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1 Introduction

We present a Haskell solution to the problem of enumerating the strings of a
regular expression with respect to a regular preorder, a term we soon define.
A version of this problem was considered in a note by Jayadev Misra [3]. We
have generalized the problem. The use of Haskell was suggested by Edsger W.
Dijkstra and our solution makes critical use of Haskell’s lazy evaluation.

1.1 Regular Expressions

A is an alphabet, a set of symbols. A* denotes the set of strings, finite
sequences over A . The empty string is denoted by e¢ and - denotes the
concatenation operator on A*

A regular expression over A takes one of the following six forms.

L0

2. €

3. An element of A
4. plq

5. pegq

6. p*

where p and g are regular expressions. L.r , a subset of A* | is the
language denoted by regular expression r . L.J is the empty set. If a € A
or a=¢ then L.a = {a} ! L.(p|q) = LpUL.q . L.(peq) = LpxL.q ,
where BxC = {b-c:be€B A c€C} . Lp* = Upgenp' , where
p’ = {e} and pt'! = pxp' . There are many good books that discuss
the theory of regular expressions [1]. Note that in the standard treatment of
regular expressions, the alphabet is required to be finite, whereas we have no
such restriction.

1We denote a single element sequence and its element in the same way.



1.2 Regular Preorders

Henceforth, w,v,w,z,y,z rangeover A* . Let < be a regular preorder. By
this we mean that for all w,z,y,z all of the following hold.

l.zy V y=<=z
xRy N y=z = x=2z

. =X is computable

2

3. =
4. e<x
S. 2=y N w2z = zw yYy-z2

The first property is totality and implies reflexivity; the second is transitivity.
A preorder is a reflexive, transitive relation. From the first two properties we
have that =< is a total preorder. Since we construct an algorithm we require,
with the third condition, that < is computable. The final two conditions, that
€ is bottom and that - is monotonic with respect to < , can be used to show
that regular languages are well-founded with respect to < , as we will see later.

1.3 The Enumeration Problem

We abbreviate z <y A —(y<z) by z <y . Weuse # to denote both
the length of a list and the cardinality of a set. A list [ is an enumeration
of a regular expression r with respect to regular preorder = iff all of the
following hold.

1. Every element of [ isin L.r .
2. | contains no duplicates.

3. [ is increasing: for any = and y ,if =z appears before y in [ then
Ty .

4. 1 and L.r have the same cardinality, i.e., #/ = #(L.r)
5. If yel ,then (Ve:ze€Lr AN z<y:z€l)

There can be many enumerations of r as is the case when = <y for
all z,y . But there is at least one enumeration and if < is a total order,?
then the enumeration is unique. Sometimes no enumeration of r contains
all of the strings in L.r , e.g., consider r = a*|b (for a,b € A ) where
(Vi € N:a® <b) : no enumeration contains b . If all the stringsin L.r have
a finite set of predecessors in L.r , then any enumeration contains all of the
strings in L.r . The enumeration problem is to find an algorithm that, given
regular expression r and regular preorder < , returns an enumeration of r
with respect to =<

2A total order (sometimes referred to as a linear order) satisfies the first two conditions of
a regular preorder and antisymmetry: z <y A y<z = =y .
8 = =



2 A Haskell Solution

Our solution to the enumeration problem is written in Haskell, a programming
language that is functional, lazy, and allows infinite objects. Function applica-
tion is invisible; functions are defined using pattern matching; [] denotes the
empty list; a:p 1is the list whose head is a and whose tailis p ; tail p
is the tail of p ; and ++ is the concatenation operator on lists and strings,
which we represent as lists in Haskell. We will comment on other notational
conventions as the need arises.

We define the function enum to solve the enumeration problem. The defi-
nition of enum is mutually recursive. Functions in the mutually recursive nest
can be used on infinite lists and thus can be used to compute any finite prefix
of an enumeration. The first three forms are easy; we focus on the remaining
three. We give an informal proof of correctness by induction on the structure
of regular expressions. The full code appears in the appendix.

