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As the VLSI technology has been scaled down to 0.18um in recent years and
is expected to be scaled down to 0.05um in the near future, interconnect delay
becomes an important factor in achieving high performance. In deep sub-micron
design, interconnect delay is shown to be 10 to a few hundred times bigger than
the intrinsic gate delay for a global interconnect, and thus dominates the circuit
delay. To reduce interconnect delay, wire-sizing and buffer insertion/sizing are two
effective techniques. One of the approaches to wire-sizing is continuous wire-sizing.
In continuous wire-sizing, the shape of a wire is described by a continuous function,
and the objective is to find a shape function which minimizes delay or minimizes
area subject to a delay bound.

In the first part of this dissertation, we present some continuous wire-sizing
results under the Elmore delay model. Comparing with previous work, our algorithm
can not only deal with uni-directional wires but also bi-directional wires, where both

solutions are in closed form. We also develop an efficient algorithm to determine the

vi



optimal wire shape for wires with one or two neighboring wires. These results are
useful in optimization under the transmission line model, since they can give very
good initial solutions.

However, since it is well known that the Elmore delay model is not an accu-
rate delay model, those optimal results determined under the Elmore delay model
may be inferior. In the second part of this dissertation, we present some wire-sizing
results under the transmission line model. For a special case where fringing capac-
itance and inductance are not considered, we solve the transmission line equations
analytically and derive a closed form solution on the transient response for an expo-
nential wire shape f(z) = ae %®. We then determine a and b such that either delay
is minimized or area is minimized subject to a target delay bound. For a general
case where fringing capacitance and inductance are considered, we solve the trans-
mission line equations by using the Picard-Carson method. We then develop a three
pole based delay model. Analytical expressions for estimating delay at any thresh-
old voltage and overshoot/undershoot voltage are further derived. The optimal
wire shape is determined to minimize delay or area subject to undershoot voltage
constraint. To calculate delays for interconnects with buffers inserted, we combine
the wire delay model under the transmission line model with a buffer macromodel
(k-factor equations) to provide a fast and accurate delay estimation method.

In the third part of this dissertation, we present a graph based algorithm
for optimal buffer insertion under accurate delay models. The algorithm determines
the number of buffers and their locations on a wire such that some optimization
objective is satisfied. Two typical examples of such optimization objectives are
minimizing the 50% threshold delay and minimizing the transition time. Both can
be easily determined in our algorithm. We show that the buffer insertion problem
is a shortest path problem. Our algorithm can be easily extended for simultaneous

buffer insertion and wire-sizing, and complexity is still polynomial. The algorithm

vil



can also be extended to deal with problems such as buffer insertion subject to

transition time constraints at any position along the wire.
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Chapter 1

Introduction

As it is predicted by National Technology Roadmap for Semiconductors (NTRS)
[3], the feature size of VLSI devices is gradually scaled down from 180nm in 1999,
to 130nm in 2002, and is expected to be further reduced to 50nm in 2011. In Ta-
ble 1.1, we list some main characteristics for each technology generation in NTRS
and some estimated parasitic parameters for Metal 4 interconnects. These parasitic
parameters (e.g., C, and Cy) are estimated by using Sakurai’s approximated for-
mulas [62]. As the feature size decreases, chips become more congested and many
new challenging issues arise. One challenging issue is that interconnect delay has
dominated over gate delay in determining circuit performance. According to the
simple scaling rule described in [4], if devices and interconnects are all scaled down
by a factor S, the intrinsic gate delay is reduced by a factor S, and the delay of
local interconnects remains almost the same, but the delay of global interconnects
is increased by a factor of S2. It is estimated that at least 20% of the cycle time is
consumed by interconnect delay [21].

As technology goes on to deep sub-micron, characterizing interconnect delay
is also becoming more and more complicated. Roughly speaking, interconnect delay

is proportional to driver resistance, wire resistance, wire capacitance as well as load



Year 1999 | 2002 | 2005 | 2008 | 2011
Technology(nm) | 180 | 130 | 100 | 70 | 50

Metal height/ 1.8 2.1 24 2.7 3
width aspect ratio
On-chip clock 1.25 2.1 3.5 6 10

frequency (GH?z)
Wavelength(um) | 24000 | 14286 | 8571 | 5000 | 3000

Metal 4 interconnect
Minimum W(nm) | 450 325 250 175 125

R(Q/pm) 0.082 [ 0.14 |02 |036 |0.64
L(pH/pum) 0.99 | 1.02 |1.05 | 1.08 | 1.10
C.(FF/um) 0.040 | 0.040 | 0.040 | 0.040 | 0.039
Cs(fF]um) 0.1 |01l 012 |o0.12 |0.12
C.(fF/um) 0.062 | 0.070 | 0.079 | 0.088 | 0.097
C(fF/um) 021 |0.22 |023 |025 |0.26

