
Bath Updates of Key TreesXiaozhou Li, Y. Rihard Yang,Mohamed G. Gouda, Simon S. LamDepartment of Computer SienesUniversity of Texas at AustinAustin, TX 78712-1188fxli, yangyang, gouda, lamg�s.utexas.eduTR-2000-22September 19, 2000Abstrat[2℄ introdued the onept of key trees for seure group ommuniationsand disussed how to update a key tree due to a single rekey request (ajoin or a leave). In a real appliation, however, rekey requests are likely tobe proessed in bathes, instead of in real-time. In this paper we onsiderthe ase where there are equal number of joins and leaves in a bath. Inthis ase, we an replae a leave by a join at the same loation in the keytree. We all this an update.We desribe a method, alled the rekey subtree method, to eÆientlyproess bath updates. The method identi�es the keys that need to beupdated and updates those keys only one. The method saves server ostsubstantially, ompared to the naive approah, whih proesses updatesone after another. We also desribe how to modify the rekey subtreemethod when joins and leaves are unequal.To analyze the rekey subtree method's performane, we derive theexat expressions for the best, worst, and average ase server's enryptionosts. We also derive the exat expression for a user's average deryptionost.If an appliation only wants to minimize the server's ost, it an useserver ost expressions to deide what degree the key tree should use.Our analysis and experiments show that 4 is usually the optimal degreewhen the number of updates is below some threshold (about 1=4 of thenumber of users), when the number of updates is above the threshold, keystar (key tree of degree equal to the number of users) is optimal. If theappliation has users of limited apaity, it should hoose a larger degreeto redue the user's work, at the ost of inreasing the server's.1



1 IntrodutionWith the growth of the Internet, there is a need for seure multiast applia-tions. [2℄ introdued the onept of key graphs for seure group ommuniations.Among all kinds of key graphs, key tree and key star are two partiularly in-teresting strutures. A key star an be onsidered as a speial key tree, withdegree equal to the number of users. Suppose there are n users, for a key treewith degree d and height h (so h is about logd n), the server's enryption ost(simply alled server ost) is 2(h� 1) for a join, d(h� 1) for a leave. It an beshown that d = 4 minimizes server ost.In a real appliation, however, joins and leaves are likely to be proessedperiodially, instead of in real-time. The server ollets join/leave requests fora period and proesses them in a bath. To simplify disussion, we make thefollowing two assumptions in this paper:1. A single key server handles all the rekey requests.2. There are equal number of joins and leaves in a bath.A real appliation may distribute the server's work among a number ofentities. In that ase, the server ost notion in this paper should be onsideredas server side ost. For many seure multiast appliations, the group size isunlikely to drastially hange, so we an assume that there are equal numberof joins and leaves in a bath. Our results are still useful when joins and leavesare roughly equal.It is more eÆient to replae a leaving user by a joining user, beause itredues the number of keys to be updated. We all a leave and a join at thesame loation in the key tree an update.We use m to denote the number of updates, n the number of users, d thedegree of the key tree, h the height of the key tree. The naive approah, whihproesses updates one after another, is not salable. Eah update's ost isd(h � 1), so the ost for m updates is m � d(h � 1). The naive approah isineÆient beause it updates some keys multiple times, while those keys onlyneed to be updated one.We desribe a method, alled rekey subtree method, to eÆiently proessbath updates. The method uses a simple algorithm to identify the rekey subtree,whih ontains only the keys that need to be updated, and updates those keysonly one. Compared to the naive approah, the rekey subtree method savesserver ost substantially. We also disuss how to modify the rekey subtreemethod when joins and leaves are unequal.To analyze the rekey subtree method's performane, we derive the exatexpressions for the best ase, worst ase, and average ase server osts. We alsoderive a user's average deryption ost (simply alled average user ost.If an appliation only wants to minimize server ost, it an use these ex-pressions to deide what degree the key tree should use. Our analysis andexperiments show that d = 4 is usually optimal when the number of updatesis below some threshold, when the number of updates is above the threshold,2



