Formal Linear Algebra Methods Environment (FLAME)
Overview*

John A. Gunnels
Robert A. van de Geijn

Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712
{gunnels,rvdg}@cs.utexas.edu

Greg M. Henry

Intel Corp.
Bldg C01-02
Beaverton, OR 97006-5733
greg.henry@intel.com

FLAME Working Note #1

November 8, 2000

Abstract

Since the advent of high-performance distributed-memory parallel computing, the need for intelligible
code has become ever greater. The development and maintenance of libraries for these architectures is
simply too complex to be amenable to conventional approaches to coding and attempting to employ
traditional methodology has led to the production of an abundance of inefficient, anfractuous code that
is difficult to maintain and nigh-impossible to upgrade.

Having struggled with these issues for more than a decade, we have arrived at a conclusion that is
somewhat surprising to us: the answer is to apply formal methods from Computer Science to the devel-
opment of high-performance linear algebra libraries. The resulting approach has consistently resulted in
aesthetically-pleasing, coherent code that greatly facilitates performance analysis, intelligent modularity,
and the enforcement of program correctness via assertions. Since the technique is completely language-
independent, it lends itself equally well to a wide spectrum of programming languages (and paradigms)
ranging from C and FORTRAN to C++ and Java to graphical programming languages like those used
for LabView. In this paper, we illustrate our observations by looking at the development of the Formal
Linear Algebra Methods Environment (FLAME) for implementing linear algebra algorithms on sequen-
tial architectures. This environment demonstrates that lessons learned in the distributed memory world
can guide us toward better approaches to coding even in the sequential world.

*This work was partially supported by the Remote Exploration and Experimentation Project at Caltech’s Jet Propulsion
Laboratory, which is part of NASA’s High Performance Computing and Communications Program, and is funded by NASA’s
Office of Space Science.

1 Introduction

When considering the unmanageable complexity of computer systems, Dijkstra recently made the following
observations [7]:

(i) When exhaustive testing is impossible —i.e., almost always— our trust can only be
based on proof (be it mechanized or not).

(ii) A program for which it is not clear why we should trust it, is of dubious value.

(iii) A program should be structured in such a way that the argument for its correctness
is feasible and not unnecessarily laborious.

(iv) Given the proof, deriving a program justified by it, is much easier than, given the
program, constructing a proof justifying it.

The core curriculum of any first-rate undergraduate Computer Science department includes at least one
course that focuses on the formal derivation and verification of algorithms [12]. Many of us in scientific
computing may have, at some point in time, hastily dismissed this approach, arguing that this is all very
nice for small, simple algorithms, but an academic exercise hardly applicable in “our world.” Since it
is often the case that our work involves libraries comprised of hundreds of thousands or even millions
of lines of code, the knee-jerk reaction that this approach is much too cumbersome to take seriously is
understandable. Furthermore, the momentum of established practices and “traditional wisdom” do little if
anything to dissuade one from this line of reasoning. Yet, as the result of our search for superior methods for
designing and constructing high-performance parallel linear algebra libraries, we have come to the conclusion
that it is only through the systematic approach offered by formal methods that we will be able to deliver
reliable, maintainable, flexible, yet highly efficient matrix libraries even in the relatively well-understood
area of (sequential and parallel) dense linear algebra.

While some would immediately draw the conclusion that a change to a more modern programming
language like C++ is at least highly desirable, if not a necessary precursor to writing elegant code, the
fact is that most applications that call packages like LAPACK [3] and ScaLAPACK [6] are still written
in FORTRAN and/or C. Interfacing such an application with a library written in C++ presents certain
complications. However, during the mid-nineties, the Message-Passing Interface (MPI) introduced to the
scientific computing community a programming model, object-based programming, that possesses many of
the advantages typically associated with the intelligent use of an object-oriented language [26]. Using objects
(e.g. communicators in MPT) to encapsulate data structures and hide complexity, a much cleaner approach
to coding can be achieved. Our own work on the Parallel Linear Algebra PACKage (PLAPACK) borrowed
from this approach in order to hide details of data distribution and data mapping in the realm of parallel
linear algebra libraries [28]. The primary concept also germane to this paper is that PLAPACK raises the
level of abstraction at which one programs so that indexing is essentially removed from the code, allowing the
routine to reflect the algorithm as it is naturally presented in a classroom setting. Since our initial work on
PLAPACK, we have experimented with similar interfaces in such seemingly disparate contexts as (parallel)
out-of-core linear algebra packages and a low-level implementation of the sequential BLAS [14].

FLAME is the latest step in the evolution of these systems. It facilitates the use of a programming style
that is equally applicable to everything from out-of-core, parallel systems to single-processor systems where
cache-management is of paramount concern.

Over the last seven or eight years it has become apparent that what makes our task of library development
more manageable is this systematic approach to deriving algorithms coupled with the abstractions we use
to make our code reflect the algorithms thus produced. Further, it is from these experiences that we can
confidently state that this approach to programming greatly reduces the complexity of the resultant code
and does not sacrifice high performance in order to do so.

Indeed, it is exactly the formal techniques that we may have at one time dismissed as merely academic
or impractical which make this possible, as we will attempt to illustrate in the following sections.

