
Implementation of Out-of-Core Cholesky and QR Factorizations
with POOCLAPACK�

Brian C. Guntery Wesley C. Reileyz Robert A. van de Geijnx
September 3, 2000

Abstract

In this paper parallel implementation of out-of-core Cholesky factorization is used to introduce the
Parallel Out-of-Core Linear Algebra Package (POOCLAPACK), a flexible infrastructure for parallel im-
plementation of out-of-core linear algebra operations. POOCLAPACK builds on the Parallel Linear
Algebra Package (PLAPACK) for in-core parallel dense linear algebra computation. Despite the ex-
treme simplicity of POOCLAPACK, the out-of-core Cholesky factorization implementation is shown to
achieve in excess of 80% of peak performance on a 64 node configuration of the Cray T3E-600. The
insights gained from examining the Cholesky factorizationhave been applied to the much more diffi-
cult and important QR factorization operation. Preliminary results for parallel implementation of the
resulting OOC QR factorization algorithm are included.

1 Introduction

There are only a few applications left that require the solution of extremely large dense linear systems.
They tend to arise from boundary-element formulations for the solution of integral equations in the areas
of electro-magnetics and acoustics [6, 8, 12]. Even for those applications, much cheaper methods based on
multi-pole expansions, fast multipole methods (FMM), haverecently become popular [11]. Nonetheless,
there are still many such applications that are solved by forming large dense systems of equations. In some
cases, this is simply because the users are naive. In other cases it is a conscious decision since a considerable
effort is required to reformulate the problem in a fashion that allows fast multi-pole methods to be utilized.
Furthermore, there are applications requiring the solution of large linear least squares problems that also
give rise to very large linear systems [2]. For applicationsthat do still lead to large dense linear systems,
the matrices involved are frequently so large that they do not fit even in the combined memories of the
processors of a large distributed memory parallel supercomputer. Such problems are often referred to as�This project was partially funded by NASA as part of the Gravity Recovery and Climate Experiment (GRACE), NAS5-97213.yCenter for Space Research, The University of Texas, Austin,TX 78712,gunter@csr.utexas.eduzDepartment of Computer Sciences, The University of Texas, Austin, TX 78712,wesley@cs.utexas.eduxDepartment of Computer Sciences, The University of Texas, Austin, TX 78712,rvdg@cs.utexas.edu

1

out-of-core problems, since they do not fit in the core memoryof the computer. The matrices are instead
stored on disk.

The preeminent library for sequential computers and conventional (shared memory) vector supercom-
puters is the Linear Algebra Package (LAPACK) [1]. This package does not explicitly include out-of-core
capabilities, although on machines with virtual memory thelibrary can be used to solve problems larger
than fit in-core. For larger problems, a version of this library called ScaLAPACK [5], designed for dis-
tributed memory parallel architectures, can be used. This extension of LAPACK does include prototype
out-of-core implementations of some of the ScaLAPACK routines, including general linear solvers via LU
factorization, positive definite linear solvers via Cholesky factorization, and linear least squares solvers via
QR factorization [7]. However, the ScaLAPACK out-of-core approach blocks matrices to be brought in-core
by “slabs” of columns. This approach is inherently nonscalable since there is a fixed amount of aggregate
memory amongp processors, as larger and larger matrices are factored, thepanel of columns that fits in-core
becomes more narrow, inherently affecting both the performance of the in-core kernels as well as the ratio
of computation to I/O operations.

A more serious effort to add out-of-core capabilities to LAPACK and ScaLAPACK is provided by SO-
LAR [20], a portable library for scalable out-of-core linear algebra computations. This library uses ScaLA-
PACK routines for in-core computation, but provides an I/O layer that manages matrix input-output. SOLAR
achieves better I/O rates by allowing a different storage scheme for matrices on disk than is used in-core
by ScaLAPACK. Impressive performance is reported for up to four nodes of an IBM SP-2. Note that while
their approach to Cholesky is somewhat similar to ours, theydo not extend the approach to the LU or QR
factorization, for which they use a slab approach similar tothat used by ScaLAPACK.

