
Using Mobile Extensions to Support Disconnected Services�
Mike Dahlin, Bharat Chandra, Lei Gao, Amjad-Ali Khoja, AmolNayate, Asim Razzaq, Anil Sewani

Department of Computer Sciences
The University of Texas at Austin

April 29, 2000

Abstract
This paper examines the design and implementation ofmo-
bile extensions, a distributed operating system abstraction
for supporting disconnected access to dynamic distributed
services. The goal of mobile extensions is to make it as
easy for service providers to deploy services that make
use of caching, hoarding, asynchronous messaging, and
application-level adaptation to cope with mobility, network
failures, and server failures. We identify resource man-
agement as a crucial problem in this environment and de-
velop a novel popularity-based resource management pol-
icy and demonstrate that under web service workloads it al-
locates resources nearly as efficiently as traditional sched-
ulers, while under workloads with more aggressive re-
source users, it provides much stronger performance iso-
lation. Overall, we find that for the four web service work-
loads we study, mobile extensions can reduce failures by as
much as a factor of 5.9 to a factor of 16.7 for those applica-
tions able to provide tolerable service when disconnected.

1 Introduction
This paper examines the design and implementation1 of
mobile extensions, a distributed operating system abstrac-
tion for supporting disconnected access to dynamic dis-
tributed services. Previous work has shown how to support
disconnected access to static data [2, 19, 21, 31]. However,
many modern services dynamically generate large amounts
of uncachable data [34]. For example, HTTP services can
extend the default GET/PUT semantics to run arbitrary pro-
grams at the server in response to user requests [6]. Un-
fortunately, providing dynamic services using suchserver
extensions inherently limits system performance, mobility,
and robustness to network failures.

In a previous study we demonstrated how mobile,
location-independent extensions could significantly im-
prove performance for clients accessing dynamic ser-�This work was supported in part by an NSF CISE grant (CDA-
9624082), and grants from Dell, Novell, Sun, and Tivoli. Dahlin was also
supported by an NSF CAREER award (CCR-9733842) and an AlfredP.
Sloan Research Fellowship.

1Our mobile extension framework and example applications as
well as the simulators and traces used in this paper are available at
http://www.cs.utexas.edu/users/dahlin/osdi-review.

vices [33]. This paper focuses on using mobile extensions
to address the problem of disconnected operation. Enabling
clients to continue to access dynamic services during pe-
riods of disconnection is crucial both to support mobile
clients, where disconnection is deliberate, and fixed clients,
where failures and overloads at network and servers might
cause service interruptions. Whereas highly available sys-
tems may seek to have “five nines” of availability (99.999%
uptime — about 5 minutes of downtime per year), the Inter-
net network layer provides only about two nines of host-to-
host connection availability (99% uptime — about 14 min-
utes of unavailability per day.) For example Paxson found
that “major routing pathologies” thwart IP routing between
a given pair of hosts 1.5% to 3.4% of the time [24], and
recent (March 13-19, 2000) measurements by keynote.com
from clients in 25 cities viewing pages from 40 popular
HTTP servers found a median end-to-end failure rate of
1.63% [18]. Such failure rates at the network and at servers
make it difficult to deploy mission-critical dynamic ser-
vices under a server-extension architecture because such
architectures do not afford end-to-end strategies.

When network connections are slow or unreliable, many
services can operate in adegraded mode by using a
combination of general techniques (such as caching [15],
prefetching/hoarding [19, 21], write buffering, and asyn-
chronous messaging via persistent message queues [7, 17])
and application-specific adaptation [23]. Unfortunately,
current implementations of the general techniques focus on
traditional client-server relationships where a set applica-
tions are to be installed at a well defined set of satellite sites.
Thus, using these techniques generally requires installing
operating system patches, middleware services, or client
applications. The goal of mobile extensions is to make it
easy for service providers to deploy and for users to access
services that support disconnected operation just as HTTP
makes it easy to deploy and access server-extension-based
services.

Mobile code is not new. For example, Javascript and
Java Applets allow servers to ship code to browsers, Smart
Clients [35] allows servers to ship code to caches, Ac-
tive Caches [5] allow servers to ship code to proxies, Ac-
tive Networks [30] allow network infrastructures to be pro-

Page 1



grammed, and agents [12, 20, 25] allow clients and servers
to inject code into a distributed infrastructure. This paper
makes three contributions towards understanding how to
use mobile extensions to support disconnected operation
for distributed services.