2 The Case for a More Formal Approach

Ideally, an implementation should clearly reflect the algorithm as it is presented in a classroom setting. Even
better, some of the derivation of the algorithm should be apparent in the code and different variants of an
algorithm should be recognizable as slight perturbations to an algorithmic “skeleton” or base code. If the
code is just a mechanically-realizable, straightforward translation of the algorithm presented in class, there
should be no opportunity for the introduction of logical errors or coding bugs. Presumably, it should be
possible to prove the algorithms correct, thus ensuring that the code is correct. Previewing the next sections,
algorithms for blocked variants of LU factorization of a matrix are presented in Fig. 2. In Fig. 5 we show
how this can be translated into an skeleton for a code. By entering different updates of submatrices into this
skeleton, given in Section 6.2, different variants of the LU factorization algorithm are realized.

Typically, it is difficult to prove code correct precisely because one is unsure that the code truly mirrors
the algorithm. With our approach, the chasm is largely bridged by the simple yet crucial fact that some
very simple syntactic rewrite rules can produce the code from an algorithm expressed as one might in a
clagssroom, using mathematical formulae and stylized matrix depictions. Since we can prove the correctness
of the algorithm we wish to employ (the proof is generally constructive in nature, but that is of little
consequence) and because the correctness of the translation from algorithm to code is at least as reliable
as compiler technology, the complexity of the task at hand is greatly ameliorated. Namely, components
are expected to live up to certain “contractual obligations” [1, 4, 11]. In the case of a library constructed
entirely through the methodology presented here, these components would be composed in like manner so
as to make this task manageable. This is largely due to the fact that the approach presented here leads to
a software architecture layered in such a way so as to require one to rely on the correctness of a very small
number of base-level modules. Since those units are small, their correctness can be established through the
application of standard formal methods. It is true that, in practice, one must accept that an application
will need to interface with other libraries (for example, the vendor-supplied BLAS) that are not built in a
“proof-friendly” format. However, it may still be possible to establish the correctness of a program if one
is careful to impose minimal obligations on these, presumably time-tested and well-documented, pieces of
code.

Having said this, let us clarify through a simple example.

3 A Case Study: LU Factorization

We illustrate our approach by considering LU factorization without pivoting. Given n X n matrix A we wish
to compute n x n lower triangular matrix L with unit main diagonal and n x n upper triangular matrix U
so that A = LU. The original matrix A is overwritten by L and U in the process.

3.1 A simple derivation

The usual derivation of an algorithm for the LU factorization proceeds as follows:

Partition - .
A:(O‘“ ‘“2) L:(—“—l 0) andU=<““ “12>
as || A)’ loy || Loa)’ 0 || Uz

Now A = LU translates to

() - () () - (i)
az || As2 l21 || Ly 0 || Uz l21v11 || 121U{2 + L22Us2
so that the following equalities must hold:

a1;] = V11 || aﬂ = U{2

loruTly + LaaUss

azi = viln || Aso
Finally, we arrive at the following algorithm
e Overwrite aj; and aly with vy; and u?, respectively (no-op).
e Update ag; ¢ lo1 = ao1/v11-
e Update Asy + Ags — Injuls.
e Recursively factor Ass — LooUss.

While the algorithm is formulated as tail-recursive, it is usually implemented as a loop.

3.2 But what intermediate value is in the matrix?

In order to prove correctness, one question we must ask is what intermediate value is in A at any particular
stage of the algorithm. To answer this, partition

k k k k k
0 o () (L e (i)

k k k k k
ABL ABR LBL LBR 0 UBR

where Agfg, LgfL), and U}kL) are all k£ x k matrices. Notice that “T”, “B”, “L”, and “R” stand for Top,
Bottom, Left, and Right, respectively. Notice that

k k k k k k k k k
(Ary || Ay) _ (Lyy | 0) (Uyy | Uf) _ (LUy | LrpUry)
k k - k k k - k k k k k k
Ay || Asr B0 S ANICH 545 LpUsy || LspUn + LispUsh

so the following equalities must hold when the algorithm has completed:

2) AR = Lol
(3) ARy = LRUE
(4) Ay = Lyul)
(5) Ay = LG U + LayUs)

Finally, let Ay, equal a matrix that holds the current intermediate result of a given algorithm for computing
the LU factorization. In the following pages we will show that different conditions on the contents of Ay
logically dictate different variants for computing the LU factorization, and these different conditions can be
systematically generated. Previewing this, notice that to compute the LU factorization, the submatrices of
L and U must be computed. We assume that Ay, must contain partial results towards that goal. Here are
some possibilities:

| Condition | Aj, contains

k k

(\UF) [A%
k k

AT T A%

Only (2) is satisfied.

k k
Uy || Urp
k k
Ay [Apy

Only (2) and (3) have been satisfied. (

L 1A%
(zAU¥£ Uiy
L | A%k
(Lvé@

Only (2), (3), and (4) have been satisfied.

(k) (k)

L\U A

Only (2) and (4) have been satisfied. (\Ury LL >
U

(2), (3), and (4) have been satisfied and as much of (5) has been

k k
(BJ).% or Ug}%.

(k) >
TR
k) k k
B

computed without computing any part of L

Here we use the notation {L\U} to denote a lower and upper triangular matrix that are stored in a square
matrix by overwriting the lower and upper triangular parts of that matrix. (Recall that L has ones on the
diagonal, which need not be stored.)

In the subsequent subsections, we describe how to derive algorithms in which the desired conditions hold.
Note that in this paper we will not concern ourselves with the question of whether the above conditions
exhaust all possibilities. However, they do give rise to all commonly discussed algorithms. For example,
they yield all algorithms depicted on the cover of and discussed in G.W. Stewart’s recent book on matrix
factorization [27].

3.3 Lazy Algorithm

This algorithm is often referred to as a bordered algorithm in the literature. Stewart, [27] rather colorfully,
refers to it as Sherman’s march.