Table 1.1: NTRS predicted technology trend and our estimated parasitic parameters
for Metal 4 interconnects. R is the unit length resistance, L is the unit length
inductance, and C,, Cy, C. are the unit length area, fringing, coupling capacitances,
respectively. The total unit length capacitance is C = C, + Cf + C.

capacitance. Wire capacitance is undoubtedly a major component in determining
interconnect delay. Traditional methods only consider interconnect area capacitance
as the unique source of capacitance when the feature size is around lum. As the
feature size decreases, the wire becomes thinner but thicker, i.e., the wire width is
smaller than the wire thickness. Such trend is clearly reflected as the increasing
wire height/width aspect ratio in Table 1.1. As a result, fringing capacitance be-
comes more important than area capacitance. As it is shown in Figure 1.1, area
capacitance is due to the uniform electrical field between wire plate and substrate,
and fringing capacitance is due to the non-uniform electrical field between side walls
and substrate. On the other hand, since the spacing between neighboring wires also
shrinks, coupling capacitance between two adjacent wires becomes another major
component of total capacitance. Coupling capacitance is influenced not only by the

decreased spacing but also by the increased height/width aspect ratio (Figure 1.1).



Cross coupling between signals can affect the propagation delay significantly, and
also cause fault switch (crosstalk noise), which is a potential problem in high speed
circuits [64]. Inductance effect is another important factor which can affect intercon-
nect delay significantly. While such effect is not prominent in local interconnects,
it is more evident in longer interconnects, such as those in power supply distribu-
tion, clock distribution and Multi-chip module (MCM) interconnects [21, 41]. It is

necessary to take all these effects into account when we analyze interconnect delay.

ﬁwnem ﬁwne wirel
L omee TETTTRAY LT

Substrate

2

SS—
|

A singlewire Two coupled wires

Figure 1.1: Capacitance models for a single wire and two adjacent wires.

Not only there is a trend in technology generation, but also interconnect
delay models used in layout design have evolved from simple models to sophisticated
models. Interconnect delay modeling is crucial in layout design, because it is the
fundamental part of layout optimization techniques such as wire-sizing optimization,
buffer insertion and performance driven routing [13, 53]. The Elmore delay model
[22] is the most commonly used delay model in VLSI layout design. The advantage
of the Elmore delay is that it has simple algebraic form and linear computational
complexity in terms of the number of nodes in the circuit. The Elmore delay is also
easy to be represented as a function of circuit design parameters such as wire width
and length.

However, since the Elmore delay model has limited accuracy, some other

more accurate delay models are necessary and they have already been proposed. In



all these models, calculating high order moments or poles in the transfer function is
the essential part. Depending on the method on calculating moments/poles, these
delay models can be classified into two main categories, one is the lumped circuit
approximation based, and the other is the transmission line model based. In the
lumped circuit approximation, each wire is divided into several identical segments,
then each segment is modeled as a lumped RC/RLC circuit segment. Algorithms
such as those in [26, 45, 53, 56] are proposed to calculate moments/poles for such
lumped circuits. In general, the more number of segments the more accurate the
model is, but it takes longer in computation. Another disadvantage of the lumped
circuit approach is that it can produce spurious oscillations that appear due to
the resonant behavior of segments. Since the number of segments is related to
the signal wavelength A\ (A = ¢TI, where ¢ is the speed of light and 7 is the
signal transition time), the lumped circuit approximation is efficient and accurate
in dealing with electrically short wires, where the wire length is much smaller than
the signal wavelength. The transmission line model, on the other hand, describes
voltages and currents at any position on a wire by telegraph’s equations [36]. The
transfer function is obtained by solving these differential equations. Comparing with
the lumped circuit approximation, the transmission line model does not depend on
signal wavelength or rising time and also has higher accuracy.

Another important technology trend is that, as the feature size is scaled
down, the operating frequency is also gradually increased from around 1GHz today
to 10GHz in 2011. As a result, the interconnect wire length becomes comparable
to the signal wavelength. Some estimated signal wavelengths are listed in Table
1.1, where we assume the signal rising time is one-tenth of the cycle time. Note
that some signals in reality have faster rising time than our estimations. As a
result, the inductive impedance becomes comparable to wire parasitic resistance,

especially in wide interconnects, such as upper metal lines and MCM interconnects



[4, 48]. Therefore the transmission line effects such as reflections, dispersion and
ringing become evident. These effects can not be characterized by the lumped
circuit approximation.

