
Bat
h Updates of Key TreesXiaozhou Li, Y. Ri
hard Yang,Mohamed G. Gouda, Simon S. LamDepartment of Computer S
ien
esUniversity of Texas at AustinAustin, TX 78712-1188fxli, yangyang, gouda, lamg�
s.utexas.eduTR-2000-22September 19, 2000Abstra
t[2℄ introdu
ed the 
on
ept of key trees for se
ure group 
ommuni
ationsand dis
ussed how to update a key tree due to a single rekey request (ajoin or a leave). In a real appli
ation, however, rekey requests are likely tobe pro
essed in bat
hes, instead of in real-time. In this paper we 
onsiderthe 
ase where there are equal number of joins and leaves in a bat
h. Inthis 
ase, we 
an repla
e a leave by a join at the same lo
ation in the keytree. We 
all this an update.We des
ribe a method, 
alled the rekey subtree method, to eÆ
ientlypro
ess bat
h updates. The method identi�es the keys that need to beupdated and updates those keys only on
e. The method saves server 
ostsubstantially, 
ompared to the naive approa
h, whi
h pro
esses updatesone after another. We also des
ribe how to modify the rekey subtreemethod when joins and leaves are unequal.To analyze the rekey subtree method's performan
e, we derive theexa
t expressions for the best, worst, and average 
ase server's en
ryption
osts. We also derive the exa
t expression for a user's average de
ryption
ost.If an appli
ation only wants to minimize the server's 
ost, it 
an useserver 
ost expressions to de
ide what degree the key tree should use.Our analysis and experiments show that 4 is usually the optimal degreewhen the number of updates is below some threshold (about 1=4 of thenumber of users), when the number of updates is above the threshold, keystar (key tree of degree equal to the number of users) is optimal. If theappli
ation has users of limited 
apa
ity, it should 
hoose a larger degreeto redu
e the user's work, at the 
ost of in
reasing the server's.1



1 Introdu
tionWith the growth of the Internet, there is a need for se
ure multi
ast appli
a-tions. [2℄ introdu
ed the 
on
ept of key graphs for se
ure group 
ommuni
ations.Among all kinds of key graphs, key tree and key star are two parti
ularly in-teresting stru
tures. A key star 
an be 
onsidered as a spe
ial key tree, withdegree equal to the number of users. Suppose there are n users, for a key treewith degree d and height h (so h is about logd n), the server's en
ryption 
ost(simply 
alled server 
ost) is 2(h� 1) for a join, d(h� 1) for a leave. It 
an beshown that d = 4 minimizes server 
ost.In a real appli
ation, however, joins and leaves are likely to be pro
essedperiodi
ally, instead of in real-time. The server 
olle
ts join/leave requests fora period and pro
esses them in a bat
h. To simplify dis
ussion, we make thefollowing two assumptions in this paper:1. A single key server handles all the rekey requests.2. There are equal number of joins and leaves in a bat
h.A real appli
ation may distribute the server's work among a number ofentities. In that 
ase, the server 
ost notion in this paper should be 
onsideredas server side 
ost. For many se
ure multi
ast appli
ations, the group size isunlikely to drasti
ally 
hange, so we 
an assume that there are equal numberof joins and leaves in a bat
h. Our results are still useful when joins and leavesare roughly equal.It is more eÆ
ient to repla
e a leaving user by a joining user, be
ause itredu
es the number of keys to be updated. We 
all a leave and a join at thesame lo
ation in the key tree an update.We use m to denote the number of updates, n the number of users, d thedegree of the key tree, h the height of the key tree. The naive approa
h, whi
hpro
esses updates one after another, is not s
alable. Ea
h update's 
ost isd(h � 1), so the 
ost for m updates is m � d(h � 1). The naive approa
h isineÆ
ient be
ause it updates some keys multiple times, while those keys onlyneed to be updated on
e.We des
ribe a method, 
alled rekey subtree method, to eÆ
iently pro
essbat
h updates. The method uses a simple algorithm to identify the rekey subtree,whi
h 
ontains only the keys that need to be updated, and updates those keysonly on
e. Compared to the naive approa
h, the rekey subtree method savesserver 
ost substantially. We also dis
uss how to modify the rekey subtreemethod when joins and leaves are unequal.To analyze the rekey subtree method's performan
e, we derive the exa
texpressions for the best 
ase, worst 
ase, and average 
ase server 
osts. We alsoderive a user's average de
ryption 
ost (simply 
alled average user 
ost.If an appli
ation only wants to minimize server 
ost, it 
an use these ex-pressions to de
ide what degree the key tree should use. Our analysis andexperiments show that d = 4 is usually optimal when the number of updatesis below some threshold, when the number of updates is above the threshold,2



