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Abstract

Feedback-based adjustment of load is a common mechanism for resource allocatomputer
networks. This paper disputes the popular beliefs that the additiveeiee multiplicative-decrease ad-
justment policy is optimal or even necessary for convergence to fair iessharing. We demonstrate
that, in the classic synchronous model, additive increase does not tpeatiam quickest convergence of
fairness. Moreover, not only fairness but also efficiency converges vemjysimder additive increase.
For an asynchronous model, we show that the additive-increase nualtipé-decrease algorithm fails
to converge to optimal fairness. We observe thafitG® congestion control algorithm suffers from the
problems detected by our analysis and is unfair.

1 Introduction

Plenty of congestion control schemes rely on feedback tieeelefficient and fair resource allocation among
network users. Since networks are large distributed systeith dynamic load on resources, feedback is
often binary and indicates whether the user can incread®aofdsdecrease its load on the network [7]. One
of infinitely many strategies for performing such adjustitses an additive-increase multiplicative-decrease
algorithm that raises load by a constant and reduces loaftéation of the current value.

The additive-increase multiplicative-decrease policy éiajoyed wide deployment. For instance, Trans-
mission Control ProtocolTCP) regulates congestion in the Internet by using a mechatiatbehaves sim-
ilarly to the additive-increase multiplicative-decreasgorithm [2, 6]. This outcome can be partly attributed
to common beliefs that the additive-increase multiplieatilecrease policy is optimal or even needed for
stability or convergence to fairness:

“Itis has been shown that additive increase/multiplicatdecrease is
a necessary condition for a congestion control mechanisbetstable”
Larry L. Peterson and Bruce S. Davie, “Computer Networks:y8t&nms Approach”
Second Edition, October 1999

Our paper argues that these assertions are false. A camgestitrol mechanism is stable if it satisfies
the principle of negative feedback: load is decreased wiexceeds the target value, and load is increased
when it drops below the target. The magnitudes of the adpstsraffect the size of the converged interval,
not the fact of convergence. Even in the stricter sense (wiias probably implied in the quoted statement)



of providing stability and converging to fairness, the digidiincrease multiplicative-decrease algorithm is
neither necessary nor optimal. This paper shows that, itrdlalitional theoretic model, a different policy
can provide quicker convergence of fairness. Moreover,aremealistic models as well as in real networks,
additive increase does not ensure convergence to fairness.

The only theoretical justification for favoring the add&tincrease multiplicative-decrease algorithm has
been suggested in the context of systems providing a fekdbatreflects the efficiency of resource utiliza-
tion. [1] asserts that additive increase guarantees optiorewergence of fairness in a synchronous model
of such systems where the users employ the linear-incr@assrdecrease algorithm to adjust their load
synchronically in response to the feedback indicating tigsict of the previous adjustment. In Section 3,
our paper provides an example illustrating that an increatiey with a multiplicative component can give
quicker convergence of fairness. We also demonstrate thhatfhirness and efficiency are slow to converge
in synchronous systems controlled by the additive-in@eaasiltiplicative-decrease algorithm. Section 4
considers a more realistic asynchronous model where the obgain the feedback after different delays
and adjust their load with different frequencies. We shaat ttaving an additive component in the increase
policy does not ensure convergence to optimal fairnessyinciaisonous systems. The experimental results
presented in Section 5 confirm thECP suffers from the problems revealed by our analysis. We demon
strate that th&CP congestion control algorithm is unfair and that slow staeginot completely alleviate
the problem of slow convergence to efficiency.

Before presenting our main results, we first consider gtaivie measures of fairness in Section 2.

2 Measures of Fairness

The fairness index [3] and min-max ratio [4] are two quatitiametrics proposed for fairness. Consider a
resource shared byusers. Letr; be an amount allocated to ugeiThen the fairness index is defined as
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and takes values betweén(total unfairness) and (total fairness). For = 2, these metrics are linked
through the following one-to-one correspondence:
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While the fairness index represents fairness of the resaltocation in general, the min-max ratio reflects
fairness as perceived by individual users. For instand@gifillocation for usek is zero, and all the other
users receive an equal allocatiorn> 0, thenM = 0andF =1 — % Whenn — oo, F — 1. Thus, the
fairness index can be infinitely close to its optimal valuerethough usek obviously views this allocation
as extremely unfair. If providing a fair service to indivadwsers is an objective, then the min-max ratio is
a more appropriate measure of fairness than the fairnees.ifdhis paper considers both metrics since the
fairness index is adopted by the related work reviewed imthe section.