First, our mobile extension system provides a novel com-
bination of three features that make it particularly suitable
for supporting disconnected access to dynamic services: (i)
rather than simply support arbitrary programmability, the
system retains HTTP’s successful approach of providing
simple default GET/PUT behavior with the ability to add
extensions when and where needed; (ii) the system uses lo-
cation independence to simplify software engineering, im-
prove security, and to facilitate incremental deployment;
and (iii) the system allows services to take full control of
their caching, hoarding, and messaging protocols.

Second, we develop a resource management framework
that (i) provides dynamic allocation across extensions to
give important extensions more resources than less im-
portant ones, (ii) provides performance isolation so that
aggressive extensions do not interfere with passive ones,
and (iii) makes allocation decisions automatically with-
out relying on user input or directions from untrusted ex-
tensions. To accomplish these goals, the system infers
priority from “popularity” based on request patterns, and
it considers popularity on different timescales for differ-
ent resources according to the following rule: the more
state associated with a resource, the longer the timescale
across which popularity should be considered. For exam-
ple, “stateful” resources such as disk must be scheduled
over longer time periods than “stateless” resources such
as CPU. We evaluate popularity-based resource manage-
ment via a trace-based study and conclude that it provides
reasonable global performance while protecting the sys-
tem from aggressive extensions, and we find that averag-
ing popularity over timescales proportional to a resource’s
state appears to work well.

Our third contribution is to quantify the robustness gains
available to Internet services as a class and to several spe-
cific case study applications. Using trace-driven simula-
tions, we find that for Internet services as a class, mobile
extensions can improve availability by over an order of
magnitude by transforming network failures into degraded-
mode operations. Note that the benefits of degraded-mode
operations vary across services: some require network con-
nectivity to function and will gain no benefit, some can
provide indistinguishable service regardless of the network
state, and many will fall between these extremes.

We have constructed a Java-based mobile extension pro-
totype that provides backwards compatibility with HTTP,
that allows mobile extensions to run at clients, proxies, or
servers, and that enforces security and resource restrictions
on mobile extensions. Our initial applications include an
e-commerce service that hoards catalog entries and queues
orders, a prototype hospital laboratory order service that

transfers requests from doctors to technicians and results
back to doctors, and a set of client-specified hoarding and
QRPC-based extensions for enhancing disconnected access
to legacy HTTP services. Measurements of our system un-
der synthetic workloads show that it can successfully hide
the cost of downloading and installing extension code by
taking advantage of extensions’ location independence.

The rest of this paper proceeds as follows. In Sections 2
through 4 we discuss the design and implementation of the
system: its goals, programming model, and its resource
management framework. Section 5 provides our experi-
mental evaluation. Section 6 discusses related work, and
Section 7 summarizes our conclusions and discusses future
directions.

2 Design goals
The effectiveness of a mobile extension architecture de-
pends on how it meets three goals: extensibility with simple
default semantics, location independence, and flexible and
automatic resource management.

Extensibility with simple default semantics. Requests
to services should have simple default semantics that do
not require explicit definition of mobile service programs
to handle them, but the infrastructure should allow users
and services to specify extensions that will override some
or all aspects of the default semantics for specified subsets
of requests. This approach has been highly successful for
deploying distributed services under HTTP. HTTP provides
a basic GET interface that provides simple default behavior
of reading a file; at the same time, HTTP allows servers to
arbitrarily redefine the semantics of GET (and other meth-
ods) for specific subsets of requests so that GETs may be
used to activate arbitrary RPC calls. In contrast with pro-
viding a raw RPC interface, this combination of widely-
useful default behavior and extensibility allows complex
services to be prototyped, constructed, deployed, and up-
dated easily.

A mobile extension framework should balance exten-
sibility and simple default semantics. Ideally, a service
should be able to (i) use default semantics only, (ii) com-
pletely override the default semantics for a subset of re-
quests and use default semantics for the others, (iii) over-
ride some aspects of default semantics for some or all re-
quests while retaining some aspects of the default behavior,
or (iv) redefine all behavior for all requests to that service.

Location independence. Extensions should be defined
using a single code base, allowing the same code to run at
a client, at a proxy cache, at a server proxy, or at a server.
The primary advantage of this approach is that extensions
can choose to run at the appropriate point in a network to
meet the requirements of their particular application. For
example, an extension designed to allow a mobile client to
access a mail service when the client has no available net-
work connection must run at the client to be of use, whereas

Page 2



an extension designed to allow doctors and lab technicians
to exchange orders and results in a hospital when the hos-
pitals external connection is down should run at a shared
proxy within the hospital.

