Implementation of Out-of-Core Cholesky and QR Factor@ai
with POOCLAPACK

Brian C. Guntefr Wesley C. Reiley Robert A. van de Geijn
September 3, 2000

Abstract

In this paper parallel implementation of out-of-core Clstilefactorization is used to introduce the
Parallel Out-of-Core Linear Algebra Package (POOCLAPACKfexible infrastructure for parallel im-
plementation of out-of-core linear algebra operations.OBDAPACK builds on the Parallel Linear
Algebra Package (PLAPACK) for in-core parallel dense Imalgebra computation. Despite the ex-
treme simplicity of POOCLAPACK, the out-of-core Choleslacforization implementation is shown to
achieve in excess of 80% of peak performance on a 64 node acatiign of the Cray T3E-600. The
insights gained from examining the Cholesky factorizatiawe been applied to the much more diffi-
cult and important QR factorization operation. Preliminegsults for parallel implementation of the
resulting OOC QR factorization algorithm are included.

1 Introduction

There are only a few applications left that require the sofubf extremely large dense linear systems.
They tend to arise from boundary-element formulations fier $olution of integral equations in the areas
of electro-magnetics and acoustics [6, 8, 12]. Even fordtagsplications, much cheaper methods based on
multi-pole expansions, fast multipole methods (FMM), haweently become popular [11]. Nonetheless,
there are still many such applications that are solved hyifuy large dense systems of equations. In some
cases, this is simply because the users are naive. In othes itds a conscious decision since a considerable
effort is required to reformulate the problem in a fashioat thllows fast multi-pole methods to be utilized.
Furthermore, there are applications requiring the satutiblarge linear least squares problems that also
give rise to very large linear systems [2]. For applicatitimst do still lead to large dense linear systems,
the matrices involved are frequently so large that they dofih@ven in the combined memories of the
processors of a large distributed memory parallel supepcten. Such problems are often referred to as

*This project was partially funded by NASA as part of the GiaRRecovery and Climate Experiment (GRACE), NAS5-97213.
tCenter for Space Research, The University of Texas, AUBKI78712,gunter@csr.utexas.edu

fDepartment of Computer Sciences, The University of TexastiA, TX 78712wesley@cs.utexas.edu

$Department of Computer Sciences, The University of TexastiA, TX 78712yvdg@cs.utexas.edu

out-of-core problems, since they do not fit in the core menwbrthe computer. The matrices are instead
stored on disk.

The preeminent library for sequential computers and cdiwveal (shared memory) vector supercom-
puters is the Linear Algebra Package (LAPACK) [1]. This pagk does not explicitly include out-of-core
capabilities, although on machines with virtual memory liheary can be used to solve problems larger
than fit in-core. For larger problems, a version of this Iigraalled ScaLAPACK [5], designed for dis-
tributed memory parallel architectures, can be used. Titmsneion of LAPACK does include prototype
out-of-core implementations of some of the ScaLAPACK noesi, including general linear solvers via LU
factorization, positive definite linear solvers via Chélefactorization, and linear least squares solvers via
QR factorization [7]. However, the ScaLAPACK out-of-cogpaoach blocks matrices to be brought in-core
by “slabs” of columns. This approach is inherently nondaalaince there is a fixed amount of aggregate
memory among processors, as larger and larger matrices are factorepatie of columns that fits in-core
becomes more narrow, inherently affecting both the perémorce of the in-core kernels as well as the ratio
of computation to 1/O operations.

A more serious effort to add out-of-core capabilities to IMIK and ScaLAPACK is provided by SO-
LAR [20], a portable library for scalable out-of-core limedgebra computations. This library uses ScalLA-
PACK routines for in-core computation, but provides an E§dr that manages matrix input-output. SOLAR
achieves better 1/O rates by allowing a different storadees® for matrices on disk than is used in-core
by ScaLAPACK. Impressive performance is reported for uptar hodes of an IBM SP-2. Note that while
their approach to Cholesky is somewhat similar to ours, theeyot extend the approach to the LU or QR
factorization, for which they use a slab approach similah&d used by ScalL APACK.

