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Abstract

Many congestion control schemes rely on binary notifications of congestion from the network: on detecting network con-
gestion, they reduce transmission rates; and on receiving asignal indicating no congestion, they increase transmission rates.
For conventional networks with First-In First-Out (FIFO) scheduling of packets, the effectiveness of such algorithms has been
evaluated with respect to their responsiveness, smoothness, and fairness properties. Recently, it has been argued that it is pos-
sible to design high-speed network routers that can guarantee fair allocation of link capacities and buffers. In networks that
employ such routers, fairness is ensured by the routers, thereby making responsiveness and smoothness the two main criteria
for evaluating and selecting a binary adjustment algorithm.

In this paper, we consider binary adjustment algorithms with four increase policies proposed in the literature: multiplicative
increase (MI), additive increase (AI), inverse-square-root increase (ISI), and inverse increase (II). We analyze these algorithms in
fair heterogeneous networks. We find that the multiplicative increase policy, which is considered inappropriate for conventional
networks due to its fairness property, provides superior performance over the other policies in fair networks.

1 Introduction

This paper studies congestion control schemes based onbinary adjustment algorithmsthat adjust load on the network in
response to a binary feedback about the congestion status ofthe network. Numerous congestion control schemes use binary
adjustment algorithms. For instance,DECbit relies on the additive-increase multiplicative-decrease(AIMD) algorithm to adjust
the load in response to an explicit binary feedback: if the feedback indicates congestion, the load is reduced to its fraction;
otherwise, the load is raised by a constant [22]. Binary adjustment algorithms also enjoy wide deployment in the Internet where
most of the traffic is subject to congestion control by Transmission Control Protocol (TCP) [3]: in the slow start mode, the
congestion window of aTCP session is approximately doubled during each round-trip time when congestion is not detected;
in the congestion avoidance mode ofTCP, the adjustments of the congestion window are similar on theround-trip timescale to
the behavior ofAIMD [1, 10].

The design of binary adjustment algorithms for conventional networks – with First-In First-Out (FIFO) link scheduling –
has been motivated by three requirements:responsivenessto congestion notifications;smoothnessof rate adjustments; and
fairnessof resource allocation across flows [11, 12, 16, 29]. For instance, the large load oscillations characteristic ofTCP has
led to the development of several adjustment algorithms that provide smoother congestion control for streaming media appli-
cations [27]. To achieve the goal of smoothness, some solutions offer new settings for the parameters of theTCP adjustment
algorithms [6, 30], while other proposals suggest replacing theTCP adjustment algorithm for the congestion avoidance mode
by new algorithms such as theIIAD (inverse-increase additive-decrease) andSQRT algorithms [2].

The aim of this paper is to analyze the performance of binary adjustment algorithms infair networks– networks in which
routers instantiate fair resource allocation mechanisms such as fair link scheduling [5] and fair buffer management [26]. Fair
networks have a number of advantages over traditional networks. For example, while the performance of a traditional net-
work can be disrupted by the flows that do not exercise congestion control [18], fair networks offer protection against these
nonadaptive flows. Furthermore, as long as flows employ some form of congestion control in a fair network (i.e., each flow
decreases or increases its load depending on the congestionstatus), the network converges towards the fair allocationof its
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capacity [9]. The argument against fair networks has traditionally been the complexity, and hence the perceived lack ofscala-
bility, of the mechanisms for ensuring fairness in routers.However, recent studies suggest that fair resource allocation can be
implemented in high-speed networks [26]; in fact, a number of manufacturers are currently designing routers with support for
fair link scheduling [20]. Besides, there exist promising approaches to build simpler fair networks where core routersdo not
perform per-flow management [25]. We would like to point out that this paper does not argue for ubiquitous deployment of
fair link scheduling or fair buffer management. It aims to establish which adjustment algorithms would be preferable infair
networks if such networks were to be deployed.

