operations matter (RAW, WAW, and RAW).  These conditions are violated when interfering 
operations are executed  in parallel without restrictions.  The results of violating the Bernstein con-
ditions is that the database may move to an incorrect state.  

Rule interference is synonymous to the Bernstien’s conditions.  In this case, the parallel execution 
of interfering rules may produce an incorrect state.  Formally, for a MLM active database program, 
a rule R0 interferes with a rule R1 iff

(EQ 6)

External events may also interfere with rules.  An external event ;0 interferes with a rule R iff

(EQ 7)

In this paper, we use a simplified version of the bipartite dependency graphs developed in [16] to 

statically determine rule interferences7.  A dependency graph Gm is defined as (V,E) where the ver-

tices  represent either rules, represented as “circles” ( ), or external events, represented 

as “diamonds” ( ).  Edges , presented in Figure 2, represent the data dependency 

between rules and external events. 

7. The simplifications result from the properties of MLMs.

Insert T,( ) A
R0  Insert T,( ) Neg C

R1( )∈∃∈∃

Insert T,( ) ;0  Insert T,( ) Neg C
R( )∈∃∈∃

V Gm∈

E Gm∈

                 Edge                                                           Validating Condition

1).     R1 monitors R0; R0 and R1 do not interfere with one 

and another.  

2).    R1 monitors R0; R0 and R1 interfere with one and 

another.

3).  R0 monitors for events in ;0; ;0 and R0 do not 

interfere with one and another.  

4).     R0 monitors for events in ;0; ;0 and R0 interfere with 

one and another.

FIGURE 2.   Bipartite Graph Constructs

+R0 R1

 -R0 R1

;0
+ R0

;0
- R0



                                                                                7/31/00

July 31, 2000 15

Kuo et. al. identify a region in a dependency graph that may lead to erroneous behavior.  They call 
this region a cycle of interference - a cycle in a dependency graph in which all edges are negative.  
The set of rules in a cycle of interference form a mutual exclusion set.

Kuo et. al. present two theorems based on rules within mutual exclusion sets.  The theorems are 
based an the concepts of cycle serializability and execution serializability which are defined as 
follows: A parallel execution cycle ck is cycle serializable iff there exists a serial execution of ck, 
call this ck*, such that execution of ck in state ('j, 7j) moves the database to a state ('j+1, 7j+1) 
and the execution of ck* in state ('j, 7j)  moves the database to a state ('* j+m, 7* j+m) and 'j+1 = 
'* j+m.  An active database program with an execution path of n parallel execution cycles is execu-
tion serializable iff ∀ j ∈  [0, ..., n-1], cycle j is cycle serializable.

The theorems from [16] used in this paper are:  

Cycle Serializability Theorem.  The parallel execution of all the rules within a mutual exclu-
sion set may not be cycle serializable.  Proof is given in [16].

Serializability Theorem.   A parallel execution cycle that does not contain all the rules within a 
mutual exclusion set is guaranteed to be cycle serializable.  Proof is given in [16].

We use these theorems to establish concurrency schemes that force parallel execution cycles to 
become cycle serializable.  As such, an active database execution path in which all execution 
cycles are cycle serializable contains only sequential database states.

6.  Concurrency Schemes for MLM+ Programs

This section presents the concurrency schemes for MLM+ programs.  We begin with a discussion 
on  programs executing the Parallel execution model and conclude with the Active database exe-
cution model.  Each section contains the three proofs of 1) the sufficient conditions for all execu-
tion cycles to be cycle serializable, 2) the sufficient conditions for confluence, and 3) the sufficient 

conditions for programs correctness.  Our resulting concurrency schemes demonstrate that MLM+ 
programs with all rules stated in E-C and C-A decoupled modes are correct and confluent. 

6.1.  Parallel Execution Model

6.1.1.  Cycle Serializable

Lemma 1. Given a MLM+ program in which all rules are specified in the E-C and C-A decou-
pled modes, all parallel execution cycles in all execution paths using the Parallel 
execution model are cycle serializable.     

Proof.  Instead of a direct proof of Lemma 1, it will suffice to prove the more general claim stating 

that for a MLM+ program, all parallel execution cycles in all execution paths using the Parallel 
execution model are cycle serializable (regardless of coupling modes).  Therefore, it will be vacu-
ously true that the E-C decoupled and C-A decoupled modes are sufficient.  

