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tSin
e the advent of high-performan
e distributed-memory parallel 
omputing, the need for intelligible
ode has be
ome ever greater. The development and maintenan
e of libraries for these ar
hite
tures issimply too 
omplex to be amenable to 
onventional approa
hes to 
oding and attempting to employtraditional methodology has led to the produ
tion of an abundan
e of ineÆ
ient, anfra
tuous 
ode thatis diÆ
ult to maintain and nigh-impossible to upgrade.Having struggled with these issues for more than a de
ade, we have arrived at a 
on
lusion that issomewhat surprising to us: the answer is to apply formal methods from Computer S
ien
e to the devel-opment of high-performan
e linear algebra libraries. The resulting approa
h has 
onsistently resulted inaestheti
ally-pleasing, 
oherent 
ode that greatly fa
ilitates performan
e analysis, intelligent modularity,and the enfor
ement of program 
orre
tness via assertions. Sin
e the te
hnique is 
ompletely language-independent, it lends itself equally well to a wide spe
trum of programming languages (and paradigms)ranging from C and FORTRAN to C++ and Java to graphi
al programming languages like those usedfor LabView. In this paper, we illustrate our observations by looking at the development of the FormalLinear Algebra Methods Environment (FLAME) for implementing linear algebra algorithms on sequen-tial ar
hite
tures. This environment demonstrates that lessons learned in the distributed memory world
an guide us toward better approa
hes to 
oding even in the sequential world.�This work was partially supported by the Remote Exploration and Experimentation Proje
t at Calte
h's Jet PropulsionLaboratory, whi
h is part of NASA's High Performan
e Computing and Communi
ations Program, and is funded by NASA'sOÆ
e of Spa
e S
ien
e. 1



1 Introdu
tionWhen 
onsidering the unmanageable 
omplexity of 
omputer systems, Dijkstra re
ently made the followingobservations [7℄:(i) When exhaustive testing is impossible {i.e., almost always{ our trust 
an only bebased on proof (be it me
hanized or not).(ii) A program for whi
h it is not 
lear why we should trust it, is of dubious value.(iii) A program should be stru
tured in su
h a way that the argument for its 
orre
tnessis feasible and not unne
essarily laborious.(iv) Given the proof, deriving a program justi�ed by it, is mu
h easier than, given theprogram, 
onstru
ting a proof justifying it.The 
ore 
urri
ulum of any �rst-rate undergraduate Computer S
ien
e department in
ludes at least one
ourse that fo
uses on the formal derivation and veri�
ation of algorithms [12℄. Many of us in s
ienti�

omputing may have, at some point in time, hastily dismissed this approa
h, arguing that this is all veryni
e for small, simple algorithms, but an a
ademi
 exer
ise hardly appli
able in \our world." Sin
e itis often the 
ase that our work involves libraries 
omprised of hundreds of thousands or even millionsof lines of 
ode, the knee-jerk rea
tion that this approa
h is mu
h too 
umbersome to take seriously isunderstandable. Furthermore, the momentum of established pra
ti
es and \traditional wisdom" do little ifanything to dissuade one from this line of reasoning. Yet, as the result of our sear
h for superior methods fordesigning and 
onstru
ting high-performan
e parallel linear algebra libraries, we have 
ome to the 
on
lusionthat it is only through the systemati
 approa
h o�ered by formal methods that we will be able to deliverreliable, maintainable, 
exible, yet highly eÆ
ient matrix libraries even in the relatively well-understoodarea of (sequential and parallel) dense linear algebra.While some would immediately draw the 
on
lusion that a 
hange to a more modern programminglanguage like C++ is at least highly desirable, if not a ne
essary pre
ursor to writing elegant 
ode, thefa
t is that most appli
ations that 
all pa
kages like LAPACK [3℄ and S
aLAPACK [6℄ are still writtenin FORTRAN and/or C. Interfa
ing su
h an appli
ation with a library written in C++ presents 
ertain
ompli
ations. However, during the mid-nineties, the Message-Passing Interfa
e (MPI) introdu
ed to thes
ienti�
 
omputing 
ommunity a programming model, obje
t-based programming, that possesses many ofthe advantages typi
ally asso
iated with the intelligent use of an obje
t-oriented language [26℄. Using obje
ts(e.g. 
ommuni
ators in MPI) to en
apsulate data stru
tures and hide 
omplexity, a mu
h 
leaner approa
hto 
oding 
an be a
hieved. Our own work on the Parallel Linear Algebra PACKage (PLAPACK) borrowedfrom this approa
h in order to hide details of data distribution and data mapping in the realm of parallellinear algebra libraries [28℄. The primary 
on
ept also germane to this paper is that PLAPACK raises thelevel of abstra
tion at whi
h one programs so that indexing is essentially removed from the 
ode, allowing theroutine to re
e
t the algorithm as it is naturally presented in a 
lassroom setting. Sin
e our initial work onPLAPACK, we have experimented with similar interfa
es in su
h seemingly disparate 
ontexts as (parallel)out-of-
ore linear algebra pa
kages and a low-level implementation of the sequential BLAS [14℄.FLAME is the latest step in the evolution of these systems. It fa
ilitates the use of a programming stylethat is equally appli
able to everything from out-of-
ore, parallel systems to single-pro
essor systems where
a
he-management is of paramount 
on
ern.Over the last seven or eight years it has be
ome apparent that what makes our task of library developmentmore manageable is this systemati
 approa
h to deriving algorithms 
oupled with the abstra
tions we useto make our 
ode re
e
t the algorithms thus produ
ed. Further, it is from these experien
es that we 
an
on�dently state that this approa
h to programming greatly redu
es the 
omplexity of the resultant 
odeand does not sa
ri�
e high performan
e in order to do so.2



