
Enumerating the Strings of a Regular ExpressionPanagiotis ManoliosDeember 5, 20001 IntrodutionWe present a Haskell solution to the problem of enumerating the strings of aregular expression with respet to a regular preorder, a term we soon de�ne.A version of this problem was onsidered in a note by Jayadev Misra [3℄. Wehave generalized the problem. The use of Haskell was suggested by Edsger W.Dijkstra and our solution makes ritial use of Haskell's lazy evaluation.1.1 Regular ExpressionsA is an alphabet, a set of symbols. A� denotes the set of strings, �nitesequenes over A . The empty string is denoted by � and � denotes theonatenation operator on A� .A regular expression over A takes one of the following six forms.1. ;2. �3. An element of A4. p j q5. p � q6. p�where p and q are regular expressions. L:r , a subset of A� , is thelanguage denoted by regular expression r . L:; is the empty set. If a 2 Aor a = � then L:a = fag .1 L:(p j q) = L:p[L:q . L:(p�q) = L:p�L:q ,where B � C = fb � : b 2 B ^ 2 Cg . L:p� = [i2Npi , wherep0 = f�g and pi+1 = p � pi . There are many good books that disussthe theory of regular expressions [1℄. Note that in the standard treatment ofregular expressions, the alphabet is required to be �nite, whereas we have nosuh restrition.1We denote a single element sequene and its element in the same way.1

1.2 Regular PreordersHeneforth, u; v; w; x; y; z range over A� . Let � be a regular preorder. Bythis we mean that for all w; x; y; z all of the following hold.1. x � y _ y � x2. x � y ^ y � z) x � z3. � is omputable4. � � x5. x � y ^ w � z) x � w � y � zThe �rst property is totality and implies reexivity ; the seond is transitivity.A preorder is a reexive, transitive relation. From the �rst two properties wehave that � is a total preorder. Sine we onstrut an algorithm we require,with the third ondition, that � is omputable. The �nal two onditions, that� is bottom and that � is monotoni with respet to � , an be used to showthat regular languages are well-founded with respet to � , as we will see later.1.3 The Enumeration ProblemWe abbreviate x � y ^ :(y � x) by x � y . We use # to denote boththe length of a list and the ardinality of a set. A list l is an enumerationof a regular expression r with respet to regular preorder � i� all of thefollowing hold.1. Every element of l is in L:r .2. l ontains no dupliates.3. l is inreasing : for any x and y , if x appears before y in l thenx � y .4. l and L:r have the same ardinality, i.e., #l = #(L:r) .5. If y 2 l , then h8x : x 2 L:r ^ x � y : x 2 li .There an be many enumerations of r as is the ase when x � y forall x; y . But there is at least one enumeration and if � is a total order,2then the enumeration is unique. Sometimes no enumeration of r ontainsall of the strings in L:r , e.g., onsider r = a�jb (for a; b 2 A) whereh8i 2 N :: ai � bi : no enumeration ontains b . If all the strings in L:r havea �nite set of predeessors in L:r , then any enumeration ontains all of thestrings in L:r . The enumeration problem is to �nd an algorithm that, givenregular expression r and regular preorder � , returns an enumeration of rwith respet to � .2A total order (sometimes referred to as a linear order) satis�es the �rst two onditions ofa regular preorder and antisymmetry: x � y ^ y � x) x = y .2

