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Abstract

[2] introduced the concept of key trees for secure group communications
and discussed how to update a key tree due to a single rekey request (a
join or a leave). In a real application, however, rekey requests are likely to
be processed in batches, instead of in real-time. In this paper we consider
the case where there are equal number of joins and leaves in a batch. In
this case, we can replace a leave by a join at the same location in the key
tree. We call this an update.

We describe a method, called the rekey subtree method, to efficiently
process batch updates. The method identifies the keys that need to be
updated and updates those keys only once. The method saves server cost
substantially, compared to the naive approach, which processes updates
one after another. We also describe how to modify the rekey subtree
method when joins and leaves are unequal.

To analyze the rekey subtree method’s performance, we derive the
exact expressions for the best, worst, and average case server’s encryption
costs. We also derive the exact expression for a user’s average decryption
cost.

If an application only wants to minimize the server’s cost, it can use
server cost expressions to decide what degree the key tree should use.
Our analysis and experiments show that 4 is usually the optimal degree
when the number of updates is below some threshold (about 1/4 of the
number of users), when the number of updates is above the threshold, key
star (key tree of degree equal to the number of users) is optimal. If the
application has users of limited capacity, it should choose a larger degree
to reduce the user’s work, at the cost of increasing the server’s.



1 Introduction

With the growth of the Internet, there is a need for secure multicast applica-
tions. [2] introduced the concept of key graphs for secure group communications.
Among all kinds of key graphs, key tree and key star are two particularly in-
teresting structures. A key star can be considered as a special key tree, with
degree equal to the number of users. Suppose there are n users, for a key tree
with degree d and height h (so h is about log,n), the server’s encryption cost
(simply called server cost) is 2(h — 1) for a join, d(h — 1) for a leave. It can be
shown that d = 4 minimizes server cost.

In a real application, however, joins and leaves are likely to be processed
periodically, instead of in real-time. The server collects join/leave requests for
a period and processes them in a batch. To simplify discussion, we make the
following two assumptions in this paper:

1. A single key server handles all the rekey requests.

2. There are equal number of joins and leaves in a batch.

A real application may distribute the server’s work among a number of
entities. In that case, the server cost notion in this paper should be considered
as server side cost. For many secure multicast applications, the group size is
unlikely to drastically change, so we can assume that there are equal number
of joins and leaves in a batch. Our results are still useful when joins and leaves
are roughly equal.

It is more efficient to replace a leaving user by a joining user, because it
reduces the number of keys to be updated. We call a leave and a join at the
same location in the key tree an update.

We use m to denote the number of updates, n the number of users, d the
degree of the key tree, h the height of the key tree. The naive approach, which
processes updates one after another, is not scalable. Each update’s cost is
d(h — 1), so the cost for m updates is m - d(h — 1). The naive approach is
inefficient because it updates some keys multiple times, while those keys only
need to be updated once.

We describe a method, called rekey subtree method, to efficiently process
batch updates. The method uses a simple algorithm to identify the rekey subtree,
which contains only the keys that need to be updated, and updates those keys
only once. Compared to the naive approach, the rekey subtree method saves
server cost substantially. We also discuss how to modify the rekey subtree
method when joins and leaves are unequal.

To analyze the rekey subtree method’s performance, we derive the exact
expressions for the best case, worst case, and average case server costs. We also
derive a user’s average decryption cost (simply called average user cost.

If an application only wants to minimize server cost, it can use these ex-
pressions to decide what degree the key tree should use. Our analysis and
experiments show that d = 4 is usually optimal when the number of updates
is below some threshold, when the number of updates is above the threshold,



d = n (key star) is optimal. We show how to compute this threshold. The
threshold is roughly n/4. If the application has users of limited capacity, the
application should choose a larger d to reduce the user’s work, at the cost of
increasing the server’s.

The paper is organized as follows. Section 2 describes the rekey subtree
method. Section 3 derives the exact expressions for the server cost and user
cost. Section 4 discusses how to use these expressions to minimize server cost.
Section 5 discusses related work. Section 6 concludes the paper.

2 Rekey subtree method

2.1 Notations

We use the following notations: m is the number of updates, n the number of
users, d degree of the key tree, S the size (number of nodes) of the rekey subtree.

2.2 The idea

When there is a single update, all the keys on the path from the update location
to the root of the key tree have to be updated. When there are multiple updates,
there are multiple paths. These paths form a subtree. Keys located on multiple
paths only need to be updated once, instead of multiple times. If we can identify
this subtree (called rekey subtree) and update the keys in the rekey subtree only
once, we can reduce the server cost.

