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Inter
onne
t Optimization in Deep Sub-mi
ronDesign under the Transmission Line ModelPubli
ation No.Youxin Gao, Ph.D.The University of Texas at Austin, 2000Supervisor: Martin D.F. WongAs the VLSI te
hnology has been s
aled down to 0:18�m in re
ent years andis expe
ted to be s
aled down to 0:05�m in the near future, inter
onne
t delaybe
omes an important fa
tor in a
hieving high performan
e. In deep sub-mi
rondesign, inter
onne
t delay is shown to be 10 to a few hundred times bigger thanthe intrinsi
 gate delay for a global inter
onne
t, and thus dominates the 
ir
uitdelay. To redu
e inter
onne
t delay, wire-sizing and bu�er insertion/sizing are twoe�e
tive te
hniques. One of the approa
hes to wire-sizing is 
ontinuous wire-sizing.In 
ontinuous wire-sizing, the shape of a wire is des
ribed by a 
ontinuous fun
tion,and the obje
tive is to �nd a shape fun
tion whi
h minimizes delay or minimizesarea subje
t to a delay bound.In the �rst part of this dissertation, we present some 
ontinuous wire-sizingresults under the Elmore delay model. Comparing with previous work, our algorithm
an not only deal with uni-dire
tional wires but also bi-dire
tional wires, where bothsolutions are in 
losed form. We also develop an eÆ
ient algorithm to determine thevi



optimal wire shape for wires with one or two neighboring wires. These results areuseful in optimization under the transmission line model, sin
e they 
an give verygood initial solutions.However, sin
e it is well known that the Elmore delay model is not an a

u-rate delay model, those optimal results determined under the Elmore delay modelmay be inferior. In the se
ond part of this dissertation, we present some wire-sizingresults under the transmission line model. For a spe
ial 
ase where fringing 
apa
-itan
e and indu
tan
e are not 
onsidered, we solve the transmission line equationsanalyti
ally and derive a 
losed form solution on the transient response for an expo-nential wire shape f(x) = ae�bx. We then determine a and b su
h that either delayis minimized or area is minimized subje
t to a target delay bound. For a general
ase where fringing 
apa
itan
e and indu
tan
e are 
onsidered, we solve the trans-mission line equations by using the Pi
ard-Carson method. We then develop a threepole based delay model. Analyti
al expressions for estimating delay at any thresh-old voltage and overshoot/undershoot voltage are further derived. The optimalwire shape is determined to minimize delay or area subje
t to undershoot voltage
onstraint. To 
al
ulate delays for inter
onne
ts with bu�ers inserted, we 
ombinethe wire delay model under the transmission line model with a bu�er ma
romodel(k-fa
tor equations) to provide a fast and a

urate delay estimation method.In the third part of this dissertation, we present a graph based algorithmfor optimal bu�er insertion under a

urate delay models. The algorithm determinesthe number of bu�ers and their lo
ations on a wire su
h that some optimizationobje
tive is satis�ed. Two typi
al examples of su
h optimization obje
tives areminimizing the 50% threshold delay and minimizing the transition time. Both 
anbe easily determined in our algorithm. We show that the bu�er insertion problemis a shortest path problem. Our algorithm 
an be easily extended for simultaneousbu�er insertion and wire-sizing, and 
omplexity is still polynomial. The algorithmvii




an also be extended to deal with problems su
h as bu�er insertion subje
t totransition time 
onstraints at any position along the wire.

viii
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Chapter 1
Introdu
tion

As it is predi
ted by National Te
hnology Roadmap for Semi
ondu
tors (NTRS)[3℄, the feature size of VLSI devi
es is gradually s
aled down from 180nm in 1999,to 130nm in 2002, and is expe
ted to be further redu
ed to 50nm in 2011. In Ta-ble 1.1, we list some main 
hara
teristi
s for ea
h te
hnology generation in NTRSand some estimated parasiti
 parameters for Metal 4 inter
onne
ts. These parasiti
parameters (e.g., Ca and Cf ) are estimated by using Sakurai's approximated for-mulas [62℄. As the feature size de
reases, 
hips be
ome more 
ongested and manynew 
hallenging issues arise. One 
hallenging issue is that inter
onne
t delay hasdominated over gate delay in determining 
ir
uit performan
e. A

ording to thesimple s
aling rule des
ribed in [4℄, if devi
es and inter
onne
ts are all s
aled downby a fa
tor S, the intrinsi
 gate delay is redu
ed by a fa
tor S, and the delay oflo
al inter
onne
ts remains almost the same, but the delay of global inter
onne
tsis in
reased by a fa
tor of S2. It is estimated that at least 20% of the 
y
le time is
onsumed by inter
onne
t delay [21℄.As te
hnology goes on to deep sub-mi
ron, 
hara
terizing inter
onne
t delayis also be
oming more and more 
ompli
ated. Roughly speaking, inter
onne
t delayis proportional to driver resistan
e, wire resistan
e, wire 
apa
itan
e as well as load1