2 A Haskell SolutionOur solution to the enumeration problem is written in Haskell, a programminglanguage that is funtional, lazy, and allows in�nite objets. Funtion applia-tion is invisible; funtions are de�ned using pattern mathing; [℄ denotes theempty list; a:p is the list whose head is a and whose tail is p ; tail pis the tail of p ; and ++ is the onatenation operator on lists and strings,whih we represent as lists in Haskell. We will omment on other notationalonventions as the need arises.We de�ne the funtion enum to solve the enumeration problem. The de�-nition of enum is mutually reursive. Funtions in the mutually reursive nestan be used on in�nite lists and thus an be used to ompute any �nite pre�xof an enumeration. The �rst three forms are easy; we fous on the remainingthree. We give an informal proof of orretness by indution on the strutureof regular expressions. The full ode appears in the appendix.2.1 UnionWe exhibit enumUnion , a funtion that omputes the enumeration of p j qwith respet to the regular preorder <<= . The idea is to merge the enumera-tions of p and q and to remove dupliates.enumUnion p q = removeDups (merge (enum p) (enum q))removeDups [℄ = [℄removeDups (x0:xs) = x0 : removeDups [z|z<-xs, z /= x0℄merge [℄ y = ymerge x [℄ = xmerge (x0:xs) (y0:ys)| x0 <<= y0 = x0 : merge xs (y0:ys)| otherwise = y0 : merge (x0:xs) ysThe funtion removeDups is de�ned using pattern mathing. The patternsare heked from top to bottom until a mathing pattern is found. The seondpattern de�ning removeDups is mathed if its argument is non-empty; in thisase the argument is a list whose �rst element is x0 and whose tail is xs . Wealso see an example of list omprehension: removeDups is alled reursivelyon the list onsisting of the elements in the tail of its argument that di�er fromthe head. The argument to removeDups an be an in�nite list, in whih asethe funtion never terminates but any �nite pre�x an be omputed.The funtion removeDups removes dupliates in a list while maintainingthe order of the remaining elements. Thus, if the argument to removeDups isinreasing, so is the result. The funtion merge merges its arguments and ifthe arguments are inreasing, so is the result.The proof of this ase follows. The indution hypothesis (IH) onsists ofthe �ve parts IH1, : : :, IH5 of the de�nition of enumeration and states that3

(enum p) and (enum q) are enumerations of p and q , respetively. Wenow show that (enumUnion p q) is an enumeration of p j q ; this onsistsof heking the �ve onditions omprising the de�nition of enumeration.1. Every element of enumUnion p q is an element of merge (enum p)(enum q) whih is either an element of enum p or enum q and thus,by IH1, an element of L:(p j q) .2. enumUnion has no dupliates beause it is de�ned with removeDups .3. By IH3, enum p and enum q are inreasing, therefore merge (enum p)(enum q) is inreasing, thus enumUnion p q is inreasing.4. If L:(p j q) is in�nite then L:p or L:q is in�nite; by IH4 either enum por enum q is in�nite and thus so is enumUnion p q . Otherwise,both L:p and L:q are �nite and from IH1, IH2, IH4 we have thatenum p and enum q ontain exatly the strings in L:p and L:q ,respetively. By merge , enumUnion p q ontains exatly the stringsin L:(p j q) and by 2, above, enumUnion p q ontains no dupliates.Thus, #(enumUnion p q) = #L:(p j q).5. Let y be in enumUnion p q ; let x be in L:(p j q) and x << y .3Sine y is in enumUnion p q , it is in enum p or enum q . Supposeit is in enum p . If x 2 L: p then by IH5 it is in enum p and by IH3it appears before y , thus by merge , it appears in enumUnion p q .If x 2 L: q then by merge and IH3, we have that every element inenum q whih is << y appears in enumUnion p q and our proofobligation is to show that x is in enum q . If y appears after allthe elements of enum q then by 4, above, enum q ontains all of theelements in L:q and thus also x . Otherwise, merge has reahed anelement z in enum q suh that x << z , thus by IH5, x is inenum q and by merge in enumUnion p q . If y is in enum q theproof is similar.2.2 ConatenationWe de�ne enumConat to ompute the enumeration of p � q . We reate amatrix of strings with as many rows as there are strings in the enumeration ofp and as many olumns as there are strings in the enumeration of q . Thestring in a ell of the matrix is obtained by onatenating the string assoiatedwith the row of the ell and the string assoiated with the olumn of the ell.Using the monotoniity of ++ with respet to <<= , we have that rows andolumns of the matrix are inreasing, thus we an enumerate the elements inthe matrix by replaing the �rst two rows by their merge and reurring.enumConat p q = removeDups (multiMerge (enum p) (enum q))3 << is a Haskell version of � . 4

