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Abstract

Many congestion control schemes rely on binary notificatiohcongestion from the network: on detecting network con-
gestion, they reduce transmission rates; and on receivsigral indicating no congestion, they increase transonissites.
For conventional networks with First-In First-OwIFO) scheduling of packets, the effectiveness of such algosthas been
evaluated with respect to their responsiveness, smoathaed fairness properties. Recently, it has been arguéd thaos-
sible to design high-speed network routers that can gusdiair allocation of link capacities and buffers. In netksthat
employ such routers, fairness is ensured by the routenglirenaking responsiveness and smoothness the two maniarit
for evaluating and selecting a binary adjustment algorithm

In this paper, we consider binary adjustment algorithmé ¥atir increase policies proposed in the literature: mlidtiive
increaseNl), additive increaseX), inverse-square-root incread8l), and inverse increast), We analyze these algorithms in
fair heterogeneous networks. We find that the multipliesitncrease policy, which is considered inappropriate foweational
networks due to its fairness property, provides superidiop@ance over the other policies in fair networks.

1 Introduction

This paper studies congestion control schemes basdunamy adjustment algorithmthat adjust load on the network in
response to a binary feedback about the congestion stathe oktwork. Numerous congestion control schemes useybinar
adjustment algorithms. For instan@ECbit relies on the additive-increase multiplicative-decrgas@D) algorithm to adjust
the load in response to an explicit binary feedback: if tredfmck indicates congestion, the load is reduced to itsidrac
otherwise, the load is raised by a constant [22]. Binarystdjent algorithms also enjoy wide deploymentin the Intewtere
most of the traffic is subject to congestion control by Traission Control ProtocolTCP) [3]: in the slow start mode, the
congestion window of &CP session is approximately doubled during each round-tme tivhen congestion is not detected,;
in the congestion avoidance modeTafP, the adjustments of the congestion window are similar omdhad-trip timescale to
the behavior oAIMD [1, 10].

The design of binary adjustment algorithms for conventiowdworks — with First-In First-OutRIFO) link scheduling —
has been motivated by three requirememésponsivenes® congestion notificationgsmoothnessf rate adjustments; and
fairnessof resource allocation across flows [11, 12, 16, 29]. Fowimst, the large load oscillations characteristiT©P has
led to the development of several adjustment algorithmisgtavide smoother congestion control for streaming megiaia
cations [27]. To achieve the goal of smoothness, some sakitiffer new settings for the parameters of Ti@® adjustment
algorithms [6, 30], while other proposals suggest replatire TCP adjustment algorithm for the congestion avoidance mode
by new algorithms such as thiaD (inverse-increase additive-decrease) 8T algorithms [2].

The aim of this paper is to analyze the performance of bindjysdment algorithms ifair networks— networks in which
routers instantiate fair resource allocation mechanismh as fair link scheduling [5] and fair buffer managemes{ [ZFair
networks have a number of advantages over traditional mksvd=or example, while the performance of a traditionat net
work can be disrupted by the flows that do not exercise coitgesbntrol [18], fair networks offer protection againsesie
nonadaptive flows. Furthermore, as long as flows employ same 6f congestion control in a fair network (i.e., each flow
decreases or increases its load depending on the congsettios), the network converges towards the fair allocatioits



capacity [9]. The argument against fair networks has ti@utly been the complexity, and hence the perceived ladcala-
bility, of the mechanisms for ensuring fairness in routétewever, recent studies suggest that fair resource aitotaan be
implemented in high-speed networks [26]; in fact, a numlf@nanufacturers are currently designing routers with suijoo
fair link scheduling [20]. Besides, there exist promisimgpeoaches to build simpler fair networks where core routersot
perform per-flow management [25]. We would like to point dwttthis paper does not argue for ubiquitous deployment of
fair link scheduling or fair buffer management. It aims téaddish which adjustment algorithms would be preferabléin
networks if such networks were to be deployed.

