
Formal Linear Algebra Methods Environment (FLAME)Overview�John A. GunnelsRobert A. van de GeijnDepartment of Computer SienesThe University of Texas at AustinAustin, TX 78712fgunnels,rvdgg�s.utexas.eduGreg M. HenryIntel Corp.Bldg C01-02Beaverton, OR 97006-5733greg.henry�intel.omFLAME Working Note #1November 8, 2000AbstratSine the advent of high-performane distributed-memory parallel omputing, the need for intelligibleode has beome ever greater. The development and maintenane of libraries for these arhitetures issimply too omplex to be amenable to onventional approahes to oding and attempting to employtraditional methodology has led to the prodution of an abundane of ineÆient, anfratuous ode thatis diÆult to maintain and nigh-impossible to upgrade.Having struggled with these issues for more than a deade, we have arrived at a onlusion that issomewhat surprising to us: the answer is to apply formal methods from Computer Siene to the devel-opment of high-performane linear algebra libraries. The resulting approah has onsistently resulted inaesthetially-pleasing, oherent ode that greatly failitates performane analysis, intelligent modularity,and the enforement of program orretness via assertions. Sine the tehnique is ompletely language-independent, it lends itself equally well to a wide spetrum of programming languages (and paradigms)ranging from C and FORTRAN to C++ and Java to graphial programming languages like those usedfor LabView. In this paper, we illustrate our observations by looking at the development of the FormalLinear Algebra Methods Environment (FLAME) for implementing linear algebra algorithms on sequen-tial arhitetures. This environment demonstrates that lessons learned in the distributed memory worldan guide us toward better approahes to oding even in the sequential world.�This work was partially supported by the Remote Exploration and Experimentation Projet at Calteh's Jet PropulsionLaboratory, whih is part of NASA's High Performane Computing and Communiations Program, and is funded by NASA'sOÆe of Spae Siene. 1

1 IntrodutionWhen onsidering the unmanageable omplexity of omputer systems, Dijkstra reently made the followingobservations [7℄:(i) When exhaustive testing is impossible {i.e., almost always{ our trust an only bebased on proof (be it mehanized or not).(ii) A program for whih it is not lear why we should trust it, is of dubious value.(iii) A program should be strutured in suh a way that the argument for its orretnessis feasible and not unneessarily laborious.(iv) Given the proof, deriving a program justi�ed by it, is muh easier than, given theprogram, onstruting a proof justifying it.The ore urriulum of any �rst-rate undergraduate Computer Siene department inludes at least oneourse that fouses on the formal derivation and veri�ation of algorithms [12℄. Many of us in sienti�omputing may have, at some point in time, hastily dismissed this approah, arguing that this is all verynie for small, simple algorithms, but an aademi exerise hardly appliable in \our world." Sine itis often the ase that our work involves libraries omprised of hundreds of thousands or even millionsof lines of ode, the knee-jerk reation that this approah is muh too umbersome to take seriously isunderstandable. Furthermore, the momentum of established praties and \traditional wisdom" do little ifanything to dissuade one from this line of reasoning. Yet, as the result of our searh for superior methods fordesigning and onstruting high-performane parallel linear algebra libraries, we have ome to the onlusionthat it is only through the systemati approah o�ered by formal methods that we will be able to deliverreliable, maintainable, exible, yet highly eÆient matrix libraries even in the relatively well-understoodarea of (sequential and parallel) dense linear algebra.While some would immediately draw the onlusion that a hange to a more modern programminglanguage like C++ is at least highly desirable, if not a neessary preursor to writing elegant ode, thefat is that most appliations that all pakages like LAPACK [3℄ and SaLAPACK [6℄ are still writtenin FORTRAN and/or C. Interfaing suh an appliation with a library written in C++ presents ertainompliations. However, during the mid-nineties, the Message-Passing Interfae (MPI) introdued to thesienti� omputing ommunity a programming model, objet-based programming, that possesses many ofthe advantages typially assoiated with the intelligent use of an objet-oriented language [26℄. Using objets(e.g. ommuniators in MPI) to enapsulate data strutures and hide omplexity, a muh leaner approahto oding an be ahieved. Our own work on the Parallel Linear Algebra PACKage (PLAPACK) borrowedfrom this approah in order to hide details of data distribution and data mapping in the realm of parallellinear algebra libraries [28℄. The primary onept also germane to this paper is that PLAPACK raises thelevel of abstration at whih one programs so that indexing is essentially removed from the ode, allowing theroutine to reet the algorithm as it is naturally presented in a lassroom setting. Sine our initial work onPLAPACK, we have experimented with similar interfaes in suh seemingly disparate ontexts as (parallel)out-of-ore linear algebra pakages and a low-level implementation of the sequential BLAS [14℄.FLAME is the latest step in the evolution of these systems. It failitates the use of a programming stylethat is equally appliable to everything from out-of-ore, parallel systems to single-proessor systems whereahe-management is of paramount onern.Over the last seven or eight years it has beome apparent that what makes our task of library developmentmore manageable is this systemati approah to deriving algorithms oupled with the abstrations we useto make our ode reet the algorithms thus produed. Further, it is from these experienes that we anon�dently state that this approah to programming greatly redues the omplexity of the resultant odeand does not sari�e high performane in order to do so.2