d = n (key star) is optimal. We show how to 
ompute this threshold. Thethreshold is roughly n=4. If the appli
ation has users of limited 
apa
ity, theappli
ation should 
hoose a larger d to redu
e the user's work, at the 
ost ofin
reasing the server's.The paper is organized as follows. Se
tion 2 des
ribes the rekey subtreemethod. Se
tion 3 derives the exa
t expressions for the server 
ost and user
ost. Se
tion 4 dis
usses how to use these expressions to minimize server 
ost.Se
tion 5 dis
usses related work. Se
tion 6 
on
ludes the paper.2 Rekey subtree method2.1 NotationsWe use the following notations: m is the number of updates, n the number ofusers, d degree of the key tree, S the size (number of nodes) of the rekey subtree.2.2 The ideaWhen there is a single update, all the keys on the path from the update lo
ationto the root of the key tree have to be updated. When there are multiple updates,there are multiple paths. These paths form a subtree. Keys lo
ated on multiplepaths only need to be updated on
e, instead of multiple times. If we 
an identifythis subtree (
alled rekey subtree) and update the keys in the rekey subtree onlyon
e, we 
an redu
e the server 
ost.Figure 1 shows a small example to illustrate this idea. In this example, u1 isrepla
ed by u01, u4 is repla
ed by u04. The rekey subtree 
onsists of three nodes:k01�9, k0123, and k0456. Note that k01 and k04 are not in the rekey subtree be
ausethey are individual keys and are established separately. In this example, k1�9only need to be updated on
e, not twi
e.If we use key-oriented or group oriented rekeying, and the rekey subtree'ssize is S, then the server 
ost is d �S. S is usually smaller than m logd n, the sumof the lengths of the rekey paths. The di�eren
e depends on the exa
t lo
ationsof the updates. We quantify this di�eren
e in Se
tion 3.2.3 How to identify the rekey subtreeThe algorithm to identify the rekey subtree is simple. We are given a numberof updates. For ea
h update, we mark all the an
estors of the update in thekey tree by following the parent pointer of a node. During the pro
ess, if we�nd an an
estor that has been marked, we pro
eed to pro
ess the next update.The resulting marked nodes form the rekey subtree. The running time of thealgorithm is upper bounded bym logd n. The exa
t running time depends on theupdate lo
ations. Note that the marking pro
ess is not a performan
e burdenbe
ause it requires little 
omputation. 3



u1 and u4 replaced by u1’ and u4’

u2u1’ u4’ u5 u6 u7 u8 u9

k1’ k2 k3

u3

k4’ k5 k6 k7 k8 k9

k123’ k456’

k1−9’

k789

rekey subtree

u2u1 u4 u5 u6 u7 u8 u9

k1 k2 k3

u3

k4 k5 k6 k7 k8 k9

k456 k789

k1−9

k123

Figure 1: Example of a rekey subtree2.4 Bat
h update proto
olOn
e we have identi�ed the rekey subtree, rekeying 
an be done eÆ
iently. Wedis
uss the proto
ols for three rekeying strategies: user-oriented, key-oriented,and group-oriented ([2℄).2.4.1 User-oriented rekeyingIn this approa
h, the server 
onstru
ts a rekey message that 
ontains pre
iselythe new keys needed by the user and en
rypts them using a key held by theuser. For the example in Figure 1, key server s needs to send the following rekeymessages: 4