Itis important to note that fair networks are characterizgihherent fairness; hence the design of adjustment &fgosiin
a fair network is driven solely by considerations of effidgrof resource utilization (i.e., the responsiveness anooshmess
requirements). In conventional routers withrO link scheduling and Drop-Tail buffer management, on thepttand, the goal
of achieving fairness restricts the choice of adjustmegagthms. For instance, the objectiveT@®P-friendliness in traditional
networks [15, 19] couples the increase and decrease polifian adjustment algorithm (and thus imposes an undesirabl
coupling between the speed of capacity acquisition andresypeness to congestion): GAIMD, the parameter setting of the
decrease policy is determined by the parameter settingtedléor its increase policy [30]; similarly, the choice bétincrease
policy for a binomial algorithm, such aB®\D andSQRT, dictates the decrease policy of the algorithm [2]. Corigastontrol
schemes in fair networks do not need to coordinate their dofidstments policies in order to support fairness; ratesiajent
algorithms can select the increase and decrease policiepéndently.

In this paper, we evaluate rate adjustment algorithms \etpect to their efficiency in a fair network. Our analysis moeft
ology has two unique features.

1. Due to the intrinsic fairness of resource allocation inti@tworks, we conduct the evaluation of the algorithms ivea
way. We examine the impact of a binary adjustment algorithnthe performance of a particular flow without making
many unrealistic assumptions common for the analysis dftteaal networks. Our methodology allows cross traffic to:
() have different round-trip times, (2) be bottleneckedifierent links, (3) use different adjustment algorithrasd (4)
transmit less data than suggested by congestion contrdianesns.

2. We analyze binary adjustment algorithms in heterogemenuvironments, where the capacity available to a flow chenge
over time. Itis known that the efficiency of a binary adjustrredgorithm is subject to a fundamental tradeoff between th
smoothness and responsiveness of the algorithm: an &gowith smoother oscillations of load at a steady state & les
responsive to changing network conditions [4]. Earliedits of the tradeoff between smoothness and responsiveness
were conducted for relatively static network conditionk [Such an approach seems inappropriate since tuning the
parameters of an algorithm for a particular network settings not ensure good performance of the selected algorithm
in diverse scenarios. For instance, consider the followatdjtive algorithmA and multiplicative algorithnd/: algorithm
A adjusts the current load Byunits; algorithma/Z adjusts the current load l0%. When the fair share of load i©0
units, algorithmA is smoother at the fair state than algorittidh If the fair share of load equal$ units, algorithmi/
is smoother at the fair state than algoritiich What is required in reality is an assurance that the exadratgorithm
provides acceptable performance for all possible (or ingrdrin practice) configurations resulting from the mix of
network technologies as well as from the dynamic nature ofvowk traffic. Our methodology establishes whether
the evaluated algorithm provides an appropriate tradegiffeen smoothness and responsiveness in fair heterogeneou
networks.

Using this methodology, we analyze binary adjustment dgms with four increase policies proposed in the literatur
multiplicative increaseMl), additive increaseA(), inverse-square-root increasslf, and inverse increasd)( We find that the
multiplicative increase policy, which is considered inegguriate for conventional networks due to its fairness prop provides
superior performance than the other policies in fair neksor

Before proceeding to the main part of the paper, we wouldtlikpoint out that adjustments of load in response to a bi-
nary congestion signal are not the only means of congestintral. Even though binary adjustment algorithms are rmiyi
adopted by congestion control schemes for unicast [23, B®Jnaulticast [17, 24], adjustment algorithms can be moreceff
tive in congestion control designs with more sophisticdestiback. Examples of such schemes include the equatsedba
congestion control for traditional networks [7] or packetir protocols for fair networks [13, 14]. Our paper considenly
binary adjustment algorithms. Assessment of non-binajysasient algorithms and their comparison with binary alhons
lie beyond the scope of this paper.

