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Abstract

A computer network is said to provide hop integrity iff when any
router p in the network recaves a message m suppacsedly from an
adjacent router g, then p can chedk that m was indeed sent by g, was
not modified after it was sent, and was not a replay of an old message
sent from g to p. In this paper, we describe three protocols that can be
added to the routers in a computer network so that the network can
provide hop integrity. These three protocols are a seaet exchange
protocol, a weak integrity protocol, and a strong integrity protocol. All
three protocols are stateless require small overhead, and do not
constrain the network protocol in the routersin any way.

Keywords. authenticaion, Internet, network protocol, router, seaurity,
smurf attadk, SY N attadk, message modification, message replay.

1. Introduction

Most computer networks suffer from the following security problem: in a typicd
network, an adversary, that has an access to the network, can insert new messages,
modify current messages, or replay old messages in the network. In many cases, the
inserted, modified, a replayed messages can go uncetected for some time until they
cause severe damage to the network. More importantly, the physical locaion in the
network where the adversary inserts new messages, modifies current messages, or replays

old messages may never be determined.
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Two well-known examples of such attadks in networks that suppat the Internet
Protocol (or IR, for short) and the Transmisgon Control Protocol (or TCPR, for short) are &

foll ows.

I. Smurf Attack:
In an IP network, any computer can send a “ping” message to any other computer
which replies by sending back a “pong” message to the first computer as required
by Internet Control Message Protocol (or ICMP, for short) [Pos81]. The ultimate
destination in the pong message is the same & the original source in the ping
message. An adversary can uili ze these messages to attadk a cmputer d in such a
network as follows. First, the alversary inserts into the network a ping message
whose original source is computer d and whaose ultimate destination is a multi cast
address for every computer in the network. Secmond, a wpy of the inserted ping
message is ent to every computer in the network. Third, every computer in the
network replies to its ping message by sending a pong message to computer d.
Thus, computer d isflooded by pong messages that it did na requested.
ii.SYN Attack:

To establish a TCP conredion ketween two computers ¢ and d, one of the two
computers ¢ sends a “SYN” message to the other computer d. When d receives the
SYN message, it reserves ome of its resources for the expeded connedion and
sends a “SYN-ACK” message to ¢. When c receives the SYN-ACK message, it
replies by sending badk an “ACK” message to d. If d recaves the ACK message,
the conredionis fully establi shed and the two computers can start exchanging their
data messages over the established conrection. On the other hand, if d daes not
recave the ACK message for a spedfied time period d T seconds after it has sent
the SYN-ACK message, d discards the partially establi shed connedion and rel eases
all the resources reserved for that connedion. The net effed of this senario is that
computer d has lost some of its resources for T seands. An adversary can take
advantage of such a scenario to attadk computer d as follows [CERT96, VV19§].
First, the aversary inserts into the network successve waves of SYN messages
whose original sources are different (so that these messages canna be eaily



deteded and filtered ou from the network) and whose ultimate destination is d.
Seoond, dreceives the SYN messages, reserves its resources for the expeded
conredions, replies by sending SYN-ACK messages, then waits for the
correspondng ACK messages which will never arrive. Third, the net effect of each
wave of inserted SYN messages is that computer d loses al its resources for T

se@ndk.

In these (and aher [Jon%]) types of attacks, an adversary inserts into the network
messages with wrong original sources. These messages are acepted by unsuspeding
routers and routed toward the computer under attack. To courter these dtacks, ead
router p in the network shoud route areceived m only after it cheds that the original
sourcein m is a mmputer adjacent to p a m is forwarded to p by an adjacent router g.
Performing the first chedk is draightforward, whereas performing the second check
requires gecia protocols between adjacent routers. In this paper, we present a suite of
protocols that provide hop integrity between adjacent routers: whenever a router p
recaves a message m from an adjacent router g, p can deted whether m was indeed sent

by g or it was modified o replayed by an adversary that operates between pand q.

It isinstructive to compare hopintegrity with seaure routing [Ched7, MB96, SMG97],
ingress filtering [FS98], and IPsec [KA984]. In secure routing, for example [Ched7],
[MB96], and [SMG97], the routing update messages that routers exchange ae
authenticated. This authentication ensures that every routing update message, that is
modified o replayed, is deteded and dscarded. By contrast, hopintegrity ensures that all
messages (whether data or routing update messages), that are modified o replayed, are
deteded and dscarded.

Using ingressfiltering [FS98], ead router on the network bourdary chedks whether
the recorded sourcein each receved message is consistent with where the router received
the message from. If the message sourceis consistent, the router forwards the message &
usual. Otherwise, the router discards the message. Thus, ingress filtering deteds
messges whose rewmrded sources are modified (to hide the true sources of these



messages), provided that these modificaions occur at the network boundry. Messages
whose recorded sources are modified between adjacent routers in the midde of the
network will not be deteded by ingressfiltering, but will be detected and dscarded by
hopintegrity.

The hopintegrity protocol suite in this paper and the IPsec protocol suite presented in
[KA98a], [KA98l], [KA9&], [MSS+98], and [Orm98] are both intended to provide
seaurity at the IP layer. Nevertheless these two protocol suites provide different, and
somewhat complementary, services. On one hand, the hop integrity protocols are to be
exeauted at al routersin a network, and they provide aminimum level of seaurity for all
communicaions between adjacent routers in that network. On the other hand, the IPsec
protocols are to be exeauted at selected pairs of computers in the network, and they
provide sophisticated levels of seaurity for the cmmmunicaions between these seleded
computer pairs. Clearly, ore can envision retworks where the hopintegrity protocol suite
and the IPsecprotocol suite ae both suppated.