Unblocked Algorithm

Let us assume that only (2) has been satisfied. The question becomes how to compute Ak+1 from Aj,. To
answer this, repartition

) || 0 | 4
AR | 4® Ay | oy’ | Ay
a- (S) - (i
A : A k) k k
B Bl Ago ag1) AgQ)

where Aég) is k£ x k (and thus equal to AgfL)), and agﬁ) is a scalar. Repartition L, U, and Ay, conformally.
Notice that we wish to change the contents of the current matrix from Ay to A4y or

(k k k k k

n\U¥) || A%, I\Ugy | agy) | Ay 4D || 40D L\US | uiy || AG

— " T ® | _(&T to TL TR _ (BT [R R T

) - (D) () - (2 s
Aso as Asy Ao ‘ H A;

(k)

Thus, it suffices to compute u[(n), l%o), and v;

A—“A— A A
Partition A = TLUSTR Partition A — TL||ATR
ABL||ABR ApillAnn

where App is 0 X 0 where App is 0 X 0
do until Aggr is 0 x 0 do until Aggr is 0 x 0
Determine block size b
Partition Partition

L\Uyq A L\U go||A01|A
Arp||ATr | \T fo ;2 Arp||Arr \ _ >1 AOI A02
Aprf[Asr Al Ll Aprf[Asr) gttt

Azo ||a21|A22 Azo ||A21|A22
where A1 isbx b

apl < up1 = L601a01 A01 «— Up1 = LSOIA()l
afy + Uy = afyUsg' Ao + Lio = AUy
a1y < vir = air — ljguot A1« A — LioUo
A1l +— L\Ull = LU fact(A11)
Continue with Continue with
L\U up1 Aog L\U U01 A02
A A 00 A A 00
(—”—ATL ATR) = lfo vU11 aﬂ <—”—ATL ATR > = (Lio |[T\U,,[[A19
BLII<BR Az |a21 ||A22 BLII©BR Asg | Aar [[Aae
enddo enddo

Figure 1: Unblocked and blocked versions of the lazy variant for computing the LU factorization of a square
matrix A (without pivoting).

To derive how to compute these quantities, consider

(k) (k) (k) (k)
A | afy | AR o L o] o oo || ugy | UGy
)T 13)T _ BT BT
5?2) aéi)) a%) - lﬁoﬁk) Q - o i u%)
Aso Qs Asy Ly, L Ly, 0 0 Uss
(k)77 (k k k) (k
)U) H (()O)ut()l) ‘ ()U()
= l(k Ué(’j l(g)Tu(()li)+v(k) l(k U(k +u(k)
®Y 7 (k)7 (k 13)7 (% 13 Bk
20)U00))U) 21)U(1))U) 21)U52) Lg2)U§2)
From this equality we find that the following equalities must hold:
A(()IS) —L(()IS)U() H (()Ii)—L(()IS) (k) A(k) _L(k)U(k)
o SM 3 T S AT i Al
o S S
(k) (k), (k) _ (k) (k)

Thus, to compute u,;” we must solve the triangular system Ly, uy;” = ay;’ . The result can overwrite ag; .

To compute l(0 we must solve the triangular system [;]”) TU(k) = (13) The result can overwrite a§0> To

compute UY;) we merely compute U;l) = agli) - %)T é’i) = gk) agﬁ)T 4" The result can overwrite agli).
This motivates the algorithm in Fig. 1 (left) for overwriting given n x n matrix A with its LU factorization.

To show that indeed there is a possibility of proving the algorithm correct, consider the following result:

Theorem 1 Consider the algorithm in Fig. 1 (left). This algorithm overwrites given n X n matriz A with
its LU factorization.

Proof: Realize that, by design, at the top of the loop during the kth iteration of the loop A contains the
matrix Ay from the previous discussion. The derivation of the algorithm is such that it proves that given

that the contents of Ay, are as desired, the contents of Ak“ are as desired which proves the inductive step.
Since A9 = A we conclude that A, = L\U. O
It is possible to similarly prove the correctness of the remainder of the variants.

Blocked Algorithm

For performance reasons it becomes beneficial to derive a blocked version of the above-presented algorithm.
The derivation closely follows that of the unblocked algorithm: Again assume that only (2) has been satisfied.
The question is now how to directly compute ALH, from Ay, for some small block size b (ie. 1 <bkn). To
answer this, repartition

A®) || %) Ay’ || A | 46
— — k k k
(7) A= () - Ago) A§1) AgQ)

k k
ABL ABR

where A(()IS) is k x k (and thus equal to Agﬂ“L)), and Agli) is b x b. Repartition L, U, and A conformally. Notice
that our assumption is that Ay, holds

L Do || A%, B U || AR | A5
AR AR
BL BR

The desired contents of AkH, are given by

k k k
. A(k+b)) L\((J;c((;o) Uél)k Aé)]%;
Apyp = (Aaﬁb) > Lo L\Ugl) Ay
E
s AT AD 4
Thus, it suffices to compute Uél), Lgl(”)), Llli), and U1
To derive how to compute these quantities, consider
k k k k k k
AP A a9\ (a0 | o\ (ol | ol
PO o v O O
k E E k % E E
ATl) o o fof
k) rr(k k) ok k) rr(k
LU | LeUs | Lig Ugs
_ B, (k B) ;- (k B, (k E) (k)),k
- Lgo)Uéo) Lgo)Uél) + Lgl)Ul(l) Lgo Ué2 + L11)U1(2)

E) ;7 (k B) ;- (k E) ;7 (k B, (k B (k B, (F
A P T T G T R
This yields the equalities

k)7 7(k) E) (K k) (K
Ape =Lig Uso || 450 =L Usy” A =L Usy’

B (k Bk Bk
© A A b e
Azo =Ly Ugo Az1 =Lyy Uy + Loy Upy A22 =Lyg Upy + Loy Upy' + Ly Usy

Thus,

k)

1. To compute Uél (k)U(k) k)

we must solve the triangular system Ly, Uy’ = A(()Ii). The result can overwrite A(()1 .