A direct impact on layout design due to technology scaling is that, techniques
which are aiming at reducing interconnect delay and crosstalk effects become neces-
sary and important [13]. Wire-sizing optimization is one of such techniques which
can reduce interconnect delay. The algorithms shown in [16, 17] divide a wire into
several segments and assign each wire segment with a proper width such that the
Elmore delay [22] is minimized. As the number of segments becomes large, it is fur-
ther found that continuous wire-sizing is more efficient. In continuous wire-sizing,
the wire shape is described as a continuous function f(z), and the objective is to find
f(z) such that delay is minimized. In [7] and [25], it is found that the optimal shape
under the Elmore delay model is an exponential function if area capacitance is the
only source of capacitance. With fringing capacitance consideration, it is shown in
[9] that the optimal wire shape function can be expressed in terms of the Lambert's
W function.

Buffer insertion is another effective technique which can not only reduce in-
terconnect delay, but also improve the signal waveform by reducing the transition
time. In [68], the buffer’s position is determined by a dynamic programming al-
gorithm, where it uses the Elmore delay model and a linear gate model. Other
similar algorithms based on higher order delay models are proposed in [2, 52, 54].
Buffer insertion is also found an efficient technique in minimizing coupled noise
[1, 8, 50]. Moreover, algorithms for simultaneous buffer insertion and wire-sizing
have also been proposed. Under the Elmore delay model and a linear gate model,
closed form solutions for delay minimization by simultaneous wire-sizing and buffer
insertion/sizing are proposed in [10, 11].

This thesis presents some optimization results on both continuous wire-sizing



and buffer insertion. In Chapter 2, we present some wire-sizing results under the
Elmore delay model. A closed form solution is presented in section 2.1. Our method
can not only deal with uni-directional wires but also bi-directional wires. Since a
uni-directional wire is a special case, we present the solution for bi-directional wires.
In section 2.2, we determine the optimal wire shape for a wire with one or two neigh-
boring wires. Although our goal in interconnect optimization is wire-sizing under
the transmission line model, the wire-sizing results under the Elmore delay model
are still useful. They can provide very good initial solutions for optimizations under
the transmission line model. In Chapter 3, we consider a special case, where fringing
capacitance and inductance are not considered. In Chapter 4, both fringing capaci-
tance and inductance are taken back into consideration, but a different technique is
used to solve the transmission line equations. We also derive analytical formulas for
estimating overshoot/undershoot voltages. An extension to transmission line trees is
presented in section 4.8. In Chapter 5, a fast and accurate delay estimation method
under the transmission line model and k-factor equations is developed for buffered
interconnects. In Chapter 6, we present a graph based algorithm for optimal buffer

insertion under accurate delay models.



Chapter 2

Wire-sizing under the Elmore

Delay Model

2.1 Closed Form Solution on Wire-sizing

Wire-sizing optimization is one of the effective techniques which can reduce inter-
connect delay. In [7] and [25], it is found that the optimal shape under the Elmore
delay model is an exponential function, if the area capacitance is the unique source
of wire capacitance. With fringing capacitance consideration, it is shown in [9] that
the optimal wire shape function can be expressed in terms of the Lambert's W func-
tion ! in a closed form. At the same time, Fishburn in [24] independently presented
a power series solution to the optimal shape function.

In this section, we present a closed form solution on wire-sizing by using
calculus of variations. Comparing with previous studies, our method can not only

deal with uni-directional wires but also bi-directional wires (bi-directional wires are

'The Lambert's W function [20] was first introduced by Euler in 1779 when he studied Lambert’s
transcendental equation. W (z) function is defined as the value of w that satisfies we” = z. The

Lambert’s W function is a smooth function. It is available as a standard library function in Maple
V [38].



present in interconnects with multiple sources [12, 13, 18]). Since a uni-directional
wire is a special case of bi-directional wires, we present results on bi-directional
wires and show how to reduce to uni-directional wires. Given a bi-directional wire
of length L, let f(x) be the width of the wire at position z, 0 < x < L. Let Tpg be
the right-to-left delay. Let Tps, be the left-to-right delay. Let Tgp = oIpr + 81Dy
be the total weighted delay where @ > 0 and 3 > 0 are given weights such that
a+ B =1. We determine f(x) such that Tgp is minimized. Our study shows that,
if = 3, the optimal shape function is f(z) = ¢, for some constant c; if o # f3,

the optimal shape function can be expressed in terms of the Lambert's W function

as f(z) = —%(m + 1), where c; is the unit length fringing capacitance,

co is the unit area capacitance, a and b are constants in terms of the given circuit
parameters. If & = 0 or 8 = 0, our result gives the optimal shape function for a

uni-directional wire [29, 31].