Next, we describe the concept of hopintegrity in some detall .

2. Hop Integrity Protocols

A network consists of computers conneded to subnetworks. (Examples of subnetworks
are local areanetworks, telephore lines, and satellit e links.) Two computers in a network
are caled adjacent iff bath computers are cnreded to the same subretwork. Two
adjacent computers in a network can exchange messages over any common subnetwork

to which they are bath conreaed.

The computers in a network are dasgfied into hosts and routers. For simplicity, we
asume that each host in a network is conneded to ore subnetwork, and each router is
conreded to two or more subretworks. A message m is transmitted from a aomputer sto
afaraway computer d in the same network as follows. First, message m is transmitted in
one hopfrom computer sto arouter r.1 adjacent to s. Second, message m is transmitted in
one hop from router r.1 to router r.2 adjacent to r.1, and so on. Finally, message m is



transmitted in ore hopfrom arouter r.n that is adjacent to computer d to computer d.

A network is said to provide hop integrity iff the following two condtions hod for

every pair of adjacent routers p and qin the network.

I. Detection of Message Modification:
Whenever router p receives a message m over the subretwork conneding routers p
and g, pcan determine correctly whether message m was modified by an adversary
after it was sent by q and before it was received by p.

ii . Detection of Message Replay:
Whenever router p receves a message m over the subretwork conneding routers p
and q, and cetermines that message m was not modified, then p can determine

correctly whether message m is anather copy of a message that is received earlier

by p.

For a network to provide hopintegrity, two “thin” protocol layers need to be added to
the protocol stadk in each router in the network. As discussed in [Com88] and [Ste94],
the protocol stack of ead router (or host) in a network consists of four protocol |ayers,
they are (from bottom to top) the subretwork layer, the network layer, the transport layer,
and the gplicaion layer. The two thin layers that need to be alded to this protocol stadk
are the secret exchange layer and the integrity check layer. The seaet exchange layer is
added above the network layer (and kelow the transport layer), and the integrity chedk
layer is placed below the network layer (and above the subnetwork layer).

The function d the seaet exchange layer is to allow adjacent routers to periodicdly
generate and exchange (and so share) new secrets. The exchanged seaets are made
avail able to the integrity chedk layer which uses them to compute and erify the integrity

ched for every data message transmitted between the adjacent routers.

Figure 1 shows the protocol stadks in two adjacent routers p and (. The secret
exchange layer consists of the two processes pe and ge in routers p and g, respedively.



The integrity check layer has two versions: weak and strong. The we& version consists
of the two processes pw and gw in routers p and q,respedively. This version can deted
message modificaion, bu not message replay. The strong version d the integrity chedk
layer consists of the two processes ps and gs in routers p and q,respectively. Thisversion

can detect both message modification and message replay.

router p router g
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Figure 1. Protocol stack for achieving hop integrity.

Next, we explain how hopintegrity, aong with ingressfiltering, can be used to prevent
smurf and SYN attacks (which are described in the Introduction). Recdl that in smurf
and SYN attadks, an adversary inserts into the network ping and SYN messages with
wrong original sources. These forged messages can be inserted either through a bourdary
router or between two routers in the midde of the network. Ingressfiltering (which is
usualy installed in boundvry routers [FS98]) will deted the forged messages if they are
inserted through a boundary router because the recrded sources in these messages would
be inconsistent with the hosts from which these messages are receved. However, ingress
filtering may fail in deteding forged messages if these messages are inserted between two

routers in the middle of the network. For example, an adversary can log into any host



located between two routers p and g,and use this host to insert forged messages toward
router p, pretending that these messages are sent by router . The red source of these
messages can nad be determined by router p because router p canna dedde whether these
messages are sent by router g or by some host between pand g.However, if hopintegrity
is installed between the two routers p and q, then the (weak or strong) integrity chedk
layer in router p concludes that the forged messages have been modified after being sent
by router g (although they are acually inserted by the alversary and nd sent by router q),

and so it discards them.

Smurf and SYN attacks can also be launched by replaying old messages. For example,
the alversary can log into any host located between two routers p and g. When the
adversary spots some passng legitimate ping or SYN message being sent from ¢ to p, it
kegxs a @mpy of the passng message. At a later time, the alversary can replay these
copied messages over and over to launch asmurf or SY N attadk. Hop integrity can defeat
this attack as follows. If hopintegrity is instaled between the two routers p and ¢, then
the strong integrity ched layer in router p can deted the replayed messages and dscard

them.

In the next three sedions, we describe in some detail the protocols in the secret
exchange layer and in the two versions of the integrity check layer. The first protocol
between processes pe and ge is discussd in Sedion 3. The second potocol between
processes pw and gw is discussd in Sedion 4. The third protocol between processes ps
and csisdiscussed in Sedion 5.

These three protocols are described using avariation d the Abstrad Protocol Notation
presented in [Gou99. In this notation, each processin a protocol is defined by a set of
inpus, a set of variables, and a set of adions. For example, in a protocol consisting of
processes px and ok, processpx can be defined as foll ows.

process px

inp <name of input> : <type of input>



<name of input> : <type of input>
var <name of variable> <type of variable>

<name of variable> <type of variable>
begin
<adion>

[ <adion>

[ <adion>

end
Comments can be alded anywhere in a process definition; eacy comment is placed
between the two bradkets{ and }.