3 Synchronous Systems

The problem of sharing a resource among cooperative usarsyinchronous distributed system is studied
in [1]. The load on the resource is changed on a discrete tiates At every time instant, each usei
adjusts its load ta;(t) based on local data and a binary feedba@® provided by the system. The users
do not have access to such information as the states of the wsbrs, numbet of the users, optimal load
Xgoar > 0 0n the resource, total loal(¢), fairness index?(t), or min-max ratioM (t):
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The feedback indicates whether the previous adjustmenblederload of the resource:

1 i X(E-1)> Xyoa,
y(t)_{o f X(t— 1) < Koot ®)

[1] examines the following linear adjustment of the load

ar +brwi(t—1) i y(t>j1” (6)

Vi=1,...,n, xi(t):{ ap +bpz;i(t —1) i y(t)

whereay, by, ap, andbp are real constants. After a careful investigation, [1]¥Esiconditions ensuring
that, for any nonnegative initial loag (0), ... ,z,(0), the total loadX (¢) converges into a finite interval
aroundX,,,; While the fairness inde¥'(t) converges to the optimal value bf

ar>0, by >1, ap=0, 0<bp < 1. (7)

Hence, one can argue that the linear-decrease policy sheutulltiplicative while the linear-increase policy
should always have an additive component and may have gofiadtive component with the coefficient no
less than one.

3.1 Multiplicative Versus Additive

“Additive” and “multiplicative” are often perceived as “neervative” and “aggressive” respectively. This is
not always true since, for smal}(¢), additive increase can exceed multiplicative increaseolild be more
accurate to refer to multiplicative adjustments as “prépoal” while considering additive adjustments as
“fixed” or “disproportionate”. Choosing an appropriate stanta; for additive increase is a challenge in
dynamic diverse systems such as computer networks. Due taithof employed technologies and uneven
load patterns in different parts of the network, it is unlykéhat the same constant can always supply an
acceptable trade-off between convergence time and theoiascillations after convergence: for some
scenarios, the constant can be too small and can lead to stpisdion of available bandwidth; for other
scenarios, the constant amount of additive increase casoldarge and can create significant overload.

Let us add Equations (6) for all users to derive the maximui,,,,, and minimumX,,;, possible total
load after convergence of the linear-increase multiglieadecrease algorithm:

Xmaz = nay + bIXgoala Xmin = bDXgoal (8)
The assumption of arbitrany and X ,,,; implies a possibility otunlimited overloadafter convergence:

X - X
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Thus, if the number of users is large or the optimal load vaduew, additive increase can create severe
overload of the resource. For example, when thousands offldeb utilize a network link, the per-flow
fair share of the link bandwidth can amount to one maximummesy size per round-trip time; under
these circumstances, synchronous additive increasenisntiasion of each flow from one to two maximum
segment sizes per round-trip time can burden the link wigHalad that is twice the link capacity.

On the other hand, the contribution of the multiplicativenpmnent to overload is bounded by a constant.
No matter how many users share the resource or how low thealgdttad value is, the total overload caused
by multiplicative increase in the loads of the users staybiwthe(b; — 1) factor of the optimal load value.

The threat of unlimited overload could have been prevenyadimoving the additive component from the
increase adjustment. Unfortunatedy, > 0 is required by Conditions (7) to ensure convergence oféaisn

Let us define linear increase to baultiplicative-additiveif it has an additive component and a mul-
tiplicative component with the coefficient greater than .or@elow, we compare the additive-increase
multiplicative-decreaseA{MD) and multiplicative-additive-increase multiplicatidecreaseMAIMD) algo-
rithms with respect to convergence of fairness, convemgericefficiency, and then convergence of both
efficiency and fairness.

