
Chara
terizing the SPHINX Spee
h Re
ognitionSystemKartik K. Agaram Stephen W. Ke
kler Doug BurgerComputer Ar
hite
ture and Te
hnology LaboratoryDepartment of Computer S
ien
esTe
h Report TR2000-33The University of Texas at Austin
art�
s.utexas.edu | www.
s.utexas.edu/users/
art
ABSTRACTThis paper examines SPHINX, a system for speaker independent, large vo
abulary, 
ontinuousspee
h re
ognition. We �nd that SPHINX in parti
ular, and spee
h re
ognition systems in gen-eral, display behavior that is substantially di�erent from the 
ompute-bound ben
hmarks that havetraditionally driven popular 
omputer system design. SPHINX applies 
onsiderable load on thememory hierar
hy, with a large primary working set and poor lo
ality. In this paper we quantifythese results, and 
orrelate them with the sour
e 
ode, showing that they are a 
onsequen
e of thealgorithms used, rather than spe
i�
 implementation details of the pro
essor, or the way the appli-
ation is 
oded. The unpre
edented growth of spee
h re
ognition appli
ations makes it imperativethat system designers lend them due 
onsideration when designing the next generation of 
omputersystems.



1 Introdu
tionIn re
ent years, spee
h re
ognition te
hnology has matured from an area of pure a
ademi
 resear
hto one with growing use in the marketpla
e. A variety of software pa
kages for spee
h re
ognition areavailable in the mass market today, su
h as Dragon Systems' Dragon Naturally Speaking [5℄, IBM'sViaVoi
e [8℄, Lernout & Hauspie's Voi
e Xpress [10℄, and Philips' FreeSpee
h98 [12℄. Re
ognitiona

ura
ies have been steadily improving as well, though 
urrent systems are still not a

urateenough to take di
tation. This, 
oupled with improvements in pro
essor speeds and the loomingreality of ubiquitous 
omputing, promises to make spee
h a primary human/ma
hine interfa
e inthe near future. In this 
ontext, there is a dearth of information on the performan
e of spee
hre
ognition appli
ations on the 
ommon 
omputing platforms of today. Spe
ial-purpose hardwarear
hite
tures have been proposed for spee
h in the late 80's [2℄ [7℄, but these studies are outdatedand inadequate in the 
ontext of trends of growing vo
abularies and the use of general-purposeplatforms in a multiprogramming environment.In this paper, we examine SPHINX [9℄, a system for speaker independent, large vo
abulary,
ontinuous spee
h re
ognition. On a vo
abulary of over 21000 words, SPHINX a
hieves speaker-independent word re
ognition a

ura
ies of 71-96%, depending on the 
omplexity of the grammati-
al stru
ture in the senten
es. We study SPHINX on multiple platforms and using two simulators.Our results show that SPHINX in parti
ular, and spee
h re
ognition appli
ations in general, arefundamentally di�erent from the ben
hmarks that have traditionally driven popular 
omputer sys-tem design. SPHINX has a large working set with poor temporal lo
ality and medio
re bran
hpredi
tion. Ca
he performan
e is poor, and improves only slowly as 
a
he sizes in
rease. We
orrelate these results ba
k to the sour
e, and show that they are not an artifa
t of this parti
u-lar implementation, but a fundamental feature of 
urrent spee
h re
ognition algorithms based onDis
rete Hidden Markov Models (HMMs).In general, 
urrent desktops have suÆ
ient resour
es to do dedi
ated real-time spee
h re
ogni-tion at the levels of a

ura
y produ
ed by programs like SPHINX. However, the load they pla
eon the system is prohibitive in 
urrent multiuser/multiprogramming environments. For the imme-diate future, hand-held devi
es will be unable to hold suÆ
ient memory to run spee
h re
ognitionappli
ations with any reasonably sized vo
abulary, unless the memory hierar
hy or re
ognition al-gorithms 
hange drasti
ally. Furthermore, if the a

ura
y of future spee
h re
ognitions systems areto in
rease, so too will the memory system and 
omputational demands on the system.The rest of this paper is organized as follows. First, we examine the performan
e of SPHINXon four 
ontemporary platforms, and evaluate the extent to whi
h they deliver on the promise ofreal-time spee
h re
ognition. Se
ond, we use two simulators|SimpleS
alar and SimOS-PPC|in
on
ert to examine the dynami
 
hara
teristi
s of the program, and explain the dynami
 featuresby 
orrelating them with the sour
e 
ode. By doing so, we hope to provide a more general pi
tureof the performan
e of spee
h re
ognition software on today's systems. Third, we 
ompare theexe
ution 
hara
teristi
s of SPHINX with several of the SPECINT2000 ben
hmarks, and showthat it exer
ises the system 
onsiderably di�erently from them. Finally, we assess the impa
tof the instru
tion set ar
hite
ture on performan
e by 
ompiling SPHINX for 3 di�erent ISAs|SimpleS
alar's PISA (a MIPS-like instru
tion set), the Alpha, and the PowerPC|and runningthem on top of simulators with the same mi
roar
hite
ture. With these experiments we hopeto gain insight not only into the way spee
h re
ognition appli
ations behave on di�erent modernplatforms, but also into the advantages and disadvantages of two of the simulators available to theresear
h 
ommunity in 
omputer ar
hite
ture today.1



Preprocessing

 