The paper is organized as follows. First, we specify our rhoffair networks in Section 2. The examined binary adjusitme
algorithms are presented in Section 3. Section 4 desciiteetheoretical foundations of our evaluation. Section Sa@ios
definitions and justifications for the chosen metrics of perfance. Section 6 outlines our evaluation methodologylysis



of the compared policies is provided in Section 7. Sectionrirearizes our conclusions.

2 Network Model

In this paper, we analyze the performance of a particular {falledthe examined flojthat employs a binary algorithm to
adjust itsload in a fair network We model the network as the bottleneck link of this flow (segife 1). The networkapacity
C equals the capacity of this link and is a positive real numbae network is shared by flows. At timet, flow k£ imposes
load!y(t) on the network, wherg,(t) is a positive real number. Thetal loadon the network at time equals:

L(t) = > 1k(t). 1)
k=1
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Figure 1: The network model.

The network splits its capacity between flows according ¢ogttinciple of maxmin fairness [8, 11]. A recursive proceslur
for computing this fair allocation is given in [21]. The pexture assigns garoughputby(¢) to flow k& based on the notion of
fair shares(t) at timet. If the flow demands less than the fair share, its demandlisgatisfied. Otherwise, the flow receives
the fair share:

br,(t) = min{lx(t), s(t)} 2

WhenL(t) < C, all the demands can be satisfied, and the fair share is addorbe the maximum among the imposed loads.
WhenL(t) > C, only the demands from a proper subg@ of all the flows can be fully satisfied. The other flows split the
remaining capacity equally:

max{l(t)} i L(t) < C,

s(t) =19 o S ) 3)
—tyT— L) > C
where
p(t) ={k | k() <s)}. (4)
To facilitate efficient congestion control, the networkyides flowk with binaryfeedbackf;, (¢):
=1 e S ot ®



We examine the performance of a particular flow which adjéstead in response to the network feedback. For succisstne
of the notation, we omit the subscript when we refer to theatteristics of this flow:(t), f(¢), andb(t) denote the load,
feedback, and throughput of this flow respectively.

We model time as the number of adjustments performed by thmiged flow. Thus, time is integet: = 0 represents
the moment when the examined flow imposes its initial 16@)J = A on the network; for > 0, ¢ corresponds to theth
adjustment of the load for this flow.

The flow uses the following binary algorithm to adjust itsdoa

[ a@) i ft) =0,
l(t+1)—{ di(t)) it f(t) =1, ;

wherei andd are an increase policy and decrease policy, respectivedycalisider increase policies that always increase the
load:

Vi>0 i(l)>1 (7)
and are guaranteed to produce unbounded values if apppetitieely:
Ve, Il >0 Ir i"(l) >« (8)

wherei™ (1) is the result ofr consecutive applications éto /.
Similar constraints are imposed on decrease policies: iredse policy always decreases the load to a positive value:

Vi>0 0<d() <! 9)
and is guaranteed to produce a value below any positive nuifrdggplied repetitively:
Ve, I >0 Jr d() <z (10)

whered™ (1) is the result ofr consecutive applications dfto (.

Constraints (7) and (9) implement the principle of negafidedlback: when the load of the examined flow is below the fair
share, the adjustment algorithm increases the load; wiedndld exceeds the fair share, the adjustment algorithnedses the
load of the examined flow [4]. Constraints (8) and (10) ensha¢ regardless of the initial load and fair share, the ddjaat
algorithm eventually brings the load of the examined flowhi fair share.

Our model does not make any assumptions about how and whethieflows adjust their loads on the network.

The next section presents the binary adjustment algorithxamined in this paper.

3 Binary Adjustment Algorithms

A binary adjustment algorithm consists of two componentsinarease policy and a decrease policy. The following iasee
and decrease policies have been proposed in the literature.

¢ Increase policies:
1. Multiplicative IncreasgMI) policy: i,(I) = pul wherep > 1 is a constant. This policy models the behavior of

TCP during its slow start mode [1, 10].