Location independence has several additional benefits:
First, location independence facilitates incremental deploy-
ment because it simplifies software engineering by allow-
ing services to be used by clients that support the frame-
work and those that do not, while avoiding the need to
maintain two code bases. Systems should use the same
program for the case when code is shipped to clients and
the case where the code runs at the server.

Second, location independence can improve perfor-
mance. Running the same code at clients and servers allows
systems to hide the start-up cost of accessing a new service:
Initially a client can access the extension at the server, but
once the extension has been installed at the client the client
can switch to the local copy for improved robustness and
performance. This reduces the incremental cost of deploy-
ing mobile-extension-based services by avoiding the need
to wait several seconds in the common case of accessing a
service for the first time in order to improve the uncommon
case of disconnected operation.

Flexible and automatic resource management. Clients
and client proxies will run large collections of heteroge-
neous extensions, and the system should automatically as-
sign each an appropriate amount of resources. The mobile
extension environment poses two challenges to resource
management. First, techniques for supporting disconnected
operation, such as hoarding, can dramatically increase a
service’s resource demands: it is one thing to cache the
pages one has visited at a site; it may be another matter
entirely to hoard all of the pages onemight visit. Sec-
ond, this environment must accommodate large numbers
of untrusted extensions. Because code is untrusted, poli-
cies that reward increasing resource usage with increas-
ing allocations (e.g., LRU or MFU cache replacement) or
that explicitly ask applications what their resource needs
are [22, 23, 28] are not appropriate. And, because ex-
tensions are general, there is no obvious progress met-
ric [10, 29] that can be tracked to allocate resources by the
utility yielded by each extension.

Given these constraints, a resource management system
for mobile extensions should attempt to forge a compro-
mise between static allocations that require no knowledge
about users or services and dynamic approaches that re-
quire unrealistic amounts of knowledge about users or ser-
vices. Our goal is to construct a dynamic allocation frame-
work that can make reasonable, albeit not perfect, alloca-
tion decisions based on information about users or services
that can readily be observed as the system functions and
that are not easily influenced by untrusted code’s actions.

3 Programming model
Our prototype implementation of mobile extensions is con-
structed as an HTTP proxy that accepts legacy HTTP re-
quests and by default forwards these requests to legacy
HTTP servers. We constructed it using the Java-based Ac-
tive Names framework [33], which allows services to de-
fine a pipeline of programs that will interpret a request.
Both “default protocols” such as HTTP and “extension” are
defined in terms of these service programs. Each service
program is a Java program that provides a method called
Eval() with three arguments: anActiveName that identifies
the service and encodes the request to be interpreted by that
service, anInputStream of data to that service, and a Vector
of AfterMethods� The ActiveName consists of two components: the

URL of the code representing the extension service
program and a string. In Active Names terminol-
ogy, the URL identifies a Namespace program and
the string represents a name to be interpreted by that
Namespace program.� AfterMethods lists services (represented as Active
Names) for the request to visit after the current ser-
vice. The AfterMethods list allows the system to im-
plement a continuation-passing style of programming
where each namespace can insert remaining work later
on the AfterMethods list.� The InputStream is used to transport bulk input to a
service; the service, in turn, produces an InputStream
that it passes to the next service to be run. For effi-
ciency, a service that does not touch the contents of its
InputStream may pass the handle of that InputStream
to the next service to avoid extra data copies.

Thus, as Figure 1-a illustrates for the case of a default
HTTP request, a request visits a series of extensions that
form a pipeline, with each extension selecting the next ex-
tension to run, processing its input stream, and transporting
the result to the next service.

The rest of this subsection describes how the system pro-
vide extensibility, location independence, and mechanisms
for security and resource management.

3.1 Extensibility
The AfterMethods list provides the key abstraction for ex-
tensibility. Before passing control to the next program on
the AfterMethods list, a program may modify that list by
inserting, deleting, or changing elements on the list and
thereby modify the pipeline of services and extensions that
will handle the request.

