
Enumerating the Strings of a Regular ExpressionPanagiotis ManoliosDe
ember 5, 20001 Introdu
tionWe present a Haskell solution to the problem of enumerating the strings of aregular expression with respe
t to a regular preorder, a term we soon de�ne.A version of this problem was
onsidered in a note by Jayadev Misra [3℄. Wehave generalized the problem. The use of Haskell was suggested by Edsger W.Dijkstra and our solution makes
riti
al use of Haskell's lazy evaluation.1.1 Regular ExpressionsA is an alphabet, a set of symbols. A� denotes the set of strings, �nitesequen
es over A . The empty string is denoted by � and � denotes the
on
atenation operator on A� .A regular expression over A takes one of the following six forms.1. ;2. �3. An element of A4. p j q5. p � q6. p�where p and q are regular expressions. L:r , a subset of A� , is thelanguage denoted by regular expression r . L:; is the empty set. If a 2 Aor a = � then L:a = fag .1 L:(p j q) = L:p[L:q . L:(p�q) = L:p�L:q ,where B � C = fb �
 : b 2 B ^
 2 Cg . L:p� = [i2Npi , wherep0 = f�g and pi+1 = p � pi . There are many good books that dis
ussthe theory of regular expressions [1℄. Note that in the standard treatment ofregular expressions, the alphabet is required to be �nite, whereas we have nosu
h restri
tion.1We denote a single element sequen
e and its element in the same way.1

1.2 Regular PreordersHen
eforth, u; v; w; x; y; z range over A� . Let � be a regular preorder. Bythis we mean that for all w; x; y; z all of the following hold.1. x � y _ y � x2. x � y ^ y � z) x � z3. � is
omputable4. � � x5. x � y ^ w � z) x � w � y � zThe �rst property is totality and implies re
exivity ; the se
ond is transitivity.A preorder is a re
exive, transitive relation. From the �rst two properties wehave that � is a total preorder. Sin
e we
onstru
t an algorithm we require,with the third
ondition, that � is
omputable. The �nal two
onditions, that� is bottom and that � is monotoni
 with respe
t to � ,
an be used to showthat regular languages are well-founded with respe
t to � , as we will see later.1.3 The Enumeration ProblemWe abbreviate x � y ^ :(y � x) by x � y . We use # to denote boththe length of a list and the
ardinality of a set. A list l is an enumerationof a regular expression r with respe
t to regular preorder � i� all of thefollowing hold.1. Every element of l is in L:r .2. l
ontains no dupli
ates.3. l is in
reasing : for any x and y , if x appears before y in l thenx � y .4. l and L:r have the same
ardinality, i.e., #l = #(L:r) .5. If y 2 l , then h8x : x 2 L:r ^ x � y : x 2 li .There
an be many enumerations of r as is the
ase when x � y forall x; y . But there is at least one enumeration and if � is a total order,2then the enumeration is unique. Sometimes no enumeration of r
ontainsall of the strings in L:r , e.g.,
onsider r = a�jb (for a; b 2 A) whereh8i 2 N :: ai � bi : no enumeration
ontains b . If all the strings in L:r havea �nite set of prede
essors in L:r , then any enumeration
ontains all of thestrings in L:r . The enumeration problem is to �nd an algorithm that, givenregular expression r and regular preorder � , returns an enumeration of rwith respe
t to � .2A total order (sometimes referred to as a linear order) satis�es the �rst two
onditions ofa regular preorder and antisymmetry: x � y ^ y � x) x = y .2

