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Chapter 1
Introdution
Implementing onurrent systems that funtion orretly is a diÆult task. Tounderstand the behaviour of two sequential programs exeuting onurrently, wemust understand not only the behaviour of eah separately, but also the ways inwhih they interat.We an understand an exeution of a sequential program as a transformationfrom its start state to its �nal state. In this view, the intermediate states are ignored.We separate what the program does, from how it does it. If we run two sequentialprograms one after the other, we an determine the transformation e�eted by theexeution as a whole from the transformations for the separate programs.There is not the same separation between what is done and how it is donewhen we onsider onurrent exeution of sequential programs. Consider the fol-lowing programs.� :: x := x+ 1 ; x := x+ 1�0 :: x := x � 2Program � adds 2 to x, and program �0 doubles x. Exeuting the programs oneafter the other from a state where x = 2, we reah a state where x = 8 for the1



exeution �;�0, and a state where x = 6 for the exeution �0;�. Consider nowexeuting the programs onurrently. We assume that eah statement is atomi,so the interferene ours only if the statement from �0 ours between the twostatements from �. In this ase, x = 7 in the �nal state.To understand the onurrent exeution of � and �0, we must understandthe internal workings of eah, and onsider ways that they may interfere. Here thedoubling of x by �0 overwrites an intermediate result written by � to x, and so �0interferes with �'s exeution.Note that we an replae the two assignments in � with a single assignmentadding 2 to x, and the above interfering omputation is no longer possible. Theamount of interferene possible depends on the internal struture of the programs.There are short programs, so there is a limited number of interleavings oftheir statements. For longer programs, there is a larger number of interleavings,and onsequently more opportunity for interferene.Note that not all sequential programs interfere when run onurrently. Pro-grams that aess disjoint parts of the state spae do not interfere. Neither doertain programs that aess shared variables. Consider running two opies of �onurrently. The overall e�et is to add 4 to x, regardless of the interleaving ofthe statements. For noninterfering programs, running the programs onurrently isequivalent to running them sequentially, in some order.We propose a model for onurrent systems, alled Seuss, in whih we sep-arate the transformational aspets of the sequential programs from the issues ofinterferene between programs. A Seuss program is a set of individual sequentialprograms, alled ations, that aess a shared state. An exeution of a programonsists of repeatedly hoosing one of the ations and exeuting it to ompletion.One ation is exeuted at a time, so we an understand the e�et of eah exeutionof an ation without onsidering internal details. This gives us a simple model for2



proving properties of programs.In the implementation of Seuss, we allow ations to exeute onurrently.But we do so in a ontrolled way. As we saw above, allowing any two ations to runonurrently allows interferene. We allow only ations that do not interfere witheah other to exeute onurrently.Building a system in Seuss follows the following outline. First, we de�nethe ations, and show that a sequential exeution of the program has the desiredproperties. Then we examine eah pair of ations and deide if they are interferingor noninterfering. We implement the program so that only noninterfering ationsrun onurrently.Our work addresses the seond part of this outline. We de�ne the Seussmodel, and we give a ondition on pairs of ations that guarantees noninterferene.We show that for any exeution where only noninterfering ations run onurrently,there is a sequential exeution with the same behaviour.1.1 A model for onurrent systems1.1.1 Ation systemsA sequential program � an be spei�ed by a set of assertions, alled Hoare triples[16℄, of the form fPg � fQg, where P and Q are prediates on the state. Thisassertion is true if every exeution of � that starts from a state satisfying P ends ina state satisfying Q. We all P the preondition, and Q the postondition. In thetransformational view of sequential programs, two programs are equivalent if thereis no assertion satis�ed by one that is not satis�ed by the other.Representing sequential programs by the assertions they satisfy disards in-formation about the internal omputations of the program. So, for example, if �satis�es the Hoare triple fPg � fQg, where P is \A is an array of integers", and Q3



is \A ontains the same values as before, in sorted order", then this assertion givesno information about the algorithm used to implement the sort, or any intermedi-ate values that array A takes during the exeution of the program. Any programsatisfying the assertion is equivalent for our purposes.1An ation system onsists of a set of terminating sequential programs, alledations, that read and write a set of shared variables. A single exeution of an ationis alled a thread. An exeution of an ation system is a sequene of threads.An ation system represents a simple onurrent system. Here, onurrenyis represented by alternating threads for di�erent ations. For example, onsider asystem with two ations, Produe and Consume. A thread for the former produesan item, and a thread for the latter onsumes an item. An exeution of this systemonsists of a sequene of threads, some for Produe , and some for Consume. Weregard this as representing the onurrent exeution of a produer proess, whihrepeatedly exeutes ation Produe , with a onsumer proess, whih repeatedlyexeutes ation Consume. The interleaving in an exeution of an ation system isat the granularity of omplete threads.To prove properties of the exeutions of an ation system, we �rst onsidereah ation separately, and show a set of assertions satis�ed by a single thread forthe ation. Given this, we an represent the omplete exeution of a thread as asingle step, whih satis�es the Hoare triples for the orresponding ation. We allthe step representing a omplete thread an atomi step.An atomi exeution is an exeution where every thread is represented by anatomi step. The properties of an atomi exeutions are derived from the assertionssatis�ed by the atomi steps.Here there is a lean separation of onerns. We examine the internal stru-ture of eah ation separately to determine the set of Hoare triples it satis�es. During1Of ourse, the hoie of sorting algorithm has a major impat on the time taken for the programto omplete exeution, but this issue does not onern us here.4



this proess, we must onsider the states internal to a thread's exeution, but theresulting assertions are given in terms of the start and �nal state alone. Having donethis, we onsider an atomi exeution, in whih all states internal to the exeutionof a thread have been elided.The ations are terminating sequential omputations, whereas an exeutionof an ation system is generally nonterminating. The above sheme separates the se-quential, terminating aspets of the exeution of a single thread from the onurrent,nonterminating aspets of the overall system exeution.1.1.2 The Seuss modelWe de�ne a programming model, alled Seuss [25℄, based on ation systems. Weextend the ation system model in two ways. We distribute the state spae and theode of the ations aross a set of boxes, and we allow for onurrent exeution ofthreads. We onsider the distribution of the data and ode �rst.Boxes are rudimentary objets. A box ontains some variables, and someproedures. A variable in a box an be read or written only by a proedure in thatbox. The proedures are of two types: ations and methods. Ations are top-levelproedures. In this model, a thread is the omplete exeution of an ation all.The ode of a proedure ontains statements reading and writing variables loalto its box, and alls to methods on other boxes. Ations are not alled by otherproedures. Methods may take parameters, both input and output, but ations takenone. We use ompound identi�ers for the variables and proedures in a box, withthe box name as part of the identi�er. Thus D :x is the name of a loal variable xin box D , and D :a is the name of an ation a in D .A thread for D :a starts exeuting the ode of a at box D . If the exeutionreahes a method all statement for method E :m , then exeution at D is suspended5



Prod Cons

BuffFigure 1.1: A produer-onsumer programwhile the ode for m is exeuted at E . Exeution ontinues at D when the exeutionof E :m ompletes.Consider a simple example of suh a program with three boxes, shown pi-torially in Figure 1.1. This program ontains three boxes, alled Prod , Cons , andBu� . The program represents a simple produer-onsumer system. The box Prodprodues some items whih are onsumed by box Cons . A bu�er, implemented bybox Bu� , holds items that have been produed by Prod , but not yet onsumed byCons . We assume that Bu� implements a bu�er of unbounded size that obeys a�rst-in-�rst-out (FIFO) disipline.The line in the diagram from box Prod to box Bu� indiates that proeduresin Prod all methods in Bu� , and similarly for the line from Cons to Bu� . Thereare no method alls between boxes Prod and Cons .Box Bu� has two methods, and no ations. Method Bu� :put takes a singleitem as an input parameter. The all Bu� :put(x) adds item x to bak of the bu�er.Method Bu� :get returns a single item as an output parameter. A all Bu� :get(y)removes the front item from the bu�er and returns it in y.Box Prod has one ation, and no methods. Ation Prod :make produes anitem, and alls Bu� :put to put this item in the bu�er. Box Cons similarly has asingle ation, and no methods. Ation Cons :use alls Bu� :get to retrieve an item6



box Bu�var s : sequene of integermethod put(in x : integer):: s := s / xmethod get(out x : integer):: s 6= ? �! x := �rst(s) ; s := rest(s)end Figure 1.2: Code for box Bu�from the bu�er, and then onsumes this item.1.1.3 Partial and total proeduresThe �rst question that arises is what to do in the ase that a thread for Cons :use isalled when there is no item in the bu�er. In this ase the all to Bu� :get annotreturn an item. We handle this by putting a guard in the ode for Bu� :get . Theguard ontains a prediate on the loal state. The ode for box Bu� is shown inFigure 1.2. For simpliity, we assume that the bu�er holds integer items. Theode for Bu� delares a variable s, whih is a sequene of integers, representingthe ontents of the bu�er. The header for method put delares an input integerparameter. We use :: to separate the header from the proedure body. The bodyof this method onsists of a single assignment that appends the input parameter tothe end of s. We use the operator / to add an item to the end of a �nite sequene.The header for method get delares an output integer parameter. The ode of thisproedure ontains a guard and a ouple of assignments. We use �! to separate theguard from the statements. The guard is a hek that the bu�er is nonempty. We use? for the empty sequene. The assignment statements assign the �rst element of sto the output parameter, and remove this item from s. We use �rst(X) and rest(X)for the �rst element of sequene X, and the remaining elements, respetively.7



The assignment statements for get an only be exeuted if the prediate inthe guard is true. If Bu� :get is alled when s in nonempty, we say that the allaepts. In this ase, the assignments are exeuted, and an item is returned to thebox that alled the proedure. If Bu� :get is alled when s is empty, we say that theall rejets. In this ase, the assignments are not exeuted, and no item is returnedto the box that alled the proedure.Consider now the ation Cons :use. This has a all to Bu� :get to retrievean item. If the all aepts, then the ation proeeds to onsume the item returnedby the all, but if the all rejets, then there is no item to onsume, and the ationannot proeed.We make a rule that if, during the exeution of a proedure all, a all toa method rejets, then the proedure all rejets as well. We further require that,as with Bu� :get , a rejeting all to a proedure makes no hange to the programstate. The method Bu� :put has no guard, sine it is always possible to append anitem to an unbounded bu�er. A all to this method always aepts. Note that if weimplement a bounded bu�er, method Bu� :put may rejet, sine an item annot beadded to a full bu�er.We all a proedure that never rejets total, and one that may rejet partial.From this de�nition and the above rule, a total proedure alls only total methods.To ensure that rejeting proedure alls do not hange the system state, weallow only the �rst method all in the exeution of a partial proedure all to be aall to a partial method. All method alls other than the �rst are to total methods.This gives only two ways that a partial proedure all an rejet. The �rst is if theloal prediate in the guard is false, and the seond is if the (single) partial methodall rejets. Both these our before any hange is made to the system state, inpartiular, before any alls to total methods.8



box Prodvar i : integeration make :: (� � � � �) ; Bu� :put(i)endbox Consvar k : integeration use :: true & Bu� :get(k) �! (� � � � �)end Figure 1.3: Boxes Prod and ConsThe ode for boxes Prod and Cons is shown in Figure 1.3. The ode foration Prod :make ontains no guard, sine the ation is total. The ommentedellipsis represents the omitted ode that sets the value of i . The �nal statement isa all to Bu� :put . The ode for ation Cons :use ontains a guard whih has twoomponents, separated by & . The �rst omponent is a prediate on the loal state,as before. We all this the ondition. In this ase, the ondition is the prediatetrue. The seond omponent is a all to a partial method. We all this the test.2Here, the test is a all to Bu� :get . If this aepts, the ation all ontinues toexeute the statements after the guard (again, we have omitted these), and itselfaepts. There are no alls to partial methods in the statements after the guard. Ifthe test rejets, then the ation all rejets without exeuting further.The struture of partial proedures ensures that no loal variable is updatedunless a proedure is aepting. This enfores the requirement that a rejeting allleave the state unhanged.Models for transation proessing (see [14℄) also have this notion of aeptingand rejeting, under the names ommitting and aborting. During the exeution of a2In [25℄, the omponents of the guard are alled the preondition and the preproedure, respe-tively. 9



box Cons2var j : integerk : integerb : boolean init falseation use :: :b & Bu�0 :get(j) �! b := truej b & Bu�1 :get(k) �! (� � � � �) ; b := falseend Figure 1.4: Partial proedure with alternativestransation, the hanges that are made to the system state are tentative. When atransation ommits, all the hanges are made permanent. A transation aborts ifit disovers that a required resoure is not available, so it is unable to omplete itsexeution. If it aborts, all the tentative hanges made up to the point of abortion aredisarded. Implementing this often requires omplex mehanisms for rolling bakthe state of a system to a previous onsistent state. In ontrast, the restrition wegive, that the deision to aept or rejet be made before the state is altered, meanswe do not have to provide for rollbak.The restrition, however, means that we annot write an ation that requirestwo independent resoures. We extend the syntax of partial proedures to providefor this. We allow a partial proedure to be written as a set of alternatives. InFigure 1.4 we show a partial proedure with two alternatives. Box Cons2 is partof a program that ontains boxes Bu�0 and Bu�1 , both of whih are opies of boxBu� . Ation Cons2 :use requires an item from eah bu�er before it an exeute.The items are retrieved one at a time, using alls to Bu�0 :get and Bu�1 :get . Theation has two alternatives, separated by j. One retrieves an item from Bu�0 , andthe other retrieves an item from Bu�1 , and then onsumes both items. The itemsare retrieved into variables j and k . We use a boolean variable b to sequene theretrieval of the items. Initially, b is false, and it is true only when the �rst item hasbeen retrieved but the seond has not. 10