Our own approach is somewhat different. Since we developedParallel Linear Algebra Package
(PLAPACK) [21] used as a basis for the Parallel Out-of-Comeelar Algebra Package (POOCLAPACK),
we have more flexibility to customize both the in-core anddbeof-core algorithms. This in turn allows
us to code the out-of-core algorithms in such a way that eof/ matrices becomes trivial, reducing the
amount of code required to port between platforms and impgoperformance. Furthermore, it allows us to
create in-core kernels that allow novel out-of-core appinea to be implemented, as will become apparent
when we discuss out-of-core QR factorization.

It should be noted that the above described parallel oabod-library efforts are in addition to a number
of parallel out-of-core implementations of individual ogttons or machine specific libraries for dense linear
systems reported in the literature [2, 14, 4, 18, 19]. Add#i references to applications requiring large
dense linear solves are given in [6, 8, 12]. Additional refiees to research using fast summation methods
like FMM are given in [11].

This paper is organized as follows: Section 2 discusse®sssegarding the in-core and out-of-core
implementation of sequential Cholesky factorization. t®ec3 we briefly discuss how the techniques can be
extended to the QR factorization, requiring in-core and G©rithms that are not supported by LAPACK,
ScalLAPACK, or SOLAR. Section 4 introduces the POOCLAPACKra@ch to coding parallel out-of-core
dense linear algebra algorithms. Performance is reponteglection 5. Concluding remarks and future
directions are given in the final section.

2 Sequential Implementation

Two algorithms often used for blocked Cholesky factormatiknown as the right- and left-looking vari-
ant [9], are given in Fig. 1. For details of how to derive thgasithm we refer the reader to [16, 17].

partition A = Arp | * whereAr; is0 x 0
Apr | ABr

dountil Agris0 x 0
repartition

ATL « AOO H * ‘ *
(A A) = AIO All * WhereATL iSbxb
BL BR

Agg || A2 | Ao
right-looking algorithm left-looking algorithm
A11 — L11 = ChOl.faCt.(All) A11 — A11 — AIOAT(]
Agy < Loy = Ay LT" Agy « Ao1 — Ax AL,
A22 — A22 — Lgngl All — L1 = Chol.fact.(All)
Agy ¢« Loy = A1 LT

continue with
A * *
Ay « B Aoo)
A—HTBR 10 11 *
Br Ago | Azt [Az

enddo

Figure 1: Blocked right- and left-looking Cholesky factaiion algorithms.

Either of these two algorithms can be used for efficient setiglén-core implementation of the Cholesky
factorization. In practice, the right-looking algorithsfavored for reasons that go beyond the scope of this
paper.

The left-looking Cholesky factorization is favored for eaftcore implementations. There are two basic
reasons for this: First, the left-looking Cholesky regsiapproximately half the I/O operations of the right-
looking algorithm. Second, it is easier to adueck-pointingto a left-looking algorithm. Check-pointing
allows for a restart partially into the computation in cafa system failure.

Let us examine in more detail how to implement an out-of-cdelesky factorization. Partition

L()(] H * ‘ *
A=\ Ly || Aui| =
Loy || A2y | A2

whereLg is m x m and we assume thdt,, have been computed, while the other partgldfave been left
untouched. Herel;; is of sizet x ¢, which we will later call aile of sizet. All data is assumed to exist on
disk.

The following steps will advance the computation so that and L,; have been computed and have
overwritten the corresponding blocks 4f

1.
2.

5.
6.

ReadA;; from disk into memory.

UpdateA11 — A — LIOL{O WherELlo is on disk.

. UpdateA;; < L;; = Chol.fact.(4;1). SinceA;; is in memory, this requires an in-core Cholesky

factorization. As mentioned, typically a right-lookingriant is favored for this subproblem.

