
Fault{Tolerant High{Performan
e Matrix Multipli
ation�John A. GunnelsDepartment of Computer S
ien
esThe University of Texas at AustinAustin, TX 78712gunnels�
s.utexas.edu
Daniel S. KatzJet Propulsion LaboratoryCalifornia Institute of Te
hnologyPasadena, CA 91109-8099Daniel.S.Katz�jpl.nasa.govEnrique S. Quintana{Ort��Dept. de Inform�ati
aUniversidad Jaume I12080 Castell�onSpainquintana�inf.uji.es

Robert A. van de GeijnDepartment of Computer S
ien
esThe University of Texas at AustinAustin, TX 78712rvdg�
s.utexas.eduFLAME Working Note #2De
ember 1, 2000Abstra
tIn this paper, we extend the theory of algorithmi
 fault-tolerant matrix-matrix mul-tipli
ation, C = AB, in a number of ways. First, we propose low-overhead methodsfor dete
ting errors introdu
ed not only in C but also in A and/or B. Se
ond, wetheoreti
ally show that the methods will dete
t all errors as long as only one entry is
orrupted. Third, we propose a low-overhead rollba
k approa
h to
orre
t errors on
edete
ted. Finally, we give a high-performan
e implementation of matrix-matrix mul-tipli
ation that in
orporates these error dete
tion and
orre
tion methods. Empiri
alresults demonstrate that the methods work well in pra
ti
e with an a

eptable level ofoverhead relative to high-performan
e implementations without fault-toleran
e.�This work was partially performed at the Jet Propulsion Laboratory, California Institute of Te
hnology,under a
ontra
t with the National Aeronauti
s and Spa
e Administration. The work was funded by theRemote Exploration and Experimentation Proje
t (a part of the NASA High Performan
e Computing andCommuni
ations Program funded by the NASA OÆ
e of Spa
e S
ien
e.)1

1 Introdu
tionThe high-performan
e implementation of many linear algebra operations depends on theability to
ast most of the
omputation in terms of matrix-matrix multipli
ation [2, 3, 6, 12℄.High-performan
e for matrix-matrix multipli
ation itself results from the fa
t that, for thisoperation, the
ost of moving b� b blo
ks of the operands between the layers of the memoryhierar
hy is proportional to b2 whi
h
an be amortized over O(b3)
omputations. Theseobservations impa
t algorithmi
 fault-toleran
e for linear algebra routines that spend mostof their time in matrix-matrix multipli
ation in the following sense:� If the matrix-matrix multipli
ation kernel used is fault-tolerant, the operation is largelyfault-tolerant.� Ensuring the integrity of a b� b blo
k of a matrix
an be expe
ted to
ost O(b2) time.This time
an be amortized over the O(b3) operations performed with that data.Thus, not only is the availabity of a fault-tolerant matrix-matrix multipli
ation an important�rst step towards
reating fault-toleran
e linear algebra libraries, but there is inherently anopportunity for adding fault-toleran
e to matrix-matrix multipli
ation while retaining high-performan
e.The primary goal for our me
hanism is to dete
t a maximal fra
tion of errors whileintrodu
ing minimal overhead. As argued in the previous paragraph, for the matrix produ
t,with a
ubi

ost in
oating{point arithmeti
 operations, we
an expe
t to pay at least aquadrati

ost. Thus, the goal is to �nd a me
hanism with a quadrati

ost. We follow, inthat sense, the te
hnique des
ribed in [13℄. There, in essense, the
orre
tness of C = ABis established by looking at d = Cw � ABw for a
he
ksum ve
tor w. The matrix-matrixmultipli
ation is assumed to have been su

essful if d is of the order of the errors that
ouldbe introdu
ed due to the use of �nite pre
ision arithmeti
 (round-o� errors). In this paper,we generalize this method to C �AB+�C, the form of matrix-matrix multipli
ation thatis part of the level 3 Basi
 Linear Algebra Subprograms (BLAS) [5℄, and sharpen the theorybehind the method.The methods we present are
losely related to those des
ribed in [11℄. That paper pro-poses to augment matri
es A, B, and C asA? = AvTA ! ; B? = � B Bw � ; and C? = C CwvTC vTCw ! :(Here, both vT and w are
he
ksum ve
tors.) By noting that in the absen
e of errorsC? = C CwvTC vTCw ! = AvTA !� B Bw � = AB ABwvTAB vTABw ! = A?B?;2