In this paper, we refer to a load adjustment policyopsimal if it provides the quickest convergence
into a target load area. When we reason about convergenegrdds, the target load area is characterized
by constraintF'(t) > Fyoq or, alternatively,M(t) > Mgy, Where Fyo, and Mg, are target values
for fairness. When we discuss convergence of efficiencytdtget load area is specified by constraints
Xiow < X(t) < Xhnigh Where X, and Xy, are the lower and upper boundaries of a target load
interval. The target load area is determined by both thadai and efficiency constraints when we study
convergence to the loaded fair state.

It should be pointed out that AIMD and MAIMD employ the same values af andbp, thenMAIMD
creates bigger oscillations of the total load after corsecg. This difference in the converged intervals is
unfortunate since it interferes with our desire to providemmpletely fair comparison &IMD andMAIMD.

On the other hand, the maximum increment contributed tolaadrby the multiplicative component is, as
we showed above, proportional to the optimal load value amdbe contained by an appropriate choice of
bs. In fact, by selecting the multiplicative componets* andb}3* of MAIMD increase and decrease so that
b7 — bp® = 1 — b, whereb?, is the multiplicative component &IMD decrease, the maximum possible
magnitudes of load oscillations after convergence of therdhms can be made equal. Although this setting
of the parameters gives the converged intervalsiafviD and AIMD the same size, it does not provide an
unbiased basis for comparison of the algorithms because ttaaverged intervals are positioned differently
with respect taXy,,;. In our paper, we chose to conside¢AIMD andAIMD with identicala; andbp. Thus,
the lower boundaries of the converged intervals coincidéewthe upper boundary is higher fsMAIMD
due to the multiplicative component in its increase adjestin On a side note, having the multiplicative
components in both the increase and decrease adjustmaifterisdesirable in order to keep the average
total load close to the optimal load value.

3.2 Optimal Convergence of Fairness

[1] asserts that additive increase yields the fastest ¢ganee of fairness. This claim is incorrect. Even
though additive increase (i.e; > 0 andb; = 1) does maximize’(t) for any loadz; (t —1), ... ,z,(t—1)
after any single load adjustment step, it does not ensurbdbeimprovement in fairness over a sequence
of load adjustments. Under some circumstances, an algovitith multiplicative-additive increase reaches
the target value for the fairness index faster.

Example 1. Consider a system serving two users with initial loadsdh) = 17 andz2(0) = 0. Let the
optimal load beX ., = 20 and the target fairness Wg,,; = 99%. Then,AIMD with b; = 1, a; = 1, and



bp = 0.01 produces load assignments characterized by fairness
F,(0) = 50%, F,(1) =55.5%, F,(2)=60.4%, F,(3)=60.4%.
At the same timeMAIMD with b; = 1.1, a; = 1, andbp = 0.01 yields
Fra(0) = 50%, Fing(1) = 55.1%, Fma(2) = 55.1%, Fpna(3) = 99.2%.

Thus, the policy with multiplicative-additive increasehaves the target fairneds,,; = 99% after three it-
erations while the policy with additive increase reachdsg fairness of60% . [ |

Corollary 1. Additive increase does not guarantee the quickest cormeggef fairness in synchronous
systems.

In the presented counterexample to the classic asseri@bratlditive increase provides the fastest con-
vergence of fairness, we uség = 0.01 to demonstrate that the advantageMXIMD can be dramatic.
Although the improvement in fairness is not so drastic fogéa values obp or for different settings of
other parameters, multiplicative-additive increase giiles quicker convergence in innumerous scenarios.
For instance, the choice 6f, = 0.5 in the considered counterexample would prodfgé) = 60.4% and
Fa(3) = 62.9%. Therefore, by more efficient acquisition of the availal@eaurce, multiplicative-additive
increase can provide faster convergence of fairness.

Even whenAIMD outperformsMAIMD, its convergence of fairness can be very slow. Considertarsys
controlled byAIMD whenn = 2, X4, = 100, andbp = 0.9. Figure 1 shows time of convergence for
the min-max ratio and fairness index from the loaded unfaites wherer; (0) = 100 andz2(0) = 0, for
different values of:;;. Whena; = 1, the second user attaifi8% of the load imposed by the first user (i.e.,
the min-max ratio and fairness index reach their targetegalti;,; = 90% andFy.,; = 99.7%) after 1427
adjustments. It take2564 adjustments to achieve tl88% share (/go0; = 99%, Fgoar = 99.9975%).