Step 0 in the parallel execution model is cycle serializable by definition.  Now it is necessary to 

prove that Step 3 in the parallel execution model on a MLM+ program is cycle serializable.  Con-

struct 1 in Figure 2 is the only edge notation connecting MLM+ rules.  Dependency graphs with 
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only positive edges contain no mutual exclusion sets.  Kuo et. al.’s Serializability Theorem says 
that such Parallel execution cycles are guaranteed to be cycle serializable.  Thus, a Parallel execu-
tion cycle containing any subset of rules within 5 is guaranteed to be cycle serializable and Step 3 
must be cycle serializable.  By induction, all execution cycles are cycle serializable and the claim 
has been proven. 

6.1.2.  Confluence

Theorem 1. The execution of a MLM+ program using the Parallel execution model in which all 
rules are specified in E-C and C-A decoupled modes is confluent.

Proof.  Lemma 1 proves that all parallel execution cycles in all execution paths of an MLM+ pro-
gram executing the Parallel execution model (with the stated coupling modes) are cycle serializ-

able.  Therefore, MLM+ programs executing the Parallel execution model are execution 
serializable by definition.  Execution serializability implies that all execution paths are equivalent 
to some sequential execution path.  As such, active database programs executing the Parallel exe-
cution model are equivalent to some sequential execution.  [9] proves that sequential executions of 

MLM+ programs are confluent, and therefore, MLM+ programs using the Parallel execution 
model are confluent.  

6.1.3.  Program Correctness

Theorem 2. The execution of a MLM+ program using the Parallel execution model in which all 
rules are specified in E-C and C-A decoupled modes is correct.

Proof.  Given any MLM+ program Y in which all rules are stated in E-C and C-A decoupled 
modes, Y is correct under the Parallel execution model iff all parallel execution cycles in all exe-
cution paths are cycle serializable, and all executions of  

for any initial state  and external event . 

Lemma 1 satisfies the first conjunct by proving that all parallel execution cycles in all execution 
paths of Y (with the stated coupling modes) using the Parallel execution model are cycle serializ-
able.   

Now it is necessary to prove the second conjunct.  [9] proves that sequential executions of 

MLM + programs are confluent.  Lemma 1 proves that MLM+ programs using the Parallel 
execution model are also confluent.  Therefore, together the statements imply that   

.

Both conjuncts have been proven, and the theorem is satisfied.  

 

 

ParallelY 'n ;,( ) CorrectY 'n ;,( )∈

'n ;

ParallelY 'n ;,( ) CorrectyY 'n ;,( )=
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6.2.  Active Database Execution Model

6.2.1.  Cycle Serializable

Lemma 2. Given a MLM+ program in which all rules are specified in the E-C and C-A decou-
pled modes, all parallel execution cycles in all execution paths using the ActiveData-
base execution model are cycle serializable.   

Proof.  Noting that external events add only constructs 3 and 5 to the dependency graphs, the proof 
of Lemma 2 is almost identical to that of Lemma 1.  Specifically, it will suffice to prove the more 

general claim that all parallel execution cycles in all execution paths of a MLM+ program using 
the ActiveDatabase execution model are cycle serializable (regardless of coupling modes).  

Step 0 in the ActiveDatabase execution model is cycle serializable by definition.  Now it is neces-

sary to prove that Step 3 in the ActiveDatabase execution model on a MLM+ program is cycle seri-

alizable.  Constructs 1, 3 and 5 in Figure 2 are the only edges connecting MLM+ rules executing 
the ActiveDatabase execution model.  Dependency graphs with only positive edges contain no 
mutual exclusion sets.  Kuo et. al.’s Serializability Theorem says that such parallel execution 
cycles are guaranteed to be cycle serializable.  Thus, a parallel execution cycle containing any sub-
set of rules within 5 and any number of external events is guaranteed to be cycle serializable and 
Step 3 must be cycle serializable.  By induction, all execution cycles are cycle serializable and the 
claim has been proven.  

6.2.2.  Confluence 

Theorem 3. The execution of a MLM+ program using the ActiveDatabase execution model in 
which all rules are specified in E-C and C-A decoupled modes is confluent.