2. Additive Increasé€Al) policy: i, (I) = | + a wherea > 0 is a constant. This policy models the increase behaviors
of AIMD [22], GAIMD [30], andTCP congestion avoidance mode [1, 10].

3. Inverse-Square-root Increagesl) policy: i, (1) = 1 + \sz wheres > 0 is a constant. This policy represents the
increase behavior &QRT algorithm [2].

4. Inverse Increasél) policy: i.(I) = [ +  wheree > 0 is a constant. This policy is employed b&D algorithm [2].
Note that all these four increase policies satisfy condgi/) and (8).

e Decrease policies:



1. Multiplicative Decreas€MD) policy: dg(l) = Bl where0 < 8 < 1is a constant. This policy models the decrease
behaviors oAIMD, GAIMD, andTCP.

2. Square-root DecreassD) policy: de (1) =1 — ¢v1 where¢ > 0 is a constant. This policy is used B@RT algo-
rithm.

3. Additive Decreas€AD) policy: ds (1) =1 — é whered > 0 is a constant. This policy models the decrease behavior
of IIAD algorithm.

Note that neitheAD nor SD satisfies condition (9)d; (1) < 0 for I = 2, andde(l) < 0 forl = % To address this
problem, one can modifD andSD policies as follows: if the policy suggests a load that isapbsitive value, then the
load is set to some valué& wherel* > 0. However, these new decrease policies do not satisfy dondit0).

SinceMD is the only proposed decrease policy that satisfies bothittonsl (9) and (10), we consider only binary adjustment
algorithms that us®ID as the decrease policy. Because fair networks eliminatedid for coupling the increase and decrease
policies to achieve the fairness of resource utilizatiam,abjective of comparing the binary adjustment algorithieduces to
comparison of the increase policies.

The next section provides a theoretical basis for our etialnaf the proposed increase policies.

4 Theoretical Foundations of Our Evaluation

We assess the performance of the examined flow controlledblryaay adjustment algorithm. The other flows in the network
constitute cross traffic for the examined flow and can haverd&round-trip times, be bottlenecked at different lirdtaploy
various forms of congestion control (including, no congestontrol at all), and transmit less data than suggestethdiy
congestion control mechanisms. This is a realistic modetadfic for large heterogeneous networks. The fair allaratf
resources in a fair network protects the examined flow fromsétflows that respond to congestion on a slower timescale or d
not exercise any form of congestion control. If the examified is bottlenecked at a link with capacify andn flows, then
any binary adjustment algorithm that satisfies conditigishi{rough (10) is guaranteed to raise the throughput ofxhenined
flow in a fair network to%. This nice property holds regardless of the initial loadtfer examined flow or the behaviors of the
other flows. We prove this property in Lemma 2 below and rafer t

g=— (11)
n

as aguaranteed throughput
Lemma 1 In the overloaded network, the fair share is at least the guézed throughput:

(L(t) > C) = (s(t) = g). (12)
Lemma 2 The examined flow is assured to reach the guaranteed thraughp

It b(t) > g. (13)
Proofs for the lemmata are given in Appendix A. This appemdixtains also a proof for the following theorem that shows
why g is an important value:

Theorem 1 g is the maximum throughput that the examined flow is guardrteesach.

Since the other flows can be bottlenecked at different limicscan transmit at smaller rates than suggested by theileseng
tion control algorithms, the load of some flow can always blewehe guaranteed throughput even if this flow employs the
same binary adjustment algorithm as the examined flow. Tthedfair share in the overloaded fair network can be anywhere
betweery andC'. Due to the lack of assumptions about the behaviors of ther éitws, Theorem 1 tells us as much as possible
about either the assured or the expected performance ok#meired flow in a fair networky is the maximum throughput
that the examined flow is guaranteed to reach. The abilitgéah the guaranteed throughput serves as a foundationrfor ou
evaluation of the increase policies. The metrics for ouhation are defined and justified in the next section.



