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ABSTRACTThis paper examines SPHINX, a system for speaker independent, large voabulary, ontinuousspeeh reognition. We �nd that SPHINX in partiular, and speeh reognition systems in gen-eral, display behavior that is substantially di�erent from the ompute-bound benhmarks that havetraditionally driven popular omputer system design. SPHINX applies onsiderable load on thememory hierarhy, with a large primary working set and poor loality. In this paper we quantifythese results, and orrelate them with the soure ode, showing that they are a onsequene of thealgorithms used, rather than spei� implementation details of the proessor, or the way the appli-ation is oded. The unpreedented growth of speeh reognition appliations makes it imperativethat system designers lend them due onsideration when designing the next generation of omputersystems.



1 IntrodutionIn reent years, speeh reognition tehnology has matured from an area of pure aademi researhto one with growing use in the marketplae. A variety of software pakages for speeh reognition areavailable in the mass market today, suh as Dragon Systems' Dragon Naturally Speaking [5℄, IBM'sViaVoie [8℄, Lernout & Hauspie's Voie Xpress [10℄, and Philips' FreeSpeeh98 [12℄. Reognitionauraies have been steadily improving as well, though urrent systems are still not aurateenough to take ditation. This, oupled with improvements in proessor speeds and the loomingreality of ubiquitous omputing, promises to make speeh a primary human/mahine interfae inthe near future. In this ontext, there is a dearth of information on the performane of speehreognition appliations on the ommon omputing platforms of today. Speial-purpose hardwarearhitetures have been proposed for speeh in the late 80's [2℄ [7℄, but these studies are outdatedand inadequate in the ontext of trends of growing voabularies and the use of general-purposeplatforms in a multiprogramming environment.In this paper, we examine SPHINX [9℄, a system for speaker independent, large voabulary,ontinuous speeh reognition. On a voabulary of over 21000 words, SPHINX ahieves speaker-independent word reognition auraies of 71-96%, depending on the omplexity of the grammati-al struture in the sentenes. We study SPHINX on multiple platforms and using two simulators.Our results show that SPHINX in partiular, and speeh reognition appliations in general, arefundamentally di�erent from the benhmarks that have traditionally driven popular omputer sys-tem design. SPHINX has a large working set with poor temporal loality and mediore branhpredition. Cahe performane is poor, and improves only slowly as ahe sizes inrease. Weorrelate these results bak to the soure, and show that they are not an artifat of this partiu-lar implementation, but a fundamental feature of urrent speeh reognition algorithms based onDisrete Hidden Markov Models (HMMs).In general, urrent desktops have suÆient resoures to do dediated real-time speeh reogni-tion at the levels of auray produed by programs like SPHINX. However, the load they plaeon the system is prohibitive in urrent multiuser/multiprogramming environments. For the imme-diate future, hand-held devies will be unable to hold suÆient memory to run speeh reognitionappliations with any reasonably sized voabulary, unless the memory hierarhy or reognition al-gorithms hange drastially. Furthermore, if the auray of future speeh reognitions systems areto inrease, so too will the memory system and omputational demands on the system.The rest of this paper is organized as follows. First, we examine the performane of SPHINXon four ontemporary platforms, and evaluate the extent to whih they deliver on the promise ofreal-time speeh reognition. Seond, we use two simulators|SimpleSalar and SimOS-PPC|inonert to examine the dynami harateristis of the program, and explain the dynami featuresby orrelating them with the soure ode. By doing so, we hope to provide a more general pitureof the performane of speeh reognition software on today's systems. Third, we ompare theexeution harateristis of SPHINX with several of the SPECINT2000 benhmarks, and showthat it exerises the system onsiderably di�erently from them. Finally, we assess the impatof the instrution set arhiteture on performane by ompiling SPHINX for 3 di�erent ISAs|SimpleSalar's PISA (a MIPS-like instrution set), the Alpha, and the PowerPC|and runningthem on top of simulators with the same miroarhiteture. With these experiments we hopeto gain insight not only into the way speeh reognition appliations behave on di�erent modernplatforms, but also into the advantages and disadvantages of two of the simulators available to theresearh ommunity in omputer arhiteture today.1
