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Interonnet Optimization in Deep Sub-mironDesign under the Transmission Line ModelPubliation No.Youxin Gao, Ph.D.The University of Texas at Austin, 2000Supervisor: Martin D.F. WongAs the VLSI tehnology has been saled down to 0:18�m in reent years andis expeted to be saled down to 0:05�m in the near future, interonnet delaybeomes an important fator in ahieving high performane. In deep sub-mirondesign, interonnet delay is shown to be 10 to a few hundred times bigger thanthe intrinsi gate delay for a global interonnet, and thus dominates the iruitdelay. To redue interonnet delay, wire-sizing and bu�er insertion/sizing are twoe�etive tehniques. One of the approahes to wire-sizing is ontinuous wire-sizing.In ontinuous wire-sizing, the shape of a wire is desribed by a ontinuous funtion,and the objetive is to �nd a shape funtion whih minimizes delay or minimizesarea subjet to a delay bound.In the �rst part of this dissertation, we present some ontinuous wire-sizingresults under the Elmore delay model. Comparing with previous work, our algorithman not only deal with uni-diretional wires but also bi-diretional wires, where bothsolutions are in losed form. We also develop an eÆient algorithm to determine thevi



optimal wire shape for wires with one or two neighboring wires. These results areuseful in optimization under the transmission line model, sine they an give verygood initial solutions.However, sine it is well known that the Elmore delay model is not an au-rate delay model, those optimal results determined under the Elmore delay modelmay be inferior. In the seond part of this dissertation, we present some wire-sizingresults under the transmission line model. For a speial ase where fringing apa-itane and indutane are not onsidered, we solve the transmission line equationsanalytially and derive a losed form solution on the transient response for an expo-nential wire shape f(x) = ae�bx. We then determine a and b suh that either delayis minimized or area is minimized subjet to a target delay bound. For a generalase where fringing apaitane and indutane are onsidered, we solve the trans-mission line equations by using the Piard-Carson method. We then develop a threepole based delay model. Analytial expressions for estimating delay at any thresh-old voltage and overshoot/undershoot voltage are further derived. The optimalwire shape is determined to minimize delay or area subjet to undershoot voltageonstraint. To alulate delays for interonnets with bu�ers inserted, we ombinethe wire delay model under the transmission line model with a bu�er maromodel(k-fator equations) to provide a fast and aurate delay estimation method.In the third part of this dissertation, we present a graph based algorithmfor optimal bu�er insertion under aurate delay models. The algorithm determinesthe number of bu�ers and their loations on a wire suh that some optimizationobjetive is satis�ed. Two typial examples of suh optimization objetives areminimizing the 50% threshold delay and minimizing the transition time. Both anbe easily determined in our algorithm. We show that the bu�er insertion problemis a shortest path problem. Our algorithm an be easily extended for simultaneousbu�er insertion and wire-sizing, and omplexity is still polynomial. The algorithmvii



an also be extended to deal with problems suh as bu�er insertion subjet totransition time onstraints at any position along the wire.

viii



Contents
Aknowledgments vAbstrat viList of Tables xiiList of Figures xvChapter 1 Introdution 1Chapter 2 Wire-sizing under the Elmore Delay Model 72.1 Closed Form Solution on Wire-sizing . . . . . . . . . . . . . . . . . 72.1.1 Capaitane Model . . . . . . . . . . . . . . . . . . . . . . . . 82.1.2 The Elmore Delay Model for Non-uniform Wires . . . . . . . 92.1.3 Optimal Wire Shape Funtion . . . . . . . . . . . . . . . . . 102.1.4 Extension to Minimizing the Maximum Delay . . . . . . . . . 202.1.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 222.2 Wire-sizing with Consideration of Coupling Capaitane . . . . . . 242.2.1 The Elmore Delay Model for Adjaent Wires . . . . . . . . . 252.2.2 Shaping a Wire with One Neighboring Wire . . . . . . . . . . 262.2.3 Shaping a Wire with Two Neighboring Wires . . . . . . . . . 302.2.4 Extension to Constrained Wire-sizing . . . . . . . . . . . . . 33ix



2.2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 35Chapter 3 Wire-sizing under the Transmission Line Model:Part I 393.1 The Transmission Line Model . . . . . . . . . . . . . . . . . . . . . . 413.2 A Transmission Line with Driver and Load . . . . . . . . . . . . . . 453.2.1 Transient Response under Step Input . . . . . . . . . . . . . 473.2.2 Transient Response under Ramp Input . . . . . . . . . . . . . 493.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Chapter 4 Wire-sizing under the Transmission Line Model:Part II 554.1 Indutane Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564.2 Solving the ABCD Parameters . . . . . . . . . . . . . . . . . . . . . 564.3 Comparing with Lumped Ciruit Approximation . . . . . . . . . . . 624.4 Three-Pole Delay Model . . . . . . . . . . . . . . . . . . . . . . . . . 634.5 Overshoot/Undershoot Voltage Estimation . . . . . . . . . . . . . . 654.6 Wire-sizing Optimization . . . . . . . . . . . . . . . . . . . . . . . . 674.7 Extension to Constrained Wire-Sizing . . . . . . . . . . . . . . . . . 684.8 Extension to Tranmission Line Trees . . . . . . . . . . . . . . . . . . 684.9 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 71Chapter 5 Delay Estimation for Bu�ered Interonnets 785.1 Delay Calulation for Bu�ered Interonnets . . . . . . . . . . . . . 795.2 Modeling Non-uniform Transmission Lines . . . . . . . . . . . . . . . 825.3 Delay Expressions for Interonnet Wires . . . . . . . . . . . . . . . 835.3.1 Delay Expressions for t � Tr . . . . . . . . . . . . . . . . . . 845.3.2 Delay Expressions for t > Tr . . . . . . . . . . . . . . . . . . 855.4 �-Models and E�etive Capaitane . . . . . . . . . . . . . . . . . . 88x