)

2. To compute L(0 we must solve the triangular system Lgo) Uég) = Agg) The result can overwrite A§0

3. To compute L(1) and U(1) we must update A() Agli) - (k)Uélf) = AY;) - A%)Afﬁ) after which the

)

result can be factored into L§1 and U1(1 using the unblocked algorithm. The result can overwrite Agli).

The above discussion motivates the algorithm in Fig. 1 (right) for overwriting the given n x n matrix A
with its LU factorization. A careful analysis shows that the blocked algorithm does not incur even a single
extra computation relative to the unblocked algorithm.

3.4 Row-Lazy Algorithm

As a point of reference, Stewart [27] calls this algorithm Pickett’s charge south.

Let us assume that only (2) and (3) have been satisfied. We will now discuss only a blocked algorithm
that computes AkH, from flk while maintaining these conditions.

Repartition A, L, U, and A, conformally as in (7). Notice that our assumption is that Ay, holds

Uiy || Usr” | Usy’

- _ (] Uq‘!;
A, = = A(k) A(k) A(k)
- () - (e

The desired contents of Ak+b are given by

A (k)
Akt = (L

4 (k+b
Ay

k k
>> I\ | Uy || U

Thus, it suffices to compute L10 , L\U11 , and U1(§)- Recalling the equalities in (8) we notice that

) we must solve the triangular system Lgo) Uég) = Agg) The result can overwrite A§0

1. To compute L(0
2. To compute Lgli) and Ul(f) we must update A(k) — Agli) - Lglf)) Ué’f) = Agli) - A(k)A(l) after which the

)

result can be factored into L§1 and Ul(lf . The result can overwrite Agli).

(k)Uék) after which we must solve the triangular
(k)

system Lg’i) U1(§) = Aglé), overwriting the original A;5’ .

3. To compute Uf;“) we must update Ag’;) «— Ag’;) -

These steps and the preceding discussion lead one directly to the algorithm in 2(c).

3.5 Column-Lazy Algorithm

This algorithm is referred to as a left-looking algorithm in [10] while Stewart [27] calls it Pickett’s charge
east.

Let us assume that only (2) and (4) have been satisfied. Now it suffices to compute U0 , L\U11 ,
and Lgli). Using the same techniques as before derives the algorithm in Fig. 2 (d). Again, this algorithm
overwrites given n X n matrix A with its LU factorization.

Arp|A
Partition 4 = <i“ﬂ>
Apc]Asr

where Arr is 0 x 0
do until Agr is 0 x 0

Repartition
Agol|Ao1|A
ATL ATR 3 00 014102
A—BL”H - AlO All A12
Ago||Az21|A22

where A;; isbx b

(a) Eager:

A11 «— {L\U}11 = LU(All)
A Upp = L1_11A12

Ap1 ¢ Loy = Ay Uﬁl

Agy &= Agy — LUy

(b) Lazy: (c) Row-lazy:

View AOO as {L\U}OU View AOO as {L\U}OU

Ao1 < Loy = Lo_()lAOl Ao ¢ Lip = AlOUo_()l

Ao ¢+ Lip = AlOU(i)l A1« {L\U}11 = LU(A11 — L1oUo1)
Ay < {L\U}11 = LU(A11 — L1oUmn) Aqy < Uia = L1 (A1a — LioUps)

(d) Column-lazy: (e) Row-column-lazy:

View AOO as {L\U}OU A11 — {L\U}11 = LU(A11 —L10U01)
Aot + Ut = Upy' A Ars + Ura = L (A12 — LioUps)

Ay {I\U}1 = LU(A11 — LigUn1) | A2 ¢ Loy = (Asy — LagUo1) Uy
Asy < Loy = (Ax1 — LaoUnt) UL

Continue with
Aoo|Ao1|| Aoz
(%“%) | Aol [Ar
BLI|*BR Asp|Aaq||Ass

enddo

Figure 2: Blocked versions of LU factorization without pivoting for all five commonly encountered variants.
The different variants share the same skeleton that partitions and repartitions the matrix. Executing the
operations in one of the five boxes yields a specific algorithm.

3.6 Row-Column-Lazy Algorithm

This algorithm is often referred to as Krout’s methods in the literature.

Let us assume that only (2), (3), and (4) have been satisfied. This time, it suffices to compute L\Uﬁ),
Ul(s), and Lgli), yielding the algorithm in Fig. 2 (e). Again, this algorithm overwrites given n x n matrix A
with its LU factorization.

3.7 Eager algorithm

This algorithm is commonly known of as classical Gaussian elimination.

