
Fault{Tolerant High{Performane Matrix Multipliation�John A. GunnelsDepartment of Computer SienesThe University of Texas at AustinAustin, TX 78712gunnels�s.utexas.edu
Daniel S. KatzJet Propulsion LaboratoryCalifornia Institute of TehnologyPasadena, CA 91109-8099Daniel.S.Katz�jpl.nasa.govEnrique S. Quintana{Ort��Dept. de Inform�atiaUniversidad Jaume I12080 Castell�onSpainquintana�inf.uji.es

Robert A. van de GeijnDepartment of Computer SienesThe University of Texas at AustinAustin, TX 78712rvdg�s.utexas.eduFLAME Working Note #2Deember 1, 2000AbstratIn this paper, we extend the theory of algorithmi fault-tolerant matrix-matrix mul-tipliation, C = AB, in a number of ways. First, we propose low-overhead methodsfor deteting errors introdued not only in C but also in A and/or B. Seond, wetheoretially show that the methods will detet all errors as long as only one entry isorrupted. Third, we propose a low-overhead rollbak approah to orret errors onedeteted. Finally, we give a high-performane implementation of matrix-matrix mul-tipliation that inorporates these error detetion and orretion methods. Empirialresults demonstrate that the methods work well in pratie with an aeptable level ofoverhead relative to high-performane implementations without fault-tolerane.�This work was partially performed at the Jet Propulsion Laboratory, California Institute of Tehnology,under a ontrat with the National Aeronautis and Spae Administration. The work was funded by theRemote Exploration and Experimentation Projet (a part of the NASA High Performane Computing andCommuniations Program funded by the NASA OÆe of Spae Siene.)1

1 IntrodutionThe high-performane implementation of many linear algebra operations depends on theability to ast most of the omputation in terms of matrix-matrix multipliation [2, 3, 6, 12℄.High-performane for matrix-matrix multipliation itself results from the fat that, for thisoperation, the ost of moving b� b bloks of the operands between the layers of the memoryhierarhy is proportional to b2 whih an be amortized over O(b3) omputations. Theseobservations impat algorithmi fault-tolerane for linear algebra routines that spend mostof their time in matrix-matrix multipliation in the following sense:� If the matrix-matrix multipliation kernel used is fault-tolerant, the operation is largelyfault-tolerant.� Ensuring the integrity of a b� b blok of a matrix an be expeted to ost O(b2) time.This time an be amortized over the O(b3) operations performed with that data.Thus, not only is the availabity of a fault-tolerant matrix-matrix multipliation an important�rst step towards reating fault-tolerane linear algebra libraries, but there is inherently anopportunity for adding fault-tolerane to matrix-matrix multipliation while retaining high-performane.The primary goal for our mehanism is to detet a maximal fration of errors whileintroduing minimal overhead. As argued in the previous paragraph, for the matrix produt,with a ubi ost in oating{point arithmeti operations, we an expet to pay at least aquadrati ost. Thus, the goal is to �nd a mehanism with a quadrati ost. We follow, inthat sense, the tehnique desribed in [13℄. There, in essense, the orretness of C = ABis established by looking at d = Cw � ABw for a heksum vetor w. The matrix-matrixmultipliation is assumed to have been suessful if d is of the order of the errors that ouldbe introdued due to the use of �nite preision arithmeti (round-o� errors). In this paper,we generalize this method to C �AB+�C, the form of matrix-matrix multipliation thatis part of the level 3 Basi Linear Algebra Subprograms (BLAS) [5℄, and sharpen the theorybehind the method.The methods we present are losely related to those desribed in [11℄. That paper pro-poses to augment matries A, B, and C asA? = AvTA ! ; B? = � B Bw � ; and C? = C CwvTC vTCw ! :(Here, both vT and w are heksum vetors.) By noting that in the absene of errorsC? = C CwvTC vTCw ! = AvTA !� B Bw � = AB ABwvTAB vTABw ! = A?B?;2

