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Abstract

Feedback-based adjustment of load is a common mechanism for resource allocationin computer
networks. This paper disputes the popular beliefs that the additive-increase multiplicative-decrease ad-
justment policy is optimal or even necessary for convergence to fair resource sharing. We demonstrate
that, in the classic synchronous model, additive increase does not guarantee the quickest convergence of
fairness. Moreover, not only fairness but also efficiency converges very slowly under additive increase.
For an asynchronous model, we show that the additive-increase multiplicative-decrease algorithm fails
to converge to optimal fairness. We observe that theTCP congestion control algorithm suffers from the
problems detected by our analysis and is unfair.

1 Introduction

Plenty of congestion control schemes rely on feedback to achieve efficient and fair resource allocation among
network users. Since networks are large distributed systems with dynamic load on resources, feedback is
often binary and indicates whether the user can increase or should decrease its load on the network [7]. One
of infinitely many strategies for performing such adjustments is an additive-increase multiplicative-decrease
algorithm that raises load by a constant and reduces load to afraction of the current value.

The additive-increase multiplicative-decrease policy has enjoyed wide deployment. For instance, Trans-
mission Control Protocol (TCP) regulates congestion in the Internet by using a mechanism that behaves sim-
ilarly to the additive-increase multiplicative-decreasealgorithm [2, 6]. This outcome can be partly attributed
to common beliefs that the additive-increase multiplicative-decrease policy is optimal or even needed for
stability or convergence to fairness:

“It is has been shown that additive increase/multiplicative decrease is

a necessary condition for a congestion control mechanism tobe stable.”

Larry L. Peterson and Bruce S. Davie, “Computer Networks: A Systems Approach”

Second Edition, October 1999

Our paper argues that these assertions are false. A congestion control mechanism is stable if it satisfies
the principle of negative feedback: load is decreased when it exceeds the target value, and load is increased
when it drops below the target. The magnitudes of the adjustments affect the size of the converged interval,
not the fact of convergence. Even in the stricter sense (which was probably implied in the quoted statement)
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of providing stability and converging to fairness, the additive-increase multiplicative-decrease algorithm is
neither necessary nor optimal. This paper shows that, in thetraditional theoretic model, a different policy
can provide quicker convergence of fairness. Moreover, in more realistic models as well as in real networks,
additive increase does not ensure convergence to fairness.

The only theoretical justification for favoring the additive-increase multiplicative-decrease algorithm has
been suggested in the context of systems providing a feedback that reflects the efficiency of resource utiliza-
tion. [1] asserts that additive increase guarantees optimal convergence of fairness in a synchronous model
of such systems where the users employ the linear-increase linear-decrease algorithm to adjust their load
synchronically in response to the feedback indicating the impact of the previous adjustment. In Section 3,
our paper provides an example illustrating that an increasepolicy with a multiplicative component can give
quicker convergence of fairness. We also demonstrate that both fairness and efficiency are slow to converge
in synchronous systems controlled by the additive-increase multiplicative-decrease algorithm. Section 4
considers a more realistic asynchronous model where the users obtain the feedback after different delays
and adjust their load with different frequencies. We show that having an additive component in the increase
policy does not ensure convergence to optimal fairness in asynchronous systems. The experimental results
presented in Section 5 confirm thatTCP suffers from the problems revealed by our analysis. We demon-
strate that theTCP congestion control algorithm is unfair and that slow start does not completely alleviate
the problem of slow convergence to efficiency.

Before presenting our main results, we first consider quantitative measures of fairness in Section 2.