2.1 Union
We exhibit enumUnion , a function that computes the enumeration of p | gq
with respect to the regular preorder <<= . The idea is to merge the enumera-

tions of p and g and to remove duplicates.

enumUnion p q = removeDups (merge (enum p) (enum q))

removeDups [] =[]
removeDups (x0:xs) = x0 : removeDups [z|z<-xs, z /= x0]

merge [] y =y

merge x [] = x

merge (x0:xs) (yO:ys)
| x0 <<= y0 = x0 : merge xs (yO:ys)
| otherwise = yO : merge (x0:xs) ys

The function removeDups is defined using pattern matching. The patterns
are checked from top to bottom until a matching pattern is found. The second
pattern defining removeDups is matched if its argument is non-empty; in this
case the argument is a list whose first element is x0 and whose tailis xs . We
also see an example of list comprehension: removeDups is called recursively
on the list consisting of the elements in the tail of its argument that differ from
the head. The argument to removeDups can be an infinite list, in which case
the function never terminates but any finite prefix can be computed.

The function removeDups removes duplicates in a list while maintaining
the order of the remaining elements. Thus, if the argument to removeDups is
increasing, so is the result. The function merge merges its arguments and if
the arguments are increasing, so is the result.

The proof of this case follows. The induction hypothesis (IH) consists of
the five parts IH1, ..., IH5 of the definition of enumeration and states that



(enum p) and (enum q) are enumerations of p and q , respectively. We
now show that (enumUnion p q) is an enumeration of p | q ; this consists
of checking the five conditions comprising the definition of enumeration.

1. Every element of enumUnion p q is an element of merge (enum p)
(enum q) which is either an element of enum p or enum g and thus,
by IH1, an element of L.(p | q)

2. enumUnion has no duplicates because it is defined with removeDups .

3. By IH3, enum p and enum q are increasing, therefore merge (enum p)
(enum q) is increasing, thus enumUnion p q is increasing.

4. If L.(p|q) isinfinite then L.p or L.q is infinite; by IH4 either enum p
or enum q is infinite and thus so is enumUnion p q . Otherwise,
both L.p and L.q are finite and from IH1, TH2, TH4 we have that
enum p and enum q contain exactly the strings in L.p and L.q ,
respectively. By merge , enumUnion p q contains exactly the strings
in L.(p|q) and by 2, above, enumUnion p q contains no duplicates.
Thus, #(enumUnion p q) = #L.(p | q).

5. Let y bein enumUnion p q ;let x bein L.(p|q) and x << y .3

Since y isin enumUnion p q ,itisin enum p or enum q . Suppose
itisin enum p . If x € L. p then by IH5 it is in enum p and by IH3
it appears before y , thus by merge , it appears in enumUnion p q .
If x€ L. q then by merge and IH3, we have that every element in
enum q which is << y appears in enumUnion p q and our proof
obligation is to show that x isin enum q . If y appears after all
the elements of enum q then by 4, above, enum q contains all of the
elements in L.q and thus also x . Otherwise, merge has reached an
element z in enum q such that x << z , thus by [H5, x isin
enum q and by merge in enumUnion p q . If y isin enum q the
proof is similar.

2.2 Concatenation

We define enumConcat to compute the enumeration of pe g . We create a
matrix of strings with as many rows as there are strings in the enumeration of
p and as many columns as there are strings in the enumeration of ¢ . The
string in a cell of the matrix is obtained by concatenating the string associated
with the row of the cell and the string associated with the column of the cell.
Using the monotonicity of ++ with respect to <<= , we have that rows and
columns of the matrix are increasing, thus we can enumerate the elements in
the matrix by replacing the first two rows by their merge and recurring.

enumConcat p q = removeDups (multiMerge (enum p) (enum q))

3 << is a Haskell version of < .



multiMerge [1 _ [l

multiMerge _ [] 1

multiMerge ep eq = matrixMerge (map makeRow ep)
where makeRow p = map (p++) eq

matrixMerge [r] =r
matrixMerge (rO:rl:mx) = a : matrixMerge (rO1:mx)
where (a:r01) = merge r0 ril

Above we use the function map , a function whose first argument is a
function, whose second argument is a list, and whose value is the list obtained
by applying its first argument to every element of its second argument. We also
use the section (p++) : this is a function that prepends p to its argument.