Analog
Input
from
Microphone

 
Low−Pass
Filter

Sampling
and
Quantization

Frame
Blocking

Encoding

Speech
Recognition

Text

B

B M E

M M E

B M

M

B

E

1 2 3 4 5

6 7(a) The various stages in 
onverting spee
h to text. (b) The phone HMM used in SPHINX.This paper fo
uses on the �nal stage, that of software Ar
 labels denote probabilities.spee
h re
ognition.Figure 1: An overview of spee
h re
ognition.2 Spee
h Re
ognition AlgorithmsConverting the spoken word into a textual representation automati
ally requires several stages, asshown in Figure 1 (a). First, a mi
rophone 
onverts the a
ousti
al vibrations into an analog signal.This analog signal is then �ltered to eliminate the high frequen
y 
omponents of the signal whi
h lieoutside the range of frequen
ies that the human ear 
an hear. The �ltered signal is then digitizedusing a sampling and quantization phase. The digitized waveform is then blo
ked into frames,whi
h are then 
ompressed using one of several en
oding s
hemes. At this point, prepro
essingis 
omplete, and re
ognition te
hniques 
an be applied to this representation of the audio input.Details of the various stages of prepro
essing applied to the in
oming signal in preparation forSPHINX 
an be found in Lee, et. al. [9℄. In this paper we fo
us on SPHINX, whi
h implementsthe �nal re
ognition stage.Spee
h re
ognition is known as the pro
ess of 
onverting frames to phones, phones to words, andwords to senten
es. A phone may be 
onsidered roughly equivalent to a single vowel or 
onsonantsound. A typi
al 15-word senten
e is 
omposed of approximately 65 phones. Multiple frames forma phone. Mu
h of the diÆ
ulty in spee
h re
ognition stems from the fa
t that the same frame mayo

ur in multiple phones, and a single phone may 
ontain di�erent sequen
es of frames dependingon the phones adja
ent to it. SPHINX re
ognizes a senten
e by performing a beam sear
h throughan a priori state network for the sequen
e of phones that best mat
hes the input frame sequen
e.The SPHINX libraries employ dis
rete HMMs. HMMs are 
urrently the predominant approa
hto spee
h re
ognition. They are 
hara
terized by a set of states, and an a priori set of transitionprobabilities between them. In SPHINX, ea
h phone is modeled by a HMM.Figure 1 (b) shows the stru
ture of a HMM for a single phone. The verti
es in the graph are theframes whi
h 
ompose the phones and the edges are the transition probabilities that 
onne
t theframes within the phone. This HMM is used as a framework to maintain lists of 
urrent states, andtheir asso
iated probabilities. The in
oming stream of prepro
essed frames 
ows through ea
h ofthe phone networks from left to right. As a frame is read in, ea
h of the 
urrent states is propagatedalong ea
h of the ar
s leading from it. The list of 
urrent states is repopulated with the states atthe other end of ea
h of these ar
s, while 
omputing the probabilities for ea
h.2



In addition to the HMM phone models, SPHINX has an a
ousti
 model, with a priori proba-bilities for transitions between phones, and a language model, with a priori probabilities for tran-sitions between words. A pronun
iation di
tionary maps phone sequen
es to word spellings. Thephone HMMs, a
ousti
 model, language model, and pronun
iation di
tionary 
onstitute the majordata stru
tures of SPHINX, 
omprising over 90MB altogether. At runtime, these data stru
tures
ombine during initialization to yield a single huge network of states and transition probabilities.Re
ognition is now redu
ed to �nding the path through this network that best �ts the input sig-nal. Thus, the spee
h re
ognition algorithm 
onsists of a one-time initialization phase to load upthe global a priori data stru
tures, followed by a re
ognition phase where the in
oming stream ofsenten
es is pro
essed atomi
ally and in sequen
e using a beam sear
h.The beam sear
h iteratively builds a tree of 
andidate paths through the HMM network. Start-ing from a single SILENCE node, it reads ea
h in
oming frame and adds new states, tagged byprobabilities, to the tree of possible 
andidate solutions. Every node in the tree 
orresponds to astate in the a priori network. Periodi
 pruning eliminates 
andidate subtrees that deviate signi�-
antly from the best running solution. At the end of the senten
e, the beam sear
h is left with aset of 
andidate \last frames". A so-
alled answer builder sele
ts the 
andidate with the highestprobability, and retra
es its path ba
k to the original SILENCE node to re
reate the 
onstru
tedsenten
e.Sin
e the initialization phase o

urs only on
e and takes 
onstant time for a given vo
abulary,in steady state its 
ontribution to the pro
essing time for a single senten
e is vanishingly small,and the re
ognition algorithm is almost entirely 
hara
terized by the beam sear
h phase. Sin
ethe beam sear
h ranges over the entire HMM network for ea
h senten
e, it exhibits poor lo
ality.Lo
ality is likely to su�er further in future, as the algorithms evolve to improve a

ura
y. Thebest systems of today do not yet approa
h the 
apabilities of human listeners. As shown above,today's language models in
orporate 
ontextual information as transition probabilities betweenwords. This 
ontext allows them to de
ide between 
andidates like \to", \too", or \two". In spiteof su
h 
ontextual information, error rates for humans are still an order of magnitude less thanma
hine error rates on many spee
h tasks [11℄. Resear
hers have found that error-rates in
rease by200-1000% [9℄ when an existing system is retrained on a larger vo
abulary. Likely re�nements tothis algorithm, in seeking to improve a