In the context of networks, such slow convergenceAidD and MAIMD means that minutes can pass
before a flow reaches a relatively fair share of the bottletendwidth. While neither additive increase nor
multiplicative-additive increase is optimal in theoryethcan fail to support fairness in reality where most
of the flows are short-lived.
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whenn = 2, bp = 0.9, Xgoa = 100, 1(0) = 100, andz(0) = 0.



3.3 Optimal Convergence of Efficiency

While not guaranteeing the fastest convergence of fairraeklitive increase gives inferior convergence of
the total load. Linear-increase multiplicative-decrealgorithms converge not to the optimal load value
Xgoa1 but into an interval aroundy,,;. Let us characterize the target load interval by its lowgy,, and
upperXpign boundariesX;q, < Xgoar < Xnign- Similarly to [1], we can derive convergence timg;; for
reaching the target interval from the initial load (see FégR):

logy, nertGr=gise | if X(0) < Xipu and by > 1,
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Figure 2 : Convergence of efficiency for th@AIMD algorithm.

Our goal is to minimizé;,;; under the constraint that the oscillations of the total lafidr convergence
stay within the target load interval:

Xhigh > Xmaz, Xiow < Xmin- (11)
Taking into account Equations (8), Constraints (11) carebeitten as:
Xhigh = nar + brXgoat, Xiow < bpXgoar- (12)
Let us represent the target load interval by parametgre;, andcp such that
Xhigh = ndr + crXgoar aNd Xjo = cpXgoal (13)

where0 < ¢p < 1,dr > 0, andecy > 1.

The following conclusions can be drawn from Equations (1Bjrst, multiplicative-additive increase
provides quicker convergence from underload than additmease with the same valueaf. convergence
time of MAIMD is logarithmic instead of linear. The difference in perfame becomes dramatic when the
gap betweenX (0) and X, is large. Secondhp should be minimized, subject to Constraints (12), to
minimize time of convergence from overload. Taking intoaod Equations (13), this goal can be achieved



by settingbp equal tocp. Third, largera; andb;, if conforming to Constraints (12), yield faster convergen
from underload. Because either ofand X ., can be arbitrarily high, Conditions (12) and (13) imply
ar < dr andby; < ¢r. Hencegar = dy andb; = ¢; should be selected.

Proposition 1. For optimal convergence of efficiency in synchronous systéme decrease policy should
be multiplicative withhp = ¢p, and the increase policy should be multiplicative-additwithb; = ¢; and
a; = dy wherecp, ¢y, andd; are parameters describing the target load interval.

The following example considers a system where the target ilsterval is characterized ky, = 0.75,
¢y = 1.25, andd; = 1. CompareMAIMD employingb; = 1.25, a; = 1, bp = 0.75 andAIMD characterized
bya; = 1, bp = 0.75. Figures 3(a), 3(b), and 3(c) show load adjustments peddrhy these algorithms
for different values ofX,,, when the system serves two users with initial total Ioaf)) = 0. For
Xgoat = 100, convergence time fokIMD is four times larger than one faAIMD. When.X,,; = 1000,
AIMD reaches onl25% of X, after 100 adjustments whiléMAIMD converges into the optimal interval
after 20 adjustments. Figure 3(d) demonstrates that, as the oplradlvalue grows, linearly increasing
convergence time gfIMD greatly exceeds logarithmically increasing convergeime bf MAIMD.
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The oscillations of the total load after convergence cao bésdescribed by the maximum timg.,. of



continuous overload and maximum tirg, 4. Of continuous underload:
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Sincetynqer is linear with respect td(y,,; in the case oAIMD while the dependence f@p,., is loga-
rithmic, the ratio of underload and overload durationseswidely for differentX,,;. When the optimal
load value is large in comparison with the amount of additiagease, the resource is underloaded most of
the time. If the optimal load value is small in comparisonhatite amount of additive increase, spells of
continuous overload prevail.