The �rst alternative aepts if b is false , and an item is suessfully retrievedfrom Bu�0 into item j . If it aepts, b is set to true. The seond alternative aeptsif b is true, and an item is suessfully retrieved from Bu�1 into item k . If it aepts,the items are onsumed, and then b is set to false again. It takes two aepting allsto Cons :use2 to retrieve and onsume two items.We allow any number of alternatives in a partial proedure. Eah alternativehas a guard, whih ontains a ondition, and, optionally, a test. We require that theonditions on any pair of alternatives be disjoint, so that, in any state, the onditionholds for at most one alternative. The exeution of a partial proedure is desribedby the following algorithm.� If no alternative has a ondition that holds in the urrent state, then rejet.� Otherwise, hoose the (single) alternative with a ondition that holds in theurrent state.� If this alternative has a test, then all the test.� If the test rejets, then rejet.� Otherwise, if there no test, or the test aepts, exeute the body of the alter-native, and aept.1.1.4 Atomi exeutions of Seuss programsThe programming model presented above is a form of ation system. To reasonabout atomi exeutions of a Seuss program, we use the separation desribed abovebetween the sequential properties of the individual ations, and the onurrent prop-erties of the atomi exeution.The enapsulation of data and ode in boxes is intended as an aid to theproving sequential properties of the individual ations. A box suh a Bu� that11



ontains no method alls an be spei�ed as an abstrat data type [1℄. That is, wede�ne the methods it provides, and how eah updates the state of the box.This abstrat data type viewpoint supports hierarhial reasoning about thebehaviour of an ation. We prove sequential properties for the methods of Bu� . Wethen do the same for the ations in Prod and Cons , regarding eah all to a methodin Bu� as a single step satisfying the same assertions as the method.Exeution of ation Prod :make updates the state of Prod and Bu� . A om-plete spei�ation of this ation gives the hanges to both boxes. In general, anation an hange the state of any box where a proedure is exeuted during athread for the ation. But the box struture provides a way to divide a programinto parts, where eah part onsists of one or a few boxes, and the interfae betweenthe parts is well-de�ned. The model failitates ompositional reasoning.The ode given for box Bu� is itself an abstration of a real implementation ofa bu�er. It serves as a spei�ation of the behaviour we expet from a bu�er. We anuse re�nement [17℄ to de�ne more detailed and realisti ode. A real implementationof a bu�er may best be expressed as a set of boxes, one of whih provides the Bu�interfae. We an re�ne the data and ode within a box, and we an de�ne sets ofboxes that are re�nements of a single box.As noted above, we reason about the atomi exeution in terms of the spe-i�ations for the individual ations. The tehniques for reasoning about suh ex-eutions have been extensively studied. Various forms of temporal logi (see [11℄)an be used to express and derive properties. The appliation of these tehniquesto atomi exeutions in the Seuss model has been less widely studied, though thereis some promising preliminary work.The work presented here does not address these issues, important thoughthey are. The main onlusion we draw from this disussion is that developinga system for reasoning about atomi exeutions of Seuss system appears to be a12



tratable problem, and the struture of the Seuss model supports many of the rea-soning styles that have proven useful in other programming models.1.1.5 Mutual exlusion on boxesAn abstrat data type is often spei�ed, in part, by an invariant. This is a prediatewhih holds at the start of the exeution, and whih holds after every exeution ofa method on the box. For box Bu� , suppose P is the sequene of values passed asvalues to put , and G is the sequene of values returned by aepting alls to get ,then an invariant isP = G Æ sHere Æ is the append operator on sequenes.To show that an invariant holds for a box, we show that if it holds beforea all to a proedure in the box, it holds after the all. We do not require that ininvariant be maintained during the exeution of the all, only that it be re�establishedat the end. For this reason, it is important that the exeution of a proedure allat a box is not interrupted, sine the box's state may not satisfy the invariant.We make the rule that one a box starts exeuting a proedure all, it doesnot start another proedure all until the �rst is omplete. A box enapsulatesontrol, by ensuring mutual exlusion on the exeution of its proedures. It is aform of monitor [18℄.Consider the exeution of a single thread, where the thread starts exeutingat box D . Suppose that during the exeution, there is a all to a method on boxE , and during the exeution of this method all, there is a all to a method onbox D . At this point, D is part way through exeuting a proedure all, and itannot exeute the method all from E until this proedure all ompletes. But theproedure all annot omplete until the method all is exeuted. Thus box D is13



stuk, waiting for itself. This is deadlok.We all a method all by a thread to a box already exeuting for a thread ayli all. One impliation of the the mutual exlusion on boxes is that we mustavoid yli alls if we are to avoid deadlok.1.1.6 Conurrent exeution in SeussIn Seuss, a program onsists of a set of boxes. Suppose we implement a Seussprogram so that eah box is alloated a separate proessor, and proedure alls areimplemented using a ommuniation network. We identify a box and its proessor,using the name \box" for either. A sheduler program deides when threads shouldbe started, and sends a message to the appropriate box to start the thread.Initially, every box in the system is idle. Box D starts exeuting a thread foration D :a when it reeives a message to do so from the sheduler. If there is a allto method E :m during exeution of the ode of D :a, then D sends a message to Eand suspends exeution until it reeives a message bak from E , indiating that theall is omplete. When D reahes the end of D :a 's ode, D sends a message to thesheduler that the thread has ended, and beomes idle again.Eah box in this model is largely independent. There is only synhronizationbetween boxes for proedure all and return. The sheduler deides whih threadsto run, and when to start them, but has no further ontrol over the exeution of athread. The sheduler an be de�ned to exeute a single thread at a time, as in anation system. We all this a sequential exeution. In a sequential exeution, at mostone box is exeuting at any time. The rest are either idle, or suspended, waiting foranother box to omplete a method all. Note that replaing eah omplete threadin a sequential exeution by an atomi step gives an atomi exeution.Consider boxes Prod and Cons . The ode in Prod :make that produes anitem does not involve alls to boxes Bu� or Cons . Similarly, the ode in Cons :use14



that onsumes the item does not involve all to boxes Bu� or Prod . These setionsof ode exeute on disjoint boxes.Box Prod is idle during the exeution of a thread for Cons :use. Considerstarting a thread for Prod :make while a thread for Cons :use is exeuting. Thethread exeutes initially at Prod , whih is otherwise idle. The all to Bu� :put atthe end of the ode obeys the mutual exlusion at Bu� with the all to Bu� :getfrom the thread for Cons :use.Suppose there is an item in the bu�er at the start. The thread for Cons :useaepts, retrieving the �rst item from the bu�er and onsuming it, and the threadfor Prod :make produes an item and puts it at the bak of the bu�er. The itemretrieved is in the bu�er at the start, so the order of the method alls to Bu� fromthe two threads does not a�et the item retrieved, or the �nal state of the bu�er.The �nal state is the same as is reahed by exeuting the threads sequentially, ineither order.Suppose, on the other hand, that the bu�er is empty at the start. In this asethe thread for Cons :use rejets if it alls Bu� :get before the thread for Prod :makealls Bu� :put , and it aepts if it alls after. In the �rst ase, an item is produed,but none is onsumed, and there is a single item in the bu�er at the end. Thisis what happens if we exeute the thread for Cons :use followed by the thread forProd :make . In the seond ase, an item is produed, added to the bu�er, removedfrom the bu�er, and onsumed, leaving the bu�er empty. This is what happens ifwe exeute the threads in the opposite order.Thus, the �nal state after the onurrent exeution of the two threads isa state reahable by exeuting the threads sequentially. We an extend this byonsidering exeutions ontaining n threads for Prod :make and Cons :use, wherethreads are exeuted onurrently, obeying the mutual exlusion on boxes. Welaim that, for any exeution in this set, there is a sequential exeution of the same15



set of threads with the same start and �nal states.In general, if we take two sequential programs with shared variables andrun them onurrently, we an expet to reah an �nal state that is not reahableby running the programs one after the other. This interferene between separatethreads of ontrol is what makes onurrent programming diÆult. But in thisexample, it seems that a onurrent exeution of these proedures has the samebehaviour as a sequential exeution.Sine the onurrent exeution allows exeution at more than one box, itallows a more eÆient use of the omputing resoures. In the produer-onsumerexample, we might expet that produing and onsuming the items in parallel takesabout half the time of an equivalent sequential exeution.For the example, it seems we have the following happy irumstanes. Theprogram an be implemented onurrently, for reasons of eÆieny, but the on-urrent exeutions introdue no behaviours that are not observable in sequentialexeutions. If we show that all sequential exeutions have a ertain behaviour, thenwe an onlude that all onurrent exeutions have that behaviour. To show prop-erties of the sequential exeutions, we use the separation noted above, and givesequential spei�ations for the ations, and use these to show properties for atomiexeutions. We have a dual view of exeution for the program: onurrent exeutionfor implementation, and atomi exeution for proving properties of the program.The remainder of this work is an investigation of the irumstanes underwhih this dual view of a program's exeution is possible. We show suÆient on-ditions on programs, and restritions on exeutions, suh that every onurrentexeution is equivalent to an atomi exeution.
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1.2 RedutionA onurrent exeution of a program in the Seuss model onsists of a sequene ofsteps, eah involving one or two boxes. Eah step advanes one of the threads ativeat that point in the exeution. We represent the onurrent exeution of di�erentthreads by interleaving the steps of the threads.In an atomi exeution, the system state is represented by the values of theprogram variables. For a onurrent exeution, we need to reord more informationabout the system state between two steps. In addition to the values of the box vari-ables, we reord, for eah box, whih proedure, if any, is urrently being exeuted,and where the box has reahed in the exeution of the proedure's ode. We all thesum of the relevant information about the system state in a onurrent exeutionthe on�guration of the system. None of the extra information is neessary for anatomi exeution, sine every box is idle after every step.An atomi exeution has simpler states, and larger steps than a onurrentexeution. We an reason about an atomi exeution at a higher level of abstration,where many of the details reorded in a onurrent exeution have been hidden.To show that there is an atomi exeution orresponding to every onurrentexeution, we use redution. This is a tehnique for transforming an exeution intoan equivalent exeution by applying loal transformations to the sequene of steps ina onurrent exeution. We prove rules that allow partiular pairs of adjaent stepsto be swapped, without a�eting the remainder of the exeution, and we apply theserules repeatedly to reah an exeution where the steps of a given thread appear inan unbroken sequene, with no interleaved steps from other threads. If we an dothis with every thread, the resulting exeution is sequential, whih, as we have seen,orresponds to an atomi exeution.Lipton [24℄ introdued the term \redution" for this proess of rearrangingthe steps in a onurrent exeution to bring together all the steps for a single thread.17



His theory applied to a restrited lass of programs using semaphores, and to prop-erties of the form \the program never beomes deadloked". We apply redutionto a wider lass of programs, but the essential ideas from Lipton's theory guide ourwork.1.2.1 The two-phase loking protoolFor an example of redution, onsider two-phase loking protool from databasetheory [12℄. The exeution model is one in whih data items (reords in a database,for example) have resoures assoiated with them. All transations aquire theassoiated resoures before aessing a data item. The transation releases theresoures after it has aessed the data item. An ation that aesses multiple itemsat the same time �rst aquires the assoiated resoures for eah. Resoures thatallow read aess to an item are shared, meaning that multiple transations anread the item onurrently, whereas resoures that allow write aess to an item areexlusive, meaning that only one transation an write to the item at a time. Fornow, we onsider just exlusive resoures.An ation is alled two-phase if in any exeution, it aquires no new resouresafter it has released a resoure. This means that every exeution of a two-phasetransation an be divided into two parts. In the �rst part, resoures are aquired,and in the seond part they are released. The two-phase loking theorem says thatfor any onurrent exeution of a set of two-phase transations there is a sequentialexeution of the same set of transations where eah data item has exatly the sameoperations applied to it, in the same order, as in the onurrent exeution.The following example shows the ideas behind the two-phase loking theorem.The exeution below shows a thread for a two-phase ation �, exeuting onurrentlywith threads for other ations. The steps ai, b, and i are the steps of the thread
18



for �, with ellipses representing the steps from other threads.a0 ; � � � ; a1 ; � � � ; a2 ; � � � ; b ; � � � ; 2 ; � � � ; 1 ; � � � ; 0Resoure aquisition steps an fail, beause the resoure is unavailable. Only su-essful aquisition steps are shown in the exeution. Note that a step that aessesan item is from a thread that holds the neessary resoures.The thread for � aquires three resoures, R0, R1, and R2, with steps a0,a1, and a2. These allow it to aess some items with step b. It then releases theresoures with steps 2, 1, and 0.Consider step a2. Before this step, no thread holds resoure R2, and afterit step, the thread for � holds it. The resoures available after a2 are a subset ofthose available before. If s is the step after a2 in the exeution, and s is from adi�erent thread, s does not aquire R2. Sine it sueeds after a2 it will sueedbefore, sine any resoures it aquires are available. Resoure R2 is available after sif it is available before, so both steps sueed if we reverse their order. We swap thesteps, and repeat the argument with every step between a2 and b, and then repeatthe whole proess with steps a1 and a0. This gives us the following exeution.� � � ; a0 ; a1 ; a2 ; b ; � � � ; 2 ; � � � ; 1 ; � � � ; 0Here there are no steps from other threads between the �rst four steps of the thread.Now onsider step 2. This releases resoure R2, so the resoures availableafter it exeutes are a superset of those before. This step an be moved left over allthe intervening steps until it is next to b. Likewise, we an move 1 and 0. We getthe following exeution.� � � ; a0 ; a1 ; a2 ; b ; 2 ; 1 ; 0 ; � � �19



Here all steps from the thread are ontiguous. Any step from another thread thatwas before step b in the original exeution is before it in this redued exetion, andsimilarly with the steps after b. Thus the relative order in whih the threads aessthe items is the same as in the original exeution. If all the ations in the programare two-phase, we an apply the above redution to any onurrent exeution byapplying it to eah ation in turn, and this gives a sequential exeution in whihations aess items in the same order as in the original exeution.Lipton used the names right-movers for steps suh as ai in the above example,and left-movers for steps suh as i. He identi�ed right-movers as steps that aquireresoures, and left-movers as those that release them.1.2.2 Redution for SeussIn Seuss, the items aessed by thread are the box variables. The resoures thatallow aess to these items are the boxes themselves. A thread holds a box if it isexeuting a proedure all at that box. Beause of the mutual exlusion on boxes,a box is an exlusive resoure.From this, we an see that a thread is two-phase, in the above sense, onlyif it alls at most one method during its exeution, and the method alled itselfonly all one method, and so on. The lass of two-phase Seuss programs with thisrestrition is limited. It is diÆult to imagine that we an �nd a two-phase program\equivalent" to any Seuss program. Thus, for a useful redution theory for Seuss,the two-phase ondition is too strit.The following example demonstrates the issues involved in reduing Seussprograms, and provides some motivation for the approah we take. Consider theprogram in Figure 1.5. The program ontains a box X , whih has a loal variablex , and two methods, add , and mult . Both take a single input parameter. The �rstadds the parameter value to x , while the seond multiplies x by the parameter value.20



box Xvar x : integermethod add (in a : integer):: x := x + amethod mult(in a : integer ):: x := x � aendbox Dation aa :: X :add (3) ; X :add (4)endbox Eation a :: X :add (2)ation b :: X :mult(2)endFigure 1.5: Program with ommuting and nonommuting methodsBoxes D and E have no variables. Ation D :aa makes two alls to method X :add ,and ation E :a makes one all. Ation E :b makes one all to method X :mult .Consider a onurrent exeution of ations D :aa and E :a with the followingoutline.initD ; initE ; X :add (3)D ; X :add (2)E ; X :add (4)D ; termD ; termEHere initD represents the steps initializing the thread at D , termD represents thesteps to omplete the thread at D after the method alls, and X :add (3)D representsall the steps of a suessful all to X :add . The other steps have a similar interpre-tation, with the subsript E meaning that a step is taken on behalf of box E . Inthis exeution, the all to X :add from E :a ours between the alls from D :aa .Clearly, D :aa is not two-phase, sine it releases box X and then reaquiresit. However, we note that any two alls to X :add ommute, meaning that the �nal21



e�et on X :x is the same regardless of the order. Thus, we argue that we an replaeX :add (2)E ;X :add (4)Dwith X :add (4)D;X :add (2)Esine the overall e�et in either ase is to add 6 to X :x .Using this, we redue the above exeution to the following, equivalent, exe-ution.initD ; initE ; X :add (3)D ; X :add (4)D ; X :add (2)E ; termD ; termENow we argue that, sine initE a�ets only box E , and X :add (3)D a�ets only boxesD and X , that these steps an be exhanged. We apply a similar argument for initEand X :add (4)D, so we end up with the following exeution.initD ; X :add (3)D ; X :add (4)D ; initE ; X :add (2)E ; termD ; termEFinally, we argue as above that termD an be exhanged with X :add (2)E and initE ,sine again the steps a�et disjoint parts of the program. The end result is asequential exeution, as follows.initD ; X :add (3)D ; X :add (4)D ; termD ; initE ; X :add (2)E ; termEHere we were able to redue the original exeution to a sequential exeution by usingtwo fats:� Any two alls to X :add ommute. 22