2 Measures of Fairness

The fairness index [3] and min-max ratio [4] are two quantitative metrics proposed for fairness. Consider a
resource shared byn users. Letxi be an amount allocated to useri. Then the fairness index is defined asF = � nPi=1xi�2n nPi=1x2i (1)

and varies from1n (total unfairness) to1 (total fairness), and the min-max ratio equalsM = mini;j nxixjo (2)

and takes values between0 (total unfairness) and1 (total fairness). Forn = 2, these metrics are linked
through the following one-to-one correspondence:F = 12 + M1 +M2 and M = ( 0 if F = 12 ;1�2pF (1�F )2F�1 if 12 < F � 1: (3)

While the fairness index represents fairness of the resource allocation in general, the min-max ratio reflects
fairness as perceived by individual users. For instance, ifthe allocation for userk is zero, and all the other
users receive an equal allocationx > 0, thenM = 0 andF = 1 � 1n . Whenn ! 1, F ! 1. Thus, the
fairness index can be infinitely close to its optimal value even though userk obviously views this allocation
as extremely unfair. If providing a fair service to individual users is an objective, then the min-max ratio is
a more appropriate measure of fairness than the fairness index. This paper considers both metrics since the
fairness index is adopted by the related work reviewed in thenext section.
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3 Synchronous Systems

The problem of sharing a resource among cooperative users ina synchronous distributed system is studied
in [1]. The load on the resource is changed on a discrete timescale. At every time instantt, each useri
adjusts its load toxi(t) based on local data and a binary feedbacky(t) provided by the system. The users
do not have access to such information as the states of the other users, numbern of the users, optimal loadXgoal > 0 on the resource, total loadX(t), fairness indexF (t), or min-max ratioM(t):X(t) = nXi=1 xi(t); F (t) = (X(t))2n nPi=1(xi(t))2 ; M(t) = mini;j nxi(t)xj(t)o: (4)

The feedback indicates whether the previous adjustment ledto overload of the resource:y(t) = � 1 if X(t� 1) > Xgoal;0 if X(t� 1) � Xgoal: (5)

[1] examines the following linear adjustment of the load8i = 1; : : : ; n; xi(t) = � aI + bIxi(t� 1) if y(t) = 0;aD + bDxi(t� 1) if y(t) = 1; (6)

whereaI , bI , aD, andbD are real constants. After a careful investigation, [1] derives conditions ensuring
that, for any nonnegative initial loadx1(0); : : : ; xn(0), the total loadX(t) converges into a finite interval
aroundXgoal while the fairness indexF (t) converges to the optimal value of1:aI > 0; bI � 1; aD = 0; 0 � bD < 1: (7)

Hence, one can argue that the linear-decrease policy shouldbe multiplicative while the linear-increase policy
should always have an additive component and may have a multiplicative component with the coefficient no
less than one.

3.1 Multiplicative Versus Additive

“Additive” and “multiplicative” are often perceived as “conservative” and “aggressive” respectively. This is
not always true since, for smallxi(t), additive increase can exceed multiplicative increase. Itwould be more
accurate to refer to multiplicative adjustments as “proportional” while considering additive adjustments as
“fixed” or “disproportionate”. Choosing an appropriate constantaI for additive increase is a challenge in
dynamic diverse systems such as computer networks. Due to the mix of employed technologies and uneven
load patterns in different parts of the network, it is unlikely that the same constant can always supply an
acceptable trade-off between convergence time and the sizeof oscillations after convergence: for some
scenarios, the constant can be too small and can lead to slow acquisition of available bandwidth; for other
scenarios, the constant amount of additive increase can be too large and can create significant overload.

Let us add Equations (6) for alln users to derive the maximumXmax and minimumXmin possible total
load after convergence of the linear-increase multiplicative-decrease algorithm:Xmax = naI + bIXgoal; Xmin = bDXgoal (8)

The assumption of arbitraryn andXgoal implies a possibility ofunlimited overloadafter convergence:Overload = Xmax �XgoalXgoal = naIXgoal + bI � 1!1 when n!1 or Xgoal ! 0: (9)
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Thus, if the number of users is large or the optimal load valueis low, additive increase can create severe
overload of the resource. For example, when thousands of Webflows utilize a network link, the per-flow
fair share of the link bandwidth can amount to one maximum segment size per round-trip time; under
these circumstances, synchronous additive increase in transmission of each flow from one to two maximum
segment sizes per round-trip time can burden the link with the load that is twice the link capacity.