5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 90Chapter 6 Optimal Bu�er Insertion 936.1 Aurate Delay Models . . . . . . . . . . . . . . . . . . . . . . . . . . 956.2 Bu�er Insertion is A Shortest Path Problem . . . . . . . . . . . . . . 986.2.1 Bu�er Insertion under the Elmore Delay Model . . . . . . . . 986.2.2 Bu�er Insertion under Aurate Delay Models . . . . . . . . 1006.3 EÆient Algorithm for Bu�er Insertion . . . . . . . . . . . . . . . . . 1036.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Chapter 7 Conlusions 109Appendix A CoeÆients in the Transfer Funtion H(s) and Open-Ciruit Admittane Y (s) 111A.1 H(s) and Y (s): with Driver Resistane RD . . . . . . . . . . . . . . 111A.2 H(s) and Y (s): without Driver Resistane RD . . . . . . . . . . . . 115Bibliography 118Vita 127

xi



List of Tables
1.1 NTRS predited tehnology trend and our estimated parasiti param-eters for Metal 4 interonnets. R is the unit length resistane, L isthe unit length indutane, and Ca, Cf , C are the unit length area,fringing, oupling apaitanes, respetively. The total unit lengthapaitane is C = Ca + Cf + C. . . . . . . . . . . . . . . . . . . . 22.1 Weighted delays alulated for bi-diretional wires. . . . . . . . . . . 232.2 Ciruit parameters and the initial driver-end width w0. . . . . . . . . 352.3 The optimal shapes and their orresponding delays alulated for ase1 to 4. W1 denotes the driver-end width, and W2 denotes the loadend width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.1 Ciruit parameters and wire-sizing results under a step input. a, bare oeÆients of shape funtion f(x) = ae�bx. . . . . . . . . . . . . 543.2 Ciruit parameters and wire-sizing results under a ramp input. a, bare oeÆients of shape funtion f(x) = ae�bx. . . . . . . . . . . . . 544.1 b oeÆients in transfer funtion H(s) are alulated based on 10-segment lumped iruit approximation. Last three olumns are atualvalues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63xii



4.2 b oeÆients in the transfer funtion H(s) are alulated based on100-segment lumped iruit approximation. These values are lose toatual values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634.3 Ciruit parameters used in Experiment 1-4. . . . . . . . . . . . . . . 724.4 Results for Experiment 1. Delays alulated by using the Elmoredelay model, our delay estimation method and SPICE. Ciruit pa-rameters are hosen from Table 4.3. a and b are oeÆients of shapefuntion f(x) = ae�bx. . . . . . . . . . . . . . . . . . . . . . . . . . 734.5 Results for Experiment 2. Optimal a and b that minimize delay usingthe Elmore delay model and our delay estimation method. Last twoolumns are SPICE-omputed delay values for eah optimal shape.The shapes determined under the Elmore delay model are denoted by\E-Shape", and those determined under the transmission line modelare denoted by \T-Shape". . . . . . . . . . . . . . . . . . . . . . . . 744.6 Results for Experiment 3. The optimal shapes whih minimize areasubjet to a delay bound using the Elmore delay model and our delayestimation method. vb denotes the delay bound in ns, and the wiringarea has unit �m2. Last two olumns are SPICE-omputed delayvalues for eah optimal shape. \E-Shape" and \T-Shape" have thesame meaning as that in Table 4.5. . . . . . . . . . . . . . . . . . . 754.7 Results for Experiment 4. Optimal a and b that minimize delay usingour delay estimation method before and after adding the undershootvoltage onstraint. Æv is the undershoot voltage. . . . . . . . . . . . 764.8 Results for Experiment 4. Optimal a and b that minimize area subjetto a delay bound using our delay estimation method before and afteradding the undershoot voltage onstraint. . . . . . . . . . . . . . . . 775.1 SPICE level-3 CMOS parameters. . . . . . . . . . . . . . . . . . . . 91xiii



5.2 Interonnet iruit parameters used in experiments. . . . . . . . . 915.3 Delays alulated for some bu�ered interonnets. . . . . . . . . . . 926.1 The optimal bu�er insertion to minimize the 50% delay. . . . . . . 1076.2 The optimal bu�er insertion to minimize the transition time. . . . . 107

xiv



List of Figures
1.1 Capaitane models for a single wire and two adjaent wires. . . . . 32.1 The distributed iruit model for alulating the Elmore delay. Rdis the driver resistane, and Cl is the load apaitane. Ri and Ciare the resistane and apaitane of segment i, respetively. (a) Anonuniform wire whose width is given by a funtion f(x); (b) itsorresponding distributed RC network. . . . . . . . . . . . . . . . . 92.2 A bi-diretional wire, with R1 and R2 as the driver resistanes, andC1 and C2 as the load apaitanes. . . . . . . . . . . . . . . . . . . 102.3 The optimal shape funtion for a bi-diretional wire. When � = � =0:5, the optimal shape is a uniform width funtion. When � > �,f(x) is monotonially inreasing in [0; L℄. When � < �, f(x) ismonotonially dereasing in [0; L℄. . . . . . . . . . . . . . . . . . . . 142.4 The optimal shape funtions for bi-diretional wires with di�erentvalues of �. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242.5 Coupling apaitane between two adjaent wires. (a) Wire 1 hasuniform width. Wire 2 has non-uniform width whih is de�ned bya funtion f(x). (b) Wire 2 is hopped into several equal lengthsegments. Rd(R0d) is the driver resistane, and Cl(C 0l) is the loadapaitane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25xv



2.6 Wire 2 has two neighboring wires. Wire 1 and wire 3 have uniformwidths, and wire 2 has non-uniform width. The distane between wire1 and wire 3 is 2D. The shape of wire 2 is de�ned by two funtionsf1(x) and f2(x) with respet to the enter-line of spaing. We dividewire 2 into n segments. For segment i, its width is de�ned by twovalues Wi and Vi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.7 5 di�erent types of optimal shape funtions under the wire widthonstraint. They onsist of at most three parts. Part-A and part-Crepresent uniform width parts. Part-B represents the non-uniformwidth part whih is desribed by a funtion f(x). l1, l2 and l3 denotethe length of part-A, part-B and part-C, respetively. (a) Type-ABConsists of part-A, part-B and part-C; (b) Type-BC onsists of part-Band part-C; () Type-AB onsists of part-A and part-B; (d) Type-Aand type-C onsist of part-A and part-C, respetively. . . . . . . . . 332.8 The delay is shown as a onvex funtion in  in four ase studies.Case 1, 2 and 4 are extreme ases, where oupling apaitane playsan important role in determining the optimal wire shape. In ase 3,oupling apaitane is not important. . . . . . . . . . . . . . . . . . 372.9 The optimal shapes by onsidering oupling apaitane are repre-sented by solid lines. For omparison, the optimal shapes withoutonsidering oupling apaitane are plotted together by dashed lines.In ase 1 and 2, optimal shapes are thinner than those without on-sidering oupling apaitane. In ase 4, the di�erene is not thatbig beause the distane between two adjaent wires are not smallenough. In ase 3, the e�et of oupling apaitane on determiningthe optimal shape an be negleted. . . . . . . . . . . . . . . . . . . 38
xvi