Indeed, it is exatly the formal tehniques that we may have at one time dismissed as merely aademior impratial whih make this possible, as we will attempt to illustrate in the following setions.2 The Case for a More Formal ApproahIdeally, an implementation should learly reet the algorithm as it is presented in a lassroom setting. Evenbetter, some of the derivation of the algorithm should be apparent in the ode and di�erent variants of analgorithm should be reognizable as slight perturbations to an algorithmi \skeleton" or base ode. If theode is just a mehanially-realizable, straightforward translation of the algorithm presented in lass, thereshould be no opportunity for the introdution of logial errors or oding bugs. Presumably, it should bepossible to prove the algorithms orret, thus ensuring that the ode is orret. Previewing the next setions,algorithms for bloked variants of LU fatorization of a matrix are presented in Fig. 2. In Fig. 5 we showhow this an be translated into an skeleton for a ode. By entering di�erent updates of submatries into thisskeleton, given in Setion 6.2, di�erent variants of the LU fatorization algorithm are realized.Typially, it is diÆult to prove ode orret preisely beause one is unsure that the ode truly mirrorsthe algorithm. With our approah, the hasm is largely bridged by the simple yet ruial fat that somevery simple syntati rewrite rules an produe the ode from an algorithm expressed as one might in alassroom, using mathematial formulae and stylized matrix depitions. Sine we an prove the orretnessof the algorithm we wish to employ (the proof is generally onstrutive in nature, but that is of littleonsequene) and beause the orretness of the translation from algorithm to ode is at least as reliableas ompiler tehnology, the omplexity of the task at hand is greatly ameliorated. Namely, omponentsare expeted to live up to ertain \ontratual obligations" [1, 4, 11℄. In the ase of a library onstrutedentirely through the methodology presented here, these omponents would be omposed in like manner soas to make this task manageable. This is largely due to the fat that the approah presented here leads toa software arhiteture layered in suh a way so as to require one to rely on the orretness of a very smallnumber of base-level modules. Sine those units are small, their orretness an be established through theappliation of standard formal methods. It is true that, in pratie, one must aept that an appliationwill need to interfae with other libraries (for example, the vendor-supplied BLAS) that are not built in a\proof-friendly" format. However, it may still be possible to establish the orretness of a program if oneis areful to impose minimal obligations on these, presumably time-tested and well-doumented, piees ofode.Having said this, let us larify through a simple example.3 A Case Study: LU FatorizationWe illustrate our approah by onsidering LU fatorization without pivoting. Given n�n matrix A we wishto ompute n� n lower triangular matrix L with unit main diagonal and n� n upper triangular matrix Uso that A = LU . The original matrix A is overwritten by L and U in the proess.3.1 A simple derivationThe usual derivation of an algorithm for the LU fatorization proeeds as follows:Partition A = � �11 aT12a21 A22 � ; L = � 1 0l21 L22 � ; and U = � �11 uT120 U22 �3

Now A = LU translates to� �11 aT12a21 A22 � = � 1 0l21 L22 �� �11 uT120 U22 � = � �11 uT12l21�11 l21uT12 + L22U22 �so that the following equalities must hold:�11 = �11 aT12 = uT12a21 = �11l21 A22 = l21uT12 + L22U22Finally, we arrive at the following algorithm� Overwrite �11 and aT12 with �11 and uT12, respetively (no-op).� Update a21 l21 = a21=�11.� Update A22 A22 � l21uT12.� Reursively fator A22 ! L22U22.While the algorithm is formulated as tail-reursive, it is usually implemented as a loop.3.2 But what intermediate value is in the matrix?In order to prove orretness, one question we must ask is what intermediate value is in A at any partiularstage of the algorithm. To answer this, partitionA = A(k)TL A(k)TRA(k)BL A(k)BR ! ; L = L(k)TL 0L(k)BL L(k)BR ! ; and U = U (k)TL U (k)TR0 U (k)BR !(1)where A(k)TL, L(k)TL, and U (k)TL are all k � k matries. Notie that \T", \B", \L", and \R" stand for Top,Bottom, Left, and Right, respetively. Notie that A(k)TL A(k)TRA(k)BL A(k)BR ! = L(k)TL 0L(k)BL L(k)BR ! U (k)TL U (k)TR0 U (k)BR ! = L(k)TLU (k)TL L(k)TLU (k)TRL(k)BLU (k)TL L(k)BLU (k)TR + L(k)BRU (k)BR !so the following equalities must hold when the algorithm has ompleted:A(k)TL = L(k)TLU (k)TL(2) A(k)TR = L(k)TLU (k)TR(3) A(k)BL = L(k)BLU (k)TL(4) A(k)BR = L(k)BLU (k)TR + L(k)BRU (k)BR(5)Finally, let Âk equal a matrix that holds the urrent intermediate result of a given algorithm for omputingthe LU fatorization. In the following pages we will show that di�erent onditions on the ontents of Âklogially ditate di�erent variants for omputing the LU fatorization, and these di�erent onditions an besystematially generated. Previewing this, notie that to ompute the LU fatorization, the submatries ofL and U must be omputed. We assume that Âk must ontain partial results towards that goal. Here aresome possibilities: 4