Indeed, it is exa
tly the formal te
hniques that we may have at one time dismissed as merely a
ademi
or impra
ti
al whi
h make this possible, as we will attempt to illustrate in the following se
tions.2 The Case for a More Formal Approa
hIdeally, an implementation should 
learly re
e
t the algorithm as it is presented in a 
lassroom setting. Evenbetter, some of the derivation of the algorithm should be apparent in the 
ode and di�erent variants of analgorithm should be re
ognizable as slight perturbations to an algorithmi
 \skeleton" or base 
ode. If the
ode is just a me
hani
ally-realizable, straightforward translation of the algorithm presented in 
lass, thereshould be no opportunity for the introdu
tion of logi
al errors or 
oding bugs. Presumably, it should bepossible to prove the algorithms 
orre
t, thus ensuring that the 
ode is 
orre
t. Previewing the next se
tions,algorithms for blo
ked variants of LU fa
torization of a matrix are presented in Fig. 2. In Fig. 5 we showhow this 
an be translated into an skeleton for a 
ode. By entering di�erent updates of submatri
es into thisskeleton, given in Se
tion 6.2, di�erent variants of the LU fa
torization algorithm are realized.Typi
ally, it is diÆ
ult to prove 
ode 
orre
t pre
isely be
ause one is unsure that the 
ode truly mirrorsthe algorithm. With our approa
h, the 
hasm is largely bridged by the simple yet 
ru
ial fa
t that somevery simple synta
ti
 rewrite rules 
an produ
e the 
ode from an algorithm expressed as one might in a
lassroom, using mathemati
al formulae and stylized matrix depi
tions. Sin
e we 
an prove the 
orre
tnessof the algorithm we wish to employ (the proof is generally 
onstru
tive in nature, but that is of little
onsequen
e) and be
ause the 
orre
tness of the translation from algorithm to 
ode is at least as reliableas 
ompiler te
hnology, the 
omplexity of the task at hand is greatly ameliorated. Namely, 
omponentsare expe
ted to live up to 
ertain \
ontra
tual obligations" [1, 4, 11℄. In the 
ase of a library 
onstru
tedentirely through the methodology presented here, these 
omponents would be 
omposed in like manner soas to make this task manageable. This is largely due to the fa
t that the approa
h presented here leads toa software ar
hite
ture layered in su
h a way so as to require one to rely on the 
orre
tness of a very smallnumber of base-level modules. Sin
e those units are small, their 
orre
tness 
an be established through theappli
ation of standard formal methods. It is true that, in pra
ti
e, one must a

ept that an appli
ationwill need to interfa
e with other libraries (for example, the vendor-supplied BLAS) that are not built in a\proof-friendly" format. However, it may still be possible to establish the 
orre
tness of a program if oneis 
areful to impose minimal obligations on these, presumably time-tested and well-do
umented, pie
es of
ode.Having said this, let us 
larify through a simple example.3 A Case Study: LU Fa
torizationWe illustrate our approa
h by 
onsidering LU fa
torization without pivoting. Given n�n matrix A we wishto 
ompute n� n lower triangular matrix L with unit main diagonal and n� n upper triangular matrix Uso that A = LU . The original matrix A is overwritten by L and U in the pro
ess.3.1 A simple derivationThe usual derivation of an algorithm for the LU fa
torization pro
eeds as follows:Partition A = � �11 aT12a21 A22 � ; L = � 1 0l21 L22 � ; and U = � �11 uT120 U22 �3



Now A = LU translates to� �11 aT12a21 A22 � = � 1 0l21 L22 �� �11 uT120 U22 � = � �11 uT12l21�11 l21uT12 + L22U22 �so that the following equalities must hold:�11 = �11 aT12 = uT12a21 = �11l21 A22 = l21uT12 + L22U22Finally, we arrive at the following algorithm� Overwrite �11 and aT12 with �11 and uT12, respe
tively (no-op).� Update a21  l21 = a21=�11.� Update A22  A22 � l21uT12.� Re
ursively fa
tor A22 ! L22U22.While the algorithm is formulated as tail-re
ursive, it is usually implemented as a loop.3.2 But what intermediate value is in the matrix?In order to prove 
orre
tness, one question we must ask is what intermediate value is in A at any parti
ularstage of the algorithm. To answer this, partitionA =  A(k)TL A(k)TRA(k)BL A(k)BR ! ; L =  L(k)TL 0L(k)BL L(k)BR ! ; and U =  U (k)TL U (k)TR0 U (k)BR !(1)where A(k)TL, L(k)TL, and U (k)TL are all k � k matri
es. Noti
e that \T", \B", \L", and \R" stand for Top,Bottom, Left, and Right, respe
tively. Noti
e that A(k)TL A(k)TRA(k)BL A(k)BR ! =  L(k)TL 0L(k)BL L(k)BR ! U (k)TL U (k)TR0 U (k)BR ! =  L(k)TLU (k)TL L(k)TLU (k)TRL(k)BLU (k)TL L(k)BLU (k)TR + L(k)BRU (k)BR !so the following equalities must hold when the algorithm has 
ompleted:A(k)TL = L(k)TLU (k)TL(2) A(k)TR = L(k)TLU (k)TR(3) A(k)BL = L(k)BLU (k)TL(4) A(k)BR = L(k)BLU (k)TR + L(k)BRU (k)BR(5)Finally, let Âk equal a matrix that holds the 
urrent intermediate result of a given algorithm for 
omputingthe LU fa
torization. In the following pages we will show that di�erent 
onditions on the 
ontents of Âklogi
ally di
tate di�erent variants for 
omputing the LU fa
torization, and these di�erent 
onditions 
an besystemati
ally generated. Previewing this, noti
e that to 
ompute the LU fa
torization, the submatri
es ofL and U must be 
omputed. We assume that Âk must 
ontain partial results towards that goal. Here aresome possibilities: 4