5 Performance Metrics

We evaluate the increase policies with respect to ttesiponsiveness measured in terms of convergence time — ameoth-
ness- measured in terms of overload.

e Convergence time(\) of a policy refers to the amount of time it takes for the policyncrease the load of the examined
flow from X to the guaranteed throughput:
A) = min {¢ 14
u(A) =, (ng)lgg{ } (14)
This metric for convergence time can be expressed diffgrbased on the following observation: as long as the threugh
put of the examined flow is below the guaranteed throughpetidad of the flow does not exceed the fair share, and the
flow keeps increasing its load. Thus, we can transform (Ité)arform which is more suitable for computation:

u() = min {1} (15)

e Overloadv of a policy refers to the maximum relative increase produmedpplying the policy to the fair share when
the fair share reaches the guaranteed throughput:

i(s(t)) —s(t)
R } (16)

v = max {
s(t)>g

Our choice for the overload metric requires two clarificatio

1. A seemingly better alternative is a measure that showsolyrhuch the load of the examined flow exceeds its
throughput after reaching the guaranteed throughput:

Ol
A S o 4

Unfortunately, as the following example illustrates, ttnieasure depends on the behaviors of the other flows and is
not suitable for representing the contribution of the estdd increase policy to overload.

Example 1 Consider a fair network with capacityl and two flows. Let the examined flow employ the additive
increase policy with parameter = 1. Assume that the load of the examined flow after 1) adjustments is

[(t —1) = 10 while the other flow imposes load bt time(t — 1). Because(t—1) = [(t—1) = 10, the examined
flow increases its load at timeto [(t) = 11. If the other flow raises its load at tinteo 6, then the fair share at time

t becomes(t) = 5.5. Since the examined flow exceeds the fair share atd#jnt® throughpub(¢) equals the fair
share:b(t) = 5.5. Then, we hav€(t) — b(t))/b(¢t) = 100%. According to (17), metrie* is at least100%. Note
that such a high value af* is caused not by the increase policy of the examined flow (hmimed flow increases
its load from10 to 11, i.e., by10%) but by the drastic load increase of the other flow. |

We would like to isolate the contribution of the evaluatedigyoto the overload from the contributions of the other
flows. We believe that our metric (16) achieves this goal:ajttares the scenarios when the examined flow has
reached the guaranteed throughput, and the policy ins¢hsdoad of the flow beyond the fair share.

2. We measure relative overload rather than absolute aabecause relative values are more suitable for reflecting
the degree of congestion in a heterogeneous network. Imegalorks, overload manifests itself as high buffer
occupancies — when binary feedback notifies flows about boéfédups, as irSelective DECbit [21] — and packet
losses. The same absolute loss rat20ok bps represents severe congestion f&0ak bps link (the losses amount
to 40% of the link capacity) but can be considered negligible fdr@bps link (0.002% of the link capacity). A
similar observation can be made about overload evaluatitgrms of buffer occupancies. Since the size of a link
buffer is recommended to be proportional to the capacityheflink [28], buffer sizes can vary significantly in
the network. In this situation of high heterogeneity, sigitihe relative buffer occupancy (e %) reveals more
information about the congestion status than providingatbsolute buffer occupancy (e.d) Kbytes). Due to
these considerations, we report overload in relative units



6 Evaluation Methodology

Since the capacities of links, the number of flows, and thatlons of bottlenecks can vary dramatically in heterogeseo
networks, we assume that the guaranteed {pachot known a priori but lies between some positive valygs, andg,,qz:

g € [gminvgmaz]- (18)
We refer to
Imin

as aheterogeneity indeaf the network;y > 1.