they show how a omparison of vTC with vTAB and Cw with ABw an detet and orreterrors introdued in matrix C.On the surfae, when omparing our methods to [11℄, it may appear that from an imple-mentation point of view we simply perform the matrix-vetor multiplies separately ratherthan as part of augmented matries. However, our approah di�ers in a number of ways.First, we go well beyond the approah in [11℄ by also developing a sound theory behind thedetetion of errors introdued in A and B. Seond, by adopting the tehniques developedin [13℄ we expliitly deal with the question of how to di�erentiate errors due to orruptionfrom errors due to round-o�. Third, we take a very di�erent approah to the orretion ofdeteted errors by using a rollbak method. Finally, by adding fault-tolerane to a high-performane implementation of matrix-matrix multipliation we verify that the theoretialresults an be implemented without sari�ing high performane.The rest of the paper is strutured as follows. In Setion 2 we briey desribe theintended domain of appliation for our methods. In Setion 3 we expound upon our theoryonerning the e�ets of the introdution of one error in one of the matries during a matrix-matrix multipliation. In Setion 4 we desribe how to take the results from Setion 3from theory to pratie (although still at a high level of abstration). A working fault-tolerant implementation of the matrix produt based on a high-performane matrix-matrixmultipliation implementation (ITXGEMM [8, 9℄) is subsequently given in Setion 5. Theexperimental results in Setion 6 reveal the low overhead introdued in the matrix produtby our fault{detetion mehanism. We briey disuss the urrent status of the projet inSetion 7 and onluding remarks are given in Setion 8.2 Target AppliationWithin NASA's High Performane Computing and Communiations Program, the RemoteExploration and Experimentation (REE) projet [1℄ at the Jet Propulsion Laboratory aims toenable a new type of sienti� investigation by taking ommerial superomputing tehnologyinto spae. Transferring suh omputational power to spae will enable highly-autonomous,exible missions with substantial on-board analysis apability, mitigating ontrol latenyissues due to fundamental light-time delays, as well as inevitable bandwidth limitations inthe link between spaeraft and ground stations. To do this, REE does not intend to developa new omputational platform, but rather to de�ne and demonstrate a proess for rapidlytransferring ommerial high-performane omputing tehnology into ultra-low power, fault-tolerant arhitetures for spae.The traditional method for proteting spaeraft omponents against faults aused bynatural galati osmi rays and energeti protons has been radiation-hardening. However,radiation-hardening lowers the lok speed and may inrease the required power of a ompo-nent. Even worse, the time needed to design and bring a radiation-hardened omponent into3

prodution guarantees that it will be outdated when it is ready for use in spae. Further-more, it has a high ost whih must be spread over a small number of ustomers. Typially,at any given time, radiation-hardened omponents have a power:performane ratio that isan order of magnitude lower, and a ost that is several orders of magnitude higher thanontemporary ommodity o�-the-shelf (COTS) omponents. The REE projet is thereforeattempting to use COTS omponents in spae and handling, via software, the faults thatwill our.Most of the transient faults enountered due to radiation in spae will be single evente�ets (SEEs); their presene requires that the appliations be self-heking, or tolerant oferrors, as the �rst layer of fault-tolerane. Additional software layers will protet againsterrors that are not aught by the appliation [4℄. For example, one suh layer would au-tomatially restart programs whih have rashed or hung. This works in onjuntion withself-heking routines: if an error is deteted, and the omputation does not yield orretresults after a set number of retries, the error handling sheme aborts the program so thatit an be automatially restarted.SEEs a�eting data are partiularly troublesome beause they typially have fewer obvi-ous onsequenes than an SEE that impats ode | the latter would be expeted to ause anexeption. Note that sine memory will be error-deteting and orreting, faults to memorywill largely be sreened; most faults will therefore impat the miroproessor or its L1 ahe.Due to the nature of most sienti� odes, inluding the data proessing appliationsurrently being studied by REE, muh of their time is spent in ertain ommon numer-ial subroutines | as muh as 70% in one NGST (Next Generation Spae Telesope, theplanned suessor to the Hubble Spae Telesope) appliation, for example. Proteting thesesubroutines from faults provides one level of protetion in an overall software-implementedfault-tolerane sheme.3 Deteting ErrorsIn this setion we develop a theoretial foundation for error detetion in the operation C =AB where C, A, and B are m�n, m�k, and k�n, respetively. Here, we use partitioningsof A and B by olumns and rows, respetively:A = � a1 � � � ak � and B = 0BB� b̂T1...̂bTk 1CCA :
4