3.1 (a) A non-uniform wire of length L is driven by a unit voltage soureVD. The width of the wire at position x is given by f(x). ZD andYL are driver impedane and load admittane, respetively. (b) Thenon-uniform wire an be modeled as a two-port network with inputvoltage V (s; 0), urrent I(s; 0) and output voltage V (s; L), urrentI(s; L). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413.2 A segment of length �x is represented by a iruit network. r�x and�x are segment resistane and apaitane, where r and  are unitlength resistane and apaitane, respetively. . . . . . . . . . . . . 423.3 The non-uniform wire with driver impedane ZD and load admittaneYL is represented by three two-port networks. . . . . . . . . . . . . 463.4 The driver voltage soure has a ramp input with �nite rising time Tr.Assuming a unit voltage soure, the ramp input an be deomposedas two shifted in�nite ramps, vD(t) = [tU(t)� (t� Tr)U(t� Tr)℄=Tr,where U(t) is step funtion. . . . . . . . . . . . . . . . . . . . . . . . 503.5 The alulated delay ontours versus a and b. All delay values havebeen normalized by the minimum delay value. . . . . . . . . . . . . . 534.1 (a) A transmission line is modeled by an equivalent non-uniformlumped RLC iruit. (b) A transmission line tree is then modeledby an lumped RLC tree. . . . . . . . . . . . . . . . . . . . . . . . . 705.1 (a) A non-uniform transmission line is onneted by two bu�ers. (b)The delay alulation for this bu�ered interonnet is separated intotwo steps, one for the bu�er and the other for the wire. . . . . . . . 805.2 A voltage waveform (solid line) is approximated by a �nite ramp(dash-dotted line) by onneting two points at threshold voltages 10%and 90%, respetively. . . . . . . . . . . . . . . . . . . . . . . . . . . 81xvii



5.3 (a) A non-uniform wire of length L is driven by a unit voltage soureVD. The width of the wire at position x is given by f(x). CL is theload apaitane. (b) The whole system an be represented by twoasaded two-port networks. . . . . . . . . . . . . . . . . . . . . . . . 825.4 An interonnet wire is redued to an equivalent CRC �-model whihhas the same driving point admittane. The �-model is used foralulating the e�etive apaitane. . . . . . . . . . . . . . . . . . . 895.5 Wire 1 through wire 5 are onneted through bu�ers. We denote suhbu�ered interonnet as \B1B2B3B4B5". . . . . . . . . . . . . . . . 925.6 The voltage responses of two bu�ered interonnets. (a) Conne-tion: B3B2B4B1B5; (b) Connetion: B1B2B3B4B5B1B2B3B4B5.'+' urve represents SPICE's result, and solid line represents ourapproximated ramp output. . . . . . . . . . . . . . . . . . . . . . . 926.1 (a) A wire onneting two bu�ers. (b) The signal waveform alula-tion is asaded in terms of a pair (S, T ). . . . . . . . . . . . . . . . 966.2 (a) A wire has three bu�er loations. (b) The bu�er insertion problemis a shortest path problem. Weights on edges represent delays. Thehighlighted path a-b--e is the shortest path. () The bu�er insertionsheme orresponds to the shortest path a-b--e. . . . . . . . . . . 996.3 The diret ayli graph for the bu�er insertion under aurate delaymodels. Exept for these edges onneting from level 4 to 5 whoseweights represent half of transition times, all edge weights representshift times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1026.4 Pseudo-ode of Algorithm BUILD GRAPH. . . . . . . . . . . . . 1046.5 The optimal bu�er insertion results. (a) Minimal delay. (b) Minimaltransition time. All lengths are in mm. . . . . . . . . . . . . . . . . 108xviii



Chapter 1
Introdution

As it is predited by National Tehnology Roadmap for Semiondutors (NTRS)[3℄, the feature size of VLSI devies is gradually saled down from 180nm in 1999,to 130nm in 2002, and is expeted to be further redued to 50nm in 2011. In Ta-ble 1.1, we list some main harateristis for eah tehnology generation in NTRSand some estimated parasiti parameters for Metal 4 interonnets. These parasitiparameters (e.g., Ca and Cf ) are estimated by using Sakurai's approximated for-mulas [62℄. As the feature size dereases, hips beome more ongested and manynew hallenging issues arise. One hallenging issue is that interonnet delay hasdominated over gate delay in determining iruit performane. Aording to thesimple saling rule desribed in [4℄, if devies and interonnets are all saled downby a fator S, the intrinsi gate delay is redued by a fator S, and the delay ofloal interonnets remains almost the same, but the delay of global interonnetsis inreased by a fator of S2. It is estimated that at least 20% of the yle time isonsumed by interonnet delay [21℄.As tehnology goes on to deep sub-miron, haraterizing interonnet delayis also beoming more and more ompliated. Roughly speaking, interonnet delayis proportional to driver resistane, wire resistane, wire apaitane as well as load1