We define the matrix in the third pattern of multiMerge : it is the argument
to matrixMerge and is represented as a list of rows. Function matrixMerge
returns the first row of its argument, if it has only one row. Otherwise, denote
the first row r0 , the second r1 , and what remains mx . We merge r0 and
r1l with the head of the result denoted a and the tail rO1 ; the list returned
contains a as the head while the tail is the matrixMerge of rOl:mx . We
break up the merge of the first two rows into a and r01 so that, with the
use of lazy evaluation, any finite prefix of the result can be computed. We make
use of the following lemma.

Lemma 1 M is a matriz of strings whose rows and columns are associated with
duplicate-free, increasing (with respect to < ) strings and whose elements are
obtained by concatenating the string corresponding to the element’s row with the
string corresponding to the element’s column. For any i € N not exceeding the
mazimum of the number of rows and columns in M , consider [ , an ordered
list containing the strings (sans duplicates) in the grid, with the constraint that
for any string in the grid, all strings in the same row, but smaller column appear
before it in [ and all strings in the same column, but smaller row appear before
itin | . Then the first © strings in | are < all other strings in M

Proof Since the rows and columns have no duplicates, there are at least 1
distinct strings within the ¢ x¢ grid. Since =< is a regular preorder, we can
order the strings (sans duplicates) in the grid as required. By the monotonicity
of ++ over <<= | for any element outside the grid there are at least ¢ strings
in the grid that are < to it, hence, the first ¢ elements are <<= the element.
Finally, the elements in the grid are ordered, by construction. O

The proof of the concatenation case follows. By IH, enum p and enum q
are enumerations of p and q , respectively. We now show that enumConcat p q
is an enumeration of p e q . The case where L.p or L.q is empty is easy, so
we assume that the languages are not empty.

1. The strings of enumConcat p q are from the matrix map makeRow ep
and thus are obtained by concatenating strings in enum p with strings
in enum q and thus are strings of L.(p e q) , by IHI.



2. enumConcat has no duplicates because it is defined with removeDups .

3. enumConcat p q is increasing: we use Lemma 1 and note that the 5"

element is selected from the first ¢ rows of the matrix.

4. If L.(p e q) isinfinite then L.p or L.q isinfinite and so is the matrix. By
Lemma 1, the matrix has an infinite number of distinct strings and thus
so does enumConcat p q . Otherwise, both L.p and L.q are finite and
from the TH1, TH2, TH4 we have that enum p and enum q contain ex-
actly the strings in L.p and L.q , respectively. By construction, the ma-
trix contains exactly the stringsin L.(p ¢ q) and by 2, above, enumConcat
contains no duplicates, thus #(enumConcat p q) = #L.(p e q)

5. Let y bein enumConcat p q ;let x bein L.(peq) and x << y .
By Lemma 1, every element in the matrix << y appears before y
What is left is to show that x appears in the matrix. If it does not,
then x =a ++ b where a isin Lp , b isin L.q ,and a isnot
in enum p or b isnotin enum q . Say that a isnotin enum p
; then enum p is infinite and every element in enum p is <<= a |,
by IH5. Thus, by the monotonicity of ++ with respect to <<= | every
element in a column corresponding to a string <<= b is <<y , but
there are an infinite number of elements in the column, hence, we have a
contradiction. A similar argument can be used if b is not in enum q .