2.1.1 Capacitance Model

For a uniform wire segment with width W and thickness T', Sakurai’s formula [62]

gives a good approximation for calculating the unit length capacitance,

C 14 T \o0.
= 1'15(T_0m) n 2.28(T—0x)0 222 (2.1)

where €, = 3.9 x 8.855 x 1074 F//cm is the dielectric constant of the insulator (e.g.,

Si02), Ty is the thickness of silicon dioxide. The formula can be simplified as:

Ciot = coW + cf (2.2)

where ¢y = %1.156033 is the unit area capacitance, and c; = 60$2.80(Tl)0'222
oxr oxr

represents the unit length fringing capacitance.



f (%)

Figure 2.1: The distributed circuit model for calculating the Elmore delay. Ry is
the driver resistance, and Cj is the load capacitance. R; and C; are the resistance
and capacitance of segment 7, respectively. (a) A nonuniform wire whose width is
given by a function f(z); (b) its corresponding distributed RC network.

2.1.2 The Elmore Delay Model for Non-uniform Wires

Given a non-uniformly sized wire whose width is given by a function f(x) as shown
in Figure 2.1(a), we partition it into n equal-length wire segments, each of length

Ax = %, and approximate it as a distributed RC network shown in Figure 2.1(b).

Let x; = iAz, 1 < ¢ < n. The capacitance and resistance of segment ¢ can be
approximated by C; = (cof(z;) + ¢f)Ax and R; = roAx/ f(x;), respectively, where
co is unit area capacitance, ¢y is unit length fringing capacitance, and rp is unit

resistance. The Elmore delay [22] of the distributed RC network [61] is given by

n n

Tp=> 7})@:; (Z(cof(:cj) +cp)Ax + C’l) + Rd(Cl + i(cof(:ci) + Cf)A:c)
i=1 ' i=1

j=i

where T is equivalent to the sum over all segment resistance (R;) multiplied by its

down stream capacitance ([22, 61]). As n — oo, Tp thus becomes

o = /OL %(f; Cof(t)dt_|_/0w Cfdt+C’l)da:+Rd(Cl+f0L(cof(:c)+Cf)d:c) (2.3)

z)
Moreover, Tp can be written in a slightly different way, which is given by the

following lemma.



Lemma 1

70 d:c

TD=/0L(c0f( 2) +¢5) Rd+/ dx+0, Rd+/ (2.4)

Lemma 1 can be proved by changing the order of integration in (2.3). It follows
from Lemma 1 that T is also equivalent to the sum over all segment capacitance
multiplied by its upstream resistance. In the next subsection, we will start from
the delay expression in (2.4) and give a closed form solution for the optimal shape
function. The reason of not using the delay expression in (2.3) will be explained

later.

2.1.3 Optimal Wire Shape Function

f(x)

Figure 2.2: A bi-directional wire, with R; and Ry as the driver resistances, and C
and Cs as the load capacitances.

For a bi-directional wire shown in Figure 2.2, R; and Ry are the driver
resistances, and C; and C5 are the load capacitances. Let Tpgr be the delay when
the signal is transmitted from right to left. Let Tpz, be the delay when the signal is

transmitted from left to right. According to Lemma 1, we have

TDR:/OL(Cf-I-Cof(SC))( . ;OTd;_'_R2)d$+CI(R2+TO/OL%)
’I“()dt

Ldm)

T, = | Ylep + wf @)( 7@

f( ) +R1)d56 +02(R1 —i—ro/o
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We define the total weighted delay Tsp as
Tgp = aIpr + BTpL (2.5)

where o > 0 and 3 > 0 are given weights such that a4+ 3 = 1.
In the rest of this subsection, we will derive the optimal wire shape function

so that the weighted delay Tpp is minimized.