We also use two (possibly di�erent) heksum vetors:w = 0BB� !1...!n 1CCA and vT = � �1 � � � �m � :For simpliity, we �rst assume that exat arithmeti is employed and then we disuss thetolerane threshold for the ase where round-o� errors are present.3.1 Exat arithmetiConsider the operation C = AB and let ~C be the matrix omputed when at most one elementof one of the three matries is orrupted during the omputation. (We primarily onsidera single orruption sine most errors will be SEEs.) In other words, view the operation asatomi and assume that before the omputation one element of A or B is orrupted or afterC = AB has been formed one element of C is orrupted. We an think of the error as amatrix of the form �eieTj added to one of the three matries; here � is the magnitude ofthe error and ek denotes the k{th olumn of the identity matrix. The possible omputedresults are then given in Table 1 in the row labeled \ ~C". Naturally, we wish to detet whenF = ~C � C is nonzero (or, in the presene of round-o� error, \signi�ant"). Thus, we mustompute or approximate the magnitude of F , e.g., as kFk1, but we must do so withoutbeing able to form F . Moreover, relative to the ost of omputing C, the omputation ofthe estimation of kFk1 must be heap. Matrix Corrupted~A = A+ �eieTj ~B = B + �eieTj ~C = C + �eieTj~C ~AB A ~B AB + �eieTjF = ~C � C �eib̂Tj �aieTj �eieTjkFk1 j�jkb̂Tj k1 j�jkaik1 j�jd = Fw �eib̂Tj w �!jai �!jeikdk1 j�jjb̂Tj wj j�jj!jjkaik1 j�jj!jjeT = vTF ��ib̂Tj �vTaieTj ��ieTjkeTk1 j�jj�ijkb̂Tj k1 j�jjvTaij j�jj�ijriterion keTk1(= j�ijkFk1) kdk1(= j!jjkFk1) kdk1(= j!jjkFk1)orkeTk1(= j�ijkFk1)Table 1: Some measurements and error detetion riteria.5

Right-sided error detetion riterionConsider now the omputation of d = ~Cw � Cw, where w is a vetor with entries !i = 1,i = 1; : : : ; n. From Table 1 we see that if the orruption is in matrix B or C, kdk1 = kFk1.As we do not have C, but a possibly orrupted approximation ~C, we use A(Bw) insteadof Cw in the omputation of d; only three matrix-vetor multipliations are then requiredto ompute d. These matrix-vetor multipliations are heap relative to a matrix-matrixmultipliation. Computing d and its norm is exatly the proedure suggested in [13℄.However, if the orruption ours in A, kdk1 = j�jjb̂Tj wj, whih an be small even ifkFk1 is large. In partiular, if the elements of the j{th row of B sum to zero, kdk1 = 0regardless of the the magnitude kFk1. While this is not likely to happen in pratie, themethod is learly not bulletproof for deteting orruption in A. A simple example of a matrixenountered in pratie whih has entries in rows and/or olumns that sum to zero is thematrix derived from a disretization of Poisson's equation using a �ve-point stenil.We will refer to the error detetion riterion whih plaes heksum vetor w on the rightas a right-sided error detetion riterion. This riterion is guaranteed to detet a single errorintrodued in B or C. It is highly likely to detet suh an error introdued in A.Left-sided error detetion riterionNext, onsider the omputation e = vT ~C � vTC where v is a vetor with entries �i = 1,i = 1; : : : ; m. From Table 1 we see that if the orruption is in matrix A or C, kek1 =kFk1. Again, by omputing vTC = (vTA)B we an obtain e with only three matrix-vetormultipliations. In this ase, if the orruption was in B, kek1 = j�jjvTaij, whih an be smalleven if kFk1 is large. In partiular, if the elements of the i{th olumn of A sum to zero,kek1 = 0. Thus, the method is learly not ompletely full-proof for deteting orruption ofB. We will refer to the error detetion riterion whih plaes heksum vetor w on the leftas a left-sided error detetion riterion. This riterion is guaranteed to detet a single errorintrodued in A or C. It is highly likely to detet suh an error introdued in B.Two-sided error detetion riterionClearly, in order to guarantee the detetion of the orruption of a single element in one ofthe three matries, one must ompute kdk1 if the error is in either B or C, and kek1 if theerror is in either A or C.3.2 Tolerane threshold and round-o� errorsUnfortunately, omputers are not equipped to deal with in�nite preision arithmeti androunding errors due to �nite preision arithmeti will our. In our error detetion setting6