Condition Âk ontainsOnly (2) is satis�ed. LnU (k)TL A(k)TRA(k)BL A(k)BR !Only (2) and (3) have been satis�ed. LnU (k)TL U (k)TRA(k)BL A(k)BR !Only (2) and (4) have been satis�ed. LnU (k)TL A(k)TRL(k)BL A(k)BR !Only (2), (3), and (4) have been satis�ed. LnU (k)TL U (k)TRL(k)BL A(k)BR !(2), (3), and (4) have been satis�ed and as muh of (5) has beenomputed without omputing any part of L(k)BR or U (k)BR. LnU (k)TL U (k)TRL(k)BL A(k)BR � L(k)BLU (k)TR !Here we use the notation fLnUg to denote a lower and upper triangular matrix that are stored in a squarematrix by overwriting the lower and upper triangular parts of that matrix. (Reall that L has ones on thediagonal, whih need not be stored.)In the subsequent subsetions, we desribe how to derive algorithms in whih the desired onditions hold.Note that in this paper we will not onern ourselves with the question of whether the above onditionsexhaust all possibilities. However, they do give rise to all ommonly disussed algorithms. For example,they yield all algorithms depited on the over of and disussed in G.W. Stewart's reent book on matrixfatorization [27℄.3.3 Lazy AlgorithmThis algorithm is often referred to as a bordered algorithm in the literature. Stewart, [27℄ rather olorfully,refers to it as Sherman's marh.Unbloked AlgorithmLet us assume that only (2) has been satis�ed. The question beomes how to ompute Âk+1 from Âk. Toanswer this, repartition A = A(k)TL A(k)TRA(k)BL A(k)BR ! = 0B� A(k)00 a(k)01 A(k)02a(k) T10 �(k)11 a(k)T12A(k)20 a(k)21 A(k)22 1CAwhere A(k)00 is k � k (and thus equal to A(k)TL), and �(k)11 is a salar. Repartition L, U , and Âk onformally.Notie that we wish to hange the ontents of the urrent matrix from Âk to Âk+1 or LnU (k)TL A(k)TRA(k)BL A(k)BR ! = 0B� LnU (k)00 a(k)01 A(k)02a(k) T10 �(k)11 a(k)T12A(k)20 a(k)21 A(k)22 1CA to Â(k+1)TL Â(k+1)TRÂ(k+1)BL Â(k+1)BR ! = 0B� LnU(k)00 u(k)01 A(k)02l(k)T10 �(k)11 a(k) T12A(k)20 a(k)21 A(k)22 1CAThus, it suÆes to ompute u(k)01 , l(k)10 , and �(k)11 . 5

Partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0Partition� ATL ATRABL ABR �= LnU00 a01 A02aT10 �11 aT12A20 a21 A22 !a01 u01 = L�100 a01aT10 lT10 = aT10U�100�11 �11 = �11 � lT10u01Continue with� ATL ATRABL ABR �= LnU00 u01 A02lT10 �11 aT12A20 a21 A22 !enddo

Partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0Determine blok size bPartition� ATL ATRABL ABR �= LnU00 A01 A02A10 A11 A12A20 A21 A22 !where A11 is b� bA01 U01 = L�100 A01A10 L10 = A10U�100A11 A11 � L10U01A11 LnU11 = LU fat(A11)Continue with� ATL ATRABL ABR �= LnU00 U01 A02L10 LnU11 A12A20 A21 A22 !enddoFigure 1: Unbloked and bloked versions of the lazy variant for omputing the LU fatorization of a squarematrix A (without pivoting).To derive how to ompute these quantities, onsider0B� A(k)00 a(k)01 A(k)02a(k) T10 �(k)11 a(k) T12A(k)20 a(k)21 A(k)22 1CA = 0B� L(k)00 0 0l(k)T10 1 0L(k)20 l(k)21 L(k)22 1CA0B� U (k)00 u(k)01 U (k)020 �(k)11 u(k)T120 0 U (k)22 1CA= 0B� L(k)00 U (k)00 L(k)00 u(k)01 L(k)00 U (k)02l(k)T10 U (k)00 l(k)T10 u(k)01 + �(k)11 l(k)T10 U (k)02 + u(k)T12L(k)20 U (k)00 L(k)20 U (k)01 + l(k)21 �(k)11 L(k)20 U (k)02 + l(k)21 u(k)T12 + L(k)22 U (k)22 1CAFrom this equality we �nd that the following equalities must hold:A(k)00 =L(k)00 U (k)00 a(k)01 =L(k)00 u(k)01 A(k)02 =L(k)00 U (k)02a(k) T10 =l(k) T10 U (k)00 �(k)11 =l(k) T10 u(k)01 + �(k)11 a(k) T12 = l(k)T10 U (k)02 + u(k) T12A(k)20 =L(k)20 U (k)00 a(k)21 =L(k)20 U (k)01 + l(k)21 �(k)11 A(k)22 =L(k)20 U (k)02 + l(k)21 u(k)T12 + L(k)22 U (k)22(6)Thus, to ompute u(k)01 we must solve the triangular system L(k)00 u(k)01 = a(k)01 . The result an overwrite a(k)01 .To ompute l(k)10 we must solve the triangular system l(k)T10 U (k)00 = a(k)T10 . The result an overwrite a(k) T10 . Toompute �(k)11 we merely ompute �(k)11 = �(k)11 � l(k)T10 u(k)01 = �(k)11 � a(k)T10 â(k)01 . The result an overwrite �(k)11 .This motivates the algorithm in Fig. 1 (left) for overwriting given n� n matrix A with its LU fatorization.To show that indeed there is a possibility of proving the algorithm orret, onsider the following result:Theorem 1 Consider the algorithm in Fig. 1 (left). This algorithm overwrites given n� n matrix A withits LU fatorization.Proof: Realize that, by design, at the top of the loop during the kth iteration of the loop A ontains thematrix Âk from the previous disussion. The derivation of the algorithm is suh that it proves that given6