� Any two steps that a�et disjoint parts of the state spae ommute.Note that the e�et of the �nal sequential exeution is to add 7 to X :x , and theoriginal onurrent exeution has exatly the same e�et on X :x . So this redutionseems reasonable.Consider now a similar exeution to the above, but with ations D :aa andE :b. initD ; initE ; X :add (3)D ; X :mult(2)E ; X :add (4)D ; termD ; termENow if we try to apply the above argument, we get stuk at the �rst step, beauseX :mult(2)E ;X :add (4)D is not equivalent to X :add (4)D;X :mult(2)E , beause thee�et of doubling number and then adding 4 is not the same as that of adding 4and then doubling.If the above exeution of D :aa and E :b is started from a on�guration whereX :x = 3, then the exeution ends in a on�guration where X :x = 16. The sequentialexeution D :aa ;E :b starting from the same on�guration, ends with X :x = 20, andthe exeution D :aa ;E :b ends with X :x = 13. Thus there is no way to represent theabove onurrent exeution as a sequential exeution of D :aa and E :b.This suggests that we distinguish pairs of ations, suh as D :aa and E :a ,whih are \well-behaved" with regards to redution, from pairs suh as D :aa andE :b whih are not. A pair of ations is well-behaved if a proedure alled duringa thread for one ommutes with every proedure alled during a thread for theother. If we exeute the program so that only well-behaved pairs of ations runonurrently, then method alls an be reordered, as we did above to show theredution for D :aa and E :a .This is our approah to redution. We de�ne ontrol relations as a generalmehanism for ontrolling onurreny. A ontrol relation ontains pairs of ationsthat may have onurrent threads. An exeution respets a ontrol relation if, at23



all times, any pair of onurrently exeuting threads are for ations in the ontrolrelation. We de�ne ontrol relations that allow as muh onurreny as possible,while allowing the redution of every exeution that respets the relation to anatomi exeution. In partiular, we run the program above under a ontrol relationthat ontains (D :aa ;E :a) but not (D :aa ;E :b).1.3 Summary of the materialThe main results we prove are the following.Complete exeution theorem A omplete exeution is one where all threads ter-minate without errors. The theorem gives some onditions on exeutions thatensure that every thread terminates. We de�ne onditions on a program, andon an implementation of the program, suh that every exeution is omplete.First redution theorem We de�ne a ontrol relation in terms of ommutativityonditions on proedure alls. The theorem shows that every omplete exeu-tion respeting this ontrol relation an be redued to an atomi exeution.Seond redution theorem We onsider the fairness onditions satis�ed by aonurrent exeution and its atomi redution. The theorem shows a ontrolrelation for any subset of the ations, suh that a omplete exeution respetingthis ontrol relation an be redued to an atomi exeution, where the originaland redued exeutions satisfy the same fairness onditions for ations in thesubset.The results are stated and proven in terms of a spei� language, TCB, that im-plements the Seuss model. We de�ne an operational semantis for this language,and we prove the above results for exeutions under this semantis. However, theresults are appliable to any language implementing the Seuss model. The basi24



mehanisms for starting and ending threads, implementing method all and return,and ensuring mutual exlusion on the boxes are ommon to all these languages, andthese are the features of the semantis that are important in proving the theorems.1.3.1 Chapter overviewChapter 2 de�nes a syntax and an operational semantis for TCB. We de�ne a pro-gram on�guration for representing the system state during a onurrent exeution,and we give the semantis as a relation on program on�gurations, de�ned by a setof inferene rules.Chapter 3 proves some basi results about the program on�gurations andinferene rules in the semantis for TCB. We de�ne the label for a step, and usethis to de�ne a program exeution.Chapter 4 investigates the auses of nonterminating threads. We prove theomplete exeution theorem, whih de�nes exatly the onditions neessary for ter-mination of all threads in an exeution. We de�ne ontrol relations, and show howthey an be used to avoid nonterminating threads due to deadlok or in�nite exe-ution.Chapter 5 ontains the �rst redution theorem, and its proof. We de�nea ontrol relation, alled weak ompatibility, using a ommutativity ondition onproedure alls. We show that any exeution that respets this ontrol relation anbe redued to an atomi exeution. We show a orrespondene between the originalonurrent exeution and the redued atomi exeution, whih an be used to inferproperties of the onurrent exeution from properties of the atomi exeution.Chapter 6 disusses the impat of fairness onditions on the progress proper-ties that an be proven of an atomi exeution. We de�ne two types of fairness, weakfairness and minimal fairness, and show that exeutions respeting the �rst havemore progress properties than exeutions respeting the seond. We show that there25



are weakly fair exeutions respeting weak ompatibility where the redution guar-anteed by the �rst redution theorem gives an atomi exeution that is not weaklyfair. We show a stronger ontrol relation, and the seond redution theorem, whihshows that weakly fair exeutions satisfying this ontrol relation an be redued toweakly fair atomi exeutions.Chapter 7 ontains some onluding remarks and observations. Appendix Aontains the semanti rules for TCB. Appendix B ontains some of the proofsomitted from earlier hapters.1.4 Related work1.4.1 SeussThe Seuss model was �rst desribed by Jayadev Misra in [25℄. Early drafts of thatwork stated, but did not ompletely prove, a redution theorem similar to the �rstredution theorem in Chapter 5.We implement all features of Seuss as outlined by Misra, with the exeption ofnegative alternatives. In the full Seuss model, the alternatives in a partial proedureare of two types: positive and negative. The alternatives shown in Setion 1.1.3 arepositive alternatives. The exeution of a negative alternative is the same as for apositive alternative, exept that a negative alternative always rejets, regardless ofthe evaluation of the guard and the body. A proedure with negative alternativesan hange the value of box variables on a rejeting all.Misra shows that negative alternatives add to the expressive power of thelanguage. A strong semaphore, one that guarantees that every ation attemptingto aquire the semaphore eventually sueeds, annot be de�ned with positive al-ternatives alone. With negative alternatives, the P operation on the semaphore iswritten so that the identity of the aller is reorded when the semphore is not avail-26



able, but the all rejets, indiating to the alling proedure that the semaphore isnot available.Rajeev Joshi and Misra show in [20℄ that the orret funtioning of a strongsemaphore oded with negative alternatives requires that all ations that attempt toaquire the semaphore be persistent. An ation � is persistent in a given exeutionif there are an in�nite number of threads for � in the exeution, or the �nal threadfor � is aepting. Equivalently, � is persistent if every rejeting thread for � isfollowed by another thread for �.Negative alternatives thus violate the rule that a rejeting thread does nothange the state, and they introdue additional ompliations, so, in the interestsof simpliity, we hoose not to implement them in our work.1.4.2 RedutionRihard Lipton's paper [24℄, introdued the term redution for the transformationof an exeution to an equivalent one in whih all the steps of a given thread appearontiguously, and thus may be regarded as atomi. The motivation for his work,as with the urrent work, is that the redued exeution has a oarser grain of in-terleaving than the original, so there is less interation, and thus less possibility forinterferene, between onurrently exeuting threads.Lipton introdued the terms right-mover, for a step that an be moved right(that is, delayed), and left-mover, for a step that an be moved left (that is, ad-vaned). The result he gives applies only to two-phase programs, where every exe-ution onsists of a sequene of right-movers followed by a sequene of left-movers.The redution theorem guarantees that the redued exeution is deadlok-free if andonly if the original exeution is.Several researhers have extended Lipton's ideas. In [10℄, Doeppner de�nesexpansions that allow a single large ation in a program to be replaed with a series27



of smaller steps. He de�nes various notions of onsisteny between programs andtheir expansions, and shows that an exeution that an be redued by Lipton'sredution theorem is a onsistent expansion of its redued exeution.In [22℄, Leslie Lamport gives a redution theorem for two-phase threads,onsisting of a sequene of right-movers, followed by a single entral step, and asequene of left-movers. In [23℄, Lamport and Fred Shneider give a theorem for aredution of two-phase threads that preserves all safety properties.Ralph-Johan Bak, in [2℄ and, with Joakim von Wright, in [3℄, presents atehnique for re�ning ation systems by repeatedly replaing a single ation withan equivalent ation system. This is alled atomiity re�nement. If ation systemA is re�ned to ation system A0 by this tehnique, then exeutions of A0 have a�ner grain of interleaving than exeutions of A. The tehnique is aimed at termi-nating programs, and the re�nement guarantees that A and A0 have the same totalorretness properties.In [6℄, Ernie Cohen proves the redution theorems of Lipton, Doeppner, andLamport and Shneider, and the partial orretness part of Bak's theorem, in termsof Kleene algebra (an algebra of regular expressions). Presenting the results in auniform framework allows the relationships between the theorems to be explored.In [7℄, Cohen and Lamport show a redution theorem that preserves notonly safety (or partial orretness) properties, but also weak and strong fairnessproperties. As with Lipton's theorem, and Lamport's earlier redution results, thetheorem applies only to two-phase threads.The above redution theorems apply to any exeution of a set of two-phasethreads. Threads in Seuss that all total methods are not two-phase. We annotshow a redution theorem that applies to any exeution of an arbitrary Seuss pro-gram. Instead, we de�ne a restrition on onurreny, and we show a redution forall exeutions obeying this restrition. 28



In [28℄, Susan Owiki and David Gries give suÆient onditions between se-quential programs that they do not interfere with eah other's exeution if run on-urrently. Their method involves heking every statement in one program againstevery statement in the other. The restrition on onurreny that we de�ne toensure redution is de�ned by a similar ondition between ations, exept that weexploit the mutual exlusion on proedure exeution at a box. In the ondition wede�ne, eah proedure alled during exeution of a thread for one ation is hekedagainst every proedure alled by a thread for the other.1.4.3 Transation proessingThe two-phase loking theorem says that any set of two-phase transations an berun onurrently and the resulting exeution is serializable. However, the two-phaseformat is a severe restrition on the allowed form of transations. Transationsare often written so that a lok is aquired long before, or released long after, theassoiated data is aessed. This dereases the opportunity for onurrent exeution.There has been some researh into non-two-phase loking protools, withthe aim of inreasing the onurrent exeution of transations. In [26℄, C Mohan,Don Fussell and Avi Silbershatz desribe a loking sheme using invisible loks, inaddition to standard shared and exlusive loks. The invisible loks allow neitherreading nor writing of the assoiated data, but a transation must hold some invisibleloks before it an aquire an exlusive lok.The loking protool with invisible loks assures serializability of aesses tothe data items, even for non-two-phase transations. The protool does not allowa transation to reaquire a lok it has released, but it may aquire other loks.One of the interesting results presented in this work is that every deadlok involvesa transation holding only invisible loks, and this transation has not hanged tovalue of any data. Thus to break the deadlok, the transation with only invisible29



loks an be aborted. There is no need for a mehanism to roll bak the state of thesystem on suh an abort, sine the aborted transation has made no state hanges.Eliot Moss's work on nested transations [27℄, extends the single-level trans-ation model to one in whih a transation may all several subtransations duringits exeution. Eah of these subtransations is itself a transation, and eah mayommit or abort independently. A transation is not obliged to abort if a subtrans-ation aborts. The intention is to provide a robust mehanism for implementingprograms on unreliable hardware. The implementation of the model ensures thateah part of a omputation an be regarded as an uninterrupted atomi ation.The nested transation model allows for hanges to the underlying stateprior to a deision to abort a transation. If a transation is aborted, all hangesmade to the state by the loal ode of the transation, and by any ommittedsubtransations, is rolled bak. Muh of Moss's researh onerns the managing ofdependenies between transations. This is required so that during rollbak for anabort of a transation, any other transation that has read values written by theaborted transation is itself aborted.Seuss proedures an be regarded as transations, and method alls are thusalls to nested transations. However, Seuss requires no mehanisms for rollbakon rejetion, sine we ensure that the state is never hanged unless a thread hasommitted.1.4.4 Conurrent objet-based languagesThere are a number of languages that o�er both onurrent exeution and objet-based enapsulation of data and ode. Many of these use an existing language as abasis. For example, COOL [4℄ is one of a number of proposals for extending C++with onurrent exeution, and ABCL [33℄, and its various desendents, are basedon Lisp. We are not aware of work applying redution to any of these languages.30



In [19℄, Steve Hodges and Cli� Jones present an operational semantis forthe language �o��, a onurrent objet-based modeling language. They use thissemantis to prove the validity of optimizations allowing inreased onurreny. Themain optimization is early return. In this a all to proedure �0 from proedure �returns as soon as the values of the return parameters are available. The remainderof the exeutions of the alls to �0 and � are exeuted onurrently.The semantis for �o�� given by Hodges and Jones is based on the StruturedOperational Semantis outlined by Gordon Plotkin in [29℄. The semantis we givefor Seuss is strongly inuened by that given in [19℄.1.5 NotationWe use the operator , to mean \is equal by de�nition". We use the following generalformat for quanti�ation.hÆ x : R:x : T:x iHere Æ is a ommutative assoiative binary operator. We all x the dummy, R:xthe range, and T:x the term. The range is a boolean expression, and the termis an expression of the orret type to be a operand of Æ. The meaning of thequanti�ation is the result of applying operator Æ to the set of values T:x for all xsatisfying R:x.
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We use the following instanes of this notation.h8 x : R:x : T:x i , for all x, if R:x then T:xh9 x : R:x : T:x i , there exists an x, suh that R:x and T:xh9! x : R:x : T:x i , there exists a unique x, suh that R:x and T:xh� x : R:x : T:x i , the sum of T:x, for x satisfying R:x,h# x : R:x : T:x i , the number of x satisfying R:x and T:xhmin x : R:x : T:x i , the minimum of T:x, for x satisfying R:x,h[ x : R:x : T:x i , the union of T:x, for x satisfying R:x,When the range is true or understood from the ontext, we omit it, and writeh8 x :: T:x i. For long formulae, we write the quanti�ation over several lines asfollows.h8 x: R0:x ^ R1:x ^ R2:x ^ R3:x ^ R4:x ^ R5:x ^ R6:x: T0:x ^ T1:x ^ T2:x ^ T3:x ^ T4:x ^ T5:x ^ T6:xiFor sets, we use the following form of quanti�ationf x : R:x : T:x g , the set of all T:x, for x satis�ng R:xFor set quanti�ation where the term is x, we use the omprehension notation.f x j R:x g , f x : R:x : x gWe use the following operator to express the fat that two sets are disjoint. For sets
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A and B,A disjB , A \B = ;For a set A,#A , the number of elements in AA? , A [ f?gHere, ? is an element not in set A. A ommon use of a set A? is to de�ne a funtionthat returns either an element of A, or ? indiating \no suh item".For sets A and B, A ! B is the set of total funtions from A to B, andA ,! B is the set of partial funtions from A to B. For a funtion f , we writedom(f) and rng(f) for the domain and range of f .For a set A, A� is the set of �nite sequenes over A, and A1 is the set of�nite and in�nite sequenes over A. For s 2 A1, we write jsj for the length of s. Ifs 62 A�, then jsj =1. We use the indexing operator s[i℄ for the ith element of s, for0 � i < jsj. Element indies start at 0. We use the segment operator s[i : : : j℄ forthe segment of s ontaining elements s[i℄ through s[j℄ inlusive, for 0 � i � j < jsj.For an in�nite sequene, we allow segments s[i : : :1℄, meaning the segment fromelement s[i℄ on. With these, we de�ne�rst(s) , s[0℄rest(s) , s[1 : : : (jsj � 1)℄last(s) , s[jsj � 1℄ if jsj <1For s; t 2 A1, the onatenation of s and t is written sÆ t. If jsj =1, then sÆ t = s.
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Sequenes are ordered by the pre�x ordering.s v t , h9 s0 : s0 2 A1 : s Æ s0 = t iUnder this order, the set A1 is a omplete partial order (CPO) (see [8℄). By de�ni-tion, the least upper bound of any hain is an element of A1. That is, if s0; s1; s2; : : :are suh that for all i, si 2 A1, and si v sj for all i, j, suh that i < j, then theleast upper bound of the si, written ht i : 0 � i : si i, is an element of A1. Thismeans we an de�ne elements in A1 as the limit of a hain of �nite sequenes. Weuse ? for the empty list. This is the bottom element in the pre�x order.We write proofs in the style of [9℄. The following proof fragment shows theessential features of this format.:(a = b ^ b = ) ^ (b =  _  = d)� f prediate alulus g(a = b ) b 6= ) ^ (b 6=  )  = d)) f transitivity of ) ga = b )  = d) f assumption a = b g = dThe proof shows derivation of  = d, from the formula in the �rst line, and theassumption a = b. The proof onsists of alternating lines of terms and hints. Ahint line starts with a onnetive. The seond line of the proof (the �rst hint) saysthat the term in the �rst line is equivalent to the term in the third line. The hintjusti�es this laim with a referene to the appropriate mathematial law, theorem,de�nition, or assumption. The proof as a whole says that the �rst term implies thelast term.
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We de�ne tuples with typed omponents as in the following example.T , reordr : integerb : booleanendThis de�nes the type T as a tuple onsisting of an integer r and a boolean b. Ift 2 T , we write t :r for the �rst omponent of t , and t :b for the seond omponent.We write an arbitrary element of T as (r ; b).
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Chapter 2
The de�nition of TCB
2.1 IntrodutionAll Seuss languages have the same mehanisms for ommuniation between boxes,and for evaluation of guards, so the major di�erene between them is the sequentiallanguage used to write proedure bodies. TCB is a Seuss language that uses a simplesequential language, alled TCBlo, for proedure bodies. We de�ne a syntax andoperational semantis for both languages.TCBlo is a simple language, and it has a simple semantis with a singlethread of ontrol. In the semantis of TCB, we must represent threads exeutingonurrently at di�erent boxes.We de�ne the semantis for TCBtot, a restrited form of TCB in whih allproedures are total. In this semantis, we represent the exeution of eah box in theprogram separately, with ommuniation between boxes for method all and return.The semantis implements proedure all and return, but does not implement guardevaluation or rejeting proedure alls, sine there are no partial proedures.We extend the semantis for TCBtot to a semantis for the full TCB lan-guage. The extension implements guard evaluation and rejeting proedure alls.36