It is important to note that fair networks are characterizedby inherent fairness; hence the design of adjustment algorithms in
a fair network is driven solely by considerations of efficiency of resource utilization (i.e., the responsiveness and smoothness
requirements). In conventional routers withFIFO link scheduling and Drop-Tail buffer management, on the other hand, the goal
of achieving fairness restricts the choice of adjustment algorithms. For instance, the objective ofTCP-friendliness in traditional
networks [15, 19] couples the increase and decrease policies of an adjustment algorithm (and thus imposes an undesirable
coupling between the speed of capacity acquisition and responsiveness to congestion): inGAIMD, the parameter setting of the
decrease policy is determined by the parameter setting selected for its increase policy [30]; similarly, the choice of the increase
policy for a binomial algorithm, such asIIAD andSQRT, dictates the decrease policy of the algorithm [2]. Congestion control
schemes in fair networks do not need to coordinate their loadadjustments policies in order to support fairness; rate adjustment
algorithms can select the increase and decrease policies independently.

In this paper, we evaluate rate adjustment algorithms with respect to their efficiency in a fair network. Our analysis method-
ology has two unique features.

1. Due to the intrinsic fairness of resource allocation in fair networks, we conduct the evaluation of the algorithms in anew
way. We examine the impact of a binary adjustment algorithm on the performance of a particular flow without making
many unrealistic assumptions common for the analysis of traditional networks. Our methodology allows cross traffic to:
(1) have different round-trip times, (2) be bottlenecked atdifferent links, (3) use different adjustment algorithms,and (4)
transmit less data than suggested by congestion control mechanisms.

2. We analyze binary adjustment algorithms in heterogeneous environments, where the capacity available to a flow changes
over time. It is known that the efficiency of a binary adjustment algorithm is subject to a fundamental tradeoff between the
smoothness and responsiveness of the algorithm: an algorithm with smoother oscillations of load at a steady state is less
responsive to changing network conditions [4]. Earlier studies of the tradeoff between smoothness and responsiveness
were conducted for relatively static network conditions [4]. Such an approach seems inappropriate since tuning the
parameters of an algorithm for a particular network settingdoes not ensure good performance of the selected algorithm
in diverse scenarios. For instance, consider the followingadditive algorithmA and multiplicative algorithmM : algorithmA adjusts the current load by2 units; algorithmM adjusts the current load by10%. When the fair share of load is100
units, algorithmA is smoother at the fair state than algorithmM . If the fair share of load equals10 units, algorithmM
is smoother at the fair state than algorithmM . What is required in reality is an assurance that the examined algorithm
provides acceptable performance for all possible (or important in practice) configurations resulting from the mix of
network technologies as well as from the dynamic nature of network traffic. Our methodology establishes whether
the evaluated algorithm provides an appropriate tradeoff between smoothness and responsiveness in fair heterogeneous
networks.

Using this methodology, we analyze binary adjustment algorithms with four increase policies proposed in the literature:
multiplicative increase (MI), additive increase (AI), inverse-square-root increase (ISI), and inverse increase (II). We find that the
multiplicative increase policy, which is considered inappropriate for conventional networks due to its fairness property, provides
superior performance than the other policies in fair networks.

Before proceeding to the main part of the paper, we would liketo point out that adjustments of load in response to a bi-
nary congestion signal are not the only means of congestion control. Even though binary adjustment algorithms are routinely
adopted by congestion control schemes for unicast [23, 30] and multicast [17, 24], adjustment algorithms can be more effec-
tive in congestion control designs with more sophisticatedfeedback. Examples of such schemes include the equation-based
congestion control for traditional networks [7] or packet-pair protocols for fair networks [13, 14]. Our paper considers only
binary adjustment algorithms. Assessment of non-binary adjustment algorithms and their comparison with binary algorithms
lie beyond the scope of this paper.