Proof.  Lemma 2 proves that all parallel execution cycles in all execution paths of an MLM+ pro-
gram executing the ActiveDatabase execution model (with the stated coupling modes) are cycle 

serializable.  Therefore, MLM+ programs executing the ActiveDatabase execution model are exe-
cution serializable by definition.  Execution serializability implies that all execution paths are 
equivalent to some sequential execution path.  As such, active database programs executing the 
ActiveDatabase execution model are equivalent to some sequential execution.  [9] proves that 

sequential executions of MLM+ programs are confluent, and therefore, MLM+ programs using the 
ActiveDatabase execution model are confluent.  

6.2.3.  Program Correctness

Theorem 4. The execution of a MLM+ program using the ActiveDatabase execution model in 
which all rules are specified in E-C and C-A decoupled modes is correct.

Proof.  Given any MLM+ program Y in which all rules are stated in E-C and C-A decoupled 
modes, Y is correct under the ActiveDatabase execution model iff all parallel execution cycles in 
all execution paths are cycle serializable, and all executions of 

 for any initial state  and sequence of external 

events . 

 

 

ActiveDataseY 'n ;,( ) CorrectY 'n ;,( )∈ 'n

;
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Lemma 3 satisfies the first conjunct by proving that all parallel execution cycles in all execution 
paths of Y (with the stated coupling modes) using the ActiveDatabase execution model are cycle 
serializable.   

Now it is necessary to prove the second conjunct.  [9] proves that sequential executions of 

MLM + programs are confluent.  Lemma 1 proves that MLM+ programs executing the 
ActiveDatabase execution model are also confluent.  Therefore, together the statements 
imply that .

Both conjuncts have been proven, and the theorem is satisfied.  

7.  Concurrency Schemes of MLM- Programs

We now consider MLM- programs.  In general, MLM- programs are not confluent since rules and 
external events may interfere with one and another [23,28].   

Our definition of program correctness stipulates that a program is correct iff the quiescent state is 
reproducible by the Sequential execution model.  With regard to ordering, the Sequential execu-
tion model sequentially processes each external event until quiescence.  Consequently, in addition 
to presenting the sufficient conditions for cycle serializability, we present the sufficient conditions 

to maintain the ordering of external events8.

We begin with a discussion on event sequencing.

7.1.  Event Sequencing

To define event sequencing, we must present two new definitions.  First, we say that a set of rules, 
A, executes in isolation from another set of rules B, when there does not exist a rule within either A 
or B that interferes with one and another.  Secondly, for a set of rules , we define the set of 
rules within the Closure(R) as follows:

8. This sequencing has not been necessary in our previous sections.  In Section 6, we presented  MLM+ programs that 
are confluent.  Confluence means sequence is irrelevant.  

ActiveDatabaseY 'n ;,( ) CorrectyY 'n ;,( )=

 

rule R0                                = { (Insert,T0(1)) }  = { ( Insert,T0(3)) }

E: { (Insert,T0) }   

C:                 '0 = {}

A:  { ( Insert,T1(2))  }        

;0 ;1

T0 3( )¬

FIGURE 3. External Event Sequencing.

;0

R0

-

-;1

R 5⊆
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Algorithm:   Closure
Input:   

Ouput:   

Repeat until S is unchanged:

 for some .   

Graphically, the Closure(R) contains all rules reachable by a depth first traversal of the depen-
dency graph starting from the rules in set R.

We now define event sequencing.  Event  is processed in sequence before an event  iff all 

rules triggered by the  are evaluated before (in time) or in isolation from 

the rules triggered by  .

The closure is interesting since the Sequential execution model processes an external event  by 

locking the active database and evaluating all the rules triggered in the  
until quiescence.  Therefore, a proof of program correctness for an execution model must prove 
that all external events are sequenced. 

The following example demonstrates the necessity for external event sequencing.

Example 1.  Consider Figure 3.  Let  be applied in '0 and  be applied in '2.  As 

such,  triggers R0 in '0 and  triggers R0 again in '2.  If R0 is stated in E-C and C-A imme-

diate modes, R0 will be evaluated in '1.   and R0 will insert the number 2 to T1.  

Upon , R0 will again be evaluated in '3.   and R0 will not fire a second time.  

The resulting quiescent state will be .   

Now, consider R0 in E-C and C-A decoupled mode.  In this case,  will trigger R0 in '0 and  

may trigger R0 again in '1.  Due to R0’s E-C decoupled mode, the database scheduler may delay 
condition evaluation of R0 until after '1. Therefore, ;1 will be applied in '2 and 

,  and R0 will not execute its action.  The final state after 

processing will be , x > 2.  This execution is not consistent with any 

sequential application of the external events, and therefore, is incorrect.