multiMerge [℄ _ = [℄multiMerge _ [℄ = [℄multiMerge ep eq = matrixMerge (map makeRow ep)where makeRow p = map (p++) eqmatrixMerge [r℄ = rmatrixMerge (r0:r1:mx) = a : matrixMerge (r01:mx)where (a:r01) = merge r0 r1Above we use the funtion map , a funtion whose �rst argument is afuntion, whose seond argument is a list, and whose value is the list obtainedby applying its �rst argument to every element of its seond argument. We alsouse the setion (p++) : this is a funtion that prepends p to its argument.We de�ne the matrix in the third pattern of multiMerge : it is the argumentto matrixMerge and is represented as a list of rows. Funtion matrixMergereturns the �rst row of its argument, if it has only one row. Otherwise, denotethe �rst row r0 , the seond r1 , and what remains mx . We merge r0 andr1 with the head of the result denoted a and the tail r01 ; the list returnedontains a as the head while the tail is the matrixMerge of r01:mx . Webreak up the merge of the �rst two rows into a and r01 so that, with theuse of lazy evaluation, any �nite pre�x of the result an be omputed. We makeuse of the following lemma.Lemma 1 M is a matrix of strings whose rows and olumns are assoiated withdupliate-free, inreasing (with respet to �) strings and whose elements areobtained by onatenating the string orresponding to the element's row with thestring orresponding to the element's olumn. For any i 2 N not exeeding themaximum of the number of rows and olumns in M , onsider l , an orderedlist ontaining the strings (sans dupliates) in the grid, with the onstraint thatfor any string in the grid, all strings in the same row, but smaller olumn appearbefore it in l and all strings in the same olumn, but smaller row appear beforeit in l . Then the �rst i strings in l are � all other strings in M .Proof Sine the rows and olumns have no dupliates, there are at least idistint strings within the i� i grid. Sine � is a regular preorder, we anorder the strings (sans dupliates) in the grid as required. By the monotoniityof ++ over <<= , for any element outside the grid there are at least i stringsin the grid that are � to it, hene, the �rst i elements are <<= the element.Finally, the elements in the grid are ordered, by onstrution. �The proof of the onatenation ase follows. By IH, enum p and enum qare enumerations of p and q , respetively. We now show that enumConat p qis an enumeration of p � q . The ase where L:p or L:q is empty is easy, sowe assume that the languages are not empty.1. The strings of enumConat p q are from the matrix map makeRow epand thus are obtained by onatenating strings in enum p with stringsin enum q and thus are strings of L.(p � q) , by IH1.5

2. enumConat has no dupliates beause it is de�ned with removeDups .3. enumConat p q is inreasing: we use Lemma 1 and note that the ithelement is seleted from the �rst i rows of the matrix.4. If L:(p � q) is in�nite then L:p or L:q is in�nite and so is the matrix. ByLemma 1, the matrix has an in�nite number of distint strings and thusso does enumConat p q . Otherwise, both L:p and L:q are �nite andfrom the IH1, IH2, IH4 we have that enum p and enum q ontain ex-atly the strings in L:p and L:q , respetively. By onstrution, the ma-trix ontains exatly the strings in L:(p � q) and by 2, above, enumConatontains no dupliates, thus #(enumConat p q) = #L:(p � q) .5. Let y be in enumConat p q ; let x be in L:(p � q) and x << y .By Lemma 1, every element in the matrix << y appears before y .What is left is to show that x appears in the matrix. If it does not,then x = a ++ b where a is in L:p , b is in L:q , and a is notin enum p or b is not in enum q . Say that a is not in enum p; then enum p is in�nite and every element in enum p is <<= a ,by IH5. Thus, by the monotoniity of ++ with respet to <<= , everyelement in a olumn orresponding to a string <<= b is << y , butthere are an in�nite number of elements in the olumn, hene, we have aontradition. A similar argument an be used if b is not in enum q .2.3 Kleene losureThe funtion enumStar, de�ned below, omputes the enumeration of p� .enumStar p| epNoE == [℄ = [[℄℄| otherwise = pswhere epNoE = [z|z <- (enum p), z /= [℄℄ps = removeDups ([℄ : (multiMerge epNoE ps))In the above de�nition, epNoE is enum p with [℄ , the empty string inHaskell, removed. If epNoE is empty, L:p� ontains only the empty string.Otherwise, L:p� is in�nite and is the least �xpoint of the following equation inX : X = f[℄g [L:p � X . Notie that ps is de�ned to satisfy the aboveequation.4 As an example of lazy evaluation in Haskell, note that the seondelement of ps is the element in the �rst row and �rst olumn of the matrixde�ned by multiMerge epNoE ps whih is the �rst element of epNoE , asthe �rst element of ps is [℄ . The seond element an be used to obtain thethird element and so on as this is a non-terminating proess.The proof of this ase follows. We already examined the ase where L:p� =f [℄ g , so we assume that L:p ontains a string that di�ers from [℄ . By IH,enum p enumerates p . We now show that ps , whih equals enumStar p ,is an enumeration of p� .4We add the minor optimization of using epNoE instead of enum p .6