The paper is organized as follows. First, we specify our model of fair networks in Section 2. The examined binary adjustment
algorithms are presented in Section 3. Section 4 describes the theoretical foundations of our evaluation. Section 5 contains
definitions and justifications for the chosen metrics of performance. Section 6 outlines our evaluation methodology. Analysis
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of the compared policies is provided in Section 7. Section 8 summarizes our conclusions.

2 Network Model

In this paper, we analyze the performance of a particular flow(calledthe examined flow) that employs a binary algorithm to
adjust itsload in a fairnetwork. We model the network as the bottleneck link of this flow (see Figure 1). The networkcapacityC equals the capacity of this link and is a positive real number. The network is shared byn flows. At timet, flow k imposes
loadlk(t) on the network, wherelk(t) is a positive real number. Thetotal loadon the network at timet equals:L(t) = nXk=1 lk(t): (1)
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Figure 1: The network model.

The network splits its capacity between flows according to the principle of maxmin fairness [8, 11]. A recursive procedure
for computing this fair allocation is given in [21]. The procedure assigns athroughputbk(t) to flow k based on the notion of
fair shares(t) at timet. If the flow demands less than the fair share, its demand is fully satisfied. Otherwise, the flow receives
the fair share: bk(t) = minflk(t); s(t)g (2)

WhenL(t) � C, all the demands can be satisfied, and the fair share is assumed to be the maximum among the imposed loads.
WhenL(t) > C, only the demands from a proper subsetp(t) of all the flows can be fully satisfied. The other flows split the
remaining capacity equally: s(t) = 8>>><>>>: n

maxk=1flk(t)g if L(t) � C;C� Pk2p(t) lk(t)n� jp(t) j if L(t) > C (3)

where p(t) = f k lk(t) � s(t) g: (4)

To facilitate efficient congestion control, the network provides flowk with binaryfeedbackfk(t):fk(t) = � 0 if lk(t) � s(t);1 if lk(t) > s(t): (5)
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We examine the performance of a particular flow which adjustsits load in response to the network feedback. For succinctness
of the notation, we omit the subscript when we refer to the characteristics of this flow:l(t), f(t), andb(t) denote the load,
feedback, and throughput of this flow respectively.

We model time as the number of adjustments performed by the examined flow. Thus, time is integer:t = 0 represents
the moment when the examined flow imposes its initial loadl(0) = � on the network; fort > 0, t corresponds to thet-th
adjustment of the load for this flow.

The flow uses the following binary algorithm to adjust its load:l(t+ 1) = � i(l(t)) if f(t) = 0;d(l(t)) if f(t) = 1; (6)

wherei andd are an increase policy and decrease policy, respectively. We consider increase policies that always increase the
load: 8l > 0 i(l) > l (7)

and are guaranteed to produce unbounded values if applied repetitively:8x; l > 0 9� i� (l) > x (8)

wherei� (l) is the result of� consecutive applications ofi to l.
Similar constraints are imposed on decrease policies: a decrease policy always decreases the load to a positive value:8l > 0 0 < d(l) < l (9)

and is guaranteed to produce a value below any positive number if applied repetitively:8x; l > 0 9� d� (l) < x (10)

whered� (l) is the result of� consecutive applications ofd to l.
Constraints (7) and (9) implement the principle of negativefeedback: when the load of the examined flow is below the fair

share, the adjustment algorithm increases the load; when the load exceeds the fair share, the adjustment algorithm decreases the
load of the examined flow [4]. Constraints (8) and (10) ensurethat regardless of the initial load and fair share, the adjustment
algorithm eventually brings the load of the examined flow to the fair share.

Our model does not make any assumptions about how and when theother flows adjust their loads on the network.
The next section presents the binary adjustment algorithmsexamined in this paper.

3 Binary Adjustment Algorithms

A binary adjustment algorithm consists of two components: an increase policy and a decrease policy. The following increase
and decrease policies have been proposed in the literature.� Increase policies:

1. Multiplicative Increase(MI) policy: i�(l) = �l where� > 1 is a constant. This policy models the behavior of
TCP during its slow start mode [1, 10].