On the other hand, the contribution of the multiplicative component to overload is bounded by a constant.
No matter how many users share the resource or how low the optimal load value is, the total overload caused
by multiplicative increase in the loads of the users stays within the(bI � 1) factor of the optimal load value.

The threat of unlimited overload could have been prevented by removing the additive component from the
increase adjustment. Unfortunately,aI > 0 is required by Conditions (7) to ensure convergence of fairness.

Let us define linear increase to bemultiplicative-additiveif it has an additive component and a mul-
tiplicative component with the coefficient greater than one. Below, we compare the additive-increase
multiplicative-decrease (AIMD) and multiplicative-additive-increase multiplicative-decrease (MAIMD) algo-
rithms with respect to convergence of fairness, convergence of efficiency, and then convergence of both
efficiency and fairness.

In this paper, we refer to a load adjustment policy asoptimal if it provides the quickest convergence
into a target load area. When we reason about convergence of fairness, the target load area is characterized
by constraintF (t) � Fgoal or, alternatively,M(t) � Mgoal whereFgoal andMgoal are target values
for fairness. When we discuss convergence of efficiency, thetarget load area is specified by constraintsXlow � X(t) � Xhigh whereXlow andXhigh are the lower and upper boundaries of a target load
interval. The target load area is determined by both the fairness and efficiency constraints when we study
convergence to the loaded fair state.

It should be pointed out that ifAIMD andMAIMD employ the same values ofaI andbD, thenMAIMD
creates bigger oscillations of the total load after convergence. This difference in the converged intervals is
unfortunate since it interferes with our desire to provide acompletely fair comparison ofAIMD andMAIMD.
On the other hand, the maximum increment contributed to overload by the multiplicative component is, as
we showed above, proportional to the optimal load value and can be contained by an appropriate choice ofbI . In fact, by selecting the multiplicative componentsbmaI andbmaD of MAIMD increase and decrease so thatbmaI � bmaD = 1 � baD wherebaD is the multiplicative component ofAIMD decrease, the maximum possible
magnitudes of load oscillations after convergence of the algorithms can be made equal. Although this setting
of the parameters gives the converged intervals ofMAIMD andAIMD the same size, it does not provide an
unbiased basis for comparison of the algorithms because these converged intervals are positioned differently
with respect toXgoal. In our paper, we chose to considerMAIMD andAIMD with identicalaI andbD. Thus,
the lower boundaries of the converged intervals coincide while the upper boundary is higher forMAIMD
due to the multiplicative component in its increase adjustment. On a side note, having the multiplicative
components in both the increase and decrease adjustments isoften desirable in order to keep the average
total load close to the optimal load value.

3.2 Optimal Convergence of Fairness

[1] asserts that additive increase yields the fastest convergence of fairness. This claim is incorrect. Even
though additive increase (i.e.,aI > 0 andbI = 1) does maximizeF (t) for any loadx1(t�1); : : : ; xn(t�1)
after any single load adjustment step, it does not ensure thebest improvement in fairness over a sequence
of load adjustments. Under some circumstances, an algorithm with multiplicative-additive increase reaches
the target value for the fairness index faster.

Example 1. Consider a system serving two users with initial loads ofx1(0) = 17 andx2(0) = 0. Let the
optimal load beXgoal = 20 and the target fairness beFgoal = 99%. Then,AIMD with bI = 1, aI = 1, and
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bD = 0:01 produces load assignments characterized by fairnessFa(0) = 50%; Fa(1) = 55:5%; Fa(2) = 60:4%; Fa(3) = 60:4%:
At the same time,MAIMD with bI = 1:1, aI = 1, andbD = 0:01 yieldsFma(0) = 50%; Fma(1) = 55:1%; Fma(2) = 55:1%; Fma(3) = 99:2%:
Thus, the policy with multiplicative-additive increase achieves the target fairnessFgoal = 99% after three it-
erations while the policy with additive increase reaches only fairness of60% .

