A Secure Group Key Management Protocol
Communication Lower Bound

Yang Richard Yang Simon S. Lam
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1188
{yangyang, lamh@cs.utexas.edu

TR2000-24

July, 2000
Revised: September 2000

Abstract

We discuss in this paper a lower bound on communication costd-
cure group key management protocols. To model a rekeyingepsy we
introduce the concept aékey encryption graphdUsing the rekey encryp-
tion graphs, we show that given the forward secrecy requrgm.e. a user
who has left the secure group cannot have access to futunp geys, there
exists a sequence 0f. user join and leave requests such that the amortized
per request communication cost{¥in(n)). Given the known protocols
that have achieved this lower bound, in order to further ouprthe scalabil-
ity of group rekeying communication protocol performanftgyre research
needs to allow more types of operations to achieve bettéonpeance.

*Research sponsored in part by National Science Foundatant §lo. ANI-9977267 and
grant no. ANI-9506048. Experiments were performed on egeit procured with NSF grant no.
CDA-9624082.

fContact author, Phone: (512)471-9599, Fax: (512)471-8885

1 Introduction

Many emerging network applications (such as teleconfereard information
dissemination services) are based upon a group communmsatinodel. As a
result, securing group communications becomes a criteavorking research is-
sue. Recently, Internet Research Task Force (IRTF) hasfb®ecure Multicast
Research Group (SMuG)[5] to investigate the problem of segwyroup commu-
nications. One major problem area in securing group comaation is the group
key management problem, which is concerned with the sedstebdtion and

refreshment of user keying material.

The objective of a key management system is to add acces®lkonttop of
efficient multicast communication such as over IP multi¢géltA standard tech-
nique to this end is to maintain a common group key that is kntmnall multicast
group members, but is unknown to non-group members. Allg@mmunica-
tion will be encrypted using this shared key. The main pnobkere is that in a
dynamic membership environment, users will join and le&eegroup, therefore,
efficiently changing the group key becomes a performanceiss

It is clear that user join requests do not pose a issue beedlusgers in the
group share the common group key, and therefore can chargesw group key
using the current group key. It is user leave requests thes fie scalability issue.
Since the leaving user shares the group key with other usessjer to distribute
a new group key to the remaining users, other keys may have tséd. In the
simplest case, the key server may have to send the new grgugnkeypted by a
remaining user’s individual key, which is only shared bedwa user and the key
server. If the number of users in the groumjsve see that the complexity of this
simple scheme has a complexity@fn).

In the past few years, several schemes have been proposeprtive rekeying
performance, and these schemes can improve the rekeyingexity from O (n)
to O(In(n)) [8, 7, 1]. Besides the group key and individual keys, the$eises
use auxiliary keys to improve rekeying performance. Inipalar, for two keysk
andk’, they will usek to encryptk’ and then send the encryption to all users. Any
user who havé will be able to decrypt.'.

With these proposed schemes, one remaining question ikeittbese schemes
have achieved the best possible performance. In anothelsweain we do better?
In order to answer this question, a study of the rekeyinggmaitlower bound
will be helpful because it can not only show whether the psggloschemes have
achieved the lower bound, it can also point out which comgBalay an impor-
tant role to derive the lower bound. In order to further immrperformance, either

2

more types of operations have to be added or some constinavego be relaxed.

In the past, several lower bounds on broadcast encryptilbeen derived [2,

6, 3]. However, these lower bounds are mostly concernedtivélihe trade-offs
between communication cost and storage cost. The lowerdbolmsest to our
result is derived in [3]. In [3], Canetti, Malkin and Nissinerived lower bounds
on the tradeoffs between communication and user storage fwwsyroup rekey-
ing in a dynamic multicast group with one key server. In patar, they have
derived the following two results: (1) Leét/ denote the set of users in a session.
Let b(n) + 1 be the maximal number of keys held by any useMnwheren is
the number of receivers in the session. Denote the rekeyingranication cost
c(n) as the worst case number of keys to be encrypted when a usesleBhen
the rekeying communication cost satisfi¢a) > n'/% — 1. (2) Define a spe-
cial class of rekeying protocols callatfructure preservingrotocols. Intuitively,
structure preserving protocols are those that maintaimptbperty of “the set/
has advantage over the uséracross updates, for any subgétand usew. That

is, if there is a set of usef$ all sharing a key:, and a usev which does not have
this key, then after removing another usé(whetherys’ € U or not), the users
in U still hold some key' thatv does not hold. For this special class of rekey-
ing protocol, the authors proved that the rekeying comnatito cost satisfies
c(n) > bn'/® — b, whereb + 1 denotes the maximal number of keys held by any
userinM.