2. Additive Increase(AI) policy: i�(l) = l + � where� > 0 is a constant. This policy models the increase behaviors
of AIMD [22], GAIMD [30], andTCP congestion avoidance mode [1, 10].

3. Inverse-Square-root Increase(ISI) policy: i�(l) = l + �pl where� > 0 is a constant. This policy represents the
increase behavior ofSQRT algorithm [2].

4. Inverse Increase(II) policy: i�(l) = l+ �l where� > 0 is a constant. This policy is employed byIIAD algorithm [2].

Note that all these four increase policies satisfy conditions (7) and (8).� Decrease policies:
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1. Multiplicative Decrease(MD) policy: d�(l) = �l where0 < � < 1 is a constant. This policy models the decrease
behaviors ofAIMD, GAIMD, andTCP.

2. Square-root Decrease(SD) policy: d�(l) = l � �pl where� > 0 is a constant. This policy is used bySQRT algo-
rithm.

3. Additive Decrease(AD) policy: dÆ(l) = l � Æ whereÆ > 0 is a constant. This policy models the decrease behavior
of IIAD algorithm.

Note that neitherAD nor SD satisfies condition (9):dÆ(l) < 0 for l = Æ2 , andd�(l) < 0 for l = �24 . To address this
problem, one can modifyAD andSD policies as follows: if the policy suggests a load that is nota positive value, then the
load is set to some valuel? wherel? > 0. However, these new decrease policies do not satisfy condition (10).

SinceMD is the only proposed decrease policy that satisfies both conditions (9) and (10), we consider only binary adjustment
algorithms that useMD as the decrease policy. Because fair networks eliminate theneed for coupling the increase and decrease
policies to achieve the fairness of resource utilization, our objective of comparing the binary adjustment algorithmsreduces to
comparison of the increase policies.

The next section provides a theoretical basis for our evaluation of the proposed increase policies.

4 Theoretical Foundations of Our Evaluation

We assess the performance of the examined flow controlled by abinary adjustment algorithm. The other flows in the network
constitute cross traffic for the examined flow and can have diverse round-trip times, be bottlenecked at different links,employ
various forms of congestion control (including, no congestion control at all), and transmit less data than suggested bytheir
congestion control mechanisms. This is a realistic model oftraffic for large heterogeneous networks. The fair allocation of
resources in a fair network protects the examined flow from those flows that respond to congestion on a slower timescale or do
not exercise any form of congestion control. If the examinedflow is bottlenecked at a link with capacityC andn flows, then
any binary adjustment algorithm that satisfies conditions (7) through (10) is guaranteed to raise the throughput of the examined
flow in a fair network toCn . This nice property holds regardless of the initial load forthe examined flow or the behaviors of the
other flows. We prove this property in Lemma 2 below and refer tog = Cn (11)

as aguaranteed throughput.

Lemma 1 In the overloaded network, the fair share is at least the guaranteed throughput:(L(t) > C) ) (s(t) � g): (12)

Lemma 2 The examined flow is assured to reach the guaranteed throughput:9t b(t) � g: (13)

Proofs for the lemmata are given in Appendix A. This appendixcontains also a proof for the following theorem that shows
why g is an important value:

Theorem 1 g is the maximum throughput that the examined flow is guaranteed to reach.

Since the other flows can be bottlenecked at different links and can transmit at smaller rates than suggested by their conges-
tion control algorithms, the load of some flow can always be below the guaranteed throughput even if this flow employs the
same binary adjustment algorithm as the examined flow. Thus,the fair share in the overloaded fair network can be anywhere
betweeng andC. Due to the lack of assumptions about the behaviors of the other flows, Theorem 1 tells us as much as possible
about either the assured or the expected performance of the examined flow in a fair network:g is the maximum throughput
that the examined flow is guaranteed to reach. The ability to reach the guaranteed throughput serves as a foundation for our
evaluation of the increase policies. The metrics for our evaluation are defined and justified in the next section.
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5 Performance Metrics