The inpus of processpx can be read but not updated by the actions of process px.
Thus, the value of eadh input of px iseither fixed o isupdated by ancther processoutside
the protocol consisting of px and gx. The variables of processpx can be read and updated
by the adions of processpx. Eadh <action> of processpx is of the form:

<guard> - <statement>
The <guard> of an adion d px is either a <bodean expresson> or a <receive> statement
of the form:

rcv <message> from gx
The <statement> of an adion d px is a sequence of skip, <assgnment>, <send>, or
<seledion> statements. An <assgnment> statement is of the form:

<variable of px> := <expression>
A <send> statement is of the form:

send <message> to gx
A <seledion> statement is of the form:

if <bodean expresson> -  <statement>

[] <bodean expression> - <statement>
fi



Exeauting an action consists of exeauting the statement of this adion. Exeauting the
adions (of different processes) in a protocol proceeds according to the following three
rules. First, an adion is exeauted oy when its guard is true. Second, the actions in a
protocol are exeauted ore & atime. Third, an action whaose guard is continuowsly true is

eventualy exeauted.

Exeauting an action d processpx can cause amessage to be sent to processgx. There
are two channels between the two processes. one is from px to gx, and the other is from
gx to px. Eadh sent message from px to gx remainsin the diannel from px to gx until it is
eventually received by process gx or is lost. Messages that reside simultaneoudly in a
channel form asequence €m.1; m.2; ...; m.n> in accordance with the order in which they
have been sent. The head message in the sequence m.1, is the earliest sent, and the tall
message in the sequence m.n, is the latest sent. The messages are to be receaved in the

same order in which they were sent.

We asame that an adversary exists between processes px and gx, and that this
adversary can perform the foll owing three types of actionsto disrupt the mmmunicaions
between px and gx. First, the alversary can perform a message loss adion where it
discards the head message from one of the two channels between px and gx. Seand, the
adversary can perform a message modification adion where it arbitrarily modifies the
contents of the head message in one of the two channels between px and gx. Third, the
adversary can perform a message replay adion where it replaces the head message in ore
of the two channels by a message that was sent previously. For simplicity, we assume that
ead head message in ore of the two channels between px and gx is affeded by at most

one aversary action.

3. The Secret Exchange Protocol

In the seaet exchange protocol, the two processes pe and ge maintain two shared secrets
sp and sg. Seaet sp is used by router p to compute the integrity chedk for each data
message sent by p to router g, and it isalso used by router g to verify the integrity chedk
for each data message received by g from router p. Similarly, secret sq is used by g to



compute the integrity checks for data messages sent to p,and it is used by p to verify the
integrity cheds for data messages recaved from q.

As part of maintaining the two seaets sp and s, processes pe ad ge neal to change
these seaets periodically, say every te hours, for some dhosen value te. Processpeis to
initiate the change of seaet sq, and pocess ge is to initiate the dhange of secret sp.
Processes pe and ge each has a pulic key and a private key that they use to encrypt and
deaypt the messages that carry the new secrets between pe and ge. A pubic key is
known to al processes (in the same layer), whereas a private key is known orly to its
owner process The public and pivate keys of process pe are named B, and R,
respedively; similarly the pullic and private keys of process ge are named By and Ry
respedively.

For process pe to change seaet sq, the following four steps need to be performed.
First, pe generates a new sg, and encrypts the concatenation d the old sq and the new sq
using ge’s puldic key By, and sends the result in a rgst message to ge. Second, when ge
recaves the rgst message, it deaypts the message @ntents using its private key R, and
obtains the old sq and the new sg. Then, ge chedks that its current sq equals the old sg
from the rgst message, and install s the new sq as its current sq, and sends a rply message
containing the encryption d the new sg using pe’s pulic key B,. Third, pe waits until it
recaves arply message from ge containing the new sq encrypted using B,. Recaving this
rply message indicates that ge has recaved the rqst message and hes accepted the new sq.
Fourth, if pe sends the rgst message to ge but does nat receve the rply message from ge
for some tr seconds, indicating that either the rgst message or the rply message was lost
before it was recaved, then pe resends the rgst message to ge. Thustr is an upper bound

on the roundtrip time between pe and ge.

Note that the old seaet (along with the new secret) is included in each rgst message
and the new seqet is included in ead rply message to ensure that if an adversary
modifies or replays rgst or rply messages, then each of these messages is detected and

discarded by itsrecaving process(whether pe or ge).
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Processpe has two variables sp and sq dedared as foll ows.

var sp: integer
sq: array [0 ..1] of integer

Similarly, processge has an integer variable sq and an array variable sp.

In process pe, variable sp is used for storing the seaet sp, variable sq[0] is used for
storing the old sq, and variable sq[1] is used for storing the new sg. The as%ertion sg[0] #
sq[1] indicates that processpe has generated and sent the new secret sq, and that ge may
not have received it yet. The assertion sg[0] = sq[1] indicaes that ge has aready receved
and accepted the new secret sg. Initially,

sq[0] in pe sq[l] inpe = sgin g and
sp[0] incge = sp[l]inge = spinpe

Process pe can be defined as follows. (Process ge can be defined in the same way
except that eadr occurrence of R, in pe is replaced by an occurrence of Ry in ge, eah
occaurrence of By in peisreplaced by an occurrence of B in ge, eadh occurrence of spin
peis replaced by an occurrence of sgin ge, and each occurrence of sq[0] or sg[1] in peis

replaced by an occurrence of sp[0] or sp[1], respedively, in ce.)

process pe
inp R, : integer { private key of pe}
By : integer {pulic key of ge}
te : integer {time between secret exchanges}
tr  : integer {upper boundon round trip time}
var sp : integer
sq : array[O..J of integer {initially sq[0] = sq[1] = sgin ge}
d,e : integer
begin

timeout sq[0] =sg[1] O (te hours passed since rgst message sent last) —
(1] := NEWSCR,
e = NCR(Bq, (sq[0]; sq[1]));
send rgst(e) to ge