ura
y, in
lude in
orporating information about languagegrammar, as well as 
ontextual information at still higher levels, a
ross whole senten
es and beyond.Along with in
reasing vo
abularies, these trends will 
ontribute to still larger data set sizes andmore 
omputationally intensive sear
hing.3 MethodologyWe have sele
ted several distin
t methods in this study, involving both native and simulated exe
u-tion, to analyze the behavior of SPHINX. Ea
h method has unique advantages and disadvantages.In this se
tion we des
ribe and 
ompare the various methods used.3.1 Native Exe
utionNative exe
ution is the �nal test of an appli
ation's performan
e. However, running programs onreal hardware limits the ability to probe the behavior of the appli
ation in a non-invasive fashion.3



We 
an only measure the 
hara
teristi
s that are externally visible. In running SPHINX natively,we measure the run times and memory footprint for di�erent numbers of senten
es. The senten
esinput to SPHINX are shown in Appendix A at the end of the paper. We perform these experimentson 4 modern platforms, with the following 
on�gurations:1. IBM RS/6000 H70 Server with 2 340MHz RS64-II pro
essors, 64KB IL1, 64KB DL1, 512KBL2, 2GB RAM. Compiler - g

 2.95.1 -O3.2. 733 MHz Intel Pentium III, 16KB IL1, 16KB DL1, 256KB L2, 256MB RAM. Compiler - g

2.95.1 -O3.3. 440 MHz Sun Ultra Spar
IIi, 16KB IL1, 16KB DL1, 2MB L2, 384MB RAM. Compiler - g

2.95.1 -O3.4. Compaq DS-10L, 466 MHz Alpha 21264 pro
essor with 64KB IL1, 64KB DL1, 2MB L2,256MB RAM. Compiler - g

 2.9-gnupro-99r1 -O3.Additional data 
an be 
olle
ted using hardware performan
e 
ounters and pro�ling tools, su
has the Digital Continuous Pro�ling Infrastru
ture (DCPI) [3℄. We are 
urrently experimenting withthese tools on the Alpha platform and with similar tools on the PowerPC platform to 
orrelate thenative results with those obtained from simulation.3.2 SimulationSimulation is useful for studying program 
hara
teristi
s that are normally not visible during nativeexe
ution, su
h as 
a
he behavior, dynami
 instru
tion mixes, the performan
e of various mi
roar-
hite
tural stru
tures like the fet
h queue, register update unit, the bran
h predi
tion unit, et
.However, sin
e the underlying ma
hine is emulated in software, exe
ution speeds are slowed byseveral orders of magnitude. Also, no single simulator 
an provide the means for asking all thequestions one 
an think of with regard to the program's behavior. For these reasons, we studySPHINX under two simulation environments, SimOS-PPC and SimpleS
alar, that are 
omplemen-tary in many ways.Full-System Simulation: SimOS [6℄ [13℄ is a simulation environment 
apable of modeling 
om-plete 
omputer systems, in
luding a full operating system and all appli
ation programs that run ontop of it. We use SIMOS-PPC [14℄, a port of SimOS for the PowerPC developed at IBM's AustinResear
h Laboratory.SimOS-PPC has a number of properties that make it a useful simulation environment. It simu-lates an IBM PowerPC server in suÆ
ient detail to run an unmodi�ed version of AIX on it, thus
apturing operating system as well as appli
ation behavior. SimOS-PPC provides multiple simula-tors at di�erent levels of detail, and simulators 
an be swit
hed in the 
ourse of a single run, using
he
kpoints. Finally, a well-designed interfa
e is provided for 
olle
ting data that allows various
olle
tors of varying levels of sophisti
ation to be atta
hed very easily.O�setting these advantages are several limitations. SimOS-PPC does yet in
lude any detailedmi
roar
hite
tural simulation. Instru
tions are assumed to exe
ute in order, without any notion of4



pipelined or out-of-order exe
ution. The memory hierar
hy is imperfe
tly modeled. While SimOS-PPC has very detailed models for disks, 
a
he and RAM are not modeled in equal detail. Forexample, bandwidth 
onstraints are not maintained. Every a

ess to 
a
he or memory 
ompletesin a 
onstant number of instru
tions.We use SimOS-PPC to study the dynami
 behavior of the various levels of the memory hierar
hy,and the patterns of swit
hes between kernel and user mode. SimOS-PPC also allows us to determinethe sour
e-level fun
tion in exe
ution at a given 
y
le and thus 
orrelate the dynami
 behavior ofthe program with the sour
e 
ode.The base ma
hine 
on�guration we use in our simulations 
orresponds to an IBM RS/6000 H70Server with a 340MHz RS64-II pro
essor, 64KB IL1, 64KB DL1, 2MB L2, and 512MB of RAM.Mi
roar
hite
tural Simulation: The SimpleS
alar tool set [4℄ is a suite of simulation toolsthat perform detailed mi
roar
hite
tural simulation. SimpleS
alar's strengths and weaknesses are
omplementary to those of SimOS-PPC. SimpleS
alar performs detailed mi
roar
hite
tural simu-lation, without modeling the operating system. In parti
ular, all system 
alls take zero 
y
les. It ismu
h slower than SimOS, as simulation is being performed in mu
h more detail. The memory hier-ar
hy is modeled with a reasonably high a