Our own approach is somewhat different. Since we developed the Parallel Linear Algebra Package
(PLAPACK) [21] used as a basis for the Parallel Out-of-Core Linear Algebra Package (POOCLAPACK),
we have more flexibility to customize both the in-core and theout-of-core algorithms. This in turn allows
us to code the out-of-core algorithms in such a way that the I/O of matrices becomes trivial, reducing the
amount of code required to port between platforms and improving performance. Furthermore, it allows us to
create in-core kernels that allow novel out-of-core approaches to be implemented, as will become apparent
when we discuss out-of-core QR factorization.

It should be noted that the above described parallel out-of-core library efforts are in addition to a number
of parallel out-of-core implementations of individual operations or machine specific libraries for dense linear
systems reported in the literature [2, 14, 4, 18, 19]. Additional references to applications requiring large
dense linear solves are given in [6, 8, 12]. Additional references to research using fast summation methods
like FMM are given in [11].

This paper is organized as follows: Section 2 discusses issues regarding the in-core and out-of-core
implementation of sequential Cholesky factorization. Section 3 we briefly discuss how the techniques can be
extended to the QR factorization, requiring in-core and OOCalgorithms that are not supported by LAPACK,
ScaLAPACK, or SOLAR. Section 4 introduces the POOCLAPACK approach to coding parallel out-of-core
dense linear algebra algorithms. Performance is reported in Section 5. Concluding remarks and future
directions are given in the final section.

2

2 Sequential Implementation

Two algorithms often used for blocked Cholesky factorization, known as the right- and left-looking vari-
ant [9], are given in Fig. 1. For details of how to derive the algorithm we refer the reader to [16, 17].

partition A = ATL ?ABL ABR !
whereATL is 0� 0

do until ABR is 0� 0
repartition ATL ?ABL ABR ! = 0B� A00 ? ?A10 A11 ?A20 A21 A22 1CA whereATL is b� b
right-looking algorithm left-looking algorithmA11 L11 = Chol:fa
t:(A11) A11 A11 �A10AT10A21 L21 = A21L�T11 A21 A21 �A20AT10A22 A22 � L21LT21 A11 L11 = Chol:fa
t:(A11)A21 L21 = A21L�T11

continue with ATL ?ABL ABR ! = 0B� A00 ? ?A10 A11 ?A20 A21 A22 1CA
enddo

Figure 1: Blocked right- and left-looking Cholesky factorization algorithms.

Either of these two algorithms can be used for efficient sequential in-core implementation of the Cholesky
factorization. In practice, the right-looking algorithm is favored for reasons that go beyond the scope of this
paper.

The left-looking Cholesky factorization is favored for out-of-core implementations. There are two basic
reasons for this: First, the left-looking Cholesky requires approximately half the I/O operations of the right-
looking algorithm. Second, it is easier to addcheck-pointingto a left-looking algorithm. Check-pointing
allows for a restart partially into the computation in case of a system failure.

Let us examine in more detail how to implement an out-of-coreCholesky factorization. PartitionA = 0B� L00 � �L10 A11 �L20 A21 A22 1CA
whereL00 ism�m and we assume thatL�0 have been computed, while the other parts ofA have been left
untouched. HereA11 is of sizet� t, which we will later call atile of sizet. All data is assumed to exist on
disk.

3

The following steps will advance the computation so thatL11 andL21 have been computed and have
overwritten the corresponding blocks ofA:

1. ReadA11 from disk into memory.

2. UpdateA11 A11 � L10LT10 whereL10 is on disk.

3. UpdateA11 L11 = Chol:fa
t:(A11). SinceA11 is in memory, this requires an in-core Cholesky
factorization. As mentioned, typically a right-looking variant is favored for this subproblem.