We assume that the values gf,;,, andg,.... are known (either from gathered statistics on network usaghie to some
form of admission control). We strive to evaluate each pdlicterms of its ability to provide an acceptable behaviordeery
value ofg that is betwee,,,;, andg,,qz-

Since the convergence time of the examined flow depends anititd load ), the choice of the initial load is an important
issue. If the selected were such thah > g,,:., then the initial load of the examined flow could exceed thiediaare in the
scenarios whep < \. We believe that such initial overload is undesirable. Thughould be at most,,;,,. On the other hand,
setting\ to a value below,,;,, does not seem appropriate because the convergence frovaligsto anyy betweery,,;, and
gmaz Would include an additional time interval when the load isr@ased from\ to g,,.;,. Since we assume that the value of
gmin 1S known (from network statistics or due to admission cditr@e choose the initial load of the examined flow to be
the minimum guaranteed throughput:

A = Gmin- (20)

As it is shown in [4], the minimization of convergence timedahe minimization of overload are conflicting objectives.
Besides, as the following example illustrates, differeargmeter settings of a policy as well as different valuek®ffuaranteed
throughput produce different tradeoffs between convergéime and overload.

Example 2 Consider an additive increase poliel; with parameter settings = 1. If g,,;, = 4 andg = 10, then convergence
time for A, is 6 adjustments. Further, after reaching the guaranteedughput ofg = 10, Policy 4, increases load td 1,
thereby causing an overload ®0%. If ¢ = 20 instead, thend; requires 16 adjustments to reach the guaranteed load and
causes$% overload.

Now consider another additive increase polidy with o = 2. Policy A; is smoother but less responsive than When
g = 10, A, converges from,,.;,, to g after 3 adjustments but incurs an overload2®%; and wheng = 20, A> converges after
8 adjustments and incurs an overloadi®%. |

To characterize the ability of a policy to provide a satitfag behavior over the whole range of possible guaranteed th-
puts, we introduce a notion d¢dasibility of an increase policy with respecttesponsiveness andsmoothness requirements:

Definition 6.1 An increase policy ifeasible with respect taesponsiveness n andsmoothness v iff there exists such a single
setting for the parameters of the policy that:

Vg € [gminagmaw] U'(gmin) <n AN v<w (21)
To compare two policies qualitatively, we define a relationfe feasible than” and denote it as>":

Definition 6.2 Policy A is more feasible than policy B iff whenever policyB is feasible with respect to some responsiveness
and smoothness, policy A is feasible with respect to the samandv:

ADB = Vn,v>0 (Bisfeasiblewith respecttgpandr) = (A is feasible with respect tp andv). (22)

To assess an increase policy quantitatively, we measunmespensiveness of the policy when this policy provides piztse
performance in terms of its smoothness. First, we consigeh parameter settings of the policy that the overload dogés n
exceed the smoothness requiremeniVe refer to them as-smooth settings:

Definition 6.3 A parameter setting of a policy issmooth iff:

Vg € [gminagmaw] v<w. (23)



I policy | MI | Al ISI [ |

|a

overloadv pw—1 g o3 7z
convergence time()\) [logu %1 [%1 (15) (15)
feasibility conditions y<A+v)T | y<1+nw (21) (21)

3

v-smooth parameter settingsy u <1+v Q< VGmin | o <wvg2. | €S Vimin

guaranteed convergence time [log(l +v) 71 [7—‘11 (24) (24)

Table 1: The performances of increase policies.

Then, in the set of-smooth settings of the policy, we distinguish such a sgttirat provides the policy with the smallest
maximum convergence time. We refer to this time agjtheeanteed convergence time of this policy and use it as a quantitative
measure of the policy performance:

Definition 6.4 Theguaranteed convergence time p of an increase policy with respect to smoothness the smallest among
the maximum convergence times of the policy when the pagasetting belongs to the sétof v-smooth settings of the policy:

p =min { max {U(gmm)}}- (24)
S Lyg€lgmin,gmas
We bound the overload to compare the convergence timese(ritan limiting the convergence time to compare the over-
loads) because a specific bound on overload — e.qg., the Biféewhen overload is measured in terms of the buffer ocarypan
can correspond to a boundary between two qualitativelgdfit modes of network operation — e.g., lossless trangmiser-

sus packet drops. On the other hand, it is difficult to prowplecific bounds on convergence times such that exceeding the
results in qualitatively different performances.