they show how a
omparison of vTC with vTAB and Cw with ABw
an dete
t and
orre
terrors introdu
ed in matrix C.On the surfa
e, when
omparing our methods to [11℄, it may appear that from an imple-mentation point of view we simply perform the matrix-ve
tor multiplies separately ratherthan as part of augmented matri
es. However, our approa
h di�ers in a number of ways.First, we go well beyond the approa
h in [11℄ by also developing a sound theory behind thedete
tion of errors introdu
ed in A and B. Se
ond, by adopting the te
hniques developedin [13℄ we expli
itly deal with the question of how to di�erentiate errors due to
orruptionfrom errors due to round-o�. Third, we take a very di�erent approa
h to the
orre
tion ofdete
ted errors by using a rollba
k method. Finally, by adding fault-toleran
e to a high-performan
e implementation of matrix-matrix multipli
ation we verify that the theoreti
alresults
an be implemented without sa
ri�
ing high performan
e.The rest of the paper is stru
tured as follows. In Se
tion 2 we brie
y des
ribe theintended domain of appli
ation for our methods. In Se
tion 3 we expound upon our theory
on
erning the e�e
ts of the introdu
tion of one error in one of the matri
es during a matrix-matrix multipli
ation. In Se
tion 4 we des
ribe how to take the results from Se
tion 3from theory to pra
ti
e (although still at a high level of abstra
tion). A working fault-tolerant implementation of the matrix produ
t based on a high-performan
e matrix-matrixmultipli
ation implementation (ITXGEMM [8, 9℄) is subsequently given in Se
tion 5. Theexperimental results in Se
tion 6 reveal the low overhead introdu
ed in the matrix produ
tby our fault{dete
tion me
hanism. We brie
y dis
uss the
urrent status of the proje
t inSe
tion 7 and
on
luding remarks are given in Se
tion 8.2 Target Appli
ationWithin NASA's High Performan
e Computing and Communi
ations Program, the RemoteExploration and Experimentation (REE) proje
t [1℄ at the Jet Propulsion Laboratory aims toenable a new type of s
ienti�
 investigation by taking
ommer
ial super
omputing te
hnologyinto spa
e. Transferring su
h
omputational power to spa
e will enable highly-autonomous,
exible missions with substantial on-board analysis
apability, mitigating
ontrol laten
yissues due to fundamental light-time delays, as well as inevitable bandwidth limitations inthe link between spa
e
raft and ground stations. To do this, REE does not intend to developa new
omputational platform, but rather to de�ne and demonstrate a pro
ess for rapidlytransferring
ommer
ial high-performan
e
omputing te
hnology into ultra-low power, fault-tolerant ar
hite
tures for spa
e.The traditional method for prote
ting spa
e
raft
omponents against faults
aused bynatural gala
ti

osmi
 rays and energeti
 protons has been radiation-hardening. However,radiation-hardening lowers the
lo
k speed and may in
rease the required power of a
ompo-nent. Even worse, the time needed to design and bring a radiation-hardened
omponent into3

produ
tion guarantees that it will be outdated when it is ready for use in spa
e. Further-more, it has a high
ost whi
h must be spread over a small number of
ustomers. Typi
ally,at any given time, radiation-hardened
omponents have a power:performan
e ratio that isan order of magnitude lower, and a
ost that is several orders of magnitude higher than
ontemporary
ommodity o�-the-shelf (COTS)
omponents. The REE proje
t is thereforeattempting to use COTS
omponents in spa
e and handling, via software, the faults thatwill o

ur.Most of the transient faults en
ountered due to radiation in spa
e will be single evente�e
ts (SEEs); their presen
e requires that the appli
ations be self-
he
king, or tolerant oferrors, as the �rst layer of fault-toleran
e. Additional software layers will prote
t againsterrors that are not
aught by the appli
ation [4℄. For example, one su
h layer would au-tomati
ally restart programs whi
h have
rashed or hung. This works in
onjun
tion withself-
he
king routines: if an error is dete
ted, and the
omputation does not yield
orre
tresults after a set number of retries, the error handling s
heme aborts the program so thatit
an be automati
ally restarted.SEEs a�e
ting data are parti
ularly troublesome be
ause they typi
ally have fewer obvi-ous
onsequen
es than an SEE that impa
ts
ode | the latter would be expe
ted to
ause anex
eption. Note that sin
e memory will be error-dete
ting and
orre
ting, faults to memorywill largely be s
reened; most faults will therefore impa
t the mi
ropro
essor or its L1
a
he.Due to the nature of most s
ienti�

odes, in
luding the data pro
essing appli
ations
urrently being studied by REE, mu
h of their time is spent in
ertain
ommon numer-i
al subroutines | as mu
h as 70% in one NGST (Next Generation Spa
e Teles
ope, theplanned su

essor to the Hubble Spa
e Teles
ope) appli
ation, for example. Prote
ting thesesubroutines from faults provides one level of prote
tion in an overall software-implementedfault-toleran
e s
heme.3 Dete
ting ErrorsIn this se
tion we develop a theoreti
al foundation for error dete
tion in the operation C =AB where C, A, and B are m�n, m�k, and k�n, respe
tively. Here, we use partitioningsof A and B by
olumns and rows, respe
tively:A = � a1 � � � ak � and B = 0BB� b̂T1...̂bTk 1CCA :
4

We also use two (possibly di�erent)
he
ksum ve
tors:w = 0BB� !1...!n 1CCA and vT = � �1 � � � �m � :For simpli
ity, we �rst assume that exa
t arithmeti
 is employed and then we dis
uss thetoleran
e threshold for the
ase where round-o� errors are present.3.1 Exa
t arithmeti
Consider the operation C = AB and let ~C be the matrix
omputed when at most one elementof one of the three matri
es is
orrupted during the
omputation. (We primarily
onsidera single
orruption sin
e most errors will be SEEs.) In other words, view the operation asatomi
 and assume that before the
omputation one element of A or B is
orrupted or afterC = AB has been formed one element of C is
orrupted. We
an think of the error as amatrix of the form �eieTj added to one of the three matri
es; here � is the magnitude ofthe error and ek denotes the k{th
olumn of the identity matrix. The possible
omputedresults are then given in Table 1 in the row labeled \ ~C". Naturally, we wish to dete
t whenF = ~C � C is nonzero (or, in the presen
e of round-o� error, \signi�
ant"). Thus, we must
ompute or approximate the magnitude of F , e.g., as kFk1, but we must do so withoutbeing able to form F . Moreover, relative to the
ost of
omputing C, the
omputation ofthe estimation of kFk1 must be
heap. Matrix Corrupted~A = A+ �eieTj ~B = B + �eieTj ~C = C + �eieTj~C ~AB A ~B AB + �eieTjF = ~C � C �eib̂Tj �aieTj �eieTjkFk1 j�jkb̂Tj k1 j�jkaik1 j�jd = Fw �eib̂Tj w �!jai �!jeikdk1 j�jjb̂Tj wj j�jj!jjkaik1 j�jj!jjeT = vTF ��ib̂Tj �vTaieTj ��ieTjkeTk1 j�jj�ijkb̂Tj k1 j�jjvTaij j�jj�ij
riterion keTk1(= j�ijkFk1) kdk1(= j!jjkFk1) kdk1(= j!jjkFk1)orkeTk1(= j�ijkFk1)Table 1: Some measurements and error dete
tion
riteria.5

Right-sided error dete
tion
riterionConsider now the
omputation of d = ~Cw � Cw, where w is a ve
tor with entries !i = 1,i = 1; : : : ; n. From Table 1 we see that if the
orruption is in matrix B or C, kdk1 = kFk1.As we do not have C, but a possibly
orrupted approximation ~C, we use A(Bw) insteadof Cw in the
omputation of d; only three matrix-ve
tor multipli
ations are then requiredto
ompute d. These matrix-ve
tor multipli
ations are
heap relative to a matrix-matrixmultipli
ation. Computing d and its norm is exa
tly the pro
edure suggested in [13℄.However, if the
orruption o