Lemma 2 For a bi-directional wire, if o = 3, the optimal shape function is the

constant function

T'chL + 7'0(01 + 02)
f(z) \/ o+ Ba) (2.6)
Proof: We introduce u(z) = /Ld—x so that f(z) = 1 u(L) = 0, and
s . ) ol ’
% = u(0) — u(x). Tpp in (2.5) can be rewritten as an integration over
0o flz

z,u(z), v (z) as

Tsp = aR2(C1 + CfL) + BR1(Cy + CfL) + AL F(u(z),v (z))dz

where
Flu(e) (@) = —rofaCy+BCo)ul () = 725 x (aRz + BR1)
+ aley = ) % (Bul0) + (@ = Buz))

Note that Tpp is a functional (i.e., a function of function). Based on calculus of
variations [23], the necessary condition to minimize Tgp is that u(zr) must satisfy

the Euler’s differential equation:

Fy(z,u(z),u (z)) = %Fu/(m,u(x),u'(m)) (2.7)

Since F(z,u(z),u'(x)) in our problem does not contain z explicitly, the Euler’s

equation becomes

F—-uFy=c

11



ie.,
260 200
=) (Bu(0) + nu(z)) = c (2.8)
~u/(2) u'(z)
where ¢ is a constant to be determined, Rij2 = aRs + BR;, and n = a — 3. By

——Rio+ 7‘0( cf —

defining

¢ = c—roceBu(0) (2.9)

12 = Riz+roBu(0) (2.10)

where 4(0) is a constant, equation (2.8) can be simplified as

* —
c 7'00f77u(37) u'(x) -1

—2¢o(R35 + ronu(z)) (2.11)

Since a = S, i.e., n = 0, equation (2.11) thus becomes

*

!
- =1
“2eorp, @

1 __c
u'(z)  2coRyy’
function is a uniform width function. In fact, the constant can be determined

Obviously, the solution is f(x) = — This means the optimal shape

directly from the expression of Tgp. If we let f(x) = f, where f is a constant, then

the delay can be written as,

Tgp = aRy(C1+csL)+ BRi(Co+cyL) +

2

f (Oécl + BC3)

+ cof Lok + BR) + =52 e + o)

Thus dE?D =0 gives

fe \/TOCfL +ro(C1 + Cs)

C() Rl + R2)
O
Lemma 3 Given a bi-directional wire, if o # 3, the optimal shape function is
cf 1
flz)=— +1) (2.12)

2o W (—aeb2)

12



where W (z) is the Lambert's W function, and

Riycy 2roconL — Riscy

= . 2.13
¢ Riycy +c* exp( Riscy +c* ) (2.13)
2nroco
b = —/———— 2.14
Riscp +c* (2.14)
Proof: Under the condition u(L) = 0, the solution to equation (2.11) is
R} -2 —L
u(z) = —12 {ezp(nro(Cfu* co(:v* ))) B 1] (2.15)
nTo Riscp +c
The wire shape function f(z) is thus
1 Riscp +c* 1 c
fla) = ——— = 122 — -1 (2.16)

u'(z) - Ry, +rou(x)2¢pg  2cp

Rearranging the terms in equation (2.15), we get

exp [_ 2¢pro(z — L) + szcf] Con [TOCfu + Rbcjc]
Riscy +c* Riscy + ¢
_ Riye + " rocru + Rigey (2.17)
RI2Cf RI2Cf + C* '
If we let
_ rocju+ Risey
~ Riyey e
Ri,c 2coro(z — L) + Risc
A= g e R ]
126f T ¢ 12€f T ¢
we can rewrite equation (2.17) as
AeY =y, ie., (—y)e ¥ =—-A (2.18)

From the definition of the Lambert's W function, W (z) is defined by We" = z. In
terms of W function, equation (2.18) becomes y = —W(—A). Expanding y in terms

of u, we have
* *

u(z) = —(—2 + i)W(—A) - 12 (2.19)

To T()Cf To
Substituting (2.19) into (2.16) and observing that A = ae™%*, we get
cf 1

f(f'?):—ﬂ m+1)

13



Remark 1 f(z) depends on two parameters a and b. As it can be found from the
definitions in (2.9), (2.10), (2.13) and (2.14), in order to get the values of a and b,
we should know the values of the other two constants ¢ and «(0) first. In Lemma 5,

we will derive the corresponding nonlinear equations for solving ¢ and u(0).

Remark 2 It is well known that W (z) is monotonically increasing in the interval
[—e~!,00]. Because a > 0 and when a > 3, b > 0, W(—ae %) increases as x in-
creases. Therefore, f(z) is monotonically increasing in the interval [0, L]. Similarly,
when o < 3, f(z) is a monotonically decreasing function in the interval [0, L]. Based
on the above analysis and Lemma 2, a schematic solution of f(z) can be sketched

out as shown in Figure 2.3.

Figure 2.3: The optimal shape function for a bi-directional wire. When a = g = 0.5,
the optimal shape is a uniform width function. When o > 3, f(x) is monotonically
increasing in [0, L]. When a < 3, f(x) is monotonically decreasing in [0, L].