1. The elements of ps inlude [℄ and are otherwise obtained by repeatedonatenation of strings in enum p , whih, by IH1, are strings in L.p ,thus, the elements of ps are strings in L.p� .2. ps has no dupliates beause it is de�ned with removeDups .3. We show by indution that for all i 2 N , pref :i , the pre�x of psof length i , is well-de�ned and inreasing. When i = 2 pref :i is[[℄, a℄ where a is the �rst element in epNoE (reall that a 6= [℄) .5For i � 2 the (i + 1)th element of ps is seleted from the i � igrid of the matrix whose rows orrespond to epNoE and whose olumnsto pref :i . Sine pref :i and epNoE are inreasing and dupliate-free,by Lemma 1, there are i distint strings in the grid whih are <<= allother elements in any inreasing, dupliate-free extension of the matrix,hene, the ith element an be used to obtain pref :(i+ 1) .4. In 3, above, we showed that pref :i is well-de�ned for all natural numbers,hene, ps is in�nite, as is L:p�.5. Let y be in ps ; let x be in L:p� and x << y . By Lemma 1,every element in the matrix << y appears before y . What is left is toshow that x appears in the matrix. If it does not, then let z be theshortest suÆx of x in L:p� that does not appear in ps . We have z= a ++ b where a is in L:p n f [℄ g , b is in L:p� , and a isnot in epNoE or b is not in ps . Sine a 6= [℄ , b is in ps bythe minimality of z , hene, a is not in epNoE . Hene, by IH1, IH2,IH4, epNoE is in�nite and by IH5 all of its elements are <<= a , thus<<= z , thus <<= x , thus << y and we have a ontradition.3 Final Remarks3.1 Subsequene RelationIf x an be obtained by removing elements from y , we say that x isa subsequene of y . The following lemma shows that any regular preorderpreserves the subsequene relation.Lemma 2 If x is a subsequene of y then x � y .Proof By indution on the length of x .� Base ase (x = �): By � is bottom.5Notie that if we replae epNoE with enum p in the de�nition of ps and if [℄ isan element of enum p , then Haskell will diverge when omputing ps . Hene, the use ofepNoE turns out to be important in the presene of lazy evaluation.
7

� Indution step (x is of the form w � z , where z is a sequene oflength 1). Sine x is a subsequene of y , we have that y is of theform u � z � v , where w is a subsequene of u .x= f Form of x gw � z� f Indution hypothesis, monotoniity of � , reexivity of � gu � z� f Monotoniity of � , � � v , reexivity of � gu � z � v= f Form of y gy3.2 Total OrdersWhen we are dealing with a total order we an use the funtion ompressinstead of removeDups .ompress [℄ = [℄ompress (x:xs) = x : ompress(dropWhile (== x) xs)In the seond pattern above we use dropWhile , a funtion that dropsthe initial sequene of x's from xs . We an use ompress instead ofremoveDups with total orders beause both merge and multiMerge returninreasing lists (given inreasing lists as input); therefore, dupliate elementsare adjaent to one another.3.3 Example Regular PreordersThe simplest example of a regular preorder is one that relates everything. Itsde�nition in Haskell is:_ <<= _ = TrueBelow is an example of a total regular order with the additional propertythat all strings have a �nite number of predeessors in any regular language,thus, the enumeration of any regular language r with respet to this orderis unique and ontains all the elements in L:r . The Boolean operators _;^are denoted ||, && in Haskell. We do not give a de�nition for <= ; it isthe ditionary order indued by a total order on singletons and is built-in forertain Haskell types, e.g., it an be used to order lists of integers and lists ofharaters. 8