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6 7(a) The various stages in onverting speeh to text. (b) The phone HMM used in SPHINX.This paper fouses on the �nal stage, that of software Ar labels denote probabilities.speeh reognition.Figure 1: An overview of speeh reognition.2 Speeh Reognition AlgorithmsConverting the spoken word into a textual representation automatially requires several stages, asshown in Figure 1 (a). First, a mirophone onverts the aoustial vibrations into an analog signal.This analog signal is then �ltered to eliminate the high frequeny omponents of the signal whih lieoutside the range of frequenies that the human ear an hear. The �ltered signal is then digitizedusing a sampling and quantization phase. The digitized waveform is then bloked into frames,whih are then ompressed using one of several enoding shemes. At this point, preproessingis omplete, and reognition tehniques an be applied to this representation of the audio input.Details of the various stages of preproessing applied to the inoming signal in preparation forSPHINX an be found in Lee, et. al. [9℄. In this paper we fous on SPHINX, whih implementsthe �nal reognition stage.Speeh reognition is known as the proess of onverting frames to phones, phones to words, andwords to sentenes. A phone may be onsidered roughly equivalent to a single vowel or onsonantsound. A typial 15-word sentene is omposed of approximately 65 phones. Multiple frames forma phone. Muh of the diÆulty in speeh reognition stems from the fat that the same frame mayour in multiple phones, and a single phone may ontain di�erent sequenes of frames dependingon the phones adjaent to it. SPHINX reognizes a sentene by performing a beam searh throughan a priori state network for the sequene of phones that best mathes the input frame sequene.The SPHINX libraries employ disrete HMMs. HMMs are urrently the predominant approahto speeh reognition. They are haraterized by a set of states, and an a priori set of transitionprobabilities between them. In SPHINX, eah phone is modeled by a HMM.Figure 1 (b) shows the struture of a HMM for a single phone. The verties in the graph are theframes whih ompose the phones and the edges are the transition probabilities that onnet theframes within the phone. This HMM is used as a framework to maintain lists of urrent states, andtheir assoiated probabilities. The inoming stream of preproessed frames ows through eah ofthe phone networks from left to right. As a frame is read in, eah of the urrent states is propagatedalong eah of the ars leading from it. The list of urrent states is repopulated with the states atthe other end of eah of these ars, while omputing the probabilities for eah.2



In addition to the HMM phone models, SPHINX has an aousti model, with a priori proba-bilities for transitions between phones, and a language model, with a priori probabilities for tran-sitions between words. A pronuniation ditionary maps phone sequenes to word spellings. Thephone HMMs, aousti model, language model, and pronuniation ditionary onstitute the majordata strutures of SPHINX, omprising over 90MB altogether. At runtime, these data struturesombine during initialization to yield a single huge network of states and transition probabilities.Reognition is now redued to �nding the path through this network that best �ts the input sig-nal. Thus, the speeh reognition algorithm onsists of a one-time initialization phase to load upthe global a priori data strutures, followed by a reognition phase where the inoming stream ofsentenes is proessed atomially and in sequene using a beam searh.The beam searh iteratively builds a tree of andidate paths through the HMM network. Start-ing from a single SILENCE node, it reads eah inoming frame and adds new states, tagged byprobabilities, to the tree of possible andidate solutions. Every node