this means that, even if no error is introdued in any of the matries, it may well be the asethat k ~C � Ck 6= 0.Round-o� error analysis of matrix operations has been a lassi area of numerial analysisfor the last half entury. A result found in standard textbooks (e.g., [7℄) is that for animplementation of the matrix produt C = AB, based on gaxpy, dot produt, or outerprodut omputations, the omputed results, (AB), satis�esk(AB)� ABk1 � max(m;n; k) u kAk1kBk1 +O(u2);where u is the unit round-o� of the mahine (the di�erene between 1 and the next largeroating-point number representable in that mahine).Therefore, our error detetion mehanism should delare that an error has oured whenkdk1 > � kAk1kBk1 or keTk1 > � kAk1kBk1;with � = max(m;n; k) u.These results on thresholds for deteting errors merely reiterate the observations madein [13℄.3.3 Speialization to our situationAs mentioned in Setion 2, in the spei� situation we are trying to address a orruptionours primarily when data reside in the L1 ahe of the proessor. Thus this orruptiondoes not neessarily persist during the entire matrix-matrix multipliation. Therefore, itmay be more informative to view matries C, A, and B partitioned as follows:C = 0BB� C11 � � � C1N...CM1 � � � CMN 1CCA ; A = 0BB� A11 � � � A1K...AM1 � � � AMK 1CCA ; and B = 0BB� B11 � � � B1N...BK1 � � � BKN 1CCA ;where Cij is mi � nj, Aip is mi � kp, and Bpj is kp � nj.Now Cij is omputed as a sequene of updates Cij AipBpj + Cij and the orruptionwill be enountered in exatly one suh update. In other words, for one tuple of indies(i; j; p) one of the operands is orrupted by hanging one element. Let us assume that Bpjis orrupted by �ereTs . Then the omputed matrix ~C is equal to C exept in the (i; j) blok,whih equals Cij + �a(i;p)r eTs , where a(i;p)r denotes the r{th olumn of Aip. If w again equalsthe vetor of all ones, k ~C � Ck1 = j�jka(i;p)r k1 and k ~Cw � Cwk1 = j�jka(i;p)r k1. It followsthat the right-sided detetion riterion for deteting errors in B or C still works. The theorybehind the left-sided and two-sided detetion riteria an be extended similarly.7

4 Towards a Pratial ImplementationIn this setion we deal with two issues onerning the pratial implementation of a fault-tolerant high-performane matrix-matrix multipliation kernel. First, in addition to errordetetion, we must also be able to orret any errors that are exposed. Seond, in order tomaintain high-performane, we must let the theory guide us to a sheme that imposes aslittle overhead as is possible.Consider C = �AB + �C where C, A, and B have dimensions m� n, m� k and k � n,respetively. The ost of this operation is given by 2mnk oating point operations (FLOPs).4.1 Right-sided error detetion methodThus, a simple approah is to ompute D = AB, and hek the omputed ~D by testing ifk ~Dw � A(Bw)k1 < � kAk1kBk1. If the ondition is met, then C �D + �C; otherwiseD is reomputed. (Note: our assumption is that a opy of A or B is orrupted in some levelof ahe memory. Thus, the reomputation an use the original data in A and B.) If a morestringent threshold is used a false error due to roundo� an our. In this ase one an hekif k ~Dw � A(Bw)k1 is exatly equal twie in a row in whih ase C is updated sine thiswould indiate that the sheme resulted in a false detetion due to round-o� error.The overhead from error detetion is 2mn ops for forming ~Dw and 2kn + 2mk opsfor forming A(Bw) for a total of 2mn + 2kn + 2mk ops. In addition, the omputations ofkAk1 and kBk1 ost O(mk) and O(kn), respetively. If even a single error is deteted, theost of the operation doubles. Also storage for D, mn oating point numbers, is required.4.2 Left-sided error detetion methodA simple approah is to again ompute D = AB, and hek the omputed ~D by testing ifkvT ~D� (vTA)Bk1 < � kAk1kBk1. If the ondition is met, then C �D+ �C; otherwiseD is reomputed. If kvT ~D � (vTA)Bk1 is exatly equal twie in a row, C is updated sineit is assumed that a orruption was erroneously deteted.A more sophistiated approah partitions B, C, and D asB = � B1 � � � BN � ; C = � C1 � � � CN � ; and D = � D1 � � � DN � ;(1)and omputes Dj = ABj. After eah suh omputation, the magnitude of kvT ~Di � yTBik1is heked, where yT = vTA an be omputed one and reused. As before, if no error isdeteted, ~Ci � ~Di + �Ci; otherwise Di is reomputed. Now only workspae for one Di isrequired and fewer omputations need to be repeated when an error is deteted. (Note thatthis is not possible for the right-sided approah sine for eah Biw the produt A(Biw) mustbe omputed, whih is expensive when Bi has few olumns, as it is in our implementationdesribed in the experimental setion.) 8