Condition Âk 
ontainsOnly (2) is satis�ed.  LnU (k)TL A(k)TRA(k)BL A(k)BR !Only (2) and (3) have been satis�ed.  LnU (k)TL U (k)TRA(k)BL A(k)BR !Only (2) and (4) have been satis�ed.  LnU (k)TL A(k)TRL(k)BL A(k)BR !Only (2), (3), and (4) have been satis�ed.  LnU (k)TL U (k)TRL(k)BL A(k)BR !(2), (3), and (4) have been satis�ed and as mu
h of (5) has been
omputed without 
omputing any part of L(k)BR or U (k)BR.  LnU (k)TL U (k)TRL(k)BL A(k)BR � L(k)BLU (k)TR !Here we use the notation fLnUg to denote a lower and upper triangular matrix that are stored in a squarematrix by overwriting the lower and upper triangular parts of that matrix. (Re
all that L has ones on thediagonal, whi
h need not be stored.)In the subsequent subse
tions, we des
ribe how to derive algorithms in whi
h the desired 
onditions hold.Note that in this paper we will not 
on
ern ourselves with the question of whether the above 
onditionsexhaust all possibilities. However, they do give rise to all 
ommonly dis
ussed algorithms. For example,they yield all algorithms depi
ted on the 
over of and dis
ussed in G.W. Stewart's re
ent book on matrixfa
torization [27℄.3.3 Lazy AlgorithmThis algorithm is often referred to as a bordered algorithm in the literature. Stewart, [27℄ rather 
olorfully,refers to it as Sherman's mar
h.Unblo
ked AlgorithmLet us assume that only (2) has been satis�ed. The question be
omes how to 
ompute Âk+1 from Âk. Toanswer this, repartition A =  A(k)TL A(k)TRA(k)BL A(k)BR ! = 0B� A(k)00 a(k)01 A(k)02a(k) T10 �(k)11 a(k)T12A(k)20 a(k)21 A(k)22 1CAwhere A(k)00 is k � k (and thus equal to A(k)TL), and �(k)11 is a s
alar. Repartition L, U , and Âk 
onformally.Noti
e that we wish to 
hange the 
ontents of the 
urrent matrix from Âk to Âk+1 or LnU (k)TL A(k)TRA(k)BL A(k)BR ! = 0B� LnU (k)00 a(k)01 A(k)02a(k) T10 �(k)11 a(k)T12A(k)20 a(k)21 A(k)22 1CA to  Â(k+1)TL Â(k+1)TRÂ(k+1)BL Â(k+1)BR ! = 0B� LnU(k)00 u(k)01 A(k)02l(k)T10 �(k)11 a(k) T12A(k)20 a(k)21 A(k)22 1CAThus, it suÆ
es to 
ompute u(k)01 , l(k)10 , and �(k)11 . 5



Partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0Partition� ATL ATRABL ABR �= LnU00 a01 A02aT10 �11 aT12A20 a21 A22 !a01  u01 = L�100 a01aT10  lT10 = aT10U�100�11  �11 = �11 � lT10u01Continue with� ATL ATRABL ABR �= LnU00 u01 A02lT10 �11 aT12A20 a21 A22 !enddo

Partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0Determine blo
k size bPartition� ATL ATRABL ABR �= LnU00 A01 A02A10 A11 A12A20 A21 A22 !where A11 is b� bA01  U01 = L�100 A01A10  L10 = A10U�100A11  A11 � L10U01A11  LnU11 = LU fa
t(A11)Continue with� ATL ATRABL ABR �= LnU00 U01 A02L10 LnU11 A12A20 A21 A22 !enddoFigure 1: Unblo
ked and blo
ked versions of the lazy variant for 
omputing the LU fa
torization of a squarematrix A (without pivoting).To derive how to 
ompute these quantities, 
onsider0B� A(k)00 a(k)01 A(k)02a(k) T10 �(k)11 a(k) T12A(k)20 a(k)21 A(k)22 1CA = 0B� L(k)00 0 0l(k)T10 1 0L(k)20 l(k)21 L(k)22 1CA0B� U (k)00 u(k)01 U (k)020 �(k)11 u(k)T120 0 U (k)22 1CA= 0B� L(k)00 U (k)00 L(k)00 u(k)01 L(k)00 U (k)02l(k)T10 U (k)00 l(k)T10 u(k)01 + �(k)11 l(k)T10 U (k)02 + u(k)T12L(k)20 U (k)00 L(k)20 U (k)01 + l(k)21 �(k)11 L(k)20 U (k)02 + l(k)21 u(k)T12 + L(k)22 U (k)22 1CAFrom this equality we �nd that the following equalities must hold:A(k)00 =L(k)00 U (k)00 a(k)01 =L(k)00 u(k)01 A(k)02 =L(k)00 U (k)02a(k) T10 =l(k) T10 U (k)00 �(k)11 =l(k) T10 u(k)01 + �(k)11 a(k) T12 = l(k)T10 U (k)02 + u(k) T12A(k)20 =L(k)20 U (k)00 a(k)21 =L(k)20 U (k)01 + l(k)21 �(k)11 A(k)22 =L(k)20 U (k)02 + l(k)21 u(k)T12 + L(k)22 U (k)22(6)Thus, to 
ompute u(k)01 we must solve the triangular system L(k)00 u(k)01 = a(k)01 . The result 
an overwrite a(k)01 .To 
ompute l(k)10 we must solve the triangular system l(k)T10 U (k)00 = a(k)T10 . The result 
an overwrite a(k) T10 . To
ompute �(k)11 we merely 
ompute �(k)11 = �(k)11 � l(k)T10 u(k)01 = �(k)11 � a(k)T10 â(k)01 . The result 
an overwrite �(k)11 .This motivates the algorithm in Fig. 1 (left) for overwriting given n� n matrix A with its LU fa
torization.To show that indeed there is a possibility of proving the algorithm 
orre
t, 
onsider the following result:Theorem 1 Consider the algorithm in Fig. 1 (left). This algorithm overwrites given n� n matrix A withits LU fa
torization.Proof: Realize that, by design, at the top of the loop during the kth iteration of the loop A 
ontains thematrix Âk from the previous dis
ussion. The derivation of the algorithm is su
h that it proves that given6