Corollary 1. Additive increase does not guarantee the quickest convergence of fairness in synchronous
systems.

In the presented counterexample to the classic assertion that additive increase provides the fastest con-
vergence of fairness, we usedbD = 0:01 to demonstrate that the advantage ofMAIMD can be dramatic.
Although the improvement in fairness is not so drastic for larger values ofbD or for different settings of
other parameters, multiplicative-additive increase still gives quicker convergence in innumerous scenarios.
For instance, the choice ofbD = 0:5 in the considered counterexample would produceFa(3) = 60:4% andFma(3) = 62:9%. Therefore, by more efficient acquisition of the available resource, multiplicative-additive
increase can provide faster convergence of fairness.

Even whenAIMD outperformsMAIMD, its convergence of fairness can be very slow. Consider a system
controlled byAIMD whenn = 2, Xgoal = 100, andbD = 0:9. Figure 1 shows time of convergence for
the min-max ratio and fairness index from the loaded unfair state, wherex1(0) = 100 andx2(0) = 0, for
different values ofaI . WhenaI = 1, the second user attains90% of the load imposed by the first user (i.e.,
the min-max ratio and fairness index reach their target valuesMgoal = 90% andFgoal = 99:7%) after1427
adjustments. It takes2564 adjustments to achieve the99% share (Mgoal = 99%, Fgoal = 99:9975%).

In the context of networks, such slow convergence ofAIMD andMAIMD means that minutes can pass
before a flow reaches a relatively fair share of the bottleneck bandwidth. While neither additive increase nor
multiplicative-additive increase is optimal in theory, they can fail to support fairness in reality where most
of the flows are short-lived.
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Figure 1 : Convergence of fairness from the loaded unfair state in a synchronous system controlled byAIMD
whenn = 2, bD = 0:9, Xgoal = 100, x1(0) = 100, andx2(0) = 0.
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3.3 Optimal Convergence of Efficiency

While not guaranteeing the fastest convergence of fairness, additive increase gives inferior convergence of
the total load. Linear-increase multiplicative-decreasealgorithms converge not to the optimal load valueXgoal but into an interval aroundXgoal. Let us characterize the target load interval by its lowerXlow and
upperXhigh boundaries:Xlow < Xgoal < Xhigh. Similarly to [1], we can derive convergence timetinit for
reaching the target interval from the initial load (see Figure 2):tinit = 8>>>>><>>>>>:

llogbI naI+(bI�1)XlownaI+(bI�1)X(0)m if X(0) < Xlow and bI > 1;lXlow�X(0)naI m
if X(0) < Xlow and bI = 1;llogbD XhighX(0) m if X(0) > Xhigh;0 if Xlow � X(0) � Xhigh: (10)
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Figure 2 : Convergence of efficiency for theMAIMD algorithm.

Our goal is to minimizetinit under the constraint that the oscillations of the total loadafter convergence
stay within the target load interval:Xhigh � Xmax; Xlow � Xmin: (11)

Taking into account Equations (8), Constraints (11) can be rewritten as:Xhigh � naI + bIXgoal; Xlow � bDXgoal: (12)

Let us represent the target load interval by parametersdI , cI , andcD such thatXhigh = ndI + cIXgoal and Xlow = cDXgoal (13)

where0 � cD < 1, dI > 0, andcI � 1.
The following conclusions can be drawn from Equations (10).First, multiplicative-additive increase

provides quicker convergence from underload than additiveincrease with the same value ofaI : convergence
time of MAIMD is logarithmic instead of linear. The difference in performance becomes dramatic when the
gap betweenX(0) andXlow is large. Second,bD should be minimized, subject to Constraints (12), to
minimize time of convergence from overload. Taking into account Equations (13), this goal can be achieved
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by settingbD equal tocD. Third, largeraI andbI , if conforming to Constraints (12), yield faster convergence
from underload. Because either ofn andXgoal can be arbitrarily high, Conditions (12) and (13) implyaI � dI andbI � cI . Hence,aI = dI andbI = cI should be selected.