Figure 1 shows a small example to illustrate this idea. In this example, u; is
replaced by u}, ug4 is replaced by u}. The rekey subtree consists of three nodes:
ki _o, klo3, and kjs. Note that k] and kj are not in the rekey subtree because
they are individual keys and are established separately. In this example, k1 o
only need to be updated once, not twice.

If we use key-oriented or group oriented rekeying, and the rekey subtree’s
size is S, then the server cost is d-S. S is usually smaller than m log,; n, the sum
of the lengths of the rekey paths. The difference depends on the exact locations
of the updates. We quantify this difference in Section 3.

2.3 How to identify the rekey subtree

The algorithm to identify the rekey subtree is simple. We are given a number
of updates. For each update, we mark all the ancestors of the update in the
key tree by following the parent pointer of a node. During the process, if we
find an ancestor that has been marked, we proceed to process the next update.
The resulting marked nodes form the rekey subtree. The running time of the
algorithm is upper bounded by m log; n. The exact running time depends on the
update locations. Note that the marking process is not a performance burden
because it requires little computation.
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2.4 Batch update protocol

Once we have identified the rekey subtree, rekeying can be done efficiently. We
discuss the protocols for three rekeying strategies: user-oriented, key-oriented,
and group-oriented ([2]).

2.4.1 User-oriented rekeying

In this approach, the server constructs a rekey message that contains precisely
the new keys needed by the user and encrypts them using a key held by the
user. For the example in Figure 1, key server s needs to send the following rekey

messages:

Figure 1: Example of a rekey subtree



s — {U7,u8,U9} : {Ki—Q}ng

s — {ui} t {K{_g; Ki23}i;
s = {u2} t {Ki_g, Kias} K,
s — {us} P {K{ g, Kio3} ks
s — {uy} t {K1 o, Kise by
s = {us} t {K1_g, Kis6} ks
s — {ue} t {K1_g, Kis6} ks

The rekey messages can be constructed as follows. For each node z in the
rekey subtree, and for each unchanged child y of z, the server constructs a rekey
message by encrypting the new keys of k-node x and all its ancestors (up to the
root) by the key K, of y. This rekey message is then multicasted to userset(K).

In terms of server cost, user-oriented rekeying is not as efficient as key-
oriented or group-oriented rekeying, because it encrypts the same key using
many descendents’ keys. For the above example, K| o are encrypted by 7
different keys, while in other rekeying strategies, encrypting K| 4 by 3 different
keys, K153, Kjs6, K739, is sufficient.

2.4.2 Key-oriented rekeying

In this approach, each new key is encrypted individually. The protocol is de-
scribed in Figure 2. For the example in Figure 1, the server sends out the
following rekey messages:

s {u7vu8vu9} : {K179}K789

s — {ui} P K o)k, {Klas) Ky
s = {uz} P KT o)k, {Klast ke
s — {us} P KT o) kg, {Klastks
s — {uy} P KT o)k {Kise YK,
s — {us} : {Kifg}Kgssv {Kis6} s
s — {us} P {KT otiy, {Kise ko

s traverses the rekey subtree in pre-order

let z; be the currently visited node,
Zo, ..., T; be the path from the root to z;,
Ky, ..., K} be the new keys for these nodes.

for each child y of x; and y not in the rekey subtree
let K, be the key for y,
let M ={Kj}tkr,-- - {Kj}k,
s — userset(Ky) : M

Figure 2: Key-oriented batch update protocol

The server cost in this approach is exactly d - S.



2.4.3 Group-oriented rekeying

In this approach, the server constructs a single rekey message containing all the
new keys. This rekey message is then multicasted to the entire group. The way
to encrypt the new keys is similar to key-oriented rekeying. For the example in
Figure 1, s does the following:

s = {ul,uz, us, wy, us, ..., ug}:
{K1 o try,, {K1 o}ky s {K1 o}Krso
{K{23}K1v{K{23}Kza {K{23}Ksa {Kise}K;a {Kzlise}Ksa {Kise}Ks

The server cost is d - S, same as key-oriented rekeying.

2.5 Modifications for more joins than leaves

If there are more joins than leaves, the batch can be considered as some updates
plus by some joins. For the extra joins, the server creates a subtree and find a
location in the key tree to graft the subtree. Then the joins can be considered
as updates too. Figure 3 shows a small example to explain the idea. In this
example, the rekey subtree consists of three nodes: K| _o, K55, and Krgg.