Using the described methodology, we compare increaseigolit the next section.

7 Analysis

We analyze the four increase policies introduced in Secomultiplicative increaseM!), additive increaseA(), inverse-

square-root increasés(), and inverse increas#)( We present our findings as a series of lemmata below. Winél@toofs for

the lemmata are given in Appendix B, Table 1 summarizes thateeof our analysis. For some propertiesSifandll policies,

closed-form expressions could not be obtained, and the taefdrs to the general definitions (15), (21), and (24) is¢teases.
First, we derive the values of overload and convergencefiimie considered policies:

Lemma 3 The values of overload for Mi, Al, ISI, andIl policies are(u — 1), %, =, andgi2 respectively.
92

Lemma 4 The values of convergence timg\) for Ml andAl policies are [logu £ and [%1 respectively.

Having obtained the closed-form expressions for both oaetland convergence time bfi andAl policies, we can derive
feasibility conditions as well as closed-form expressifmnguaranteed convergence times of these policies:

Lemma 5 M is feasible with respect to responsivengsmd smoothnessiff:
< (1+v)" (25)
Lemma 6 Al is feasible with respect to responsivengssd smoothnessiff:

v < 1+nv. (26)



Lemma 7 The values of guaranteed convergence tinfier Ml andAl policies are[log(pr,,) ’y—l and [77*11 respectively.

The derived values of guaranteed convergence timadifandAl policies do not depend on the minimum guaranteed through-
put g,.:». The following two lemmata show th&l andll policies possess the same property:

Lemma 8 The guaranteed convergence timasifpolicy does not depend on the minimum guaranteed throughput
Lemma 9 The guaranteed convergence timelqfolicy does not depend on the minimum guaranteed throughput

The main results of our paper are formulated by the follovilrge theorems:

Theorem 2 MI D Al.

Proof:
Al is feasible with respect to responsivengssid smoothness
= {Lemma6}
y<1l+nv
n
= { binomial series(1 + v)" =1+ nv + > (})v* }
k=2
v<(@+v)”
= {Lemmab5}
Ml is feasible with respect to responsivengssid smoothness
According to Definition 6.2M1 D Al. ]

Theorem 3 Al D ISI.

Proof: Let us denote the convergence time and overloai$iopolicy with parameter asu, andv, respectively. Then,

considerAl policy with parametet, = \/9‘77_ and denote its convergence time and overloag,aandv,, respectively.

Let us compare the results of applying thé&SeandAl policies to someg; andg, such thaty,,,;, < g1 < go.

iy (91)
= { Definition ofSI policy }
g1 + =

V91

9min

g
\/gmin g1
{a=7=}

= a =
Imin

9min
g1+ oy [ T
1 9

{ gmin <91}
g1t
{91<g2}
g2+«
= { Definition of Al policy }
ia(g2)-

g1 +

IN

IN

Thus,(gmin < g1 < g2) = (i0(91) < ia(g2)). By induction,V7 i7 (gimin) < if,(gmin)- Using (15), we derive:

Uy (gmzn) S Ug (gmzn) (27)



Relying on (27), we obtain:

ISl is feasible with respect to responsivengssid smoothness
{ Definition 6.1}
Jo Vg € [gminagmam] ua(gmin) <n AN v, <v

1l

= {Lemma3}
g
Jo v.g € [gminygmaz] u(r(gmin) <n A -3 <v
gz
N g
Jo (VQ € [gminagma;v] Ua(gmm) < 77) A 3 <v
2
Imin
= {@n}
o
Ja = (Vg € [gmin, Gmaz] Ua(gmin) < 1) A — <v
Imin 92 ‘
mn
N (6]
Ja (Vg € [gminygmam] ua(gmin) < 77) A <v
Imin
B (6
Ja Vg € [gminagmaw] ua(gmin) <n A g <v

{ Lemma 3}

E]Oé Vg S [gminygmam] ua(gmin) S n A Vo S 14
{ Definition 6.1}
Al is feasible with respect to responsivengssid smoothness

1l

According to Definition 6.2Al1 D ISI. ]
Theorem 4 ISI D II.