Finally, let us assume that (2), (3), and (4) have been satisfied, and as much of (5) as possible without
completing any more of the factorization LprUggr. Repartition A, L, U, and A, conformally as in (7).
Notice that our assumption is that Ay, holds

k k k

. L\U H U (k) L\U(()o) H Uél) Ué :
- (B) - | T T e T
P Ao T

The desired contents of Ak+b are given by

k k k

. A(k+b) 7 (k+b) L\gf;o) Ué1()k) U(%c;

Apgp = (A(j;j_b) Aﬁib)) = Lig L\U3; Uiy
Apr, BR

k k k k k k k
Lgo) ‘ Lgl) H Ag2)_Lgo)Ué2)_Lgl)U1(2)

Thus, it suffices to compute L\Ullz), Lgli), U1(2), and updating A() = Aé’;) - Lglf)) Uég) - Lg’i) Ul(s). Recalling
the equahtles in (8) we notice that

1. To compute L(1 and U11 we must factor A i1) which already contains A ng) Uéf). The result can
)

overwrite A§1 .

2. To compute U1(2) we must update A52) which already contains A(k) L%) Ué’;) by solving L()Ul(g) =

AR

12 » overwriting the original A12 .

3. To compute Lgli) we must update Aé’i) which already contains Aé’i) gf})U (k) by solving Lgl)U (k) —

flgﬁ), overwriting the original Ag{)

4. We must update A 2 which already contains Ag’; - ng) Uég) with flg’;) ¥)Ul() overwriting the

original A()

The resulting algorithm is given in Fig. 2(a). Notice that this final algorithm is equivalent to the algorithm
derived in Section 3.1.

4 A Recipe for Deriving Algorithms

Note that the derivations of the different algorithms detailed above are extremely systematic. Indeed, the
following recipe can be used:

1. State the operation to be performed.

10

2. Partition the operands. Notice that some justification is needed for the particular way in which they
are partitioned. For the LU, this has to do with the fact that blocks of zeroes must be isolated in L
and U. Details go beyond the scope of this paper.

3. Multiply out the partitioned matrices.

4. By equating submatrices on the left and right of the equal sign of the equality generated in Step 3,
derive the equalities that must hold.

5. Pick a loop invariant from the set of possible loop invariants that satisfy the equalities given in Step 4.

6. From that loop invariant derive the steps required to maintain the loop invariant while moving the
algorithm forward in the desired direction. This requires the following substeps:

(a) Repartition so as to expose the boundaries after they are moved.
(b) Indicate the current contents for the repartitioned matrices.

(c) Indicate the desired contents for the repartitioned matrices such that the loop invariant is main-
tained.

(d) Derive the steps required to achieve the desired contents.
7. Update the partitioning of the matrices.
8. State the algorithm.

9. Classify the algorithm. We have developed a systematic way of classifying the derived algorithms.
While we use this classification in the labeling of the algorithms in the previous section, we will not go
into detail here.

5 So Many Algorithms, So Little Time

So, why should we be concerned with a spectrum of algorithms for a given operation rather than picking
the first one that yields good performance? The primary motivating force behind developing a systematic
framework for deriving algorithms is that, depending on architecture and/or matrix dimensions, different
algorithms exhibit different performance characteristics. An algorithm that performs admirably on one
architecture and/or a particular problem size may prove to be an inferior algorithm when implemented on
another architecture or applied to a problem with dissimilar dimensions.

In [14] we show that the efficient, transportable implementation of matrix multiplication on a sequential
architecture with a hierarchical memory requires a hierarchy of matrix algorithms whose organization, in
a very real sense, mirrors that of the memory system under consideration. Perhaps surprisingly, this is
necessary even when the problem size is fixed. In that same paper we describe a methodology for composing
these routines. In this way, minimal coding effort is required to attain superior performance across a
wide spectrum of algorithms and problem sizes. Analogously, in [15] we demonstrate that an efficient
implementation of parallel matrix multiplication requires both multiple algorithms and a method for selecting
the appropriate algorithm for the presented case if one is to handle operands of various sizes and shapes.
In [23, 24] we came to a similar conclusion in the context of out-of-core factorization algorithms.

A second reason for a systematic approach is that it may well be that we require specialized matrix
kernels for which efficient implementations do not exist (as part of libraries like the BLAS or LAPACK).
In [22] we show how such specialized matrix kernels speed up computations in control theory.

Finally, in [21] we show how the approach outlined above can be used to show that seemingly different
algorithms for matrix inversions are actually equivalent and therefore share stability properties.

11

6 Coding the Algorithm

In this section we briefly discuss how dense linear algebra algorithms can be translated to code. We first
show a more traditional approach, as it appears in popular packages like LAPACK. Next, we present an
alternative that allows coding at a level of abstraction that mirrors how we naturally present the algorithms.
This second approach has been successfully used in PLAPACK. FLAME represents a refinement of this
methodology.

6.1 Classic implementation with the BLAS

Let us consider the blocked eager algorithm for the LU factorization presented in Fig. 2 (a). This algorithm
requires an LU factorization of small matrix to factor Ay <= L\U,; = LU fact.(A4;;), triangular solves with
multiple right-hand-sides to update Ajs + Ujs = L1_11A12 and Aoy < Loy = Ao Ul_ll, and a matrix-matrix
multiply to update Ass < Ass — Loy1Ujs. The triangular solves and matrix-matrix multiply are part of
the Basic Linear Algebra Subprograms (BLAS) as calls to the routines DTRSM and DGEMM, respectively. The
resultant code is given in Fig. 4. To understand this code, it helps to consider the partitioning of the matrix
for a typical loop index j, as illustrated in Fig. 3: Ay; is B by B and starts at element A(J,J), Ay is
N-(J-1)-B by B and starts at element A(J+B,J) , Ay, is B by N-(J-1)-B and starts at element A(J,J+B),
and Ass is N-(J-1)-B by N-(J-1)-B and starts at element A(J+B,J+B).