s! fu7; u8; u9g : fK 01�9gK789s! fu01g : fK 01�9;K 0123gK01s! fu2g : fK 01�9;K 0123gK2s! fu3g : fK 01�9;K 0123gK3s! fu04g : fK 01�9;K 0456gK04s! fu5g : fK 01�9;K 0456gK5s! fu6g : fK 01�9;K 0456gK6The rekey messages 
an be 
onstru
ted as follows. For ea
h node x in therekey subtree, and for ea
h un
hanged 
hild y of x, the server 
onstru
ts a rekeymessage by en
rypting the new keys of k-node x and all its an
estors (up to theroot) by the key Ky of y. This rekey message is then multi
asted to userset(K).In terms of server 
ost, user-oriented rekeying is not as eÆ
ient as key-oriented or group-oriented rekeying, be
ause it en
rypts the same key usingmany des
endents' keys. For the above example, K 01�9 are en
rypted by 7di�erent keys, while in other rekeying strategies, en
rypting K 01�9 by 3 di�erentkeys, K 0123, K 0456, K789, is suÆ
ient.2.4.2 Key-oriented rekeyingIn this approa
h, ea
h new key is en
rypted individually. The proto
ol is de-s
ribed in Figure 2. For the example in Figure 1, the server sends out thefollowing rekey messages:s! fu7; u8; u9g : fK 01�9gK789s! fu01g : fK 01�9gK0123 ; fK 0123gK01s! fu2g : fK 01�9gK0123 ; fK 0123gK2s! fu3g : fK 01�9gK0123 ; fK 0123gK3s! fu04g : fK 01�9gK0456 ; fK 0456gK04s! fu5g : fK 01�9gK0456 ; fK 0456gK5s! fu6g : fK 01�9gK0456 ; fK 0456gK6s traverses the rekey subtree in pre-orderlet xj be the 
urrently visited node,x0, . . . , xj be the path from the root to xj ,K 00, . . . , K 0j be the new keys for these nodes.for ea
h 
hild y of xj and y not in the rekey subtreelet Ky be the key for y,let M = fK 00gK01 ; : : : ; fK 0jgKys! userset(Ky) :MFigure 2: Key-oriented bat
h update proto
olThe server 
ost in this approa
h is exa
tly d � S.
5



2.4.3 Group-oriented rekeyingIn this approa
h, the server 
onstru
ts a single rekey message 
ontaining all thenew keys. This rekey message is then multi
asted to the entire group. The wayto en
rypt the new keys is similar to key-oriented rekeying. For the example inFigure 1, s does the following:s! fu01; u2; u3; u04; u5; : : : ; u9g:fK 01�9gK0123 ; fK 01�9gK0456 ; fK 01�9gK789fK 0123gK01 ; fK 0123gK2 ; fK 0123gK3 ; fK 0456gK04 ; fK 0456gK5 ; fK 0456gK6The server 
ost is d � S, same as key-oriented rekeying.2.5 Modi�
ations for more joins than leavesIf there are more joins than leaves, the bat
h 
an be 
onsidered as some updatesplus by some joins. For the extra joins, the server 
reates a subtree and �nd alo
ation in the key tree to graft the subtree. Then the joins 
an be 
onsideredas updates too. Figure 3 shows a small example to explain the idea. In thisexample, the rekey subtree 
onsists of three nodes: K 01�9, K 0456, and K789.2.6 Modi�
ations for more leaves than joinsIf there are more leaves than joins, it is possible that some parts of the key treewill be pruned out. In this 
ase, it is ne
essary to �nd out whi
h keys need to beupdated, and whi
h need to be removed from the key tree. This is easy to do:if all the 
hildren of a key are removed, than this key should be removed too.We 
an easily add this feature to the marking pro
ess. Figure 4 shows a smallexample. In this example, the rekey subtree 
onsists of two nodes: K 01�9, K 0123.K 0456 does not belong to the rekey subtree be
ause all its 
hildren are removed.3 AnalysisIn Se
tion 2, we have seen that the rekey subtree method's 
ost depends onthe exa
t lo
ations of the updates. If the updates are 
on
entrated, the rekeysubtree is smaller, if the updates are s
attered, the rekey subtree is bigger. Inthis se
tion, we derive the exa
t expressions for the best, worst, and average
ase server 
osts and user average 
ost in terms of m, n, and d.3.1 AssumptionsWe make the following assumptions to simplify the dis
ussion.1. n is some power of d, namely, the key tree is a 
omplete d-ary tree, withn leaves at the bottom. We 
all the leaf lo
ations lo
ation 1, . . . , lo
ationn.2. Every re
eiver has an equal probability of being updated.6