3.4 Optimal Convergence of Efficiency and Fairness

We showed above thMAIMD is superior toAIMD with respect to time of convergence to efficiency. Ide-
ally, we would like to optimize convergence of the systemhilbaded fair state. Figures 4, 5, 6, 7, and 8
compare times of such convergence foXIMD and AIMD algorithms in a system serving two users. The
target load area (denoted on these graphepdisnal areg is specified by constraint8(t) > Fyoq and
bpXgoar < X(t) < 2a; + brXgoau- Figure 4 shows that as the target fairness increas&svibD out-
performsAIMD for a smaller portion of the initial loads. Figure 5 demoatds that larger values éf do
not bring benefits t:MAIMD: even though multiplicative-additive increase gives geaicacquisition of the
available resourceAIMD gains superior convergence from some lightly loaded staed the target load
area expands). According to Figure 6, changes iaffect the balance betwe®mIMD andAIMD insignif-
icantly: MAIMD still provides quicker convergence only from fair or lightbaded initial states. Figure 7
manifests an interesting exception from this common pattéar low values ofbp, MAIMD outperforms
AIMD also in the case of loaded unfair initial states. On the dtia&d, smaller values @f, decrease the
lower load boundary of the target area. Figure 8 shows tleasiit between the areas of superiority of
MAIMD andAIMD remains qualitatively the same over a wide range of the @itioad values.

In general, MAIMD provides quicker convergence from fair or lightly loadediah states whileAIMD
converges faster (though, very slowly) from loaded unfaitidl states.

3.5 Summary

In this section, we compared performanceAt¥D and MAIMD algorithms in the classical synchronous
model. We discovered that, despite a common bedD does not guarantee the quickest convergence of
fairness. While neithekIMD nor MAIMD is optimal among the linear-increase linear-decreaseipslivith
respect to time of their convergence to fairness, both dhgos converge to fairness very slowly. On the
other handMAIMD provides the quickest convergence of efficiency. Sectibr@monstrated that having an
additive component in the increase policy opens a podyilidi unlimited overload and thus is undesirable.
In terms of the fastest convergence of fairness and effigjaratherMAIMD nor AIMD is optimal: AIMD
usually converges quicker from loaded unfair initial statdile MAIMD converges faster from fair or lightly
loaded initial states.

4 Asynchronous Systems

The synchronous model considered in the previous sectiontigin accurate representation of computer
networks. In reality, feedback reaches different userh different delays. Similarly, load adjustments do
not affect actual load on the resource simultaneously. vBelge examine a more realistic asynchronous
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model and demonstrate that, in this model, additive inerefges not guarantee convergence to optimal
fairness.

The presented asynchronous model is a slight generalizatithe synchronous model from Section 3.
Two parameters; andd; are added to represent differences in delays and adjustinegpuiencies: user
i adjusts its loadr;(t) with delay f; after the resource sends feedback; this feedback reflecisréivious
adjustment conducted} time units before the feedback is sent. Thus, usgljusts its load once peai;(+ f;)
based on the feedback that reflects the efficiency of resadilczation as it wasf; time units before the
adjustment. Then, the total load, fairness index, and mam-ratio at timet are as follows:

X(t):zn:xi(t—di), P p—_C.(G) M(t):min{M}, (15)
=1

0> (wilt — di))? b bt = dj)
=1

while the feedback indicates whether the resource is caeeld:

(1 i X > Xgeal,
0 ={5 ¥ X< xm o
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We examine linear-increase multiplicative-decreasesantjants of the load:

aI-I-bei(t—di—fi) if y(t—fi) =0,
bpzi(t — d; — fi) if y(t—fi)=1

Example 2. Let us consider an asynchronous system controlledilfp. The system haX,,,; = 100
and serves two users. The second user adjusts its loadrfees thore frequently than the first uséy:= 4,
fi =4,dy =1, fo = 1. Figure 9(a) shows load adjustments when the initial statemioaded; (0) = 0,
z2(0) = 0). In this scenario, the second user captures, due to thefigiguency of its adjustments, a larger
share of the resource and keeps it after the system stabil2a the other hand, Figure 9(b) shows that,
when the initial state is loaded unfaif;(0) = 100, x2(0) = 0), the first user preserves its bigger portion of
the resource even though the second user adjusts its loatrfas more frequently. Figure 9(c) provides
an adjustment diagram which is similar to one introduced ]nThe diagram shows that, in both scenarios,
the system oscillates far from the fair state after staddilim. Moreover, as Figure 9(d) demonstrates, the
ranges of the fairness oscillations differ for differeritial states. |