d = n (key star) is optimal. We show how to ompute this threshold. Thethreshold is roughly n=4. If the appliation has users of limited apaity, theappliation should hoose a larger d to redue the user's work, at the ost ofinreasing the server's.The paper is organized as follows. Setion 2 desribes the rekey subtreemethod. Setion 3 derives the exat expressions for the server ost and userost. Setion 4 disusses how to use these expressions to minimize server ost.Setion 5 disusses related work. Setion 6 onludes the paper.2 Rekey subtree method2.1 NotationsWe use the following notations: m is the number of updates, n the number ofusers, d degree of the key tree, S the size (number of nodes) of the rekey subtree.2.2 The ideaWhen there is a single update, all the keys on the path from the update loationto the root of the key tree have to be updated. When there are multiple updates,there are multiple paths. These paths form a subtree. Keys loated on multiplepaths only need to be updated one, instead of multiple times. If we an identifythis subtree (alled rekey subtree) and update the keys in the rekey subtree onlyone, we an redue the server ost.Figure 1 shows a small example to illustrate this idea. In this example, u1 isreplaed by u01, u4 is replaed by u04. The rekey subtree onsists of three nodes:k01�9, k0123, and k0456. Note that k01 and k04 are not in the rekey subtree beausethey are individual keys and are established separately. In this example, k1�9only need to be updated one, not twie.If we use key-oriented or group oriented rekeying, and the rekey subtree'ssize is S, then the server ost is d �S. S is usually smaller than m logd n, the sumof the lengths of the rekey paths. The di�erene depends on the exat loationsof the updates. We quantify this di�erene in Setion 3.2.3 How to identify the rekey subtreeThe algorithm to identify the rekey subtree is simple. We are given a numberof updates. For eah update, we mark all the anestors of the update in thekey tree by following the parent pointer of a node. During the proess, if we�nd an anestor that has been marked, we proeed to proess the next update.The resulting marked nodes form the rekey subtree. The running time of thealgorithm is upper bounded bym logd n. The exat running time depends on theupdate loations. Note that the marking proess is not a performane burdenbeause it requires little omputation. 3



u1 and u4 replaced by u1’ and u4’

u2u1’ u4’ u5 u6 u7 u8 u9

k1’ k2 k3

u3

k4’ k5 k6 k7 k8 k9

k123’ k456’

k1−9’

k789

rekey subtree

u2u1 u4 u5 u6 u7 u8 u9

k1 k2 k3

u3

k4 k5 k6 k7 k8 k9

k456 k789

k1−9

k123

Figure 1: Example of a rekey subtree2.4 Bath update protoolOne we have identi�ed the rekey subtree, rekeying an be done eÆiently. Wedisuss the protools for three rekeying strategies: user-oriented, key-oriented,and group-oriented ([2℄).2.4.1 User-oriented rekeyingIn this approah, the server onstruts a rekey message that ontains preiselythe new keys needed by the user and enrypts them using a key held by theuser. For the example in Figure 1, key server s needs to send the following rekeymessages: 4



s! fu7; u8; u9g : fK 01�9gK789s! fu01g : fK 01�9;K 0123gK01s! fu2g : fK 01�9;K 0123gK2s! fu3g : fK 01�9;K 0123gK3s! fu04g : fK 01�9;K 0456gK04s! fu5g : fK 01�9;K 0456gK5s! fu6g : fK 01�9;K 0456gK6The rekey messages an be onstruted as follows. For eah node x in therekey subtree, and for eah unhanged hild y of x, the server onstruts a rekeymessage by enrypting the new keys of k-node x and all its anestors (up to theroot) by the key Ky of y. This rekey message is then multiasted to userset(K).In terms of server ost, user-oriented rekeying is not as eÆient as key-oriented or group-oriented rekeying, beause it enrypts the same key usingmany desendents' keys. For the above example, K 01�9 are enrypted by 7di�erent keys, while in other rekeying strategies, enrypting K 01�9 by 3 di�erentkeys, K 0123, K 0456, K789, is suÆient.2.4.2 Key-oriented rekeyingIn this approah, eah new key is enrypted individually. The protool is de-sribed in Figure 2. For the example in Figure 1, the server sends out thefollowing rekey messages:s! fu7; u8; u9g : fK 01�9gK789s! fu01g : fK 01�9gK0123 ; fK 0123gK01s! fu2g : fK 01�9gK0123 ; fK 0123gK2s! fu3g : fK 01�9gK0123 ; fK 0123gK3s! fu04g : fK 01�9gK0456 ; fK 0456gK04s! fu5g : fK 01�9gK0456 ; fK 0456gK5s! fu6g : fK 01�9gK0456 ; fK 0456gK6s traverses the rekey subtree in pre-orderlet xj be the urrently visited node,x0, . . . , xj be the path from the root to xj ,K 00, . . . , K 0j be the new keys for these nodes.for eah hild y of xj and y not in the rekey subtreelet Ky be the key for y,let M = fK 00gK01 ; : : : ; fK 0jgKys! userset(Ky) :MFigure 2: Key-oriented bath update protoolThe server ost in this approah is exatly d � S.
5