Year 1999 2002 2005 2008 2011Te
hnology(nm) 180 130 100 70 50Metal height/ 1.8 2.1 2.4 2.7 3width aspe
t ratioOn-
hip 
lo
k 1.25 2.1 3.5 6 10frequen
y (GHz)Wavelength(�m) 24000 14286 8571 5000 3000Metal 4 inter
onne
tMinimum W(nm) 450 325 250 175 125R(
=�m) 0.082 0.14 0.2 0.36 0.64L(pH=�m) 0.99 1.02 1.05 1.08 1.10Ca(fF=�m) 0.040 0.040 0.040 0.040 0.039Cf (fF=�m) 0.11 0.11 0.12 0.12 0.12C
(fF=�m) 0.062 0.070 0.079 0.088 0.097C(fF=�m) 0.21 0.22 0.23 0.25 0.26Table 1.1: NTRS predi
ted te
hnology trend and our estimated parasiti
 parametersfor Metal 4 inter
onne
ts. R is the unit length resistan
e, L is the unit lengthindu
tan
e, and Ca, Cf , C
 are the unit length area, fringing, 
oupling 
apa
itan
es,respe
tively. The total unit length 
apa
itan
e is C = Ca + Cf + C
.
apa
itan
e. Wire 
apa
itan
e is undoubtedly a major 
omponent in determininginter
onne
t delay. Traditional methods only 
onsider inter
onne
t area 
apa
itan
eas the unique sour
e of 
apa
itan
e when the feature size is around 1�m. As thefeature size de
reases, the wire be
omes thinner but thi
ker, i.e., the wire width issmaller than the wire thi
kness. Su
h trend is 
learly re
e
ted as the in
reasingwire height/width aspe
t ratio in Table 1.1. As a result, fringing 
apa
itan
e be-
omes more important than area 
apa
itan
e. As it is shown in Figure 1.1, area
apa
itan
e is due to the uniform ele
tri
al �eld between wire plate and substrate,and fringing 
apa
itan
e is due to the non-uniform ele
tri
al �eld between side wallsand substrate. On the other hand, sin
e the spa
ing between neighboring wires alsoshrinks, 
oupling 
apa
itan
e between two adja
ent wires be
omes another major
omponent of total 
apa
itan
e. Coupling 
apa
itan
e is in
uen
ed not only by thede
reased spa
ing but also by the in
reased height/width aspe
t ratio (Figure 1.1).2



Cross 
oupling between signals 
an a�e
t the propagation delay signi�
antly, andalso 
ause fault swit
h (
rosstalk noise), whi
h is a potential problem in high speed
ir
uits [64℄. Indu
tan
e e�e
t is another important fa
tor whi
h 
an a�e
t inter
on-ne
t delay signi�
antly. While su
h e�e
t is not prominent in lo
al inter
onne
ts,it is more evident in longer inter
onne
ts, su
h as those in power supply distribu-tion, 
lo
k distribution and Multi-
hip module (MCM) inter
onne
ts [21, 41℄. It isne
essary to take all these e�e
ts into a

ount when we analyze inter
onne
t delay.
Wire Wire Wire

Oxide

Substrate

A single wire Two coupled wiresFigure 1.1: Capa
itan
e models for a single wire and two adja
ent wires.Not only there is a trend in te
hnology generation, but also inter
onne
tdelay models used in layout design have evolved from simple models to sophisti
atedmodels. Inter
onne
t delay modeling is 
ru
ial in layout design, be
ause it is thefundamental part of layout optimization te
hniques su
h as wire-sizing optimization,bu�er insertion and performan
e driven routing [13, 53℄. The Elmore delay model[22℄ is the most 
ommonly used delay model in VLSI layout design. The advantageof the Elmore delay is that it has simple algebrai
 form and linear 
omputational
omplexity in terms of the number of nodes in the 
ir
uit. The Elmore delay is alsoeasy to be represented as a fun
tion of 
ir
uit design parameters su
h as wire widthand length.However, sin
e the Elmore delay model has limited a

ura
y, some othermore a

urate delay models are ne
essary and they have already been proposed. In3



all these models, 
al
ulating high order moments or poles in the transfer fun
tion isthe essential part. Depending on the method on 
al
ulating moments/poles, thesedelay models 
an be 
lassi�ed into two main 
ategories, one is the lumped 
ir
uitapproximation based, and the other is the transmission line model based. In thelumped 
ir
uit approximation, ea
h wire is divided into several identi
al segments,then ea
h segment is modeled as a lumped RC/RLC 
ir
uit segment. Algorithmssu
h as those in [26, 45, 53, 56℄ are proposed to 
al
ulate moments/poles for su
hlumped 
ir
uits. In general, the more number of segments the more a

urate themodel is, but it takes longer in 
omputation. Another disadvantage of the lumped
ir
uit approa
h is that it 
an produ
e spurious os
illations that appear due tothe resonant behavior of segments. Sin
e the number of segments is related tothe signal wavelength � (� = 
Tr, where 
 is the speed of light and Tr is thesignal transition time), the lumped 
ir
uit approximation is eÆ
ient and a

uratein dealing with ele
tri
ally short wires, where the wire length is mu
h smaller thanthe signal wavelength. The transmission line model, on the other hand, des
ribesvoltages and 
urrents at any position on a wire by telegraph's equations [36℄. Thetransfer fun
tion is obtained by solving these di�erential equations. Comparing withthe lumped 
ir
uit approximation, the transmission line model does not depend onsignal wavelength or rising time and also has higher a

ura
y.Another important te
hnology trend is that, as the feature size is s
aleddown, the operating frequen
y is also gradually in
reased from around 1GHz todayto 10GHz in 2011. As a result, the inter
onne
t wire length be
omes 
omparableto the signal wavelength. Some estimated signal wavelengths are listed in Table1.1, where we assume the signal rising time is one-tenth of the 
y
le time. Notethat some signals in reality have faster rising time than our estimations. As aresult, the indu
tive impedan
e be
omes 
omparable to wire parasiti
 resistan
e,espe
ially in wide inter
onne
ts, su
h as upper metal lines and MCM inter
onne
ts4