urs in A, kdk1 = j�jjb̂Tj wj, whi
h
an be small even ifkFk1 is large. In parti
ular, if the elements of the j{th row of B sum to zero, kdk1 = 0regardless of the the magnitude kFk1. While this is not likely to happen in pra
ti
e, themethod is
learly not bulletproof for dete
ting
orruption in A. A simple example of a matrixen
ountered in pra
ti
e whi
h has entries in rows and/or
olumns that sum to zero is thematrix derived from a dis
retization of Poisson's equation using a �ve-point sten
il.We will refer to the error dete
tion
riterion whi
h pla
es
he
ksum ve
tor w on the rightas a right-sided error dete
tion
riterion. This
riterion is guaranteed to dete
t a single errorintrodu
ed in B or C. It is highly likely to dete
t su
h an error introdu
ed in A.Left-sided error dete
tion
riterionNext,
onsider the
omputation e = vT ~C � vTC where v is a ve
tor with entries �i = 1,i = 1; : : : ; m. From Table 1 we see that if the
orruption is in matrix A or C, kek1 =kFk1. Again, by
omputing vTC = (vTA)B we
an obtain e with only three matrix-ve
tormultipli
ations. In this
ase, if the
orruption was in B, kek1 = j�jjvTaij, whi
h
an be smalleven if kFk1 is large. In parti
ular, if the elements of the i{th
olumn of A sum to zero,kek1 = 0. Thus, the method is
learly not
ompletely full-proof for dete
ting
orruption ofB. We will refer to the error dete
tion
riterion whi
h pla
es
he
ksum ve
tor w on the leftas a left-sided error dete
tion
riterion. This
riterion is guaranteed to dete
t a single errorintrodu
ed in A or C. It is highly likely to dete
t su
h an error introdu
ed in B.Two-sided error dete
tion
riterionClearly, in order to guarantee the dete
tion of the
orruption of a single element in one ofthe three matri
es, one must
ompute kdk1 if the error is in either B or C, and kek1 if theerror is in either A or C.3.2 Toleran
e threshold and round-o� errorsUnfortunately,
omputers are not equipped to deal with in�nite pre
ision arithmeti
 androunding errors due to �nite pre
ision arithmeti
 will o

ur. In our error dete
tion setting6

this means that, even if no error is introdu
ed in any of the matri
es, it may well be the
asethat k ~C � Ck 6= 0.Round-o� error analysis of matrix operations has been a
lassi
 area of numeri
al analysisfor the last half
entury. A result found in standard textbooks (e.g., [7℄) is that for animplementation of the matrix produ
t C = AB, based on gaxpy, dot produ
t, or outerprodu
t
omputations, the
omputed results,
(AB), satis�esk
(AB)� ABk1 � max(m;n; k) u kAk1kBk1 +O(u2);where u is the unit round-o� of the ma
hine (the di�eren
e between 1 and the next larger
oating-point number representable in that ma
hine).Therefore, our error dete
tion me
hanism should de
lare that an error has o

ured whenkdk1 > � kAk1kBk1 or keTk1 > � kAk1kBk1;with � = max(m;n; k) u.These results on thresholds for dete
ting errors merely reiterate the observations madein [13℄.3.3 Spe
ialization to our situationAs mentioned in Se
tion 2, in the spe
i�
 situation we are trying to address a
orruptiono

urs primarily when data reside in the L1
a
he of the pro
essor. Thus this
orruptiondoes not ne
essarily persist during the entire matrix-matrix multipli
ation. Therefore, itmay be more informative to view matri
es C, A, and B partitioned as follows:C = 0BB� C11 � � � C1N...CM1 � � � CMN 1CCA ; A = 0BB� A11 � � � A1K...AM1 � � � AMK 1CCA ; and B = 0BB� B11 � � � B1N...BK1 � � � BKN 1CCA ;where Cij is mi � nj, Aip is mi � kp, and Bpj is kp � nj.Now Cij is
omputed as a sequen
e of updates Cij AipBpj + Cij and the
orruptionwill be en
ountered in exa
tly one su
h update. In other words, for one tuple of indi
es(i; j; p) one of the operands is
orrupted by
hanging one element. Let us assume that Bpjis
orrupted by �ereTs . Then the
omputed matrix ~C is equal to C ex
ept in the (i; j) blo
k,whi
h equals Cij + �a(i;p)r eTs , where a(i;p)r denotes the r{th
olumn of Aip. If w again equalsthe ve
tor of all ones, k ~C � Ck1 = j�jka(i;p)r k1 and k ~Cw � Cwk1 = j�jka(i;p)r k1. It followsthat the right-sided dete
tion
riterion for dete
ting errors in B or C still works. The theorybehind the left-sided and two-sided dete
tion
riteria
an be extended similarly.7