We give two semanti de�nitions for TCB, using di�erent models for proedure all.The di�erenes are disussed below.2.2 SyntaxThe syntax of TCB is essentially the same as that used for the example programs inChapter 1. We de�ne a simple sequential language, alled TCBlo. This has someof the standard features of an imperative language: assignment, alternation, anditeration. We de�ne TCB as a Seuss language that uses TCBlo, augmented with aproedure all statement, as the language for the bodies of proedures.2.2.1 Variables, states, values and expressionsThe set Id ontains the legal identi�ers. We use x , y and z as typial variables, Dand E as typial boxes, a as a typial ation, m and n as typial methods, and pas a typial proedure.We are deliberately vague about the language used for expressions in thislanguage. We assume that we an represent values of the following types.boolean = ftrue ; falseginteger = f: : : ;�2;�1; 0; 1; 2; : : : gWe de�neVal , boolean � integerType , fboolean ; integergHere � is the disjoint union operator. The set Val ontains all values that an beassigned to a variable. We use v for a typial member of Val . The set Type ontainsthe all the types in TCB. 37



We use standard operators for the boolean and integer types, inluding equal-ity, logial operators suh ^ and :, and integer operators suh as + and �. Set Expontains all legal expressions. We use e for a typial expression, and b for a typialboolean expression.We use a state to give the values of the variables in a program. A state is amap from variable identi�ers to values.De�nition 2.1State , Id ,! Val?A State is a partial funtion, sine only a subset of Id are de�ned as variables inany given program. We use � for a typial member of State . For any x 2 VarId ,if x 2 dom(�), �:x is the value of x in �. If �:x = ?, then x is de�ned in �, butuninitialized.The evaluation operator [[�℄℄ is de�ned so that for any expression e, and anystate � suh that every variable in e is de�ned in �, with a value of the appropriatetype, the value of e in � is [[e℄℄�.The type VarTypeList is used to represent a list of variable ids and theirassoiated types (for example, for a parameter list). The elements of VarTypeListare sequenes over Id�Type, suh that all the Id entries in the sequene are distint.A typial element of VarTypeList is V . For L 2 VarTypeList , VarList(L) is thesequene of ids in L.2.2.2 Syntax for TCBloA TCBlo program is shown in Figure 2.1. This example shows all the onstrutsof TCBlo, a minimal language of the Algol-Pasal family. A program onsists ofa variable delaration blok, started by var, followed by the ode of the program38



var x : integerd : integer init 4q : integerr : integerb : boolean init falsebeginq := �23if x < 0 then x := �x else b := truer := x ; q := 0while r � d do j[ r := r � d ; q := q + 1 ℄jend Figure 2.1: TCBlo ode to divide x by dbetween begin and end. The program shown implements integer division usingrepeated subtration. Four integer variables and one boolean variable are delared.Variable d is initialized to 4, b to false , and x, q, and r are uninitialized. The �rststatement of the ode assigns a value to x. The seond statement heks if x isnegative, and if it is, negates it. The next line ontains two assignment statementsin sequene. The �nal line is a loop statement that heks if r is at least d, and ifit is, updates r and q and repeats. The two assignments in the loop are enlosedin brakets indiating that they form a ompound statement, whih is treated as asingle statement.The syntax for TCBlo is shown in Figure 2.2. It is given as a set ofBakus Normal Form (BNF) prodution rules. Terminals and nonterminals of thegrammar are enlosed in angle brakets. On the right-hand side of the produtionrules, we use quotation marks around elements of the onrete syntax, and we use
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hloprog i ::= \var" hdel i� \begin" hstmti� \end"hdel i ::= hidi \:" htypei [ \init" hvaluei ℄hstmti ::= hassigni j hifelsei j hwhiledoi j hompound ihassigni ::= hidi \:=" hexpihifelsei ::= \if" hexpi \then" hstmti \else" hstmtihwhiledoi ::= \while" hexpi \do" hstmtihompound i ::= \j[" hstmti� \℄j"
Figure 2.2: Syntax for TCBlothe following operators.S� , S repeated 0 or more timesS+ , S repeated 1 or more timesS S0 , S followed by S0S j S0 , S or S0[ S ℄ , S is optionalThe operators are given in order of preedene, from highest to lowest. We useparentheses for grouping when neessary.Thus, the �rst prodution rule in Figure 2.2 says that a program hloprog i isthe keyword var, followed by zero or more hdelis, followed by the keyword begin,followed by zero or more hstmtis, followed by the keyword end. The seond rule saysthat a delaration hdeli is an hidi, followed by the separator :, followed by a htypei,optionally followed by the keyword init and a hvaluei. The third rule says that astatement hstmti is one of an hassigni, an hifelsei, a hwhiledoi, or a hompound i.40



box Semvar n : integer init 1method P :: n > 0 �! n := n� 1method V :: n := n+ 1endbox Dvar x : integer init 0ation at :: true & Sem:P �! x := x+ 1 ; Sem:Vendbox Evar y : integer init 0b : boolean init falseation aq :: :b & Sem:P �! b := trueation rel :: b �! y := y + 1 ; b := false ; Sem:Vend Figure 2.3: A TCB program with three boxesWe assume that the terminals hidi (for identi�ers), htypei (for typenames),and hexpi (for expressions) are de�ned elsewhere.2.3 Syntax for TCBAn example TCB program with three boxes is shown in Figure 2.3. The �rstbox, Sem, implements a general semaphore. The box has a loal integer variable n,whih is initially 1, and two methods, P and V . Method P is partial; a all to thismethod aepts only if n > 0. If a all to Sem:P aepts, then the semaphore hasbeen granted to the aller. The method V releases the semaphore. This method istotal, so it always aepts.Boxes D and E show two di�erent styles for using the semaphore. Box Dontains a single ation at . This is a partial ation. The ondition is true. The test41



hprogram i ::= hbox i+hbox i ::= \box" hidi \var" hdel i� hproi+ \end"hproi ::= ( \ation" j \method" ) hheader i \::"( hpartial i j htotal i )hheader i ::= hidi \(" [ \in" hdeli+ ℄ \;" [ \out" hdel i+ ℄ \)"hpartial i ::= halterni+halterni ::= hboolexpi [ \&" halli ℄ \�!" hstmti�htotal i ::= hstmti�hstmti ::= hall i j hassigni j hifelsei j hwhiledoi j hompihall i ::= hidi \:" hid i [ \(" hexpi� \;" hidi� \)" ℄hassigni ::= hidi \:=" hexpihifelsei ::= \if" hboolexpi \then" hstmti \else" hstmtihwhiledoi ::= \while" hboolexpi \do" hstmtihompi ::= \j[" hstmti� \℄j"hdel i ::= hidi \:" htypei [ \init" hvaluei ℄
Figure 2.4: Syntax for TCBis a all to Sem:P to obtain the semaphore. If the test aepts, box D inrements x ,and then alls Sem:V to release the semaphore. Box E has two ations. The loalboolean variable b indiates if the box holds the semaphore. The �rst ation, aq ,attempts to aquire the semaphore, if it does not already hold it. If it sueeds, itsets ag b to true. This enables ation rel , whih inrements y , and then releasesthe semaphore, and resets b.The syntax for TCB is shown in Figure 2.4. This syntax orresponds to thesyntax we have been using for the examples so far. There is one slight extension:a proedure header, and a proedure all, has a semiolon between the input andoutput parameters. Thus we write a all to a method D :m with input and output42



parameters as D :m(~e; ~x ), where ~e is a sequene of expressions giving values forthe input parameters, and ~x is a sequene of variable ids to reeive the outputparameter values. We omit the semiolon on a header or a all if there is only onetype of parameter. We omit the parenthesis if there are no parameters.Note that the prodution for hstmti has one alternative more than the equiv-alent prodution in the syntax of TCBlo. The extra alternative is the method allstatement.2.4 Well-formed programsThere are syntatially legal TCBlo and TCB programs that annot be imple-mented. The syntax given ignores issues of variable sope, and type orretness,sine these annot easily to expressed in a BNF grammar.For the remainder of this work, we onsider only well-formed programs, thatis, programs that respet soping rules and are type orret. We do not give anexat de�nition of a well-formed program. Rather, we list the assumptions that wemake in de�ning the semantis for well-formed programs.We de�ne the sope of a variable delaration in a TCBlo program to be allthe statements. In TCB, the sope of a box variable is all the proedures in thebox, and the sope of a proedure parameter is the proedure where it is delared.We assume that eah operator in the expression language has a type signature,giving the type of its operands and result. We assume that the expression languagede�nes the set of well-typed expressions, and assigns a unique type to eah. Theseare the expressions where every operator is used with expressions of the orret typefor its operands, as given by the type signature. The type of a well-typed expressionis the result type of the top-level operator. If e is an expression ontaining variables,then the type of e is de�ned relative to a type assignment a partial funtion fromvariable ids to types. If e ontains a variable whose type is unde�ned, then it is not43



well-typed.For example, the expression \:b ^ (x = y)" is well-typed, with respet to atype assignment that gives b type boolean , and x and y type integer , assuming theoperators have the ustomary type signatures. The expression \true + 17" is notwell-typed.For eah statement in a program, we de�ne a type assignment mapping x toT for every delaration \x : T" whose sope inludes the statement. Any expressionin the statement is typed relative to this type assignment.Assumption 2.2 For a well-formed program,1. Every variable is used in the sope of a delaration.2. Every expression is well-typed.3. For every assignment statement, the expression of the right-hand side has thesame type as the variable on the left-hand side.4. The expression if every if-else and while-do statement is of type boolean.5. Every method all statement in TCB is to a method delared in another box,and the types of expressions for the input parameters, and of the variables forthe output parameters, mathes the delared parameter types for the method.6. Ations have no parameters.For e 2 Exp, and x 2 Id , we say that e mathes x if the type of e mathes thetype of variable x . We use this only in a ontext where the types of e and x isunderstood, that is, in the sope of the neessary delarations. We extend this tosequenes in the obvious way. For ~e 2 Exp�, and ~x 2 Id�, we say that ~e mathes ~xif ~e and ~x are the same length, and eah expression in ~e mathes the orrespondingvariable in ~x . 44



2.5 Run-time errorsRun-time errors desribe steps of a program aused by the failure to evaluate anexpression in the urrent state. Often, a run-time error is de�ned for division byzero, or aessing an array outside its bounds. We hoose not to de�ne any run-timeerrors for TCB, sine we thereby avoid adding to the omplexity of the semantis.That is, we make the following assumption.Assumption 2.3 A TCB expression e is de�ned in every state � that assigns avalue of the orret type to every variable in e.We indiate extensions to the semantis and to the omplete exeution theorem thatare required if we do not make this assumption.2.6 Operational semantisWe give semanti de�nitions in the Strutured Operational Semantis style intro-dued by Plotkin [29℄. We hoose this style beause it allows us to present thesemantis in a way that losely models the informal explanation of the exeution ofTCB programs given in earlier hapters.For eah semanti de�nition, we �rst de�ne a on�guration that inludes (atleast) a state, and a sequene of program statements (the ode). A on�gurationrepresents a \snapshot" of a system. The state gives values to the program variables,and the ode is the part of the program ode left to exeute.The exeution of a program steps from on�guration to on�guration asstatements are exeuted, and the state is updated. We use funtion update todesribe the hanges to the state. For a state �, the state�0 = � [x 7! v℄ 45



is de�ned by�0:x = vand, for y any identi�er other than x,�0:y = �:yFor � 2 State, and � 2 Statement�, let C = (�; �) be a on�guration. Thesemanti rules de�ne a transition relation on on�gurations. Con�guration C isrelated to C0 = (�0; �0) if the semantis allows a step from C to C0. We all C0a suessor of C. The rules de�ning the relation generally depend on the �rststatement in �, and on the state �. Component �0 is the updated ode after the�rst statement has been exeuted, and the �0 is � updated with the e�et of thestatement.An exeution of a program starts from a on�guration C0 = (�0; �0) in whih�0 maps eah variable to its initial value, and �0 is the whole program. Exeutionproeeds by taking a step from C0 to C1, where C1 is a suessor of C0, and thentaking a step from C1 to C2, one of its suessors, and ontinuing in this way. Ifan exeution reahes a on�guration with no suessors in the transition relation,the exeution stops. There are no suessors for on�gurations with an empty odeomponent. In suh a on�guration, there is no more ode to exeute. An exeutionthat reahes suh a on�guration has terminated.The sequential language TCBlo is very simple, and its operational semantisis orresponding simple. The semanti de�nition serves mainly as an introdution tothe Strutured Operational Semantis style before we takle onurrent exeution.The semantis for TCBtot and TCB represents an exeuting program a sys-tem omprised of separately exeuting nodes, one for eah box. Eah node exeutesalls to proedures from its assoiated box. We identify eah box in the program46