4. WriteL11 to disk, leaving a copy in memory.

5. UpdateA21 (A21 � L20LT10)L�T11 , whereA21, L20 andL10 are on disk andL11 is in memory.

6. Flush all memory.

We must give further details on how to perform steps 2 and 5:

Step 2: A11 A11 � L10LT10: HereA11 is in memory, butL10 is on disk. At first glance, this appears to
require a read ofL10, followed by an in-core symmetric rank-k update. This requirest�m data to be
read, after whichmt2 floating point operations are performed to updateA11, for a ratio oft floating
point operations for every floating point number read. However, readingL10 requires a considerable
amount of memory, thereby limiting the size oft, and thus affecting this ratio.

Key observation: The following approach retains the benefits of the same ratiot of computation to
disk accesses, while maximizing the size oft and thus this ratio: PartitionL10 = � L(0)10 � � � L(k�1)10 �
whereL(j)10 has approximatelyb columns. Notice thatA11 � L10LT10 = A11 � L(0)10 L(0) T10 � � � � � L(k�1)10 L(k�1)T10
Thus, the following procedure will perform the update ofA11. For eachL(j)10 , read this submatrix (t�b
items read), and perform an in-core rank-k update (bt2 floating point operations). Notice that this
maintains the ratio oft computations for each item read from disk. However, by picking b relatively
small, very little memory is needed forL10, thus allowingt to be chosen to be much larger. The
block sizeb is typically chosen to equal a block-size that maximizes theperformance of the in-core
symmetric rank-k update.

This “sequence of narrow symmetric rank-k updates” approach to implementating a larger symmetric
rank-k update yields an excellent parallel in-core implementation of symmetric rank-k update. Thus,
the out-of-core approach fits naturally with a very good in-core algorithm1.

Step 5: A21 L21 = (A21 � L20LT10)L�T11 : Here onlyL11 is in memory. In [17] we show that the exact
same technique as described above for Step 2 can be used to allow almost all in-core memory to be
used to storeL21, with similar benefits. Again, the approach meshes will withhow are naturally
implementedparallel in-core implementation of matrix-matrix multiplication [21, 13].

1Unfortunately, the only reference for this is the actually implementation of symmetric rank-k update in the PLAPACK source.
Most likely, ScaLAPACK uses a similar approach.

4

Key observation: Careful consideration of the complete out-of-core algorithm shows that in addition to
two tiles of sizet � t (one forA11 and forA(i)21) only a small amount of workspace is needed for storing a

few blocks of columns ofL10 andL(i)20 . Naturally,t is chosen as large as possible, thus improving the ratio
of computation to disk accesses. In [16] we show how this can be brought down to just one tile. However,
the two-tile approach meshes better with how an OOC QR factorization is naturally implemented.

Two techniques allow for further reduction in I/O overhead:It is possible to exploit asynchronous I/O
operations to overlap computation with I/O operations. By storing matrices on disk we arrange for all reads
from disk to access very large contiguous blocks of data. Fordetails, see [17].

3 Out-of-Core QR factorization

As part of an effort to compute the parameters of the Earth’s gravitational field, POOCLAPACK is being
used to solve a very large linear least-squares problem. Thebelow described out-of-core QR factorization is
one of several dense linear algebra algorithms being developed in support of that effort.

Given anm � n matrix A, its QR factorization is given byA = QR whereQ is unitary andR is
upper-triangular. For simplicity, we will assume thatm >= n. Matrix Q is usually computed and stored
as a collection of Householder transformations. A blocked algorithm is derived by aggregating a number of
Householder transforms into aWY -transform [3] orY TY T -transform [10].