4 Towards a Pra
ti
al ImplementationIn this se
tion we deal with two issues
on
erning the pra
ti
al implementation of a fault-tolerant high-performan
e matrix-matrix multipli
ation kernel. First, in addition to errordete
tion, we must also be able to
orre
t any errors that are exposed. Se
ond, in order tomaintain high-performan
e, we must let the theory guide us to a s
heme that imposes aslittle overhead as is possible.Consider C = �AB + �C where C, A, and B have dimensions m� n, m� k and k � n,respe
tively. The
ost of this operation is given by 2mnk
oating point operations (FLOPs).4.1 Right-sided error dete
tion methodThus, a simple approa
h is to
ompute D = AB, and
he
k the
omputed ~D by testing ifk ~Dw � A(Bw)k1 < � kAk1kBk1. If the
ondition is met, then C �D + �C; otherwiseD is re
omputed. (Note: our assumption is that a
opy of A or B is
orrupted in some levelof
a
he memory. Thus, the re
omputation
an use the original data in A and B.) If a morestringent threshold is used a false error due to roundo�
an o

ur. In this
ase one
an
he
kif k ~Dw � A(Bw)k1 is exa
tly equal twi
e in a row in whi
h
ase C is updated sin
e thiswould indi
ate that the s
heme resulted in a false dete
tion due to round-o� error.The overhead from error dete
tion is 2mn
ops for forming ~Dw and 2kn + 2mk
opsfor forming A(Bw) for a total of 2mn + 2kn + 2mk
ops. In addition, the
omputations ofkAk1 and kBk1
ost O(mk) and O(kn), respe
tively. If even a single error is dete
ted, the
ost of the operation doubles. Also storage for D, mn
oating point numbers, is required.4.2 Left-sided error dete
tion methodA simple approa
h is to again
ompute D = AB, and
he
k the
omputed ~D by testing ifkvT ~D� (vTA)Bk1 < � kAk1kBk1. If the
ondition is met, then C �D+ �C; otherwiseD is re
omputed. If kvT ~D � (vTA)Bk1 is exa
tly equal twi
e in a row, C is updated sin
eit is assumed that a
orruption was erroneously dete
ted.A more sophisti
ated approa
h partitions B, C, and D asB = � B1 � � � BN � ; C = � C1 � � � CN � ; and D = � D1 � � � DN � ;(1)and
omputes Dj = ABj. After ea
h su
h
omputation, the magnitude of kvT ~Di � yTBik1is
he
ked, where yT = vTA
an be
omputed on
e and reused. As before, if no error isdete
ted, ~Ci � ~Di + �Ci; otherwise Di is re
omputed. Now only workspa
e for one Di isrequired and fewer
omputations need to be repeated when an error is dete
ted. (Note thatthis is not possible for the right-sided approa
h sin
e for ea
h Biw the produ
t A(Biw) mustbe
omputed, whi
h is expensive when Bi has few
olumns, as it is in our implementationdes
ribed in the experimental se
tion.) 8

Given a
olumn partition of matri
es Dj and Bj of width nb, the overhead from errordete
tion is now 2mk
ops for forming yT = vTA, 2mnb
ops for forming vT ~Dj and 2knb
ops for forming vTBj. Taking into a