that the 
ontents of Âk are as desired, the 
ontents of Âk+1 are as desired whi
h proves the indu
tive step.Sin
e Â0 = A we 
on
lude that Ân = LnU . 2It is possible to similarly prove the 
orre
tness of the remainder of the variants.Blo
ked AlgorithmFor performan
e reasons it be
omes bene�
ial to derive a blo
ked version of the above-presented algorithm.The derivation 
losely follows that of the unblo
ked algorithm: Again assume that only (2) has been satis�ed.The question is now how to dire
tly 
ompute Âk+b from Âk for some small blo
k size b (i.e. 1 < b� n). Toanswer this, repartition A =  A(k)TL A(k)TRA(k)BL A(k)BR ! = 0B� A(k)00 A(k)01 A(k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CA(7)where A(k)00 is k�k (and thus equal to A(k)TL), and A(k)11 is b� b. Repartition L, U , and Âk 
onformally. Noti
ethat our assumption is that Âk holdsÂk =  LnU (k)TL A(k)TRA(k)BL A(k)BR ! = 0B� LnU (k)00 A(k)01 A(k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CAThe desired 
ontents of Âk+b are given byÂk+b =  Â(k+b)TL Â(k+b)TRÂ(k+b)BL Â(k+b)BR ! = 0B� LnU (k)00 U (k)01 A(k)02L(k)10 LnU(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CAThus, it suÆ
es to 
ompute U (k)01 , L(k)10 , L(k)11 , and U (k)11 .To derive how to 
ompute these quantities, 
onsiderA = 0B� A(k)00 A(k)01 A(k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CA = 0B� L(k)00 0 0L(k)10 L(k)11 0L(k)20 L(k)21 L(k)22 1CA0B� U (k)00 U (k)01 U (k)020 U (k)11 U (k)120 0 U (k)22 1CA= 0B� L(k)00 U (k)00 L(k)00 U (k)01 L(k)00 U (k)02L(k)10 U (k)00 L(k)10 U (k)01 + L(k)11 U (k)11 L(k)10 U (k)02 + L(k)11 U (k)12L(k)20 U (k)00 L(k)20 U (k)01 + L(k)21 U (k)11 L(k)20 U (k)02 + L(k)21 U (k)12 + L(k)22 U (k)22 1CAThis yields the equalitiesA(k)00 =L(k)00 U (k)00 A(k)01 =L(k)00 U (k)01 A(k)02 =L(k)00 U (k)02A(k)10 =L(k)10 U (k)00 A(k)11 =L(k)10 U (k)01 + L(k)11 U (k)11 A(k)12 =L(k)10 U (k)02 + L(k)11 U (k)12A(k)20 =L(k)20 U (k)00 A(k)21 =L(k)20 U (k)01 + L(k)21 U (k)11 A(k)22 =L(k)20 U (k)02 + L(k)21 U (k)12 + L(k)22 U (k)22(8)Thus,1. To 
ompute U (k)01 we must solve the triangular system L(k)00 U (k)01 = A(k)01 . The result 
an overwrite A(k)01 .7



2. To 
ompute L(k)10 we must solve the triangular system L(k)10 U (k)00 = A(k)10 . The result 
an overwrite A(k)10 .3. To 
ompute L(k)11 and U (k)11 we must update A(k)11  A(k)11 � L(k)10 U (k)01 = A(k)11 �A(k)10 A(k)01 after whi
h theresult 
an be fa
tored into L(k)11 and U (k)11 using the unblo
ked algorithm. The result 
an overwrite A(k)11 .The above dis
ussion motivates the algorithm in Fig. 1 (right) for overwriting the given n� n matrix Awith its LU fa
torization. A 
areful analysis shows that the blo
ked algorithm does not in
ur even a singleextra 
omputation relative to the unblo
ked algorithm.3.4 Row-Lazy AlgorithmAs a point of referen
e, Stewart [27℄ 
alls this algorithm Pi
kett's 
harge south.Let us assume that only (2) and (3) have been satis�ed. We will now dis
uss only a blo
ked algorithmthat 
omputes Âk+b from Âk while maintaining these 
onditions.Repartition A, L, U , and Âk 
onformally as in (7). Noti
e that our assumption is that Âk holdsÂk =  LnU (k)TL U (k)TRA(k)BL A(k)BR ! = 0B� LnU (k)00 U (k)01 U (k)02A(k)10 A(k)11 A(k)12A(k)20 a(k)21 A(k)22 1CAThe desired 
ontents of Âk+b are given byÂk+b =  Â(k+b)TL Â(k+b)TRÂ(k+b)BL Â(k+b)BR ! = 0B� LnU(k)00 U (k)01 U (k)02L(k)10 LnU (k)11 U (k)12A(k)20 A(k)21 A(k)22 1CAThus, it suÆ
es to 
ompute L(k)10 , LnU (k)11 , and U (k)12 . Re
alling the equalities in (8) we noti
e that1. To 
ompute L(k)10 we must solve the triangular system L(k)10 U (k)00 = A(k)10 . The result 
an overwrite A(k)10 .2. To 
ompute L(k)11 and U (k)11 we must update A(k)11  A(k)11 � L(k)10 U (k)01 = A(k)11 �A(k)10 A(k)01 after whi
h theresult 
an be fa
tored into L(k)11 and U (k)11 . The result 
an overwrite A(k)11 .3. To 
ompute U (k)12 we must update A(k)12  A(k)12 � L(k)10 U (k)02 after whi
h we must solve the triangularsystem L(k)11 U (k)12 = A(k)12 , overwriting the original A(k)12 .These steps and the pre
eding dis
ussion lead one dire
tly to the algorithm in 2(
).3.5 Column-Lazy AlgorithmThis algorithm is referred to as a left-looking algorithm in [10℄ while Stewart [27℄ 
alls it Pi
kett's 
hargeeast.Let us assume that only (2) and (4) have been satis�ed. Now it suÆ
es to 
ompute U (k)01 , LnU (k)11 ,and L(k)21 . Using the same te
hniques as before derives the algorithm in Fig. 2 (d). Again, this algorithmoverwrites given n� n matrix A with its LU fa
torization.
8



Partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0Repartition� ATL ATRABL ABR �=0� A00 A01 A02A10 A11 A12A20 A21 A22 1Awhere A11 is b� b(a) Eager:A11  fLnUg11 = LU(A11)A12  U12 = L�111 A12A21  L21 = A21U�111A22  A22 � L21U12(b) Lazy:View A00 as fLnUg00A01  L01 = L�100 A01A10  L10 = A10U�100A11  fLnUg11 = LU(A11�L10U01) (
) Row-lazy:View A00 as fLnUg00A10  L10 = A10U�100A11  fLnUg11 = LU(A11�L10U01)A12  U12 = L�111 (A12 � L10U02)(d) Column-lazy:View A00 as fLnUg00A01  U01 = U�100 A01A11  fLnUg11 = LU(A11�L10U01)A21  L21 = (A21 � L20U01)U�111 (e) Row-
olumn-lazy:A11  fLnUg11 = LU(A11�L10U01)A12  U12 = L�111 (A12 � L10U02)A21  L21 = (A21 � L20U01)U�111Continue with� ATL ATRABL ABR �=0� A00 A01 A02A10 A11 A12A20 A21 A22 1AenddoFigure 2: Blo
ked versions of LU fa
torization without pivoting for all �ve 
ommonly en
ountered variants.The di�erent variants share the same skeleton that partitions and repartitions the matrix. Exe
uting theoperations in one of the �ve boxes yields a spe
i�
 algorithm.
9