[4, 48℄. Therefore the transmission line e�e
ts su
h as re
e
tions, dispersion andringing be
ome evident. These e�e
ts 
an not be 
hara
terized by the lumped
ir
uit approximation.A dire
t impa
t on layout design due to te
hnology s
aling is that, te
hniqueswhi
h are aiming at redu
ing inter
onne
t delay and 
rosstalk e�e
ts be
ome ne
es-sary and important [13℄. Wire-sizing optimization is one of su
h te
hniques whi
h
an redu
e inter
onne
t delay. The algorithms shown in [16, 17℄ divide a wire intoseveral segments and assign ea
h wire segment with a proper width su
h that theElmore delay [22℄ is minimized. As the number of segments be
omes large, it is fur-ther found that 
ontinuous wire-sizing is more eÆ
ient. In 
ontinuous wire-sizing,the wire shape is des
ribed as a 
ontinuous fun
tion f(x), and the obje
tive is to �ndf(x) su
h that delay is minimized. In [7℄ and [25℄, it is found that the optimal shapeunder the Elmore delay model is an exponential fun
tion if area 
apa
itan
e is theonly sour
e of 
apa
itan
e. With fringing 
apa
itan
e 
onsideration, it is shown in[9℄ that the optimal wire shape fun
tion 
an be expressed in terms of the Lambert0sW fun
tion.Bu�er insertion is another e�e
tive te
hnique whi
h 
an not only redu
e in-ter
onne
t delay, but also improve the signal waveform by redu
ing the transitiontime. In [68℄, the bu�er's position is determined by a dynami
 programming al-gorithm, where it uses the Elmore delay model and a linear gate model. Othersimilar algorithms based on higher order delay models are proposed in [2, 52, 54℄.Bu�er insertion is also found an eÆ
ient te
hnique in minimizing 
oupled noise[1, 8, 50℄. Moreover, algorithms for simultaneous bu�er insertion and wire-sizinghave also been proposed. Under the Elmore delay model and a linear gate model,
losed form solutions for delay minimization by simultaneous wire-sizing and bu�erinsertion/sizing are proposed in [10, 11℄.This thesis presents some optimization results on both 
ontinuous wire-sizing5



and bu�er insertion. In Chapter 2, we present some wire-sizing results under theElmore delay model. A 
losed form solution is presented in se
tion 2.1. Our method
an not only deal with uni-dire
tional wires but also bi-dire
tional wires. Sin
e auni-dire
tional wire is a spe
ial 
ase, we present the solution for bi-dire
tional wires.In se
tion 2.2, we determine the optimal wire shape for a wire with one or two neigh-boring wires. Although our goal in inter
onne
t optimization is wire-sizing underthe transmission line model, the wire-sizing results under the Elmore delay modelare still useful. They 
an provide very good initial solutions for optimizations underthe transmission line model. In Chapter 3, we 
onsider a spe
ial 
ase, where fringing
apa
itan
e and indu
tan
e are not 
onsidered. In Chapter 4, both fringing 
apa
i-tan
e and indu
tan
e are taken ba
k into 
onsideration, but a di�erent te
hnique isused to solve the transmission line equations. We also derive analyti
al formulas forestimating overshoot/undershoot voltages. An extension to transmission line trees ispresented in se
tion 4.8. In Chapter 5, a fast and a

urate delay estimation methodunder the transmission line model and k-fa
tor equations is developed for bu�eredinter
onne
ts. In Chapter 6, we present a graph based algorithm for optimal bu�erinsertion under a

urate delay models.

6



Chapter 2
Wire-sizing under the ElmoreDelay Model

2.1 Closed Form Solution on Wire-sizingWire-sizing optimization is one of the e�e
tive te
hniques whi
h 
an redu
e inter-
onne
t delay. In [7℄ and [25℄, it is found that the optimal shape under the Elmoredelay model is an exponential fun
tion, if the area 
apa
itan
e is the unique sour
eof wire 
apa
itan
e. With fringing 
apa
itan
e 
onsideration, it is shown in [9℄ thatthe optimal wire shape fun
tion 
an be expressed in terms of the Lambert0s W fun
-tion 1 in a 
losed form. At the same time, Fishburn in [24℄ independently presenteda power series solution to the optimal shape fun
tion.In this se
tion, we present a 
losed form solution on wire-sizing by using
al
ulus of variations. Comparing with previous studies, our method 
an not onlydeal with uni-dire
tional wires but also bi-dire
tional wires (bi-dire
tional wires are1The Lambert0s W fun
tion [20℄ was �rst introdu
ed by Euler in 1779 when he studied Lambert'strans
endental equation. W (x) fun
tion is de�ned as the value of w that satis�es wew = x. TheLambert's W fun
tion is a smooth fun
tion. It is available as a standard library fun
tion in MapleV [38℄. 7