. Write Ly, to disk, leaving a copy in memory.

UpdateA21 — (A21 — LZOL{o)Ll_lT’ whereA,;, Loy ande are on disk and.{1 isin memory.

Flush all memory.

We must give further details on how to perform steps 2 and 5:

Step 2: Ay + Ay — LIOLITO: Here A;; is in memory, butl, is on disk. At first glance, this appears to

require a read of.1, followed by an in-core symmetric rank-k update. This reegi x m data to be
read, after whichnt? floating point operations are performed to update, for a ratio oft floating
point operations for every floating point number read. Ha@vekeadingL,, requires a considerable
amount of memory, thereby limiting the sizetpfind thus affecting this ratio.

Key observation: The following approach retains the benefits of the same tatiocomputation to
disk accesses, while maximizing the size afd thus this ratio: Partitioh; = (jAY ‘ ‘ Ly)

whereL%) has approximately columns. Notice that
An - LioLfy = An - LY LT - — L™

Thus, the following procedure will perform the updatedaf,. For eacth{)), read this submatrix b
items read), and perform an in-core rank-k updaté {loating point operations). Notice that this
maintains the ratio of computations for each item read from disk. However, by pigki relatively
small, very little memory is needed fdryy, thus allowingt to be chosen to be much larger. The
block sizeb is typically chosen to equal a block-size that maximizespidormance of the in-core
symmetric rank-k update.

This “sequence of narrow symmetric rank-k updates” apgreadimplementating a larger symmetric
rank-k update yields an excellent parallel in-core impletagon of symmetric rank-k update. Thus,
the out-of-core approach fits naturally with a very good dmecalgorithm.

Step 5: Ay < Loy = (A9 — L20LT0)L;1T: Here onlyLq; is in memory. In [17] we show that the exact

same technique as described above for Step 2 can be usedvwasithost all in-core memory to be
used to storels;, with similar benefits. Again, the approach meshes will witw are naturally
implementedparallel in-core implementation of matrixtrixamultiplication [21, 13].

tUnfortunately, the only reference for this is the actuathplementation of symmetric rank-k update in the PLAPACKrseu
Most likely, ScaLAPACK uses a similar approach.

Key observation: Careful consideration of the complete out-of-core algonishows that in addition to
two tiles of sizet x ¢ (one forA4;; and forAé’l)) only a small amount of workspace is needed for storing a

few blocks of columns of g andLgZO). Naturally,t is chosen as large as possible, thus improving the ratio
of computation to disk accesses. In [16] we show how this @hrbught down to just one tile. However,
the two-tile approach meshes better with how an OOC QR faettion is naturally implemented.

Two techniques allow for further reduction in I/O overhe#ids possible to exploit asynchronous 1/0
operations to overlap computation with 1/O operations. ®yisg matrices on disk we arrange for all reads
from disk to access very large contiguous blocks of datadetails, see [17].

3 Out-of-Core QR factorization

As part of an effort to compute the parameters of the Earttasitational field, POOCLAPACK is being
used to solve a very large linear least-squares problemb@logv described out-of-core QR factorization is
one of several dense linear algebra algorithms being daedlm support of that effort.

Given anm x n matrix 4, its QR factorization is given byd = QR where@ is unitary andR is
upper-triangular. For simplicity, we will assume that >= n. Matrix @ is usually computed and stored
as a collection of Householder transformations. A blocKgdréhm is derived by aggregating a number of
Householder transforms intol@ Y -transform [3] ory T'Y * -transform [10].

The primary problem with creating an OOC version of the QRdiazation is that on the surface it
appears that columns of matrix A must be brought into memionylsaneously in order to compute House-
holder transforms from columns or apply Householder t@ams$ to columns. In our approach we break
this dependence as follows: Partition

Ay |- | Ain

Aoy |- | Aan
A= ; .