3.6 Row-Column-Lazy AlgorithmThis algorithm is often referred to as Krout's methods in the literature.Let us assume that only (2), (3), and (4) have been satis�ed. This time, it suÆ
es to 
ompute LnU (k)11 ,U (k)12 , and L(k)21 , yielding the algorithm in Fig. 2 (e). Again, this algorithm overwrites given n� n matrix Awith its LU fa
torization.3.7 Eager algorithmThis algorithm is 
ommonly known of as 
lassi
al Gaussian elimination.Finally, let us assume that (2), (3), and (4) have been satis�ed, and as mu
h of (5) as possible without
ompleting any more of the fa
torization LBRUBR. Repartition A, L, U , and Âk 
onformally as in (7).Noti
e that our assumption is that Âk holdsÂk =  LnU (k)TL U (k)TRL(k)BL Â(k)BR ! = 0B� LnU (k)00 U (k)01 U (k)02L(k)10 A(k)11 � L(k)10 U (k)01 A12 � L(k)10 U (k)02L(k)20 A(k)21 � L(k)20 U (k)01 A(k)22 � L(k)20 U (k)02 1CAThe desired 
ontents of Âk+b are given byÂk+b =  Â(k+b)TL Â(k+b)TRÂ(k+b)BL Â(k+b)BR ! = 0B� LnU (k)00 U (k)01 U (k)02L(k)10 LnU(k)11 U (k)12L(k)20 L(k)21 A(k)22 � L(k)20 U (k)02 � L(k)21 U (k)12 1CAThus, it suÆ
es to 
ompute LnU (k)11 , L(k)21 , U (k)12 , and updating Â(k)22 = A(k)22 � L(k)20 U (k)02 � L(k)21 U (k)12 . Re
allingthe equalities in (8) we noti
e that1. To 
ompute L(k)11 and U (k)11 we must fa
tor Â(k)11 whi
h already 
ontains A(k)11 �L(k)10 U (k)01 . The result 
anoverwrite Â(k)11 .2. To 
ompute U (k)12 we must update Â(k)12 whi
h already 
ontains A(k)12 � L(k)10 U (k)02 by solving L(k)11 U (k)12 =Â(k)12 , overwriting the original Â(k)12 .3. To 
ompute L(k)21 we must update A(k)21 whi
h already 
ontains A(k)21 � L(k)20 U (k)01 by solving L(k)21 U (k)11 =Â(k)21 , overwriting the original Â(k)21 .4. We must update Â(k)22 whi
h already 
ontains A(k)22 � L(k)20 U (k)02 with Â(k)22 � L(k)21 U (k)12 overwriting theoriginal Â(k)22 .The resulting algorithm is given in Fig. 2(a). Noti
e that this �nal algorithm is equivalent to the algorithmderived in Se
tion 3.1.4 A Re
ipe for Deriving AlgorithmsNote that the derivations of the di�erent algorithms detailed above are extremely systemati
. Indeed, thefollowing re
ipe 
an be used:1. State the operation to be performed. 10



2. Partition the operands. Noti
e that some justi�
ation is needed for the parti
ular way in whi
h theyare partitioned. For the LU, this has to do with the fa
t that blo
ks of zeroes must be isolated in Land U . Details go beyond the s
ope of this paper.3. Multiply out the partitioned matri
es.4. By equating submatri
es on the left and right of the equal sign of the equality generated in Step 3,derive the equalities that must hold.5. Pi
k a loop invariant from the set of possible loop invariants that satisfy the equalities given in Step 4.6. From that loop invariant derive the steps required to maintain the loop invariant while moving thealgorithm forward in the desired dire
tion. This requires the following substeps:(a) Repartition so as to expose the boundaries after they are moved.(b) Indi
ate the 
urrent 
ontents for the repartitioned matri
es.(
) Indi
ate the desired 
ontents for the repartitioned matri
es su
h that the loop invariant is main-tained.(d) Derive the steps required to a
hieve the desired 
ontents.7. Update the partitioning of the matri
es.8. State the algorithm.9. Classify the algorithm. We have developed a systemati
 way of 
lassifying the derived algorithms.While we use this 
lassi�
ation in the labeling of the algorithms in the previous se
tion, we will not gointo detail here.5 So Many Algorithms, So Little TimeSo, why should we be 
on
erned with a spe
trum of algorithms for a given operation rather than pi
kingthe �rst one that yields good performan
e? The primary motivating for
e behind developing a systemati
framework for deriving algorithms is that, depending on ar
hite
ture and/or matrix dimensions, di�erentalgorithms exhibit di�erent performan
e 
hara
teristi
s. An algorithm that performs admirably on onear
hite
ture and/or a parti
ular problem size may prove to be an inferior algorithm when implemented onanother ar
hite
ture or applied to a problem with dissimilar dimensions.In [14℄ we show that the eÆ
ient, transportable implementation of matrix multipli
ation on a sequentialar
hite
ture with a hierar
hi
al memory requires a hierar
hy of matrix algorithms whose organization, ina very real sense, mirrors that of the memory system under 
onsideration. Perhaps surprisingly, this isne
essary even when the problem size is �xed. In that same paper we des
ribe a methodology for 
omposingthese routines. In this way, minimal 
oding e�ort is required to attain superior performan
e a
ross awide spe
trum of algorithms and problem sizes. Analogously, in [15℄ we demonstrate that an eÆ
ientimplementation of parallel matrix multipli
ation requires both multiple algorithms and a method for sele
tingthe appropriate algorithm for the presented 
ase if one is to handle operands of various sizes and shapes.In [23, 24℄ we 
ame to a similar 
on
lusion in the 
ontext of out-of-
ore fa
torization algorithms.A se
ond reason for a systemati
 approa
h is that it may well be that we require spe
ialized matrixkernels for whi
h eÆ
ient implementations do not exist (as part of libraries like the BLAS or LAPACK).In [22℄ we show how su
h spe
ialized matrix kernels speed up 
omputations in 
ontrol theory.Finally, in [21℄ we show how the approa
h outlined above 
an be used to show that seemingly di�erentalgorithms for matrix inversions are a
tually equivalent and therefore share stability properties.11