1 rcv rgst(e) from ge -
(d,e) :=DCR(R; , €);
ifsp=d Osp=e - 9sp:=¢
e:=NCR(Bg, sp);
send rply(e) to ge
Qsp#d Osp#ze - {detect adversary} skip

11



fi

1 rev rply(e) from ge -
d = DCR(Ry, €);

if sqf1] =d ~ s[0] := so[1]
[1 sq[1] #d - {detect adversary} skip
fi

1 timeout sq[0] #sq[1] O (tr seconds passed since rgst message sent last) —

e:= NCR(Bq, (sq[0]; sq[1]));
send rgst(e) to ge
end

The four actions of process pe use threefunctions NEWSCR, NCR, and DCR defined
as follows. Function NEWSCR takes no arguments, and when invoked, it returns a fresh
seaet that is different from any secret that was returned in the past. Function NCR is an
encryption function that takes two arguments, a key and a data item, and returns the
encryption d the dataitem using the key. For example, exeaution d the statement

e:= NCR(Bq, (so[0]; sq[1]))
causes the mncaenation d sq[0] and sq[1] to be encrypted using the pubdic key By, and
the result to be stored in variable e Function DCR is a decryption function that takes two
arguments, a key and an encrypted data item, and returns the deayption d the data item
using the key. For example, exeaution d the statement

d:=DCR(Ry, €
causes the (encrypted) dataitem e to be decrypted using the private key R, and the result
to be stored in variable d. As ancther example, consider the statement

(d,e) :==DCR(R, €)
This datement indicates that the value of e is the encryption d the concaenation of two
values (Vo; V1) using key R,. Thus, exeauting this gatement causes e to be decrypted
using key Ry, and the resulting first value vo to be stored in variable d, and the resulting

semnd value v4 to be stored in variable e

To verify the correctness of the seaet exchange protocol, refer to the state transition
diagram of this protocol in Figure 2. This diagram has $x nodes that represent all
possble readable states of the protocol. Every transition in the diagram stands for either

a legitimate adion (of process pe or process ge), or an illegitimate adion d the
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adversary. For convenience each transition is labeled by the message event that is
exeauted duing that transition. In particular, each transition hes alabel of the form
<event type> : <message type>
where <event type> is one of the foll owing:
S stands for sending a message of the specified type
R stands for receiving a message of the specified type
L stands for losing a message of the specified type
M stands for modifying a message of the specified type
P stands for replaying a message of the speafied type
The notation ch.pe.ge is used to dencte the @ntent of the channel from process pe to

processge.
timeout & S:rgst R:rply
1 S0 |-
R:rgst & S:rply
S1 1 S2
timeout &
P:rgst M:rgst L:rply M:rply P:rply
R:rgst R:rply

—» M1 | LO [ M.2 |<

Figure 2. State transition diagram of the secret exchange protocol.

Initially, the protocol starts at a state S.0, where the two channels between processes
pe and g ae ampty and the values of variables 9[0], sq[1] in pe and variable sq in ge
are the same. This date @an be defined by the following predicae

S0= ch.pe.ge =< > [ ch.ge.pe =<> 0 sq[0] in pe =sq[1] in pe =sqin e

13



At state S.0, exadly one adion, remely the first timeout adion in process pe, is
enabled for exeaution. Exeauting this adion at state S.0 leads the protocol to state S.1
defined as foll ows:

S1= ch.pe.ge =<rgst(e)> O ch.qepe =< > 0 e =NCR(By, (sg[0]; sq[1])) O

sq[0] in pe# sg[1] in pe O sq[0] in pe =sqin cg

At state S.1, exadly one legitimate action, remely the recave adion (that receives a
rgst message) in processge, is enabled for exeaution. Exeauting this adion at state S.1
leads the protocol to state S.2 defined as foll ows:

S2= ch.pe.ge =< > [ ch.ce.pe =<rply(e)> U e =NCR(By, sq) [

sq[0] in pe# sq[1] in pe O sq[1] in pe =sqin ce

At state S.2, exadly one legitimate action, ramely the recave adion (that receives a
rply message) in processpe, is enabled for exeaution. Exeauting this adion at state S.2
leads the protocol back to state S.0 defined abowve.

States S.0, S.1 and S.2 are cdled good states becaise the transitions between these
states consist of exeauting the legitimate adions of the two processs. The sequence of
transitions from state S.0 to state S.1, to state S.2, and bad to state S.0 constitutes the
good cycle of the protocal. If only legitimate adions of processes pe and g are exeauted,
the protocol will stay in this good cycle indefinitely. Next, we discuss the bad effects
caused by the adions of an adversary, and how the protocol can remver from these
eff ects.

First, the adversary can exeaute a message loss adion at state S.1 o S.2. If the
adversary exeautes a message lossaction at state S.1 o S.2, the network moves to a state
L.0 defined as foll ows:

L.O= ch.pe.ge =< > [0 ch.cepe =<> 0

sq[Q] in pe# sq[1] in pe O
(sa[0] in pe =sqin ge [ sq[1] in pe =sqin cg)

14



At state L.0, orly the secondtimeout adionin peis enabled for exeaution, and exeauting
thisadion leads the network badk to state S.1.