present in inter
onne
ts with multiple sour
es [12, 13, 18℄). Sin
e a uni-dire
tionalwire is a spe
ial 
ase of bi-dire
tional wires, we present results on bi-dire
tionalwires and show how to redu
e to uni-dire
tional wires. Given a bi-dire
tional wireof length L, let f(x) be the width of the wire at position x, 0 � x � L. Let TDR bethe right-to-left delay. Let TDL be the left-to-right delay. Let TBD = �TDR + �TDLbe the total weighted delay where � � 0 and � � 0 are given weights su
h that�+ � = 1. We determine f(x) su
h that TBD is minimized. Our study shows that,if � = �, the optimal shape fun
tion is f(x) = 
, for some 
onstant 
; if � 6= �,the optimal shape fun
tion 
an be expressed in terms of the Lambert0s W fun
tionas f(x) = � 
f2
0 ( 1W (�ae�bx) + 1), where 
f is the unit length fringing 
apa
itan
e,
0 is the unit area 
apa
itan
e, a and b are 
onstants in terms of the given 
ir
uitparameters. If � = 0 or � = 0, our result gives the optimal shape fun
tion for auni-dire
tional wire [29, 31℄.2.1.1 Capa
itan
e ModelFor a uniform wire segment with width W and thi
kness T , Sakurai's formula [62℄gives a good approximation for 
al
ulating the unit length 
apa
itan
e,C�ox = 1:15� WTox�+ 2:28� TTox�0:222 (2.1)where �ox = 3:9�8:855�10�14F=
m is the diele
tri
 
onstant of the insulator (e.g.,SiO2), Tox is the thi
kness of sili
on dioxide. The formula 
an be simpli�ed as:Ctot = 
0W + 
f (2.2)where 
0 = 1Tox 1:15�ox is the unit area 
apa
itan
e, and 
f = �ox2:80( TTox )0:222represents the unit length fringing 
apa
itan
e.
8
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n (b)Figure 2.1: The distributed 
ir
uit model for 
al
ulating the Elmore delay. Rd isthe driver resistan
e, and Cl is the load 
apa
itan
e. Ri and Ci are the resistan
eand 
apa
itan
e of segment i, respe
tively. (a) A nonuniform wire whose width isgiven by a fun
tion f(x); (b) its 
orresponding distributed RC network.2.1.2 The Elmore Delay Model for Non-uniform WiresGiven a non-uniformly sized wire whose width is given by a fun
tion f(x) as shownin Figure 2.1(a), we partition it into n equal-length wire segments, ea
h of length�x = Ln , and approximate it as a distributed RC network shown in Figure 2.1(b).Let xi = i�x, 1 � x � n. The 
apa
itan
e and resistan
e of segment i 
an beapproximated by Ci = (
0f(xi) + 
f )�x and Ri = r0�x=f(xi), respe
tively, where
0 is unit area 
apa
itan
e, 
f is unit length fringing 
apa
itan
e, and r0 is unitresistan
e. The Elmore delay [22℄ of the distributed RC network [61℄ is given byTD = nXi=1 r0�xf(x) � nXj=i(
0f(xj) + 
f )�x+ Cl�+Rd�Cl + nXi=1(
0f(xi) + 
f )�x�where TD is equivalent to the sum over all segment resistan
e (Ri) multiplied by itsdown stream 
apa
itan
e ([22, 61℄). As n!1, TD thus be
omesTD = Z L0 r0f(x)�Z x0 
0f(t)dt+Z x0 
fdt+Cl�dx+Rd�Cl+Z L0 (
0f(x)+
f )dx� (2.3)Moreover, TD 
an be written in a slightly di�erent way, whi
h is given by thefollowing lemma. 9



Lemma 1TD = Z L0 (
0f(x) + 
f )�Rd + Z Lx r0dtf(t)�dx+ Cl�Rd + Z L0 r0dxf(x)� (2.4)Lemma 1 
an be proved by 
hanging the order of integration in (2.3). It followsfrom Lemma 1 that TD is also equivalent to the sum over all segment 
apa
itan
emultiplied by its upstream resistan
e. In the next subse
tion, we will start fromthe delay expression in (2.4) and give a 
losed form solution for the optimal shapefun
tion. The reason of not using the delay expression in (2.3) will be explainedlater.2.1.3 Optimal Wire Shape Fun
tion
21 21 21

β α

f(x)
R R

C 1 C 2Figure 2.2: A bi-dire
tional wire, with R1 and R2 as the driver resistan
es, and C1and C2 as the load 
apa
itan
es.For a bi-dire
tional wire shown in Figure 2.2, R1 and R2 are the driverresistan
es, and C1 and C2 are the load 
apa
itan
es. Let TDR be the delay whenthe signal is transmitted from right to left. Let TDL be the delay when the signal istransmitted from left to right. A

ording to Lemma 1, we haveTDR = Z L0 (
f + 
0f(x))�Z Lx r0dtf(t) +R2�dx+ C1�R2 + r0 Z L0 dxf(x)�TDL = Z L0 (
f + 
0f(x))�Z x0 r0dtf(t) +R1�dx+ C2�R1 + r0 Z L0 dxf(x)�10