7.2.  Parallel Execution Model

7.2.1.  Cycle Serializability

Lemma 3. Given an MLM- application, all parallel execution cycles in all execution paths using 
the Parallel execution model are cycle serializable under the following condition:

• At least one rule within all mutual exclusion sets is specified in E-C and C-A imme-
diate modes.   

R 5⊆
S 5⊆

S R{ }←

S S← X∪ 5 ∈  X T∈ riggers A
Y( ) Y S∈

;0 ;1

Closure Triggers;0( )( )

Closure Triggers;1( )( )

;

Closure Triggers;( )( )

;0 ;1

;0 ;1

C
R0

'1( ) true≡

;1 C
R
'3( ) false≡

'3 T0 1( ) T0 2( ), T1 3( ),{ }=

;0 ;1

'2 T0 1( ) T0 3( ),{ }= C
R0

'2( ) false≡

'x T0 1( ) T0 3( ),{ }=
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Proof.  The proof of Lemma 3 uses the same logic as the proof of Lemma 1.  

Execution begins in Step 0 of the Parallel execution model.  Step 0  is cycle serializable by defini-

tion.  Now it is necessary to prove that Step 3 in the Parallel execution model on a MLM- program 
is cycle serializable.  

Consider a parallel execution cycle that contains all the rules within a mutual exclusion set.   
Lemma 3’s condition  sets at least one these rules to E-C and C-A immediate modes.  According to 
the definitions in Section 4.1, rules become atomic when they are set to E-C and C-A immediate 
modes.  Atomic operations take the necessary locks to execute serially in the face of conflicting 
operations.  Therefore, the mutual exclusion set will not truly execute in parallel if interference 
occurs.  Kuo et. al.’s Serializability Theorem tells us that such parallel execution cycles are cycle 
serializable.  Thus, a parallel execution cycle containing any subset of rules within 5 is guaranteed 
to be cycle serializable and Step 3 must be cycle serializable.  By induction, all execution cycles 
are cycle serializable, and the claim has been proven.    

Lemma 3 gives rise to the following corollary.

Corollary 2. Given an MLM- application, all parallel execution cycles in all execution paths 
using the Parallel execution model are guaranteed to be cycle serializable, by 
static methods, only under the following condition:  

• At least one rule within all mutual exclusion sets is specified in E-C and C-A 
immediate modes.   

Proof.  For the sake of contradiction, suppose that a weaker concurrency scheme exists that guar-
antees cycle serializability within the Parallel execution model.  The next two concurrency 
schemes that are weaker than the E-C and C-A immediate modes are the E-C immediate and C-A 
deferred modes and the E-C deferred and C-A immediate modes.  

First, consider the mutual exclusion set consisting of n rules in which one rule is stated in E-C 
immediate and C-A deferred modes with the remaining rules stated in E-C and C-A decoupled 
modes.  In the current case, a loose maximum bound for the possible number of legal interleaving 
operations in which the E-C immediate rule’s condition must be evaluated first is O(2n-1)!.   A 
parallel execution cycle may choose one such interleaving that is equivalent to evaluating the E-C 
immediate rule’s condition first, followed by the remaining rules’ conditions in any order, fol-
lowed by the rules’ actions in any order.  This interleaving is equivalent to executing all rules in 
parallel since all rules will evaluate their respective conditions in the same database state and exe-
cute their actions accordingly.  Kuo et. al.’s Cycle Serializability Theorem says that the parallel 

 

rule R0                                  rule R1                                    � '0 = { }
E: { (Insert,T0) }  E: { (Insert,T1) }    ;0 = { (Insert,T0(3)), 

C:                 C:   �����������(Insert,T1(3)) }

A:  { (Insert,T1(1))  }              A:  { (Insert,T0(1)) } 

T0 1( )¬ T1 1( )¬

FIGURE 4. An example cycle of dependency.

R0

R1

--;0

�
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execution of all rules in a mutual exclusion set may not be serializable. This is a contradiction to 
the claim.