In particular, all incoming requests are assigned a default
set of services to visit including standard services such as
HTTP-cache and fetch-legacy-HTTP-server- as well as a
ServerCust module. This customization module provides
an opportunity for the server to modify the standard Af-
terMethod list to override some or all of the standard pro-
cessing for a request. ServerCust is a trusted module that

Page 3



HTTP

Request

HTTP

Request

HTTP

Request

HTTP
Front
End

Server
Cust

HTTP
Cache

Fetch
Legacy
HTTP
Server

HTTP
Cache

HTTP
Front
End

Server
Cust

AfterMethod

InputStream

ActiveName

(a) Default HTTP

Server
Cust

eg-sel.jareg.jar
HTTP
Cache

HTTP
Front
End

HTTP
Front
End

HTTP
Cache

(c) Cust: Server Select

HTTP
Front
End

HTTP
Front
End

Server
Cust

eg.jar

(b) Cust: Override All

HTTP

Reply

HTTP

Reply

HTTP

Reply

Figure 1:Example service/extension program pipeline of (a) standard HTTP protocol, (b) completely overridden protocol, (c) partially-
overridden protocol.

maintains adelegation table of mappings from URL pre-
fixes to programs that should be executed to customize re-
quests to those URLs, and it provides an interface that al-
lows each service to update its mapping (but, obviously,
not the mappings of other services) by piggy-backing del-
egation directives on HTTP reply headers. For example,
the HTTP service www.exmpl.com might specify that the
program http://www.exmpl.com/eg.jar be inserted into the
pipeline for all requests to www.exmpl.com/*. As Figure 1-
b and 1-c illustrate, incoming requests to www.exmpl.com
would visit HTTP Front End and ServerCust, which would
next send the request to the program eg.jar. When the
eg.jar program runs it could, for instance, completely over-
ride the standard HTTP protocol with its own caching,
hoarding, and network fetch protocol (Figure 1-b) or it
could partially modify the AfterMethod list to replace the
standard HTTP-network-fetch module with a module that
does automatic fail-over across several exmpl.com mirror
servers [35] (Figure 1-c).

3.2 Location independence
The extension programs are location independent and can
run on any node that provides the virtual machine interface.
In this paper we focus on two configurations. In the first,
origin servers and end-clients support mobile extensions.
In the second, origin servers, end-clients, and shared client-
proxies support mobile extensions.

By default, each program executes the next program
in the pipeline on the local machine (which may be the
client, proxy, or server), but each program is free to ex-
plicitly invoke the same program or a different one on a
different node. The choice of when to execute locally and
when to jump to a different machine is extension-specific.
More sophisticated topologies such as replicated servers or
third-party hosting services such as Akamai are possible,
but rather than try to provide a general topology-discovery
mechanism, we allow each service to provide whatever
topology-discovery mechanism is appropriate for that ser-
vice as an extension program. Although solving the general
topology discovery problem is difficult, for the system con-
figurations discussed in this paper, topology discovery sim-

ply consists of examining the AfterMethod stack to place
computations on the local client machine or at the remote
client proxy.

4 Virtual machine and resource
management

Service programs run on a virtual machine that provides
security, resource management, and local/remote method
invocation among service programs. We use the Java-2
security system to associate each downloaded set of code
with a separate codebase and use the codebase associated
with code both to restrict what memory and disk state it
may access and to identify the resource principal for disk
and network requests, CPU scheduling, and memory allo-
cation.

Our security model is oriented towards isolating un-
trusted namespace programs from one another and from the
underlying machine, both for security and to limit resource
consumption. When untrusted code in the form of remote
namespaces runs on the Active name system, we need to
dynamically give it permissions to access its fair share of
resources. In Java2, there is a central java.Security.Policy
object that dictates the set of permissions for every code-
base. But, it requires that all such permissions be provided
prior to execution. ActiveNames has enhanced the current
Java security architecture by giving permissions to classes
dynamically when they are loaded from an untrusted re-
mote site. We achieve this by overloading the central pol-
icy object into an ActiveName Policy object, which assigns
to every namespace a unique permission to identify itself.
When accessing any resources or security-sensitive infor-
mation, a namespace has to identify itself with its Active
Name. The virtual machine then uses standard Java-2 stack
inspection verifies that the caller has permission to use the
offered name before allowing the request to proceed.

Given the challenges discussed in Section 2, our goal is
to construct a dynamic allocation framework that can make
reasonable allocation decisions based on information about
users or services that can readily be observed by the system
that are not easily manipulated by the extensions. We use
service “popularity” as a crude indication of service prior-

Page 4



ity, and allocate resources to services in proportion to their
popularities. This approach is based on the intuition that
services that users often access are generally more valuable
to them than those the they seldom use.