Without loss of generality, we assume « > ( in the rest of the section. Before

we derive Lemma 5, first we give the following relations which will be used in deriving

Lemma 5.
Lemma 4 Given the optimal wire shape function f(z) = _2CO(W +1),
—ae
we have
L dx 2¢
— = —(w; —w 2.20
0 (CC) bCf( 1 0) ( )

14



L dt 2¢p Co 2 2 2¢o

where
wy = W(—a) (2.22)

Riscy

wo= Weae™) =—gr S
12

(2.23)
Proof: Let Y = W (—ae®). From the definition of W function, we have
Ve¥ = —ae™™

Differentiating the above, we get

av _ by
dr =~ 1+4Y

By changing the variable from x to Y, the left hand side of equation (2.20) becomes

L da 260 /Y(L)

fl@) — bep Sy
2&

Therefore,
L dx 2¢o

o f(@) "~ be

Now, we derive the second equation in the lemma statement.

/ /L id:c = 2e /OL[wl — W(—ae_b’”)]da?

(w1 — wo)

bey T bey b
= DLt 2w~ wh) e (wy — wo)
bey by 1Y b2

To solve the two unknown parameters ¢ and u(0), we have the following

lemma.

15



Lemma 5 The two constants u(0) and c are the roots of the following two nonlinear

equations
1 20y n. (. ab , c*af du(0).dwy
- L =) [=—(2nL — -
SO L T +b){[ R R
2C du(0 1
cf b b con dz b
0) = fii2 _ T (eru(0) + 2¢0L)) — 1 2.25
u(0) ron [exp(Rchf-l-c(cfu( )+ 2e0L)) ] (2:25)
where
Cy = aCy+ BCs (2.28)
dwy Wo
/- - =7 2.29
da a(l+ wy) ( )
du(0) _ Riz +roau(0) y Reu(0) + 2LR1, /1o (2.30)
dz R.+ ¢ Rizc’ — Riroou(0) '

Proof: Equation (2.25) is derived directly from (2.15) by setting = 0, where we
make use of the relation Ri,cy + ¢* = Riacy + ¢. To determine the constant c, we
substitute f(z) back into the delay expression in (2.5). With the help of the Euler’s

equation (2.8), Tpp in (2.5) can be written as

TBD = O(RQ(Cl + CfL) + 5R1(C2 + CfL) + 1CL
L dt dt
+ / =ToCf ﬁ/ . ft ))d$+(a01+ﬂ02 /

Let Tpp = TBp/(roco), z = ¢/(roco), and make use of Lemma 4 and (2.26-2.28),

then the delay can be simplified as

(01 + CfL) n ﬂRl(Cz — Cl) n 1 2C9

Thr = R iy _
BD 12 - roco 5 L% + be; (w1 — wp)
L awy — D (w? — w?) + L (wy —
+ 2 (qw; — Pwy) + 592 (wi —wg) + 72 (wy —wp) (2.31)

16



! U
Equation (2.24) comes from dEgD = 0. The derivative dng can be calculated as

dz O(w1/b) dz ob dz
OTpp  d(w1/b?) Tpp d(wo/b) 0Tpp  d(wo/b?)
I(wy/b?)  dz I(wo/b) dz I(wo/b?) dz
where
db 1
= _Zp?
dz 2
dwn/b)  Bes du(0)
dz 2con dz
d(w: /b?) Ld(wi/b) = wi
dz b dz 2nb
d(wq/b) 1 (.ab , c*af du(0), dwp
bk S Vs —— 1= (onL _ _
dz 27]{[27]( nL+¢) coRly dz I da wo}
d(wo/b*) _ 1d(wg/b) = wy
dz b dz 2nb
dlé(ZO) in equation (2.30) is directly derived from (2.25). Substituting all these into

!
—dl'sgD = 0, we then get equation (2.24).

O

In practice, we employ bisection method to solve these two nonlinear equa-

tions in Lemma 5, because we found it more efficient than the Newton Raphson
method in our experiments. Algorithms for calculating the W function can be
found in [20]. The efficiency of bisection method depends on the initial root range,

which can be estimated from the following lemma.

Lemma 6 If ¢ is the root of nonlinear equation (2.24), it must satisfy

g 2nL — R,

2 = — R, (2.32)

In terms of z, where z = ¢/(rocy), this relation is

> 2nL — ngcf/(roco) _ ﬂu(O)Cf B Rlch

2.33
- W+ W*ceq 70Co ( )

17



el 2nL — R,
RI

C

where W* = W ( ) and R, is as defined in (2.27).