Given this picture, it is relatively easy to determine all of the parameters that must be passed to the
appropriate BLAS routines.

6.2 The algorithm s the code

We would argue that it is relatively easy to generate the code in Fig. 4 given the algorithm in Fig. 2(a) and
the picture in Fig. 3. However, the translation of the algorithm to the code is made tedious and error-prone
by the fact that one has to very carefully think about indices and matrix dimensions. While this is not much
of a problem if one were to implement just one algorithm, it becomes a major headache when implementing
all possible variants for a given operation or, in the case of a library such as LAPACK, implementing even
a single variant of a number of operations. One becomes even more acutely aware of these issues when
distributed memory architectures enter the picture.

In an effort to make the code look as much like the algorithms given in Fig. 2 as is possible within
the confines of C and FORTRAN, we have developed the Formal Linear Algebra Methods Environment
(FLAME). The skeleton that is shared by all five variants of LU factorization is given in Fig. 5. To understand
the code, it suffices to realize that A is being passed to the routine as a data structure A that describes all
attributes of this matrix, such as dimensions and method of storage. Inquiry routines like FLA_Obj_length
are used to extract information such as the row dimension of the matrix. Finally, ATL, A0O, etc. are simply
references into the original array described by A. If one is familiar with the alphabet soup used to name the
BLAS kernels, it is clear that the following code segments, when entered in the appropropriate place in the
code in 5, implement the different variants of the LU factorization:

Lazy algorithm

12

OO0 ~JO Ui W —

1402 } a1

oL

J+B——

%oy Y w-G-1)-8

(N

J-1

Figure 3: Partitioning of matrix A with all dimensions annotated when Aoy = Ay is (j — 1) x (j — 1).

B N-J-B+1

SUBROUTINE LU_EAGER_LEVEL3(N, A, LDA, NB)

INTEGER N, LDA, NB, J, B
DOUBLE PRECISION A(LDA, %), ONE, NEG_ONE
PARAMETER (ONE = 1.0D00, NEG_ONE = -1.0D00)
DO J=1, N, NB
B = MIN(N-J+1, NB)
c A1 <- L\U11 = LU fact(A1l)
LU_EAGER_LEVEL2(B, A(J,J), LDA)
IF (J+B .LE. N) THEN
c A12 <- U12 = inv(L1l) = A12
DTRSM("LEFT", "LOWER TRIANGULAR", "NO TRANSPOSE", "UNIT DIAGONAL",
$ ONE, B, N-(J-1)-B, A(J,J), LDA, A(J, J+B), LDA)
c A21 <- L21 = A21 * inv(U1l)
DTRSM("RIGHT", "UPPER TRIANGULAR", "TRANSPOSE", "NONUNIT DIAGONAL",
$ ONE, N-(J-1)-B, B, A(J,J), LDA, A(J+B, J), LDA)
C 422 <- 422 - A21 * A12
DGEMM("NO TRANSPOSE", "NO TRANSPOSE", N-(J-1)-B, N-(J-1)-B, B,
$ NEG_ONE, A(J+#B, J), LDA, A(C J, J+B), LDA, ONE, A(J+B, J+B), LDA)
ENDIF
ENDDO
RETURN
END

Figure 4: FORTRAN implementation of blocked eager LU factorization algorithm using the BLAS.

13

Partition A = (ﬂ“ﬂ
ABL||ABR
where Ay, is 0 x 0
do until Agr is 0 X0
Repartition

Apol||Ao1|Ao:
ATL ATR 3 AOO AOl AOZ

Asp||A21|A22
where A1 isbx b

Continue with
Apo|Ao1 ||Ao2
% <ﬂ“ﬂ> — A1o|A11]||A12
Apr|Asr Azp|Az1||A22

enddo

1 #include "FLA.h"

2

3 void FLA_LU_nopivot_skeleton(FLA_Obj A, nb_alg)

4 {

5 FLA_Obj ATL, ATR, A0O, AO1, A02,

6 ABL, ABR, A10, A11, A12,

7 A20, A21, A22;

8

9 FLA_Part_2x2(A, &ATL, /%%/ &ATR,

10 /% skkokskokokkokskokokkokk k[

11 &ABL, /*%/ &ABR,

12 /* with */ 0, /* by */ 0, /* submatrix */ FLA_TL);

13

14 while (b=min(min(FLA_Obj_length(ABR), FLA_Obj_width(ABR)), nb_alg) != 0){
15

16 FLA_Repart_2x2_to_3x3(ATL, /**/ ATR, &A00, /*x/ &AO1, &A02,

17 [* kxkckkkokkkokkkk k[[k skkkkkokkkokokkokokkokokkokokk ok /

18 [*x/ &A10, /**/ &A11l, &A12,

19 ABL, /x*/ ABR ZA20, /*%/ &A21, &A22,

20 /* with */ b, /* by */ b, /* All split from */ FLA_BR);

21 /* 2k 3k ok 5k ok 3k ok 3k ok 5k ok 5k ok 5k ok 5k ok 5k ok 5k ok 5k ok 5k 3k 3k 3k ok 3k ok 3k 3k >k 3k ok 3k ok 3k ok >k ok 3k 3k ok 3k ok >k >k 3k 3k ok 3k ok >k >k >k 3k >k %k ok >k ok % >k %k %k %k k *k */
35 /* ***:k*************************** */
36 FLA_Cont_with_3x3_to_2x2(&ATL, /*x/ &ATR, A00, AO1, /*x/ AO2,
37 /*x/ A10, A11, /*x/ A12,
38 [* kkkkkkkkkokkkkk k[[x kkkkokkkokkkokkokkkkkk K/
39 %ABL, /**x/ &ABR, A20, A21, /*x/ A22,
40 /* with A1l added to submatrix */ FLA_TL);
41 }
42}

Figure 5: An skeleton for the implementation of any of the blocked LU factorization algorithms in C using
FLAME.