Year 1999 2002 2005 2008 2011Tehnology(nm) 180 130 100 70 50Metal height/ 1.8 2.1 2.4 2.7 3width aspet ratioOn-hip lok 1.25 2.1 3.5 6 10frequeny (GHz)Wavelength(�m) 24000 14286 8571 5000 3000Metal 4 interonnetMinimum W(nm) 450 325 250 175 125R(
=�m) 0.082 0.14 0.2 0.36 0.64L(pH=�m) 0.99 1.02 1.05 1.08 1.10Ca(fF=�m) 0.040 0.040 0.040 0.040 0.039Cf (fF=�m) 0.11 0.11 0.12 0.12 0.12C(fF=�m) 0.062 0.070 0.079 0.088 0.097C(fF=�m) 0.21 0.22 0.23 0.25 0.26Table 1.1: NTRS predited tehnology trend and our estimated parasiti parametersfor Metal 4 interonnets. R is the unit length resistane, L is the unit lengthindutane, and Ca, Cf , C are the unit length area, fringing, oupling apaitanes,respetively. The total unit length apaitane is C = Ca + Cf + C.apaitane. Wire apaitane is undoubtedly a major omponent in determininginteronnet delay. Traditional methods only onsider interonnet area apaitaneas the unique soure of apaitane when the feature size is around 1�m. As thefeature size dereases, the wire beomes thinner but thiker, i.e., the wire width issmaller than the wire thikness. Suh trend is learly reeted as the inreasingwire height/width aspet ratio in Table 1.1. As a result, fringing apaitane be-omes more important than area apaitane. As it is shown in Figure 1.1, areaapaitane is due to the uniform eletrial �eld between wire plate and substrate,and fringing apaitane is due to the non-uniform eletrial �eld between side wallsand substrate. On the other hand, sine the spaing between neighboring wires alsoshrinks, oupling apaitane between two adjaent wires beomes another majoromponent of total apaitane. Coupling apaitane is inuened not only by thedereased spaing but also by the inreased height/width aspet ratio (Figure 1.1).2



Cross oupling between signals an a�et the propagation delay signi�antly, andalso ause fault swith (rosstalk noise), whih is a potential problem in high speediruits [64℄. Indutane e�et is another important fator whih an a�et interon-net delay signi�antly. While suh e�et is not prominent in loal interonnets,it is more evident in longer interonnets, suh as those in power supply distribu-tion, lok distribution and Multi-hip module (MCM) interonnets [21, 41℄. It isneessary to take all these e�ets into aount when we analyze interonnet delay.
Wire Wire Wire

Oxide

Substrate

A single wire Two coupled wiresFigure 1.1: Capaitane models for a single wire and two adjaent wires.Not only there is a trend in tehnology generation, but also interonnetdelay models used in layout design have evolved from simple models to sophistiatedmodels. Interonnet delay modeling is ruial in layout design, beause it is thefundamental part of layout optimization tehniques suh as wire-sizing optimization,bu�er insertion and performane driven routing [13, 53℄. The Elmore delay model[22℄ is the most ommonly used delay model in VLSI layout design. The advantageof the Elmore delay is that it has simple algebrai form and linear omputationalomplexity in terms of the number of nodes in the iruit. The Elmore delay is alsoeasy to be represented as a funtion of iruit design parameters suh as wire widthand length.However, sine the Elmore delay model has limited auray, some othermore aurate delay models are neessary and they have already been proposed. In3



all these models, alulating high order moments or poles in the transfer funtion isthe essential part. Depending on the method on alulating moments/poles, thesedelay models an be lassi�ed into two main ategories, one is the lumped iruitapproximation based, and the other is the transmission line model based. In thelumped iruit approximation, eah wire is divided into several idential segments,then eah segment is modeled as a lumped RC/RLC iruit segment. Algorithmssuh as those in [26, 45, 53, 56℄ are proposed to alulate moments/poles for suhlumped iruits. In general, the more number of segments the more aurate themodel is, but it takes longer in omputation. Another disadvantage of the lumpediruit approah is that it an produe spurious osillations that appear due tothe resonant behavior of segments. Sine the number of segments is related tothe signal wavelength � (� = Tr, where  is the speed of light and Tr is thesignal transition time), the lumped iruit approximation is eÆient and auratein dealing with eletrially short wires, where the wire length is muh smaller thanthe signal wavelength. The transmission line model, on the other hand, desribesvoltages and urrents at any position on a wire by telegraph's equations [36℄. Thetransfer funtion is obtained by solving these di�erential equations. Comparing withthe lumped iruit approximation, the transmission line model does not depend onsignal wavelength or rising time and also has higher auray.Another important tehnology trend is that, as the feature size is saleddown, the operating frequeny is also gradually inreased from around 1GHz todayto 10GHz in 2011. As a result, the interonnet wire length beomes omparableto the signal wavelength. Some estimated signal wavelengths are listed in Table1.1, where we assume the signal rising time is one-tenth of the yle time. Notethat some signals in reality have faster rising time than our estimations. As aresult, the indutive impedane beomes omparable to wire parasiti resistane,espeially in wide interonnets, suh as upper metal lines and MCM interonnets4



[4, 48℄. Therefore the transmission line e�ets suh as reetions, dispersion andringing beome evident. These e�ets an not be haraterized by the lumpediruit approximation.A diret impat on layout design due to tehnology saling is that, tehniqueswhih are aiming at reduing interonnet delay and rosstalk e�ets beome nees-sary and important [13℄. Wire-sizing optimization is one of suh tehniques whihan redue interonnet delay. The algorithms shown in [16, 17℄ divide a wire intoseveral segments and assign eah wire segment with a proper width suh that theElmore delay [22℄ is minimized. As the number of segments beomes large, it is fur-ther found that ontinuous wire-sizing is more eÆient. In ontinuous wire-sizing,the wire shape is desribed as a ontinuous funtion f(x), and the objetive is to �ndf(x) suh that delay is minimized. In [7℄ and [25℄, it is found that the optimal shapeunder the Elmore delay model is an exponential funtion if area apaitane is theonly soure of apaitane. With fringing apaitane onsideration, it is shown in[9℄ that the optimal wire shape funtion an be expressed in terms of the Lambert0sW funtion.Bu�er insertion is another e�etive tehnique whih an not only redue in-teronnet delay, but also improve the signal waveform by reduing the transitiontime. In [68℄, the bu�er's position is determined by a dynami programming al-gorithm, where it uses the Elmore delay model and a linear gate model. Othersimilar algorithms based on higher order delay models are proposed in [2, 52, 54℄.Bu�er insertion is also found an eÆient tehnique in minimizing oupled noise[1, 8, 50℄. Moreover, algorithms for simultaneous bu�er insertion and wire-sizinghave also been proposed. Under the Elmore delay model and a linear gate model,losed form solutions for delay minimization by simultaneous wire-sizing and bu�erinsertion/sizing are proposed in [10, 11℄.This thesis presents some optimization results on both ontinuous wire-sizing5