Proof: This idea originates from the definition of the W function. For the function
W (z), the range of x is not from —oo to 400, but from —e ! to +oo instead. There
are two different W function values in (2.24) need to be calculated, namely wy and
wy, i.e., W(—a) and W (—ae ®L). Therefore, the constraint on x in W function gives
a limit on the values of @ and b, which depend on the root ¢’ that we are finding.
Obviously, —a < —ae~%L, thus we need only consider the constraint on wyg, i.e., we

need to know what kind of constraint on ¢’ can satisfy —a > —e~!. In terms of ¢/,

it is , /
If we let y = 271721,-/7_'—_5,6, then the above inequality is simplified as
¢
ye¥ < e—l%lec
ie.,
y<wie 2By (2:34)

C

There is no problem in calculating the W function in (2.34), since L is always positive
and thus the term inside this W function is always larger than —e . Substituting
¢’ back into (2.34), then we find the constraint on root ¢/,

2nL — R!

To get (2.33), we substitute (2.26) and (2.9) into (2.35). In the above, we have

implicitly assumed that 2nL — R., > 0. In fact, the same inequality can be proved if
2nL — R!, < 0.

O

So far, we have determined the optimal shape function for a bi-directional

wire. Uni-directional wire optimization, which has been studied in [9, 24], can be

18



thought of as a special case of bi-directional wire optimization with either o = 0 or
B = 0. The authors in [9] give a closed form optimal wire shape function, and the
author in [24] gives a power series solution. Based on Lemmas 3 and 5, it is easy to

get the following results for a uni-directional wire by setting a =1, 8 = 0.

Lemma 7 Guwen a uni-directional wire with driver resistance Ry and load capaci-

tance Cy, the optimal shape function is

cr 1
= (———+1 2.
where
Rgcy 2rocoL — Rgcy
a = - exp
Rgcy +c¢ Rycy +c
2T060
p = 990
Rgcy +c
The constant c is the root of the following nonlinear equation
20 wp 1 1 ¢ . dwy 1
—(—+—+-= — —ab(2L+ —)— L+ - — =0 2.37
(Cf * b b)(wo 2a( +roco)da)+ +b(w1 wo) ( )
where
wy = W(—a) (2.38)
_ Rqcy
- W(- bLy _ _ _ “Warf 2.39
b (—ae™) Rgcy +c ( )

Remark 3 The wire shape function in (2.36) is equivalent to but looks different

from the one in [9] (where f(z) = %(ﬁ + 1), and a and b are coefficients).
2

This is because, the derivation in [9] was based on the assumption that the driver is
on the left end of the wire, whereas here we assume it is on the right end. However,
after we substitute  with '’ = L — z into equation (2.36) and rearrange the terms,

(2.36) becomes f(z') = ;;{(W( ch + 1), where a' and V' are coefficients. f(z')

Tl
ale—blz

is now consistent with f(z) in [9]. Furthermore, we find that the two coeflicients

in [9] rely on solving two nonlinear equations, but ours rely on solving only one

nonlinear equation.
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Remark 4 Comparing with the optimal shape function of bi-directional wire in
Lemma 3, the optimal uni-directional wire shape function has the same form of
solution. But the uni-directional wire shape function only depends on one constant

¢, whereas the bi-directional wire shape function depends on two constants a and b.

Remark 5 Fishburn in [24] also used calculus of variations to determine the optimal
function for a uni-directional wire. But his result is based on the delay expression

in (2.3). The Euler’s differential equation in [24] is
]' /
cou(x) + 3¢1% + Cp =cu'(x) (2.40)

where u(z) is defined as u(z) = [§ f(t)d¢t, which is different from our definition.
However, it is difficult to obtain a closed form solution to equation (2.40), and
hence Fishburn had to rely on series expansion instead. However, if we start from
the delay expression (2.4), and define u(z) in the same way as what we did in Lemma

2, the Euler’s equation will be
—2¢o(Rq + rou(z)) + rocsu(z)u’(z) = cu'(z) (2.41)

which is equivalent to (2.11). This can be solved analytically, and the solution has

been shown in (2.36).