Proposition 1. For optimal convergence of efficiency in synchronous systems, the decrease policy should
be multiplicative withbD = cD, and the increase policy should be multiplicative-additive withbI = cI andaI = dI wherecD, cI , anddI are parameters describing the target load interval.

The following example considers a system where the target load interval is characterized bycD = 0:75,cI = 1:25, anddI = 1. CompareMAIMD employingbI = 1:25, aI = 1, bD = 0:75 andAIMD characterized
by aI = 1, bD = 0:75. Figures 3(a), 3(b), and 3(c) show load adjustments performed by these algorithms
for different values ofXgoal when the system serves two users with initial total loadX(0) = 0. ForXgoal = 100, convergence time forAIMD is four times larger than one forMAIMD. WhenXgoal = 1000,
AIMD reaches only25% of Xgoal after 100 adjustments whileMAIMD converges into the optimal interval
after 20 adjustments. Figure 3(d) demonstrates that, as the optimalload value grows, linearly increasing
convergence time ofAIMD greatly exceeds logarithmically increasing convergence time of MAIMD.
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The oscillations of the total load after convergence can also be described by the maximum timetover of
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continuous overload and maximum timetunder of continuous underload:tover = llogbD XgoalnaI + bIXgoal m; tunder = 8<: llogbI naI+(bI�1)XgoalnaI+(bI�1)bDXgoalm if bI > 1;l (1�bD)XgoalnaI m
if bI = 1: (14)

Sincetunder is linear with respect toXgoal in the case ofAIMD while the dependence fortover is loga-
rithmic, the ratio of underload and overload durations varies widely for differentXgoal. When the optimal
load value is large in comparison with the amount of additiveincrease, the resource is underloaded most of
the time. If the optimal load value is small in comparison with the amount of additive increase, spells of
continuous overload prevail.

3.4 Optimal Convergence of Efficiency and Fairness

We showed above thatMAIMD is superior toAIMD with respect to time of convergence to efficiency. Ide-
ally, we would like to optimize convergence of the system to the loaded fair state. Figures 4, 5, 6, 7, and 8
compare times of such convergence forMAIMD andAIMD algorithms in a system serving two users. The
target load area (denoted on these graphs asoptimal area) is specified by constraintsF (t) � Fgoal andbDXgoal � X(t) � 2aI + bIXgoal. Figure 4 shows that as the target fairness increases,MAIMD out-
performsAIMD for a smaller portion of the initial loads. Figure 5 demonstrates that larger values ofbI do
not bring benefits toMAIMD: even though multiplicative-additive increase gives quicker acquisition of the
available resource,AIMD gains superior convergence from some lightly loaded states(and the target load
area expands). According to Figure 6, changes inaI affect the balance betweenMAIMD andAIMD insignif-
icantly: MAIMD still provides quicker convergence only from fair or lightly loaded initial states. Figure 7
manifests an interesting exception from this common pattern: for low values ofbD, MAIMD outperforms
AIMD also in the case of loaded unfair initial states. On the otherhand, smaller values ofbD decrease the
lower load boundary of the target area. Figure 8 shows that the split between the areas of superiority of
MAIMD andAIMD remains qualitatively the same over a wide range of the optimal load values.

In general,MAIMD provides quicker convergence from fair or lightly loaded initial states whileAIMD
converges faster (though, very slowly) from loaded unfair initial states.