These two results are the first to show the tradeoff betweensisrage cost
b(n) and communication costn) when a user leaves. From the communication
lower bound ofc(n) > bn'/* — b, we may draw the conclusion that if we in-
crease the number of keys each user holds to be very large,ayeeduce the
communication cost to be very low.

However, the bandwidth utilized by a rekeying protocol utds both user
join communication cost and user leave communication eost the authors have
only considered the leave communication cost. Intuitiviblg storage co${n) is
related to join cost because the higher the number of keysrahadds, the higher
the bandwidth to distribute these keys to the newly joinestsisin the extreme
case, when the key server distributes one key for each paiteaer subset when a
user joins, the key server can reduce the leave communiczdist to be constant.
However, under this scheme, the communication cost toilolisé the keys can
be very high. From this discussion, we see that even if weusteifterested in
communication cost, we have to consider both user join comication cost and
user leave communication cost.

The objective of this paper is to derive a lower bound on retgegommuni-

3

cation cost, considering both user join requests and lesygessts. We show that
given the forward secrecy requirement, i.e. a user who Hathke secure group
cannot have access to future groups, there exists a seqoke2weeaiser joins and
leaves such that the amortized per request communicatginsge(in(n)).

The balance of this paper is organized as follows. In SeQjowe discuss
our system model. We present our lower bound in Section 3.cbhelusion is
presented in Section 4.

2 System Model

2.1 Forward and backward secrecy

There can be two types of security requirements on a secaupdey manage-
ment system:

e Backward secrecy: A newly joined user can not gain accesasbgroup
keys.

e Forward secrecy: After a user has left the secure groupoitldmot be able
to gain access to future group keys.

When the only requirement is backward secrecy, a simple kayagement
scheme withD(1) complexity can be designed. Assume the current group key is
gi- When thei + 1-th new user joins, the key server sets; = H(k;), where
H(.) is a secure one way function. Then what the key server neetisisato send
gi+1 to the new user, and also multicasts a signal to other userasthese users
will do the hash to get the new key. As another approach withsing secure
one way function, the key server can encrypt; by g;. Again, this approach has
O(1) complexity.

The major difficulty arises when we have to provide forwardreey. As we
will see later, even without backward secrecy, in order twvjote forward secrecy,
the communication cost will have a lower boundfin(n)), wheren is the
number of user join requests, and number of user leave requidsreafter, we
only consider forward secrecy.

2.2 Rekey assumptions

To derive any lower bound on a system or to prove the securdpety of a
system, we need to first define our system model. The assumptie made

4

about the system are:
e There is only one key server.

e Afterthe key server has finished processing a request,etsirsthe session
(joined, but has not left yet) share a common group key. Tlee wbko has
left the secure group or has never joined the group does netdwess to
the key. We denote the group key after thidn request ag;. Notice that
when thei-th request s a join request, and backward secrecy is noirezlj
the key server may not change the group key, therefore, dssiple thay;
is the same ag;,; in this case.

e When updating the keys, the key server uses onekkisyencrypt another
key k'

e The communication cost is in terms of the number of times #hederver
encrypts one key with another key and distribute it. Whenayessmessage,
we mean one key encrypted by another key. In implementaseveral
encrypted keys can be put in one data packet.

e The adversary has infinite storage power, i.e., all messdig&ibuted by
the key server can be saved by the adversary.

2.3 Rekey encryption graphs

Inspired by the key graph approach [8] by Wong, Gouda and kaemse directed
graphs to represent the rekeying process. However, weentbtat a key graph
in [8] represents just a snapshot of the rekeying processrder to represent a
whole rekeying process, and therefore make it possible totdhe communica-
tion cost, we need to extend the key graph to include histafigrinations. We
call our extended graphiekey encryption graphs

Our rekey encryption graphs consist of a sequence of gra@hs®,, where
graphG; models the rekeying process for the firsequests. Intuitively, we desire
that the number of edges iH; represents the number of messages that the key
server has sent for rekeying the fitsequests.

Next, we describe the nodes and edges in a rekey encrypaph ;.