with its node, and use the name \box" to mean either, depending on ontext. Abox that is not urrently exeuting a proedure all is alled quiesent. Initially, allboxes are quiesent.The exeution of a thread for ation D :a begins with box D starting to exe-ute a's ode. If the exeution of D :a reahes a all to method E :m , this is exeutedby suspending exeution at D , and starting exeution at E . When the exeution ofE :m's ode is omplete, D beomes ative again, and E beomes quiesent.In a TCBtot program, every proedure is total, so every proedure all duringan exeution is aepting. The semantis is simpli�ed by not having to deal withrejeting proedure alls.We implement a simple model of proedure all for TCBtot. In this model,a proedure all step ours when a box D has a all to E :m as the �rst statementin its ode, and E is quiesent. If E is exeuting a proedure all, D is blokeduntil this all ompletes. When E is quiesent, D is able to make the all. Theon�gurations of D and E are updated in the same step: D enters a waiting phase,and E is updated with the all from D . Box E is then ommitted to exeuting thisall. When it ompletes the all, the on�gurations of D and E are again updatedin a single step: D is updated with the values of the output parameters from E ,and ontinues exeuting the rest of its ode, and E beomes quiesent again. Weall this model of proedure all a rendezvous between the soure and the agent;the step is enabled only if both boxes are in the right on�guration. We all thesemantis for TCBtot a rendezvous semantis.The �rst semantis we de�ne for the full TCB language uses the rendezvousmodel for proedure all. This extends the ideas from the TCBtot semantis, andimplements guard evaluation and aepting and rejeting alls to partial proedures.The rendezvous model for proedure all is inadequate for ases when thereis ontention for aess to a box. Suppose proedure alls are exeuting onurrently47



at boxes D and D 0, and both are ready to all a method on box E . Box D annotproeed until E exeutes its method all, and similarly for D 0. When E is idle, itan start exeuting only one of the alls, say the one from D 0. Box D waits whileE exeutes the all from D 0. When E is again idle, it may start D 's all, or it maystart a all from yet another box. If there are enough boxes trying to all methodson E , there may be ontention eah time E is quiesent, and box D may always losethis ontention.An exeution with a nonterminating thread annot be represented by a se-quential exeution. To get an exeution in whih all threads terminate, we mustensure that every proedure all is eventually exeuted by its agent. The above ex-ample shows that the rendezvous semantis does not guarantee this. We introduea di�erent model for proedure all, one that uses a all queue for eah box.In the new model, a box D reahes a all to a proedure on box E , an entryis plaed at the bak of E 's all queue, regardless of E 's on�guration. Box Denters a waiting state. When E is idle and there is an entry in its all queue, itstarts exeuting the front entry. When it ompletes the all it returns any outputparameters to the all's soure, and the soure ontinues exeuting. The frontentry is removed from the queue, and E beomes idle, so it again heks to seeif the queue is empty. Assuming eah proedure all terminates, the all from Deventually reahes the front of the queue, and E exeutes it.The queue model ensures that no box is permanently prevented from a-essing a box to exeute a method. We all a semantis using this model a queuesemantis.Note that the rendezvous form for proedure return does not ause similarontention problems, sine we restrit our attention to well-formed program on�g-urations, one of whose harateristis is that if an agent is ready to return from amethod all, then the soure of the all is waiting, ready to exeute the return.48



Our �nal semantis is a queue semantis for the full TCB language. Weextend the program on�gurations from the rendezvous semantis to inlude theall queues, and we de�ne a transition relation on these extended on�gurations.This semantis is the one whih we use as the semantis of TCB in later hapters.2.7 Operational semantis for TCBloWe de�ne the semantis of a TCBlo program, using the Strutured OperationalSemantis style.2.7.1 Program on�guration for TCBloThe on�guration of a TCBlo program is given by the type LoCon�g .De�nition 2.4LoCon�g , reord� : State� : Statement�endComponent � is the value of the program variables, and omponent � is the sequeneof statements | the ode | remaining to be exeuted.2.7.2 Semanti rules for TCBloThe semantis for this language is given as a set of inferene rules whih togetherde�ne a relation �! over LoCon�g . These inferene rules are shown in Figure 2.5.The intended operational meaning of these rules is as follows.(assign) If �rst(�) is an assignment statement, evaluate the right-hand side of theassignment in the urrent state, and update the state to give the variable of49



(assign) � = (x := e); �0�0 = � [x 7! [[e℄℄�℄(�; �) �! (�0; �0)(blok) � = j[ �0 ℄j; �1�0 = �0; �1(�; �) �! (�; �0)(if-true) � = (if b then S 0 else S 1); �̂[[b℄℄� = true�0 = S 0; �̂(�; �) �! (�; �0)(if-false) � = (if b then S 0 else S 1); �̂[[b℄℄� = false�0 = S 1; �̂(�; �) �! (�; �0)(while-true) � = (while b do S ); �̂[[b℄℄� = true�0 = S ; (while b do S ); �̂(�; �) �! (�; �0)(while-false) � = (while b do S ); �0[[b℄℄� = false(�; �) �! (�; �0)Figure 2.5: Semantis for TCBlo
50



the left-hand side of the assignment the value omputed; ontinue exeutingthe rest of the program after the assignment.(blok) If �rst(�) is a blok statement, prepend the statements in the blok to theode, without hanging the state.(if-true)(if-false) If �rst(�) is an if-else statement, �rst evaulate the ondition expression inthe urrent state; if it is true, exeute the then-statement, if it is false, exeutethe else-statement; afterwards, ontinue with the rest of the program.(while-true)(while-false) If �rst(�) is a while-do statement, �rst evaluate the ondition expres-sion in the urrent state; if it is true, exeute the body of the loop, and thenexeute the loop again, if it is false , ontinue with the rest of the programafter the loop.An exeution of a TCBlo program starts from a on�guration (�0; �0), where �0 isthe initial state, and �0 is the whole ode of the program. State � assigns values toall the variables de�ned for the program, and to no others.From the initial on�guration (�0; �0), the exeution takes a step to on�gu-ration (�1; �1), where (�0; �0) �! (�1; �1), and then it takes a step to (�2; �2), where(�1; �1) �! (�2; �2). The exeution ontinues in this manner. If exeution reahesa on�guration (�n; �n) where �n = ?, no further transitions are possible, and wesay that the exeution has terminated, and �n is the �nal state.Note that none of the semanti rules extend the domain of the state om-ponent of the on�guration. In this simple programming language all variables areglobal, and last the lifetime of the program.The semantis given is standard, and we do not investigate it further sineit is not the fous of our work. The semantis of the TCBlo have little e�et on51



results that we prove for TCB. The main feature of this semantis we use in theremainder of our work is that it that for every (�; �), where � 6= ?, there is a (�0; �0)suh that (�; �) �! (�0; �0).The results that we show an be extended to a Seuss language using anysequential language for the bodies of the proedures, not just TCB. We hoseTCBlo as a simple representative sequential language.See [29℄ for examples of Strutured Operational Semantis de�nitions of lan-guages with loal variables, subroutines, and dynami alloation. For our purposes,a riher sequential language is unneessary.2.8 De�ning the semantis for TCBWe disuss below a number of the design deisions that were made in de�ning thesemantis for TCB.2.8.1 Modelling boxesAs noted in the introdution, the on�guration of a TCB program onsists of theon�guration of eah box in the program. The box on�guration has several ompo-nents. As with TCBlo, it inludes the loal state, whih gives the values of all thevariables delared in the box, and some ode, whih, in this ase, is the statementsremaining to be exeuted for the urrent proedure all. The other omponents arethe phase, and the all information.Exeution for eah box onsists of a sequene of omplete proedure alls.The phase for a box reords where the box stands in the yle of waiting to startexeution of a proedure all, deiding to aept or rejet the all, exeuting theproedure body, and so on. The phase is the state for a �nite state automatonontrolling this aspet of the box's exeution.52



The all information reords information about the urrently exeuting pro-edure all. This is needed for, among other things, determining the values to returnto the soure on return from a proedure all.During the exeution of a TCB program, the box on�gurations are inter-related. For example, if box D is exeuting a method all with soure E , then weexpet E to be waiting for ontrol to return from the method all. In Chapter 3, wede�ne the set of well-formed box on�guration and program on�gurations. Theseare the only on�gurations we expet to see during the exeution of a program. Weshow that an exeution starting from a well-formed on�guration never reahes aon�guration that is not well-formed.The program on�guration we de�ne allows for independent ativity at eahbox. The model allows an ation all to be started when other ation alls arerunning. Eah ation all is a separate thread. The model is one in whih there anbe multiple threads ative at one time.Note The three semantis that we introdue share many similarities, and we de�nesimilar but di�erent types and inferene rules for di�erent semantis. We adopt anaming onvention (with the aid of hindsight) for these entities, as follows.� If an entity is used in the semantis of TCBtot, but not in the rendezvoussemantis of TCB, it is named with the suÆx -tot .� If an entity is used in the rendezvous semantis of TCB, but not in the queuesemantis of TCB, it is named with the suÆx -rdv .� If an entity is used in the queue semantis of TCB, it is named with neitherof these suÆxes.So, for example, ProgCon�g-tot is the program on�guration for the TCBtot seman-tis; ProgCon�g-rdv is that for the rendezvous semantis of TCB; and ProgCon�g is53



that for the queue semantis of TCB. In the TCBtot semantis, we use names withboth suÆxes, and with none; in the rendezvous semantis for TCB we use nameswith the suÆx -rdv , and names with no suÆx; in the queue semantis for TCB weuse only names with no suÆx. (End of note)2.9 Rendezvous semantis for TCBtotWe present a rendezvous semantis for TCBtot. In the semantis, we need to referto information about boxes and proedures from the program. When a proedureall is initialized, for example, the semantis uses the names of input parametersdelared for that proedure to orretly update the state with the input parametervalues. We de�ne some types for this stati information.2.9.1 Stati information for a TCBtot boxWe de�ne a type for the information about proedures de�ned in a box.De�nition 2.5TotalDef , reordI : VarTypeListO : VarTypeListC : Statement�endHere I represents the input parameters and their types, O represents the outputparameters and their types, and C represents the ode for the body of the method.For an ation, both I and O are empty lists. We use VarTypeList rather than aState for the input and output parameters beause we use positional mathing topass multiple atual parameter values to multiple formal parameters. That is, if we54



have the parameter list h(x ; Integer ); (y ; Integer )i, and we have the parameter valuelist h5; 9i, then we give x the value 5, and y the value 9. The translation of the odeof a well-formed TCBtot proedure to a TotalDef is straightforward.The type BoxInfo-tot reords the stati information for a box.De�nition 2.6BoxInfo-tot , reord�0 : StateT : Id ,! TotalDefA : dom(T )! BoolendComponent �0 represents the initial state, whih assigns initial values of the appro-priate type to the box variables, T represents the total proedures de�ned in thebox (for the present ase, all proedures are total), and A indiates whih of theproedures in dom(T ) are ations; A:p holds if and only if proedure p is an ation.Again, translating the ode of a TCBtot box into a BoxInfo-tot is a straight-forward proess. Translating the well-formedness onditions on TCBtot programsto the equivalent onditions on the generated BoxInfo-tot , we assume the followingabout any BoxInfo-tot .Assumption 2.7 If (�0;T ;A) is a BoxInfo-tot generated from the ode of a well-
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formed TCBtot box,h8 p: p 2 dom(T ): ( A:p ) T :p = (?;?;C ) ) ^dom(�0) disj dom(T :p:I ) ^dom(�0) disj dom(T :p:O) ^dom(T :p:I ) disj dom(T :p:O)iThe �rst onjunt in the term states that ations have no input or output parame-ters. The remaining onjunts require that the names of the input parameters, andthe output parameters be distint from eah other and from the names of the boxvariables. This restrition means that we do not have to deal with the ase when thename of a parameter hides the name of a box variable. This simpli�es the de�nitionof the semanti rules.2.9.2 Stati infomation for a TCBtot programLet B be the set of boxes in the program. The stati information assoiated witha TCB program is represented by a map I that maps eah box to its assoiatedBoxInfo-tot .I : B! BoxInfo-totThis map is generated from the program text. When we use the following funtions,whih use I impliitly, we do so in a ontext in whih there is an identi�ed programunder onsideration, so the value of I is given.
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De�nition 2.8 For D 2 B,InitState(D) , I:D :�0BoxVars(D) , dom(InitState(D))TotAts(D) , f p j p 2 dom(I:D :T ) ^ I:D :A:p gTotMeths(D) , f p j p 2 dom(I:D :T ) ^ :I:D :A:p gFor p 2 dom(I:D :T ),InParam(D :p) , VarList(I.D.T .p.I )OutParam(D :p) , VarList(I.D.T .p.O)Code(D :p) , I:D :T :p:C2.9.3 Box on�guration for TCBtotThe type BoxCon�g-tot is used to represent the on�guration of a TCBtot boxduring the exeution of a program. To de�ne this we �rst de�ne a type to representthe phase of an exeuting box. At eah point during the exeution of a program, abox is in one of the following phases.� Not urrently exeuting a proedure all.� Exeuting the loal ode of a proedure all.� Waiting for a all on a method in another box to return.� Ready to return ontrol and output parameter values to the soure.The following type represents the phase.De�nition 2.9BoxPhase-tot , fidle;aept;wait;returng57
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Figure 2.6: Transition diagram for phases of a TCBtot box.These values orrespond, in order, to the phases listed above. The diagram inFigure 2.6 shows the possible phase hanges for a single box.The type CallInfo is used to reord information regarding a proedure all.De�nition 2.10CallInfo , reordp : IdQ :B?~v : Val�endHere p is the name of the proedure, and Q is the soure. We use the ? for the soureof an ation. The sequene ~v is used to hold values for output parameters (and, inother semanti de�nitions, values for input parameters). During the exeution of aproedure all it is always ?, until the box enters phase return, at whih point58



it is set to the output parameter values. Sine ations have aller ?, and have noparameters, a CallInfo for an ation a is always of the form (a ;?;?). We dropthe trailing ? values and write this as (a). We also write (p;D) for (p;D ;?). Thefollowing funtions are aessors for omponents of a CallInfo.De�nition 2.11 For  2 CallInfo, where  = (p;Q ; ~v),Pro() , pSoure() , QNow we de�ne the type that represents the on�guration of a box duringprogram exeution.De�nition 2.12BoxCon�g-tot , reord� : BoxPhase-tot� : State : CallInfo?� : Statement�endIn our intended model of program exeution, when a box is idle, or ready to return,it has no ode to exeute, that is, � = ?. So, for� 2 fidle;returngwe let(�; �; ) = (�; �; ;?) 59



2.9.4 Program on�guration for TCBtotThe on�guration of a program is given by a BoxCon�g-tot for eah box in it.De�nition 2.13ProgCon�g-tot , B! BoxCon�g-totThe program starts in a quiesent on�guration where every box has its initial state.De�nition 2.14 The initial on�guration for the program is Cinit 2 ProgCon�g-totsuh that, for all D 2 BCinit :D = (idle; InitState(D);?)2.9.5 Semanti rules for TCBtotThe transition relation for TCBtot is written =). As with TCBlo, we de�ne thisrelation using a set of inferene rules.Ation start, method all, and proedure initializationThe inferene rules in Figure 2.7 onern proedure alls. An explanation of theserules follows.(t-ation-start-rdv) A box in phase idle, with an empty all information, an starta all of any of its ations. It sets its all information for the ation, its odeto the ode for the body of the ation, and enters phase aept.(total-all-rdv) A box in phase aept that has a method all as the �rst statementof its ode an exeute the all when the agent is in phase idle, and its allinformation is empty. The soure evaluates the atual values for the inputparameters, leaves the method all at the head of its ode, and enters phase60