Our implementation consists of four main components:
an observation module that tracks service popularity, a scal-
ing module that translates raw popularity counts into per-
resource per-service allocations, a manual override module
that allows users to override the algorithm’s decisions, and
per-resource schedulers. These pieces are described below.

4.1 Observation module
The observation module tracks system activity to infer the
priority that users give to different services. This popu-
larity tracking is implemented by attaching a “coin” (im-
plemented as a protected class) to each HTTP request that
arrives at the RawHTTP module from a client authorized
to make requests to that proxy. As the request visits dif-
ferent services within the system, the observation module
credits a fraction of the coin to each service visited. The
system uses heuristics to ensure that all services visited by
a request receive approximately equal fractions of the re-
quest’s coin, and the system ensures that the sum of the
fractions allocated to services is less than or equal to 1.0.
In addition, the system allows only trusted modules to cre-
ate new “coins;” untrusted extensions can only pass coins
to one another or split coins.

A limitation of the prototype is that our interface to
legacy HTTP clients makes it vulnerable to attacks in
which legacy client-extension code running at clients (e.g.,
Java Applets or Javascript) issues requests to the mobile
extension proxy in the client’s name, thus inflating the ap-
parent popularity of a service. This problem could be ad-
dressed by having browsers tag each outgoing request with
the number of requests issued by a page or its code since
the last user interaction with the page; our system would
then assign smaller coins to later requests.

A second limitation of our prototype is that our strategy
of providing one coin per incoming HTTP request repre-
sents a simplistic measure of popularity. For example, one
might also track the size of the data fetched or the amount
of screen real estate the user is devoting to a page repre-
senting a service.

4.2 Scaling module
Whereas the observation module produces “raw” counts
of popularity (how many requests visit each service and
which services each request visits), the scaling module con-
verts these raw counts into per-resource, per-service allo-
cations. As noted above, our intuition is that we can infer
priority from popularity. However, the appropriate defini-
tion of “popularity” varies across resources because differ-
ent resources must be scheduled on different time scales.
“Stateless” resources such as CPU can be scheduled on a

moment-to-moment basis to satisfy current requests. Con-
versely, “stateful” resources such as disk not only take
longer to move resources from one service to another but
also typically use their state to carry information across
time, so disk space may be more valuable if allocations
are reasonably stable over time. Thus, the CPU should be
scheduled across services according to the momentary pop-
ularity of each service, while disk space should be allocated
according to the popularity of the service over perhaps the
last several hours or days. Other resources — such as net-
work bandwidth, disk bandwidth, and memory space —
may fall between these extremes.

The scaling module provides a general interface to as-
sess each service’s popularity on the different time scales
appropriate to different resources. Each resource registers
with the scaling module by specifying anepochLength and
scalingFraction. For each resource, the scaling layer main-
tains per-service resource containers [3], and the fraction of
resourceR that the scheduling layer should give to serviceS is frac[R,S] = container[R;S]containerTot[R] , wherecontainerTot[R]
equals the sum of all services’ containers for a resource
(i.e.,containerTot[R] =P container[R; �].)

Whenever the popularity layer credits a service with a
fraction of a coin, the resource containers for that service
at each resource are increased by the specified amount, as
are thecontainerTot values for each resource.

Conceptually, the array of per-service containers
for each resource is multiplied byscalingRate every
epochLength interval. For efficiency, we store the last up-
date time with each container and rescale the value if nec-
essary when it is read or written. If thescalingFraction
andepochLength are powers of two, this operation can be
accomplished with a few addition, subtraction, and shift
operations per read or update.

For each resource, we choose anepochLength propor-
tional to the state associated with the resource or the typ-
ical occupancy time in the resource for a demand request.
For example, for disks, we count the number of bytes de-
livered to HTTP Front End and increment the disk epoch
number once perdiskSize bytes seen. For networks, we
useepochLength = 2 seconds to represent a generous net-
work round trip time.

4.3 Override module
Although we do not rely on manual resource allocation,
there are cases where human direction is desirable. For
example, a user may wish to tell her proxy to give high pri-
ority to requests to her online trading service even though
she uses it only occasionally. Also, shared replication ser-
vices such as Rent-A-Server [32], Akamai, or Sandpiper
may allocate resources across services according to con-
tractual agreements rather than the popularity of the ser-
vices.

For such cases, our system provides an override module
that allows resource allocations to be manually set. Note

Page 5



that none of the experiments discussed in this paper use the
override module.