Now consider the mutual exclusion set consisting of n rules in which one rule is stated in E-C 
deferred and C-A immediate modes with the remaining rules stated in E-C and C-A decoupled 
modes.  In this case, a loose maximum bound for the possible number of legal interleaving opera-
tions in which the C-A immediate rule’s action must be executed before any other rule action is 
O(2n-1)!.   A parallel execution cycle may choose one such interleaving that is equivalent to eval-
uating all E-C decoupled rules’ conditions first, followed by the E-C deferred rule’s condition, fol-
lowed by the C-A immediate rule’s action, followed by the remaining rules’ actions in any order.  
This interleaving is equivalent to executing all rules in parallel since all rules will evaluate their 
respective conditions in the same database state and execute their actions accordingly.  Kuo et. 
al.’s Cycle Serializability Theorem says that the parallel execution of all rules in a mutual exclu-
sion set may not be serializable. Consequently, this also is a contradiction to the claim.  

Therefore the only concurrency model that guarantees cycle serializability by static methods is the 
one stated in the corollary’s condition. 

Example 2.  To illustrate Corallary 2, consider the example presented in Figure 4.  In the 
figure,  ,  and R0 and R1 form a cycle of interference.  Consider when R0 is 

stated in E-C and C-A decoupled modes and R1 is stated in E-C immediate and C-A deferred 
modes.  Let the external event ;0 insert the tuple 3 into both T0 and T1.  Due to coupling mode 
semantics, R1’s condition will immediately be evaluated while R1’s action will be evaluated right 
before transaction commit.  In the Parallel execution model, no other external events occur during 
R0 and R1’s conditions and actions executions.  Therefore, a legal interleaving of operations is to 

apply ;0 in state '0, evaluate  in '1, evaluate  in '2, and execute  and  in state 

'3.  Thus, both  and  evaluate to true. Upon the completion of R0 and R1’s 

actions, the database will be in an inconsistent state; specifically, both R0 and R1 executed in paral-
lel inserting the tuple 1 into both T0 and T1.  

7.2.2.  Program Correctness

Theorem 5. The execution of an MLM- application using the Parallel execution model obeying 
the following condition is correct:

• At least one rule in every mutual exclusion set uses the E-C and C-A immediate 
modes.  

Proof.  The proof of Theorem 5 is similar in logic the proof of Theorem 4.  Specifically, given any 

MLM - program Y in which all rules are stated in E-C and C-A decoupled modes, Y is correct under 
the Parallel execution model iff all parallel execution cycles in all execution paths are cycle serial-
izable, and all executions of  for any initial state  and 

external event .  

Lemma 3 satisfies the first conjunct by proving that all parallel execution cycles in the execution 
of Y (with the stated coupling modes) using the Parallel execution model are cycle serializable.   

Now it is necessary to prove the second conjunct.  By definition, the Parallel execution model pro-
cesses each event until quiescence.  Lemma 3 tells us that all parallel execution cycles are cycle 

 

R0 R1 5∈, T0 T1 (∈,

C
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R1 A
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R1

C
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serializable.  Thus, all events are processed sequentially and for any two external events  occur-

ring before , the  is evaluated to quiescence before the 

 by definition.  We can therefore conclude that for all executions of Y, 

.  9 

Both conjuncts have been proven, and the theorem is satisfied.  

7.3.  ActiveDatabase Execution Model

7.3.1.  Cycle Serializability

Lemma 4. Given an MLM- application, all parallel execution cycles in all execution paths using 
the ActiveDatabase execution model are cycle serializable under the following condi-
tion:

• At least one rule within all mutual exclusion sets is specified in E-C and C-A imme-
diate modes.

Proof.  The proof of Lemma 4 is similar to the proof of Lemma 3.  Specifically, the only difference 

between MLM- programs using the ActiveDatabase execution model versus the Parallel execution 
model, with respect to cycle serializability, is that parallel execution cycles may contain external 
events.  Yet, external events do not introduce nonserializable behavior.  This is because external 
events are atomic.  Atomic operations take the necessary locks to execute serially in the face of 
conflicting operations.  Therefore, a mutual exclusion set containing an external event cannot truly 

be executed in parallel if interference occurs10.  Thus, by Kuo et. al.’s Serializability Theorem and 
the same reasoning as Lemma 3, all parallel execution cycles using the ActiveDatabase execution 
model under the stated condition are cycle serializable. 

7.3.2.  Program Correctness

We present three sets of sufficient conditions for the correctness of programs executing the Active-
Database execution model.  Each successive set allows for more concurrency.

The first and unnecessarily restrictive concurrency model is presented in Theorem 6.  

Theorem 6. The execution of a MLM- program using the ActiveDatabase execution model 
obeying the following conditions is correct. 