and bu�er insertion. In Chapter 2, we present some wire-sizing results under theElmore delay model. A losed form solution is presented in setion 2.1. Our methodan not only deal with uni-diretional wires but also bi-diretional wires. Sine auni-diretional wire is a speial ase, we present the solution for bi-diretional wires.In setion 2.2, we determine the optimal wire shape for a wire with one or two neigh-boring wires. Although our goal in interonnet optimization is wire-sizing underthe transmission line model, the wire-sizing results under the Elmore delay modelare still useful. They an provide very good initial solutions for optimizations underthe transmission line model. In Chapter 3, we onsider a speial ase, where fringingapaitane and indutane are not onsidered. In Chapter 4, both fringing apai-tane and indutane are taken bak into onsideration, but a di�erent tehnique isused to solve the transmission line equations. We also derive analytial formulas forestimating overshoot/undershoot voltages. An extension to transmission line trees ispresented in setion 4.8. In Chapter 5, a fast and aurate delay estimation methodunder the transmission line model and k-fator equations is developed for bu�eredinteronnets. In Chapter 6, we present a graph based algorithm for optimal bu�erinsertion under aurate delay models.
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Chapter 2
Wire-sizing under the ElmoreDelay Model

2.1 Closed Form Solution on Wire-sizingWire-sizing optimization is one of the e�etive tehniques whih an redue inter-onnet delay. In [7℄ and [25℄, it is found that the optimal shape under the Elmoredelay model is an exponential funtion, if the area apaitane is the unique soureof wire apaitane. With fringing apaitane onsideration, it is shown in [9℄ thatthe optimal wire shape funtion an be expressed in terms of the Lambert0s W fun-tion 1 in a losed form. At the same time, Fishburn in [24℄ independently presenteda power series solution to the optimal shape funtion.In this setion, we present a losed form solution on wire-sizing by usingalulus of variations. Comparing with previous studies, our method an not onlydeal with uni-diretional wires but also bi-diretional wires (bi-diretional wires are1The Lambert0s W funtion [20℄ was �rst introdued by Euler in 1779 when he studied Lambert'stransendental equation. W (x) funtion is de�ned as the value of w that satis�es wew = x. TheLambert's W funtion is a smooth funtion. It is available as a standard library funtion in MapleV [38℄. 7



present in interonnets with multiple soures [12, 13, 18℄). Sine a uni-diretionalwire is a speial ase of bi-diretional wires, we present results on bi-diretionalwires and show how to redue to uni-diretional wires. Given a bi-diretional wireof length L, let f(x) be the width of the wire at position x, 0 � x � L. Let TDR bethe right-to-left delay. Let TDL be the left-to-right delay. Let TBD = �TDR + �TDLbe the total weighted delay where � � 0 and � � 0 are given weights suh that�+ � = 1. We determine f(x) suh that TBD is minimized. Our study shows that,if � = �, the optimal shape funtion is f(x) = , for some onstant ; if � 6= �,the optimal shape funtion an be expressed in terms of the Lambert0s W funtionas f(x) = � f20 ( 1W (�ae�bx) + 1), where f is the unit length fringing apaitane,0 is the unit area apaitane, a and b are onstants in terms of the given iruitparameters. If � = 0 or � = 0, our result gives the optimal shape funtion for auni-diretional wire [29, 31℄.2.1.1 Capaitane ModelFor a uniform wire segment with width W and thikness T , Sakurai's formula [62℄gives a good approximation for alulating the unit length apaitane,C�ox = 1:15� WTox�+ 2:28� TTox�0:222 (2.1)where �ox = 3:9�8:855�10�14F=m is the dieletri onstant of the insulator (e.g.,SiO2), Tox is the thikness of silion dioxide. The formula an be simpli�ed as:Ctot = 0W + f (2.2)where 0 = 1Tox 1:15�ox is the unit area apaitane, and f = �ox2:80( TTox )0:222represents the unit length fringing apaitane.
8
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Lemma 1TD = Z L0 (0f(x) + f )�Rd + Z Lx r0dtf(t)�dx+ Cl�Rd + Z L0 r0dxf(x)� (2.4)Lemma 1 an be proved by hanging the order of integration in (2.3). It followsfrom Lemma 1 that TD is also equivalent to the sum over all segment apaitanemultiplied by its upstream resistane. In the next subsetion, we will start fromthe delay expression in (2.4) and give a losed form solution for the optimal shapefuntion. The reason of not using the delay expression in (2.3) will be explainedlater.2.1.3 Optimal Wire Shape Funtion
21 21 21

β α

f(x)
R R

C 1 C 2Figure 2.2: A bi-diretional wire, with R1 and R2 as the driver resistanes, and C1and C2 as the load apaitanes.For a bi-diretional wire shown in Figure 2.2, R1 and R2 are the driverresistanes, and C1 and C2 are the load apaitanes. Let TDR be the delay whenthe signal is transmitted from right to left. Let TDL be the delay when the signal istransmitted from left to right. Aording to Lemma 1, we haveTDR = Z L0 (f + 0f(x))�Z Lx r0dtf(t) +R2�dx+ C1�R2 + r0 Z L0 dxf(x)�TDL = Z L0 (f + 0f(x))�Z x0 r0dtf(t) +R1�dx+ C2�R1 + r0 Z L0 dxf(x)�10