3.5 Summary

In this section, we compared performance ofAIMD and MAIMD algorithms in the classical synchronous
model. We discovered that, despite a common belief,AIMD does not guarantee the quickest convergence of
fairness. While neitherAIMD nor MAIMD is optimal among the linear-increase linear-decrease policies with
respect to time of their convergence to fairness, both algorithms converge to fairness very slowly. On the
other hand,MAIMD provides the quickest convergence of efficiency. Section 3.1 demonstrated that having an
additive component in the increase policy opens a possibility for unlimited overload and thus is undesirable.
In terms of the fastest convergence of fairness and efficiency, neitherMAIMD nor AIMD is optimal: AIMD
usually converges quicker from loaded unfair initial states whileMAIMD converges faster from fair or lightly
loaded initial states.

4 Asynchronous Systems

The synchronous model considered in the previous section isnot an accurate representation of computer
networks. In reality, feedback reaches different users with different delays. Similarly, load adjustments do
not affect actual load on the resource simultaneously. Below, we examine a more realistic asynchronous
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0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

lo
a

d
 o

f 
th

e
 s

e
c
o

n
d

 u
s
e

r

load of the first user

optimal area
AIMD is faster

MAIMD is faster

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

lo
a

d
 o

f 
th

e
 s

e
c
o

n
d

 u
s
e

r

load of the first user

optimal area
AIMD is faster

MAIMD is faster

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

lo
a

d
 o

f 
th

e
 s

e
c
o

n
d

 u
s
e

r

load of the first user

optimal area
AIMD is faster

MAIMD is faster

(a) bI = 2 (b) bI = 1:5 (c) bI = 1:1
Figure 5 : The influence of the initial load on relative time of convergence forMAIMD andAIMD whenn = 2, aI = 1, bD = 0:9, Xgoal = 100, Fgoal = 0:9.

model and demonstrate that, in this model, additive increase does not guarantee convergence to optimal
fairness.

The presented asynchronous model is a slight generalization of the synchronous model from Section 3.
Two parametersfi anddi are added to represent differences in delays and adjustmentfrequencies: useri adjusts its loadxi(t) with delayfi after the resource sends feedback; this feedback reflects the previous
adjustment conducteddi time units before the feedback is sent. Thus, useri adjusts its load once per (di+fi)
based on the feedback that reflects the efficiency of resourceutilization as it wasfi time units before the
adjustment. Then, the total load, fairness index, and min-max ratio at timet are as follows:X(t) = nXi=1 xi(t� di); F (t) = (X(t))2n nPi=1 (xi(t� di))2 ; M(t) = mini;j n xi(t� di)xj(t� dj)o; (15)

while the feedback indicates whether the resource is overloaded:y(t) = � 1 if X(t) > Xgoal;0 if X(t) � Xgoal: (16)
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Figure 7 : The influence of the initial load on relative time of convergence forMAIMD andAIMD whenn = 2, bI = 1:1, aI = 1, Xgoal = 100, Fgoal = 0:9.

We examine linear-increase multiplicative-decrease adjustments of the load:8i = 1; : : : ; n; xi(t) = � aI + bIxi(t� di � fi) if y(t� fi) = 0;bDxi(t� di � fi) if y(t� fi) = 1: (17)

Example 2. Let us consider an asynchronous system controlled byAIMD. The system hasXgoal = 100
and serves two users. The second user adjusts its load four times more frequently than the first user:d1 = 4,f1 = 4, d2 = 1, f2 = 1. Figure 9(a) shows load adjustments when the initial state is unloaded (x1(0) = 0,x2(0) = 0). In this scenario, the second user captures, due to the higher frequency of its adjustments, a larger
share of the resource and keeps it after the system stabilizes. On the other hand, Figure 9(b) shows that,
when the initial state is loaded unfair (x1(0) = 100, x2(0) = 0), the first user preserves its bigger portion of
the resource even though the second user adjusts its load four times more frequently. Figure 9(c) provides
an adjustment diagram which is similar to one introduced in [1]. The diagram shows that, in both scenarios,
the system oscillates far from the fair state after stabilization. Moreover, as Figure 9(d) demonstrates, the
ranges of the fairness oscillations differ for different initial states.