Sewmnd,the alversary can exeaute amessage modificaion adion at state S.1 o S.2. If
the alversary exeautes a message modification adion at state S.1, the network moves to
state M.1 defined as follows:

M.1= ch.pe.ge =<rgst(e)> O ch.qepe =<> O e# NCR(Bg, (sq[0]; sq[1])) O

sq[Q] in pe# sq[1] in pe O

(so[0] in pe =sqin ge O sq[1] in pe =sqin cg)
If the adversary exeautes a message modification action at state S.2, the network moves
to state M.2 defined as foll ows:

M.2= ch.pe.ge =< > [ ch.ce.pe =<rply(e)> [ e#Z NCR(Bp, sq) U

sq[0] in pe#zsq[l] inpe O
(sa[0] in pe =sqin ge O sq[1] in pe =sqin cg)
In either case, the protocol moves next to state L.0 and eventually returns to state S.1.

Third, the alversary can exeaute amessage replay action a state S.1 a S.2. If the
adversary exeautes a message replay action at state S.1, the network moves to state M. 1.
If the adversary exeautes a message replay action at state S.2, the network moves to state
M.2. As shown abowve, the protocol eventualy returnsto state S.1.

From the state transition dagram in Figure 2, it is clea that eadh ill egitimate adion by
the adversary will eventually lead the network bad to state S.1, which is a good state.
Once the network is in a good state, the network can progressin the good cycle. Hence

the corrednessof the seaet exchange protocol is verified.

4. The Weak Integrity Protocol

The main ideaof the weak integrity protocol is smple. Consider the cae where adata(t)
message, with t being the message text, is generated at a source src then transmitted
through a sequence of adjacent routersr.1,r.2, ...,r.n to a destination dst. When data(t)

reades thefirst router r.1,r.1 computes adigest d for the message & foll ows:

15



d:= MD(t; scr)
where MD is the message digest function, (t; scr) isthe mncaenation d the message text
t and the shared seaet scr between r.1 and r.2 (provided by the seaet exchange protocol
in r.1). Then, r.1 adds d to the message before transmitting the resulting data(t, d)

message to router r.2.

When the second router r.2 receives the data(t, d) message, r.2 computes the message
digest using the secret shared between r.1 and r.2 (provided by the secret exchange
processin r.2), and chedks whether the result equals d. If they are unequal, then r.2
concludes that the recaved message has been modified, dscads it, and reports an
adversary. If they are equal, then r.2 concludes that the received message has not been
modified and proceeds to prepare the message for transmisson to the next router r.3.
Preparing the message for transmisgon to r.3 consists of computing d using the shared
seqet between r.2 andr.3 and storing theresult in field d d the data(t, d) message.

When the last router r.n recaves the data(t, d) message, it computes the message digest
using the shared secret between r.(n-1) and r.n and checks whether the result equals d. If
they are unequal, r.n dscards the message and reports an adversary. Otherwise, r.n sends
the data(t) message to its destination ckt.

Note that this protocol deteds and dscads every modified message. More
importantly, it also determines the locaion where each message modification hes
occurred.

Processpw in the weak integrity protocol has two inpus sp and sq that pw reads but
never updates. These two inpus in process pw are dso variables in process pe, and pe
updates them periodically, as discussed in the previous dion. Process pw can be
defined as foll ows. (Processqw is defined in the same way except that eadch occurrence of
p, g, pw, gw, sp, and sq is replaced by an occurrence of g, p, gw, pw, sq, and sp,
respedively.)

process pw
inp sp . integer
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Sl : array [0 .. J of integer
var t, d . integer
begin
rcv data(t, d) from qw —
if MD(t; sq[0]) =d O MD(t; sq[1]) =d - {defined later} RTMSG
[ MD(t; sq[0]) #d O MD(t; sq[1]) 2d — {report adversary} skip
fi

1 true -
{p receives data(t, d) from router other than g
{and cheds that its message digest is correct}
RTMSG

1 true -
{ either p receives data(t) from an adjacent host or}
{p generates the text t for the next data message}
RTMSG

end

In the first adion d process pw, if pw receives a data(t, d) message from gw while
sq[0] # sq[1], then pw canna determine beforehand whether gw computed d wsing sq[0]
or using sq[1]. In this case, pw neeals to compute two message digests using bath sq[0]
and sq[ 1] respedively, and compare the two dgests with d. If ether digest equals d, then
pw aacepts the message. Otherwise, pw discards the message and reports the detection o
an adversary.

The three ations of process pw use two functions named MD and NXT, and e
statement named RTM SG. Function MD takes one argument, namely the ancatenation
of the text of a message and the gpropriate secret, and computes a digest for that
argument. Function NXT takes one argument, namely the text of a message (which we
asume includes the message header), and computes the next router to which the message
shoud be forwarded. Statement RTM SG is defined as foll ows.

if NXT(t)=p - {accet message} skip

[0 NXT(®)=q -  d:=MD(t; sp);
send data(t, d) to qw

[ NXT(@)#p O NXT({)#q -
{ compute d as the message digest of}
{the concatenation of t and the secret}
{for sending datato NXT(t); forward}
{data(t, d) to router NXT(t)} skip

fi
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To verify the rrectness of the wedk integrity protocol, refer to the state transition
diagram of this protocol in Figure 3, which considers the channel from process qw to
processpw. (The dannel from pw to gw, and the channels from pw to any other wes
integrity process in an adjacent router of p, can be verified in the same way.) This
diagram has two noces that represent all possble reachable states of the protocol. Every
transition in the diagram stands for either a legitimate action (of processpw or process

gw), or anill egitimate ad¢ion d the alversary.

Note that because the wed integrity protocol operates below the secret exchange
protocol in the protocol stack, we can assert that (sqin ow =sq[0] in pv [0 sgin gw =
sq[1] in pw) is an invariant in every state of the week integrity protocol. We denacte this
invariant as | in the specification in Figure 3. Also nde that the notation Heal(data(t, d))
in the spedficaionin Figure 3 is a predicate whose value is true iff data(t, d) isthe head
message of the spedfied channel.