that the ontents of Âk are as desired, the ontents of Âk+1 are as desired whih proves the indutive step.Sine Â0 = A we onlude that Ân = LnU . 2It is possible to similarly prove the orretness of the remainder of the variants.Bloked AlgorithmFor performane reasons it beomes bene�ial to derive a bloked version of the above-presented algorithm.The derivation losely follows that of the unbloked algorithm: Again assume that only (2) has been satis�ed.The question is now how to diretly ompute Âk+b from Âk for some small blok size b (i.e. 1 < b� n). Toanswer this, repartition A = A(k)TL A(k)TRA(k)BL A(k)BR ! = 0B� A(k)00 A(k)01 A(k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CA(7)where A(k)00 is k�k (and thus equal to A(k)TL), and A(k)11 is b� b. Repartition L, U , and Âk onformally. Notiethat our assumption is that Âk holdsÂk = LnU (k)TL A(k)TRA(k)BL A(k)BR ! = 0B� LnU (k)00 A(k)01 A(k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CAThe desired ontents of Âk+b are given byÂk+b = Â(k+b)TL Â(k+b)TRÂ(k+b)BL Â(k+b)BR ! = 0B� LnU (k)00 U (k)01 A(k)02L(k)10 LnU(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CAThus, it suÆes to ompute U (k)01 , L(k)10 , L(k)11 , and U (k)11 .To derive how to ompute these quantities, onsiderA = 0B� A(k)00 A(k)01 A(k)02A(k)10 A(k)11 A(k)12A(k)20 A(k)21 A(k)22 1CA = 0B� L(k)00 0 0L(k)10 L(k)11 0L(k)20 L(k)21 L(k)22 1CA0B� U (k)00 U (k)01 U (k)020 U (k)11 U (k)120 0 U (k)22 1CA= 0B� L(k)00 U (k)00 L(k)00 U (k)01 L(k)00 U (k)02L(k)10 U (k)00 L(k)10 U (k)01 + L(k)11 U (k)11 L(k)10 U (k)02 + L(k)11 U (k)12L(k)20 U (k)00 L(k)20 U (k)01 + L(k)21 U (k)11 L(k)20 U (k)02 + L(k)21 U (k)12 + L(k)22 U (k)22 1CAThis yields the equalitiesA(k)00 =L(k)00 U (k)00 A(k)01 =L(k)00 U (k)01 A(k)02 =L(k)00 U (k)02A(k)10 =L(k)10 U (k)00 A(k)11 =L(k)10 U (k)01 + L(k)11 U (k)11 A(k)12 =L(k)10 U (k)02 + L(k)11 U (k)12A(k)20 =L(k)20 U (k)00 A(k)21 =L(k)20 U (k)01 + L(k)21 U (k)11 A(k)22 =L(k)20 U (k)02 + L(k)21 U (k)12 + L(k)22 U (k)22(8)Thus,1. To ompute U (k)01 we must solve the triangular system L(k)00 U (k)01 = A(k)01 . The result an overwrite A(k)01 .7

2. To ompute L(k)10 we must solve the triangular system L(k)10 U (k)00 = A(k)10 . The result an overwrite A(k)10 .3. To ompute L(k)11 and U (k)11 we must update A(k)11 A(k)11 � L(k)10 U (k)01 = A(k)11 �A(k)10 A(k)01 after whih theresult an be fatored into L(k)11 and U (k)11 using the unbloked algorithm. The result an overwrite A(k)11 .The above disussion motivates the algorithm in Fig. 1 (right) for overwriting the given n� n matrix Awith its LU fatorization. A areful analysis shows that the bloked algorithm does not inur even a singleextra omputation relative to the unbloked algorithm.3.4 Row-Lazy AlgorithmAs a point of referene, Stewart [27℄ alls this algorithm Pikett's harge south.Let us assume that only (2) and (3) have been satis�ed. We will now disuss only a bloked algorithmthat omputes Âk+b from Âk while maintaining these onditions.Repartition A, L, U , and Âk onformally as in (7). Notie that our assumption is that Âk holdsÂk = LnU (k)TL U (k)TRA(k)BL A(k)BR ! = 0B� LnU (k)00 U (k)01 U (k)02A(k)10 A(k)11 A(k)12A(k)20 a(k)21 A(k)22 1CAThe desired ontents of Âk+b are given byÂk+b = Â(k+b)TL Â(k+b)TRÂ(k+b)BL Â(k+b)BR ! = 0B� LnU(k)00 U (k)01 U (k)02L(k)10 LnU (k)11 U (k)12A(k)20 A(k)21 A(k)22 1CAThus, it suÆes to ompute L(k)10 , LnU (k)11 , and U (k)12 . Realling the equalities in (8) we notie that1. To ompute L(k)10 we must solve the triangular system L(k)10 U (k)00 = A(k)10 . The result an overwrite A(k)10 .2. To ompute L(k)11 and U (k)11 we must update A(k)11 A(k)11 � L(k)10 U (k)01 = A(k)11 �A(k)10 A(k)01 after whih theresult an be fatored into L(k)11 and U (k)11 . The result an overwrite A(k)11 .3. To ompute U (k)12 we must update A(k)12 A(k)12 � L(k)10 U (k)02 after whih we must solve the triangularsystem L(k)11 U (k)12 = A(k)12 , overwriting the original A(k)12 .These steps and the preeding disussion lead one diretly to the algorithm in 2().3.5 Column-Lazy AlgorithmThis algorithm is referred to as a left-looking algorithm in [10℄ while Stewart [27℄ alls it Pikett's hargeeast.Let us assume that only (2) and (4) have been satis�ed. Now it suÆes to ompute U (k)01 , LnU (k)11 ,and L(k)21 . Using the same tehniques as before derives the algorithm in Fig. 2 (d). Again, this algorithmoverwrites given n� n matrix A with its LU fatorization.
8

Partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0Repartition� ATL ATRABL ABR �=0� A00 A01 A02A10 A11 A12A20 A21 A22 1Awhere A11 is b� b(a) Eager:A11 fLnUg11 = LU(A11)A12 U12 = L�111 A12A21 L21 = A21U�111A22 A22 � L21U12(b) Lazy:View A00 as fLnUg00A01 L01 = L�100 A01A10 L10 = A10U�100A11 fLnUg11 = LU(A11�L10U01) () Row-lazy:View A00 as fLnUg00A10 L10 = A10U�100A11 fLnUg11 = LU(A11�L10U01)A12 U12 = L�111 (A12 � L10U02)(d) Column-lazy:View A00 as fLnUg00A01 U01 = U�100 A01A11 fLnUg11 = LU(A11�L10U01)A21 L21 = (A21 � L20U01)U�111 (e) Row-olumn-lazy:A11 fLnUg11 = LU(A11�L10U01)A12 U12 = L�111 (A12 � L10U02)A21 L21 = (A21 � L20U01)U�111Continue with� ATL ATRABL ABR �=0� A00 A01 A02A10 A11 A12A20 A21 A22 1AenddoFigure 2: Bloked versions of LU fatorization without pivoting for all �ve ommonly enountered variants.The di�erent variants share the same skeleton that partitions and repartitions the matrix. Exeuting theoperations in one of the �ve boxes yields a spei� algorithm.
9

3.6 Row-Column-Lazy AlgorithmThis algorithm is often referred to as Krout's methods in the literature.Let us assume that only (2), (3), and (4) have been satis�ed. This time, it suÆes to ompute LnU (k)11 ,U (k)12 , and L(k)21 , yielding the algorithm in Fig. 2 (e). Again, this algorithm overwrites given n� n matrix Awith its LU fatorization.3.7 Eager algorithmThis algorithm is ommonly known of as lassial Gaussian elimination.Finally, let us assume that (2), (3), and (4) have been satis�ed, and as muh of (5) as possible withoutompleting any more of the fatorization LBRUBR. Repartition A, L, U , and Âk onformally as in (7).Notie that our assumption is that Âk holdsÂk = LnU (k)TL U (k)TRL(k)BL Â(k)BR ! = 0B� LnU (k)00 U (k)01 U (k)02L(k)10 A(k)11 � L(k)10 U (k)01 A12 � L(k)10 U (k)02L(k)20 A(k)21 � L(k)20 U (k)01 A(k)22 � L(k)20 U (k)02 1CAThe desired ontents of Âk+b are given byÂk+b = Â(k+b)TL Â(k+b)TRÂ(k+b)BL Â(k+b)BR ! = 0B� LnU (k)00 U (k)01 U (k)02L(k)10 LnU(k)11 U (k)12L(k)20 L(k)21 A(k)22 � L(k)20 U (k)02 � L(k)21 U (k)12 1CAThus, it suÆes to ompute LnU (k)11 , L(k)21 , U (k)12 , and updating Â(k)22 = A(k)22 � L(k)20 U (k)02 � L(k)21 U (k)12 . Reallingthe equalities in (8) we notie that1. To ompute L(k)11 and U (k)11 we must fator Â(k)11 whih already ontains A(k)11 �L(k)10 U (k)01 . The result anoverwrite Â(k)11 .2. To ompute U (k)12 we must update Â(k)12 whih already ontains A(k)12 � L(k)10 U (k)02 by solving L(k)11 U (k)12 =Â(k)12 , overwriting the original Â(k)12 .3. To ompute L(k)21 we must update A(k)21 whih already ontains A(k)21 � L(k)20 U (k)01 by solving L(k)21 U (k)11 =Â(k)21 , overwriting the original Â(k)21 .4. We must update Â(k)22 whih already ontains A(k)22 � L(k)20 U (k)02 with Â(k)22 � L(k)21 U (k)12 overwriting theoriginal Â(k)22 .The resulting algorithm is given in Fig. 2(a). Notie that this �nal algorithm is equivalent to the algorithmderived in Setion 3.1.4 A Reipe for Deriving AlgorithmsNote that the derivations of the di�erent algorithms detailed above are extremely systemati. Indeed, thefollowing reipe an be used:1. State the operation to be performed. 10

2. Partition the operands. Notie that some justi�ation is needed for the partiular way in whih theyare partitioned. For the LU, this has to do with the fat that bloks of zeroes must be isolated in Land U . Details go beyond the sope of this paper.3. Multiply out the partitioned matries.4. By equating submatries on the left and right of the equal sign of the equality generated in Step 3,derive the equalities that must hold.5. Pik a loop invariant from the set of possible loop invariants that satisfy the equalities given in Step 4.6. From that loop invariant derive the steps required to maintain the loop invariant while moving thealgorithm forward in the desired diretion. This requires the following substeps:(a) Repartition so as to expose the boundaries after they are moved.(b) Indiate the urrent ontents for the repartitioned matries.() Indiate the desired ontents for the repartitioned matries suh that the loop invariant is main-tained.(d) Derive the steps required to ahieve the desired ontents.7. Update the partitioning of the matries.8. State the algorithm.9. Classify the algorithm. We have developed a systemati way of lassifying the derived algorithms.While we use this lassi�ation in the labeling of the algorithms in the previous setion, we will not gointo detail here.5 So Many Algorithms, So Little TimeSo, why should we be onerned with a spetrum of algorithms for a given operation rather than pikingthe �rst one that yields good performane? The primary motivating fore behind developing a systematiframework for deriving algorithms is that, depending on arhiteture and/or matrix dimensions, di�erentalgorithms exhibit di�erent performane harateristis. An algorithm that performs admirably on onearhiteture and/or a partiular problem size may prove to be an inferior algorithm when implemented onanother arhiteture or applied to a problem with dissimilar dimensions.In [14℄ we show that the eÆient, transportable implementation of matrix multipliation on a sequentialarhiteture with a hierarhial memory requires a hierarhy of matrix algorithms whose organization, ina very real sense, mirrors that of the memory system under onsideration. Perhaps surprisingly, this isneessary even when the problem size is �xed. In that same paper we desribe a methodology for omposingthese routines. In this way, minimal oding e�ort is required to attain superior performane aross awide spetrum of algorithms and problem sizes. Analogously, in [15℄ we demonstrate that an eÆientimplementation of parallel matrix multipliation requires both multiple algorithms and a method for seletingthe appropriate algorithm for the presented ase if one is to handle operands of various sizes and shapes.In [23, 24℄ we ame to a similar onlusion in the ontext of out-of-ore fatorization algorithms.A seond reason for a systemati approah is that it may well be that we require speialized matrixkernels for whih eÆient implementations do not exist (as part of libraries like the BLAS or LAPACK).In [22℄ we show how suh speialized matrix kernels speed up omputations in ontrol theory.Finally, in [21℄ we show how the approah outlined above an be used to show that seemingly di�erentalgorithms for matrix inversions are atually equivalent and therefore share stability properties.11