Corollary 2. The presence of the additive component in the increase policy does not guarantee conver-
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Figure 8 : The influence of the initial load on relative time of convergence forMAIMD andAIMD whenn = 2, bI = 1:1, aI = 1, bD = 0:9, Fgoal = 0:9
gence to optimal fairness in asynchronous systems.

Unlike in the synchronous model, fairness of the resource sharing in the asynchronous model does not
increase monotonically and, if converges, converges into an interval but not to the optimal value. Consider a
system in the loaded fair state where each user imposes loadXgoaln on the resource. If only one of the users
increases its load, the min-max ratio and fairness index drop from their optimal value of1 to:M = 1naIXgoal + bI and F = (n� 1 + naIXgoal + bI)2n(n� 1 + ( naIXgoal + bI)2) : (18)

SinceM ! 0 andF ! 0 whenn! 1, Xgoal ! 0, andaI > 0, the assumption of arbitraryn andXgoal
implies a possibility ofunlimited oscillations of fairnessin the presence of the additive component.

Due to the possibilities of unlimited overload and unlimited oscillations of fairness, it is undesirable to
have an additive component in the increase policy. Because the presence of the additive component, as we
showed in this section, does not ensure convergence to optimal fairness in asynchronous systems, neither
AIMD norMAIMD appears to be an appropriate mechanism for providing fairness in computer networks. The
next section experimentally confirms that theTCP congestion control suffers from the problems detected by
our analysis.

5 Additive Increase and TCP Congestion Control

There exists a belief that additive increase and multiplicative decrease of the congestion window during
the congestion avoidance mode enableTCP to provide fair bandwidth sharing. The findings of Section 4
suggest that this opinion is incorrect. Indeed, we show below that TCP is not fair. Besides, its reliance on
additive increase leads to slow convergence of efficiency inthe congestion avoidance mode.

To expedite convergence to efficiency,TCP connections go through a special initial phase called slow
start [2]: a new connection increases its congestion windowmultiplicatively until the first detection of
overload; after that, the connection switches to the congestion avoidance mode governed byAIMD. Being
a step in the right direction, slow start does not completelyalleviate the problem of slow convergence to
efficiency. While it accelerates convergence after the arrival of a new connection, slow start can fail to
speed up convergence of efficiency in many scenarios when additional bandwidth becomes available. These
scenarios include termination of other connections, release of reserved bandwidth, addition of parallel links.
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Figure 9 : Load adjustments byAIMD in the asynchronous system where the second user adjusts itsload
four times more frequently than the first user,n = 2, d1 = 4, f1 = 4, d2 = 1, f2 = 1, Xgoal = 100, aI = 1,
andbD = 0:9.

If such events occur when the existing connections are in thecongestion avoidance mode, the connections
continue to rely on additive increase, and acquisition of the available bandwidth can be very slow.

Before presenting our simulation studies, we want to remarkthat the numerous interdependent mecha-
nisms (such as packet acknowledgments, retransmission timeout, fast retransmit, fast recovery, exponential
backoff of the retransmission timer, etc) make theTCP congestion control algorithm quite complex, and it
is difficult to single out the behavioral aspects caused exclusively by additive increase. Besides,TCP does
not actually employAIMD but rather behaves, on the round-trip timescale, in a mannerthat resembles the
behavior ofAIMD (for instance, the actual increase of the congestion windowduring the congestion avoid-
ance mode is inverse increase upon receiving an acknowledgment). What this section tries to show is that
fairness, provisioning of which is commonly attributed to additive increase, is not a feature ofTCP.

We useNS-2 [5] to simulateReno version ofTCP. In these experiments,TCP connections transfer files
using the maximum segment size of536 bytes and compete for the bandwidth of link2-3. This link has
a buffer with capacity that covers the bandwidth-delay products of the simulatedTCP connections. If the
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buffer is full when a new packet arrives, this packet is dropped. The packets are served in the order of their
arrival. Computation of throughput is conducted over200 ms intervals and considers only the packets that
reach the destination for the first time.