u2 u4’ u5 u6 u7 u8 u9

k1 k2 k3

u3

k4 k5 k6 k7 k8 k9

k1−9’

u2u1 u4 u5 u6

k1 k2 k3

u3

k4 k5 k6

k456

k1−9

k123

u1

k123 (new key)

u4 replaced by u4’; u7, u8, u9 join

k789
k456’

rekey subtree

Figure 3: Example of more joins than leaves3.2 Best 
ase server 
ostIntuitively, if all the updates happen at 
on
entrated lo
ations, the rekey subtreeis smaller. It 
an be proved that the best 
ase happens when the updates areat lo
ation 1, . . . , lo
ation m, as shown in Figure 5. The proof is omitted forbrevity. It is not hard to derive the size of the rekey subtree in this 
ase. It is:Sbest = 8><>: 1d�1 (m� digit sum(m; d)) + kXi=1rem(m; di) + (h� k + 1) 1 � m < nn�1d�1 m = nwhere k = blogdm
, h = logd n+1, digit sum(m; d) is the sum of the digits of mwhen written in radix d, rem(a; b) is a fun
tion that has value 1 if a mod b 6= 0,value 0 if a mod b = 0. 7



u1 replaced by u1’; u4, u5, u6 leave

u2u1’ u4’ u5 u6 u7 u8 u9

k1’ k2 k3

u3

k4’ k5 k6 k7 k8 k9

k123’

k1−9’

k789

rekey subtree

u2u1 u4 u5 u6 u7 u8 u9

k1 k2 k3

u3

k4 k5 k6 k7 k8 k9

k456 k789

k1−9

k123

k456’ (deleted)

Figure 4: Example of more leaves than joinsThe best server 
ost, 
ostbest , is thus d � Sbest .3.3 Worst 
ase server 
ostIntuitively, if the m updates are uniformly distributed among lo
ations 1 to n,the rekey subtree's size is maximized. Suppose dk � m < dk+1 andm = r�dk+q,1 � r � d � 1, 0 � q < dk . Figure 6 shows one of the worst 
ase s
enarios.Basi
ally, the worst 
ase s
enario happens if we distribute the m updates evenlyon subtrees T1, . . . , Tdk . It 
an be proved that this s
enario really maximizesthe rekey subtree. The proof is omitted for brevity. It is not hard to derive theworst rekey subtree size: 8



location 1 location m

rekey subtree

Figure 5: Best 
ase s
enario.
Sworst = � m � (h� k � 2) + 1d�1 (dk+1 � 1) 1 � m < nn�1d�1 m = nwhere k = blogdm
, h = logd n+ 1.The worst server 
ost, 
ostworst , is thus d � Sworst .3.4 Average 
ase server 
ostWhat is the rekey subtree's average size, givenm, n, d? To answer this question,we �rst 
onsider the rekey subtree's size on a 
ertain level. Summing up thesizes on all levels will give the size of the rekey subtree.First note that ea
h node on the same level is equivalent. So if we 
an �ndout the probability that a node is in the rekey subtree, then we 
an �nd outthe rekey subtree's size on that level, by multiplying the probability with thenumber of nodes on that level.We use the following 
onvention: the root is on level 0, leaves are on levelh�1, where h = logd n+1. Consider a node x on level l, 0 � l � h�2. (We don'tneed to 
onsider keys on level h� 1 be
ause they are individual keys and don'tbelong to the rekey subtree.) The subtree rooted at node x has n0 = dh�l�1leaves. If one of these leaves is updated, then x is in the rekey subtree, otherwisex is not in the rekey subtree. The probability that none of the m updates islo
ated in the subtree of x is:Pr(l) = Cmn�n0Cmn = (n� n0)(n� n0 � 1) : : : (n� n0 �m+ 1)n(n� 1) : : : (n�m+ 1) ;9