We evaluate the increase policies with respect to theirresponsiveness– measured in terms of convergence time – andsmooth-
ness– measured in terms of overload.� Convergence timeu(�) of a policy refers to the amount of time it takes for the policyto increase the load of the examined

flow from � to the guaranteed throughput: u(�) = minb(t)�gftg (14)

This metric for convergence time can be expressed differently based on the following observation: as long as the through-
put of the examined flow is below the guaranteed throughput, the load of the flow does not exceed the fair share, and the
flow keeps increasing its load. Thus, we can transform (14) into a form which is more suitable for computation:u(�) = minit(�)�gftg (15)� Overloadv of a policy refers to the maximum relative increase producedby applying the policy to the fair share when
the fair share reaches the guaranteed throughput:v = maxs(t)�gn i(s(t))� s(t)s(t) o: (16)

Our choice for the overload metric requires two clarifications.

1. A seemingly better alternative is a measure that shows by how much the load of the examined flow exceeds its
throughput after reaching the guaranteed throughput:v? = maxt>u(�)n l(t)� b(t)b(t) o: (17)

Unfortunately, as the following example illustrates, thismeasure depends on the behaviors of the other flows and is
not suitable for representing the contribution of the evaluated increase policy to overload.

Example 1 Consider a fair network with capacity11 and two flows. Let the examined flow employ the additive
increase policy with parameter� = 1. Assume that the load of the examined flow after(t � 1) adjustments isl(t�1) = 10 while the other flow imposes load of1 at time(t�1). Becauses(t�1) = l(t�1) = 10, the examined
flow increases its load at timet to l(t) = 11. If the other flow raises its load at timet to 6, then the fair share at timet becomess(t) = 5:5. Since the examined flow exceeds the fair share at timet, its throughputb(t) equals the fair
share:b(t) = 5:5. Then, we have(l(t) � b(t))=b(t) = 100%. According to (17), metricv? is at least100%. Note
that such a high value ofv? is caused not by the increase policy of the examined flow (the examined flow increases
its load from10 to 11, i.e., by10%) but by the drastic load increase of the other flow.

We would like to isolate the contribution of the evaluated policy to the overload from the contributions of the other
flows. We believe that our metric (16) achieves this goal: it captures the scenarios when the examined flow has
reached the guaranteed throughput, and the policy increases the load of the flow beyond the fair share.

2. We measure relative overload rather than absolute overload because relative values are more suitable for reflecting
the degree of congestion in a heterogeneous network. In realnetworks, overload manifests itself as high buffer
occupancies – when binary feedback notifies flows about buffer buildups, as inSelective DECbit [21] – and packet
losses. The same absolute loss rate of20Kbps represents severe congestion for a50Kbps link (the losses amount
to 40% of the link capacity) but can be considered negligible for a1 Gbps link (0:002% of the link capacity). A
similar observation can be made about overload evaluation in terms of buffer occupancies. Since the size of a link
buffer is recommended to be proportional to the capacity of the link [28], buffer sizes can vary significantly in
the network. In this situation of high heterogeneity, stating the relative buffer occupancy (e.g,90%) reveals more
information about the congestion status than providing theabsolute buffer occupancy (e.g.,10 Kbytes). Due to
these considerations, we report overload in relative units.
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6 Evaluation Methodology

Since the capacities of links, the number of flows, and the locations of bottlenecks can vary dramatically in heterogeneous
networks, we assume that the guaranteed loadg is not known a priori but lies between some positive valuesgmin andgmax:g 2 [gmin; gmax℄: (18)

We refer to  = gmaxgmin (19)

as aheterogeneity indexof the network, � 1.
We assume that the values ofgmin andgmax are known (either from gathered statistics on network usageor due to some

form of admission control). We strive to evaluate each policy in terms of its ability to provide an acceptable behavior for every
value ofg that is betweengmin andgmax.