Api |- | Aun

whereA;; is square. A sketch of an OOC QR factorization is given by thiewgin:
e forj=1:N

— Compute the QR factorizatiod;; = Q;;R;; leaving@;; in compact form (storing the House-
holder vectors below the diagonal 4f;.
— UpdateA;;, = Q]TjAjk by applying the Householder transforms storediis.

—fori=j+1:M

x Compute(ﬁ;’) — Qij (B;)jj) overwriting R;; with R;;.
Key insight: The Householder vector that zeroes entries belowihe) element ofR;; has

the form <2—p> , a special structure that can be exploited when applyingHtheseholder
p

vector to a matrix, when building &Y -transform ory TY * -transform, and when storing
the Householder vector.

x for k=j+1:N
Aji T (_Ajk
- Update A — Qi A
Key insight: Again, one can take advantage of the special form of the Hmlder
transforms.
x endfor
— endfor

e endfor

Details of how the specialized operati nii — Qij ng is implemented can be found in [15].
7]

Details on how to implement the other specialized kernelbeymnd the scope of this extended abstract.

4 Parallel Implementation

The Parallel Linear Algebra Package (PLAPACK) is a flexibledstructure for implementing parallel dense
linear algebra libraries. An MPI-like programming intexéa which hides details about matrices and vectors
like distribution from the user, makes both the library igmplentation and its use considerably simpler than
more conventional packages like ScaLAPACK. In additior, ¢hmple programming approach allows more
complex algorithms to be implemented, which often yielddrgberformance.

The discriptions of the out-of-core sequential Choleskgd &R factorizations translate directly to
POOCLAPACK code. To illustrate the simplicity of the code imelude POOCLAPACK code for OOC
Cholesky factorization in Fig. 2.

5 Performance

In this section, we report preliminary performance achiewdth the described PLAPACK based parallel
out-of-core implementations of the Cholesky and QR faz#dions.

We demonstrate performance on the Cray T3E-600 (300 MHZ) alitcomputations performed in
64-bit arithmetic. The algorithms were implemented usingapha release of PLAPACK Version R2.03,
which performs all communication by means of MPI. We reperf@grmance measuring MFLOP/s/processor
(millions of floating point operations per second per preoces For reference, the matrix-matrix multiplica-
tion on a single processor of the T3E-600 in MFLOP/s attap®u#45 MFLOP/s. All performance reported
in this section was measured with data streams turned orrdavaee feature that adds about 15-20% to the
performance of the local matrix-matrix multiply kernel).

In [17, 16] we report performance of a number of different iempentations of the Cholesky factoriza-
tion including versions that did and did not overlap 1/0 wethmputation and versions that did and did not
force all I/O to be in large contiguous blocks. Here we reparformance only for the in-core PLAPACK
Cholesky factorizationlg-core Chol in the table) and a version of the OOC Cholesky factorization

6

int POOCLA_Chol_by panels(int N, PLA_Obj *A_row_panels)
{

< declarations >

size_done = 0; /* number of columns finished */
for (1 j=0; j<N; j++ X
PLA_Obj_global_length(A_row_panels[j], &t); [* get tile size */

/* View current L_10 and A_11 submatrices */
PLA_Obj_vert_split_2(A_row_panels[j], size_done, &L_1 0, &temp);
PLA_Obj_vert_split_2(temp, t, &A 11, PLA_DUMMY);

PLA_Matrix_create_conf_to(A_11, &A_11 in);
PLA_Copy(A_11, A_11 in);

/* Update A_11 <- A 11 - L_10 * L_10, A_11 in-core, L_10 out-of -core */

1

2

3

4

5

6

7

8

9

10

11

12

13 [* Create an in-core matrix into which to copy A 11 */

14

15

16

17

18 POOCLA_Syrk(PLA_LOWER_TRIANG, PLA_NO_TRANS, min_one, L_10, one, A 11 in);
19
20

[* Factor updated in-core A_11 and write out the result */

21 PLA_Chol(PLA_LOWER_TRIANGULAR, A_11 in);

22 PLA_Copy(A 11 in, A_11);

23

24 [* Loop over A 217 */

25 for (i=j+1; i<N; i++)