2.1.4 Extension to Minimizing the Maximum Delay

In previous subsections, we have determined the optimal shape which minimizes the
total weighted delay Tsp = aIpr+ BIpL, where Tpr and Tpy, are delays from two
opposite directions. In this subsection, we show that our study can be extended to
dealing with another optimization objective in which the maximum delay of Tpg
and Ty, is minimized. The problem (which is sometimes called the primal problem)

can be stated as follows:
Minimize Max{TDR, TDL}
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By introducing a variable 7', the problem is also equivalent to:

Minimize T
Subject to Tpr <T
Tpr <T

Following the Lagrangian relaxation technique [5], we introduce two non-negative
variables o and 8 which are called Lagrangian multipliers for each constraint. The

Lagrangian function associated with the primal problem is:
L = TH+a(Tpr—T)+pB(Tpr —T) (2.42)

= (l—a-p)T+alpr+BTpL (2.43)

By Kuhn-Tucker conditions [5], let f(z) be the optimal shape function for the primal
problem. Then there exists a and § such that

,

Vr=a+p8-1=0

Vi@ = V(aTpr + BTpL) =0

a>0,3>0 (2.44)
A(Tpg —T) =0

B(Tpr,—T)=0

Since Tpgr and Tpy are functionals, V f(w)(aTDR + 8Tpr) = 0 implies the Euler’s

differential equation (2.7), i.e., F — u'F,; = c¢. Therefore, f(z) in minimizing the

maximum delay still has the form:

¢ 1 .
2 W (aem) T TS (2.45)

constant fora=0

flz) =

According to Lemma 7, f(z) depends on a constant ¢, which can be determined from
equations (2.44). Also note that in solving equation (2.44), not all two constraints
will be active at the same time (an inequality constraint like Tpr < T is said to be
active if Tpg = T and inactive if Tpr < T'). In fact, there may be three different

cases.
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1. a# 0 and § # 0: all constraints are active, i.e., Tpgr =T and Tp;, = T which
yield Tpr = Tpy. According to Lemma 7, Tpr = Tpy is in fact a nonlinear
equation in ¢. ¢ can thus be obtained by solving such nonlinear equation. The

following equations are useful in solving equation Tpr = Tpf.

CfR2 + CoTrowi M

Tpr = 01R2+CfR2L‘|‘( 5 b )?
T0Co T'()C()L
crR corowr \ M
Tpr, = CyR; +CfR1L+( f2 ! %)T
ToCo rocoL
where
1 1
M = wy—w; —2bL — — + — (2.48)
wo wo
1 1
= Ew% — 5103 + wy — wp (2.49)

To obtain the Lagrangian function L for this case, o and § have to be solved

through equations aVTpgr + 6VIpr =0 and a + 5 = 1.

2. a=0and B#0or a#0and B =0: in either case, one of the constraints is

active. The optimization problem is reduced to uni-directional optimization.

Let’s denote the Lagrangian functions in each of these three cases as L1, Lo
and Lz. The final solution on f(z) is the function where its Lagrangian function is

the maximum among L;, Lo and Ls.

2.1.5 Experimental Results

In this subsection, we will show some experimental results. The parameters in our
experiment are chosen as follows: L = 30,000um, ro = 0.03Q/0, ¢y = 0.2f F/um?,
cy = 20fF/pm, Ry = 10082, Cy = 200pF, Ry = 102, and C; = 20pF. We choose
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Ry # Ry, C1 # Cy and Ry x Cy # Ry x (1 such that the circuit is asymmetric. We
want to show by our experiments that in this case, the optimal shape is uniform if
a = (. If the circuit is symmetric, one intuition may guess that the wire shape is
uniform just because of symmetry of the circuit. Further intuition may say that if the
circuit is asymmetric, the optimal shape would look like a bowl shape, which is the
average of two optimal shapes solved from each direction. We have already shown
in Lemma 2 and Remark 2 that such intuition is not correct. For our experiments,
we choose several values for o ranging from 0.5 to 1.0. The calculated minimum

weighted delays Tpp are summarized in Table 2.1.

a | B | Weighted delay (us)
0910.1 27.27
0.8 0.2 37.94
0.71 0.3 48.20
06|04 58.15

Table 2.1: Weighted delays calculated for bi-directional wires.

Because the circuit is asymmetric and obviously the left-to-right delay dom-
inates over the right-to-left delay, the minimum weighted delay is very sensitive to
the weights. The minimum weighted delay for o = 0.6 is twice bigger than delay
for & = 0.9. The increased delay is primarily contributed by the left-to-right delay.

The calculated optimal wire shape functions are shown in Figure 2.4. This
figures shows clearly that when a = 3, the optimal shape is in fact uniform. When
a =1 and 8 = 0, bi-directional wire reduces to uni-directional wire. We also observe

that as « increases from 0.5 to 1.0, the driver-end width increases.
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