in the tree orresponds to astate in the a priori network. Periodi pruning eliminates andidate subtrees that deviate signi�-antly from the best running solution. At the end of the sentene, the beam searh is left with aset of andidate \last frames". A so-alled answer builder selets the andidate with the highestprobability, and retraes its path bak to the original SILENCE node to rereate the onstrutedsentene.Sine the initialization phase ours only one and takes onstant time for a given voabulary,in steady state its ontribution to the proessing time for a single sentene is vanishingly small,and the reognition algorithm is almost entirely haraterized by the beam searh phase. Sinethe beam searh ranges over the entire HMM network for eah sentene, it exhibits poor loality.Loality is likely to su�er further in future, as the algorithms evolve to improve auray. Thebest systems of today do not yet approah the apabilities of human listeners. As shown above,today's language models inorporate ontextual information as transition probabilities betweenwords. This ontext allows them to deide between andidates like \to", \too", or \two". In spiteof suh ontextual information, error rates for humans are still an order of magnitude less thanmahine error rates on many speeh tasks [11℄. Researhers have found that error-rates inrease by200-1000% [9℄ when an existing system is retrained on a larger voabulary. Likely re�nements tothis algorithm, in seeking to improve auray, inlude inorporating information about languagegrammar, as well as ontextual information at still higher levels, aross whole sentenes and beyond.Along with inreasing voabularies, these trends will ontribute to still larger data set sizes andmore omputationally intensive searhing.3 MethodologyWe have seleted several distint methods in this study, involving both native and simulated exeu-tion, to analyze the behavior of SPHINX. Eah method has unique advantages and disadvantages.In this setion we desribe and ompare the various methods used.3.1 Native ExeutionNative exeution is the �nal test of an appliation's performane. However, running programs onreal hardware limits the ability to probe the behavior of the appliation in a non-invasive fashion.3



We an only measure the harateristis that are externally visible. In running SPHINX natively,we measure the run times and memory footprint for di�erent numbers of sentenes. The sentenesinput to SPHINX are shown in Appendix A at the end of the paper. We perform these experimentson 4 modern platforms, with the following on�gurations:1. IBM RS/6000 H70 Server with 2 340MHz RS64-II proessors, 64KB IL1, 64KB DL1, 512KBL2, 2GB RAM. Compiler - g 2.95.1 -O3.2. 733 MHz Intel Pentium III, 16KB IL1, 16KB DL1, 256KB L2, 256MB RAM. Compiler - g2.95.1 -O3.3. 440 MHz Sun Ultra SparIIi, 16KB IL1, 16KB DL1, 2MB L2, 384MB RAM. Compiler - g2.95.1 -O3.4. Compaq DS-10L, 466 MHz Alpha 21264 proessor with 64KB IL1, 64KB DL1, 2MB L2,256MB RAM. Compiler - g 2.9-gnupro-99r1 -O3.Additional data an be olleted using hardware performane ounters and pro�ling tools, suhas the Digital Continuous Pro�ling Infrastruture (DCPI) [3℄. We are urrently experimenting withthese tools on the Alpha platform and with similar tools on the PowerPC platform to orrelate thenative results with those obtained from simulation.3.2 SimulationSimulation is useful for studying program harateristis that are normally not visible during nativeexeution, suh as ahe behavior, dynami instrution mixes, the performane of various miroar-hitetural strutures like the feth queue, register update unit, the branh predition unit, et.However, sine the underlying mahine is emulated in software, exeution speeds are slowed byseveral orders of magnitude. Also, no single simulator an provide the means for asking all thequestions one an think of with regard to the program's behavior. For these reasons, we studySPHINX under two simulation environments, SimOS-PPC and SimpleSalar, that are omplemen-tary in many ways.Full-System Simulation: SimOS [6℄ [13℄ is a simulation environment apable of modeling om-plete omputer systems, inluding a full operating system and all appliation programs that run ontop of it. We use SIMOS-PPC [14℄, a port of SimOS for the PowerPC developed at IBM's AustinResearh Laboratory.SimOS-PPC