6 Coding the AlgorithmIn this setion we briey disuss how dense linear algebra algorithms an be translated to ode. We �rstshow a more traditional approah, as it appears in popular pakages like LAPACK. Next, we present analternative that allows oding at a level of abstration that mirrors how we naturally present the algorithms.This seond approah has been suessfully used in PLAPACK. FLAME represents a re�nement of thismethodology.6.1 Classi implementation with the BLASLet us onsider the bloked eager algorithm for the LU fatorization presented in Fig. 2 (a). This algorithmrequires an LU fatorization of small matrix to fator A11 LnU11 = LU fat.(A11), triangular solves withmultiple right-hand-sides to update A12 U12 = L�111 A12 and A21 L21 = A21U�111 , and a matrix-matrixmultiply to update A22 A22 � L21U12. The triangular solves and matrix-matrix multiply are part ofthe Basi Linear Algebra Subprograms (BLAS) as alls to the routines DTRSM and DGEMM, respetively. Theresultant ode is given in Fig. 4. To understand this ode, it helps to onsider the partitioning of the matrixfor a typial loop index j, as illustrated in Fig. 3: A11 is B by B and starts at element A(J,J), A21 isN-(J-1)-B by B and starts at element A(J+B,J) , A12 is B by N-(J-1)-B and starts at element A(J,J+B),and A22 is N-(J-1)-B by N-(J-1)-B and starts at element A(J+B,J+B).Given this piture, it is relatively easy to determine all of the parameters that must be passed to theappropriate BLAS routines.6.2 The algorithm is the odeWe would argue that it is relatively easy to generate the ode in Fig. 4 given the algorithm in Fig. 2(a) andthe piture in Fig. 3. However, the translation of the algorithm to the ode is made tedious and error-proneby the fat that one has to very arefully think about indies and matrix dimensions. While this is not muhof a problem if one were to implement just one algorithm, it beomes a major headahe when implementingall possible variants for a given operation or, in the ase of a library suh as LAPACK, implementing evena single variant of a number of operations. One beomes even more autely aware of these issues whendistributed memory arhitetures enter the piture.In an e�ort to make the ode look as muh like the algorithms given in Fig. 2 as is possible withinthe on�nes of C and FORTRAN, we have developed the Formal Linear Algebra Methods Environment(FLAME). The skeleton that is shared by all �ve variants of LU fatorization is given in Fig. 5. To understandthe ode, it suÆes to realize that A is being passed to the routine as a data struture A that desribes allattributes of this matrix, suh as dimensions and method of storage. Inquiry routines like FLA Obj lengthare used to extrat information suh as the row dimension of the matrix. Finally, ATL, A00, et. are simplyreferenes into the original array desribed by A. If one is familiar with the alphabet soup used to name theBLAS kernels, it is lear that the following ode segments, when entered in the appropropriate plae in theode in 5, implement the di�erent variants of the LU fatorization:Lazy algorithm
12

A00 A01 A02A10 A11 A12t tt tJ - -J+B - -??J ??J+B 	 J-1	 B	 N-(J-1)-B|{z}J-1 |{z}B |{z}N-J-B+1A20 A21 A22Figure 3: Partitioning of matrix A with all dimensions annotated when A00 = ATL is (j � 1)� (j � 1).1 SUBROUTINE LU_EAGER_LEVEL3(N, A, LDA, NB)23 INTEGER N, LDA, NB, J, B4 DOUBLE PRECISION A(LDA, *), ONE, NEG_ONE5 PARAMETER (ONE = 1.0D00, NEG_ONE = -1.0D00)67 DO J=1, N, NB8 B = MIN(N-J+1, NB)9 C A11 <- L\U11 = LU fat(A11)10 LU_EAGER_LEVEL2(B, A(J,J), LDA)1112 IF (J+B .LE. N) THEN1314 C A12 <- U12 = inv(L11) * A121516 DTRSM("LEFT", "LOWER TRIANGULAR", "NO TRANSPOSE", "UNIT DIAGONAL",17 $ ONE, B, N-(J-1)-B, A(J,J), LDA, A(J, J+B), LDA)1819 C A21 <- L21 = A21 * inv(U11)2021 DTRSM("RIGHT", "UPPER TRIANGULAR", "TRANSPOSE", "NONUNIT DIAGONAL",22 $ ONE, N-(J-1)-B, B, A(J,J), LDA, A(J+B, J), LDA)2324 C A22 <- A22 - A21 * A122526 DGEMM("NO TRANSPOSE", "NO TRANSPOSE", N-(J-1)-B, N-(J-1)-B, B,27 $ NEG_ONE, A(J+B, J), LDA, A(J, J+B), LDA, ONE, A(J+B, J+B), LDA)28 ENDIF29 ENDDO3031 RETURN32 ENDFigure 4: FORTRAN implementation of bloked eager LU fatorization algorithm using the BLAS.
13