2.3 Kleene closure

The function enumStar, defined below, computes the enumeration of p*

enumStar p

| epNoE == [] = [[1]
| otherwise = ps
where epNoE = [zlz <- (enum p), z /= [1]
ps = removeDups ([] : (multiMerge epNoE ps))

In the above definition, epNoE is enum p with [] , the empty string in
Haskell, removed. If epNoE is empty, L.p* contains only the empty string.
Otherwise, L.p* is infinite and is the least fixpoint of the following equation in
X : X={[0} U Lp x X. Notice that ps is defined to satisfy the above
equation.* As an example of lazy evaluation in Haskell, note that the second
element of ps is the element in the first row and first column of the matrix
defined by multiMerge epNoE ps which is the first element of epNoE , as
the first element of ps is [] . The second element can be used to obtain the
third element and so on as this is a non-terminating process.

The proof of this case follows. We already examined the case where L.p* =
{ [0} ,soweassume that L.p contains a string that differs from [1 . By IH,
enum p enumerates p . We now show that ps , which equals enumStar p ,
is an enumeration of p*

4We add the minor optimization of using epNoE instead of enum p .



1. The elements of ps include [] and are otherwise obtained by repeated
concatenation of strings in enum p , which, by IH1, are stringsin L.p ,
thus, the elements of ps are strings in L.p*

2. ps has no duplicates because it is defined with removeDups .

3. We show by induction that for all ¢ € N , pref.i , the prefix of ps
of length i , is well-defined and increasing. When ¢ =2  pref.t is
[[1, a] where a is the first element in epNoE (recall that a # []) .°
For i > 2 the (i+1)"" element of ps is selected from the i x i
grid of the matrix whose rows correspond to epNoE and whose columns
to pref.i . Since pref.i and epNoE are increasing and duplicate-free,
by Lemma 1, there are ¢ distinct strings in the grid which are <<= all
other elements in any increasing, duplicate-free extension of the matrix,
hence, the it"* element can be used to obtain pref.(i + 1)

4. In 3, above, we showed that pref.i is well-defined for all natural numbers,
hence, ps is infinite, as is L.p*.

5. Let y bein ps ;let x bein Lp* and x << y . By Lemma 1,
every element in the matrix << y appears before y . What is left is to
show that x appears in the matrix. If it does not, then let z be the
shortest suffix of x in L.p* that does not appear in ps . We have z
=a ++ b where a isin Lp\{ [0} , b isin Lp* ,and a is
not in epNoE or b isnotin ps . Since a# [1 , b isin ps by
the minimality of z , hence, a is not in epNoE . Hence, by IH1, TH2,
TH4, epNoE is infinite and by IH5 all of its elements are <<= a , thus
<<= z , thus <<= x ,thus << y and we have a contradiction.

3 Final Remarks

3.1 Subsequence Relation

If z can be obtained by removing elements from y , we say that = is
a subsequence of y . The following lemma shows that any regular preorder
preserves the subsequence relation.

Lemma 2 If x 1is a subsequence of y then = <y

Proof By induction on the length of = .

e Base case (z =¢ ): By ¢ is bottom.

5Notice that if we replace epNoE with enum p in the definition of ps andif [] is
an element of enum p , then Haskell will diverge when computing ps . Hence, the use of
epNoE turns out to be important in the presence of lazy evaluation.



e Induction step (  is of the form w -z , where z is a sequence of
length 1 ). Since z is a subsequence of y , we have that y is of the
form u-z-v , where w is a subsequence of u .

T

={Formof z }
w-z

=< { Induction hypothesis, monotonicity of - , reflexivity of < }
U-z

=< { Monotonicity of - , € <v , reflexivity of < }
U2V

={Formof y}
Y

3.2 Total Orders

When we are dealing with a total order we can use the function compress
instead of removeDups .

compress [] = [
compress (x:xs) = x : compress(dropWhile (== x) xs)

In the second pattern above we use dropWhile , a function that drops
the initial sequence of x’s from =xs . We can use compress instead of
removeDups with total orders because both merge and multiMerge return
increasing lists (given increasing lists as input); therefore, duplicate elements
are adjacent to one another.