2 A Haskell SolutionOur solution to the enumeration problem is written in Haskell, a programminglanguage that is fun
tional, lazy, and allows in�nite obje
ts. Fun
tion appli
a-tion is invisible; fun
tions are de�ned using pattern mat
hing; [℄ denotes theempty list; a:p is the list whose head is a and whose tail is p ; tail pis the tail of p ; and ++ is the
on
atenation operator on lists and strings,whi
h we represent as lists in Haskell. We will
omment on other notational
onventions as the need arises.We de�ne the fun
tion enum to solve the enumeration problem. The de�-nition of enum is mutually re
ursive. Fun
tions in the mutually re
ursive nest
an be used on in�nite lists and thus
an be used to
ompute any �nite pre�xof an enumeration. The �rst three forms are easy; we fo
us on the remainingthree. We give an informal proof of
orre
tness by indu
tion on the stru
tureof regular expressions. The full
ode appears in the appendix.2.1 UnionWe exhibit enumUnion , a fun
tion that
omputes the enumeration of p j qwith respe
t to the regular preorder <<= . The idea is to merge the enumera-tions of p and q and to remove dupli
ates.enumUnion p q = removeDups (merge (enum p) (enum q))removeDups [℄ = [℄removeDups (x0:xs) = x0 : removeDups [z|z<-xs, z /= x0℄merge [℄ y = ymerge x [℄ = xmerge (x0:xs) (y0:ys)| x0 <<= y0 = x0 : merge xs (y0:ys)| otherwise = y0 : merge (x0:xs) ysThe fun
tion removeDups is de�ned using pattern mat
hing. The patternsare
he
ked from top to bottom until a mat
hing pattern is found. The se
ondpattern de�ning removeDups is mat
hed if its argument is non-empty; in this
ase the argument is a list whose �rst element is x0 and whose tail is xs . Wealso see an example of list
omprehension: removeDups is
alled re
ursivelyon the list
onsisting of the elements in the tail of its argument that di�er fromthe head. The argument to removeDups
an be an in�nite list, in whi
h
asethe fun
tion never terminates but any �nite pre�x
an be
omputed.The fun
tion removeDups removes dupli
ates in a list while maintainingthe order of the remaining elements. Thus, if the argument to removeDups isin
reasing, so is the result. The fun
tion merge merges its arguments and ifthe arguments are in
reasing, so is the result.The proof of this
ase follows. The indu
tion hypothesis (IH)
onsists ofthe �ve parts IH1, : : :, IH5 of the de�nition of enumeration and states that3

(enum p) and (enum q) are enumerations of p and q , respe
tively. Wenow show that (enumUnion p q) is an enumeration of p j q ; this
onsistsof
he
king the �ve
onditions
omprising the de�nition of enumeration.1. Every element of enumUnion p q is an element of merge (enum p)(enum q) whi
h is either an element of enum p or enum q and thus,by IH1, an element of L:(p j q) .2. enumUnion has no dupli
ates be
ause it is de�ned with removeDups .3. By IH3, enum p and enum q are in
reasing, therefore merge (enum p)(enum q) is in
reasing, thus enumUnion p q is in
reasing.4. If L:(p j q) is in�nite then L:p or L:q is in�nite; by IH4 either enum por enum q is in�nite and thus so is enumUnion p q . Otherwise,both L:p and L:q are �nite and from IH1, IH2, IH4 we have thatenum p and enum q
ontain exa
tly the strings in L:p and L:q ,respe
tively. By merge , enumUnion p q
ontains exa
tly the stringsin L:(p j q) and by 2, above, enumUnion p q
ontains no dupli
ates.Thus, #(enumUnion p q) = #L:(p j q).5. Let y be in enumUnion p q ; let x be in L:(p j q) and x << y .3Sin
e y is in enumUnion p q , it is in enum p or enum q . Supposeit is in enum p . If x 2 L: p then by IH5 it is in enum p and by IH3it appears before y , thus by merge , it appears in enumUnion p q .If x 2 L: q then by merge and IH3, we have that every element inenum q whi
h is << y appears in enumUnion p q and our proofobligation is to show that x is in enum q . If y appears after allthe elements of enum q then by 4, above, enum q
ontains all of theelements in L:q and thus also x . Otherwise, merge has rea
hed anelement z in enum q su
h that x << z , thus by IH5, x is inenum q and by merge in enumUnion p q . If y is in enum q theproof is similar.2.2 Con
atenationWe de�ne enumCon
at to
ompute the enumeration of p � q . We
reate amatrix of strings with as many rows as there are strings in the enumeration ofp and as many
olumns as there are strings in the enumeration of q . Thestring in a
ell of the matrix is obtained by
on
atenating the string asso
iatedwith the row of the
ell and the string asso
iated with the
olumn of the
ell.Using the monotoni
ity of ++ with respe
t to <<= , we have that rows and
olumns of the matrix are in
reasing, thus we
an enumerate the elements inthe matrix by repla
ing the �rst two rows by their merge and re
urring.enumCon
at p q = removeDups (multiMerge (enum p) (enum q))3 << is a Haskell version of � . 4