ount that n=nb panels of D must be
omputed, thetotal overhead be
omes 2mn+2kn+2mk
ops, equivalent to the
ost of the right-sided errordete
tion s
heme above. In addition, the
omputations of kAk1 and kBjk1, j = 1; : : : ; N ,
ost O(mk) and O(kn), respe
tively. If a single error is dete
ted during the update of C,only 2mnbk
ops are repeated. In this
ase, only storage for one panel Dj, mnb
oatingpoint numbers, is required.4.3 Two-sided error dete
tionNaturally the two above mentioned te
hniques
an be
ombined to yield a two-sided errordete
tion method. Here all of D is
omputed using a left-sided error dete
tion method, afterwhi
h a right-sided error dete
tion method is used to verify that no undete
ted errors slippedby. If no errors are dete
ted, C is appropriately updated.The
omputational
ost of two-sided error dete
tion is exa
tly twi
e that of the one-sidederror dete
tion methods. Storage for all of D is required, or mn
oating point numbers.However, most of the time the left-sided error dete
tion s
heme will dete
t errors and thusthe overhead for
orre
ting a single error is only 2mnbk
ops.4.4 Redu
ing overheadEven in the
ase where no error is ever dete
ted, the above s
hemes, parti
ularly the right-and two-sided approa
hes,
arry a
onsiderable overhead in required workspa
e. In addition,if an error is dete
ted for the methods, the
ost of re
omputation
an double the overall
ostof the matrix-matrix multipli
ation. In this se
tion we dis
uss how both of these overheads
an easily be over
ome.Spe
i�
ally, partition C, A, and B asC = 0BB� C11 � � � C1N...CM1 � � � CMN 1CCA ; A = 0BB� A11 � � � A1K...AM1 � � � AMK 1CCA ; and B = 0BB� B11 � � � B1N...BK1 � � � BKN 1CCA(2)where Cij is mi � nj, Aip is mi � kp, and Bpj is kp � nj. (While this partitioning looksremarkably like the one in Se
tion 3.3, the dis
ussion in that se
tion has no bearing on thedis
ussion below.) Then C
an be
omputed by a s
aling C �C followed by updatesCij �AipBpj + Cij, i = 1; : : : ;M , j = 1; : : : ; N , p = 1; : : : ; K. Ea
h of these individualupdates
an use the error dete
tion s
hemes des
ribed above. Now workspa
e
an be greatlyredu
ed as
an the
ost of a re
omputation. Moreover, there are a number of opportunities9

for the reuse of results Bpjw, vTAip, kBpjk1, and kAipk1, where now w and v have lengthnj and mi, respe
tively.Noti
e that the proposed error dete
tion and
orre
tion s
heme
an now handle multipleerrors, as long as only one error o

urs during the
omputation AipBpj.5 An A
tual ImplementationIn this se
tion we brie
y outline our implementation of the ideas presented above.We start by des
ribing a high-performan
e implementation of matrix-matrix multipli
a-tion, ITXGEMM [8℄, developed at UT-Austin in
ollaboration with Dr. Greg M. Henry atIntel Corp. To understand how ITXGEMM uses hierar
hi
al memory to attain high per-forman
e re
all that the memory hierar
hy of a modern mi
ropro
essor is often viewed asa pyramid (see Fig. 1). At the top of the pyramid there are the pro
essor registers, withextremely fast a

ess. At the bottom, there is disk and even slower media. As one goesdown the pyramid, the amount of memory in
reases along with the time required to a

essthat memory. fast
slow?
6 expensive

heap?
6

�������
�������

AAAAAAA
AAAAAAAregistersL1
a
heL2
a
he...lo
al memoryshared memory...disktapeFigure 1: Hierar
hi
al layers of memory.As is well-known, pro
essor speed has been in
reasing mu
h faster than memory speed andit is thus memory bandwidth that hinders the speed attained in pra
ti
e for a given operation.Fortunately, matrix-matrix multipli
ation involves 2mnk
ops and only 2mn+mk+kn dataitems. Thus, by
arefully moving data between layers of memory, high-performan
e
an beattained. Note that the
ost of error dete
tion is of the same order as the
ost for loadingand storing to and from a memory layer.The parti
ular implementation of matrix-matrix multipli
ation in ITXGEMM, whi
h wemodi�ed as part of this resear
h, partitions C, A, and B as in (2). The partitioning s
hemeused for A is sele
ted so that Aip �lls a large part of the L2
a
he. For the ar
hite
ture
hosen for this testing, an Intel PentiumTM III, the optimal partitioning turns out to be10