We de�ne the total weighted delay TBD asTBD = �TDR + �TDL (2.5)where � � 0 and � � 0 are given weights su
h that �+ � = 1.In the rest of this subse
tion, we will derive the optimal wire shape fun
tionso that the weighted delay TBD is minimized.Lemma 2 For a bi-dire
tional wire, if � = �, the optimal shape fun
tion is the
onstant fun
tion f(x) = sr0
fL+ r0(C1 +C2)
0(R1 +R2) (2.6)Proof: We introdu
e u(x) = Z Lx dxf(x) , so that f(x) = � 1u0(x) , u(L) = 0, andZ x0 dxf(x) = u(0) � u(x). TBD in (2.5) 
an be rewritten as an integration overx; u(x); u0(x) asTBD = �R2(C1 + 
fL) + �R1(C2 + 
fL) + Z L0 F (u(x); u0(x))dxwhere F (u(x); u0(x)) = �r0(�C1 + �C2)u0(x)� 
0u0(x) � (�R2 + �R1)+ r0(
f � 
0u0(x))� (�u(0) + (�� �)u(x))Note that TBD is a fun
tional (i.e., a fun
tion of fun
tion). Based on 
al
ulus ofvariations [23℄, the ne
essary 
ondition to minimize TBD is that u(x) must satisfythe Euler's di�erential equation:Fu(x; u(x); u0(x)) = ddxFu0(x; u(x); u0(x)) (2.7)Sin
e F (x; u(x); u0(x)) in our problem does not 
ontain x expli
itly, the Euler'sequation be
omes F � u0Fu0 = 
11



i.e., � 2
0u0(x)R12 + r0(
f � 2
0u0(x) )(�u(0) + �u(x)) = 
 (2.8)where 
 is a 
onstant to be determined, R12 = �R2 + �R1, and � = � � �. Byde�ning 
� = 
� r0
f�u(0) (2.9)R�12 = R12 + r0�u(0) (2.10)where u(0) is a 
onstant, equation (2.8) 
an be simpli�ed as
� � r0
f�u(x)�2
0(R�12 + r0�u(x))u0(x) = 1 (2.11)Sin
e � = �, i.e., � = 0, equation (2.11) thus be
omes
��2
0R�12u0(x) = 1Obviously, the solution is f(x) = � 1u0(x) = 
�2
0R�12 . This means the optimal shapefun
tion is a uniform width fun
tion. In fa
t, the 
onstant 
an be determineddire
tly from the expression of TBD. If we let f(x) = f , where f is a 
onstant, thenthe delay 
an be written as,TBD = �R2(C1 + 
fL) + �R1(C2 + 
fL) + r0Lf (�C1 + �C2)+ 
0fL(�R2 + �R1) + L2r02f (
f + 
0f)Thus dTBDdf = 0 gives f = sr0
fL+ r0(C1 + C2)
0(R1 +R2) 2Lemma 3 Given a bi-dire
tional wire, if � 6= �, the optimal shape fun
tion isf(x) = � 
f2
0 ( 1W (�ae�bx) + 1) (2.12)12



where W (x) is the Lambert0s W fun
tion, anda = R�12
fR�12
f + 
� � exp(2r0
0�L�R�12
fR�12
f + 
� ) (2.13)b = 2�r0
0R�12
f + 
� (2.14)Proof: Under the 
ondition u(L) = 0, the solution to equation (2.11) isu(x) = R�12�r0 hexp(�r0(
fu� 2
0(x� L))R�12
f + 
� )� 1i (2.15)The wire shape fun
tion f(x) is thusf(x) = � 1u0(x) = R�12
f + 
�R�12 + r0u(x) 12
0 � 
f2
0 (2.16)Rearranging the terms in equation (2.15), we getexph�2
0r0(x� L) +R�12
fR�12
f + 
� i � exphr0
fu+R�12
fR�12
f + 
� i= R�12
f + 
�R�12
f r0
fu+R�12
fR�12
f + 
� (2.17)If we let y = r0
fu+R�12
fR�12
f + 
�A = R�12
fR�12
f + 
� � exph�2
0r0(x� L) +R�12
fR�12
f + 
� iwe 
an rewrite equation (2.17) asAey = y; i.e., (�y)e�y = �A (2.18)From the de�nition of the Lambert0s W fun
tion, W (x) is de�ned by WeW = x. Interms of W fun
tion, equation (2.18) be
omes y = �W (�A). Expanding y in termsof u, we have u(x) = �(R�12r0 + 
�r0
f )W (�A)� R�12r0 (2.19)Substituting (2.19) into (2.16) and observing that A = ae�bx, we getf(x) = � 
f2
0 ( 1W (�ae�bx) + 1) 213



Remark 1 f(x) depends on two parameters a and b. As it 
an be found from thede�nitions in (2.9), (2.10), (2.13) and (2.14), in order to get the values of a and b,we should know the values of the other two 
onstants 
 and u(0) �rst. In Lemma 5,we will derive the 
orresponding nonlinear equations for solving 
 and u(0).Remark 2 It is well known that W (x) is monotoni
ally in
reasing in the interval[�e�1;1℄. Be
ause a > 0 and when � > �, b > 0, W (�ae�bx) in
reases as x in-
reases. Therefore, f(x) is monotoni
ally in
reasing in the interval [0; L℄. Similarly,when � < �, f(x) is a monotoni
ally de
reasing fun
tion in the interval [0; L℄. Basedon the above analysis and Lemma 2, a s
hemati
 solution of f(x) 
an be sket
hedout as shown in Figure 2.3.
α=β