• At least one rule in every mutual exclusion set uses the E-C immediate and C-A 
immediate modes.

9. In fact, the sufficient conditions for confluent MLM- programs are shown in [9,19].  These studies demonstrate the 
transformations upon stratified active database rules (programs that contain no cycles of interference) to obtain con-
fluence.

10.Further, external events are never part of a cycle of dependency.  The in-degree of all external event nodes in a bipar-
tite graph is 0.
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• For every external event ;�in which the Closure(;) contains a rule connected 
with a negative edge in the dependency graph,�all the rules in the Closure(;) are 
stated in E-C and C-A immediate modes.

Proof.   The proof of Theorem 6 is similar in logic the proof of Theorem 5.  Specifically, given any 

MLM - program Y in which all rules are stated in the coupling modes as dictated by the theorem 
conditions, Y is correct under the ActiveDatabase execution model iff all parallel execution cycles 
in all execution paths are cycle serializable, and all executions of 

 for any initial state  and any sequence of exter-

nal events . 

Lemma 4 satisfies the first conjunct by proving that all parallel execution cycles in the execution 
of Y (with the stated coupling modes) using the ActiveDatabase execution model are cycle serializ-
able. 

Now it is necessary to prove the second conjunct.  The theorem conditions specify that for every 
external events ;�in which the Closure(;) contains a rule connected with a negative edge in the 
dependency graph,�all the rules in the Closure(;) are stated in E-C and C-A immediate modes.  
Therefore, such events are necessarily sequenced since all the rules in which ; may trigger are 
executed atomically.

Now consider the remaining external events.  These events do not trigger any interfering rules.  By 

Theorem 3, these subregions of the dependency graph are confluent (they are MLM+ regions) and 
are necessarily executed in isolation.  Thus, under the theorem conditions 

 for all possible execution paths.

Both conjuncts have been proven, and the theorem is satisfied. 

Though sufficient, Theorem 6 is a very restrictive concurrency model.  For one, Theorem 6 does 
not take into account transaction boundaries.  Our definition of external events are that they are 
atomic and committed.  Theorem 7 exploits this property and weakens the concurrency model 
accordingly.  

Theorem 7. The execution of a MLM- program using the ActiveDatabase execution model 
obeying the following conditions is correct. 

• At least one rule in every mutual exclusion set uses the E-C immediate and C-A 
immediate modes.

• For every external event ;�in which the Closure(;) contains a rule connected 
with a negative edge in the dependency graph,�all the rules in the Closure(;) are 
stated in E-C and C-A deferred modes or stronger.

Proof.  This proof is similar in logic to the proof of Theorem 6.  Specifically, Lemma 4 says that 
the first condition is sufficient for cycle serializability.  Therefore, it is only left to prove that the 
loosened conditions of Theorem 7 are sufficient to sequence external events.   

The theorem conditions specify that for every external event ;�in which the Closure(;) contains a 
rule connected with a negative edge in the dependency graph,�all the rules in the Closure(;) are 
stated in E-C and C-A deferred modes or stronger.  Therefore, the events triggering rules within 
the Closure(;) that contain a negative edge are necessarily sequenced since all the rules are exe-
cuted to quiescence before the end of the transaction, and no other external event executes until the 
transaction has been completely committed (by the definition of an external event).
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Now consider the remaining external events.  These events do not trigger any interfering rules.  By 

Theorem 3, these subregions of the dependency graph are confluent (they are MLM+ regions) and 
are necessarily executed in isolation.  Thus, under the theorem conditions 

 for all possible execution paths.

Both conjuncts have been proven, and the theorem is satisfied. 

Theorem 7 provides more concurrency than Theorem 6 since external events that trigger interfer-
ing rules do not have to execute all rules within the closure atomically.  Therefore, rule execution 
from other regions in the dependency graph may continue processing in parallel.  Yet the condi-
tions in Theorem 7 can still be weakened.  A close examination of rule dependency graphs reveals 
that external events need to be sequenced only when rules within their closures interfere with one 
and another.  

Towards this end, we define external event interference.  We say that two external events, ;i and 

;j, interfere with one and another when  , , and 

 such that R is a rule connected, in either direction, with a negative edge in the dependency 
graph.  Lemma 5 follows from this definition.

Lemma 5. External events that do not interfere with one and another may be executed in parallel 
without violating event sequencing.