(t-ation-start-rdv) C:D = (idle; �;?)a 2 TotAts(D)0 = (a)�0 = Code(D :a)C =) C [D 7! (aept; �; 0; �0)℄(total-all-rdv) C:D = (aept; �0; 0; �0)�0 = E :m(~e; ~x ); �̂C:E = (idle; �1;?)~v = [[~e℄℄�0~y = InParam(E :m)~z = OutParam(E :m)�01 = � [~z 7! ~?℄ [~y 7! ~v ℄01 = (m ;D)�01 = Code(E :m)C =) C�D 7! (wait; �0; 0; �0)E 7! (aept; �01; 01; �01))�Figure 2.7: Semantis for TCBtot: ation start and method all
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(loal-step) C:D = (aept; �; ; �)(�; �) �! (�0; �0)C =) C [D 7! (aept; �0; ; �0)℄(pro-term-rdv) C:D = (aept; �; ;?) = (p;Q)~z = OutParam(D :p)�0 = � � BoxVars(D)~v = [[~z ℄℄�0 = (p;Q ; ~v)C =) C [D 7! (return; �0; 0)℄Figure 2.8: Semantis for TCBtot: proedure body exeution.wait. The agent extends its state with the input and output parameters,initializes the input parameters aording to the values from the soure, savesthe name of the soure and the method in its all information, sets its ode tothe ode for the body of the method, and enters phase aept.Note that the rule (t-ation-start-rdv) says nothing about sheduling of ations: itdoes not require, for example, that there is only one ation ative at a time, nor doesit require that all ations in a box are given a hane to run at some point duringan exeution. As we noted in the introdution, these issues are handled separatelyfrom the semantis.Proedure body exeutionThe inferene rules in Figure 2.8 onern the exeution of a proedure body. Anexplanation of these rules follows.(loal-step) A box in phase aept takes a loal step if there is a TCBlo tran-sition de�ned for its values of � and �. The step updates � and � as in the62



(ation-end-rdv) C:D = (return; �; ) = (a)C =) C [D 7! (idle; �;?)℄(total-return-rdv) C:D = (wait; �0; 0; �0)�0 = E :m(~e; ~x ); �00C:E = (return; �1; 1)1 = (m ;D ; ~v)�00 = �0 [~x 7! ~v ℄C =) C�D 7! (aept; �00; 0; �00)E 7! (idle; �1;?) �
Figure 2.9: Semantis for TCBtot: proedure returnTCBlo transition, and leaves the other omponents of the box's on�gurationunhanged. Note that a TCBlo transition is de�ned only if the �rst statementof � is a statement of TCBlo (that is, it is not a method all).(pro-term-rdv) A box in phase aept that has no ode left to exeute (so it hasompleted the exeution of the urrent proedure all) evaluates the values ofthe output parameters in its urrent state, puts these in the all information,removes from its state any values for variables other than the box variables,and enters phase return.Return from a proedure allThe inferene rules in Figure 2.9 onern the return of ontrol to the soure at theend of a proedure all. An explanation of these rules follows.(ation-end-rdv) A box in phase return that has an ation all in its all infor-mation ends the ation. The box lears its all information and enters phaseidle. 63



(total-return-rdv) A box in phase return that has a method all in its all infor-mation ends the all, returning the output parameter values to the soure. Theagent lears its all information and enters phase idle. The soure updatesits state with the output parameter values and re�enters phase aept.2.10 Rendezvous semantis for TCBIn this setion, we extend the rendezvous semantis for TCBtot to a rendezvoussemantis for the full TCB language. Sine the di�erene between these languagesis the absene of partial proedures in TCBtot, the extensions all onern the eval-uation of guards, and handling rejeted proedure alls.2.10.1 Stati infomation for a TCB boxA partial proedure onsists of a set of alternatives, eah of whih has a guard,onsisting of a ondition, whih is a boolean expression on the loal state, inludingany proedure parameters, and, optionally, a test, whih is a all to a partial method.We require that the onditions on the alternatives in a single proedure be disjoint,so any value for the loal state satis�es the ondition for at most one alternative.To model a partial proedure, we use a funtion with the type Alternative.De�nition 2.15Alternative , State ,! (ProCall? � Statement�)?Note that a funtion in Alternative is partial, sine it is only de�ned for states thatgive values to all variables needed to evaluate the onditions and the tests. As an
64



example, onsider the following partial proedure with two alternatives.� :: b0 & E :m(~x ; ~v) �! �0j b1 �! �1The Alternative funtion for this proedure is the funtion G , where, for all � suhthat b0 and b1 are de�ned in �,G :� , (E :m(~x ; ~v); �0) if [[b0℄℄�(?; �1) if [[b1℄℄�? if :[[b0℄℄� ^ :[[b1℄℄�When ondition b0 holds, G returns the test all and the body ode from the �rstalternative; when b1 holds, G returns an empty test all and the body ode fromthe seond alternative; and when neither ondition is true, G returns ?. To exeutea all on this proedure, we hek the value of G :�. If it is ?, the all rejets, andontrol returns to the soure; if it is (?; �), the all aepts, and � is exeuted beforeontrol returns to the soure; and if it is (E :m(~x ; ~v); �), ontrol is passed to box Eto exeute the test all, and when that all ends, if it rejets, then the urrent allrejets, and ontrol returns to the soure, and if it aepts, then the urrent allaepts, and � is exeuted before ontrol returns to the soure.We now de�ne a type to represent a partial proedure.De�nition 2.16PartialDef , reordI : VarTypeListO : VarTypeListG : Alternativeend 65



Here I and O are as in TotalDef , and G is a funtion used for evaluating the guardsand seleting the appropriate test and body ode, as desribed above.We next de�ne the type for the stati information for a TCB box.De�nition 2.17BoxInfo , reord�0 : StateP : Id ,! PartialDefT : Id ,! TotalDefA : (dom(P) [ dom(T ))! BoolendComponents �0 and T are as in the de�nition of BoxInfo-tot . Component P rep-resents the partial proedures de�ned in the box, and prediate A is extended todom(P).Eah box in a program is translated into a BoxInfo, and from the well-formedness onditions on TCB programs, we get the following results.Assumption 2.18 If (�0;P ;T ;A) is a BoxInfo generated from the ode of a well-formed TCB box, thendom(P) disj dom(T ) ^h8 X ; p: X 2 fP ;Tg ^ p 2 dom(X ): ( A:p ) X :p:I = ? ^ X :p:O = ? ) ^dom(�0) disj dom(X :p:I ) ^dom(�0) disj dom(X :p:O) ^dom(X :p:I ) disj dom(X :p:O)i 66



2.10.2 Stati information for a TCB programAs with TCBtot, the stati information for a TCB program is a funtion that mapseah box to a BoxInfo.I : B! BoxInfoWe use I impliitly via the funtions in the following de�nition.De�nition 2.19 For D 2 B,InitState(D) , I:D :�0PartAts(D) , f p j p 2 dom(I:D :P) ^ I:D :A:p gPartMeths(D) , f p j p 2 dom(I:D :P) ^ :I:D :A:p gTotAts(D) , f p j p 2 dom(I:D :T ) ^ I:D :A:p gTotMeths(D) , f p j p 2 dom(I:D :T ) ^ :I:D :A:p gAtions(D) , PartAts(D) [ TotAts(D)Methods(D) , PartMeths(D) [TotMeths(D)Partials(D) , PartAts(D) [ PartMeths(D)Totals(D) , TotAts(D) [TotMeths(D)Pros(D) , Ations(D) [Methods(D)InParam(D :p) , VarList(I.D.P.p.I ) if p 2 dom(I:D :P)VarList(I.D.T .p.I ) if p 2 dom(I:D :T )OutParam(D :p) , VarList(I.D.P.p.O) if p 2 dom(I:D :P)VarList(I.D.T .p.O) if p 2 dom(I:D :T )Alt(D :p; �) , I:D :P :p:G :� if p 2 dom(I:D :P)Code(D :p) , I:D :T :p:C if p 2 dom(I:D :T )Note that Alt(D :p; �) is de�ned only for partial D :p, and Code(D :p) is de�ned onlyfor total D :p. 67



2.10.3 Box on�guration for TCBTo implement the evaluation of the guard on partial proedures, we need to extendthe set of phases. The type BoxPhase extends the type BoxPhase-tot .De�nition 2.20BoxPhase , BoxPhase-tot [ fguard;pwait;rejetgThe phases BoxPhase-tot as used as before. A box is in phase guard when it hasommitted to exeuting a partial proedure, but has yet to deide whether to aeptor to rejet. A box in phase pwait has alled a test, and is waiting for the result ofthe all. A box in phase rejet has failed to suessfully evaluate a guard (eitherno alternative has a ondition that holds in the urrent state, or an alternative wasseleted, but the test all rejeted) and the box is ready to return ontrol to thesoure. A proedure all that ends in phase rejet is a rejeting all. Conversely,one that ends in phase return is aepting (so every all in TCBtot aepts, asexpeted).The diagram in Figure 2.10 shows the phase hanges for a single box. Some ofthe transitions in the diagram are only possible when exeuting a partial proedure,and some only when exeuting a total proedure. The diagram is isomorphi to thatin Figure 2.6 on the phases in BoxPhase-tot .The phases idle, aept, and rejet are emphasized in the transitiondiagram, beause these phases play an important rôle in the semantis. A box inphase idle is between the exeution of two proedure alls. We expet eah box tobe in this phase repeatedly during an exeution.From the diagram, we an see that one a box enters phase aept whileexeuting a proedure, it an only return to phase idle via phase return, whihindiates that the all was aepted. There is no way for the box to rejet one it has68
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Figure 2.10: Transition diagram for phases of a TCB box.
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entered phase aept. Similarly, one a box that enters phase rejet, the deisionhas been made to rejet, and this annot be revoked. Note that every nonemptypath from idle bak to itself passes through either phase aept or rejet. Sowe see that the �rst step during the exeution of a proedure all whih leaves abox in phase aept or rejet (and there is always suh a step) determines theoverall outome of the all from the point of view of aeptane or rejetion.Again from the diagram, we an see that there is a possibility for a box toexeute an unbounded number of steps a proedure, yet never return to the idlestate. There is a self-loop on aept, and a loop ontaining aept and wait,so a path in the diagram through either of these phases an be extended withoutlimit. We want to avoid suh exeutions, and ensure that every box returns to phaseidle at some point after starting to exeute a proedure, or, in other words, thateah proedure all terminates. We do not address this issue of termination in thesemanti de�nition. In Chapter 4, we develop onditions that ensure that everyproedure all terminates.The type BoxCon�g-rdv is used to reord the dynami information for aTCB box in the rendezvous semantis. Apart from omponent �, the entries in thisreord are the same as for BoxCon�g-tot .De�nition 2.21BoxCon�g-rdv , reord� : BoxPhase� : State : CallInfo?� : Statement�end
70



As with BoxCon�g-tot , we omit the �nal omponent of a BoxCon�g-rdv valuewhen the phase is suh that it is neessarily ?. In the urrent ase, if� 2 fidle;guard;return;rejetgthen we let(�; �; ) = (�; �; ;?)2.10.4 Program on�guration for TCBWe de�ne a program on�guration for a TCB program under the rendezvous se-mantis as a BoxCon�g-rdv for eah box.De�nition 2.22ProgCon�g-rdv , B! BoxCon�g-rdv2.10.5 Rendezvous semanti rules for TCBAll six semanti rules for TCBtot arry over as rules for the rendezvous semantisof TCB. When we arry the rules over, we apply them to program on�gurationsfrom ProgCon�g-rdv rather than from ProgCon�g-tot . The TCBtot rules are theonly ones needed to exeute total proedure alls. We add to these seven rules forexeuting partial proedure alls.The additional rules deal with the issues of guard evaluation, and rejetion,sine these are partiular to partial proedures. The evaluation of total proedures,and the evaluation of the bodies of partial proedures during any aepting all, arehandled by the TCBtot rules.The �rst ouple of added rules deal with starting a partial ation, and endinga partial ation that has rejeted. These are shown in Figure 2.11. The rules are71



(p-ation-start-rdv) C:D = (idle; �;?)a 2 PartAts(D)0 = (a)C =) C [D 7! (guard; �; 0)℄(ation-rejet-rdv) C:D = (rejet; �; ) = (a)C =) C [D 7! (idle; �;?)℄Figure 2.11: Rendezvous semantis for TCB: starting and rejeting a partial ationallexplained below.(p-ation-start-rdv) A box in phase idle, with an empty all information, an starta all of any of its partial ations. It sets it all information for the ation,and enters phase guard. Unlike rule (t-ation-start-rdv), it does not set theode, sine this is determined during guard evaluation.(ation-rejet-rdv) This rule is exatly the same as rule (ation-end-rdv), exeptthat, before the step, the box is in phase rejet.We de�ne separate rules for ending an ation that aepts and ending an ation thatrejet, even though they are implemented similarly, beause we use the name of therule for a transition as a label for that transition. For some of our later purposes,having a simple way to distinguish these steps is useful.The remainder of the added rules onern guard evaluation. These rulesdesribe the transitions on the left-hand side of the diagram in Figure 2.10. Threerules are shown in Figure 2.12.(guard-aept-rdv) If the value of the alternative funtion is a pair with no test,the urrent all aepts, and the box sets its ode to the ode omponent of72



(guard-aept) C:D = (guard; �; )p = Pro()Alt(D :p; �) = (?; �0)C =) C [D 7! (aept; �; ; �0)℄(guard-rejet) C:D = (guard; �; )p = Pro()Alt(D :p; �) = ?�0 = � � BoxVars(D)C =) C [D 7! (rejet; �0; )℄(guard-test-rdv) C:D = (guard; �0; 0)p = Pro()Alt(D :p; �0) = (E :m(~e; ~x ); �)�00 = E :m(~e; ~x ); �̂C:E = (idle; �1;?)~v = [[~e℄℄�0~y = InParam(E :m)~z = OutParam(E :m)�01 = �1 [~z 7! ~?℄ [~y 7! ~v ℄01 = (m ;D)C =) C�D 7! (pwait; �0; 0; �00)E 7! (guard; �01; 01) �
Figure 2.12: Rendezvous semantis for TCB: guard evaluation
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the pair, and enters phase aept.(guard-rejet-rdv) If the value of the alternative funtion is ?, the urrent allrejets, and the box restrits its state to the box variables, and enters phaserejet.(guard-test-rdv) If the value of the alternative funtion is a pair ontaining a testall, and the target box of the all is in phase idle and its all informationis empty, the all an be initiated, in a way similar to rule (total-all-rdv).The soure box sets its ode to the ode omponent of the pair, with the testall prepended (sine the output parameters from the all are required forthe return from the proedure), and enters phase pwait; the agent box addsa all information, extends its state with the parameters from the all andenters phase guard.The remaining two rules deal with the return from the test all. These rules areshown in Figure 2.13.(test-aept-rdv) If a box is in phase pwait, and the agent is in phase return, theproedure at the soure aepts. The returning of output parameter values ishandled as in rule (total-return-rdv).(test-rejet-rdv) If a box is in phase pwait, and the agent is in phase rejet, theproedure at the soure rejets. The soure leans up its state, lears its ode,and enters phase rejet, and the agent lears its all information, and entersphase idle.2.11 Queue semantis for TCBAs noted in the introdution, the rendezvous semantis that we have presented forTCBtot and full TCB fail to deal adequately with ontention between threads for74



(test-aept-rdv) C:D = (pwait; �0; 0; �0)�0 = E :m(~e; ~x ); �00C:E = (return; �1; 1)1 = (m;D ; ~v)�00 = �0 [~x 7! ~v ℄C =) C�D 7! (aept; �00; 0; �00)E 7! (idle; �1;?) �
(test-rejet-rdv) C:D = (pwait; �0; 0; �0)�0 = E :m(~e; ~x ); �̂C:E = (rejet; �1; 1)1 = (m ;D)�00 = �0 � BoxVars(D)C =) C�D 7! (rejet; �00; 0)E 7! (idle; �1;?) �

Figure 2.13: Rendezvous semantis for TCB: test return
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aess to a box. The proedure all rules (ation-start-rdv), (total-all-rdv), and(guard-test), all require that the all information for the agent is empty beforethe step, and full after the step. We show in Chapter 3 that all the rules, exeptthese three, have the property that from a on�guration in whih a step is enabledaording to the rule, no step by a box other than D an reah a on�guration wherethis step is not enabled. This is an important stability property, sine it allows us toreason suessfully about the termination of proedure alls. Certainly this stabilityseems plausible. To deide if rule (loal-step), for example, an be applied to takea step for box D , we need only look at the on�guration of box D . A step for anyother box does not hange D 's on�guration, so the loal step for D remains enableduntil it is taken.For the three proedure all rules, we do not have this stability property.That is, from a on�guration where a proedure all from box D to box E is enabled,a step involving E and another box an reah a on�guration where the proedureall step for D is no longer enabled.We now de�ne a queue semantis that addresses this shortoming. In thenext hapter, we show that every rule in the queue semantis has the above stabilityproperty.We use the same soure language as for the last semantis, and we require noextra stati information, so we use the funtion I for the stati program information,as desribed in Setion 2.10.1. We de�ne a program on�guration for the newsemantis.2.11.1 Call queuesFor the queue semantis, we replae the single CallInfo omponent of the box on-�guration with a all queue, whih we represent by an element of CallInfo�. Aproedure all on a box is started by appending a CallInfo to the end of this se-76



quene, and a box that is idle an initialize the all at the head of the queue. Thuswe split the rendezvous proedure all into two steps. In the �rst step the soureadds an entry to the agent's all queue, and in the seond step, whih ours whenthis entry has reahed the front of the queue, and the agent is idle, the agent startsthe proedure all. When the the �rst step is taken, the input parameter values fromthe soure are inluded with the all information plaed in the queue, sine, unlikethe rendezvous semantis, the agent does not immediately initialize the parametersfor the proedure all.In this new model, a nonidle box is exeuting the all at the head of its allqueue. We rede�ne Pro(), and Soure() for  2 CallInfo�.De�nition 2.23 For  2 CallInfo�, where  = (p;Q ; ~v) . ̂,Pro() , pSoure() , Q2.11.2 Box and program on�gurations for the queue semantisThe type BoxCon�g is used to represent the on�guration of a box in the queuesemantis. The only hange from the type BoxCon�g-rdv is the type of omponent, whih is a sequene of CallInfo entries, rather than a single CallInfo.De�nition 2.24BoxCon�g , reord� : BoxPhase� : State : CallInfo�� : Statement�end 77



We omit an empty � for the same phases as with BoxCon�g-rdv .A program on�guration is, as may be expeted, a map mapping eah boxin the program to a BoxCon�g .De�nition 2.25ProgCon�g , B! BoxCon�g2.11.3 Queue semanti rules for TCBThe major hange we make to the rendezvous semantis to give the queue semantisis the splitting of proedure alls into two independent steps, one under the ontrol ofthe soure, and the other under the ontrol of the agent. We replae the rendezvousproedure all rules(p-ation-start-rdv)(t-ation-start-rdv)(total-all-rdv)(guard-test-rdv)with seven rules implementing the two-step proedure all. We also replae eah ofthe following rules(pro-term-rdv)(ation-end-rdv)(ation-rejet-rdv)(test-aept-rdv)(test-rejet-rdv)(total-return-rdv) 78



with a rule named without the -rdv suÆx. The hanges for these rules are minorhanges needed beause of the hange from a single all information to a all queue.The remaining rules,(guard-aept)(guard-rejet)(loal-step)are used as is. We show only the replaements for the �rst group of rules here. Thefull set of queue semanti rules for TCB is given in Appendix A.The �rst three new rules are shown in Figure 2.14. These rules implementthe �rst step of the two-step proedure all outlined above. In eah ase, the pro-edure all is made by plaing an entry ontaining the name of the proedure, thesoure, and the values for the input parameters (if any) at the bak of the agent'sall queue, regardless of the agent's on�guration. Note that rule (ation-start) isused for both partial and total ations.The other four rules, whih implement the seond of the two steps, are shownin Figure 2.15. There are separate rules for all four ombinations of partial/totaland ation/method. These rules involve only the agent of the all. When a boxis idle, and there is an entry in its all queue, a all an be initialized for the �rstentry. The value list from this entry is used to initialize the input parameters, andthese values are then removed from the entry.For partial proedures, the box enters phase guard after the initializationstep. For total proedures, the enters box phase aept after the step, and its odeis initialized, as in the rendezvous semantis.The rules for ations are a speial ase of those for methods, sine ationshave no parameters. However, as with (ation-end) and (ation-rejet), we useseparate rules to give separate labels to the orresponding step in the semantis.79



(ation-start) C:D = (�; �; ; �)a 2 Ations(D)0 =  / (a)C =) C [D 7! (�; �; 0; �)℄(total-all) C:D = (aept; �0; 0; �0)�0 = E :m(~e; ~x ); �̂C:E = (�1; �1; 1; �1)~v = [[~e℄℄�001 = 1 / (m;D ; ~v)C =) C�D 7! (wait; �0; 0; �0)E 7! (�1; �1; 01; �1) �
(guard-test) C:D = (guard; �0; 0)p = Pro()Alt(D :p; �0) = (E :m(~e; ~x ); �)�00 = E :m(~e; ~x ); �̂C:E = (�1; �1; 1; �1)~v = [[~e℄℄�001 = 1 / (m ;D ; ~v)C =) C�D 7! (pwait; �0; 0; �00)E 7! (�1; �1; 01; �1) �

Figure 2.14: Queue semanti rules for TCB: proedure all
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(p-ation-init) C:D = (idle; �; )p = Pro()p 2 PartAts(D)C =) C [D 7! (guard; �; )℄(p-method-init) C:D = (idle; �; ) = (p;Q ; ~v) . ̂p 2 PartMeths(D)~y = InParam(D :p)~z = OutParam(D :p)�0 = � [~z 7! ~?℄ [~y 7! ~v ℄0 = (p;Q) . ̂C =) C [D 7! (guard; �0; 0)℄(t-ation-init) C:D = (idle; �; )p = Pro()p 2 TotAts(D)�0 = Code(D :p)C =) C [D 7! (aept; �; ; �0)℄(t-method-init) C:D = (idle; �; ) = (p;Q ; ~v) . ̂p 2 TotMeths(D)~y = InParam(D :p)~z = OutParam(D :p)�0 = � [~z 7! ~?℄ [~y 7! ~v ℄0 = (p;Q) . ̂�0 = Code(D :p)C =) C [D 7! (aept; �0; 0; �0)℄Figure 2.15: Queue semanti rules for TCB: proedure initialization
81



2.12 SummaryWe have given two semanti de�nitions for TCB, a rendezvous semantis and aqueue semantis. We regard the queue semantis as the true desription of theexeution of TCB programs. In the next hapter, we explore some of the propertiesof program on�gurations and exeutions for this semantis.In the remaining hapters, we explore the properties of the queue semantisfor TCB. In Chapter 5, we use the exeution generated by the rendezvous semantisas an intermediate form as we rearrange the steps of a onurrent exeution to givea sequential exeution.2.12.1 Run-time errorsAs noted in Setion 2.5, we avoid the issue of run-time errors with Assumption 2.3.If we hoose not to make this assumption, we an extend the semantis of TCB tohandle run-time errors as follows.We de�ne a new phase fail, and, for eah rule that involves evaluation ofan expression, either diretly, as in rules (loal-step) and (total-all), or indiretly,as in rule (guard-aept), we add a rule that de�nes a transition to fail for a boxwhere evaluation of an expression auses a run-time error. We de�ne no rules thattake a step for a box in phase fail. This means that a run-time error puts a box ina failed on�guration, and it remains in this on�guration for the remainder of theexeution.
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Chapter 3
Exeution of TCB programs
3.1 IntrodutionThis hapter disusses the elements, and some of the onsequenes, of the queuesemantis for TCB de�ned in Chapter 2.We de�ne subsets of BoxCon�g and ProgCon�g ontaining the well-formedelements of these types. These subsets ontain only the elements that we expet toarise during an exeution. They exlude, for example, box on�gurations in whihthe phase is aept, but the all queue is empty, and program on�gurations inwhih box D is exeuting a method all for box E , but box E is in phase idle.We next onsider the transition relation de�ned by the semanti rules. Wede�ne a way to assign labels to steps between on�gurations allowed by the rules.A step is enabled in a on�guration if there is any step allowed by the rules startingfrom that on�guration; a step is enabled for box D if the step is enabled, and takingit hanges D 's on�guration. We show that, in any on�guration, all steps enabledfor D have the same label.We show that a step from a well-formed on�guration annot reah a on�g-uration that is not well-formed. By indution, we have that any sequene of steps,83



starting from a well-formed on�guration, passes through only well-formed on�g-urations. Thus we an on�ne our attention to well-formed program on�gurationsfor the remainder of this work.Exeutions are paths made up of labelled steps between program on�gura-tions, where eah step is allowed by some semanti rule. We give a de�nition foronstruting a set of exeutions from a set of on�gurations and a set of labels,and we use this to de�ne the exeutions for a TCB program using the well-formedprogram on�gurations and the step labels.3.2 Box on�gurationsThe type BoxCon�g is used for represent the dynami information assoiated with abox (its on�guration) during program exeution under the queue semantis. Firstwe de�ne some mild abuse of notation for omponents of the box on�guration.De�nition 3.1 For  2 CallInfo�,(p;Q) 2  , h9 ~v :: (p;Q ; ~v) 2  iDe�nition 3.2 For S 2 Statement,S = E :m(�) , h9 ~x ; ~v :: S = E :m(~x ; ~v) iWe de�ne the following terminology for box on�gurations.De�nition 3.3 For b 2 BoxCon�g,qt(b) , b: = ?If qt(b), then we say that b is quiesent.84



De�nition 3.4 For D 2 B, and b 2 BoxCon�g, where b is the on�gurationassoiated with D, a all of proedure p is ative in D ifh9 Q : Q 2 B? : (p;Q) 2 b: iIf (p;Q ; ~v) 2 b:, Q is the soure, and D is the agent for this all.As noted in Chapter 2 not all possible ombinations of omponent values fora box on�guration make sense in terms of the intended interpretation. We de�nethe set of well-formed on�gurations.De�nition 3.5 For b 2 BoxCon�g, b is a well-formed on�guration for D if allthe following hold.1. b:� 6= idle ) b: 6= ?2. b:� 2 fidle;guard;return;rejetg ) b:� = ?3. b:� 2 fwait;pwaitg ) h9 E ;m :: �rst(b:�) = E :m(�) i4. b:� 2 fguard;pwait;rejetg ) Pro(b:) 2 Partials(D)5. b:� 2 fidle;return;rejetg ) dom(b:�) = BoxVars(D)6. dom(b:�) � BoxVars(D)7. h8 (p;Q): (p;Q) 2 b:: p 2 Pros(D) ^ Q 6= D ^ (p 2 Ations(D) � Q = ?)i8. h8 E : E 2 B : h# (m;Q ; ~v) : (m;Q ; ~v) 2 b: : Q = E i � 1 i
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9. h8 (p;Q ; ~v): (b:� = idle ^ (p;Q ; ~v) 2 b:) _(b:� 6= idle ^ (p;Q ; ~v) 2 rest(b:)): ~v mathes InParam(D :p)i10. b:� = return ^ �rst(b:) = (p;Q ; ~v) ) ~v mathes OutParam(D :p)For D 2 B,BC (D) , f b j b is a well-formed on�guration for D gCondition 1 ensures that a box that is exeuting a all has an entry in the allqueue that identi�es the all. Note that this ondition means that if b 2 BC (D)and qt(b), then b:� = idle. Condition 2 justi�es the abbreviated form used for boxon�gurations for the given phases. Condition 3 ensures that the any waiting box hasthe proedure all for whih it is waiting at the front of its ode. Condition 4 ensuresthat the phases assoiated with guard evaluation and proedure rejetion are onlyreahed while exeuting a partial proedure. Condition 5 ensures that the state ofeah box between proedure alls gives values only to the box variables. Condition 6ensures that the state gives values to the box variables, at least. Condition 7 ensuresthat a box never alls a method on itself, that the proedure names in the all queueare valid, and that there is a box as soure in eah method all, and none in eahation all. Condition 8 says that at any time, a box has at most one ative methodall for any partiular soure. Condition 9 ensures that all alls that have not yetstarted have the right types in their input parameter lists. Condition 10 ensuresthat a box that is ready to return to its soure has the orret types in its outputparameter list.For TCB, the state of eah box satis�es stronger onditions than Conditions 5and 6 in De�nition 3.5. During the evaluation of a guard, and the exeution of the86



body of a proedure, a box's state is extended by the input and output parametersof the proedure in the urrent all. This stronger ondition is an artifat of thesimple de�nition of TCBlo, and the onditions given allow for a loal language thatextends the loal state in more omplex ways during proedure exeution.For a well-formed box on�guration that is not in phase idle, we all thefront entry in the all queue the urrent all. This is the all that the box is urrentlyexeuting. If the phase is idle, the urrent all is not de�ned.We de�ne a partial order on box on�gurations using to the pre�x order onthe all queue. A pair of on�gurations in this order have the same value for theother omponents.De�nition 3.6 For D 2 B, and b; b0 2 BC (D),b v b0 , b:� = b0:� ^ b: v b0: ^ b:� = b0:� ^ b:� = b0:�3.3 Program Con�gurationsA program on�guration maps eah box name to its assoiated box on�guration.We extend the terminology for box on�gurations to program on�gurations in thenatural way.De�nition 3.7 For C 2 ProgCon�g,qt(C) , h8 D : D 2 B : qt(C:D) iIf qt(C), we say C is quiesent.De�nition 3.8 A all of proedure D.p is ative in C if an all of p is ative inD. Atives(C) , f D :a j a 2 Ations(D) ^ D :a is ative in C g87



The set Atives(C) ontains all ations that have ative threads in C.As with box on�gurations, we de�ne well-formed program on�gurations.The �rst requirement is that eah box has a well-formed box on�guration.De�nition 3.9 For C 2 ProgCon�g,C is loally well-formed , h8 D : D 2 B : C:D 2 BC (D) iFor a program on�guration to be well-formed, we also need to ensure that the on-�guration respets the mutual dependenies between the values of the on�gurationsfor di�erent boxes. For example, if a box is exeuting a method all for a soure,then we expet the soure to be waiting for the results of the all. Conversely, if abox is waiting for a method all to return, we expet the method all to be in theall queue for the agent. We de�ne onditions on a program on�guration to apturethis restrition. We use the following funtion, whih returns the appropriate phasefor the soure of a method all.De�nition 3.10 For D 2 B, and m 2 Methods(D),WaitPhase(D :m) , pwait if m 2 PartMeths(D)wait if m 2 TotMeths(D)De�nition 3.11 For C 2 ProgCon�g,C is all orret ,h8 D ;E ;m: D ;E 2 B ^ m 2 Methods(E ): (m ;D) 2 C:E : �C:D :� =WaitPhase(E :m) ^ �rst(C:D :�) = E :m(�)i 88



Note that the term of the quanti�ation in De�nition 3.11 is an equivalene, so itexludes on�gurations in whih there is a method all with soure D in a all queue,but D is not waiting, and the ase when D is waiting for E but there is no methodall with soure D in E 's all queue.The following theorem is a diret onsequene of De�nitions 3.9 and 3.11.Theorem 3.12 If C is loally well-formed and all orret program on�guration,and if D is waiting in C, then there is exatly one all queue entry with soure Din C.ProofSuppose C is a loally well-formed and all orret program on�guration, and thatC:D :� = pwait.C:D :� = pwait� f C is loally well-formed, so C:D 2 BC (D) gC:D :� = pwait^ h9 E ;m : E 2 B ^ m 2 PartMeths(E ) : �rst(C:D :�) = E :m(�) i� f prediate alulus gh9 E ;m: m 2 PartMeths(E ): C:D :� = pwait ^ �rst(C:D :�) = E :m(�)i� f C is all orret gh9 E ;m : m 2 PartMeths(E ) : (m ;D) 2 C:E : iThus, we have that there is at least one box that has a all queue entry with soure D ,when C:D :� = pwait. A similar proof shows the same result when C:D :� = wait.We have(m;D) 2 C:E : ^ (m 0;D) 2 C:E 0:89