Initially, the protocol starts at state T.0. At state T.0, two legitimate adions, namely the
send adion in gw that sends a data message, and the receive action in pw that receives a
data message, can be exeauted. Exeauting either one of the two actions at state T.0 kegos
the protocol in state T.O.

States T.0 is the only good state in the we&k integrity protocol. The sequence of the
transitions from state T.0 to state T.0 constitutes the good cycle of the protocol. If only
legitimate actions of processes pw and qw are exeauted, the protocol will stay in this
good cycle indefinitely. Next, we discuss the bad effeds caused by the adions of an

adversary, and hav the protocol can recover from these dfeds.

First, the alversary can exeaute amessage loss adion at state T.0. If the adversary
exeautes a message loss action at state T.0, the predicae that for every data message
data(t, d) in the channel from qw to pw, d = MD(t; sq), still hads. Therefore, the protocol
stays at state T.0.
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S.data R:data & Accept

" "

T.0 D L:data

] R:data &
M:data Discard
M.O
S.data

T.0= | O (Odata(t, d) message in ch.qw.pw, d=MD(t; s0))

M.0= | O (Cdata(t, d) messagein ch.qw.pw,
(-Hea(data(t, d)) O d=MD(t; sg)) O
( Hea(data(t, d)) O d# MD(t; s0)))

where

I = sgingw=9g[0] inpw O sgingw =sg[1] in pw

Figure 3. State transition diagram of the weak integrity protocol.

Sewnd, the alversary can exeaute amessage modificaion adion at state T.0. If the
adversary exeautes a message modification at state T.0, the protocol moves to state M.0.
The recdve and dscad adion exeauted by pw at state M.0O leals the protocol badk to
state T.O.

From the state transition dagram, it is clea that each ill egitimate action by the
adversary will eventually lead the protocol back to T.0, which is a good state. Once the
protocol is in a good state, the protocol can progressin the good cycle. However, the
wedk integrity protocol, while being able to detect and dscard al modified messages,
canna detect some replayed messages. In the next sedion, we introduce the strong
integrity protocol that is capable of deteding and dscarding all modified and replayed

Messages.
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5. The Strong I ntegrity Protocol

The wed& integrity protocol in the previous sction can deted message modification bu
not message replay. In this edion, we discusshow to strengthen this protocol to make it
deted message replay as well. We present the strong integrity protocol in two steps. First,
we present a protocol that uses “soft sequence numbers’ to detect and dscard replayed
data messages. Second, we show how to combine this protocol with the weak integrity
protocol (in the previous sction) to form the strongintegrity protocol.

Consider a protocol that consists of two processes u and v. Process u continuowsly
sends data messages to process v. Asume that there is an adversary that attempts to
disrupt the communication between uand v by inserting (i.e. replaying) old messages in
the message stream from u to v. In arder to overcome this adversary, processu attaches
an integer sequence number s to every data message sent to processv. To keep tradk of
the sequence numbers, processu maintains a variable nxt that stores the sequence number
of the next data message to be sent by u and processv maintains a variable exp that stores

the sequence number of the next data message to be received by v.

To send the next data(s) message, processu assgns sthe aurrent value of variable nxt,
then increments nxt by one. Asume that no more than L conseautive messages can get
lost in transit. When processv recaves a data(s) message, v compares its variable exp
with s. If exp < s< exp + L, then v accepts the recaved data(s) message and assgns exp

thevaue s + 1; otherwise v discards the data(s) message.

Corredness of this protocol is based on the observation that the predicate exp < nxt
holds at eat (reachable) state of the protocol. However, if due to some fault (for example
an accidental resetting of the values of variable nxt) the value of exp bemmes much
larger than value of nxt, then all the data messages that u sends from this point on will be
wrongly discarded by v urtil nxt becomes equal to exp. Next, we describe how to modify
this protocol such that the number of data(s) messages, that can be wrongly discarded
when the synchronization between u and vis lost due to some fault, is at most N, for

some dhosen integer N that is much larger than ore.

20



The modification consists of adding to processv two variables ¢ and cmax, whose
values are in the range 0..N-1. When processv recaves a data(s) message, v compares
the values of ¢ and cmax. If ¢ # cmax, then processv increments ¢ by one (mod N) and
procedals as before (namely either accepts the data(s) message if exp<s<exp + L, or
discards the message if exp > sor exp + L <'s). Otherwise, v accepts the message, assgns

c thevalue 0, and assgns cmax arandam integer in the range 0..N-1.

This modificaion adcieves two oljedives. First, it guarantees that processv never
discards more than N data messages when the synchronization between u and vis lost
due to some fault. Second, it ensures that the adversary canna predict the instants when
process v is willi ng to accept any recaved data message, and so canna exploit such

predictions by sending replayed data messages at those instants.

Formally, processu and vin this protocol can be defined as foll ows.

process u
var nxt . integer {'sequence number of next sent message}
begin
true -  send data(nxt) tov; nxt:=nxt+1
end
process v
inp N . integer
L . integer
var s . integer { sequence number of received message}
exp . integer {'sequence number of next expected message}
c,emax  0.N-1
begin
rcv data(s) fromu -
if (s<exp Os>exp+L) Oc#cmax -
{rejed message; report an adversary}
c:=(c+1) modN
[ (expss<exp+L) Oc=cmax -
{accet message}
exp:=s+1;
if cZcmax - c:=(c+1) modN
[ c=cmax - ¢:=0;
cmax := RANDOM(O,N - 1)
fi
fi
end
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Processes u and v of the soft sequence number protocol can be combined with process
pw of the weak integrity protocol to construct processps of the strong integrity protocol.
A main dfference between processes pw and ps is that pw exchanges messages of the
form data(t, d), whereas ps exchanges messages of the form data(s, t, d), where sis the
message sequence number computed acarding to the soft sequence number protocol, t is
the message text, and dis the message digest computed over the ancaenation (s; t; scr)
of s, t, andthe shared seaet scr. Processps in the strong integrity protocol can be defined

asfollows. (Processgs can be defined in the same way.)