Since the convergence time of the examined flow depends on itsinitial load�, the choice of the initial load is an important
issue. If the selected� were such that� > gmin, then the initial load of the examined flow could exceed the fair share in the
scenarios wheng < �. We believe that such initial overload is undesirable. Thus, � should be at mostgmin. On the other hand,
setting� to a value belowgmin does not seem appropriate because the convergence from thisvalue to anyg betweengmin andgmax would include an additional time interval when the load is increased from� to gmin. Since we assume that the value ofgmin is known (from network statistics or due to admission control), we choose the initial load� of the examined flow to be
the minimum guaranteed throughput: � = gmin: (20)

As it is shown in [4], the minimization of convergence time and the minimization of overload are conflicting objectives.
Besides, as the following example illustrates, different parameter settings of a policy as well as different values of the guaranteed
throughput produce different tradeoffs between convergence time and overload.

Example 2 Consider an additive increase policyA1 with parameter settings� = 1. If gmin = 4 andg = 10, then convergence
time forA1 is 6 adjustments. Further, after reaching the guaranteed throughput ofg = 10, PolicyA1 increases load to11,
thereby causing an overload of10%. If g = 20 instead, thenA1 requires 16 adjustments to reach the guaranteed load and
causes5% overload.

Now consider another additive increase policyA2 with � = 2. PolicyA1 is smoother but less responsive thanA2. Wheng = 10,A2 converges fromgmin to g after3 adjustments but incurs an overload of20%; and wheng = 20,A2 converges after8 adjustments and incurs an overload of10%.

To characterize the ability of a policy to provide a satisfactory behavior over the whole range of possible guaranteed through-
puts, we introduce a notion offeasibility of an increase policy with respect toresponsiveness andsmoothness requirements:

Definition 6.1 An increase policy isfeasible with respect toresponsiveness � andsmoothness � iff there exists such a single
setting for the parameters of the policy that:8g 2 [gmin; gmax℄ u(gmin) � � ^ v � �: (21)

To compare two policies qualitatively, we define a relation “more feasible than” and denote it as “�”:

Definition 6.2 PolicyA is more feasible than policyB iff whenever policyB is feasible with respect to some responsiveness�
and smoothness�, policyA is feasible with respect to the same� and�:A � B � 8�; � � 0 (B is feasible with respect to� and�) ) (A is feasible with respect to� and�): (22)

To assess an increase policy quantitatively, we measure theresponsiveness of the policy when this policy provides acceptable
performance in terms of its smoothness. First, we consider such parameter settings of the policy that the overload does not
exceed the smoothness requirement�. We refer to them as�-smooth settings:

Definition 6.3 A parameter setting of a policy is�-smooth iff:8g 2 [gmin; gmax℄ v � �: (23)
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policy MI AI ISI II

overloadv �� 1 �g �g 32 �g2
convergence timeu(�) llog� g�m l g��� m

(15) (15)

feasibility conditions  � (1 + �)�  � 1 + �� (21) (21)�-smooth parameter settings � � 1 + � � � �gmin � � �g 32min � � �g2min
guaranteed convergence time� llog(1+�) m l�1� m

(24) (24)

Table 1: The performances of increase policies.

Then, in the set of�-smooth settings of the policy, we distinguish such a setting that provides the policy with the smallest
maximum convergence time. We refer to this time as theguaranteed convergence time of this policy and use it as a quantitative
measure of the policy performance:

Definition 6.4 Theguaranteed convergence time � of an increase policy with respect to smoothness� is the smallest among
the maximum convergence times of the policy when the parameter setting belongs to the setS of�-smooth settings of the policy:� = minS n

maxg2[gmin;gmax℄fu(gmin)go: (24)

We bound the overload to compare the convergence times (rather than limiting the convergence time to compare the over-
loads) because a specific bound on overload – e.g., the buffersize when overload is measured in terms of the buffer occupancy –
can correspond to a boundary between two qualitatively different modes of network operation – e.g., lossless transmission ver-
sus packet drops. On the other hand, it is difficult to providespecific bounds on convergence times such that exceeding them
results in qualitatively different performances.