Corollary 2. The presence of the additive component in the increaseypdties not guarantee conver-

Vi=1,...,n, xi(t):{ 17)

10
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Figure 8: The influence of the initial load on relative time of convemge forMAIMD and AIMD when
n = 2, b[ = ]_.]_, ay = 1, bD = 09, Fgoal =0.9

gence to optimal fairness in asynchronous systems.

Unlike in the synchronous model, fairness of the resoureeisty in the asynchronous model does not
increase monotonically and, if converges, converges imiatarval but not to the optimal value. Consider a
system in the loaded fair state where each user imposes)—(lg&’don the resource. If only one of the users
increases its load, the min-max ratio and fairness indep fion their optimal value of to:

2
1 (n— 14 2 +by)
M= and F = aoat ~ (18)
Xgoal +bI n(n_l—{_(XgOIal +bI) )

SinceM — 0 andF — 0 whenn — 00, Xgoq — 0, anday > 0, the assumption of arbitrary and Xy,
implies a possibility ofunlimited oscillations of fairnesim the presence of the additive component.

Due to the possibilities of unlimited overload and unlirditescillations of fairness, it is undesirable to
have an additive component in the increase policy. Becdugspresence of the additive component, as we
showed in this section, does not ensure convergence to apiinness in asynchronous systems, neither
AIMD nor MAIMD appears to be an appropriate mechanism for providing fesrimcomputer networks. The
next section experimentally confirms that @P congestion control suffers from the problems detected by
our analysis.

5 Additive Increase and TCP Congestion Control

There exists a belief that additive increase and multipilieadecrease of the congestion window during
the congestion avoidance mode enab®® to provide fair bandwidth sharing. The findings of Section 4
suggest that this opinion is incorrect. Indeed, we showbétiat TCP is not fair. Besides, its reliance on
additive increase leads to slow convergence of efficienglgércongestion avoidance mode.

To expedite convergence to efficien@CP connections go through a special initial phase called slow
start [2]: a new connection increases its congestion winduavitiplicatively until the first detection of
overload; after that, the connection switches to the cdimeavoidance mode governed BYMD. Being
a step in the right direction, slow start does not completdligviate the problem of slow convergence to
efficiency. While it accelerates convergence after thevariof a new connection, slow start can fail to
speed up convergence of efficiency in many scenarios wheticadd bandwidth becomes available. These
scenarios include termination of other connections, seled reserved bandwidth, addition of parallel links.
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Figure 9: Load adjustments bxIMD in the asynchronous system where the second user adjukiadts
four times more frequently than the first user= 2,d; =4, fi = 4,d> =1, f> = 1, Xgoa = 100, a; = 1,
andbp = 0.9.

If such events occur when the existing connections are icdihgestion avoidance mode, the connections
continue to rely on additive increase, and acquisition efatailable bandwidth can be very slow.

Before presenting our simulation studies, we want to rentfzak the numerous interdependent mecha-
nisms (such as packet acknowledgments, retransmissi@otitnfast retransmit, fast recovery, exponential
backoff of the retransmission timer, etc) make 1@P congestion control algorithm quite complex, and it
is difficult to single out the behavioral aspects causedusiatly by additive increase. Besida$ P does
not actually employAIMD but rather behaves, on the round-trip timescale, in a mathia¢rresembles the
behavior ofAIMD (for instance, the actual increase of the congestion windiasing the congestion avoid-
ance mode is inverse increase upon receiving an acknowkaymA\hat this section tries to show is that
fairness, provisioning of which is commonly attributed taive increase, is not a feature DEP.