Partition A = � ATL ATRABL ABR �where ATL is 0� 0do until ABR is 0� 0Repartition
��
��
��
��
��
��
��
��

� ATL ATRABL ABR �= A00 A01 A02A10 A11 A12A20 A21 A22 !where A11 is b� b...Continue with
����
����
����
����

����
����
����
����

� ATL ATRABL ABR �= A00 A01 A02A10 A11 A12A20 A21 A22 !enddo1 #inlude "FLA.h"23 void FLA_LU_nopivot_skeleton(FLA_Obj A, nb_alg)4 {5 FLA_Obj ATL, ATR, A00, A01, A02,6 ABL, ABR, A10, A11, A12,7 A20, A21, A22;89 FLA_Part_2x2(A, &ATL, /**/ &ATR,10 /* ************** */11 &ABL, /**/ &ABR,12 /* with */ 0, /* by */ 0, /* submatrix */ FLA_TL);1314 while (b=min(min(FLA_Obj_length(ABR), FLA_Obj_width(ABR)), nb_alg) != 0){1516 FLA_Repart_2x2_to_3x3(ATL, /**/ ATR, &A00, /**/ &A01, &A02,17 /* ************* */ /* ******************** */18 /**/ &A10, /**/ &A11, &A12,19 ABL, /**/ ABR &A20, /**/ &A21, &A22,20 /* with */ b, /* by */ b, /* A11 split from */ FLA_BR);21 /* *** */...35 /* *** */36 FLA_Cont_with_3x3_to_2x2(&ATL, /**/ &ATR, A00, A01, /**/ A02,37 /**/ A10, A11, /**/ A12,38 /* ************** */ /* ****************** */39 &ABL, /**/ &ABR, A20, A21, /**/ A22,40 /* with A11 added to submatrix */ FLA_TL);41 }42 }Figure 5: An skeleton for the implementation of any of the bloked LU fatorization algorithms in C usingFLAME.
14

23 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,24 ONE, A00, A10);2526 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,27 ONE, A00, A01);2829 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11);3031 FLA_LU_nopivot_level2(A11);Row-lazy algorithm23 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,24 ONE, A00, A10);2526 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A10, ONE, A11);2728 FLA_LU_nopivot_level2(A11);2930 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A02, ONE, A12);3132 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,33 ONE, A11, A12);Column-lazy algorithm23 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,24 ONE, A00, A01);2526 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A10, ONE, A11);2728 FLA_LU_nopivot_level2(A11);2930 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A20, A10, ONE, A21);31 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,32 ONE, A11, A21);Row-olumn-lazy algorithm23 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A01, ONE, A11);24 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A20, A01, ONE, A21);25 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A02, ONE, A12);2627 FLA_LU_nopivot_level2(A11);2829 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,30 ONE, A11, A21);3132 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,33 ONE, A11, A12);Eager algorithm:23 FLA_LU_nopivot_level2(A11);2425 FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,26 ONE, A11, A21);2728 FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,29 ONE, A11, A12);3031 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A21, A12, ONE, A22);15

6.3 Proving the ode orretIn Setion 3.3 we showed how the orretness of the lazy algorithm an be proved and argue that theorretness of the other algorithms an be similarly derived. If the routines alled by the desribed FLAMEode orretly implement the operations in the algorithm, then it an be argued that the ode itself is orret.Indeed, debugging is not neessary.6.4 But is this really a better approah?Naturally, one an argue that determining whih of the two approahes to oding the algorithm might bedeemed \superior" is simply a matter of taste. However, ontemplate the following questions:� What if a bug were introdued into the FORTRAN implementation? For example, suppose that one ofthe N-(J-1)-B were aidentally hanged to a N-(J+1)-B. This kind of bug is extremely hard to trakdown sine the only lue is that the ode produes the wrong answer or auses a segmentation fault.A similar bug annot as easily be introdued into the ode implemented using FLAME. Furthermore,with this approah to oding it is easy to perform a run-time hek to determine if the dimensions ofthe di�erent referenes into A are onformal.� When oding all variants of the LU fatorization one inherently has to derive all algorithms, leadingto desriptions like those given in Fig. 2. However, translating those to ode like that given in Fig. 4would require areful onsideration of the piture in Fig. 3. Moreover, due to the intriate indexinginvolved in that approah to oding, onsiderable testing would be required before one ould delarethe ode bug-free. By ontrast, given the algorithms, it has been demontrated that generating allvariants using FLAME is straightforward. As already mentioned, sine the ode losely resembles thealgorithm, one an be muh more on�dent about its orretness even before the ode is ever tested.� What if we wished to parallelize the given ode? Notie that parallelizing a small subset of thefuntionality of LAPACK as part of the SaLAPACK projet has taken onsiderable e�ort. TheFLAME ode an be transformed into PLAPACK ode essentially by replaing FLA by PLA .� What if we needed an out-of-ore parallel version of the ode? In priniple, the FLAME ode an betransformed into Parallel Out-of-Core Linear Algebra PACKage (POOCLAPACK) ode by replaingFLA by POOCLA .6.5 But what about FORTRAN?Again using MPI as an inspiration, a FORTRAN interfae is available for FLAME. Examples of FORTRANode are available on the FLAME web page.6.6 But what about pivoting?In Fig. 6 we show that pivoting an be easily added to, e.g., the eager LU fatorization algorithm. Notiethat in that implementation we also add reursion without muh ado. We deem the ode self-explanatory.7 PerformaneTo illustrate that elegane does not neessarily ome at the expense of performane, we measured the perfor-mane of the LU fatorization with pivoting given in Fig. 6 followed by forward and bakward substitution.16