ura
y. First order bandwidth 
onstraints are modeled.Finally, SimpleS
alar is quite portable a
ross both instru
tion sets and host platforms.We use SimpleS
alar to examine the aggregate mi
roar
hite
tural and memory system behaviorof SPHINX, and to 
ompare it with several SPEC CPU2000 ben
hmarks. Finally, the portabilityof SimpleS
alar allows us to study the impa
t of ISA on performan
e, atop a 
onstant mi
roar
hi-te
ture.The baseline SimpleS
alar ma
hine 
on�guration has distin
t 64KB IL1 and DL1 
a
hes (blo
ksize 64), 512KB L2 (blo
k size 128), 16KB entry 2-level bran
h predi
tor, an out of order 
ore,4 wide issue/de
ode, 8 wide 
ommit, 4 integer ALUs, 1 integer multiplier, 1 
oating-point ALU,1 
oating-point multiplier, 16-entry ITLB, and a 128-entry DTLB. Memory a

ess laten
ies are 3
y
les for L1, 12 
y
les for L2, and 70 
y
les for main memory. When varying 
a
he 
on�gurations,L1 
apa
ities of 32KB or less have laten
ies of 1 
y
le.4 The Behavior of SPHINXThis se
tion summarizes our �ndings on the 
hara
teristi
s of SPHINX. We run SPHINX for 12senten
es in these experiments. Exe
ution time ranges from 16-20 billion instru
tions, dependingon the platform, with an IPC of around 0.7. IPC halves when the out-of-order 
ore is repla
ed by aninorder one. Figure 2 
ompares the performan
e of SPHINX on ea
h of our platforms, in terms ofthe rate at whi
h phones are pro
essed. The bar on the left for ea
h platform shows the number ofphones pro
essed per se
ond, while the bar on the right shows the number of phones pro
essed per100 million 
y
les, thus normalizing the four platforms by 
lo
k rate. While the raw performan
eof platforms is 
omparable, and well over the required speed for real-time re
ognition at the level ofa

ura
y provided by SPHINX, the various platforms operate over a wide range of 
lo
k speeds toa
hieve it. Thus, the PowerPC platform seems to be most eÆ
ient in terms of instru
tions per 
lo
k(IPC), while the Intel Pentium III is the least eÆ
ient. Desktops already seem to have the powerto perform speaker independent spee
h re
ognition in a dedi
ated environment, though a

ura
y is5



PPC PIII Sun Alpha
0

10

20

30

Sp
ee

d 
(N

um
be

r 
of

 p
ho

ne
s)

phones per second
phones per 100 million cycles.

Figure 2: Relative pro
essing speeds of SPHINX on various platforms. The bars on the left plotspeed as number of phones per se
ond, while the bars on the right for ea
h platform plot the numberof phones per 108 
y
les.
8 9 10 11 12 13 14 15

Time (billions of instructions)

0

2000

4000

6000

8000

N
um

be
r 

of
 m

is
se

s

Figure 3: Dynami
 IL1 misses. Shaded regions denote exe
ution of the answer builder fun
tion.The end of this fun
tion 
oin
ides with senten
e boundaries.still problemati
. The remainder of this se
tion uses the simulators provide a more detailed viewof the dynami
 behavior of the appli
ation.L1 Instru
tion Ca
he: SPHINX is quite well-behaved in the instru
tion 
a
he. The baseline64KB IL1 performs almost perfe
tly, with a miss-rate of essentially 0%. Figure 3 shows the time de-pendent instru
tion 
a
he performan
e while pro
essing 7 senten
es, as generated by SimOS-PPC.SPHINX was primed into steady state by running �ve utteran
es before this data was 
olle
ted.Ea
h point on the graph is a sample of 16.7 million 
y
les. The shaded regions denote the times ofexe
ution of the answer builder fun
tion. The primary spikes in the graph 
orrespond to the exit ofthis fun
tion whi
h is also the start of the next senten
e. These are attributed to the initializationSPHINX performs before diving in to the innermost loop. The se
ondary spikes 
orrespond tothe start of this fun
tion. This �gure shows that SPHINX goes through 2 phases in the 
ourse ofpro
essing a senten
e: the beam sear
h and the answer builder. The instru
tion 
a
hes are turnedover at ea
h phase boundary. We found that even redu
ing the IL1 
a
he 
apa
ity to 4KB onlyin
reases the miss-rate to 0.2%. 6



8 9 10 11 12 13 14 15

Time (billions of instructions)

0

1000000

2000000

3000000

N
um

be
r 

of
 m

is
se

s

4 8 16 32 64 128 256

DL1 Size (KB)

0

5

10

M
is

s 
R

at
e 

(%
)