x <<= y= let lenx = length xleny = length yin (lenx < leny) || ((lenx == leny) && (x <= y))The �nal example is the omponent-wise order on the haraters a and b .This regular preorder an be thought of as being of order-type !2 . By this wemean that there is an order-isomorphismbetween !2 and the set of equivalenelasses of the regular order. To see this, note that two strings in f a,b g� are inthe same lass if they are permutations. Finally, the order-preserving bijetionfrom strings to ordinals in w2 takes string x to !�(number of a's in x) +(number of b's in x).x <<= y= xas < yas || (xas == yas && xbs <= ybs)where xas = num 'a' xxbs = num 'b' xyas = num 'a' yybs = num 'b' ynum n x = length [z|z<-x, z==n℄3.4 Finite-State AutomataAnother approah is to turn a regular expression into a minimal deterministi�nite-state automaton (DFA) and to enumerate the expression using the DFA.This an be done with a funtion enumDfa whose single argument is a list ofpairs, where eah pair onsists of a string and a state in the DFA. We maintainthe invariant that the pairs in the list are sorted with respet to <<= , usingtheir strings as keys. In addition, the path through the DFA determined bythe string of a pair leads to the state of the pair. The initial all of enumDfaonsists of the list with the single pair onsisting of the empty string and thestart state. As long as its argument in not empty, enumDfa removes the pairat the head of the list. If it ontains an aepting state, the string is addedto the enumeration. In either ase, the pairs onsisting of states reahable ina single step and their orresponding strings are inserted into the list, whih isthe argument to the reursive all of enumDfa .AknowledgmentsWe thank Jayadev Misra for posing an interesting problem and giving a prelim-inary solution. We thank Edsger W. Dijkstra for suggesting the use of Haskell;the suggestion gave us the inentive to learn Haskell. We presented this work tothe ACL2 group and to ATAC and reeived valuable omments in both ases.John Gunnels read this paper and provided valuable feedbak.
9

AppendixIn the Haskell ode appearing below, the text following -- is a omment andthus is ignored by Haskell. Reg is the type of regular expressions. It is apolymorphi type whih means that we an build regular expression over anyunderlying type. The ode and various examples are available from our Website [2℄.infix 0 <<= -- <<= is a regular preorderdata Reg a = Nil | E | L a | U (Reg a) (Reg a) |C (Reg a) (Reg a) | S (Reg a)deriving Showenum Nil = [℄ -- The empty languageenum E = [[℄℄ -- The language ontaining [℄enum (L l) = [[l℄℄ -- The language ontaining lenum (U p q) = enumUnion p qenum (C p q) = enumConat p qenum (S p) = enumStar penumUnion p q = removeDups (merge (enum p) (enum q))removeDups [℄ = [℄removeDups (x0:xs) = x0:removeDups [z|z<-xs, z /= x0℄merge [℄ y = ymerge x [℄ = xmerge (x0:xs) (y0:ys)| x0 <<= y0 = x0 : merge xs (y0:ys)| otherwise = y0 : merge (x0:xs) ysenumConat p q = removeDups (multiMerge (enum p) (enum q))multiMerge [℄ _ = [℄multiMerge _ [℄ = [℄multiMerge ep eq = matrixMerge (map makeRow ep)where makeRow p = map (p++) eqmatrixMerge [r℄ = rmatrixMerge (r0:r1:mx) = a:matrixMerge (r01:mx)where (a:r01) = merge r0 r1enumStar p| epNoE == [℄ = [[℄℄| otherwise = pswhere epNoE = [z|z <- (enum p), z /= [℄℄ps = removeDups ([℄ : (multiMerge epNoE ps))10

Referenes[1℄ J. E. Hoproft and J. D. Ullman. Introdution to Automata Theory, Lan-guages, and Computation. Addison Wesley, 1979.[2℄ P. Manolios. Homepage of Panagiotis Manolios, 2000. See URL http://-www.s.utexas.edu/users/pete.[3℄ J. Misra. Enumerating the strings of a regular expression, 2000. Unpublisheddraft.

11