Using the described methodology, we compare increase policies in the next section.

7 Analysis

We analyze the four increase policies introduced in Section3: multiplicative increase (MI), additive increase (AI), inverse-
square-root increase (ISI), and inverse increase (II). We present our findings as a series of lemmata below. While the proofs for
the lemmata are given in Appendix B, Table 1 summarizes the results of our analysis. For some properties ofISI andII policies,
closed-form expressions could not be obtained, and the table refers to the general definitions (15), (21), and (24) in these cases.

First, we derive the values of overload and convergence timefor the considered policies:

Lemma 3 The values of overloadv for MI, AI, ISI, andII policies are(�� 1), �g , �g 32 , and �g2 respectively.

Lemma 4 The values of convergence timeu(�) for MI andAI policies are
llog� g�m and

l g��� m
respectively.

Having obtained the closed-form expressions for both overload and convergence time ofMI andAI policies, we can derive
feasibility conditions as well as closed-form expressionsfor guaranteed convergence times of these policies:

Lemma 5 MI is feasible with respect to responsiveness� and smoothness� iff: � (1 + �)� : (25)

Lemma 6 AI is feasible with respect to responsiveness� and smoothness� iff: � 1 + ��: (26)
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Lemma 7 The values of guaranteed convergence time� for MI andAI policies are
llog(1+�) m and

l�1� m
respectively.

The derived values of guaranteed convergence times forMI andAI policies do not depend on the minimum guaranteed through-
putgmin. The following two lemmata show thatISI andII policies possess the same property:

Lemma 8 The guaranteed convergence time ofISI policy does not depend on the minimum guaranteed throughputgmin.

Lemma 9 The guaranteed convergence time ofII policy does not depend on the minimum guaranteed throughputgmin.

The main results of our paper are formulated by the followingthree theorems:

Theorem 2 MI � AI.

Proof:

AI is feasible with respect to responsiveness� and smoothness�� f Lemma 6g � 1 + ��) n
binomial series:(1 + �)� = 1 + �� + �Pk=2 ��k��k o � (1 + �)�� f Lemma 5g

MI is feasible with respect to responsiveness� and smoothness�.

According to Definition 6.2,MI � AI.

Theorem 3 AI � ISI.

Proof: Let us denote the convergence time and overload ofISI policy with parameter� asu� andv� respectively. Then,
considerAI policy with parameter� = �pgmin and denote its convergence time and overload asu� andv� respectively.

Let us compare the results of applying theseISI andAI policies to someg1 andg2 such thatgmin � g1 � g2.i�(g1)= f Definition of ISI policy gg1 + �pg1= g1 + �pgminrgming1= n � = �pgmin og1 + �rgming1� f gmin � g1 gg1 + �� f g1 � g2 gg2 + �= f Definition ofAI policy gi�(g2):
Thus,(gmin � g1 � g2)) (i�(g1) � i�(g2)). By induction,8� i��(gmin) � i��(gmin). Using (15), we derive:u�(gmin) � u�(gmin): (27)
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Relying on (27), we obtain:

ISI is feasible with respect to responsiveness� and smoothness�� f Definition 6.1g9� 8g 2 [gmin; gmax℄ u�(gmin) � � ^ v� � �� f Lemma 3g9� 8g 2 [gmin; gmax℄ u�(gmin) � � ^ �g 32 � �� 9� (8g 2 [gmin; gmax℄ u�(gmin) � �) ^ �g 32min � �) f (27)g9� = �pgmin (8g 2 [gmin; gmax℄ u�(gmin) � �) ^ �g 32min � �� 9� (8g 2 [gmin; gmax℄ u�(gmin) � �) ^ �gmin � �� 9� 8g 2 [gmin; gmax℄ u�(gmin) � � ^ �g � �� f Lemma 3g9� 8g 2 [gmin; gmax℄ u�(gmin) � � ^ v� � �� f Definition 6.1g
AI is feasible with respect to responsiveness� and smoothness�.