has a number of properties that make it a useful simulation environment. It simu-lates an IBM PowerPC server in suÆient detail to run an unmodi�ed version of AIX on it, thusapturing operating system as well as appliation behavior. SimOS-PPC provides multiple simula-tors at di�erent levels of detail, and simulators an be swithed in the ourse of a single run, usinghekpoints. Finally, a well-designed interfae is provided for olleting data that allows variousolletors of varying levels of sophistiation to be attahed very easily.O�setting these advantages are several limitations. SimOS-PPC does yet inlude any detailedmiroarhitetural simulation. Instrutions are assumed to exeute in order, without any notion of4



pipelined or out-of-order exeution. The memory hierarhy is imperfetly modeled. While SimOS-PPC has very detailed models for disks, ahe and RAM are not modeled in equal detail. Forexample, bandwidth onstraints are not maintained. Every aess to ahe or memory ompletesin a onstant number of instrutions.We use SimOS-PPC to study the dynami behavior of the various levels of the memory hierarhy,and the patterns of swithes between kernel and user mode. SimOS-PPC also allows us to determinethe soure-level funtion in exeution at a given yle and thus orrelate the dynami behavior ofthe program with the soure ode.The base mahine on�guration we use in our simulations orresponds to an IBM RS/6000 H70Server with a 340MHz RS64-II proessor, 64KB IL1, 64KB DL1, 2MB L2, and 512MB of RAM.Miroarhitetural Simulation: The SimpleSalar tool set [4℄ is a suite of simulation toolsthat perform detailed miroarhitetural simulation. SimpleSalar's strengths and weaknesses areomplementary to those of SimOS-PPC. SimpleSalar performs detailed miroarhitetural simu-lation, without modeling the operating system. In partiular, all system alls take zero yles. It ismuh slower than SimOS, as simulation is being performed in muh more detail. The memory hier-arhy is modeled with a reasonably high auray. First order bandwidth onstraints are modeled.Finally, SimpleSalar is quite portable aross both instrution sets and host platforms.We use SimpleSalar to examine the aggregate miroarhitetural and memory system behaviorof SPHINX, and to ompare it with several SPEC CPU2000 benhmarks. Finally, the portabilityof SimpleSalar allows us to study the impat of ISA on performane, atop a onstant miroarhi-teture.The baseline SimpleSalar mahine on�guration has distint 64KB IL1 and DL1 ahes (bloksize 64), 512KB L2 (blok size 128), 16KB entry 2-level branh preditor, an out of order ore,4 wide issue/deode, 8 wide ommit, 4 integer ALUs, 1 integer multiplier, 1 oating-point ALU,1 oating-point multiplier, 16-entry ITLB, and a 128-entry DTLB. Memory aess latenies are 3yles for L1, 12 yles for L2, and 70 yles for main memory. When varying ahe on�gurations,L1 apaities of 32KB or less have latenies of 1 yle.4 The Behavior of SPHINXThis setion summarizes our �ndings on the harateristis of SPHINX. We run SPHINX for 12sentenes in these experiments. Exeution time ranges from 16-20 billion instrutions, dependingon the platform, with an IPC of around 0.7. IPC halves when the out-of-order ore is replaed by aninorder one. Figure 2 ompares the performane of SPHINX on eah of our platforms, in terms ofthe rate at whih phones are proessed. The bar on the left for eah platform shows the number ofphones proessed per seond, while the bar on the right shows the number of phones proessed per100 million yles, thus normalizing the four platforms by lok rate. While the raw performaneof platforms is omparable, and well over the required speed for real-time reognition at the level ofauray provided by SPHINX, the various platforms operate over a wide range of lok speeds toahieve it. Thus, the PowerPC platform seems to be most eÆient in terms of instrutions per lok(IPC), while the Intel Pentium III is the least eÆient. Desktops already seem to have the powerto perform speaker independent speeh reognition in a dediated environment, though auray is5
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Figure 2: Relative proessing speeds of SPHINX on various platforms. The bars on the left plotspeed as number of phones per seond, while the bars on the right for eah platform plot the numberof phones per 108 yles.