G; will include two types of nodes: key nodes, and user nodes.s&hof user
nodes)M includes all potential users. The second type of nodes iskeg. We
distinguish two types of key nodes. We first include a speztads of key nodes

called individual key nodes. These individual key node$ meldistributed by the
key server using a secure channel established between andseire key server at
authentication time. The other key nodes represent thetkaythe key server has
ever generated and distributed by encrypting it using ardtay inG; in order to
process the firstrequests.

G; includes two types of edges. The first type of edges is fromeanusdeu
to its individual key nodé:. The second type of edges is inserted when akkisy
distributed by the key server by encrypting it with anothey k'. If the key server
sends out such a message, we have an edgeifrto.

For a graphG;, we define a subgrap$. First,S; includes a user nodeif the
user should be in the secure group after the firglquests (joined but not left).
Second,S; includes the current group key noge Third, a key node or an edge
isin S; if itis on a path from a user nodein S; to the current group key nodg.

Ay

LTI

g i+i>?

I LSkl

G

Figure 1. An example of rekey encryption graphs

Figure 1 shows examples of rekey encryption graphs. Theewvip@ph rep-
resentss;.;. InsideG,;,; in the dashed cycle i&;. The six square nodes at the
bottom of the graph are user nodes. The six dashed circlesrjadeabove the
square nodes are the individual key nodes. There is an edigeduser node to
its individual key node. Each edge from one key natléo another key nodé
represents that the key server has senttoencrypted byk'. g; andg;,; are the
group keys ofGG; andG;, 1, respectively. Also shown in Figure 1., which
includes the four user nodes on the right bottom, the groymkeeg; . ;, and all
the key nodes and edges that are on a path from a user négg ito the group
key nodeg; ;.

24

Rekey encryption graph properties

From our construction of rekey encryption graph we know that the number
of edges inG; represents the number of messages that the key server hids sen
process the firstrequests. We also notice th@ C G, for any: < j.

However, not all graphs can represent a rekeying processredi@sent a
rekeying process that satisfy the forward secrecy req@rgna rekey graply;
has to at least satisfy these following necessary progertie

There is at least one path from a user nade the current group key; if
is a member of the current group.

There should be no path to the group kgyf a useru is not in the current
group.

For the following property, we limit to5; C G;. Denoten as the total
number of user nodes if,. Definei(x) as the in-degree of a nodein S;.
Define P(u) as the set of key nodes that are on a path from a usermntue
the group key node;. We define the cost(u) of u as:

c(u)= > i(x) (1)

zEP(u)
DenoteC' as the maximal of(v) among the: users inS;:

C= max c(u) (2)

Yuser node u

Defines(n) as the summation of the cost of all userssin

s(n) = Z c(u) 3)

all user node u
Now, we can prove the following Lemma:
Lemmal s(n) > nin(n)

Proof: Definen(z) as the number of user nodesipthat can lead ta. We
observe that,

sy= Y, dw= Y i@ (4)

all user node u all key node x

Next, we proves(n) > nin(n) by induction on the height of the group
key. It is obvious that the lemma holds for group key heighAssume the
lemma is true for height less than or equahtoAssume the group key has
t children. Apply the induction assumption on each child bhanwe have

s(n) > tn + Z niln(n;) (5)

=1
wheren; is the number of user nodes that are belowitkechild.
It is easy to verify thaif () = z In(z) is a convex function, therefore, we

have
> nin(%) ()

Plug (??) into (5), we have
s(n) > nt 4+ nin(n) — nin(t) (8)

We know that — in(t) > 0 for ¢ > 1, therefores(n) > nin(n). O
Using Lemma 1, we have that

C > In(n) 9)

2.5 Rekey encryption graph limitations

Before we present our lower bound, we discuss the limitadfaur model in this
subsection. The major limitation of our model is that we aallpw the operation

of single encryption, i.e. encryption of one key by anotrey. Kt does not support
other operations. For example, it is possible that oneikegn be protected by
two keysk’ andk”. One way to implement this protection is to use the XOR of
two keys,k’ andk”, to encryptk. In this case, for an adversary to detit has to
have botht’ andk”. To model this type of operation, we will have to increase the
expressing power of rekey graph by adding AND edges. We l#asextension

as a future work.

3 Lower Bound of Rekeying Communication

With the preparation of the previous section, we prove is ggction a lower
bound on the secure rekeying communication cost, consglénth join requests
and leave requests. We notice that even though backwardcseoray not be
required, the key server may want to distribute some keysiattime in order
to reduce the cost of processing user leave request. Therefbuitively, it is

important that we consider a sequence of operations instedingle operation.