Overhead(mi = kp = 128, nj = 512, b = 8)m = n = 512, k = 128 m = n = k = 512Method Dete
tion Corre
tion Dete
tion Corre
tionright-sided 2.2% 25% 2.2% 6%left-sided 2.2% 0.4% 2.2% 0.1%two-sided 4.4% 0.4% 4.4% 0.1%Table 2: Theoreti
al overhead for error dete
tion and
orre
tion.mi = kp = 128. Then, B is partitioned so that a reasonable amount of workspa
e is requiredfor our right-sided error dete
tion s
heme. In parti
ular, we
hose nj = 512. This means thatthe matri
es are partitioned exa
tly as in (1) and updated as required by the left-sided errordete
tion s
heme, with nb = 8. Code for error dete
tion and
orre
tion was a straightforwardaddition to an implementation that naturally blo
ked for eÆ
ient utilization of the L1 andL2
a
hes of the PentiumTM III pro
essor.If we
onsider all
oating point operations to be equal and we
ount the
ost of
omputingthe norm of an m � n matrix as mn
ops, we expe
t the ratios of overhead to useful
omputation shown in Table 2. The overhead for
orre
tion is for the
ase when exa
tly one
orruption o

urs during the entire
omputation. This
orre
tion overhead s
ales linearlywith the number of
orruptions. The
ost per
op of a matrix-ve
tor multipli
ation is oftenan order of magnitude greater than the
ost per
op of a matrix-matrix multipli
ation.Thus the above analysis for the
ost of error dete
tion may be optimisti
 by an order ofmagnitude. On the other hand, as mentioned, there are opportunities for amortizing the
ost of the
omputation of matrix-ve
tor multiplies and norms of matri
es whi
h are nottaken into a

ount in the above analysis.6 Experimental ResultsAll our experiments were performed on a Intel PentiumTM III pro
essor with a 650 MHz
lo
krate, 16 Kbytes of L1 data
a
he and 256 Kbytes of L2
a
he, using ieee double-pre
ision
oating-point arithmeti
 (u � 2:2� 10�16).6.1 Fault-toleran
e under simulated fault
onditionsIn order to evaluate the reliability of our error dete
tion and
orre
tion te
hniques we de
idedto mirror in our experiments what we expe
t to be a more realisti
 fault
ondition behaviorin pra
ti
e. Thus, instead of introdu
ing an error either in A or B before the
omputation11

starts, we introdu
e the error before one of the updates of the form Cij �AipBpj + �Cijis
omputed. The exa
t update, the entry were the error appeared (in
luding the matrix, Aor B), and its magnitude are randomly determined.We do not analyze the
ase in whi
h the error appears in C sin
e, as stated in our theory(see Table 1), that error will always be dete
ted using any of the dete
tion methods, (atleast, as long as it makes a non-negligible di�eren
e in the result).The error dete
tion me
hanisms performed exa
tly as expe
ted:� All signi�
ant errors that were introdu
ed in matrix A were dete
ted by the left-sidedsided dete
tion method.� All signi�
ant errors that were introdu
ed in matrix B were dete
ted by the right-sidedsided dete
tion method.� All signi�
ant errors that were introdu
ed in matri
es A or B were dete
ted by thetwo-sided sided dete
tion method.� In pra
ti
e both left- and right-sided methods dete
ted signi�
ant errors introdu
ed ineither A or B.� Whenever we
reated a matrix A su
h that the elements in individual
olumns addedto zero, the left-sided dete
tion method had trouble dete
ting errors introdu
ed in B.� Whenever we
reated a matrix B su
h that the elements in individual rows added tozero, the right-sided dete
tion method had trouble dete
ting errors introdu
ed in A.6.2 Performan
e evaluationNext, we evaluated the overhead introdu
ed in pra
ti
e by our error dete
tion/
orre
tionte
hniques. We added the error dete
tion and
orre
tion me
hanisms des
ribed in the previ-ous se
tions to the implementation of matrix-matrix multipli
ation des
ribed in ITXGEMM.In [9℄ we show that this implementation (without error dete
tion and
orre
tion) is highly
ompetitive with other e�orts (e.g. [14℄) to provide high-performan
e matrix-matrix multi-pli
ation for the Intel PentiumTM III pro
essor.We report results for the following fault-tolerant matrix-matrix multipli
ation implemen-tations:{ L/R/2-sided dete
t: ITXGEMM-based implementation with left/right/two-sided de-te
tion.{ L/R/2-sided
orre
t: ITXGEMM-based implementation with left/right/two-sided de-te
tion and
orre
tion. 12