14

FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
ONE, AOO, A10);

FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
ONE, AOO, AO1);

FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, AO1, ONE, A1l);

FLA_LU_nopivot_level2(A1l);

Row-lazy algorithm

FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
ONE, AOO, A10);

FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A10, ONE, A1l);
FLA_LU_nopivot_level2(A1l);
FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A02, ONE, A12);

FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
ONE, Al11, A12);

Column-lazy algorithm

FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
ONE, AOO, AO1);

FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A10, ONE, A1l);
FLA_LU_nopivot_level2(A1l);
FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A20, A10, ONE, A21);

FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
ONE, A11, A21);

Row-column-lazy algorithm

algorithm:

FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, AO1, ONE, A1l);

FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A20, AO1, ONE, A21);

FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A10, A02, ONE, A12);

FLA_LU_nopivot_level2(A1l);

FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
ONE, A11, A21);

FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
ONE, A11, A12);

FLA_LU_nopivot_level2(A1l);

FLA_Trsm(FLA_RIGHT, FLA_UPPER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_NONUNIT_DIAG,
ONE, A11, A21);

FLA_Trsm(FLA_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
ONE, A1l, A12);

FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A21, A12, ONE, A22);

15

6.3 Proving the code correct

In Section 3.3 we showed how the correctness of the lazy algorithm can be proved and argue that the
correctness of the other algorithms can be similarly derived. If the routines called by the described FLAME
code correctly implement the operations in the algorithm, then it can be argued that the code itself is correct.
Indeed, debugging is not necessary.

6.4 But is this really a better approach?

Naturally, one can argue that determining which of the two approaches to coding the algorithm might be
deemed “superior” is simply a matter of taste. However, contemplate the following questions:

e What if a bug were introduced into the FORTRAN implementation? For example, suppose that one of
the N-(J-1)-B were accidentally changed to a N-(J+1)-B. This kind of bug is extremely hard to track
down since the only clue is that the code produces the wrong answer or causes a segmentation fault.
A similar bug cannot as easily be introduced into the code implemented using FLAME. Furthermore,
with this approach to coding it is easy to perform a run-time check to determine if the dimensions of
the different references into A are conformal.

e When coding all variants of the LU factorization one inherently has to derive all algorithms, leading
to descriptions like those given in Fig. 2. However, translating those to code like that given in Fig. 4
would require careful consideration of the picture in Fig. 3. Moreover, due to the intricate indexing
involved in that approach to coding, considerable testing would be required before one could declare
the code bug-free. By contrast, given the algorithms, it has been demontrated that generating all
variants using FLAME is straightforward. As already mentioned, since the code closely resembles the
algorithm, one can be much more confident about its correctness even before the code is ever tested.

e What if we wished to parallelize the given code? Notice that parallelizing a small subset of the
functionality of LAPACK as part of the ScaLAPACK project has taken considerable effort. The
FLAME code can be transformed into PLAPACK code essentially by replacing FLA_ by PLA_.

e What if we needed an out-of-core parallel version of the code? In principle, the FLAME code can be
transformed into Parallel Out-of-Core Linear Algebra PACKage (POOCLAPACK) code by replacing
FLA_ by POOCLA_.
6.5 But what about FORTRAN?
Again using MPT as an inspiration, a FORTRAN interface is available for FLAME. Examples of FORTRAN
code are available on the FLAME web page.
6.6 But what about pivoting?

In Fig. 6 we show that pivoting can be easily added to, e.g., the eager LU factorization algorithm. Notice
that in that implementation we also add recursion without much ado. We deem the code self-explanatory.

7 Performance

To illustrate that elegance does not necessarily come at the expense of performance, we measured the perfor-
mance of the LU factorization with pivoting given in Fig. 6 followed by forward and backward substitution.

16

OO ULk WN

void FLA_LU(FLA_Obj A, FLA_Obj ipiv, int nb_alg)
{

< declarations >

FLA_Part_2x2(A, &ATL, /**/ &ATR,
/% kkkkkkkkokkkkkk k/

&ABL, /**/ &ABR,
/* with */ 0, /* by */ 0, /* submatrix x/ FLA_TL);

FLA_Part_2x1(ipiv, &ipivT,
/% kkkkkk x/
&ipivB,
/* with */ 0, /* length submatrix */ FLA_TOP);

while (b = min(min(FLA_Obj_length(ABR), FLA_Obj_width(ABR)), nb_alg)){

FLA_Repart_2x1_to_3x1(ipivT, &ipiv0,
/% kkkkx *x/ /* kkkkxk k[

&ipivi,

ipivB, &ipiv2,

/* with */ b, /* length ipivl split from */ FLA_BOTTOM);
[% okkokkok ok kok ok ok ok ok ok ok ok ok ok ok skok ok ok skok ok ok ok skok ok ok ok ok ok ok ok kok ok ok ok ok ok ok kk k /
FLA_Part_1x2(ABR, &ABR_1, &ABR_2, /* with */ b, /* width submatrix */ FLA_LEFT);

if (nb_alg <= 4) FLA_LU_level2(ABR_1, ipivl);
else FLA_LU (ABR_1, ipivl, nb_alg/2);