Figure 2: Usem leaves

Suppose theé-th request is the leave request of ugefor the purpose of our
construction, we assume thatloes not re-join. Then because of forward secrecy
requirement, we know that there should not be a path fudmany group key;
in G;, wherej > 4. Let P(u) denote the set of key nodes on the path froto
the group key node; in G;. To satisfy the forward secrecy requirement, we know
that no node inP(«) should be inS;, for any;j > i, because otherwise usecan
gain access to future group keys. Figure 2 shows the scenario

From the definition of the cost of a user node, we know thaktlee at least
c(u) edges inS;, and these edges will not be i), wherej > 4. In particular, if
we choose the user node with the largest cost, we know theg Wi# be at least
In(n) edges inS;, but these edges will not be 8y, for any;j > i.

9

Now, we can construct a sequenceafrequests to hav@(nin(n)) edges. In
another words, we will show thd¥,, has at leasf2(nin(n)) edges. Remember
that the number of edges @7; is the number of messages a key server has to send
to process thérequests. Therefore, the amortized number of edges pegseizu

To construct the sequence, first assumeser join requests. These join re-
guests are followed by a sequencenotiser leave requests. Consider the first
leave request. We know that this is thetr 1-th request because there argin
requests ahead of it. We select the leaving usas the user who has the maxi-
mume¢(u) of the remaining users. From previous discussion, we knavttiere
are at leastn(n) edges inS,, but not inS,.;. Since all previous requests are
join requests, we know that all these edges are added togwden join re-
guests. Continue this process on the next leave requedtisiodse, we can get
In(n —1) edges. We notice that the edges in the second leave may beaiithed
when the key server is processing th@in requests or processing the first leave
request. Continue this process for a totahatfimes, we have at least a total of
In(n) +In(n — 1) + ... + 1 = 6(nin(n) non-overlapping edges in the rekey en-
cryption graphz,,,. Since there is a total @ requests, the amortized bandwidth
requirements per request(¥in(n)). Therefore, we have proved the following
theorem:

Theorem 1 Given forward secrecy security requirement, there exisgeguence
of 2n requests such that the amortized per request communicattis(2(In(n)).

4 Conclusion

We discussed in this paper a lower bound on communicatidrf@osecure group
key management system. To model the rekeying process, veelited the con-
cept ofrekey encryption graphdJsing the rekey encryption graphs, we were able
to show that given the forward secrecy requirement, theistsea sequence ah

join and leave requests such that the amortized per reqoieshanication cost is
Q(In(n)). This lower bound indicates that when the only allowed ofendor the
key server to distribute one key is to encrypt it by anothgr & communication
cost will bef(In(n)), given the known protocols that have achieved this lower
bound. Therefore, in order to further improve the scalgbif group rekeying
communication cost, other operations will have to be ingastd. Another po-
tential way to improve rekeying scalability is to relax thecsrity requirements.

10

For example, one potential is to allow some users to enjoy figde when the
lost of value can be offsetted by the saving of rekeying ct%®é are currently
investigating these possibilities.

References

[1] David Balenson, David McGrew, and Alan Shermagey Management for
Large Dynamic Groups: One-way Function Trees and Amortinédliza-
tion, INTERNET-DRAFT1999.

[2] C. Blundo, L. A. Frota Mattos, and D. R. Stinson. Tradésdfetween com-
munication and storage in uncondinationally secure schedorebroadcast
encryptioin and interactive key distribution. Kdvances in cryptology—
CRYPTO '96 Santa Barbara, CA, 1996.

[3] Ran Canetti, Tal Malkin, and Kobbi Nissim. Efficient coranication-storage
tradeoffs for multicast encryption. BUROCRYPT '991999.

[4] S.E. Deering and D.R. Cheriton. Multicast routing inatptam internetworks
and extended LANSACM Transactions on Computer Syste®(&):85-110,
May 1990.

[5] Internet Research Task Force (IRTF). The secure mgkicssearch group
(SMuG). http://lwww.ipmulticast.com/community/smug/.

[6] M. Luby and J. Staddon. Combinatorial bounds for broatleacryption. In
Advances in cryptology—EUROCRYPT #&poo, Finland, 1998.

[7] D.Wallner, E. Harder, and Ryan Agd¢ey Management for Multicast: Issues
and Architectures, INTERNET-DRAFSeptember 1998.

[8] C. Wong, M Gouda, and S. Lam. Secure group communicatisngg key
graphs. IPACM SIGCOMM’98 Vancour, CA, September 1998.

11