2.4.3 Group-oriented rekeyingIn this approah, the server onstruts a single rekey message ontaining all thenew keys. This rekey message is then multiasted to the entire group. The wayto enrypt the new keys is similar to key-oriented rekeying. For the example inFigure 1, s does the following:s! fu01; u2; u3; u04; u5; : : : ; u9g:fK 01�9gK0123 ; fK 01�9gK0456 ; fK 01�9gK789fK 0123gK01 ; fK 0123gK2 ; fK 0123gK3 ; fK 0456gK04 ; fK 0456gK5 ; fK 0456gK6The server ost is d � S, same as key-oriented rekeying.2.5 Modi�ations for more joins than leavesIf there are more joins than leaves, the bath an be onsidered as some updatesplus by some joins. For the extra joins, the server reates a subtree and �nd aloation in the key tree to graft the subtree. Then the joins an be onsideredas updates too. Figure 3 shows a small example to explain the idea. In thisexample, the rekey subtree onsists of three nodes: K 01�9, K 0456, and K789.2.6 Modi�ations for more leaves than joinsIf there are more leaves than joins, it is possible that some parts of the key treewill be pruned out. In this ase, it is neessary to �nd out whih keys need to beupdated, and whih need to be removed from the key tree. This is easy to do:if all the hildren of a key are removed, than this key should be removed too.We an easily add this feature to the marking proess. Figure 4 shows a smallexample. In this example, the rekey subtree onsists of two nodes: K 01�9, K 0123.K 0456 does not belong to the rekey subtree beause all its hildren are removed.3 AnalysisIn Setion 2, we have seen that the rekey subtree method's ost depends onthe exat loations of the updates. If the updates are onentrated, the rekeysubtree is smaller, if the updates are sattered, the rekey subtree is bigger. Inthis setion, we derive the exat expressions for the best, worst, and averagease server osts and user average ost in terms of m, n, and d.3.1 AssumptionsWe make the following assumptions to simplify the disussion.1. n is some power of d, namely, the key tree is a omplete d-ary tree, withn leaves at the bottom. We all the leaf loations loation 1, . . . , loationn.2. Every reeiver has an equal probability of being updated.6



u2 u4’ u5 u6 u7 u8 u9

k1 k2 k3

u3

k4 k5 k6 k7 k8 k9

k1−9’

u2u1 u4 u5 u6

k1 k2 k3

u3

k4 k5 k6

k456

k1−9

k123

u1

k123 (new key)

u4 replaced by u4’; u7, u8, u9 join

k789
k456’

rekey subtree

Figure 3: Example of more joins than leaves3.2 Best ase server ostIntuitively, if all the updates happen at onentrated loations, the rekey subtreeis smaller. It an be proved that the best ase happens when the updates areat loation 1, . . . , loation m, as shown in Figure 5. The proof is omitted forbrevity. It is not hard to derive the size of the rekey subtree in this ase. It is:Sbest = 8><>: 1d�1 (m� digit sum(m; d)) + kXi=1rem(m; di) + (h� k + 1) 1 � m < nn�1d�1 m = nwhere k = blogdm, h = logd n+1, digit sum(m; d) is the sum of the digits of mwhen written in radix d, rem(a; b) is a funtion that has value 1 if a mod b 6= 0,value 0 if a mod b = 0. 7



u1 replaced by u1’; u4, u5, u6 leave

u2u1’ u4’ u5 u6 u7 u8 u9

k1’ k2 k3

u3

k4’ k5 k6 k7 k8 k9

k123’

k1−9’

k789

rekey subtree

u2u1 u4 u5 u6 u7 u8 u9

k1 k2 k3

u3

k4 k5 k6 k7 k8 k9

k456 k789

k1−9

k123

k456’ (deleted)

Figure 4: Example of more leaves than joinsThe best server ost, ostbest , is thus d � Sbest .3.3 Worst ase server ostIntuitively, if the m updates are uniformly distributed among loations 1 to n,the rekey subtree's size is maximized. Suppose dk � m < dk+1 andm = r�dk+q,1 � r � d � 1, 0 � q < dk . Figure 6 shows one of the worst ase senarios.Basially, the worst ase senario happens if we distribute the m updates evenlyon subtrees T1, . . . , Tdk . It an be proved that this senario really maximizesthe rekey subtree. The proof is omitted for brevity. It is not hard to derive theworst rekey subtree size: 8