C C

β α

α>ββ>α

0 L

R R

1 2

21

Figure 2.3: The optimal shape fun
tion for a bi-dire
tional wire. When � = � = 0:5,the optimal shape is a uniform width fun
tion. When � > �, f(x) is monotoni
allyin
reasing in [0; L℄. When � < �, f(x) is monotoni
ally de
reasing in [0; L℄.Without loss of generality, we assume � > � in the rest of the se
tion. Beforewe derive Lemma 5, �rst we give the following relations whi
h will be used in derivingLemma 5.Lemma 4 Given the optimal wire shape fun
tion f(x) = � 
f2
0 ( 1W (�ae�bx) + 1),we have Z L0 dxf(x) = 2
0b
f (w1 � w0) (2.20)14



Z L0 Z Lx dtf(t)dx = 2
0b
f w1L+ 
0b2
f (w21 � w20) + 2
0b2
f (w1 � w0) (2.21)where w0 = W (�a) (2.22)w1 = W (�ae�bL) = � R�12
fR�12
f + 
� (2.23)Proof: Let Y =W (�aebx). From the de�nition of W fun
tion, we haveY eY = �ae�bxDi�erentiating the above, we get dYdx = � bY1 + YBy 
hanging the variable from x to Y , the left hand side of equation (2.20) be
omesZ Lx dxf(x) = 2
0b
f Z Y (L)Y (x) dY= 2
0b
f [W (�ae�bL)�W (�ae�bx)℄Therefore, Z L0 dxf(x) = 2
0b
f (w1 � w0)Now, we derive the se
ond equation in the lemma statement.Z L0 Z Lx dtf(t)dx = 2
0b
f Z L0 [w1 �W (�ae�bx)℄dx= 2
0b
f w1L� 2
0b
f Z L0 �Y + 1b dY= 2
0b
f w1L+ 
0b2
f (w21 � w20) + 2
0b2
f (w1 � w0) 2To solve the two unknown parameters 
 and u(0), we have the followinglemma. 15



Lemma 5 The two 
onstants u(0) and 
 are the roots of the following two nonlinearequations1� (2C21
f + �L+ �w0b + �b )n[ab2� (2�L+ 
0)� 
�a�
0R�12 du(0)dz ℄dw0da � w0o�(2C21
f + �L+ �w1b + �b )�
f
0� du(0)dz + L+ 1b (w1 � w0) = 0 (2.24)u(0) = R�12r0� hexp( �r0R12
f + 
(
fu(0) + 2
0L))� 1i (2.25)where 
0 = 
�=(r0
0) (2.26)R0
 = R�12
f=(r0
0) (2.27)C21 = �C1 + �C2 (2.28)dw0da = w0a(1 + w0) (2.29)du(0)dz = �R12 + r0�u(0)R0
 + 
0 � R0
u(0) + 2LR�12=r0R12
0 �R0
r0�u(0) (2.30)Proof: Equation (2.25) is derived dire
tly from (2.15) by setting x = 0, where wemake use of the relation R�12
f + 
� = R12
f + 
. To determine the 
onstant 
, wesubstitute f(x) ba
k into the delay expression in (2.5). With the help of the Euler'sequation (2.8), TBD in (2.5) 
an be written asTBD = �R2(C1 + 
fL) + �R1(C2 + 
fL) + 12
L+ Z L0 12r0
f�� Z L0 dtf(t) + � Z Lx dtf(t)�dx+ (�C1 + �C2) Z L0 r0f(x)dxLet T 0BD = TBD=(r0
0), z = 
=(r0
0), and make use of Lemma 4 and (2.26-2.28),then the delay 
an be simpli�ed asT 0BD = R12 (C1 + 
fL)r0
0 + �R1(C2 � C1)r0
0 + 12Lz + 2C21b
f (w1 � w0)+ Lb (�w1 � �w0) + �2b2 (w21 � w20) + �b2 (w1 �w0) (2.31)16



Equation (2.24) 
omes from dT 0BDdz = 0. The derivative dT 0BDdz 
an be 
al
ulated asdT 0BDdz = �T 0BD�z + �T 0BD�(w1=b) d(w1=b)dz + �T 0BD�b dbdz+ �T 0BD�(w1=b2) d(w1=b2)dz + �T 0BD�(w0=b) d(w0=b)dz + �T 0BD�(w0=b2) d(w0=b2)dzwhere dbdz = �12b2d(w1=b)dz = � �
f2
0� du(0)dzd(w1=b2)dz = 1b d(w1=b)dz + w12�bd(w0=b)dz = � 12�n[ab2� (2�L+ 
0)� 
�a�
0R�12 du(0)dz ℄� dw0da � w0od(w0=b2)dz = 1b d(w0=b)dz + w02�bdu(0)dz in equation (2.30) is dire
tly derived from (2.25). Substituting all these intodT 0BDdz = 0, we then get equation (2.24). 2In pra
ti
e, we employ bise
tion method to solve these two nonlinear equa-tions in Lemma 5, be
ause we found it more eÆ
ient than the Newton Raphsonmethod in our experiments. Algorithms for 
al
ulating the W fun
tion 
an befound in [20℄. The eÆ
ien
y of bise
tion method depends on the initial root range,whi
h 
an be estimated from the following lemma.Lemma 6 If 
0 is the root of nonlinear equation (2.24), it must satisfy
0 � 2�L�R0
W � �R0
 (2.32)In terms of z, where z = 
=(r0
0), this relation isz � 2�L�R12
f=(r0
0)W � � �u(0)
fW �
0 � R12
fr0
0 (2.33)17