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Figure 3: Dynami IL1 misses. Shaded regions denote exeution of the answer builder funtion.The end of this funtion oinides with sentene boundaries.still problemati. The remainder of this setion uses the simulators provide a more detailed viewof the dynami behavior of the appliation.L1 Instrution Cahe: SPHINX is quite well-behaved in the instrution ahe. The baseline64KB IL1 performs almost perfetly, with a miss-rate of essentially 0%. Figure 3 shows the time de-pendent instrution ahe performane while proessing 7 sentenes, as generated by SimOS-PPC.SPHINX was primed into steady state by running �ve utteranes before this data was olleted.Eah point on the graph is a sample of 16.7 million yles. The shaded regions denote the times ofexeution of the answer builder funtion. The primary spikes in the graph orrespond to the exit ofthis funtion whih is also the start of the next sentene. These are attributed to the initializationSPHINX performs before diving in to the innermost loop. The seondary spikes orrespond tothe start of this funtion. This �gure shows that SPHINX goes through 2 phases in the ourse ofproessing a sentene: the beam searh and the answer builder. The instrution ahes are turnedover at eah phase boundary. We found that even reduing the IL1 ahe apaity to 4KB onlyinreases the miss-rate to 0.2%. 6
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(a) Dynami DL1 misses. Shaded regions denote (b) DL1 Miss Rate vs Capaity. We vary DL1 size withexeution of the answer builder funtion. The end a onstant 512KB L2.of this funtion oinides with sentene boundaries.Figure 4: Level 1 Data ahe behavior.DL1 Blok Size DL1 Miss Rate16 0.152532 0.102864 0.0728Table 1: DL1 Blok Size vs Miss Rate.L1 Data Cahe: SPHINX exhibits poor data loality, inluding a miss-rate of 7% with a 64KBlevel-1 data ahe. Figure 4 (a) displays the time-varying behavior of the baseline DL1 performane,overlaid with the exeution of the reursive answer builder funtion at the end of eah sentene-proessing iteration, as generated by SimOS-PPC. This graph shows that the loal maxima ofDL1 misses orrespond to the answer builder for eah sentene. The primary spikes in the graphorrespond to entry into this funtion, as a result of the baktraking required through the entiregenerated network to generate the �nal path. That is not to say that the DL1 is well-behaved therest of the time. In between the answer-builders, mean miss-rates are at a substantial half millionper 16.7 million instrutions.Figure 4 (b) shows the temporal loality in SPHINX, as measured by SimpleSalar. We �x theL2 ahe apaity at 512KB, and plot the miss-rate of the DL1 while varying its size. InreasingDL1 size to 256KB auses miss-rate to drop only marginally to 5.5%. In a separate experiment,varying the size of the DL1 from 4KB to 16MB redues miss rates proportionately, without dramatiimprovements at any point. Over the same range, IPC variane is negligible, going from 0.506 to0.513. Thus SPHINX exhibits poor temporal loality, in e�et having a large single level workingset that is never quite aptured in the ahe.SPHINX does exhibit some spatial loality, but it is not able to improve performane. Table 1shows the miss rate of the DL1 as measured by SimpleSalar, as we vary the DL1 blok size from 16to 64, while keeping the L1 apaity onstant at 64KB, and L2 ahe apaity onstant at 512KB.Inreasing the blok size of the DL1 redues miss rate. However, even a blok size of 64 results ina miss rate of 7%. 7
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Figure 5: L2 Miss Rate vs Capaity