Given a olumn partition of matries Dj and Bj of width nb, the overhead from errordetetion is now 2mk ops for forming yT = vTA, 2mnb ops for forming vT ~Dj and 2knbops for forming vTBj. Taking into aount that n=nb panels of D must be omputed, thetotal overhead beomes 2mn+2kn+2mk ops, equivalent to the ost of the right-sided errordetetion sheme above. In addition, the omputations of kAk1 and kBjk1, j = 1; : : : ; N ,ost O(mk) and O(kn), respetively. If a single error is deteted during the update of C,only 2mnbk ops are repeated. In this ase, only storage for one panel Dj, mnb oatingpoint numbers, is required.4.3 Two-sided error detetionNaturally the two above mentioned tehniques an be ombined to yield a two-sided errordetetion method. Here all of D is omputed using a left-sided error detetion method, afterwhih a right-sided error detetion method is used to verify that no undeteted errors slippedby. If no errors are deteted, C is appropriately updated.The omputational ost of two-sided error detetion is exatly twie that of the one-sidederror detetion methods. Storage for all of D is required, or mn oating point numbers.However, most of the time the left-sided error detetion sheme will detet errors and thusthe overhead for orreting a single error is only 2mnbk ops.4.4 Reduing overheadEven in the ase where no error is ever deteted, the above shemes, partiularly the right-and two-sided approahes, arry a onsiderable overhead in required workspae. In addition,if an error is deteted for the methods, the ost of reomputation an double the overall ostof the matrix-matrix multipliation. In this setion we disuss how both of these overheadsan easily be overome.Spei�ally, partition C, A, and B asC = 0BB� C11 � � � C1N...CM1 � � � CMN 1CCA ; A = 0BB� A11 � � � A1K...AM1 � � � AMK 1CCA ; and B = 0BB� B11 � � � B1N...BK1 � � � BKN 1CCA(2)where Cij is mi � nj, Aip is mi � kp, and Bpj is kp � nj. (While this partitioning looksremarkably like the one in Setion 3.3, the disussion in that setion has no bearing on thedisussion below.) Then C an be omputed by a saling C �C followed by updatesCij �AipBpj + Cij, i = 1; : : : ;M , j = 1; : : : ; N , p = 1; : : : ; K. Eah of these individualupdates an use the error detetion shemes desribed above. Now workspae an be greatlyredued as an the ost of a reomputation. Moreover, there are a number of opportunities9

for the reuse of results Bpjw, vTAip, kBpjk1, and kAipk1, where now w and v have lengthnj and mi, respetively.Notie that the proposed error detetion and orretion sheme an now handle multipleerrors, as long as only one error ours during the omputation AipBpj.5 An Atual ImplementationIn this setion we briey outline our implementation of the ideas presented above.We start by desribing a high-performane implementation of matrix-matrix multiplia-tion, ITXGEMM [8℄, developed at UT-Austin in ollaboration with Dr. Greg M. Henry atIntel Corp. To understand how ITXGEMM uses hierarhial memory to attain high per-formane reall that the memory hierarhy of a modern miroproessor is often viewed asa pyramid (see Fig. 1). At the top of the pyramid there are the proessor registers, withextremely fast aess. At the bottom, there is disk and even slower media. As one goesdown the pyramid, the amount of memory inreases along with the time required to aessthat memory. fast
slow?
6 expensive

heap?
6

�������
�������

AAAAAAA
AAAAAAAregistersL1 aheL2 ahe...loal memoryshared memory...disktapeFigure 1: Hierarhial layers of memory.As is well-known, proessor speed has been inreasing muh faster than memory speed andit is thus memory bandwidth that hinders the speed attained in pratie for a given operation.Fortunately, matrix-matrix multipliation involves 2mnk ops and only 2mn+mk+kn dataitems. Thus, by arefully moving data between layers of memory, high-performane an beattained. Note that the ost of error detetion is of the same order as the ost for loadingand storing to and from a memory layer.The partiular implementation of matrix-matrix multipliation in ITXGEMM, whih wemodi�ed as part of this researh, partitions C, A, and B as in (2). The partitioning shemeused for A is seleted so that Aip �lls a large part of the L2 ahe. For the arhiteturehosen for this testing, an Intel PentiumTM III, the optimal partitioning turns out to be10