process ps
inp sp . integer
q ;array [0 .. 1 of integer
N . integer
L . integer
var s t, d . integer
exp, xt . integer
C, Cmax :0..N-1
begin

rev data(s, t, d) from gs -
if MD(s; t; sq[0]) =d O MD(s; t; 5q[1]) =d -
if (s<exp Os>exp+L) O c#cmax —
{rejed message; report an adversary}
c:=(c+1)modN
[ (expss<exp+L) Oc=cmax —
{accet message}
exp:=s+1;
if cZcmax -» c:=(c+1) modN
[ c=cmax - ¢:=0;
cmax := RANDOM(O, N — 1)
fi
fi
(] MD(s; t; sq[0]) # d O MD(s; t; sq[1]) #d —
{report an adversary} skip
fi

1 true -
{p receives adata(s, t, d) from arouter other than g and checks that}
{itsencryption is correct and its sequence number is within range}
RTMSG

1 true -
{ either p receives a data(t) from adjacent host or}
{p generatesthetext t for the next data message}
RTMSG
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end

The first and second adions of processps have astatement RTMSG that is defined as
foll ows.

if NXT(t)=p - {accet message} skip

[ NXTt)=q > d := MD(nxt; t; sp);
send data(nxt, t, d) to gs,
nxt:=nxt+1

[ NXT({t)#p O NXT(t)#qg -
{ compute next soft sequence number s;}
{ compute d as the message digest of the}
{ concatenation of snxt, t and the secret}
{for sending datato NXT(t); forward}
{data(s, t, d) to router NXT(t)} skip

fi

To verify the correctness of the strong integrity protocol, refer to the state transition
diagram of this protocol in Figure 4, which considers the channel from process gs to
process ps. (The channel from ps to gs, and the channels from ps to any other strong
integrity process in an adjacent router of p, can be verified in the same way.) This
diagram has four nodes that represent all passble reachable states of the protocol. Every

transition in the diagram stands for either alegitimate action (of processps or processqs),

or an ill egitimate adion d the alversary.

Note that because the strong integrity protocol operates below the secret exchange
protocol in the protocol stad, we can assert that (sqin gs=s9[0] in ps [ sqin gs=sq[1]
in ps) is an invariant in every state of the strong integrity protocol. We denate this

invariant as | in the specificaionin Figure 4.

Initially, the protocol starts at state U.0. At state U.0, two legitimate actions, namely
the send adionin gs that sends a data message, and the receive action in ps that receves
a data message, can be exeauted. Exeauting either one of the two adions at state U.0O

keegos the protocol in state U.0.

States U.0 is the only good state in the strong integrity protocol. The sequence of the
transitions from state U.0 to state U.0 constitutes the good cycle of the protocol. If only
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legitimate actions of processes ps and g are exeauted, the protocol will stay in this good
cycle indefinitely. Next, we discussthe bad effeds caused by the adions of an adversary,
and haw the protocol can reaver from these dfeds.

S.data R:data & Accept
u.0 L:data
] ! R:data & ! R:data & ! R:data &
M:data | P:.data Discard P.data Discard P.data Accept
Y
M.O P.O P.1
S.data S.data S.data

U.0= | 0O (Odata(s, t, d) message in ch.gs.ps,
d=MD(s t; sq) [ (Head(data(s, t, d)) 0 exp<s<exp+Linps))

M.0= | O (Odata(s, t, d) message in ch.gs.ps,
(-Heal(data(s, t, d) O d=MD(s; t; sq)) O
( Hea(data(s, t, d)) O d# MD(s; t; s0)))

P.0

| O (Odata(s, t, d) message in ch.gs.ps,
d=MD(s; t;sq) O
(Head(data(s, t, d)) 0 s<exp O s>exp+Linps) [ c#cmaxinps)

P.1= | O (Odata(s, t, d) message in ch.gs.ps,

d=MD(s;t;sq) O

(Head(data(s, t, d)) 0 s<exp O s>exp+Linps) [0 c=cmaxinps)
where
I = sgings=9[0] inps U sgings=sq[1] inps

Figure 4. State transition diagram of the strong integrity protocol.

First, the alversary can exeaute amessage lossadion at states U.O. If the alversary
exeautes a message loss action at state U.0, the predicate that for every data message
data(s, t, d) in the channel from gs to ps, d = MD(s, t; sq), still holds. Therefore, the
protocol stays at state U.0.
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Sewnd, the alversary can exeaute amessage modificaion adion at state U.0 causing
the protocol to move to state M.0. The receve and dscard action exeauted by ps at state
M.0 leads the protocol back to state U.O.

Third, the aversary can exeaute amessage replay action at state U.O. There are two
cases to consider. First, if the replayed message data(s, t, d) istoo dd such that the seaet
used to compute the message digest is different from the arrent value of inpu sq in
process gs, then the protocol moves to state M.O, and later returns to state U.0 as
discussed abowe. Second, if the replayed message data(s, t, d) is recent such that the
seaet used to compute the message digest is equal to the aurrent value of input sq in
process qw, then the protocol moves either to state PO o to state P1. With a high
probability of (cmax — 1) / cmax, the protocol moves to state P.O, and the replayed
message will be recaved and dscarded by ps because the value of field sin the message
tell s that the message is replayed. With a probability of 1 / cmax, the protocol moves to
state P.1, and the replayed message will be recaved and accepted. In bah cases the
protocol returns to state U.0.