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Figure 6: Kernel-mode instrution ounts. Shaded regions denote exeution of the answer builderfuntion. The end of this funtion oinides with sentene boundaries.L2 Cahe: The theme of poor memory system performane arries over to the L2 as well. Thebaseline L2 ahe apaity of 512KB shows a miss-rate of 33%. The dynami trae generated bySimOS-PPC shows uniform behavior throughout exeution. Figure 5 shows the miss rate in theL2, as measured using SimpleSalar, as we vary its apaity between 256KB and 8MB. It takes anL2 of 2MB to bring the miss rate to around 10%. Over the same range, IPC varies from 0.48 to0.64.Kernel Ativity and Disk Usage: Overhead due to the operating system is negligible. SimOS-PPC tells us that kernel and user level instrutions exeuted have an average ratio of 1:15. Figure 6shows the time dependent behavior of kernel level instrutions. One again, ativity peaks withinthe answer builder funtion. From our analysis of disk ativity, we determine that most of theOS ativity during exeution is due to paging. SPHINX alone is responsible for the strain on thememory system. With a memory footprint of between 110 and 120MB on the various platforms, ittakes 256MB of RAM to avoid swapping out to disk.Summary: The preeding results serve to show that SPHINX heavily exerises memory, resultingin poor utilization of all levels of the memory hierarhy. The dynami patterns of aess and studyof the soure show that the lak of loality is not an artifat of this partiular implementation; it is8



SPHINX g gzip vpr mesa art equake ammp bzip2Exeution aggregatesCyles (109) 31.0 55.0 15.0 20.0 82.0 27.0 23.0 65.0 13.0IPC 0.51 0.29 1.05 0.78 0.19 0.58 0.7 0.25 1.25Total memory alloated (MB)109.0 24.0 186.0 37.5 11.0 4.3 41.6 22.0 184.0Instrution mixesLoads 0.26 0.25 0.20 0.30 0.26 0.20 0.27 0.29 0.21Stores 0.07 0.15 0.09 0.10 0.16 0.06 0.08 0.10 0.07Branhes 0.18 0.20 0.17 0.13 0.11 0.16 0.12 0.12 0.16Branh mispredition rates0.10 0.07 0.08 0.09 0.03 0.03 0.02 0.02 0.08Cahe miss ratesDL1 0.07 0.02 0.02 0.03 0.00 0.43 0.03 0.07 0.02L2 0.33 0.06 0.03 0.37 0.14 0.53 0.30 0.53 0.27TLB miss ratesITLB 0.01 0.07 0.00 0.04 0.13 0.00 0.02 0.07 0.00DTLB 0.33 0.12 0.10 0.10 0.07 0.50 0.10 0.14 0.10RUU oupany rates42.70 8.70 49.60 45.70 2.55 61.50 28.80 26.20 44.80Table 2: Comparison of SPHINX with seleted SPEC CPU2000 benhmarks, with SPHINX exe-uting 15.7 billion instrutions and the SPEC benhmarks exeuting 16 billion instrutions.an inevitable onsequene of the beam searh algorithms themselves, that ause the entire HMMnetwork to be traversed in a manner that is heavily inuened by the input.5 Comparing SPHINX with the SPEC CPU2000 BenhmarksIn this setion we ompare the behavior of SPHINX with that of several SPEC 2000 benhmarks forthe SimpleSalar instrution set arhiteture (PISA) and miroarhiteture. SPHINX takes about15.7 billion instrutions to proess 12 sentenes. Correspondingly, all the SPEC benhmarks havebeen run for the �rst 16 billion instrutions on the referene (ref) input set. Table 2 shows thehighlights. From this table, we see the following results:� None of the SPEC benhmarks has a footprint anywhere near as large as SPHINX. Thenumber of pages alloated is muh larger than any of the others, exept for the ompressionbenhmarks. In the ase of gzip and bzip2, the large number of page alloations of about180MB eah is simply due to the size of the input being proessed. Thus, while gzip and bzip2use most of the data just one before moving on, SPHINX repeatedly aesses its 108MB.� SPHINX has more branhes than any of the SPEC benhmarks exept for g. Further,branh predition is signi�antly more inaurate for SPHINX ompared to any of the SPECbenhmarks. This is a result of the ontrol-driven nature of the program, with the ow of9