where W � =W (e�1 2�L�R0
R0
 ) and R0
 is as de�ned in (2.27).Proof: This idea originates from the de�nition of the W fun
tion. For the fun
tionW (x), the range of x is not from �1 to +1, but from �e�1 to +1 instead. Thereare two di�erent W fun
tion values in (2.24) need to be 
al
ulated, namely w0 andw1, i.e., W (�a) andW (�ae�bL). Therefore, the 
onstraint on x inW fun
tion givesa limit on the values of a and b, whi
h depend on the root 
0 that we are �nding.Obviously, �a < �ae�bL, thus we need only 
onsider the 
onstraint on w0, i.e., weneed to know what kind of 
onstraint on 
0 
an satisfy �a � �e�1. In terms of 
0,it is R0
R0
 + 
0 � exp(2�L�R0
R0
 + 
0 ) � e�1If we let y = 2�L�R0
R0
 + 
0 , then the above inequality is simpli�ed asyey � e�1 2�L�R0
R0
i.e., y �W (e�1 2�L�R0
R0
 ) (2.34)There is no problem in 
al
ulating theW fun
tion in (2.34), sin
e L is always positiveand thus the term inside this W fun
tion is always larger than �e�1. Substituting
0 ba
k into (2.34), then we �nd the 
onstraint on root 
0,
0 � 2�L�R0
W � �R0
 (2.35)To get (2.33), we substitute (2.26) and (2.9) into (2.35). In the above, we haveimpli
itly assumed that 2�L�R0
 > 0. In fa
t, the same inequality 
an be proved if2�L�R0
 < 0. 2So far, we have determined the optimal shape fun
tion for a bi-dire
tionalwire. Uni-dire
tional wire optimization, whi
h has been studied in [9, 24℄, 
an be18



thought of as a spe
ial 
ase of bi-dire
tional wire optimization with either � = 0 or� = 0. The authors in [9℄ give a 
losed form optimal wire shape fun
tion, and theauthor in [24℄ gives a power series solution. Based on Lemmas 3 and 5, it is easy toget the following results for a uni-dire
tional wire by setting � = 1, � = 0.Lemma 7 Given a uni-dire
tional wire with driver resistan
e Rd and load 
apa
i-tan
e Cl, the optimal shape fun
tion isf(x) = � 
f2
0 ( 1W (�ae�bx) + 1) (2.36)where a = Rd
fRd
f + 
 � exp(2r0
0L�Rd
fRd
f + 
 )b = 2r0
0Rd
f + 
The 
onstant 
 is the root of the following nonlinear equation�(2Cl
f + w0b + 1b )�w0 � 12ab(2L+ 
r0
0 )dw0da �+ L+ 1b (w1 � w0) = 0 (2.37)where w0 = W (�a) (2.38)w1 = W (�ae�bL) = � Rd
fRd
f + 
 (2.39)Remark 3 The wire shape fun
tion in (2.36) is equivalent to but looks di�erentfrom the one in [9℄ (where f(x) = �
f2
0 ( 1W ( �
fae�bx ) +1), and a and b are 
oeÆ
ients).This is be
ause, the derivation in [9℄ was based on the assumption that the driver ison the left end of the wire, whereas here we assume it is on the right end. However,after we substitute x with x0 = L� x into equation (2.36) and rearrange the terms,(2.36) be
omes f(x0) = �
f2
0 ( 1W ( �
fa0e�b0x0 ) + 1), where a0 and b0 are 
oeÆ
ients. f(x0)is now 
onsistent with f(x) in [9℄. Furthermore, we �nd that the two 
oeÆ
ientsin [9℄ rely on solving two nonlinear equations, but ours rely on solving only onenonlinear equation. 19



Remark 4 Comparing with the optimal shape fun
tion of bi-dire
tional wire inLemma 3, the optimal uni-dire
tional wire shape fun
tion has the same form ofsolution. But the uni-dire
tional wire shape fun
tion only depends on one 
onstant
, whereas the bi-dire
tional wire shape fun
tion depends on two 
onstants a and b.Remark 5 Fishburn in [24℄ also used 
al
ulus of variations to determine the optimalfun
tion for a uni-dire
tional wire. But his result is based on the delay expressionin (2.3). The Euler's di�erential equation in [24℄ is
0u(x) + 12
fx+ Cl = 
u0(x) (2.40)where u(x) is de�ned as u(x) = R x0 f(t)dt, whi
h is di�erent from our de�nition.However, it is diÆ
ult to obtain a 
losed form solution to equation (2.40), andhen
e Fishburn had to rely on series expansion instead. However, if we start fromthe delay expression (2.4), and de�ne u(x) in the same way as what we did in Lemma2, the Euler's equation will be�2
0(Rd + r0u(x)) + r0
fu(x)u0(x) = 
u0(x) (2.41)whi
h is equivalent to (2.11). This 
an be solved analyti
ally, and the solution hasbeen shown in (2.36).2.1.4 Extension to Minimizing the Maximum DelayIn previous subse
tions, we have determined the optimal shape whi
h minimizes thetotal weighted delay TBD = �TDR+�TDL, where TDR and TDL are delays from twoopposite dire
tions. In this subse
tion, we show that our study 
an be extended todealing with another optimization obje
tive in whi
h the maximum delay of TDRand TDL is minimized. The problem (whi
h is sometimes 
alled the primal problem)
an be stated as follows:Minimize MaxfTDR; TDLg20