Overhead(mi = kp = 128, nj = 512, b = 8)m = n = 512, k = 128 m = n = k = 512Method Detetion Corretion Detetion Corretionright-sided 2.2% 25% 2.2% 6%left-sided 2.2% 0.4% 2.2% 0.1%two-sided 4.4% 0.4% 4.4% 0.1%Table 2: Theoretial overhead for error detetion and orretion.mi = kp = 128. Then, B is partitioned so that a reasonable amount of workspae is requiredfor our right-sided error detetion sheme. In partiular, we hose nj = 512. This means thatthe matries are partitioned exatly as in (1) and updated as required by the left-sided errordetetion sheme, with nb = 8. Code for error detetion and orretion was a straightforwardaddition to an implementation that naturally bloked for eÆient utilization of the L1 andL2 ahes of the PentiumTM III proessor.If we onsider all oating point operations to be equal and we ount the ost of omputingthe norm of an m � n matrix as mn ops, we expet the ratios of overhead to usefulomputation shown in Table 2. The overhead for orretion is for the ase when exatly oneorruption ours during the entire omputation. This orretion overhead sales linearlywith the number of orruptions. The ost per op of a matrix-vetor multipliation is oftenan order of magnitude greater than the ost per op of a matrix-matrix multipliation.Thus the above analysis for the ost of error detetion may be optimisti by an order ofmagnitude. On the other hand, as mentioned, there are opportunities for amortizing theost of the omputation of matrix-vetor multiplies and norms of matries whih are nottaken into aount in the above analysis.6 Experimental ResultsAll our experiments were performed on a Intel PentiumTM III proessor with a 650 MHzlokrate, 16 Kbytes of L1 data ahe and 256 Kbytes of L2 ahe, using ieee double-preision oating-point arithmeti (u � 2:2� 10�16).6.1 Fault-tolerane under simulated fault onditionsIn order to evaluate the reliability of our error detetion and orretion tehniques we deidedto mirror in our experiments what we expet to be a more realisti fault ondition behaviorin pratie. Thus, instead of introduing an error either in A or B before the omputation11

starts, we introdue the error before one of the updates of the form Cij �AipBpj + �Cijis omputed. The exat update, the entry were the error appeared (inluding the matrix, Aor B), and its magnitude are randomly determined.We do not analyze the ase in whih the error appears in C sine, as stated in our theory(see Table 1), that error will always be deteted using any of the detetion methods, (atleast, as long as it makes a non-negligible di�erene in the result).The error detetion mehanisms performed exatly as expeted:� All signi�ant errors that were introdued in matrix A were deteted by the left-sidedsided detetion method.� All signi�ant errors that were introdued in matrix B were deteted by the right-sidedsided detetion method.� All signi�ant errors that were introdued in matries A or B were deteted by thetwo-sided sided detetion method.� In pratie both left- and right-sided methods deteted signi�ant errors introdued ineither A or B.� Whenever we reated a matrix A suh that the elements in individual olumns addedto zero, the left-sided detetion method had trouble deteting errors introdued in B.� Whenever we reated a matrix B suh that the elements in individual rows added tozero, the right-sided detetion method had trouble deteting errors introdued in A.6.2 Performane evaluationNext, we evaluated the overhead introdued in pratie by our error detetion/orretiontehniques. We added the error detetion and orretion mehanisms desribed in the previ-ous setions to the implementation of matrix-matrix multipliation desribed in ITXGEMM.In [9℄ we show that this implementation (without error detetion and orretion) is highlyompetitive with other e�orts (e.g. [14℄) to provide high-performane matrix-matrix multi-pliation for the Intel PentiumTM III proessor.We report results for the following fault-tolerant matrix-matrix multipliation implemen-tations:{ L/R/2-sided detet: ITXGEMM-based implementation with left/right/two-sided de-tetion.{ L/R/2-sided orret: ITXGEMM-based implementation with left/right/two-sided de-tetion and orretion. 12