3.3 Example Regular Preorders

The simplest example of a regular preorder is one that relates everything. Its
definition in Haskell is:

<<= = True

Below is an example of a total regular order with the additional property
that all strings have a finite number of predecessors in any regular language,
thus, the enumeration of any regular language r with respect to this order
is unique and contains all the elements in L.r . The Boolean operators V, A
are denoted ||, & in Haskell. We do not give a definition for <= ; it is
the dictionary order induced by a total order on singletons and is built-in for
certain Haskell types, e.g., it can be used to order lists of integers and lists of
characters.



X <<=y
= 1let lenx = length x
leny = length y
in (lenx < leny) || ((lenx == leny) && (x <= y))

A

The final example is the component-wise order on the characters a andb .
This regular preorder can be thought of as being of order-type w? . By this we
mean that there is an order-isomorphism between w? and the set of equivalence
classes of the regular order. To see this, note that two stringsin { a,b }* are in
the same class if they are permutations. Finally, the order-preserving bijection
from strings to ordinals in w? takes string x to w-(number of a’s in x ) +
(number of b’s in x ).

X <<=y
= xas < yas || (xas == yas && xbs <= ybs)
where xas = num ’a’ x
xbs = num ’b’ x
yas = num ’a’ y
ybs = num ’b’ y
num n x = length [z|z<-x, z==n]

3.4 Finite-State Automata

Another approach is to turn a regular expression into a minimal deterministic
finite-state automaton (DFA) and to enumerate the expression using the DFA.
This can be done with a function enumDfa whose single argument is a list of
pairs, where each pair consists of a string and a state in the DFA. We maintain
the invariant that the pairs in the list are sorted with respect to <<= | using
their strings as keys. In addition, the path through the DFA determined by
the string of a pair leads to the state of the pair. The initial call of enumDfa
consists of the list with the single pair consisting of the empty string and the
start state. As long as its argument in not empty, enumDfa removes the pair
at the head of the list. If it contains an accepting state, the string is added
to the enumeration. In either case, the pairs consisting of states reachable in
a single step and their corresponding strings are inserted into the list, which is
the argument to the recursive call of enumDfa .
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Appendix

In the Haskell code appearing below, the text following -- is a comment and
thus is ignored by Haskell. Reg is the type of regular expressions. It is a
polymorphic type which means that we can build regular expression over any
underlying type. The code and various examples are available from our Web
site [2].

infix 0 <<= -- <<= is a regular preorder

data Reg a = Nil | E | L a | U (Reg a) (Reg a) |
C (Reg a) (Reg a) | S (Reg a)
deriving Show

enum Nil =[] -- The empty language

enum E = [[1] -- The language containing []
enum (L 1) = [[1]1] -- The language containing 1
enum (U p q) = enumUnion p q

enum (C p q) = enumConcat p q
enum (S p) = enumStar p
enumUnion p q = removeDups (merge (enum p) (enum q))

(]

x0:removeDups [z|z<-xs, z /= x0]

removeDups []
removeDups (x0:xs)

merge [] y =y

merge x [] = x

merge (x0:xs) (yO:ys)
| x0O <<= y0 = x0 : merge xs (yO:ys)
| otherwise = yO : merge (x0:xs) ys

enumConcat p q = removeDups (multiMerge (enum p) (enum q))

multiMerge [] _ 1

multiMerge _ [1 = []

multiMerge ep eq = matrixMerge (map makeRow ep)
where makeRow p = map (p++) eq

matrixMerge [r] =r

matrixMerge (rO:rl:mx) = a:matrixMerge (rO1:mx)
where (a:r01) = merge r0 ril

enumStar p

| epNoE == [1 = [[]
| otherwise = ps
where epNoE = [z|lz <- (enum p), z /= []1]
ps = removeDups ([] : (multiMerge epNoE ps))
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