Proof.  The proof is by contradiction.  Consider the case when two external events ;i and ;j, 
where i < j, must be sequenced but do not interfere with one and another.  External events need to 
be sequenced when a rule that is triggered from within a later external event’s closure invalidates a 
rule from an earlier external event’s closure before the earlier external event evaluates to quies-
cence.  In other words, ;i and ;j are not sequenced when some rule  contains a 

negated variable that may be invalidated by the rules triggered in the Closure(;j) before Z is eval-
uated by the rules triggered in the Closure(;i).  

In MLM programs, Z is invalidated by the rules within Closure(;j) iff Z contains a rule connected 

with a negative edge in the dependency graph and .11  Thus, 

 and ;i and ;j interfere.  This is a contradiction proving that 

external events that do not interfere with one and another may be executed in parallel without vio-
lating event sequencing.  

We are now ready to present our loosest concurrency model for MLM- program using the Active-
Database execution model.

Theorem 8. The execution of a MLM- program using the ActiveDatabase execution model 
obeying the following conditions is correct: 

• At least one rule in every mutual exclusion set uses the E-C immediate and C-A 
immediate modes.

11.We assume that all applicable rules evaluate on all events (Section 2.2.1).  This assumption implies that Z Clo-
sure(;j). 
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• For every external events ;�that interferes with another external event,�all the 
rules in the Closure(;) are stated in E-C and C-A deferred modes or stronger.

Proof.  This proof is similar to the proof of Theorem 7.  Specifically, Lemma 4 says that the first 
condition is sufficient for cycle serializability.  Therefore, it is only left to prove that the loosened 
conditions of Theorem 8 are sufficient to sequence external events.    

The proof of the sequencing of external events is by contradiction.  Consider the case when two 
external events ;i and ;j, where i > j, obey the conditions of Theorem 8 are not sequenced.  
Lemma 5 says that external events that do not interfere with one and another are necessarily 
sequenced.  Thus, ;i and ;j must interfere with one and another to violate event sequencing.

The theorem conditions specify that all the rules in the  are state in E-C and C-A 

deferred modes or stronger when ;i and ;j interfere with one and another.  Therefore, all the rules 
triggered in the Closure(;i) are evaluated to quiescence before the rules triggered in the Clo-
sure(;j) since ;j must occur in the next transaction by definition. This forms a contradiction that 
says ;i and ;j must be sequenced.  Thus, under the theorem conditions, 

 for all possible execution paths.

Both conjuncts have been proven, and the theorem is satisfied.  

8.  Conclusion and Future Work
The large number of coupling modes developed to integrate active rules within the ACID proper-
ties of a database do not easily scale.  Coupling mode semantics become unmanageable within 
applications that are classified as hard rule systems - rule programs that have a large number of 
interacting rules that search through lots of data.  This paper presents the resulting simplifications 
of a significant subclass of hard rule systems we call Monotonic Log Monitor programs, active 
database programs in which tuples are inserted, but never updated nor deleted.  Our results demon-
strate that the number of applicable coupling modes are significantly reduced for programs obey-
ing the MLM restrictions which in turn minimizes the necessary coupling mode support of the 
underlying database system.  

A separate contribution of our work is that our constructive proof techniques may be exploited to 
build a compiler-based concurrency implementation system.  The compiler would operate by con-
structing a bipartite rule dependency graph from an input rule program.  The compiler then would 
walk the graph and output the concurrency schemes presented in this paper. 

It is our belief that the details of transaction models and concurrency schemes are application 
dependent.  This paper represents the first step in such a general purpose system.  As the number of 
investigated problem areas are expanded, a compiler-based systems may be presented, computa-
tionally or otherwise, with a problem type and implement the appropriate isolation model.  We 
believe that such technology attacks one of the major complexity stumbling blocks to general use 
of active database systems by insulating application programmers from the details of database 
integration.  

Our constructive proof techniques utilize the results in confluent rule system, dependency graph, 
and serializability theories.  These techniques are readily adapted for formal analysis.  However, 
we believe further parallelism may be gained through optimizing rule-based rewrites and dynamic 
analysis such as the ones presented in [16].  Dynamic analysis allows for coupling mode assign-
ments based on the semantic relationships that are only available at runtime (implying dynamic 
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assignment of coupling modes).  The net result may allow for closures of rules to be stated in a 
weaker coupling modes than could have otherwise have been discerned.  We leave this area of 
work open.
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