First, we examine efficiency ofTCP. Figure 10 shows the simulated topology and achieved throughput
for aTCP connection (denoted astcp) that competes for bandwidth with an on-off session (denoted ason-off
cbr). The bottleneck link2-3 has a buffer for100 KB. The on-off session intermits five-second periods
of transmission with five-second periods of silence. Whenon-off cbr transmits, it sends500-byte packets
with constant rate16 Mbs. Figure 10(b) shows the throughput oftcp as well as the difference (denoted as
ideal) between the bottleneck bandwidth and current transmission rate ofon-off cbr. By 1:2 seconds into
the simulation,tcp abandons its slow start. Since then, the connection operates in the congestion avoidance
mode. Because the transmission increases additively in this mode,tcp captures the available bandwidth
slowly. The slow convergence of efficiency is especially conspicuous afteron-off cbr turns silent – when
the session resumes its transmission five seconds later, thethroughput of theTCP connection still does not
reach the link bandwidth. Hence, additive increase makes convergence ofTCP to efficiency slow.
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Figure 10 : TCP captures the available bandwidth slowly.

Now, we consider fairness ofTCP. Figure 11(a) depicts the simulated scenario: twoTCP connections
share the bottleneck link2-3 which has a buffer for20 KB. The first connection (denoted astcp1) begins its
transmission10 seconds earlier than the second connectiontcp2. By 1:2 seconds into the simulation,tcp1
acquires all the bottleneck bandwidth and switches to the congestion avoidance mode. Whentcp2 starts its
transmission, link2-3 is fully utilized by tcp1. By 11:6 seconds into the simulation,tcp2 switches to the
congestion avoidance mode. From this moment on, both connections stay in the congestion avoidance mode.
Nevertheless, additive increase and multiplicative decrease do not provide convergence to fair bandwidth
sharing. Figure 11(b) shows thattcp2 captures and keeps most of the bandwidth on link2-3 even though the
round-trip propagation time for this connection is larger.Thus,TCP is unfair.

This section showed thatAIMD does not ensure convergence ofTCP to fairness. At the same time,
reliance on additive increase makes convergence ofTCP to efficiency slow. Since the additive-increase
multiplicative-decrease algorithm fails to provide quickconvergence of fairness and efficiency in the con-
sidered systems, different mechanisms are needed to achieve these goals.
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Figure 11 : TCP is unfair.

6 Conclusions

This paper disputed the popular beliefs that the additive-increase multiplicative-decrease algorithm is op-
timal or even necessary for fairness convergence and stability of feedback-based congestion control. We
showed that, in a synchronous model of systems where a feedback reflects the efficiency of resource uti-
lization, additive increase does not guarantee the quickest convergence of fairness of resource sharing. This
result is interesting because it contradicts an assertion from the classic work by Chiu and Jain. Moreover,
both fairness and efficiency are slow to converge in synchronous systems controlled by the additive-increase
multiplicative-decrease algorithm. For an asynchronous model, we demonstrated that additive increase does
not ensure convergence to optimal fairness. Besides, having an additive component in the increase policy
can lead to such undesirable effects as unlimited overload and unlimited oscillations of fairness. The pre-
sented experimental results showed that theTCP congestion control algorithm is unfair (despite the common
belief thatAIMD suppliesTCP with convergence to fairness) and that slow start does not assure faster con-
vergence ofTCP to efficiency. The fundamental reason for slow convergence of fairness in synchronous
systems and for the failure of asynchronous systems to converge to optimal fairness is the attempt to reach
fairness relying exclusively on the feedback about the total load. In future, we are planning to design a
scalable congestion control scheme that promptly converges to the fair efficient state based on a feedback
that reflects both the efficiency and fairness of resource utilization.
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