26 [* View current matrices L_20% and A 217 */

27 PLA_Obj_vert_split 2(A_row_panels[i], size_done, &L 2 0_1, &temp);
28 PLA_Obj_vert_split_2(temp, t, &A_21 1, PLA_DUMMY);
29

30 [* Create an in-core matrix into which to copy A 217 */
31 PLA_Matrix_create_conf to(A_21 1, &A 21 1 in);

32 PLA Copy(A_21 1, A 21 1 in);

33

34 /* Update A 217 <- A 21% - L_20 * L_10"T */

35 POOCLA_Gemm(PLA_NO_TRANS, PLA TRANS,

36 min_one, L 20 1, L 10, one, A 21 1 in);
37

38 /* Update A 217 <- L 21% = A_21% * L_11°-T */

39 PLA_Trsm(PLA_SIDE_RIGHT, PLA_LOWER_TRIANG,

40 PLA_TRANS, PLA_NONUNIT_DIAG,

41 one, A 11 in, A 21 1 in);

42

43 [* Write out A_21% */

44 PLA_Copy(A_21 1_in, A_21_1);

45

46 size_done += t;

47 }

48 }

49 < clean up >

50 }

Figure 2: POOCLAPACK Out-of-Core Cholesky factorizatidn.this version, the matrix is presented as a
collection of panels of rows in an effort to improve disk penmance.
7

that does NOT use asynchronous I/O but DOES use a specializetje scheme that allows for large con-
tiguous reads from diskdhol _by _panels in the table). We report performance from two different Cray
T3E systems: the first a smaller system at UT-Austin (up to@@pute nodes) and the second a now de-
commissioned machine at the Goddard SFC. The primary resasoshow the degradation in performance
observed when executing on our local machine. This degoadhelps explain the degradation of the per-
formance of the QR factorization, for which we at this timerd have results on a machine with a more
reasonable I/O setup.

For a fixed number of processors, we report performance fookblgm equal to the tile size x ¢,
(2t) x (2t), and(3t) x (3t). For those familiar with PLAPACK, a distribution block siaé24 and algorithmic
block size of128 was used for the Cholesky factorization. The block size rilesd in Section 2 used for
partitioning L1 andLgO), b, was taken to equal the algorithmic block size.

The Cray T3E Systems have an extended IO system, calledbid%ie 10 (FFIO). This system allows
the user to insert layers through which data is passed. Witig layer, the user can insert various kinds
of buffers and caches. Cache and/or buffer sizes and prepdike striping across multiple disks can
be controlled by command line routines. We experimentedh wittting a small cache between disk and
memory and used default striping settings. It should bedchtitat changes in the configuration of the files
and cache sizes did not seem to affect performance of ourithlgne much on the Goddard SFC Cray T3E,
which has much more impressive 1/0O capabilities. In palticuthe more sophisticated algorithms that
allowed larger blocks of contiguous data to be read did natnsi be affected at all on that machine.

Performance of the QR factorization is very preliminary.tisi that performance is impressive for up
to 16 processors, but degrades considerably when 64 porsese utilized. It is our believe that this is due
to the 1/O limitations of the Cray T3E-600 at UT-Austin. Fngtmore, we have yet to determine optimal
blocking sizes nor did we experiment with FFIO for the OOC @Btdrization.

POOCLAPACK has been successfully ported to a wide range aifgsgms (essentially all platforms
that already support PLAPACK). A more complete set of penamce numbers, including performance on
additional platforms, is planned for the final paper.