We de�ne the total weighted delay TBD asTBD = �TDR + �TDL (2.5)where � � 0 and � � 0 are given weights suh that �+ � = 1.In the rest of this subsetion, we will derive the optimal wire shape funtionso that the weighted delay TBD is minimized.Lemma 2 For a bi-diretional wire, if � = �, the optimal shape funtion is theonstant funtion f(x) = sr0fL+ r0(C1 +C2)0(R1 +R2) (2.6)Proof: We introdue u(x) = Z Lx dxf(x) , so that f(x) = � 1u0(x) , u(L) = 0, andZ x0 dxf(x) = u(0) � u(x). TBD in (2.5) an be rewritten as an integration overx; u(x); u0(x) asTBD = �R2(C1 + fL) + �R1(C2 + fL) + Z L0 F (u(x); u0(x))dxwhere F (u(x); u0(x)) = �r0(�C1 + �C2)u0(x)� 0u0(x) � (�R2 + �R1)+ r0(f � 0u0(x))� (�u(0) + (�� �)u(x))Note that TBD is a funtional (i.e., a funtion of funtion). Based on alulus ofvariations [23℄, the neessary ondition to minimize TBD is that u(x) must satisfythe Euler's di�erential equation:Fu(x; u(x); u0(x)) = ddxFu0(x; u(x); u0(x)) (2.7)Sine F (x; u(x); u0(x)) in our problem does not ontain x expliitly, the Euler'sequation beomes F � u0Fu0 = 11



i.e., � 20u0(x)R12 + r0(f � 20u0(x) )(�u(0) + �u(x)) =  (2.8)where  is a onstant to be determined, R12 = �R2 + �R1, and � = � � �. Byde�ning � = � r0f�u(0) (2.9)R�12 = R12 + r0�u(0) (2.10)where u(0) is a onstant, equation (2.8) an be simpli�ed as� � r0f�u(x)�20(R�12 + r0�u(x))u0(x) = 1 (2.11)Sine � = �, i.e., � = 0, equation (2.11) thus beomes��20R�12u0(x) = 1Obviously, the solution is f(x) = � 1u0(x) = �20R�12 . This means the optimal shapefuntion is a uniform width funtion. In fat, the onstant an be determineddiretly from the expression of TBD. If we let f(x) = f , where f is a onstant, thenthe delay an be written as,TBD = �R2(C1 + fL) + �R1(C2 + fL) + r0Lf (�C1 + �C2)+ 0fL(�R2 + �R1) + L2r02f (f + 0f)Thus dTBDdf = 0 gives f = sr0fL+ r0(C1 + C2)0(R1 +R2) 2Lemma 3 Given a bi-diretional wire, if � 6= �, the optimal shape funtion isf(x) = � f20 ( 1W (�ae�bx) + 1) (2.12)12



where W (x) is the Lambert0s W funtion, anda = R�12fR�12f + � � exp(2r00�L�R�12fR�12f + � ) (2.13)b = 2�r00R�12f + � (2.14)Proof: Under the ondition u(L) = 0, the solution to equation (2.11) isu(x) = R�12�r0 hexp(�r0(fu� 20(x� L))R�12f + � )� 1i (2.15)The wire shape funtion f(x) is thusf(x) = � 1u0(x) = R�12f + �R�12 + r0u(x) 120 � f20 (2.16)Rearranging the terms in equation (2.15), we getexph�20r0(x� L) +R�12fR�12f + � i � exphr0fu+R�12fR�12f + � i= R�12f + �R�12f r0fu+R�12fR�12f + � (2.17)If we let y = r0fu+R�12fR�12f + �A = R�12fR�12f + � � exph�20r0(x� L) +R�12fR�12f + � iwe an rewrite equation (2.17) asAey = y; i.e., (�y)e�y = �A (2.18)From the de�nition of the Lambert0s W funtion, W (x) is de�ned by WeW = x. Interms of W funtion, equation (2.18) beomes y = �W (�A). Expanding y in termsof u, we have u(x) = �(R�12r0 + �r0f )W (�A)� R�12r0 (2.19)Substituting (2.19) into (2.16) and observing that A = ae�bx, we getf(x) = � f20 ( 1W (�ae�bx) + 1) 213



Remark 1 f(x) depends on two parameters a and b. As it an be found from thede�nitions in (2.9), (2.10), (2.13) and (2.14), in order to get the values of a and b,we should know the values of the other two onstants  and u(0) �rst. In Lemma 5,we will derive the orresponding nonlinear equations for solving  and u(0).Remark 2 It is well known that W (x) is monotonially inreasing in the interval[�e�1;1℄. Beause a > 0 and when � > �, b > 0, W (�ae�bx) inreases as x in-reases. Therefore, f(x) is monotonially inreasing in the interval [0; L℄. Similarly,when � < �, f(x) is a monotonially dereasing funtion in the interval [0; L℄. Basedon the above analysis and Lemma 2, a shemati solution of f(x) an be skethedout as shown in Figure 2.3.
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Figure 2.3: The optimal shape funtion for a bi-diretional wire. When � = � = 0:5,the optimal shape is a uniform width funtion. When � > �, f(x) is monotoniallyinreasing in [0; L℄. When � < �, f(x) is monotonially dereasing in [0; L℄.Without loss of generality, we assume � > � in the rest of the setion. Beforewe derive Lemma 5, �rst we give the following relations whih will be used in derivingLemma 5.Lemma 4 Given the optimal wire shape funtion f(x) = � f20 ( 1W (�ae�bx) + 1),we have Z L0 dxf(x) = 20bf (w1 � w0) (2.20)14



Z L0 Z Lx dtf(t)dx = 20bf w1L+ 0b2f (w21 � w20) + 20b2f (w1 � w0) (2.21)where w0 = W (�a) (2.22)w1 = W (�ae�bL) = � R�12fR�12f + � (2.23)Proof: Let Y =W (�aebx). From the de�nition of W funtion, we haveY eY = �ae�bxDi�erentiating the above, we get dYdx = � bY1 + YBy hanging the variable from x to Y , the left hand side of equation (2.20) beomesZ Lx dxf(x) = 20bf Z Y (L)Y (x) dY= 20bf [W (�ae�bL)�W (�ae�bx)℄Therefore, Z L0 dxf(x) = 20bf (w1 � w0)Now, we derive the seond equation in the lemma statement.Z L0 Z Lx dtf(t)dx = 20bf Z L0 [w1 �W (�ae�bx)℄dx= 20bf w1L� 20bf Z L0 �Y + 1b dY= 20bf w1L+ 0b2f (w21 � w20) + 20b2f (w1 � w0) 2To solve the two unknown parameters  and u(0), we have the followinglemma. 15