According to Definition 6.2,AI � ISI.

Theorem 4 ISI � II.

Proof: Let us denote the convergence time and overload ofII policy i� with parameter� asu� andv� respectively. Then,
considerISI policy i� with parameter� = �pgmin and denote its convergence time and overload asu� andv� respectively.

First, examine the derivative for policyi�(g) wheng � gmin + �gmin :i0�(g) = �g + �g�0 = 1� �g2 � 1� �(gmin + �gmin )2 = (g2min � �)2 + 3�g2min(g2min + �)2 > 0:
Therefore,i�(g) is an increasing function forg � gmin + �gmin .

Now, let us compare the results of applying thesei� andi� policies to someg1 andg2 such thatgmin + �gmin � g1 � g2:i�(g1)� f i�(g) is an increasing function forg � gmin + �gmin gi�(g2)= f Definition of II policy gg2 + �g2= n � = �pgmin og2 + �pg2rgming2� f gmin � g2 becausegmin + �gmin � g2 gg2 + �pg2
10



= f Definition of ISI policy gi�(g2):
Thus,(gmin + �gmin � g1 � g2) ) (i�(g1) � i�(g2)). Using this and the fact thati�(gmin) = i�(gmin) = gmin + �gmin ,

we derive by induction that8� i�� (gmin) � i��(gmin). Then, according to (15), we have:u�(gmin) � u�(gmin): (28)

Relying on (28), we obtain:

II is feasible with respect to responsiveness� and smoothness�� f Definition 6.1g9� 8g 2 [gmin; gmax℄ u�(gmin) � � ^ v� � �� f Lemma 3g9� 8g 2 [gmin; gmax℄ u�(gmin) � � ^ �g2 � �� 9� (8g 2 [gmin; gmax℄ u�(gmin) � �) ^ �g2min � �) f (28)g9� = �pgmin (8g 2 [gmin; gmax℄ u�(gmin) � �) ^ �g2min � �� 9� (8g 2 [gmin; gmax℄ u�(gmin) � �) ^ �g 32min � �� 9� 8g 2 [gmin; gmax℄ u�(gmin) � � ^ �g 32 � �� f Lemma 3g9� 8g 2 [gmin; gmax℄ u�(gmin) � � ^ v� � �� f Definition 6.1g
ISI is feasible with respect to responsiveness� and smoothness�.

According to Definition 6.2,ISI � II.
Theorems 2, 3, and 4 establish an interesting chain of superiorities in terms of the abilities of the considered policiesto

satisfy the smoothness and responsiveness requirements:

MI � AI � ISI � II (29)

i.e., MI is superior toAI which is superior toISI which is superior toII. Thus, MI provides the best performance in fair
heterogeneous networks in comparison to the other examinedincrease policies.

We assess quantitative advantages ofMI overAI, ISI, andII in terms of the guaranteed convergence times of the compared
policies. According to Lemma 7, the guaranteed convergencetimes ofMI andAI policies depend only on the smoothness
requirement� and the heterogeneity index of the network. In particular, the guaranteed convergence times of these policies
do not depend on the minimum guaranteed throughputgmin. Lemmata 8 and 9 show thatISI and II policies share the same
property. Thus, we evaluate the guaranteed convergence times of the four compared policies as functions of the heterogeneity
index (see Figure 2) and smoothness requirement (see Figure3). Figure 2 shows that the larger heterogeneity index for the
network, the larger advantageMI provides in comparison to the other considered policies. Figure 3 shows thatMI consistently
provides better performance thanAI, ISI, andII policies for all considered smoothness requirements.

8 Summary and Discussion

In this paper, we analyze binary adjustment algorithms in fair heterogeneous networks. We introduce a network model where
routers allocate link capacities among flows according to the principle of maxmin fairness. We evaluate four different increase
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