4.4 Resource schedulers

Our virtual machine provides proportional-share resource
schedulers for each critical resource. The mechanisms used
to track and restrict system resource utilization in our Java-
based system are similar to those used in JRes [9]. Our
current implementation provides a Start-time Fair Queu-
ing (SFQ) scheduler for network bandwidth [13] and a
proportional-share disk space allocator (described below).
We are in the process of implementing a proportional-
share CPU scheduler and memory allocator. To support
application-level adaptation, the system’s resource sched-
uler decides what fraction of each resource to give to each
service, while leaving it to the services how best to make
use of their allocations. To facilitate adaptation, the re-
source manager signals extensions when their allocations
cross specified thresholds.

The proportional-share schedulers for stateless re-
sources, such as CPU and network, enforce resource limits
by scheduling requests and threads using SFQ.

The proportional share scheduler partitions disk space
across extensions according to their scaled popularities.If
some extensions do not used their full allotment, the re-
maining space is divided proportionally among the other
extensions. The disk space scheduler accomplishes this by
maintaining a per-serviceprice, which is the scaled popu-
larity of the service divided by the disk space held by the
service. When a service requests more space, the system
selects the service with the lowest current page price as a
victim and signals that extension to release disk space. For
efficiency, these actions are decoupled via a reserve buffer
from which new pages can be allocated immediately and
victims selected lazily as allocation demands and priori-
ties change. When an extension’s allocation shrinks be-
low a warning threshold relative to the extension’s allocated
space, the scheduler warns the extension to reduce its us-
age with a signal. If the extension fails to reduce its usage
before its allocation falls to the point where the extension
exceeds its maximum allocation, the system kills the ex-
tension. To maintain the abstraction of persistent storage
in such cases, the disk system provides an interface for ex-
tensions to specify an ”forwarding address” and to mark
on-disk objects that should be forwarded. In the event of
the extension’s demise, the system promises to forward this
marked state, although it may discard state after asking for
the user’s permission if the forwarding address is persis-
tently unreachable. This forwarding procedure may some-
times prevent the system from reclaiming space when it
would like to do so, but we feel that the benefits of true
persistent state are worth this limitation.

4.5 Utility libraries
Using the low-level resources provided by the resource
managers, extension services implement higher level ab-
stractions such as caching, hoarding, write buffering, or
asynchronous messaging by making use of common li-
braries the system provides or by implementing custom
versions of these abstractions [11]. We examine several
example applications in the next session. A systematic dis-
cussion of the techniques that applications may use to cope
with disconnection is beyond the scope of this paper.

5 Evaluation
We first investigate some basic properties of our implemen-
tation. We then examine properties of our resource man-
agement and robustness policies and implementations.

5.1 Location independence
A disadvantage of implementing services as mobile code is
that startup time may increase: this approach may hurt per-
formance in the common case of first accessing a service
to help in the uncommon case of network failures. Un-
fortunately, users confronted with a long “applet loading”
message when they first access a service may go elsewhere
before they have a chance to benefit from the downloaded
code.

As noted above, location independence can hide the cost
of installing new services at clients. In particular, when
our ServerCust module delegates a service to an extension,
by default it downloads and installs the extension program
in the background while continuing to send requests to the
original server. Once the extension has been installed, the
ServerCust module sends requests to it instead. The delega-
tion interface allows servers to specify foreground loading
if needed.

Figure 2 shows the impact of background loading. In this
experiment, a client issues 20 requests to a service with a 1
second delay between each request. Because we are inter-
ested in the cost of loading the service and not the service
itself, we examine a simple service that dynamically gen-
erates a small (100 byte) page. The Java jar file containing
this program is 1790 bytes, but we expand it to 22031 bytes
by adding some unnecessary functions.

Our client machine has a 366 MHz Pentium-II proces-
sor and 128 MB of memory, and it runs JDK-1.2.2 under
Microsoft Windows 98. The graphs show three cases for
network connectivity – the client is connected to the net-
work via a modem that reports a 26.4 Kbit/s connection, a
128 Kbit/s ISDN, and a 10 Mbit/s Ethernet. We repeat each
experiment at least 10 times and show the 90% confidence
intervals in the figure.

In each graph, the x-axis shows the request number and
the y-axis shows the response time of that request. The
lines show three cases:origin server where all requests
are sent to the origin server,foreground where the reply

Page 6