Lemma 5 The two onstants u(0) and  are the roots of the following two nonlinearequations1� (2C21f + �L+ �w0b + �b )n[ab2� (2�L+ 0)� �a�0R�12 du(0)dz ℄dw0da � w0o�(2C21f + �L+ �w1b + �b )�f0� du(0)dz + L+ 1b (w1 � w0) = 0 (2.24)u(0) = R�12r0� hexp( �r0R12f + (fu(0) + 20L))� 1i (2.25)where 0 = �=(r00) (2.26)R0 = R�12f=(r00) (2.27)C21 = �C1 + �C2 (2.28)dw0da = w0a(1 + w0) (2.29)du(0)dz = �R12 + r0�u(0)R0 + 0 � R0u(0) + 2LR�12=r0R120 �R0r0�u(0) (2.30)Proof: Equation (2.25) is derived diretly from (2.15) by setting x = 0, where wemake use of the relation R�12f + � = R12f + . To determine the onstant , wesubstitute f(x) bak into the delay expression in (2.5). With the help of the Euler'sequation (2.8), TBD in (2.5) an be written asTBD = �R2(C1 + fL) + �R1(C2 + fL) + 12L+ Z L0 12r0f�� Z L0 dtf(t) + � Z Lx dtf(t)�dx+ (�C1 + �C2) Z L0 r0f(x)dxLet T 0BD = TBD=(r00), z = =(r00), and make use of Lemma 4 and (2.26-2.28),then the delay an be simpli�ed asT 0BD = R12 (C1 + fL)r00 + �R1(C2 � C1)r00 + 12Lz + 2C21bf (w1 � w0)+ Lb (�w1 � �w0) + �2b2 (w21 � w20) + �b2 (w1 �w0) (2.31)16



Equation (2.24) omes from dT 0BDdz = 0. The derivative dT 0BDdz an be alulated asdT 0BDdz = �T 0BD�z + �T 0BD�(w1=b) d(w1=b)dz + �T 0BD�b dbdz+ �T 0BD�(w1=b2) d(w1=b2)dz + �T 0BD�(w0=b) d(w0=b)dz + �T 0BD�(w0=b2) d(w0=b2)dzwhere dbdz = �12b2d(w1=b)dz = � �f20� du(0)dzd(w1=b2)dz = 1b d(w1=b)dz + w12�bd(w0=b)dz = � 12�n[ab2� (2�L+ 0)� �a�0R�12 du(0)dz ℄� dw0da � w0od(w0=b2)dz = 1b d(w0=b)dz + w02�bdu(0)dz in equation (2.30) is diretly derived from (2.25). Substituting all these intodT 0BDdz = 0, we then get equation (2.24). 2In pratie, we employ bisetion method to solve these two nonlinear equa-tions in Lemma 5, beause we found it more eÆient than the Newton Raphsonmethod in our experiments. Algorithms for alulating the W funtion an befound in [20℄. The eÆieny of bisetion method depends on the initial root range,whih an be estimated from the following lemma.Lemma 6 If 0 is the root of nonlinear equation (2.24), it must satisfy0 � 2�L�R0W � �R0 (2.32)In terms of z, where z = =(r00), this relation isz � 2�L�R12f=(r00)W � � �u(0)fW �0 � R12fr00 (2.33)17



where W � =W (e�1 2�L�R0R0 ) and R0 is as de�ned in (2.27).Proof: This idea originates from the de�nition of the W funtion. For the funtionW (x), the range of x is not from �1 to +1, but from �e�1 to +1 instead. Thereare two di�erent W funtion values in (2.24) need to be alulated, namely w0 andw1, i.e., W (�a) andW (�ae�bL). Therefore, the onstraint on x inW funtion givesa limit on the values of a and b, whih depend on the root 0 that we are �nding.Obviously, �a < �ae�bL, thus we need only onsider the onstraint on w0, i.e., weneed to know what kind of onstraint on 0 an satisfy �a � �e�1. In terms of 0,it is R0R0 + 0 � exp(2�L�R0R0 + 0 ) � e�1If we let y = 2�L�R0R0 + 0 , then the above inequality is simpli�ed asyey � e�1 2�L�R0R0i.e., y �W (e�1 2�L�R0R0 ) (2.34)There is no problem in alulating theW funtion in (2.34), sine L is always positiveand thus the term inside this W funtion is always larger than �e�1. Substituting0 bak into (2.34), then we �nd the onstraint on root 0,0 � 2�L�R0W � �R0 (2.35)To get (2.33), we substitute (2.26) and (2.9) into (2.35). In the above, we haveimpliitly assumed that 2�L�R0 > 0. In fat, the same inequality an be proved if2�L�R0 < 0. 2So far, we have determined the optimal shape funtion for a bi-diretionalwire. Uni-diretional wire optimization, whih has been studied in [9, 24℄, an be18



thought of as a speial ase of bi-diretional wire optimization with either � = 0 or� = 0. The authors in [9℄ give a losed form optimal wire shape funtion, and theauthor in [24℄ gives a power series solution. Based on Lemmas 3 and 5, it is easy toget the following results for a uni-diretional wire by setting � = 1, � = 0.Lemma 7 Given a uni-diretional wire with driver resistane Rd and load apai-tane Cl, the optimal shape funtion isf(x) = � f20 ( 1W (�ae�bx) + 1) (2.36)where a = RdfRdf +  � exp(2r00L�RdfRdf +  )b = 2r00Rdf + The onstant  is the root of the following nonlinear equation�(2Clf + w0b + 1b )�w0 � 12ab(2L+ r00 )dw0da �+ L+ 1b (w1 � w0) = 0 (2.37)where w0 = W (�a) (2.38)w1 = W (�ae�bL) = � RdfRdf +  (2.39)Remark 3 The wire shape funtion in (2.36) is equivalent to but looks di�erentfrom the one in [9℄ (where f(x) = �f20 ( 1W ( �fae�bx ) +1), and a and b are oeÆients).This is beause, the derivation in [9℄ was based on the assumption that the driver ison the left end of the wire, whereas here we assume it is on the right end. However,after we substitute x with x0 = L� x into equation (2.36) and rearrange the terms,(2.36) beomes f(x0) = �f20 ( 1W ( �fa0e�b0x0 ) + 1), where a0 and b0 are oeÆients. f(x0)is now onsistent with f(x) in [9℄. Furthermore, we �nd that the two oeÆientsin [9℄ rely on solving two nonlinear equations, but ours rely on solving only onenonlinear equation. 19