multiMerge [℄ _ = [℄multiMerge _ [℄ = [℄multiMerge ep eq = matrixMerge (map makeRow ep)where makeRow p = map (p++) eqmatrixMerge [r℄ = rmatrixMerge (r0:r1:mx) = a : matrixMerge (r01:mx)where (a:r01) = merge r0 r1Above we use the fun
tion map , a fun
tion whose �rst argument is afun
tion, whose se
ond argument is a list, and whose value is the list obtainedby applying its �rst argument to every element of its se
ond argument. We alsouse the se
tion (p++) : this is a fun
tion that prepends p to its argument.We de�ne the matrix in the third pattern of multiMerge : it is the argumentto matrixMerge and is represented as a list of rows. Fun
tion matrixMergereturns the �rst row of its argument, if it has only one row. Otherwise, denotethe �rst row r0 , the se
ond r1 , and what remains mx . We merge r0 andr1 with the head of the result denoted a and the tail r01 ; the list returned
ontains a as the head while the tail is the matrixMerge of r01:mx . Webreak up the merge of the �rst two rows into a and r01 so that, with theuse of lazy evaluation, any �nite pre�x of the result
an be
omputed. We makeuse of the following lemma.Lemma 1 M is a matrix of strings whose rows and
olumns are asso
iated withdupli
ate-free, in
reasing (with respe
t to �) strings and whose elements areobtained by
on
atenating the string
orresponding to the element's row with thestring
orresponding to the element's
olumn. For any i 2 N not ex
eeding themaximum of the number of rows and
olumns in M ,
onsider l , an orderedlist
ontaining the strings (sans dupli
ates) in the grid, with the
onstraint thatfor any string in the grid, all strings in the same row, but smaller
olumn appearbefore it in l and all strings in the same
olumn, but smaller row appear beforeit in l . Then the �rst i strings in l are � all other strings in M .Proof Sin
e the rows and
olumns have no dupli
ates, there are at least idistin
t strings within the i� i grid. Sin
e � is a regular preorder, we
anorder the strings (sans dupli
ates) in the grid as required. By the monotoni
ityof ++ over <<= , for any element outside the grid there are at least i stringsin the grid that are � to it, hen
e, the �rst i elements are <<= the element.Finally, the elements in the grid are ordered, by
onstru
tion. �The proof of the
on
atenation
ase follows. By IH, enum p and enum qare enumerations of p and q , respe
tively. We now show that enumCon
at p qis an enumeration of p � q . The
ase where L:p or L:q is empty is easy, sowe assume that the languages are not empty.1. The strings of enumCon
at p q are from the matrix map makeRow epand thus are obtained by
on
atenating strings in enum p with stringsin enum q and thus are strings of L.(p � q) , by IH1.5

2. enumCon
at has no dupli
ates be
ause it is de�ned with removeDups .3. enumCon
at p q is in
reasing: we use Lemma 1 and note that the ithelement is sele
ted from the �rst i rows of the matrix.4. If L:(p � q) is in�nite then L:p or L:q is in�nite and so is the matrix. ByLemma 1, the matrix has an in�nite number of distin
t strings and thusso does enumCon
at p q . Otherwise, both L:p and L:q are �nite andfrom the IH1, IH2, IH4 we have that enum p and enum q
ontain ex-a
tly the strings in L:p and L:q , respe
tively. By
onstru
tion, the ma-trix
ontains exa
tly the strings in L:(p � q) and by 2, above, enumCon
at
ontains no dupli
ates, thus #(enumCon
at p q) = #L:(p � q) .5. Let y be in enumCon
at p q ; let x be in L:(p � q) and x << y .By Lemma 1, every element in the matrix << y appears before y .What is left is to show that x appears in the matrix. If it does not,then x = a ++ b where a is in L:p , b is in L:q , and a is notin enum p or b is not in enum q . Say that a is not in enum p; then enum p is in�nite and every element in enum p is <<= a ,by IH5. Thus, by the monotoni
ity of ++ with respe
t to <<= , everyelement in a
olumn
orresponding to a string <<= b is << y , butthere are an in�nite number of elements in the
olumn, hen
e, we have a
ontradi
tion. A similar argument
an be used if b is not in enum q .2.3 Kleene
losureThe fun
tion enumStar, de�ned below,
omputes the enumeration of p� .enumStar p| epNoE == [℄ = [[℄℄| otherwise = pswhere epNoE = [z|z <- (enum p), z /= [℄℄ps = removeDups ([℄ : (multiMerge epNoE ps))In the above de�nition, epNoE is enum p with [℄ , the empty string inHaskell, removed. If epNoE is empty, L:p�
ontains only the empty string.Otherwise, L:p� is in�nite and is the least �xpoint of the following equation inX : X = f[℄g [L:p � X . Noti
e that ps is de�ned to satisfy the aboveequation.4 As an example of lazy evaluation in Haskell, note that the se
ondelement of ps is the element in the �rst row and �rst
olumn of the matrixde�ned by multiMerge epNoE ps whi
h is the �rst element of epNoE , asthe �rst element of ps is [℄ . The se
ond element
an be used to obtain thethird element and so on as this is a non-terminating pro
ess.The proof of this
ase follows. We already examined the
ase where L:p� =f [℄ g , so we assume that L:p
ontains a string that di�ers from [℄ . By IH,enum p enumerates p . We now show that ps , whi
h equals enumStar p ,is an enumeration of p� .4We add the minor optimization of using epNoE instead of enum p .6