The primary problem with creating an OOC version of the QR factorization is that on the surface it
appears that columns of matrix A must be brought into memory simultaneously in order to compute House-
holder transforms from columns or apply Householder transforms to columns. In our approach we break
this dependence as follows: PartitionA = 0BBBB� A11 � � � A1NA21 � � � A2N

... � � � ...AM1 � � � AMN 1CCCCA
whereAii is square. A sketch of an OOC QR factorization is given by the followgin:� for j = 1 : N

– Compute the QR factorizationAjj = QjjRjj leavingQjj in compact form (storing the House-
holder vectors below the diagonal ofAjj.

– UpdateAjk = QTjjAjk by applying the Householder transforms stored inAjj.
– for i = j + 1 : M� Compute

 RjjAij !! Qij R̂jj0 !
overwritingRjj with R̂jj.

Key insight: The Householder vector that zeroes entries below the(p; p) element ofRjj has

the form

 epvp !, a special structure that can be exploited when applying theHouseholder

5

vector to a matrix, when building aWY -transform orY TY T -transform, and when storing
the Householder vector.� for k=j+1:N� Update

 AjkAik ! QTij AjkAik !.

Key insight: Again, one can take advantage of the special form of the Householder
transforms.� endfor

– endfor� endfor

Details of how the specialized operation

 RjjAij ! ! Qij R̂jj0 !
is implemented can be found in [15].

Details on how to implement the other specialized kernels gobeyond the scope of this extended abstract.

4 Parallel Implementation

The Parallel Linear Algebra Package (PLAPACK) is a flexible infrastructure for implementing parallel dense
linear algebra libraries. An MPI-like programming interface, which hides details about matrices and vectors
like distribution from the user, makes both the library implementation and its use considerably simpler than
more conventional packages like ScaLAPACK. In addition, the simple programming approach allows more
complex algorithms to be implemented, which often yield better performance.

The discriptions of the out-of-core sequential Cholesky and QR factorizations translate directly to
POOCLAPACK code. To illustrate the simplicity of the code weinclude POOCLAPACK code for OOC
Cholesky factorization in Fig. 2.

5 Performance

In this section, we report preliminary performance achieved with the described PLAPACK based parallel
out-of-core implementations of the Cholesky and QR factorizations.

We demonstrate performance on the Cray T3E-600 (300 MHz) with all computations performed in
64-bit arithmetic. The algorithms were implemented using an alpha release of PLAPACK Version R2.03,
which performs all communication by means of MPI. We report performance measuring MFLOP/s/processor
(millions of floating point operations per second per processor). For reference, the matrix-matrix multiplica-
tion on a single processor of the T3E-600 in MFLOP/s attains up to 445 MFLOP/s. All performance reported
in this section was measured with data streams turned on (a hardware feature that adds about 15–20% to the
performance of the local matrix-matrix multiply kernel).

In [17, 16] we report performance of a number of different implementations of the Cholesky factoriza-
tion including versions that did and did not overlap I/O withcomputation and versions that did and did not
force all I/O to be in large contiguous blocks. Here we reportperformance only for the in-core PLAPACK
Cholesky factorization (In-core Chol in the table) and a version of the OOC Cholesky factorization

6

1 int POOCLA_Chol_by_panels(int N, PLA_Obj *A_row_panels)
2 {
3 < declarations >
4
5 size_done = 0; /* number of columns finished */
6 for (j=0; j<N; j++){
7 PLA_Obj_global_length(A_row_panels[j], &t); /* get tile size */
8
9 /* View current L_10 and A_11 submatrices */