6 Conclusion

We have described a simple extension to the PLAPACK palailedr algebra infrastructure that allows for
elegant yet high-performance implementation of out-gecdense linear algebra algorithms. Since both
PLAPACK and its out-of-core extension provide a simple edzdtprogramming interface, the implementa-
tions lend themselves to customization to allow new fumality to be added as is demonstrated for the QR
factorization.

More information

For more information on PLAPACK and POOCLAPACK visit

http://lwww.cs.utexas.edu/users/plapack

tile 1x1tiles(n=1¢) [2x2tiles(n =2t) || 3 x 3tiles (n = 3t)
size || mrors | Time (sec) | wroris | Time (Sec) | mrioris | Time (sec)
Algorithm P t poc. | Total | /O || prc. | Total | /O || mrc | Total | 1/O
Cholesky Factorization on UT-Austin T3E-600
In-core Chol 1 2088 | 258
Chol _by panel 1| 2088| 254 | 11.9|0.39| 279 88 2| 343 239 5
In-core Chol 4 4704 | 312
Chol _by panel 4 | 4704| 290 | 29.9| 19| 346 | 201 71 366 639 | 20
In-core Chol 16| 8448 313
Chol _by panel 16| 8448| 273 | 46.1| 58| 327 | 306| 21| 349 970| 50
In-core Chol 64 | 18432| 318
Chol _by panel 64 | 18432| 249 1321 295| 309 | 843| 98| 316 | 2786 | 306
Cholesky Factorization on GSFC T3E-600
In-core Chol 1 2088 | 263 115
Chol _by panel 1| 2088| 245 | 12.4| 1.0| 296 82 9| 334 245 17
In-core Chol 4 4704 || 304 28.5
Chol _by panel 4 | 4704) 276 | 315| 26| 331 | 209| 10| 353 663 | 24
In-core Chol 16| 8448| 304 | 41.3
Chol _by panel 16| 8448| 273 | 46.1| 43| 321 | 313| 13| 343 989 | 32
In-core Chol 64 | 18432| 263 124
Chol _by panel 64 | 18432| 267 122 15.0|| 315 | 827| 53| 331 | 2654| 125
QR Factorization on UT-Austin T3E-600 (preliminary resylt
QRby _panel 1| 2048 242 | 47.3 261 | 351 256 | 1206
QRby _panel 4 | 4096| 292 | 78.6 293 | 626 303 | 2038
QRby _panel 16| 8192| 288 | 158.9 269 | 1361 273 | 4534
QRby _panel 64 | 16384 | 213 | 430.8 202 | 3635 207 | 11896

Table 1: Performance of the Cholesky factorization on theydi3E-600 at UT-Austin.

Acknowledgments

Access to equipment for development of the described imfretsire was provided by the National Partner-
ship for Advanced Computational Infrastructure (NPACI)iarhe University of Texas Advanced Comput-
ing Center (TACC). We also gratefully acknowledge accesheoCray T3E-600 System at the Goddard
Space Flight Center provided by the NASA HPCC Earth and Spatnce Project.

References

[1] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCkzGreenbaum, S. Hammarling, A. E.
McKenney, S. Ostrouchov, and D. SorenseAPACK Users’ Guide SIAM, Philadelphia, 1992.

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Gregory A. Baker.Implementation of Parallel Processing to Selected ProklamSatellite Geodesy
PhD thesis, The University of Texas at Austin, 1998.

Christian Bischof and Charles Van Loan. The WY repreatiom for products of Householder matrices.
SIAM J. Sci. Stat. CompuB(1):s2-s13, Jan. 1987.

Jean-Philippe Brunet, Palle Pederson, and S. Lennhrtsdon. Load-balanced LU and QR factor and
solve routines for scalable processors with scalable I/@Prbceedings of the 17th IMACS World
CongressAtlanta, Georgia, July 1994.