By introdu
ing a variable T , the problem is also equivalent to:Minimize TSubje
t to TDR � TTDL � TFollowing the Lagrangian relaxation te
hnique [5℄, we introdu
e two non-negativevariables � and � whi
h are 
alled Lagrangian multipliers for ea
h 
onstraint. TheLagrangian fun
tion asso
iated with the primal problem is:L = T + �(TDR � T ) + �(TDL � T ) (2.42)= (1� �� �)T + �TDR + �TDL (2.43)By Kuhn-Tu
ker 
onditions [5℄, let f(x) be the optimal shape fun
tion for the primalproblem. Then there exists � and � su
h that8>>>>>>>>>>><>>>>>>>>>>>:
rT = �+ � � 1 = 0rf(x) = r(�TDR + �TDL) = 0� � 0; � � 0�(TDR � T ) = 0�(TDL � T ) = 0 (2.44)

Sin
e TDR and TDL are fun
tionals, rf(x)(�TDR + �TDL) = 0 implies the Euler'sdi�erential equation (2.7), i.e., F � u0Fu0 = 
. Therefore, f(x) in minimizing themaximum delay still has the form:f(x) = 8><>: � 
f2
0 ( 1W (�ae�bx) + 1) for � 6= �
onstant for � = � (2.45)A

ording to Lemma 7, f(x) depends on a 
onstant 
, whi
h 
an be determined fromequations (2.44). Also note that in solving equation (2.44), not all two 
onstraintswill be a
tive at the same time (an inequality 
onstraint like TDR � T is said to bea
tive if TDR = T and ina
tive if TDR < T ). In fa
t, there may be three di�erent
ases. 21



1. � 6= 0 and � 6= 0: all 
onstraints are a
tive, i.e., TDR = T and TDL = T whi
hyield TDR = TDL. A

ording to Lemma 7, TDR = TDL is in fa
t a nonlinearequation in 
. 
 
an thus be obtained by solving su
h nonlinear equation. Thefollowing equations are useful in solving equation TDR = TDL.TDR = C1R2 + 
fR2L+ (
fR22 + 
0r0w1b )Mb+ r0
0b2 (N + 2bw1L) + r0
0Lb (2.46)TDL = C2R1 + 
fR1L+ (
fR12 � 
0r0w1b )Mb� r0
0b2 (N + 2bw0L)� r0
0Lb (2.47)where M = w0 � w1 � 2bL� 1w0 + 1w0 (2.48)N = 12w21 � 12w20 + w1 � w0 (2.49)To obtain the Lagrangian fun
tion L for this 
ase, � and � have to be solvedthrough equations �rTDR + �rTDL = 0 and �+ � = 1.2. � = 0 and � 6= 0 or � 6= 0 and � = 0: in either 
ase, one of the 
onstraints isa
tive. The optimization problem is redu
ed to uni-dire
tional optimization.Let's denote the Lagrangian fun
tions in ea
h of these three 
ases as L1, L2and L3. The �nal solution on f(x) is the fun
tion where its Lagrangian fun
tion isthe maximum among L1, L2 and L3.2.1.5 Experimental ResultsIn this subse
tion, we will show some experimental results. The parameters in ourexperiment are 
hosen as follows: L = 30; 000�m, r0 = 0:03
=2, 
0 = 0:2fF=�m2,
f = 20fF=�m, R1 = 100
, C2 = 200pF , R2 = 10
, and C1 = 20pF . We 
hoose22



R1 6= R2, C1 6= C2 and R1 �C2 6= R2 �C1 su
h that the 
ir
uit is asymmetri
. Wewant to show by our experiments that in this 
ase, the optimal shape is uniform if� = �. If the 
ir
uit is symmetri
, one intuition may guess that the wire shape isuniform just be
ause of symmetry of the 
ir
uit. Further intuitionmay say that if the
ir
uit is asymmetri
, the optimal shape would look like a bowl shape, whi
h is theaverage of two optimal shapes solved from ea
h dire
tion. We have already shownin Lemma 2 and Remark 2 that su
h intuition is not 
orre
t. For our experiments,we 
hoose several values for � ranging from 0.5 to 1.0. The 
al
ulated minimumweighted delays TBD are summarized in Table 2.1.� � Weighted delay (ns)0.9 0.1 27.270.8 0.2 37.940.7 0.3 48.200.6 0.4 58.15Table 2.1: Weighted delays 
al
ulated for bi-dire
tional wires.Be
ause the 
ir
uit is asymmetri
 and obviously the left-to-right delay dom-inates over the right-to-left delay, the minimum weighted delay is very sensitive tothe weights. The minimum weighted delay for � = 0:6 is twi
e bigger than delayfor � = 0:9. The in
reased delay is primarily 
ontributed by the left-to-right delay.The 
al
ulated optimal wire shape fun
tions are shown in Figure 2.4. This�gures shows 
learly that when � = �, the optimal shape is in fa
t uniform. When� = 1 and � = 0, bi-dire
tional wire redu
es to uni-dire
tional wire. We also observethat as � in
reases from 0.5 to 1.0, the driver-end width in
reases.
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