location 1 location m

rekey subtree

Figure 5: Best ase senario.
Sworst = � m � (h� k � 2) + 1d�1 (dk+1 � 1) 1 � m < nn�1d�1 m = nwhere k = blogdm, h = logd n+ 1.The worst server ost, ostworst , is thus d � Sworst .3.4 Average ase server ostWhat is the rekey subtree's average size, givenm, n, d? To answer this question,we �rst onsider the rekey subtree's size on a ertain level. Summing up thesizes on all levels will give the size of the rekey subtree.First note that eah node on the same level is equivalent. So if we an �ndout the probability that a node is in the rekey subtree, then we an �nd outthe rekey subtree's size on that level, by multiplying the probability with thenumber of nodes on that level.We use the following onvention: the root is on level 0, leaves are on levelh�1, where h = logd n+1. Consider a node x on level l, 0 � l � h�2. (We don'tneed to onsider keys on level h� 1 beause they are individual keys and don'tbelong to the rekey subtree.) The subtree rooted at node x has n0 = dh�l�1leaves. If one of these leaves is updated, then x is in the rekey subtree, otherwisex is not in the rekey subtree. The probability that none of the m updates isloated in the subtree of x is:Pr(l) = Cmn�n0Cmn = (n� n0)(n� n0 � 1) : : : (n� n0 �m+ 1)n(n� 1) : : : (n�m+ 1) ;9



updates
r+1

updates
r+1

k+1

h

T1 T2

h−k−1

such subtreesd k

updates updates
r r

q such trees Figure 6: Worst ase senario.where Cba is the number of ways to pik b elements out of a elements, regardlessof order. We use the onvention that Cba = 0 if b > a. We note that Pr(l) iseasy to ompute, even and m and n are large.Thus, the rekey subtree's size on level l is dl(1� Pr (l)). Summing up overall the levels, we obtain the average size of the rekey subtree:Savg = h�2Xl=0 dl(1� Cmn�n=dlCmn ) = n� 1d� 1 � h�2Xl=0 Cmn�n=dlCmn :The average ost, ostavg , is thus d � Savg .3.5 Shapes of the osts and validation of analysisThe properties of the three osts are not obvious from their expressions. Figure8 shows the shapes of these osts. We also implemented a simulation programto validate our analysis for the average ost. The simulation program randomlygenerates updates and omputes the rekey subtree size aordingly. Our analysismathes with the simulation perfetly.Basially, ostbest grows linearly with m. ostworst reahes its maximum,dd�1(n�1), whenm = n=d. Intuitively, when uniformly distributed, n=d updatesan make every non-leaf node in the key tree belong to the rekey subtree. ostavgis loser to ostworst than to ostbest .3.6 Rekey subtree vs. naive approahSine the rekey subtree method only updates keys one. It outperforms thenaive approah even when there are only two updates. The di�erene beomes10



more substantial as the number of updates grows. Figure 9 ompares the rekeysubtree method's worst ost and the naive approah's ost. We observe thateven the rekey subtree's worst ost is muh better than the naive approah.3.7 User average ostIntuitively, a user's average ost should derease as d grows, should inrease asm grows. It an be derived as follows. Figure 7 illustrates the idea. Denoteh as the height of the key tree (h = logd n + 1), T (x) the subtree rooted atnode x, L(x) the set of leaves in T (x), jL(x)j the size of L(x). User u deryptsi(1 � i � h� 1) keys when there is no update in L(y) and there is at least oneupdate in L(x). Sine jL(y)j = dh�i�1, jL(x)j = dh�i,Pr(u derypts i keys) = (Cmn�jL(y)j � Cmn�jL(x)j)=Cmnwhere Cba has the same de�nition as in Setion 3.4. When i = h, u derypts ikeys when either itself or any of its (d� 1) siblings is updated, thusPr(u derypts h keys) = 1� Cmn�d=CmnSumming them up, we have the user's average deryption ost:useravg = h�2Xi=1 i(Cmn�n=di � Cmn�n=di�1)Cmn + (h� 1)(Cmn � Cmn�d)CmnFigure 12 shows the shape of this funtion.

u

x

y

L(y)