(a) Dynami
 DL1 misses. Shaded regions denote (b) DL1 Miss Rate vs Capa
ity. We vary DL1 size withexe
ution of the answer builder fun
tion. The end a 
onstant 512KB L2.of this fun
tion 
oin
ides with senten
e boundaries.Figure 4: Level 1 Data 
a
he behavior.DL1 Blo
k Size DL1 Miss Rate16 0.152532 0.102864 0.0728Table 1: DL1 Blo
k Size vs Miss Rate.L1 Data Ca
he: SPHINX exhibits poor data lo
ality, in
luding a miss-rate of 7% with a 64KBlevel-1 data 
a
he. Figure 4 (a) displays the time-varying behavior of the baseline DL1 performan
e,overlaid with the exe
ution of the re
ursive answer builder fun
tion at the end of ea
h senten
e-pro
essing iteration, as generated by SimOS-PPC. This graph shows that the lo
al maxima ofDL1 misses 
orrespond to the answer builder for ea
h senten
e. The primary spikes in the graph
orrespond to entry into this fun
tion, as a result of the ba
ktra
king required through the entiregenerated network to generate the �nal path. That is not to say that the DL1 is well-behaved therest of the time. In between the answer-builders, mean miss-rates are at a substantial half millionper 16.7 million instru
tions.Figure 4 (b) shows the temporal lo
ality in SPHINX, as measured by SimpleS
alar. We �x theL2 
a
he 
apa
ity at 512KB, and plot the miss-rate of the DL1 while varying its size. In
reasingDL1 size to 256KB 
auses miss-rate to drop only marginally to 5.5%. In a separate experiment,varying the size of the DL1 from 4KB to 16MB redu
es miss rates proportionately, without dramati
improvements at any point. Over the same range, IPC varian
e is negligible, going from 0.506 to0.513. Thus SPHINX exhibits poor temporal lo
ality, in e�e
t having a large single level workingset that is never quite 
aptured in the 
a
he.SPHINX does exhibit some spatial lo
ality, but it is not able to improve performan
e. Table 1shows the miss rate of the DL1 as measured by SimpleS
alar, as we vary the DL1 blo
k size from 16to 64, while keeping the L1 
apa
ity 
onstant at 64KB, and L2 
a
he 
apa
ity 
onstant at 512KB.In
reasing the blo
k size of the DL1 redu
es miss rate. However, even a blo
k size of 64 results ina miss rate of 7%. 7



256 512 1024 2048 4096 8192

L2 Size (KB)

0

10

20

30

40

M
is

s 
R

at
e 

(%
)

Figure 5: L2 Miss Rate vs Capa
ity
8 9 10 11 12 13 14 15

Time (billions of instructions)

200000

400000

600000

800000

1000000

In
st

ru
ct

io
ns

 in
 k

er
ne

l m
od

e

Figure 6: Kernel-mode instru
tion 
ounts. Shaded regions denote exe
ution of the answer builderfun
tion. The end of this fun
tion 
oin
ides with senten
e boundaries.L2 Ca
he: The theme of poor memory system performan
e 
arries over to the L2 as well. Thebaseline L2 
a
he 
apa
ity of 512KB shows a miss-rate of 33%. The dynami
 tra
e generated bySimOS-PPC shows uniform behavior throughout exe
ution. Figure 5 shows the miss rate in theL2, as measured using SimpleS
alar, as we vary its 
apa
ity between 256KB and 8MB. It takes anL2 of 2MB to bring the miss rate to around 10%. Over the same range, IPC varies from 0.48 to0.64.Kernel A
tivity and Disk Usage: Overhead due to the operating system is negligible. SimOS-PPC tells us that kernel and user level instru
tions exe
uted have an average ratio of 1:15. Figure 6shows the time dependent behavior of kernel level instru
tions. On
e again, a
tivity peaks withinthe answer builder fun
tion. From our analysis of disk a
tivity, we determine that most of theOS a
tivity during exe
ution is due to paging. SPHINX alone is responsible for the strain on thememory system. With a memory footprint of between 110 and 120MB on the various platforms, ittakes 256MB of RAM to avoid swapping out to disk.Summary: The pre
eding results serve to show that SPHINX heavily exer
ises memory, resultingin poor utilization of all levels of the memory hierar
hy. The dynami
 patterns of a

ess and studyof the sour
e show that the la
k of lo
ality is not an artifa
t of this parti
ular implementation; it is8



SPHINX g

 gzip vpr mesa art equake ammp bzip2Exe
ution aggregatesCy
les (109) 31.0 55.0 15.0 20.0 82.0 27.0 23.0 65.0 13.0IPC 0.51 0.29 1.05 0.78 0.19 0.58 0.7 0.25 1.25Total memory allo
ated (MB)109.0 24.0 186.0 37.5 11.0 4.3 41.6 22.0 184.0Instru
tion mixesLoads 0.26 0.25 0.20 0.30 0.26 0.20 0.27 0.29 0.21Stores 0.07 0.15 0.09 0.10 0.16 0.06 0.08 0.10 0.07Bran
hes 0.18 0.20 0.17 0.13 0.11 0.16 0.12 0.12 0.16Bran
h mispredi
tion rates0.10 0.07 0.08 0.09 0.03 0.03 0.02 0.02 0.08Ca
he miss ratesDL1 0.07 0.02 0.02 0.03 0.00 0.43 0.03 0.07 0.02L2 0.33 0.06 0.03 0.37 0.14 0.53 0.30 0.53 0.27TLB miss ratesITLB 0.01 0.07 0.00 0.04 0.13 0.00 0.02 0.07 0.00DTLB 0.33 0.12 0.10 0.10 0.07 0.50 0.10 0.14 0.10RUU o