ontrol dependent on the input data.� L1 data ahe and TLB performane is quite poor. The L1 data ahe miss rate is poorerthan that of all the benhmarks exept for ammp. DTLB performane is worse than all thebenhmarks exept for art.� As a onsequene of the heavy strain on memory, RUU oupany is up as well. The RegisterUpdate Unit or RUU [1℄ is a miroarhitetural struture in SimpleSalar that automatiallyrenames variables, keeps trak of dependenies, and issues instrutions when their depen-denies are satis�ed. In essene the RUU ombines the instrution sheduling window andreorder bu�er into a single miroarhitetural struture. RUU oupany is an indiator ofthe number of instrutions in ight at any time. We dedue that the inreased time spentby instrutions in the RUU is due to dependenies on operands from memory, and thereforethat the lateny of the memory hierarhy is not being masked e�etively.In sum, SPHINX ombines the largest memory footprint and the poorest branh predition withamong the poorest ahe and TLB performanes, ompared to the SPEC benhmarks.6 ISA and Compiler Impat on PerformaneIn this setion we fous on the instrution set arhiteture and ompiler, and examine their impaton performane. We run SPHINX on ports of SimpleSalar with 3 di�erent front-ends, for thePISA, Alpha, and PowerPC ISAs. All ports have idential miroarhiteture; the only di�erenesare in the ISA and ompiler used. The PISA binary was ompiled by a port of g 2.6.2, the PPCbinary by g 2.95.1, and the Alpha binary by g 2.9-gnupro-99r1. The optimization level was setto -O3 for all ompilers.Table 3 highlights the important di�erenes in these runs. PISA is the most eÆient instrutionset with the fewest instrutions. We surmise that this is beause of the di�erene in the qualityof ompiler used. Both the Alpha and PowerPC binaries were ompiled using later versions ofprodution quality ompilers, while the PISA ompiler is a port of an earlier version. The newerompilers are perhaps able to better shedule the ode to tolerate memory stalls. This hypothesisis supported by the lower oupany rates in the RUU and the Load/Store Queue (LSQ).Comparing Table 3 with Figure 2, we see that miroarhiteture has a substantial impat onperformane. With a ommon miroarhiteture, the Alpha ISA has a higher IPC than that of thePowerPC. However, Figure 2 shows that the PowerPC platform has a more eÆient miroarhite-ture, ahieving better throughput per yle. Of ourse miroarhiteture omplexity and lok rateare orrelated, and of the mahines we onsidered, the Alpha ahieved the highest overall perfor-mane. As expeted, ahe and memory performane remain nearly idential aross platforms.7 ConlusionSine simulation has beome an integral omponent of omputer system design methodology, it isritial to hoose representative benhmarks. With speeh reognition looming as the next killerappliation, its behavior must be understood if future omputer systems are to sustain suÆient10



SS-PISA SS-PPC SS-AlphaExeution aggregatesinsts (109) 15.7 19.8 19.1yles (109) 31.0 36.6 31.0IPC 0.51 0.54 0.61Instrution mixesLoads 0.26 0.24 0.24Stores 0.07 0.08 0.06Branhes 0.18 0.14 0.14Total memory alloated (MB)109.0 110.0 117.0Struture oupany ratesRUU 42.7 34.7 33.6LSQ 16.8 12.9 11.9Table 3: Comparing SPHINX on multiple ISAsperformane for its exeution. Furthermore, simulation studies of benhmarks and arhitetureshave their own limitations. Existing simulators an provide data on only a limited set of aspetsof the benhmark, due to the oniting demands of simulation speed and preision.In this study, we address both the benhmark and simulator. We study SPHINX, a speehreognition appliation, and ompare it with several SPEC benhmarks to determine how repre-sentative existing benhmarks are of a future appliation. Cognizant of the limitations of our tools,we use multiple simulators to perform this study, in an e�ort to broaden the sope of our investiga-tions. SimpleSalar is useful as a detailed miroarhitetural simulator yielding aggregate statistisfor many miroarhitetural features. SimOS-PPC is a full-system simulator that yields transientstatistis that show us how various system-wide features evolve during the ourse of a program'sexeution. Using these two simulators in onert proved to be valuable in understanding both thedynami and aggregate behavior of SPHINX.This study shows that SPHINX is di�erent from the SPEC benhmarks in the extent to whihit exerises the memory system. It has a working set of 256MB and a mediore IPC of 0.5 ona high-end desktop of today. While