L(x)

i

Figure 7: User's average deryption ost.11



4 Minimization of server ostA real appliation usually an estimate the expeted m and n, then it wouldlike to know whih d it should hoose to minimize server ost. We onsiderthe average ost. Sine the average ost is expressed in terms of m, n, d, theappliation an plug in the average ase expression to ompare the osts fordi�erent d's. Figure 10 and 11 ompares the osts for di�erent d's for a widevariety of n's. We observe d = 4 outperforms other hoies when m is not big.(Sine the expression is available, it is possible to �nd the theoretial optimald. This might be hard sine the expression is not simple.)We also observe that if we hoose d = 4, when m is above some threshold(denoted by �m), the average ost is above n. Reall that if we use a key star,the server ost is always n. So if an appliation estimates that m is likely to beabove �m, it might want to use key star.We an make ostavg = n, plug in d = 4, and ompute �m. Sine ostavgis a ompliated expression, solving this equation mathematially may not befeasible. However, we observe ostavg is a monotoni funtion, so we an usebinary searh to loate �m. Table 1 shows some �m values. We observe that �m=nis about 0:25. So the general rule for an appliation to minimize server ost is:if m is less than n=4, hoose d = 4, otherwise hoose d = n, namely, use a keystar.n �m �m=n64 15 0.23256 63 0.251024 247 0.244096 991 0.2416384 3963 0.2465536 15851 0.24 Table 1: �m for d = 4.However, if the appliation has users of limited apaity, then it shouldonsider hoosing a larger d to redue the user's work, at the ost of inreasingthe server's.5 Related workMany rekey methods have been proposed for seure group ommuniations.Many of them are designed to minimize single rekey ost. [1℄ disusses bathproessing for their key management sheme. They used boolean funtion mini-mization tehniques to redue the bath rekeying ost. Their approah, however,has the ollusion problem, namely, two users an ombine their knowledge ofauxiliary keys to ontinue to read group ommuniations, even after they leavethe group. We onsider ollusion a severe problem.12



The implementation of [2℄ an be found in [3℄. The interested reader isenouraged to read [3℄ and [4℄ for the design and implementation of a group keymanagement system.6 ConlusionIn this paper, we proposed the rekey subtree method to proess bath updates.We desribed an algorithm to identify the rekey subtree, and a protool toproess bath updates. We also analyzed the rekey subtree's performane (interms of server ost), under best, worst, and average ases. The rekey subtreemethod performs muh better than the naive approah. We also analyzed auser's average deryption ost.Using our analytial results, an appliation an hoose an appropriate keytree degree to minimize server ost, or to balane the work between server anduser. In general, if an appliation only wants to minimize the server ost, itshould hoose degree 4 if the number of updates is below 1=4 of the numberof users, otherwise, the appliation should hoose degree equal to number ofusers, namely, use key star. If some users have limited apability, the applia-tion should hoose some larger degree to redue the user's work, at the ost ofinreasing the server's.Referenes[1℄ I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha. Key man-agement for seure internet multiast using boolean funtion minimizationtehniques. In Proeedings of Infoom 99, 1999.[2℄ C. K. Wong, Mohamed G. Gouda, and Simon S. Lam. Seure group om-muniations using key graphs. In Proeedings of Sigomm 98, 1998.[3℄ C. K. Wong and Simon S. Lam. Keystone: A group key management ser-vie. In Proeedings of the International Conferene on Teleommuniations,2000.[4℄ Y. Rihard Yang, Min S. Kim, Xinheng Zhang, and Simon S. Lam. Keygem:Towards a salable and reliable group key management servie. Work inprogress.
13



0100020003000400050006000700080009000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
serverost

number of updates

d=2, n=4096
4096bestworstsimulated avganalyzed avg

0500010000150002000025000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
serverost

number of updates

d=4, n=16384
16384bestworstsimulated avganalyzed avg

Figure 8: Best, worst, and average ase server osts.
14



0100200300400500600700800

0 10 20 30 40 50 60 70
serverost

number of updates

d=2, n=6464naive approahworst

010002000300040005000600070008000900010000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
serverost

number of updates

d=4, n=4096 4096naive approahworst

Figure 9: Performane omparison between rekey subtree and naive approah
15



02040
6080100120140

0 10 20 30 40 50 60 70
serverost

number of updates

n=64
64d=2d=4d=8

0100020003000400050006000700080009000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
serverost

number of updates

n=4096
4096d=2d=4d=8d=16

Figure 10: Average ase omparison between di�erent d's, on small n's.
16



020000400006000080000100000120000140000

0 10000 20000 30000 40000 50000 60000 70000
serverost

number of updates

n=65536
65536d=2d=4d=16

0100000200000300000400000500000600000

0 50000 100000 150000 200000 250000 300000
serverost

number of updates

n=262144
262144d=2d=4d=8

Figure 11: Average ase omparison between di�erent d's, on large n's.
17



1234
5678
910

0 200 400 600 800 1000 1200
user ost

number of updates

n=1024 d=2d=4d=32

024
6810
12

0 500 1000 1500 2000 2500 3000 3500 4000 4500
user ost

number of updates

n=4096 d=2d=4d=8d=16

Figure 12: User's average deryption ost.
18