1 void FLA_LU(FLA_Obj A, FLA_Obj ipiv, int nb_alg)2 {3 < delarations >45 FLA_Part_2x2(A, &ATL, /**/ &ATR,6 /* ************** */7 &ABL, /**/ &ABR,8 /* with */ 0, /* by */ 0, /* submatrix */ FLA_TL);910 FLA_Part_2x1(ipiv, &ipivT,11 /* ****** */12 &ipivB,13 /* with */ 0, /* length submatrix */ FLA_TOP);1415 while (b = min(min(FLA_Obj_length(ABR), FLA_Obj_width(ABR)), nb_alg)){16 FLA_Repart_2x1_to_3x1(ipivT, &ipiv0,17 /* ***** */ /* ***** */18 &ipiv1,19 ipivB, &ipiv2,20 /* with */ b, /* length ipiv1 split from */ FLA_BOTTOM);21 /* *** */22 FLA_Part_1x2(ABR, &ABR_1, &ABR_2, /* with */ b, /* width submatrix */ FLA_LEFT);2324 if (nb_alg <= 4) FLA_LU_level2(ABR_1, ipiv1);25 else FLA_LU (ABR_1, ipiv1, nb_alg/2);2627 FLA_Apply_pivots(FLA_SIDE_LEFT, FLA_NO_TRANSPOSE, ipiv1, ABL);28 FLA_Apply_pivots(FLA_SIDE_LEFT, FLA_NO_TRANSPOSE, ipiv1, ABR_2);29 /* *** */30 FLA_Repart_2x2_to_3x3(ATL, /**/ ATR, &A00, /**/ &A01, &A02,31 /* ************* */ /* ********************* */32 /**/ &A10, /**/ &A11, &A12,33 ABL, /**/ ABR, &A20, /**/ &A21, &A22,34 /* with */ b, /* by */ b, /* A11 split from */ FLA_BR);35 /* *** */36 FLA_Trsm(FLA_SIDE_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,37 ONE, A11, A12);3839 FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A21, A12, ONE, A22);40 /* *** */41 FLA_Cont_with_3x3_to_2x2(&ATL, /**/ &ATR, A00, A01, /**/ A02,42 /**/ A10, A11, /**/ A12,43 /* ************** */ /* ****************** */44 &ABL, /**/ &ABR, A20, A21, /**/ A22,45 /* with A11 added to submatrix */ FLA_TL);4647 FLA_Cont_with_3x1_to_2x1(&ipivT, ipiv0,48 ipiv1,49 /* ***** */ /* ***** */50 &ipivB, ipiv2,51 /* with ipiv1 added to */ FLA_TOP);52 }53 } Figure 6: FLAME reursive LU fatorization with partial pivoting.17

For omparison, we also measured the performane of the equivalent operations provided by ATLAS releaseR3.1 [29℄.Some details: Performane was measured on a Pentium III based laptop with a 256K L2 ahe runningthe Linux (Redhat 6.2) operating system. All omputation was performed in 64-bit (double preision)arithmeti. For both implementations the same ompiler options were used.In Fig. 7 we report performane for four di�erent implementations, indiated by the urves markedATLAS: This urve reports performane for the LU fatorization provided by ATLAS R3.1, using the BLASprovided by ATLAS R3.1.ATL-FLAME: This urve reports the performane of our LU fatorization oded using FLAME built uponBLAS provided by ATLAS R3.1. The outer-most blok size used for the LU fatorization is 160 forthese measurements. (Notie that multiples of 40 are optimal for the ATLAS matrix-matrix multiplyon this arhiteture.)ITX-FLAME: Same as the previous implementation, exept that we optimized the matrix-matrix multiply(ITXGEMM). Details of this optimization are the subjet of another paper [14℄. This time the outer-most blok size was 128. (Notie that multiples of 64 are optimal for the ITXGEMM matrix-matrixmultipliation routine on this arhiteture.)ITX-FLAME-opt: Same as the previous implementation, exept that we optimized the level-2 BLAS based LUfatorization of an intermediate panel as well as the pivot routine by not using the FLAME approahfor those operations. For these routines we all dsal, dger, and dswap diretly.For all implementations, the forward and bakward substitutions are provided by the ATLAS R3.1 dtrsvroutine. The graph on the bottom shows the same data for smaller matries is more detail.Notie that for small matries the unoptimized FLAME implementations perform somewhat worse, dueto the overhead for manipulating the objets that enode the information about the matries. When thelevel-2 BLAS based LU fatorization is oded without this overhead, the performane is omparable evenfor small matries. The better performane when the ITXGEMM matrix-matrix multiply is used is entirelydue to the better performane of this matrix-matrix multiply.It is important to realize that the performane di�erene between the implementation o�ered as part ofATLAS R3.1 and our own implementation is not the point of this paper: With some e�ort either implemen-tation an be improved to math the performane of the other. Our primary point is that markedly lesse�ort is required to implement these algorithms using FLAME while attaining performane omparable tothat of what are widely onsidered to be high-performane implementations.8 Future diretionsMany aspets of the approah we have desribed are extremely systemati: the generation of the loop-invariants, the derivation of the algorithm as well as the translation to ode. Not disussed is the fatthat the analysis of the run-time of the resulting algorithm on sequential or, for that matter, parallel,arhitetures is equally systemati. We are pursuing a projet that exploits this systemati approah inorder to automatially generate entire (parallel) linear algebra libraries as well as run-time estimates forthe generated subroutines [13℄. The goal is to reate a mehanism that will automatially hoose betweendi�erent algorithms based on arhiteture and/or problem parameters.A onsiderably less ambitious projet, already nearing ompletion, allows the user to program in alanguage-independent manner (i.e. by writing an ASCII version of the algorithms presented in this paper).Sine it is our entral thesis that the level of abstration presented in this paper is the orret one, it seems an18