only a 4KB IL1 is required, a 64KB DL1 has a miss-rate of7%, while a 512KB L2 has a 33% miss-rate. Branh predition is also poor. In all these respets,SPHINX di�ers from the SPECINT2000 benhmarks. From our analysis of the algorithms used,we see why. The fundamental nature of the beam searh algorithm auses the entire HMM networkto be traversed in a manner that is heavily inuened by the input.With poor data ahe performane and large working set sizes, speeh reognition algorithmspresent substantial hallenges to existing arhitetures. The omputational requirements are rel-atively small, thus requiring relatively simple proessors to perform the searh. The ritial om-ponent is the memory system. Espeially in the ontext of the inadequate performane of theseappliations today, e�orts to improve transription auray are likely to exaerbate these trends.Even though the word reognition auraies of these programs exeed 90% in some ases, weobserve that SPHINX is unable to reognize any but the simplest of sentenes ompletely orretly.Improving transription auray is a hallenge. We do not yet know how speeh reognition11
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[13℄ Mendel Rosenblum, Edouard Bugnion, Sott Devine, and Steve Herrod. Using the SimOS mahinesimulator to understand omplex systems. ACM Transations on Modelling and Computer Simulation,January 1997.[14℄ Rik Simpson, Pat Bohrer, Tom Keller, and A.M. Maynard. SimOS-PPC PowerPC full system simula-tion, presentation, http://www.s.utexas.edu/users/art/simOS/reports/NonCon�dentialOt20-1999/-index.htm.A Input dataThe input data set for the experiments in this paper onsists of the following sentenes:1. AS COMPETITION IN THE MUTUAL FUND BUSINESS GROWS INCREASINGLY INTENSE MORE PLAYERS IN THE INDUSTRYAPPEAR WILLING TO SACRIFICE INTEGRITY IN THE NAME OF PERFORMANCE2. FOR A TWO TRILLION DOLLAR BUSINESS BUILT ON PUBLIC CONFIDENCE THIS TREND IS DISHEARTENING AT BEST ANDDOWNRIGHT DANGEROUS AT WORST3. SO FAR THIS YEAR THE INDUSTRY'S SLIDE HAS BEEN APPARENT IN ALLEGATIONS OF INSIDER TRADING BY FUNDMANAGERS UNSAVORY FUND SALES PRACTICES AT BANKS AND THE USE OF HIGH RISK DERIVATIVE SECURITIES INNORMALLY CONSERVATIVE MONEY MARKET FUNDS4. AND IN THE LATEST BLOW TO PUBLIC CONFIDENCE IN THE FUNDS SOMEONE AT INDUSTRY TITAN FIDELITY INVEST-MENTS DECIDED LAST FRIDAY TO SEND NEWSPAPERS THURSDAY'S PRICES FOR MOST FIDELITY FUNDS BECAUSE THEFRIDAY DATA WASN'T READY5. IN THE ENSUING PUBLIC HUMILIATION SUFFERED BY FIDELITY THIS WEEK AS IT WAS FORCED TO FESS UP TO ITS IN-TENTIONAL MISTAKE THE COMPANY HAS SOUGHT TO MAKE CLEAR THAT NOBODY BOUGHT OR SOLD A FUND DIRECTFROM FIDELITY AT THE WRONG PRICE6. THOUGH NEWSPAPERS LAST SATURDAY UNKNOWINGLY LISTED THURSDAY PRICES FOR ABOUT ONE HUNDRED ANDFIFTY OF FIDELITY'S TWO HUNDRED AND EIGHT FUNDS THE COMPANY SAYS TRANSACTIONS EFFECTED FRIDAY WEREMADE AT THE CORRECT PRICESWHICH FIDELITY RECEIVED AFTER IT MET NEWSPAPERDEADLINESWITH THEWRONGDATA EARLY FRIDAY EVENING7. BUT THAT DOESN'T CHANGE THE FACT THAT MOST FIDELITY'S SHAREHOLDERS WERE LIED TO IN VARYING DEGREESIF THEY LOOKED AT THEIR FUND PRICES IN NEWSPAPERS LAST WEEKEND8. THE UNIDENTIFIED FIDELITY EMPLOYEE WHO MADE THE DECISION TO GO WITH INCORRECT PRICES SHOULD SIMPLYHAVE LISTED THEM AS NOT AVAILABLE9. THAT WOULD BE STANDARD FIDELITY PROCEDURE SAID JANE JAMIESON SENIOR VICE PRESIDENT AT THE BOSTONBASED COMPANY10. FIDELITY'S MISTAKE AND MOST OF THE SELF ADMINISTERED BLACK EYES SUFFERED BY THE FUND INDUSTRY THISYEAR HAVE ONE THING IN COMMON THEY COULD HAVE BEEN PREVENTED IF THE EMPLOYEES INVOLVED WEREPLAYING BY THE RULES EITHER THE FUND COMPANIES' INTERNAL RULES OR THE PRUDENT MAN RULE THAT ISSUPPOSED TO GOVERN THE INVESTMENT OF MONEY ENTRUSTED BY THE PUBLIC TO ALLEGEDLY PROFESSIONALMONEY MANAGERS11. THE PROBLEM IS THAT IT CAN BECOME VERY TEMPTING TO BEND OR BREAK THE RULES IN THE NAME OF STAYINGCOMPETITIVE12. TAKE FIDELITY'S CASE AS AN EXAMPLE
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