updates
r+1

updates
r+1

k+1

h

T1 T2

h−k−1

such subtreesd k

updates updates
r r

q such trees Figure 6: Worst 
ase s
enario.where Cba is the number of ways to pi
k b elements out of a elements, regardlessof order. We use the 
onvention that Cba = 0 if b > a. We note that Pr(l) iseasy to 
ompute, even and m and n are large.Thus, the rekey subtree's size on level l is dl(1� Pr (l)). Summing up overall the levels, we obtain the average size of the rekey subtree:Savg = h�2Xl=0 dl(1� Cmn�n=dlCmn ) = n� 1d� 1 � h�2Xl=0 Cmn�n=dlCmn :The average 
ost, 
ostavg , is thus d � Savg .3.5 Shapes of the 
osts and validation of analysisThe properties of the three 
osts are not obvious from their expressions. Figure8 shows the shapes of these 
osts. We also implemented a simulation programto validate our analysis for the average 
ost. The simulation program randomlygenerates updates and 
omputes the rekey subtree size a

ordingly. Our analysismat
hes with the simulation perfe
tly.Basi
ally, 
ostbest grows linearly with m. 
ostworst rea
hes its maximum,dd�1(n�1), whenm = n=d. Intuitively, when uniformly distributed, n=d updates
an make every non-leaf node in the key tree belong to the rekey subtree. 
ostavgis 
loser to 
ostworst than to 
ostbest .3.6 Rekey subtree vs. naive approa
hSin
e the rekey subtree method only updates keys on
e. It outperforms thenaive approa
h even when there are only two updates. The di�eren
e be
omes10



more substantial as the number of updates grows. Figure 9 
ompares the rekeysubtree method's worst 
ost and the naive approa
h's 
ost. We observe thateven the rekey subtree's worst 
ost is mu
h better than the naive approa
h.3.7 User average 
ostIntuitively, a user's average 
ost should de
rease as d grows, should in
rease asm grows. It 
an be derived as follows. Figure 7 illustrates the idea. Denoteh as the height of the key tree (h = logd n + 1), T (x) the subtree rooted atnode x, L(x) the set of leaves in T (x), jL(x)j the size of L(x). User u de
ryptsi(1 � i � h� 1) keys when there is no update in L(y) and there is at least oneupdate in L(x). Sin
e jL(y)j = dh�i�1, jL(x)j = dh�i,Pr(u de
rypts i keys) = (Cmn�jL(y)j � Cmn�jL(x)j)=Cmnwhere Cba has the same de�nition as in Se
tion 3.4. When i = h, u de
rypts ikeys when either itself or any of its (d� 1) siblings is updated, thusPr(u de
rypts h keys) = 1� Cmn�d=CmnSumming them up, we have the user's average de
ryption 
ost:useravg = h�2Xi=1 i(Cmn�n=di � Cmn�n=di�1)Cmn + (h� 1)(Cmn � Cmn�d)CmnFigure 12 shows the shape of this fun
tion.

u

x

y

L(y)

L(x)

i

Figure 7: User's average de
ryption 
ost.11



4 Minimization of server 
ostA real appli
ation usually 
an estimate the expe
ted m and n, then it wouldlike to know whi
h d it should 
hoose to minimize server 
ost. We 
onsiderthe average 
ost. Sin
e the average 
ost is expressed in terms of m, n, d, theappli
ation 
an plug in the average 
ase expression to 
ompare the 
osts fordi�erent d's. Figure 10 and 11 
ompares the 
osts for di�erent d's for a widevariety of n's. We observe d = 4 outperforms other 
hoi
es when m is not big.(Sin
e the expression is available, it is possible to �nd the theoreti
al optimald. This might be hard sin
e the expression is not simple.)We also observe that if we 
hoose d = 4, when m is above some threshold(denoted by �m), the average 
ost is above n. Re
all that if we use a key star,the server 
ost is always n. So if an appli
ation estimates that m is likely to beabove �m, it might want to use key star.We 
an make 
ostavg = n, plug in d = 4, and 
ompute �m. Sin
e 
ostavgis a 
ompli
ated expression, solving this equation mathemati
ally may not befeasible. However, we observe 
ostavg is a monotoni
 fun
tion, so we 
an usebinary sear
h to lo
ate �m. Table 1 shows some �m values. We observe that �m=nis about 0:25. So the general rule for an appli
ation to minimize server 
ost is:if m is less than n=4, 
hoose d = 4, otherwise 
hoose d = n, namely, use a keystar.n �m �m=n64 15 0.23256 63 0.251024 247 0.244096 991 0.2416384 3963 0.2465536 15851 0.24 Table 1: �m for d = 4.However, if the appli
ation has users of limited 
apa
ity, then it should
onsider 
hoosing a larger d to redu
e the user's work, at the 
ost of in
reasingthe server's.5 Related workMany rekey methods have been proposed for se
ure group 
ommuni
ations.Many of them are designed to minimize single rekey 
ost. [1℄ dis
usses bat
hpro
essing for their key management s
heme. They used boolean fun
tion mini-mization te
hniques to redu
e the bat
h rekeying 
ost. Their approa
h, however,has the 
ollusion problem, namely, two users 
an 
ombine their knowledge ofauxiliary keys to 
ontinue to read group 
ommuni
ations, even after they leavethe group. We 
onsider 
ollusion a severe problem.12