J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. ScalapA scalable linear algebra library for
distributed memory concurrent computers.Fceedings of the Fourth Symposium on the Frontiers
of Massively Parallel Computatigmpages 120-127. IEEE Comput. Soc. Press, 1992.

Tom Cwik, Robert van de Geijn, and Jean Patterson. Thécappn of parallel computation to in-
tegral equation models of electromagnetic scatteridgurnal of the Optical Society of Americg A
11(4):1538-1545, April 1994.

E. F. D’Azevedo and J. J. Dongarra. The design and impigation of the parallel out-of-core scala-
pack lu, gr, and cholesky factorization routines. LAPACKMng Note 118 CS-97-247, University
of Tennessee, Knoxville, Jan. 1997.

L. Demkowicz, A. Karafiat, and J.T. Oden. Solution of élascattering problems in linear acoustics
usingh-p boundary element metho@omp. Meths. Appl. Mech. Engrj01:251-282, 1992.

Jack J. Dongarra, lain S. Duff, Danny C. Sorensen, anckieran der Vorst.Solving Linear Systems
on Vector and Shared Memory ComputesdAM, Philadelphia, PA, 1991.

Jack J. Dongarra, Sven J. Hammarling, and Danny C. SerenBlock reduction of matrices to con-
densed forms for eigenvalue computatiodsurnal of Computational and Applied Mathemati2s,
1989.

Y. Fu, K. J. Klimkowski, G. J. Rodin, E. Berger, J. C. Brogy J. K. Singer, R. A. van de Geijn,
and K. S. Vemaganti. A fast solution method for three-dintama many-particle problems of linear
elasticity. Int. J. Num. Meth. Engrg42:1215-1229, 1998.

Po Geng, J. Tinsley Oden, and Robert van de Geijn. Mealssparallel computation for acoustical
scattering problems using boundary element methddsrnal of Sound and Vibratior191(1):145—
165, 1996.

John Gunnels, Calvin Lin, Greg Morrow, and Robert varGagjn. A flexible class of parallel matrix
multiplication algorithms. IrfProceedings of First Merged International Parallel Prosegy Sympo-
sium and Symposium on Parallel and Distributed Processli®998 IPPS/SPDP '98pages 110-116,
1998.

Ken Klimkowski and Robert van de Geijn. Anatomy of an-oficore dense linear solver. ro-
ceedings of the International Conference on Parallel Pssieg 1995 volume Il - Algorithms and
Applications, pages 29-33, 1995.

10

[15] Enrique S. Quintana-Orti and Robert van de Geijn. Fasdlpel kernels for selected problems in control
theory. InProceedings of the SIAM Conference on Parallel Processing€ientific Computing 1999
1999.

[16] Wesley C. Reiley. Efficient parallel out-of-core impientation of the cholesky factorization”. Techni-
cal Report CS-TR-99-33, Department of Computer Sciendes,University of Texas at Austin, Dec.
1999. Undergraduate Honors Thesis.

[17] Wesley C. Reiley and Robert A. van de Geijn. Pooclap&taallel out-of-core linear algebra package.
Technical Report CS-TR-99-33, Department of Computerrieig, The University of Texas at Austin,
Nov. 1999.

[18] David S. Scott. Out of core dense solvers on Intel parailipercomputers. IRroceedings of the
Fourth Symposium on the Frontiers of Massively Parallel @atation pages 484-487, 1992.

[19] David S. Scott. Parallel I/O and solving out-of-corestgyms of linear equations. Froceedings of
the 1993 DAGS/PC Symposiupages 123-130, Hanover, NH, June 1993. Dartmouth Irestftrt
Advanced Graduate Studies.

[20] Sivan Toledo and Fred G. Gustavson. The design and mwiéation of SOLAR, a portable library
for scalable out-of-core linear algebra computationPtaceedings of IOPADS '9@.996.

[21] Robert A. van de GeijnUsing PLAPACK: Parallel Linear Algebra Packag&he MIT Press, 1997.

11