10 PLA_Obj_vert_split_2(A_row_panels[j], size_done, &L_1 0, &temp);
11 PLA_Obj_vert_split_2(temp, t, &A_11, PLA_DUMMY);
12
13 /* Create an in-core matrix into which to copy A_11 */
14 PLA_Matrix_create_conf_to(A_11, &A_11_in);
15 PLA_Copy(A_11, A_11_in);
16
17 /* Update A_11 <- A_11 - L_10 * L_10, A_11 in-core, L_10 out-of -core */
18 POOCLA_Syrk(PLA_LOWER_TRIANG, PLA_NO_TRANS, min_one, L_10, one, A_11_in);
19
20 /* Factor updated in-core A_11 and write out the result */
21 PLA_Chol(PLA_LOWER_TRIANGULAR, A_11_in);
22 PLA_Copy(A_11_in, A_11);
23
24 /* Loop over A_21ˆi */
25 for (i=j+1; i<N; i++){
26 /* View current matrices L_20ˆi and A_21ˆi */
27 PLA_Obj_vert_split_2(A_row_panels[i], size_done, &L_2 0_1, &temp);
28 PLA_Obj_vert_split_2(temp, t, &A_21_1, PLA_DUMMY);
29
30 /* Create an in-core matrix into which to copy A_21ˆi */
31 PLA_Matrix_create_conf_to(A_21_1, &A_21_1_in);
32 PLA_Copy(A_21_1, A_21_1_in);
33
34 /* Update A_21ˆi <- A_21ˆi - L_20 * L_10ˆT */
35 POOCLA_Gemm(PLA_NO_TRANS, PLA_TRANS,
36 min_one, L_20_1, L_10, one, A_21_1_in);
37
38 /* Update A_21ˆi <- L_21ˆi = A_21ˆi * L_11ˆ-T */
39 PLA_Trsm(PLA_SIDE_RIGHT, PLA_LOWER_TRIANG,
40 PLA_TRANS, PLA_NONUNIT_DIAG,
41 one, A_11_in, A_21_1_in);
42
43 /* Write out A_21ˆi */
44 PLA_Copy(A_21_1_in, A_21_1);
45
46 size_done += t;
47 }
48 }
49 < clean up >
50 }

Figure 2: POOCLAPACK Out-of-Core Cholesky factorization.In this version, the matrix is presented as a
collection of panels of rows in an effort to improve disk performance.

7

that does NOT use asynchronous I/O but DOES use a specializedstorage scheme that allows for large con-
tiguous reads from disk (Chol by panels in the table). We report performance from two different Cray
T3E systems: the first a smaller system at UT-Austin (up to 80 compute nodes) and the second a now de-
commissioned machine at the Goddard SFC. The primary reasonis to show the degradation in performance
observed when executing on our local machine. This degradation helps explain the degradation of the per-
formance of the QR factorization, for which we at this time donot have results on a machine with a more
reasonable I/O setup.

For a fixed number of processors, we report performance for a problem equal to the tile sizet � t,(2t)�(2t), and(3t)�(3t). For those familiar with PLAPACK, a distribution block sizeof 24 and algorithmic
block size of128 was used for the Cholesky factorization. The block size described in Section 2 used for
partitioningL10 andL(i)20 , b, was taken to equal the algorithmic block size.

The Cray T3E Systems have an extended IO system, called Flexible File IO (FFIO). This system allows
the user to insert layers through which data is passed. Within the layer, the user can insert various kinds
of buffers and caches. Cache and/or buffer sizes and properties like striping across multiple disks can
be controlled by command line routines. We experimented with putting a small cache between disk and
memory and used default striping settings. It should be noted that changes in the configuration of the files
and cache sizes did not seem to affect performance of our algorithms much on the Goddard SFC Cray T3E,
which has much more impressive I/O capabilities. In particular, the more sophisticated algorithms that
allowed larger blocks of contiguous data to be read did not seem to be affected at all on that machine.

Performance of the QR factorization is very preliminary. Notice that performance is impressive for up
to 16 processors, but degrades considerably when 64 processors are utilized. It is our believe that this is due
to the I/O limitations of the Cray T3E-600 at UT-Austin. Furthermore, we have yet to determine optimal
blocking sizes nor did we experiment with FFIO for the OOC QR factorization.

POOCLAPACK has been successfully ported to a wide range of platforms (essentially all platforms
that already support PLAPACK). A more complete set of performance numbers, including performance on
additional platforms, is planned for the final paper.