We useNS-2 [5] to simulateReno version of TCP. In these experiment3,CP connections transfer files
using the maximum segment size 536 bytes and compete for the bandwidth of li2d3. This link has
a buffer with capacity that covers the bandwidth-delay potsl of the simulatedCP connections. If the
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buffer is full when a new packet arrives, this packet is dempprhe packets are served in the order of their
arrival. Computation of throughput is conducted o280 ms intervals and considers only the packets that
reach the destination for the first time.

First, we examine efficiency ofCP. Figure 10 shows the simulated topology and achieved timmutg
for aTCP connection (denoted asp) that competes for bandwidth with an on-off session (dehasen-off
cbr). The bottleneck link2-3 has a buffer fort00 KB. The on-off session intermits five-second periods
of transmission with five-second periods of silence. Wheyoff cbr transmits, it send500-byte packets
with constant ratd6 Mbs. Figure 10(b) shows the throughputtob as well as the difference (denoted as
ideal) between the bottleneck bandwidth and current transnmigsite ofon-off cbr. By 1.2 seconds into
the simulationtcp abandons its slow start. Since then, the connection oeratbe congestion avoidance
mode. Because the transmission increases additively snntioide,tcp captures the available bandwidth
slowly. The slow convergence of efficiency is especiallygmouous aftebn-off cbr turns silent — when
the session resumes its transmission five seconds latehrtheghput of therCP connection still does not
reach the link bandwidth. Hence, additive increase makegergence off CP to efficiency slow.

throughput, Mbs

@ I

On-Off Cbr 0 1‘0 2‘0 iim(g,‘oseconds 4‘0
(a) simulated topology (b) throughput

Figure 10 : TCP captures the available bandwidth slowly.

Now, we consider fairness afCP. Figure 11(a) depicts the simulated scenario: W@ connections
share the bottleneck link-3 which has a buffer fo20 KB. The first connection (denoted &p1) begins its
transmissionl0 seconds earlier than the second conneditpf. By 1.2 seconds into the simulatiotgpl
acquires all the bottleneck bandwidth and switches to tingestion avoidance mode. Whep2 starts its
transmission, link2-3 is fully utilized by tcpl. By 11.6 seconds into the simulatiorgp2 switches to the
congestion avoidance mode. From this moment on, both ctionsetay in the congestion avoidance mode.
Nevertheless, additive increase and multiplicative deswedo not provide convergence to fair bandwidth
sharing. Figure 11(b) shows thap2 captures and keeps most of the bandwidth on2itkeven though the
round-trip propagation time for this connection is largemus, TCP is unfair.

This section showed tha&IMD does not ensure convergence T@P to fairness. At the same time,
reliance on additive increase makes convergence&Qsf to efficiency slow. Since the additive-increase
multiplicative-decrease algorithm fails to provide quidnvergence of fairness and efficiency in the con-
sidered systems, different mechanisms are needed to adhiese goals.
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Figure 11 : TCP is unfair.

6 Conclusions

This paper disputed the popular beliefs that the additieesiase multiplicative-decrease algorithm is op-
timal or even necessary for fairness convergence and igtadifilfeedback-based congestion control. We
showed that, in a synchronous model of systems where a feledefiects the efficiency of resource uti-
lization, additive increase does not guarantee the quickesergence of fairness of resource sharing. This
result is interesting because it contradicts an assenta@n the classic work by Chiu and Jain. Moreover,
both fairness and efficiency are slow to converge in synausisystems controlled by the additive-increase
multiplicative-decrease algorithm. For an asynchronoodeh) we demonstrated that additive increase does
not ensure convergence to optimal fairness. Besides, dhariradditive component in the increase policy
can lead to such undesirable effects as unlimited overladdualimited oscillations of fairness. The pre-
sented experimental results showed thafitie congestion control algorithm is unfair (despite the common
belief thatAIMD suppliesTCP with convergence to fairness) and that slow start does moiragaster con-
vergence ofTCP to efficiency. The fundamental reason for slow convergeridaimess in synchronous
systems and for the failure of asynchronous systems to agate optimal fairness is the attempt to reach
fairness relying exclusively on the feedback about thel fotd. In future, we are planning to design a
scalable congestion control scheme that promptly congaigéhe fair efficient state based on a feedback
that reflects both the efficiency and fairness of resourdeation.
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