upan
y rates42.70 8.70 49.60 45.70 2.55 61.50 28.80 26.20 44.80Table 2: Comparison of SPHINX with sele
ted SPEC CPU2000 ben
hmarks, with SPHINX exe-
uting 15.7 billion instru
tions and the SPEC ben
hmarks exe
uting 16 billion instru
tions.an inevitable 
onsequen
e of the beam sear
h algorithms themselves, that 
ause the entire HMMnetwork to be traversed in a manner that is heavily in
uen
ed by the input.5 Comparing SPHINX with the SPEC CPU2000 Ben
hmarksIn this se
tion we 
ompare the behavior of SPHINX with that of several SPEC 2000 ben
hmarks forthe SimpleS
alar instru
tion set ar
hite
ture (PISA) and mi
roar
hite
ture. SPHINX takes about15.7 billion instru
tions to pro
ess 12 senten
es. Correspondingly, all the SPEC ben
hmarks havebeen run for the �rst 16 billion instru
tions on the referen
e (ref) input set. Table 2 shows thehighlights. From this table, we see the following results:� None of the SPEC ben
hmarks has a footprint anywhere near as large as SPHINX. Thenumber of pages allo
ated is mu
h larger than any of the others, ex
ept for the 
ompressionben
hmarks. In the 
ase of gzip and bzip2, the large number of page allo
ations of about180MB ea
h is simply due to the size of the input being pro
essed. Thus, while gzip and bzip2use most of the data just on
e before moving on, SPHINX repeatedly a

esses its 108MB.� SPHINX has more bran
hes than any of the SPEC ben
hmarks ex
ept for g

. Further,bran
h predi
tion is signi�
antly more ina

urate for SPHINX 
ompared to any of the SPECben
hmarks. This is a result of the 
ontrol-driven nature of the program, with the 
ow of9




ontrol dependent on the input data.� L1 data 
a
he and TLB performan
e is quite poor. The L1 data 
a
he miss rate is poorerthan that of all the ben
hmarks ex
ept for ammp. DTLB performan
e is worse than all theben
hmarks ex
ept for art.� As a 
onsequen
e of the heavy strain on memory, RUU o

upan
y is up as well. The RegisterUpdate Unit or RUU [1℄ is a mi
roar
hite
tural stru
ture in SimpleS
alar that automati
allyrenames variables, keeps tra
k of dependen
ies, and issues instru
tions when their depen-den
ies are satis�ed. In essen
e the RUU 
ombines the instru
tion s
heduling window andreorder bu�er into a single mi
roar
hite
tural stru
ture. RUU o

upan
y is an indi
ator ofthe number of instru
tions in 
ight at any time. We dedu
e that the in
reased time spentby instru
tions in the RUU is due to dependen
ies on operands from memory, and thereforethat the laten
y of the memory hierar
hy is not being masked e�e
tively.In sum, SPHINX 
ombines the largest memory footprint and the poorest bran
h predi
tion withamong the poorest 
a
he and TLB performan
es, 
ompared to the SPEC ben
hmarks.6 ISA and Compiler Impa
t on Performan
eIn this se
tion we fo
us on the instru
tion set ar
hite
ture and 
ompiler, and examine their impa
ton performan
e. We run SPHINX on ports of SimpleS
alar with 3 di�erent front-ends, for thePISA, Alpha, and PowerPC ISAs. All ports have identi
al mi
roar
hite
ture; the only di�eren
esare in the ISA and 
ompiler used. The PISA binary was 
ompiled by a port of g

 2.6.2, the PPCbinary by g

 2.95.1, and the Alpha binary by g

 2.9-gnupro-99r1. The optimization level was setto -O3 for all 
ompilers.Table 3 highlights the important di�eren
es in these runs. PISA is the most eÆ
ient instru
tionset with the fewest instru
tions. We surmise that this is be
ause of the di�eren
e in the qualityof 
ompiler used. Both the Alpha and PowerPC binaries were 
ompiled using later versions ofprodu
tion quality 
ompilers, while the PISA 
ompiler is a port of an earlier version. The newer
ompilers are perhaps able to better s
hedule the 
ode to tolerate memory stalls. This hypothesisis supported by the lower o

upan
y rates in the RUU and the Load/Store Queue (LSQ).Comparing Table 3 with Figure 2, we see that mi
roar
hite
ture has a substantial impa
t onperforman
e. With a 
ommon mi
roar
hite
ture, the Alpha ISA has a higher IPC than that of thePowerPC. However, Figure 2 shows that the PowerPC platform has a more eÆ
ient mi
roar
hite
-ture, a
hieving better throughput per 
y
le. Of 
ourse mi
roar
hite
ture 
omplexity and 
lo
k rateare 
orrelated, and of the ma
hines we 
onsidered, the Alpha a
hieved the highest overall perfor-man
e. As expe
ted, 
a
he and memory performan
e remain nearly identi
al a
ross platforms.7 Con
lusionSin
e simulation has be
ome an integral 
omponent of 
omputer system design methodology, it is
riti
al to 
hoose representative ben
hmarks. With spee
h re
ognition looming as the next killerappli
ation, its behavior must be understood if future 
omputer systems are to sustain suÆ
ient10