Remark 4 Comparing with the optimal shape funtion of bi-diretional wire inLemma 3, the optimal uni-diretional wire shape funtion has the same form ofsolution. But the uni-diretional wire shape funtion only depends on one onstant, whereas the bi-diretional wire shape funtion depends on two onstants a and b.Remark 5 Fishburn in [24℄ also used alulus of variations to determine the optimalfuntion for a uni-diretional wire. But his result is based on the delay expressionin (2.3). The Euler's di�erential equation in [24℄ is0u(x) + 12fx+ Cl = u0(x) (2.40)where u(x) is de�ned as u(x) = R x0 f(t)dt, whih is di�erent from our de�nition.However, it is diÆult to obtain a losed form solution to equation (2.40), andhene Fishburn had to rely on series expansion instead. However, if we start fromthe delay expression (2.4), and de�ne u(x) in the same way as what we did in Lemma2, the Euler's equation will be�20(Rd + r0u(x)) + r0fu(x)u0(x) = u0(x) (2.41)whih is equivalent to (2.11). This an be solved analytially, and the solution hasbeen shown in (2.36).2.1.4 Extension to Minimizing the Maximum DelayIn previous subsetions, we have determined the optimal shape whih minimizes thetotal weighted delay TBD = �TDR+�TDL, where TDR and TDL are delays from twoopposite diretions. In this subsetion, we show that our study an be extended todealing with another optimization objetive in whih the maximum delay of TDRand TDL is minimized. The problem (whih is sometimes alled the primal problem)an be stated as follows:Minimize MaxfTDR; TDLg20



By introduing a variable T , the problem is also equivalent to:Minimize TSubjet to TDR � TTDL � TFollowing the Lagrangian relaxation tehnique [5℄, we introdue two non-negativevariables � and � whih are alled Lagrangian multipliers for eah onstraint. TheLagrangian funtion assoiated with the primal problem is:L = T + �(TDR � T ) + �(TDL � T ) (2.42)= (1� �� �)T + �TDR + �TDL (2.43)By Kuhn-Tuker onditions [5℄, let f(x) be the optimal shape funtion for the primalproblem. Then there exists � and � suh that8>>>>>>>>>>><>>>>>>>>>>>:
rT = �+ � � 1 = 0rf(x) = r(�TDR + �TDL) = 0� � 0; � � 0�(TDR � T ) = 0�(TDL � T ) = 0 (2.44)

Sine TDR and TDL are funtionals, rf(x)(�TDR + �TDL) = 0 implies the Euler'sdi�erential equation (2.7), i.e., F � u0Fu0 = . Therefore, f(x) in minimizing themaximum delay still has the form:f(x) = 8><>: � f20 ( 1W (�ae�bx) + 1) for � 6= �onstant for � = � (2.45)Aording to Lemma 7, f(x) depends on a onstant , whih an be determined fromequations (2.44). Also note that in solving equation (2.44), not all two onstraintswill be ative at the same time (an inequality onstraint like TDR � T is said to beative if TDR = T and inative if TDR < T ). In fat, there may be three di�erentases. 21



1. � 6= 0 and � 6= 0: all onstraints are ative, i.e., TDR = T and TDL = T whihyield TDR = TDL. Aording to Lemma 7, TDR = TDL is in fat a nonlinearequation in .  an thus be obtained by solving suh nonlinear equation. Thefollowing equations are useful in solving equation TDR = TDL.TDR = C1R2 + fR2L+ (fR22 + 0r0w1b )Mb+ r00b2 (N + 2bw1L) + r00Lb (2.46)TDL = C2R1 + fR1L+ (fR12 � 0r0w1b )Mb� r00b2 (N + 2bw0L)� r00Lb (2.47)where M = w0 � w1 � 2bL� 1w0 + 1w0 (2.48)N = 12w21 � 12w20 + w1 � w0 (2.49)To obtain the Lagrangian funtion L for this ase, � and � have to be solvedthrough equations �rTDR + �rTDL = 0 and �+ � = 1.2. � = 0 and � 6= 0 or � 6= 0 and � = 0: in either ase, one of the onstraints isative. The optimization problem is redued to uni-diretional optimization.Let's denote the Lagrangian funtions in eah of these three ases as L1, L2and L3. The �nal solution on f(x) is the funtion where its Lagrangian funtion isthe maximum among L1, L2 and L3.2.1.5 Experimental ResultsIn this subsetion, we will show some experimental results. The parameters in ourexperiment are hosen as follows: L = 30; 000�m, r0 = 0:03
=2, 0 = 0:2fF=�m2,f = 20fF=�m, R1 = 100
, C2 = 200pF , R2 = 10
, and C1 = 20pF . We hoose22



R1 6= R2, C1 6= C2 and R1 �C2 6= R2 �C1 suh that the iruit is asymmetri. Wewant to show by our experiments that in this ase, the optimal shape is uniform if� = �. If the iruit is symmetri, one intuition may guess that the wire shape isuniform just beause of symmetry of the iruit. Further intuitionmay say that if theiruit is asymmetri, the optimal shape would look like a bowl shape, whih is theaverage of two optimal shapes solved from eah diretion. We have already shownin Lemma 2 and Remark 2 that suh intuition is not orret. For our experiments,we hoose several values for � ranging from 0.5 to 1.0. The alulated minimumweighted delays TBD are summarized in Table 2.1.� � Weighted delay (ns)0.9 0.1 27.270.8 0.2 37.940.7 0.3 48.200.6 0.4 58.15Table 2.1: Weighted delays alulated for bi-diretional wires.Beause the iruit is asymmetri and obviously the left-to-right delay dom-inates over the right-to-left delay, the minimum weighted delay is very sensitive tothe weights. The minimum weighted delay for � = 0:6 is twie bigger than delayfor � = 0:9. The inreased delay is primarily ontributed by the left-to-right delay.The alulated optimal wire shape funtions are shown in Figure 2.4. This�gures shows learly that when � = �, the optimal shape is in fat uniform. When� = 1 and � = 0, bi-diretional wire redues to uni-diretional wire. We also observethat as � inreases from 0.5 to 1.0, the driver-end width inreases.
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