2.6 Modifications for more leaves than joins

If there are more leaves than joins, it is possible that some parts of the key tree
will be pruned out. In this case, it is necessary to find out which keys need to be
updated, and which need to be removed from the key tree. This is easy to do:
if all the children of a key are removed, than this key should be removed too.
We can easily add this feature to the marking process. Figure 4 shows a small
example. In this example, the rekey subtree consists of two nodes: K{_g, K{o3.
K¢ does not belong to the rekey subtree because all its children are removed.

3 Analysis

In Section 2, we have seen that the rekey subtree method’s cost depends on
the exact locations of the updates. If the updates are concentrated, the rekey
subtree is smaller, if the updates are scattered, the rekey subtree is bigger. In
this section, we derive the exact expressions for the best, worst, and average
case server costs and user average cost in terms of m, n, and d.

3.1 Assumptions
We make the following assumptions to simplify the discussion.

1. n is some power of d, namely, the key tree is a complete d-ary tree, with
n leaves at the bottom. We call the leaf locations location 1, ..., location
n.

2. Every receiver has an equal probability of being updated.
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Figure 3: Example of more joins than leaves

3.2 Best case server cost

Intuitively, if all the updates happen at concentrated locations, the rekey subtree
is smaller. It can be proved that the best case happens when the updates are
at location 1, ..., location m, as shown in Figure 5. The proof is omitted for
brevity. It is not hard to derive the size of the rekey subtree in this case. It is:

Sbest =

k
- (m — digit_sum(m, d)) + Zrem(m, d)+(h—k+1) 1<m<n
i=1
= nen

where k = [log; m|, h = log,; n+1, digit_sum(m, d) is the sum of the digits of m
when written in radix d, rem(a,b) is a function that has value 1 if a mod b # 0,
value 0 if @ mod b = 0.
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The best server cost, costpest, is thus d - Spes-

3.3 Worst case server cost

Intuitively, if the m updates are uniformly distributed among locations 1 to n,
the rekey subtree’s size is maximized. Suppose d* < m < d**! and m = r-d*+q,
1<r<d-1,0<q< d*. Figure 6 shows one of the worst case scenarios.
Basically, the worst case scenario happens if we distribute the m updates evenly
on subtrees 77, ..., Tx. It can be proved that this scenario really maximizes
the rekey subtree. The proof is omitted for brevity. It is not hard to derive the
worst rekey subtree size:
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Figure 5: Best case scenario.

g fmeo(h—k=2)+ 5@ 1) 1<m<n
worst — ZT—i_ m=n
where k = |log;m|, h =log;n + 1.
The worst server cost, costyorst, is thus d - Syorst -

3.4 Average case server cost

What is the rekey subtree’s average size, given m, n, d? To answer this question,
we first consider the rekey subtree’s size on a certain level. Summing up the
sizes on all levels will give the size of the rekey subtree.

First note that each node on the same level is equivalent. So if we can find
out the probability that a node is in the rekey subtree, then we can find out
the rekey subtree’s size on that level, by multiplying the probability with the
number of nodes on that level.

We use the following convention: the root is on level 0, leaves are on level
h—1, where h = log;n+1. Consider anode z on level[,0 <[ < h—2. (We don’t
need to consider keys on level h — 1 because they are individual keys and don’t
belong to the rekey subtree.) The subtree rooted at node z has n' = d"~'~!
leaves. If one of these leaves is updated, then x is in the rekey subtree, otherwise
x is not in the rekey subtree. The probability that none of the m updates is
located in the subtree of z is:

Ol (n=n)n—-n'"-1)...(n—n'—m+1)
Prl) = —cm= = nn—1)...(n—m+ 1) ’
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Figure 6: Worst case scenario.

where C? is the number of ways to pick b elements out of a elements, regardless
of order. We use the convention that C2 = 0 if b > a. We note that Pr(l) is
easy to compute, even and m and n are large.

Thus, the rekey subtree’s size on level [ is d'(1 — Pr(l)). Summing up over
all the levels, we obtain the average size of the rekey subtree:

=2 1 C:Lnfn/dl n—1 =2 C;nfn/d’
Sung = D d'(1 o cm
=0 n =0 n

The average cost, costsyg, is thus d - Sgyg-

3.5 Shapes of the costs and validation of analysis

The properties of the three costs are not obvious from their expressions. Figure
8 shows the shapes of these costs. We also implemented a simulation program
to validate our analysis for the average cost. The simulation program randomly
generates updates and computes the rekey subtree size accordingly. Our analysis
matches with the simulation perfectly.