1. The elements of ps in
lude [℄ and are otherwise obtained by repeated
on
atenation of strings in enum p , whi
h, by IH1, are strings in L.p ,thus, the elements of ps are strings in L.p� .2. ps has no dupli
ates be
ause it is de�ned with removeDups .3. We show by indu
tion that for all i 2 N , pref :i , the pre�x of psof length i , is well-de�ned and in
reasing. When i = 2 pref :i is[[℄, a℄ where a is the �rst element in epNoE (re
all that a 6= [℄) .5For i � 2 the (i + 1)th element of ps is sele
ted from the i � igrid of the matrix whose rows
orrespond to epNoE and whose
olumnsto pref :i . Sin
e pref :i and epNoE are in
reasing and dupli
ate-free,by Lemma 1, there are i distin
t strings in the grid whi
h are <<= allother elements in any in
reasing, dupli
ate-free extension of the matrix,hen
e, the ith element
an be used to obtain pref :(i+ 1) .4. In 3, above, we showed that pref :i is well-de�ned for all natural numbers,hen
e, ps is in�nite, as is L:p�.5. Let y be in ps ; let x be in L:p� and x << y . By Lemma 1,every element in the matrix << y appears before y . What is left is toshow that x appears in the matrix. If it does not, then let z be theshortest suÆx of x in L:p� that does not appear in ps . We have z= a ++ b where a is in L:p n f [℄ g , b is in L:p� , and a isnot in epNoE or b is not in ps . Sin
e a 6= [℄ , b is in ps bythe minimality of z , hen
e, a is not in epNoE . Hen
e, by IH1, IH2,IH4, epNoE is in�nite and by IH5 all of its elements are <<= a , thus<<= z , thus <<= x , thus << y and we have a
ontradi
tion.3 Final Remarks3.1 Subsequen
e RelationIf x
an be obtained by removing elements from y , we say that x isa subsequen
e of y . The following lemma shows that any regular preorderpreserves the subsequen
e relation.Lemma 2 If x is a subsequen
e of y then x � y .Proof By indu
tion on the length of x .� Base
ase (x = �): By � is bottom.5Noti
e that if we repla
e epNoE with enum p in the de�nition of ps and if [℄ isan element of enum p , then Haskell will diverge when
omputing ps . Hen
e, the use ofepNoE turns out to be important in the presen
e of lazy evaluation.
7

� Indu
tion step (x is of the form w � z , where z is a sequen
e oflength 1). Sin
e x is a subsequen
e of y , we have that y is of theform u � z � v , where w is a subsequen
e of u .x= f Form of x gw � z� f Indu
tion hypothesis, monotoni
ity of � , re
exivity of � gu � z� f Monotoni
ity of � , � � v , re
exivity of � gu � z � v= f Form of y gy3.2 Total OrdersWhen we are dealing with a total order we
an use the fun
tion
ompressinstead of removeDups .
ompress [℄ = [℄
ompress (x:xs) = x :
ompress(dropWhile (== x) xs)In the se
ond pattern above we use dropWhile , a fun
tion that dropsthe initial sequen
e of x's from xs . We
an use
ompress instead ofremoveDups with total orders be
ause both merge and multiMerge returnin
reasing lists (given in
reasing lists as input); therefore, dupli
ate elementsare adja
ent to one another.3.3 Example Regular PreordersThe simplest example of a regular preorder is one that relates everything. Itsde�nition in Haskell is:_ <<= _ = TrueBelow is an example of a total regular order with the additional propertythat all strings have a �nite number of prede
essors in any regular language,thus, the enumeration of any regular language r with respe
t to this orderis unique and
ontains all the elements in L:r . The Boolean operators _;^are denoted ||, && in Haskell. We do not give a de�nition for <= ; it isthe di
tionary order indu
ed by a total order on singletons and is built-in for
ertain Haskell types, e.g., it
an be used to order lists of integers and lists of
hara
ters. 8