6 Coding the AlgorithmIn this se
tion we brie
y dis
uss how dense linear algebra algorithms 
an be translated to 
ode. We �rstshow a more traditional approa
h, as it appears in popular pa
kages like LAPACK. Next, we present analternative that allows 
oding at a level of abstra
tion that mirrors how we naturally present the algorithms.This se
ond approa
h has been su

essfully used in PLAPACK. FLAME represents a re�nement of thismethodology.6.1 Classi
 implementation with the BLASLet us 
onsider the blo
ked eager algorithm for the LU fa
torization presented in Fig. 2 (a). This algorithmrequires an LU fa
torization of small matrix to fa
tor A11  LnU11 = LU fa
t.(A11), triangular solves withmultiple right-hand-sides to update A12  U12 = L�111 A12 and A21  L21 = A21U�111 , and a matrix-matrixmultiply to update A22  A22 � L21U12. The triangular solves and matrix-matrix multiply are part ofthe Basi
 Linear Algebra Subprograms (BLAS) as 
alls to the routines DTRSM and DGEMM, respe
tively. Theresultant 
ode is given in Fig. 4. To understand this 
ode, it helps to 
onsider the partitioning of the matrixfor a typi
al loop index j, as illustrated in Fig. 3: A11 is B by B and starts at element A(J,J), A21 isN-(J-1)-B by B and starts at element A(J+B,J) , A12 is B by N-(J-1)-B and starts at element A(J,J+B),and A22 is N-(J-1)-B by N-(J-1)-B and starts at element A(J+B,J+B).Given this pi
ture, it is relatively easy to determine all of the parameters that must be passed to theappropriate BLAS routines.6.2 The algorithm is the 
odeWe would argue that it is relatively easy to generate the 
ode in Fig. 4 given the algorithm in Fig. 2(a) andthe pi
ture in Fig. 3. However, the translation of the algorithm to the 
ode is made tedious and error-proneby the fa
t that one has to very 
arefully think about indi
es and matrix dimensions. While this is not mu
hof a problem if one were to implement just one algorithm, it be
omes a major heada
he when implementingall possible variants for a given operation or, in the 
ase of a library su
h as LAPACK, implementing evena single variant of a number of operations. One be
omes even more a
utely aware of these issues whendistributed memory ar
hite
tures enter the pi
ture.In an e�ort to make the 
ode look as mu
h like the algorithms given in Fig. 2 as is possible withinthe 
on�nes of C and FORTRAN, we have developed the Formal Linear Algebra Methods Environment(FLAME). The skeleton that is shared by all �ve variants of LU fa
torization is given in Fig. 5. To understandthe 
ode, it suÆ
es to realize that A is being passed to the routine as a data stru
ture A that des
ribes allattributes of this matrix, su
h as dimensions and method of storage. Inquiry routines like FLA Obj lengthare used to extra
t information su
h as the row dimension of the matrix. Finally, ATL, A00, et
. are simplyreferen
es into the original array des
ribed by A. If one is familiar with the alphabet soup used to name theBLAS kernels, it is 
lear that the following 
ode segments, when entered in the appropropriate pla
e in the
ode in 5, implement the di�erent variants of the LU fa
torization:Lazy algorithm
12



A00 A01 A02A10 A11 A12t tt tJ - -J+B - -??J ??J+B 	 J-1	 B	 N-(J-1)-B|{z}J-1 |{z}B |{z}N-J-B+1A20 A21 A22Figure 3: Partitioning of matrix A with all dimensions annotated when A00 = ATL is (j � 1)� (j � 1).1 SUBROUTINE LU_EAGER_LEVEL3( N, A, LDA, NB )23 INTEGER N, LDA, NB, J, B4 DOUBLE PRECISION A( LDA, * ), ONE, NEG_ONE5 PARAMETER ( ONE = 1.0D00, NEG_ONE = -1.0D00 )67 DO J=1, N, NB8 B = MIN( N-J+1, NB )9 C A11 <- L\U11 = LU fa
t( A11 )10 LU_EAGER_LEVEL2( B, A( J,J ), LDA )1112 IF ( J+B .LE. N ) THEN1314 C A12 <- U12 = inv( L11 ) * A121516 DTRSM( "LEFT", "LOWER TRIANGULAR", "NO TRANSPOSE", "UNIT DIAGONAL",17 $ ONE, B, N-(J-1)-B, A( J,J ), LDA, A( J, J+B ), LDA )1819 C A21 <- L21 = A21 * inv( U11 )2021 DTRSM( "RIGHT", "UPPER TRIANGULAR", "TRANSPOSE", "NONUNIT DIAGONAL",22 $ ONE, N-(J-1)-B, B, A( J,J ), LDA, A( J+B, J ), LDA )2324 C A22 <- A22 - A21 * A122526 DGEMM( "NO TRANSPOSE", "NO TRANSPOSE", N-(J-1)-B, N-(J-1)-B, B,27 $ NEG_ONE, A( J+B, J ), LDA, A( J, J+B ), LDA, ONE, A( J+B, J+B), LDA )28 ENDIF29 ENDDO3031 RETURN32 ENDFigure 4: FORTRAN implementation of blo
ked eager LU fa
torization algorithm using the BLAS.
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Partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0Repartition
��
��
��
��
��
��
��
��

� ATL ATRABL ABR �= A00 A01 A02A10 A11 A12A20 A21 A22 !where A11 is b� b...Continue with
����
����
����
����

����
����
����
����

� ATL ATRABL ABR �= A00 A01 A02A10 A11 A12A20 A21 A22 !enddo1 #in
lude "FLA.h"23 void FLA_LU_nopivot_skeleton( FLA_Obj A, nb_alg )4 {5 FLA_Obj ATL, ATR, A00, A01, A02,6 ABL, ABR, A10, A11, A12,7 A20, A21, A22;89 FLA_Part_2x2( A, &ATL, /**/ &ATR,10 /* ************** */11 &ABL, /**/ &ABR,12 /* with */ 0, /* by */ 0, /* submatrix */ FLA_TL );1314 while ( b=min(min(FLA_Obj_length( ABR ), FLA_Obj_width( ABR )), nb_alg) != 0 ){1516 FLA_Repart_2x2_to_3x3( ATL, /**/ ATR, &A00, /**/ &A01, &A02,17 /* ************* */ /* ******************** */18 /**/ &A10, /**/ &A11, &A12,19 ABL, /**/ ABR &A20, /**/ &A21, &A22,20 /* with */ b, /* by */ b, /* A11 split from */ FLA_BR );21 /* ********************************************************************* */...35 /* ********************************************************************* */36 FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR, A00, A01, /**/ A02,37 /**/ A10, A11, /**/ A12,38 /* ************** */ /* ****************** */39 &ABL, /**/ &ABR, A20, A21, /**/ A22,40 /* with A11 added to submatrix */ FLA_TL );41 }42 }Figure 5: An skeleton for the implementation of any of the blo
ked LU fa
torization algorithms in C usingFLAME.
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23 FLA_Trsm( FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,24 ONE, A00, A10 );2526 FLA_Trsm( FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,27 ONE, A00, A01 );2829 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11 );3031 FLA_LU_nopivot_level2( A11 );Row-lazy algorithm23 FLA_Trsm( FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,24 ONE, A00, A10 );2526 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A10, ONE, A11 );2728 FLA_LU_nopivot_level2( A11 );2930 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A02, ONE, A12 );3132 FLA_Trsm( FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,33 ONE, A11, A12 );Column-lazy algorithm23 FLA_Trsm( FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,24 ONE, A00, A01 );2526 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A10, ONE, A11 );2728 FLA_LU_nopivot_level2( A11 );2930 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A20, A10, ONE, A21 );31 FLA_Trsm( FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,32 ONE, A11, A21 );Row-
olumn-lazy algorithm23 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11 );24 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A20, A01, ONE, A21 );25 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A02, ONE, A12 );2627 FLA_LU_nopivot_level2( A11 );2829 FLA_Trsm( FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,30 ONE, A11, A21 );3132 FLA_Trsm( FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,33 ONE, A11, A12 );Eager algorithm:23 FLA_LU_nopivot_level2( A11 );2425 FLA_Trsm( FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,26 ONE, A11, A21 );2728 FLA_Trsm( FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,29 ONE, A11, A12 );3031 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A21, A12, ONE, A22 );15



6.3 Proving the 
ode 
orre
tIn Se
tion 3.3 we showed how the 
orre
tness of the lazy algorithm 
an be proved and argue that the
orre
tness of the other algorithms 
an be similarly derived. If the routines 
alled by the des
ribed FLAME
ode 
orre
tly implement the operations in the algorithm, then it 
an be argued that the 
ode itself is 
orre
t.Indeed, debugging is not ne
essary.6.4 But is this really a better approa
h?Naturally, one 
an argue that determining whi
h of the two approa
hes to 
oding the algorithm might bedeemed \superior" is simply a matter of taste. However, 
ontemplate the following questions:� What if a bug were introdu
ed into the FORTRAN implementation? For example, suppose that one ofthe N-(J-1)-B were a

identally 
hanged to a N-(J+1)-B. This kind of bug is extremely hard to tra
kdown sin
e the only 
lue is that the 
ode produ
es the wrong answer or 
auses a segmentation fault.A similar bug 
annot as easily be introdu
ed into the 
ode implemented using FLAME. Furthermore,with this approa
h to 
oding it is easy to perform a run-time 
he
k to determine if the dimensions ofthe di�erent referen
es into A are 
onformal.� When 
oding all variants of the LU fa
torization one inherently has to derive all algorithms, leadingto des
riptions like those given in Fig. 2. However, translating those to 
ode like that given in Fig. 4would require 
areful 
onsideration of the pi
ture in Fig. 3. Moreover, due to the intri
ate indexinginvolved in that approa
h to 
oding, 
onsiderable testing would be required before one 
ould de
larethe 
ode bug-free. By 
ontrast, given the algorithms, it has been demontrated that generating allvariants using FLAME is straightforward. As already mentioned, sin
e the 
ode 
losely resembles thealgorithm, one 
an be mu
h more 
on�dent about its 
orre
tness even before the 
ode is ever tested.� What if we wished to parallelize the given 
ode? Noti
e that parallelizing a small subset of thefun
tionality of LAPACK as part of the S
aLAPACK proje
t has taken 
onsiderable e�ort. TheFLAME 
ode 
an be transformed into PLAPACK 
ode essentially by repla
ing FLA by PLA .� What if we needed an out-of-
ore parallel version of the 
ode? In prin
iple, the FLAME 
ode 
an betransformed into Parallel Out-of-Core Linear Algebra PACKage (POOCLAPACK) 
ode by repla
ingFLA by POOCLA .6.5 But what about FORTRAN?Again using MPI as an inspiration, a FORTRAN interfa
e is available for FLAME. Examples of FORTRAN
ode are available on the FLAME web page.6.6 But what about pivoting?In Fig. 6 we show that pivoting 
an be easily added to, e.g., the eager LU fa
torization algorithm. Noti
ethat in that implementation we also add re
ursion without mu
h ado. We deem the 
ode self-explanatory.7 Performan
eTo illustrate that elegan
e does not ne
essarily 
ome at the expense of performan
e, we measured the perfor-man
e of the LU fa
torization with pivoting given in Fig. 6 followed by forward and ba
kward substitution.16