Basically, costpes: grows linearly with m. costy,.st reaches its maximum,
% (n—1), when m = n/d. Intuitively, when uniformly distributed, n/d updates
can make every non-leaf node in the key tree belong to the rekey subtree. cost,yq
is closer to costyorst than to costpest-

3.6 Rekey subtree vs. naive approach

Since the rekey subtree method only updates keys once. It outperforms the
naive approach even when there are only two updates. The difference becomes

10



more substantial as the number of updates grows. Figure 9 compares the rekey
subtree method’s worst cost and the naive approach’s cost. We observe that
even the rekey subtree’s worst cost is much better than the naive approach.

3.7 User average cost

Intuitively, a user’s average cost should decrease as d grows, should increase as
m grows. It can be derived as follows. Figure 7 illustrates the idea. Denote
h as the height of the key tree (h = log;n + 1), T'(z) the subtree rooted at
node z, L(z) the set of leaves in T'(x), |L(x)| the size of L(z). User u decrypts
i(1 < i < h—1) keys when there is no update in L(y) and there is at least one
update in L(z). Since |L(y)| = d" %1, |L(z)| = d" ¥,

PT('U/ decrypts Z keys) = (C;nflL(y)l — C’;,nflL(w)l)/CT:n

where C? has the same definition as in Section 3.4. When i = h, u decrypts i
keys when either itself or any of its (d — 1) siblings is updated, thus

Pr(u decrypts h keys) =1-C"* ,/C™*
Summing them up, we have the user’s average decryption cost:

h2iCm g —CM i) (h=1)(C™ —C™ )
_ n—n/d? n—n/di—1 n n—d
USeTqpg = E cm + Cm

i=1

Figure 12 shows the shape of this function.

B N e M mmmmm 22D

- -

Figure 7: User’s average decryption cost.
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4 Minimization of server cost

A real application usually can estimate the expected m and n, then it would
like to know which d it should choose to minimize server cost. We consider
the average cost. Since the average cost is expressed in terms of m, n, d, the
application can plug in the average case expression to compare the costs for
different d’s. Figure 10 and 11 compares the costs for different d’s for a wide
variety of n’s. We observe d = 4 outperforms other choices when m is not big.
(Since the expression is available, it is possible to find the theoretical optimal
d. This might be hard since the expression is not simple.)

We also observe that if we choose d = 4, when m is above some threshold
(denoted by 7m), the average cost is above n. Recall that if we use a key star,
the server cost is always n. So if an application estimates that m is likely to be
above m, it might want to use key star.

We can make costyyg = n, plug in d = 4, and compute m. Since cost,yg
is a complicated expression, solving this equation mathematically may not be
feasible. However, we observe cost,y,, is a monotonic function, so we can use
binary search to locate m. Table 1 shows some m values. We observe that m/n
is about 0.25. So the general rule for an application to minimize server cost is:
if m is less than n/4, choose d = 4, otherwise choose d = n, namely, use a key
star.

L n [ m [m/n]
64 | 15 ] 023
256 | 63 | 0.25
1024 | 247 | 0.24
4096 | 991 | 0.24
16384 | 3963 | 0.24

65536 | 15851 | 0.24

Table 1: m for d = 4.

However, if the application has users of limited capacity, then it should
consider choosing a larger d to reduce the user’s work, at the cost of increasing
the server’s.

5 Related work

Many rekey methods have been proposed for secure group communications.
Many of them are designed to minimize single rekey cost. [1] discusses batch
processing for their key management scheme. They used boolean function mini-
mization techniques to reduce the batch rekeying cost. Their approach, however,
has the collusion problem, namely, two users can combine their knowledge of
auxiliary keys to continue to read group communications, even after they leave
the group. We consider collusion a severe problem.

12



The implementation of [2] can be found in [3]. The interested reader is
encouraged to read [3] and [4] for the design and implementation of a group key
management system.

6 Conclusion

In this paper, we proposed the rekey subtree method to process batch updates.
We described an algorithm to identify the rekey subtree, and a protocol to
process batch updates. We also analyzed the rekey subtree’s performance (in
terms of server cost), under best, worst, and average cases. The rekey subtree
method performs much better than the naive approach. We also analyzed a
user’s average decryption cost.

Using our analytical results, an application can choose an appropriate key
tree degree to minimize server cost, or to balance the work between server and
user. In general, if an application only wants to minimize the server cost, it
should choose degree 4 if the number of updates is below 1/4 of the number
of users, otherwise, the application should choose degree equal to number of
users, namely, use key star. If some users have limited capability, the applica-
tion should choose some larger degree to reduce the user’s work, at the cost of
increasing the server’s.
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