The implementation of [2℄ 
an be found in [3℄. The interested reader isen
ouraged to read [3℄ and [4℄ for the design and implementation of a group keymanagement system.6 Con
lusionIn this paper, we proposed the rekey subtree method to pro
ess bat
h updates.We des
ribed an algorithm to identify the rekey subtree, and a proto
ol topro
ess bat
h updates. We also analyzed the rekey subtree's performan
e (interms of server 
ost), under best, worst, and average 
ases. The rekey subtreemethod performs mu
h better than the naive approa
h. We also analyzed auser's average de
ryption 
ost.Using our analyti
al results, an appli
ation 
an 
hoose an appropriate keytree degree to minimize server 
ost, or to balan
e the work between server anduser. In general, if an appli
ation only wants to minimize the server 
ost, itshould 
hoose degree 4 if the number of updates is below 1=4 of the numberof users, otherwise, the appli
ation should 
hoose degree equal to number ofusers, namely, use key star. If some users have limited 
apability, the appli
a-tion should 
hoose some larger degree to redu
e the user's work, at the 
ost ofin
reasing the server's.Referen
es[1℄ I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha. Key man-agement for se
ure internet multi
ast using boolean fun
tion minimizationte
hniques. In Pro
eedings of Info
om 99, 1999.[2℄ C. K. Wong, Mohamed G. Gouda, and Simon S. Lam. Se
ure group 
om-muni
ations using key graphs. In Pro
eedings of Sig
omm 98, 1998.[3℄ C. K. Wong and Simon S. Lam. Keystone: A group key management ser-vi
e. In Pro
eedings of the International Conferen
e on Tele
ommuni
ations,2000.[4℄ Y. Ri
hard Yang, Min S. Kim, Xin
heng Zhang, and Simon S. Lam. Keygem:Towards a s
alable and reliable group key management servi
e. Work inprogress.
13



0100020003000400050006000700080009000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
server
ost

number of updates

d=2, n=4096
4096bestworstsimulated avganalyzed avg

0500010000150002000025000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
server
ost

number of updates

d=4, n=16384
16384bestworstsimulated avganalyzed avg

Figure 8: Best, worst, and average 
ase server 
osts.
14



0100200300400500600700800

0 10 20 30 40 50 60 70
server
ost

number of updates

d=2, n=6464naive approa
hworst

010002000300040005000600070008000900010000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
server
ost

number of updates

d=4, n=4096 4096naive approa
hworst

Figure 9: Performan
e 
omparison between rekey subtree and naive approa
h
15



02040
6080100120140

0 10 20 30 40 50 60 70
server
ost

number of updates

n=64
64d=2d=4d=8

0100020003000400050006000700080009000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
server
ost

number of updates

n=4096
4096d=2d=4d=8d=16

Figure 10: Average 
ase 
omparison between di�erent d's, on small n's.
16



020000400006000080000100000120000140000

0 10000 20000 30000 40000 50000 60000 70000
server
ost

number of updates

n=65536
65536d=2d=4d=16

0100000200000300000400000500000600000

0 50000 100000 150000 200000 250000 300000
server
ost

number of updates

n=262144
262144d=2d=4d=8

Figure 11: Average 
ase 
omparison between di�erent d's, on large n's.
17



1234
5678
910

0 200 400 600 800 1000 1200
user 
ost

number of updates

n=1024 d=2d=4d=32

024
6810
12

0 500 1000 1500 2000 2500 3000 3500 4000 4500
user 
ost

number of updates

n=4096 d=2d=4d=8d=16

Figure 12: User's average de
ryption 
ost.
18