FLA_Apply_pivots(FLA_SIDE_LEFT, FLA_NO_TRANSPOSE, ipivi, ABL);
FLA_Apply_pivots(FLA_SIDE_LEFT, FLA_NO_TRANSPOSE, ipivl, ABR_2);
[% koo ok ok ok ok ook sk ok sk sk ok ok sk ok sk sk ok ok sk sk ok ok sk ok sk sk ko ok ok ok ok ko sk sk kok ok ook sk ok ok ok ok /

FLA_Repart_2x2_to_3x3(ATL, /*x/ ATR, &A0O, /**/ &AO1, &AO2,
/% kkkkkkkkkkkkk k/ /% kkkokkskkokokkkkkokokkkkkokk K/

/*%/ &A10, /**/ &A11, &A12,

ABL, /*%/ ABR, &A20, /*x/ &A21, &A22,

/* with */ b, /* by */ b, /* A1l split from */ FLA_BR);
[% Hkokskokok ok kokok ok ok ok okok Kok ok ok kR ok ok kR ko ks ko ks skk kR sk sk kR Rk kR ok ok sk kR Rk %/
FLA_Trsm(FLA_SIDE_LEFT, FLA_LOWER_TRIANGULAR, FLA_NO_TRANSPOSE, FLA_UNIT_DIAG,
ONE, A11, A12);

FLA_Gemm(FLA_NO_TRANSPOSE, FLA_NO_TRANSPOSE, MINUS_ONE, A21, A12, ONE, A22);
/% koo kokskok sk o ok ok ok ok sk o ok ok sk ok ok o ok ok K ok ok ok ok o ok ok ok sk ok ok o o ok ok K ko ok ok o ok ok Kok ok sk o o koK Kok sk sk ok Rk kKoK ok sk ok ok k /

FLA_Cont_with_3x3_to_2x2(&ATL, /**/ &ATR, A00, AO1, /*x/ AO2,
/xx/ A10, A11, /*x/ A12,

/% kkkkkkkokkkkkkk k/ /% kkkkkkkkokkkkkkokkkk k[
&ABL, /*x/ &ABR, A20, A21, /xx/ A22,

/* with A11 added to submatrix */ FLA_TL);

FLA_Cont_with_3x1_to_2x1(&ipivT, ipivO0,
ipivi,

/% kkkkx x/ /% kkkkx *x/
&ipivB, ipiv2,

/* with ipivl added to */ FLA_TOP);

Figure 6: FLAME recursive LU factorization with partial pivoting.

17

For comparison, we also measured the performance of the equivalent operations provided by ATLAS release
R3.1 [29].

Some details: Performance was measured on a Pentium IIT based laptop with a 256K L2 cache running
the Linux (Redhat 6.2) operating system. All computation was performed in 64-bit (double precision)
arithmetic. For both implementations the same compiler options were used.

In Fig. 7 we report performance for four different implementations, indicated by the curves marked

ATLAS: This curve reports performance for the LU factorization provided by ATLAS R3.1, using the BLAS
provided by ATLAS R3.1.

ATL-FLAME: This curve reports the performance of our LU factorization coded using FLAME built upon
BLAS provided by ATLAS R3.1. The outer-most block size used for the LU factorization is 160 for
these measurements. (Notice that multiples of 40 are optimal for the ATLAS matrix-matrix multiply
on this architecture.)

ITX-FLAME: Same as the previous implementation, except that we optimized the matrix-matrix multiply
(ITXGEMM). Details of this optimization are the subject of another paper [14]. This time the outer-
most block size was 128. (Notice that multiples of 64 are optimal for the ITXGEMM matrix-matrix
multiplication routine on this architecture.)

ITX-FLAME-opt: Same as the previous implementation, except that we optimized the level-2 BLAS based LU
factorization of an intermediate panel as well as the pivot routine by not using the FLAME approach
for those operations. For these routines we call dscal, dger, and dswap directly.

For all implementations, the forward and backward substitutions are provided by the ATLAS R3.1 dtrsv
routine. The graph on the bottom shows the same data for smaller matrices is more detail.

Notice that for small matrices the unoptimized FLAME implementations perform somewhat worse, due
to the overhead for manipulating the objects that encode the information about the matrices. When the
level-2 BLAS based LU factorization is coded without this overhead, the performance is comparable even
for small matrices. The better performance when the ITXGEMM matrix-matrix multiply is used is entirely
due to the better performance of this matrix-matrix multiply.

It is important to realize that the performance difference between the implementation offered as part of
ATLAS R3.1 and our own implementation is not the point of this paper: With some effort either implemen-
tation can be improved to match the performance of the other. Our primary point is that markedly less
effort is required to implement these algorithms using FLAME while attaining performance comparable to
that of what are widely considered to be high-performance implementations.

8 Future directions

Many aspects of the approach we have described are extremely systematic: the generation of the loop-
invariants, the derivation of the algorithm as well as the translation to code. Not discussed is the fact
that the analysis of the run-time of the resulting algorithm on sequential or, for that matter, parallel,
architectures is equally systematic. We are pursuing a project that exploits this systematic approach in
order to automatically generate entire (parallel) linear algebra libraries as well as run-time estimates for
the generated subroutines [13]. The goal is to create a mechanism that will automatically choose between
different algorithms based on architecture and/or problem parameters.

A considerably less ambitious project, already nearing completion, allows the user to program in a
language-independent manner (i.e. by writing an ASCII version of the algorithms presented in this paper).
Since it is our central thesis that the level of abstraction presented in this paper is the correct one, it seems an

18