SS-PISA SS-PPC SS-AlphaExe
ution aggregatesinsts (109) 15.7 19.8 19.1
y
les (109) 31.0 36.6 31.0IPC 0.51 0.54 0.61Instru
tion mixesLoads 0.26 0.24 0.24Stores 0.07 0.08 0.06Bran
hes 0.18 0.14 0.14Total memory allo
ated (MB)109.0 110.0 117.0Stru
ture o

upan
y ratesRUU 42.7 34.7 33.6LSQ 16.8 12.9 11.9Table 3: Comparing SPHINX on multiple ISAsperforman
e for its exe
ution. Furthermore, simulation studies of ben
hmarks and ar
hite
tureshave their own limitations. Existing simulators 
an provide data on only a limited set of aspe
tsof the ben
hmark, due to the 
on
i
ting demands of simulation speed and pre
ision.In this study, we address both the ben
hmark and simulator. We study SPHINX, a spee
hre
ognition appli
ation, and 
ompare it with several SPEC ben
hmarks to determine how repre-sentative existing ben
hmarks are of a future appli
ation. Cognizant of the limitations of our tools,we use multiple simulators to perform this study, in an e�ort to broaden the s
ope of our investiga-tions. SimpleS
alar is useful as a detailed mi
roar
hite
tural simulator yielding aggregate statisti
sfor many mi
roar
hite
tural features. SimOS-PPC is a full-system simulator that yields transientstatisti
s that show us how various system-wide features evolve during the 
ourse of a program'sexe
ution. Using these two simulators in 
on
ert proved to be valuable in understanding both thedynami
 and aggregate behavior of SPHINX.This study shows that SPHINX is di�erent from the SPEC ben
hmarks in the extent to whi
hit exer
ises the memory system. It has a working set of 256MB and a medio
re IPC of 0.5 ona high-end desktop of today. While only a 4KB IL1 is required, a 64KB DL1 has a miss-rate of7%, while a 512KB L2 has a 33% miss-rate. Bran
h predi
tion is also poor. In all these respe
ts,SPHINX di�ers from the SPECINT2000 ben
hmarks. From our analysis of the algorithms used,we see why. The fundamental nature of the beam sear
h algorithm 
auses the entire HMM networkto be traversed in a manner that is heavily in
uen
ed by the input.With poor data 
a
he performan
e and large working set sizes, spee
h re
ognition algorithmspresent substantial 
hallenges to existing ar
hite
tures. The 
omputational requirements are rel-atively small, thus requiring relatively simple pro
essors to perform the sear
h. The 
riti
al 
om-ponent is the memory system. Espe
ially in the 
ontext of the inadequate performan
e of theseappli
ations today, e�orts to improve trans
ription a

ura
y are likely to exa
erbate these trends.Even though the word re
ognition a

ura
ies of these programs ex
eed 90% in some 
ases, weobserve that SPHINX is unable to re
ognize any but the simplest of senten
es 
ompletely 
orre
tly.Improving trans
ription a

ura
y is a 
hallenge. We do not yet know how spee
h re
ognition11



algorithms will evolve to address this, or how the 
hanges will a�e
t performan
e. In their 
urrentform, spee
h re
ognition appli
ations are more suited to o�ine trans
ription, rather than onlinetrans
ription or intera
tive appli
ations. We anti
ipate that a
hieving high �delity spee
h re
og-nition, even without the 
onstraints on realtime exe
ution, will require signi�
ant storage to holdthe stati
 di
tionary data stru
tures and the a priori HMM probabilities. The beam sear
h may bea

elerated with a more eÆ
ient organization of these 
riti
al data stru
tures and hardware assistedprefet
hing or streaming the 
omponents required during the sear
h. These memory system de-sign tradeo�s must be examined and understood in order to provide suÆ
ient a

ura
y and speedof spee
h re
ognition and other sear
h-based appli
ations in future low and high end 
omputersystems.8 A
knowledgmentsWe thank Tom Keller and the rest of the SimOS-PPC group at IBM's Austin Resear
h Laboratoriesfor making SimOS-PPC available to us for this study. Thanks also to the members of the CARTgroup for hours of dis
ussion and 
omments on several drafts of this paper. This work was fundedby grants from IBM and the Intel Resear
h Coun
il.Referen
es[1℄ Santosh G. Abraham, Rabin A. Sugumar, B. R. Rau, and Rajiv Gupta. Predi
tability of load/storeinstru
tion laten
ies. In Pro
eedings of the 24th Annual International Symposium on Computer Ar
hi-te
ture, pages 139{152, De
ember 1993.[2℄ T.S. Anantharaman and B. Bisiani. A hardware a

elerator for spee
h re
ognition algorithms. InPro
eedings of the 13th Annual International Symposium on Computer Ar
hite
ture, pages 216{223,1986.[3℄ J. Anderson, L. Ber
, J. Dean, S. Ghemawat, M. Henzinger, S. Leung, D. Sites, M. Vandevoorde,C. Waldspurger, and W. Weihl. Continuous pro�ling: Where have all the 
y
les gone? Te
hni
al Note1997-016. Digital Equipment Corporation Systems Resear
h Center, Palo Alto, Calif., July 1997.[4℄ Doug Burger and Todd M. Austin. The simples
alar tool set version 2.0. Te
hni
al Report 1342,Computer S
ien
es Department, University of Wis
onsin, Madison, WI, June 1997.[5℄ Dragon Naturally Speaking, http://www.dragonsys.
om.[6℄ Stephen A. Herrod. Using Complete System Simulation to Understand Computer System Behavior.PhD thesis, Stanford University, February 1998.[7℄ Hsiao-Wuen Hon. A survey of hardware ar
hite
tures designed for spee
h re
ognition. Te
hni
al ReportCMU-CS-91-169, Carnegie Mellon University, S
hool of Computer S
ien
e, August 1991.[8℄ IBM ViaVoi
e software, http://www-4.ibm.
om/software/spee
h/.[9℄ Kai-Fu Lee, Hsiao-Wuen Hon, and Raj Reddy. An overview of the SPHINX spee
h re
ognition system.IEEE Transa
tions on A
ousti
s, Spee
h and Signal Pro
essing, 38:35{44, 1990.[10℄ L&H Voi
eXpress, http://www.lhs.
om/voi
express/.[11℄ Ri
hard P. Lippman. Re
ognition by humans and ma
hines: miles to go before we sleep. Spee
hCommuni
ation, 18:247{258, 1996.[12℄ Philips FreeSpee
h98, http://www.spee
h.be.philips.
om/.12