6 Conclusion

We have described a simple extension to the PLAPACK parallellinear algebra infrastructure that allows for
elegant yet high-performance implementation of out-of-core dense linear algebra algorithms. Since both
PLAPACK and its out-of-core extension provide a simple abstract programming interface, the implementa-
tions lend themselves to customization to allow new functionality to be added as is demonstrated for the QR
factorization.

More information

For more information on PLAPACK and POOCLAPACK visit

http://www.cs.utexas.edu/users/plapack

8

tile 1� 1 tiles (n = t) 2� 2 tiles (n = 2t) 3� 3 tiles (n = 3t)
size MFLOP/s Time (sec) MFLOP/s Time (sec) MFLOP/s Time (sec)

Algorithm p t /proc. Total I/O /proc. Total I/O /proc. Total I/O

Cholesky Factorization on UT-Austin T3E-600
In-core Chol 1 2088 258
Chol by panel 1 2088 254 11.9 0.39 279 88 2 343 239 5
In-core Chol 4 4704 312
Chol by panel 4 4704 290 29.9 1.9 346 201 7 366 639 20
In-core Chol 16 8448 313
Chol by panel 16 8448 273 46.1 5.8 327 306 21 349 970 50
In-core Chol 64 18432 318
Chol by panel 64 18432 249 132 29.5 309 843 98 316 2786 306

Cholesky Factorization on GSFC T3E-600
In-core Chol 1 2088 263 11.5
Chol by panel 1 2088 245 12.4 1.0 296 82 9 334 245 17
In-core Chol 4 4704 304 28.5
Chol by panel 4 4704 276 31.5 2.6 331 209 10 353 663 24
In-core Chol 16 8448 304 41.3
Chol by panel 16 8448 273 46.1 4.3 321 313 13 343 989 32
In-core Chol 64 18432 263 124
Chol by panel 64 18432 267 122 15.0 315 827 53 331 2654 125

QR Factorization on UT-Austin T3E-600 (preliminary results)
QRby panel 1 2048 242 47.3 261 351 256 1206
QRby panel 4 4096 292 78.6 293 626 303 2038
QRby panel 16 8192 288 158.9 269 1361 273 4534
QRby panel 64 16384 213 430.8 202 3635 207 11896

Table 1: Performance of the Cholesky factorization on the Cray T3E-600 at UT-Austin.

Acknowledgments

Access to equipment for development of the described infrastructure was provided by the National Partner-
ship for Advanced Computational Infrastructure (NPACI) and The University of Texas Advanced Comput-
ing Center (TACC). We also gratefully acknowledge access tothe Cray T3E-600 System at the Goddard
Space Flight Center provided by the NASA HPCC Earth and SpaceScience Project.

References

[1] E. Anderson, Z. Bai, J. Demmel, J. E. Dongarra, J. DuCroz,A. Greenbaum, S. Hammarling, A. E.
McKenney, S. Ostrouchov, and D. Sorensen.LAPACK Users’ Guide. SIAM, Philadelphia, 1992.

9

[2] Gregory A. Baker.Implementation of Parallel Processing to Selected Problems in Satellite Geodesy.
PhD thesis, The University of Texas at Austin, 1998.

[3] Christian Bischof and Charles Van Loan. The WY representation for products of Householder matrices.
SIAM J. Sci. Stat. Comput., 8(1):s2–s13, Jan. 1987.

[4] Jean-Philippe Brunet, Palle Pederson, and S. Lennart Johnsson. Load-balanced LU and QR factor and
solve routines for scalable processors with scalable I/O. In Proceedings of the 17th IMACS World
Congress, Atlanta, Georgia, July 1994.

[5] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. Scalapack: A scalable linear algebra library for
distributed memory concurrent computers. InProceedings of the Fourth Symposium on the Frontiers
of Massively Parallel Computation, pages 120–127. IEEE Comput. Soc. Press, 1992.