From the state transition dagram, it is clea that ead ill egitimate action by the
adversary will eventually lead the protocol back to U.0, which is a good state. Once the
protocol is in a good state, the protocol can progressin the good cycle. Moreover, if the
adversary replays a recet data message, the replayed message will be detected and
discarded with the high probabili ty (cmax — 1) / cmax.

6. Implementation Considerations
In this section, we discuss ®veral isaues concerning the implementation o hop integrity
protocols presented in the last three sections. In particular, we discuss acceptable values

for the inputs of each of these protocols.

There ae four inpus in the seaet exchange protocol in Sedion 3.They are Ry, By, te
and tr. Inpu R, is a private key for router p, and input By is a puldic key for router q.
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These ae long-term keys that remain fixed for long periods of time (say one to three
months), and can be changed orly off-line and ory by the system administrators of the
two routers. Thus, these keys shoud consist of arelatively large number of bytes, say 128
bytes (1024 hts) ead. There ae no speda requirements for the excryption and

deayptionfunctions that use these keys in the secret exchange protocol.

Inpu te is the time period between two successve secret exchanges between pe and
ge. This time period shoud be small so that an adversary does not have enough time to
deduce the seaets sp and sq used in computing the integrity checks of data messages. It
shoud also be large so that the overhead that results from the seaet exchanges is
reduced. An acceptable value for teisaround 4 hars.

Inpu tr is the time-out period for resending a rgst message when the last rgst message
or the correspondng rply message was lost. The value of tr shoud be ar upper bound on
the roundtrip delay between the two adjacent routers. If the two routers are mnneded by

a high speal Ethernet, then an acceptable value of tr isaround 4semndks.

Next, we mnsider the two inpus sp and sq and function MD used in the integrity
protocols in Sedions 4 and 5. Inpus sp and sq are short-lived secrets that are updated
every 4 hous. Thus, this key shoud consist of arelatively small number of bytes, say 8
bytes. Function MD is used to compute the digest of a data message. Function MD is
computed in two steps as follows. First, the standard function MD5 [Riv92] is used to
compute al6-byte digest of the data message. Seand, the first 4 bytes from this digest
constitute our computed message digest.

The soft sequence numbers in Sedion 5can be regycled provided that not ead of the
sequence numbers has been used at least once in time period te. In a usua Ethernet, at
most 800 messages can be sent in a seand, thus at most 11,520,000messages can be sent
inaperiod d 4 hous. Using 4 bytes to store the soft sequence numbersis a proper choice
with considerations of covering the maximum number of consumed sequence numbersin
time period te and aligning with the original 1P header.
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Asdiscussd in Sedion 5,inpu N needs to be much larger than 1. For example, N can
be dhosen 200.In this case, the maximum number of messages that can be discarded
wrongly whenever synchronization between two adjacent routers is lost is 200, and the

probabili ty that an adversary who replays an dd message will be detected is 99 percent.

The message overhead o the strong integrity protocol is abou 8 bytes per data
message: 4 bytes for storing the message digest, and 4 bytes for storing the soft sequence

number of the message.

7. Concluding Remarks

In this paper, we introduced the cncept of hop integrity in computer networks. A
network is sid to provide hop integrity iff whenever a router p receives a message
suppasedly from an adjacent router g, router p can check whether the recaved message
was indeal sent by q or was modified o replayed by an adversary that operates between
p and q.

The dfedivenessof hopintegrity is apparent in thase situations where ingressfiltering
is not effedive. For example, ingress filtering can deted and dscard messages with
wrongly recrded sources at the network bourdary, bu canna do so between adjacent
routers in the midde of the network. By contrast, hop integrity can detect and dscard
messages with wrongly recorded source between adjacent routers in the midde of the

network.

Moreover, ingress filtering is not compatible with mohbile IP. A message sent by a
mobile node and forwarded by the foreign agent (of this mobile node) will be filtered ou
by the next router because the recrded source of the message seems wrong to the router.
By contrast, hop integrity can guarantee that every message forwarded by the foreign
agent will be acepted by the router. (Reverse tunreling [Mon98 was propcsed to
remedy this problem, bu the @st of using reverse tunneling is high because every

27



message that is ent by a mohbile node has to be tunneled back to the home aent of the

mobil e node before the message can be forwarded.)

We presented three protocols that can be used to make any computer network provide
hopintegrity. These threeprotocols are asecret exchange protocol (in Sedion 3, awe&k

integrity protocol (in Section 4), and a strong integrity protocol (in Sedion 5).

These three protocols have several novel feaures that make them correct and efficient.
First, whenever the seaet exchange protocol attempts to change asecret, it kegps both the
old seaet and the new secret urtil it is certain that the integrity ched of any future
messge will not be computed using the old secret. Seand, the integrity protocol
computes a digest at every router along the message route so that the locaion d any
ocaurrence of message modificaion can be determined. Third, the strong integrity
protocol uses ft sequence numbers to make the protocol tolerate aty loss of
synchronization.

It is possble to reduce the overhead induced by the three protocols as follows. If in a
network some hops are asured to be alversary-proof (for example the hops between core
routers), then hopintegrity does nat neal to be implemented over these hops. When a
router needs to forward a message over an adversary-proof hop, it just foll ows the same

procedure asin namal IP.

All three protocols are stateless require small overhead at each hop, and do nao
constrain the network protocol in any way. Thus, we believe that they are mmpatible
with [P in the Internet, and it remains to estimate or measure the performance of IP when

augmented with these protocols.
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