[13℄ Mendel Rosenblum, Edouard Bugnion, S
ott Devine, and Steve Herrod. Using the SimOS ma
hinesimulator to understand 
omplex systems. ACM Transa
tions on Modelling and Computer Simulation,January 1997.[14℄ Ri
k Simpson, Pat Bohrer, Tom Keller, and A.M. Maynard. SimOS-PPC PowerPC full system simula-tion, presentation, http://www.
s.utexas.edu/users/
art/simOS/reports/NonCon�dentialO
t20-1999/-index.htm.A Input dataThe input data set for the experiments in this paper 
onsists of the following senten
es:1. AS COMPETITION IN THE MUTUAL FUND BUSINESS GROWS INCREASINGLY INTENSE MORE PLAYERS IN THE INDUSTRYAPPEAR WILLING TO SACRIFICE INTEGRITY IN THE NAME OF PERFORMANCE2. FOR A TWO TRILLION DOLLAR BUSINESS BUILT ON PUBLIC CONFIDENCE THIS TREND IS DISHEARTENING AT BEST ANDDOWNRIGHT DANGEROUS AT WORST3. SO FAR THIS YEAR THE INDUSTRY'S SLIDE HAS BEEN APPARENT IN ALLEGATIONS OF INSIDER TRADING BY FUNDMANAGERS UNSAVORY FUND SALES PRACTICES AT BANKS AND THE USE OF HIGH RISK DERIVATIVE SECURITIES INNORMALLY CONSERVATIVE MONEY MARKET FUNDS4. AND IN THE LATEST BLOW TO PUBLIC CONFIDENCE IN THE FUNDS SOMEONE AT INDUSTRY TITAN FIDELITY INVEST-MENTS DECIDED LAST FRIDAY TO SEND NEWSPAPERS THURSDAY'S PRICES FOR MOST FIDELITY FUNDS BECAUSE THEFRIDAY DATA WASN'T READY5. IN THE ENSUING PUBLIC HUMILIATION SUFFERED BY FIDELITY THIS WEEK AS IT WAS FORCED TO FESS UP TO ITS IN-TENTIONAL MISTAKE THE COMPANY HAS SOUGHT TO MAKE CLEAR THAT NOBODY BOUGHT OR SOLD A FUND DIRECTFROM FIDELITY AT THE WRONG PRICE6. THOUGH NEWSPAPERS LAST SATURDAY UNKNOWINGLY LISTED THURSDAY PRICES FOR ABOUT ONE HUNDRED ANDFIFTY OF FIDELITY'S TWO HUNDRED AND EIGHT FUNDS THE COMPANY SAYS TRANSACTIONS EFFECTED FRIDAY WEREMADE AT THE CORRECT PRICESWHICH FIDELITY RECEIVED AFTER IT MET NEWSPAPERDEADLINESWITH THEWRONGDATA EARLY FRIDAY EVENING7. BUT THAT DOESN'T CHANGE THE FACT THAT MOST FIDELITY'S SHAREHOLDERS WERE LIED TO IN VARYING DEGREESIF THEY LOOKED AT THEIR FUND PRICES IN NEWSPAPERS LAST WEEKEND8. THE UNIDENTIFIED FIDELITY EMPLOYEE WHO MADE THE DECISION TO GO WITH INCORRECT PRICES SHOULD SIMPLYHAVE LISTED THEM AS NOT AVAILABLE9. THAT WOULD BE STANDARD FIDELITY PROCEDURE SAID JANE JAMIESON SENIOR VICE PRESIDENT AT THE BOSTONBASED COMPANY10. FIDELITY'S MISTAKE AND MOST OF THE SELF ADMINISTERED BLACK EYES SUFFERED BY THE FUND INDUSTRY THISYEAR HAVE ONE THING IN COMMON THEY COULD HAVE BEEN PREVENTED IF THE EMPLOYEES INVOLVED WEREPLAYING BY THE RULES EITHER THE FUND COMPANIES' INTERNAL RULES OR THE PRUDENT MAN RULE THAT ISSUPPOSED TO GOVERN THE INVESTMENT OF MONEY ENTRUSTED BY THE PUBLIC TO ALLEGEDLY PROFESSIONALMONEY MANAGERS11. THE PROBLEM IS THAT IT CAN BECOME VERY TEMPTING TO BEND OR BREAK THE RULES IN THE NAME OF STAYINGCOMPETITIVE12. TAKE FIDELITY'S CASE AS AN EXAMPLE

13