[6] Tom Cwik, Robert van de Geijn, and Jean Patterson. The application of parallel computation to in-
tegral equation models of electromagnetic scattering.Journal of the Optical Society of America A,
11(4):1538–1545, April 1994.

[7] E. F. D’Azevedo and J. J. Dongarra. The design and implementation of the parallel out-of-core scala-
pack lu, qr, and cholesky factorization routines. LAPACK Working Note 118 CS-97-247, University
of Tennessee, Knoxville, Jan. 1997.

[8] L. Demkowicz, A. Karafiat, and J.T. Oden. Solution of elastic scattering problems in linear acoustics
usingh-p boundary element method.Comp. Meths. Appl. Mech. Engrg, 101:251–282, 1992.

[9] Jack J. Dongarra, Iain S. Duff, Danny C. Sorensen, and Henk A. van der Vorst.Solving Linear Systems
on Vector and Shared Memory Computers. SIAM, Philadelphia, PA, 1991.

[10] Jack J. Dongarra, Sven J. Hammarling, and Danny C. Sorensen. Block reduction of matrices to con-
densed forms for eigenvalue computations.Journal of Computational and Applied Mathematics, 27,
1989.

[11] Y. Fu, K. J. Klimkowski, G. J. Rodin, E. Berger, J. C. Browne, J. K. Singer, R. A. van de Geijn,
and K. S. Vemaganti. A fast solution method for three-dimensional many-particle problems of linear
elasticity. Int. J. Num. Meth. Engrg., 42:1215–1229, 1998.

[12] Po Geng, J. Tinsley Oden, and Robert van de Geijn. Massively parallel computation for acoustical
scattering problems using boundary element methods.Journal of Sound and Vibration, 191(1):145–
165, 1996.

[13] John Gunnels, Calvin Lin, Greg Morrow, and Robert van deGeijn. A flexible class of parallel matrix
multiplication algorithms. InProceedings of First Merged International Parallel Processing Sympo-
sium and Symposium on Parallel and Distributed Processing (1998 IPPS/SPDP ’98), pages 110–116,
1998.

[14] Ken Klimkowski and Robert van de Geijn. Anatomy of an out-of-core dense linear solver. InPro-
ceedings of the International Conference on Parallel Processing 1995, volume III - Algorithms and
Applications, pages 29–33, 1995.

10

[15] Enrique S. Quintana-Orti and Robert van de Geijn. Fast parallel kernels for selected problems in control
theory. InProceedings of the SIAM Conference on Parallel Processing for Scientific Computing 1999,
1999.

[16] Wesley C. Reiley. Efficient parallel out-of-core implementation of the cholesky factorization”. Techni-
cal Report CS-TR-99-33, Department of Computer Sciences, The University of Texas at Austin, Dec.
1999. Undergraduate Honors Thesis.

[17] Wesley C. Reiley and Robert A. van de Geijn. Pooclapack:Parallel out-of-core linear algebra package.
Technical Report CS-TR-99-33, Department of Computer Sciences, The University of Texas at Austin,
Nov. 1999.

[18] David S. Scott. Out of core dense solvers on Intel parallel supercomputers. InProceedings of the
Fourth Symposium on the Frontiers of Massively Parallel Computation, pages 484–487, 1992.

[19] David S. Scott. Parallel I/O and solving out-of-core systems of linear equations. InProceedings of
the 1993 DAGS/PC Symposium, pages 123–130, Hanover, NH, June 1993. Dartmouth Institute for
Advanced Graduate Studies.

[20] Sivan Toledo and Fred G. Gustavson. The design and implementation of SOLAR, a portable library
for scalable out-of-core linear algebra computation. InProceedings of IOPADS ’96, 1996.

[21] Robert A. van de Geijn.Using PLAPACK: Parallel Linear Algebra Package. The MIT Press, 1997.

11