1 void FLA_LU( FLA_Obj A, FLA_Obj ipiv, int nb_alg )2 {3 < de
larations >45 FLA_Part_2x2( A, &ATL, /**/ &ATR,6 /* ************** */7 &ABL, /**/ &ABR,8 /* with */ 0, /* by */ 0, /* submatrix */ FLA_TL );910 FLA_Part_2x1( ipiv, &ipivT,11 /* ****** */12 &ipivB,13 /* with */ 0, /* length submatrix */ FLA_TOP );1415 while ( b = min( min( FLA_Obj_length( ABR ), FLA_Obj_width( ABR ) ), nb_alg ) ){16 FLA_Repart_2x1_to_3x1( ipivT, &ipiv0,17 /* ***** */ /* ***** */18 &ipiv1,19 ipivB, &ipiv2,20 /* with */ b, /* length ipiv1 split from */ FLA_BOTTOM );21 /* ************************************************************************* */22 FLA_Part_1x2( ABR, &ABR_1, &ABR_2, /* with */ b, /* width submatrix */ FLA_LEFT );2324 if ( nb_alg <= 4 ) FLA_LU_level2( ABR_1, ipiv1 );25 else FLA_LU ( ABR_1, ipiv1, nb_alg/2 );2627 FLA_Apply_pivots( FLA_SIDE_LEFT, FLA_NO_TRANSPOSE, ipiv1, ABL );28 FLA_Apply_pivots( FLA_SIDE_LEFT, FLA_NO_TRANSPOSE, ipiv1, ABR_2 );29 /* ************************************************************************* */30 FLA_Repart_2x2_to_3x3( ATL, /**/ ATR, &A00, /**/ &A01, &A02,31 /* ************* */ /* ********************* */32 /**/ &A10, /**/ &A11, &A12,33 ABL, /**/ ABR, &A20, /**/ &A21, &A22,34 /* with */ b, /* by */ b, /* A11 split from */ FLA_BR );35 /* ************************************************************************* */36 FLA_Trsm( FLA_SIDE_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,37 ONE, A11, A12 );3839 FLA_Gemm( FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A21, A12, ONE, A22 );40 /* ************************************************************************* */41 FLA_Cont_with_3x3_to_2x2( &ATL, /**/ &ATR, A00, A01, /**/ A02,42 /**/ A10, A11, /**/ A12,43 /* ************** */ /* ****************** */44 &ABL, /**/ &ABR, A20, A21, /**/ A22,45 /* with A11 added to submatrix */ FLA_TL );4647 FLA_Cont_with_3x1_to_2x1( &ipivT, ipiv0,48 ipiv1,49 /* ***** */ /* ***** */50 &ipivB, ipiv2,51 /* with ipiv1 added to */ FLA_TOP );52 }53 } Figure 6: FLAME re
ursive LU fa
torization with partial pivoting.17



For 
omparison, we also measured the performan
e of the equivalent operations provided by ATLAS releaseR3.1 [29℄.Some details: Performan
e was measured on a Pentium III based laptop with a 256K L2 
a
he runningthe Linux (Redhat 6.2) operating system. All 
omputation was performed in 64-bit (double pre
ision)arithmeti
. For both implementations the same 
ompiler options were used.In Fig. 7 we report performan
e for four di�erent implementations, indi
ated by the 
urves markedATLAS: This 
urve reports performan
e for the LU fa
torization provided by ATLAS R3.1, using the BLASprovided by ATLAS R3.1.ATL-FLAME: This 
urve reports the performan
e of our LU fa
torization 
oded using FLAME built uponBLAS provided by ATLAS R3.1. The outer-most blo
k size used for the LU fa
torization is 160 forthese measurements. (Noti
e that multiples of 40 are optimal for the ATLAS matrix-matrix multiplyon this ar
hite
ture.)ITX-FLAME: Same as the previous implementation, ex
ept that we optimized the matrix-matrix multiply(ITXGEMM). Details of this optimization are the subje
t of another paper [14℄. This time the outer-most blo
k size was 128. (Noti
e that multiples of 64 are optimal for the ITXGEMM matrix-matrixmultipli
ation routine on this ar
hite
ture.)ITX-FLAME-opt: Same as the previous implementation, ex
ept that we optimized the level-2 BLAS based LUfa
torization of an intermediate panel as well as the pivot routine by not using the FLAME approa
hfor those operations. For these routines we 
all ds
al, dger, and dswap dire
tly.For all implementations, the forward and ba
kward substitutions are provided by the ATLAS R3.1 dtrsvroutine. The graph on the bottom shows the same data for smaller matri
es is more detail.Noti
e that for small matri
es the unoptimized FLAME implementations perform somewhat worse, dueto the overhead for manipulating the obje
ts that en
ode the information about the matri
es. When thelevel-2 BLAS based LU fa
torization is 
oded without this overhead, the performan
e is 
omparable evenfor small matri
es. The better performan
e when the ITXGEMM matrix-matrix multiply is used is entirelydue to the better performan
e of this matrix-matrix multiply.It is important to realize that the performan
e di�eren
e between the implementation o�ered as part ofATLAS R3.1 and our own implementation is not the point of this paper: With some e�ort either implemen-tation 
an be improved to mat
h the performan
e of the other. Our primary point is that markedly lesse�ort is required to implement these algorithms using FLAME while attaining performan
e 
omparable tothat of what are widely 
onsidered to be high-performan
e implementations.8 Future dire
tionsMany aspe
ts of the approa
h we have des
ribed are extremely systemati
: the generation of the loop-invariants, the derivation of the algorithm as well as the translation to 
ode. Not dis
ussed is the fa
tthat the analysis of the run-time of the resulting algorithm on sequential or, for that matter, parallel,ar
hite
tures is equally systemati
. We are pursuing a proje
t that exploits this systemati
 approa
h inorder to automati
ally generate entire (parallel) linear algebra libraries as well as run-time estimates forthe generated subroutines [13℄. The goal is to 
reate a me
hanism that will automati
ally 
hoose betweendi�erent algorithms based on ar
hite
ture and/or problem parameters.A 
onsiderably less ambitious proje
t, already nearing 
ompletion, allows the user to program in alanguage-independent manner (i.e. by writing an ASCII version of the algorithms presented in this paper).Sin
e it is our 
entral thesis that the level of abstra
tion presented in this paper is the 
orre
t one, it seems an18