Proof: Let us denote the convergence time and overloald pblicy i with parametee asu. andwv,. respectively. Then,

considens| policy i, with parameterr = —<— and denote its convergence time and overload,aandv, respectively.
First, examine the derivative for poligy(g) wheng > gpin + 55—
' 2 =€)+ 3eg?,;
ils(g):(g'i'f) :1—%21— € . zz(gmzn 26) ;gmzn>0'
g 9 (gmin + ) (gmm +¢€)

Imin

Therefore;.(g) is an increasing function fay > g,i, + —=

gmin

Now, let us compare the results of applying th&sendi, policies to some; andg, such thaty,,;,, + g; < g1 < ga:

ic(g1)
{ ic(g) is an increasing function far > gin + —— }

Imin

IN

ie(gz)
= { Definition of I policy }

V92 N 92

{gmin < g2 becaus@min + g;m < g2 }

IN

o
g2+ —

N

10



= { Definition ofISI policy }
ia(gz)‘

Thus, (gmin + 5~ < 91 < g2) = (ic(91) < i0(g2)). Using this and the fact thag (gmin) = te(gmin) = gmin + 55

we derive by induction thatr i7 (gmin) < @7 (gmin)- Then, according to (15), we have:
ua(gmin) < ue(gmin)- (28)
Relying on (28), we obtain:

Il is feasible with respect to responsivengssid smoothness
=  { Definition 6.1}
Jde Vge [gminagmam] ue(gmin) <n AN v.<v

= {Lemma3}
€
Jde v.g € [gminagmam] ue(gmin) <n A 9—2 <v
N €
Jde (VQ € [gminygmaw] ue(gmin) < 77) A 3 <v
Imin
= {28}
€
Jo = (v9 € [gminvgmaz] Ua(gmm) < 7]) N — <v
min Gmin
N (2
do (VQ € [gmz'nagmaw] Ua(gmm) < 77) AN 3 <v
2
— Imin
B g
do Vg € [gminagmaw] ua(gmin) <n A 3 <v
g2

{ Lemma 3}

do Vg € [gminvgmaw] uo’(gmin) <n AN v <V
=  { Definition 6.1}
ISI is feasible with respect to responsivengssid smoothness

According to Definition 6.21S1 D 1. |
Theorems 2, 3, and 4 establish an interesting chain of sujiers in terms of the abilities of the considered polidies
satisfy the smoothness and responsiveness requirements:

MI D Al D ISI DI (29)

i.e., Ml is superior toAl which is superior taSI which is superior tdl. Thus, Ml provides the best performance in fair
heterogeneous networks in comparison to the other exarmoeshse policies.

We assess quantitative advantagesbbverAl, ISI, andil in terms of the guaranteed convergence times of the compared
policies. According to Lemma 7, the guaranteed convergéntes of Ml and Al policies depend only on the smoothness
requirement and the heterogeneity indexof the network. In particular, the guaranteed convergeintes of these policies
do not depend on the minimum guaranteed throughput. Lemmata 8 and 9 show thegl andll policies share the same
property. Thus, we evaluate the guaranteed convergenes tifithe four compared policies as functions of the hetareige
index (see Figure 2) and smoothness requirement (see Ryuiigure 2 shows that the larger heterogeneity index fer th
network, the larger advantag# provides in comparison to the other considered policiegufféi 3 shows thatll consistently
provides better performance than I1SI, andll policies for all considered smoothness requirements.

8 Summary and Discussion

In this paper, we analyze binary adjustment algorithmsiinffeterogeneous networks. We introduce a network modetavhe
routers allocate link capacities among flows according égattinciple of maxmin fairness. We evaluate four differentrease

11