x <<= y= let lenx = length xleny = length yin (lenx < leny) || ((lenx == leny) && (x <= y))The �nal example is the
omponent-wise order on the
hara
ters a and b .This regular preorder
an be thought of as being of order-type !2 . By this wemean that there is an order-isomorphismbetween !2 and the set of equivalen
e
lasses of the regular order. To see this, note that two strings in f a,b g� are inthe same
lass if they are permutations. Finally, the order-preserving bije
tionfrom strings to ordinals in w2 takes string x to !�(number of a's in x) +(number of b's in x).x <<= y= xas < yas || (xas == yas && xbs <= ybs)where xas = num 'a' xxbs = num 'b' xyas = num 'a' yybs = num 'b' ynum n x = length [z|z<-x, z==n℄3.4 Finite-State AutomataAnother approa
h is to turn a regular expression into a minimal deterministi
�nite-state automaton (DFA) and to enumerate the expression using the DFA.This
an be done with a fun
tion enumDfa whose single argument is a list ofpairs, where ea
h pair
onsists of a string and a state in the DFA. We maintainthe invariant that the pairs in the list are sorted with respe
t to <<= , usingtheir strings as keys. In addition, the path through the DFA determined bythe string of a pair leads to the state of the pair. The initial
all of enumDfa
onsists of the list with the single pair
onsisting of the empty string and thestart state. As long as its argument in not empty, enumDfa removes the pairat the head of the list. If it
ontains an a

epting state, the string is addedto the enumeration. In either
ase, the pairs
onsisting of states rea
hable ina single step and their
orresponding strings are inserted into the list, whi
h isthe argument to the re
ursive
all of enumDfa .A
knowledgmentsWe thank Jayadev Misra for posing an interesting problem and giving a prelim-inary solution. We thank Edsger W. Dijkstra for suggesting the use of Haskell;the suggestion gave us the in
entive to learn Haskell. We presented this work tothe ACL2 group and to ATAC and re
eived valuable
omments in both
ases.John Gunnels read this paper and provided valuable feedba
k.
9

AppendixIn the Haskell
ode appearing below, the text following -- is a
omment andthus is ignored by Haskell. Reg is the type of regular expressions. It is apolymorphi
 type whi
h means that we
an build regular expression over anyunderlying type. The
ode and various examples are available from our Website [2℄.infix 0 <<= -- <<= is a regular preorderdata Reg a = Nil | E | L a | U (Reg a) (Reg a) |C (Reg a) (Reg a) | S (Reg a)deriving Showenum Nil = [℄ -- The empty languageenum E = [[℄℄ -- The language
ontaining [℄enum (L l) = [[l℄℄ -- The language
ontaining lenum (U p q) = enumUnion p qenum (C p q) = enumCon
at p qenum (S p) = enumStar penumUnion p q = removeDups (merge (enum p) (enum q))removeDups [℄ = [℄removeDups (x0:xs) = x0:removeDups [z|z<-xs, z /= x0℄merge [℄ y = ymerge x [℄ = xmerge (x0:xs) (y0:ys)| x0 <<= y0 = x0 : merge xs (y0:ys)| otherwise = y0 : merge (x0:xs) ysenumCon
at p q = removeDups (multiMerge (enum p) (enum q))multiMerge [℄ _ = [℄multiMerge _ [℄ = [℄multiMerge ep eq = matrixMerge (map makeRow ep)where makeRow p = map (p++) eqmatrixMerge [r℄ = rmatrixMerge (r0:r1:mx) = a:matrixMerge (r01:mx)where (a:r01) = merge r0 r1enumStar p| epNoE == [℄ = [[℄℄| otherwise = pswhere epNoE = [z|z <- (enum p), z /= [℄℄ps = removeDups ([℄ : (multiMerge epNoE ps))10

Referen
es[1℄ J. E. Hop
roft and J. D. Ullman. Introdu
tion to Automata Theory, Lan-guages, and Computation. Addison Wesley, 1979.[2℄ P. Manolios. Homepage of Panagiotis Manolios, 2000. See URL http://-www.
s.utexas.edu/users/pete.[3℄ J. Misra. Enumerating the strings of a regular expression, 2000. Unpublisheddraft.

11