) f C is all orret g�rst(C:D :�) = E :m(�) ^ �rst(C:D :�) = E 0:m 0(�)) f transitivity of =, equality of proedure alls gE = E 0This shows that, if D is waiting, there is a unique box E with a all queue entrywith soure D .Sine C is loally well-formed, C:E is well-formed, so there is exatly oneentry in its all queue with soure D . Thus there is exatly one suh entry in thewhole of C.(End of proof)3.3.1 Relations indued by allsLet C be a loally well-formed and all orret program on�guration, and supposethat, for some D0 2 B, D0's urrent all in C is for an ation, and that D0 is ina waiting phase. Then, from Theorem 3.12, there is a unique D1 with a all queueentry for D0. We say that D0 is waiting for D1. If the all for D0 is the urrent allin D1, then we say that D1 is exeuting for D0. If D1 is in a waiting phase, thenthere is a unique D2 for whih D1 is waiting. Continuing in this way, we onstrutthe longest possible sequene of boxes,hD0;D1;D2; : : : ;Dn�1iwhere D i is waiting for D i+1, and D i+1 is exeuting for D i, for 0 � i < n� 1. Eahof D0; : : : ;Dn�2 is in a waiting phase, but Dn�1 may not be. If Dn�1 is waiting forsome box Dn, Dn is not exeuting for Dn�1 (sine the sequene is maximal), andso the all for Dn�1 is not the urrent all in Dn.In a well-formed on�guration, we expet every box that is not idle to be90



exeuting as part of a sequene like the one above. We de�ne some funtions onprogram on�gurations so we an express these onditions. The �rst set of funtionsexpress the \is exeuting for" relation. Sine eah all has a unique soure, weexpress the relations as partial funtions.De�nition 3.13 For C 2 ProgCon�g, and D 2 B,Kp:C:D , Soure(C:D :) if C:D :� 6= idle^ Pro(C:D :) 2 Partials(D)Kt :C:D , Soure(C:D :) if C:D :� 6= idle^ Pro(C:D :) 2 Totals(D)K :C:D , Kp:C:D if D 2 dom(Kp:C)Kt :C:D if D 2 dom(Kt :C)We haveKp;Kt ;K : ProgCon�g ! B ,! B?Thus Kp:C is a partial funtion from B to B?. If Kp:C:D = E , then D is exeutinga partial method for soure E , and if Kp:C:D = ?, then D is exeuting a partialation, Funtions Kt :C and K :C have similar interpretations, the �rst for totalproedure alls, and the seond for proedure alls of either kind. If K :C is notde�ned at D , then D is not urrently exeuting a proedure in C.The following theorems state some useful properties of these funtions. Theproofs are given in Appendix B. The �rst theorem states that there is at mostone box exeuting for any given box. That is, in any well-formed on�guration C,there annot be two boxes mapped to the same box by K :C. The funtion K :C isone-to-one, exept that multiple boxes an be mapped to ? by K :C.91



Theorem 3.14h8 C;D ;E: C 2 ProgCon�g ^ C is loally well-formed and all orret ^D ;E 2 dom(K :C) ^ K :C:D = K :C:E: K :C:D = ? _ D = EiThe next theorem states that if box D is exeuting for box E , then E is exeutinga proedure.Theorem 3.15h8 C;D: C 2 ProgCon�g ^ C is loally well-formed and all orret ^D 2 dom(K :C): K :C:D = ? _ K :C:D 2 dom(K :C)iThe �nal theorem says that the soure of a partial method all is never exeuting atotal proedure, whih is preisely the restrition we impose.Theorem 3.16h8 C: C 2 ProgCon�g ^ C is loally well-formed and all orret: rng(Kp:C) disj dom(Kt :C)iTo follow the hain of alls given by K :C, we apply the funtion repeatedlyto an argument. We de�ne iteration for a partial funtion.92



De�nition 3.17 Let f : S ,! S, be a partial funtion on some set S. For x 2 S,f0:x , xand, for any n � 0fn+1:x , f(fn:x) if fn:x is de�ned ^ fn:x 2 dom(f)The following is a useful property of this iteration.Theorem 3.18fn+1:x = fn(f:x)ProofA simple indution, using the assoiativity of funtion omposition.(End of proof)So, for any D 2 dom(K :C), (K :C)0:D is D , and (K :C)1:D is the box forwhih D is exeuting. If (K :C)1:D 2 dom(K :C), then (K :C)2:D is the box forwhih (K :C)1:D is exeuting, and so on. For any D 2 dom(K :C), we an onstrutthe sequene of boxes(K :C)0:D(K :C)1:D(K :C)2:D...If (K :C)k:D = ?, for some k > 0, then the sequene is �nite. In this ase, D is(transitively) exeuting for a box whih is exeuting an ation all. This what weexpet to happen during program exeution. Otherwise, if no suh k exists, then by93



Theorem 3.15, the sequene is in�nite. In this ase, sine B is �nite, the sequeneontains repeated elements. We an use Theorem 3.14 to show that in this asethere is a k suh that (K :C)k:D = D . So there is a yle of boxes, where eah boxin the yle is exeuting a method for the next, so D is transitively exeuting foritself. We de�ne a ondition to exlude suh ases from onsideration.De�nition 3.19 For C 2 ProgCon�g,C is well-founded ,h8 D : D 2 dom(K :C) : h9 k : k > 0 : (K :C)k:D = ? i i3.3.2 Well-formed program on�gurationsWe ombine all the onditions on program on�gurations de�ned so far to give thede�nition of a well-formed program on�guration.De�nition 3.20 For C 2 ProgCon�g,C is well-formed , C is loally well-formed, all orret, and well-foundedPC , fC j C 2 ProgCon�g ^ C is well-formed g3.3.3 Call staksWe de�ne a all stak for a well-formed program on�guration as a maximal sequenegenerated by K :C.De�nition 3.21 For C 2 PC, the sequene 
 2 B+ is a all stak ifh8 i : 0 � i < j
j � 1 : K :C:(
[i℄) = 
[i+ 1℄ i ^�rst(
) 62 rng(K :C) ^ K :C:(last(
)) = ?
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De�nition 3.22 For C 2 PC,Staks(C) , f 
 j 
 is a all stak for C gFrom Theorem 3.16, a all stak 
 an be divided into two parts, a �rst part inwhih all boxes are exeuting a total proedure, and a seond part in whih allboxes are exeuting a partial proedure.The following theorem follows from the de�nitions and theorems above.Theorem 3.23h8 C;D: C 2 PC ^ D 2 B ^ C:D :� 6= idle: h9! 
 : 
 2 Staks(C) : D 2 
 iiTheorem 3.23 shows that the set of ative boxes an be partitioned among the allstaks. The theorem justi�es the following de�nition.De�nition 3.24 For C 2 PC, and D 2 B, where D is not idle in C,CallStak (C;D) , 
 where 
 2 Staks(C) ^D 2 
RootBox (C;D) , last(CallStak (C;D))Root (C;D) , E :a where E = RootBox (C;D) ^ a = Pro(C:E :)We all Root (C;D) the root ation for D in C.Ation Root (C;D) is the ation whose exeution is the ultimate ause of box D 'surrent exeution in C.
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3.3.4 Wait linesWe de�ne some partial funtions for the \is waiting for" relation between boxes.These funtions are almost the inverse of the all stak funtion, and it has similarproperties. However, the di�erenes are signi�ant. First, we de�ne a funtionthat returns the box from a method all statement at the front of a sequene ofstatements.De�nition 3.25 For � 2 Statement�,Agent(�) , E if h9 m :: �rst(�) = E :m(�) iThe following theorem states that in a well-formed on�guration, every box thatis in a waiting phase has an agent, by the above funtion. This is an immediateonsequene of the de�nitions.Theorem 3.26h8 C;D: C 2 PC ^ D 2 B: C:D:� 2 fpwait;waitg ) C:D :� 2 dom(Agent)iNow we de�ne the funtions for the \is waiting for" relation.De�nition 3.27 For C 2 PC, and D 2 B,Wp:C:D , Agent(C:D :�) if C:D :� = pwaitWt :C:D , Agent(C:D :�) if C:D :� = waitW :C:D , Wp:C:D if D 2 dom(Wp:C)Wt :C:D if D 2 dom(Wt :C)96



The following theorem relates these funtions to the \is exeuting for" funtion.Theorem 3.28h8 C;D ;E: C 2 PC ^ D ;E 2 B: (Kp:C:D = E ) Wp:C:E = D) ^ (Kt :C:D = E ) Wt :C:E = D)iProofFrom De�nitions 3.13, 3.20 and 3.27.(End of proof)From Theorem 3.28, we have, for any 
 2 Staks(C),h8 i : 0 < i < j
j : W :C:(
[i℄) = 
[i� 1℄ iThus every box in a all stak, exept the �rst, is waiting for the previous box.The �rst box may be in a waiting state, in whih ase there is some D suh thatW :C:(
[0℄) = D . In this ase, a all with soure 
[0℄ is in D 's all queue, but it isnot D 's urrent all. If box D is waiting, then 
[0℄ is also waiting for W :C:D . BoxD may not be exeuting for the same thread as box 
[0℄. Unlike K :C, sequenesformed by iterating W :C an inlude boxes exeuting for di�erent threads.As with K :C, we an form a sequene by iterating W :C. For any box Dthat is waiting in on�guration C, we onstrut a maximal sequene.h D ; W :C:D ; (W :C)2:D ; : : : iBox D is waiting for every box in this sequene. Before D an next take a step,every other box in the sequene must return ontrol to the preeding box. We all97



these sequenes wait lines. Unlike K :C, funtion W :C is not well-founded. We anreah a well-formed on�guration C in whih the wait line for box D is in�nite.De�nition 3.29 For D 2 B, and C 2 PC, the wait line for D in C is a sequene
 2 B+ suh that
[0℄ = D ^ (j
j = 1 _ last(
) 62 dom(W :C)) ^h8 i : 0 � i < j
j � 1 : W :C:(
[i℄) = 
[i+ 1℄ iIf the wait line for D in C is �nite, then the last box is not waiting, and it is notquiesent, so it an take a onditional step. If the wait line for D in C is in�nite,then it ontains repeated elements, sine B is �nite. In this ase, W :C is yli.The wait line has a suÆx onsisting of the boxes in the yle repeated in�nitely.Eah box in the yle is in a waiting phase, and is waiting for a box in a waitingphase, so no box an take a step. The boxes are deadloked, as are all boxes whosewait line inludes them.Deadlok is a permanent on�guration. If box D is deadloked at on�gu-ration i in exeution ", then, in the exeution after "[i℄, D is deadloked in everyon�guration, and there are no onditional steps for D . The next hapter disussesdeadlok, and de�nes onditions that ensure deadlok-free exeutions.3.3.5 Persistent statesWhen a box �nishes exeuting a proedure, it restrit the domain of its state to thebox variables. Any variables added to the state during exeution of the proedureare disarded. The values of the box variables is the box's persistent state. This isthe state that is arried from one proedure all to the next.We de�ne the persistent state for a box, and an equivalene on programon�gurations based on the persistent states.98



De�nition 3.30 For C;C0 2 PC, and D 2 B,Persist(C;D) , (C:D :�) � BoxVars(D)PersistEq(C;C0) , h8 D : D 2 B : Persist(C;D) = Persist(C0;D) i3.4 Program stepsWe now onsider single steps of a program. We show that any program on�gurationreahable by a single step from a well-formed program on�guration is itself well-formed. This allows us to on�ne our attention to well-formed on�gurations forthe rest of this work.We an onsider the transition relation =) in two ways. One way is as astati relation between pairs of program on�gurations. The other way is to thinkof the relation in in operational terms, where C =) C0 means that an exeutingTCB program in on�guration C an hange to on�guration C0 in one indivisiblestep. In the former view we onsider onditions on pairs of on�gurations so thatthey are in the transition relation. In the latter view, we onsider onditions on aon�guration so that it has a suessor in the transition relation.We prove some properties of the transition relation, or, equivalently, the stepsallowed in the exeution of a TCB program.3.4.1 Steps and on�gurationsWe de�ne some terminology for the boxes where a rule is applied.De�nition 3.31 For C;C0 2 PC, suh that there is a step C =) C0, the loi ofthis step are the boxes whih satisfy the onditions of the semanti rule used to admitpair (C;C0).If C =) C0, then C and C0 are mostly the same, as the following theorem shows.99



Theorem 3.32h8 C;C0;D: C =) C0 ^ D 2 B ^ D is not a lous for C =) C0: C:D = C0:DiProofWe note that eah semanti rule requires that the on�gurations for the boxes notmentioned in the rule be the same before and after the step. By De�nition 3.31, theboxes mentioned in the rule are the loi for any step admitted using the rule. Thus,the boxes other than the loi are unhanged by the step.(End of proof)We show that any program on�guration reahable in a single step from awell-formed on�guration is well-formed. The proof is in Appendix B.Theorem 3.33h8 C;C0 : C 2 PC ^ C =) C0 : C0 2 PC i3.4.2 Step labelsBy de�nition, C =) C0 means that there is some inferene rule satis�ed by C andC0. There is never more than one rule satis�ed, as the following theorem shows.Theorem 3.34 If C =) C0, then there is a unique rule satis�ed by (C;C0).ProofAssume C =) C0. If (C;C0) satis�es a two-lous rule, then, by examining the ruleswe an see that C and C0 di�er on the on�guration of both loi. If, on the otherhand, (C;C0) satis�es the onditions of a one-lous rule, then, by Theorem 3.32, C100



Rule C:D :� C0:D :�(ation-start) �̂ �̂(p-ation-init) idle guard(p-method-init) idle guard(t-ation-init) idle aept(t-method-init) idle aept(guard-aept) guard aept(guard-rejet) guard rejet(loal-step) aept aept(pro-term) aept return(ation-end) return idle(ation-rejet) rejet idleTable 3.1: Conditions on the box phase for one-lous rules.and C0 agree on the on�gurations of all boxes exept one, the lous.1 Thus, if rulesl and l 0 are both satis�ed by (C;C0), then l and l 0 have the same number of loi.Table 3.1 shows the required values of the phase omponent of D for C andC0 aording to eah one-lous rule. All the rules in the table require spei� valuesfor the phase of the lous inC andC0, exept for (ation-start). All the rules requirethat C and C0 di�er on this value, exept for (ation-start) and (loal-step), whihrequire that the phase be the same before and after.By omparing rows of the table, we observe that the only pairs of rules thatan possibly both be satis�ed by a pair (C;C0) are(ation-start)(loal-step)1We disuss below whether a pair of on�gurations satisfying a one-lous rule di�er on theon�guration of the lous. For our present purposes, we an ignore this question.
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and (t-ation-init)(t-method-init)For the �rst pair, we observe from the rules that(C;C0) satis�es (ation-start) ) C:D : 6= C0:D :(C;C0) satis�es (loal-step) ) C:D : = C0:D :Thus there is no pair (C;C0) that satis�es both of these rules.For the seond pair, we have that(C;C0) satis�es (t-ation-init) ) Pro(C:D :) 2 TotAts(D)(C;C0) satis�es (t-method-init) ) Pro(C:D :) 2 TotMeths(D)Sine TotAts(D) and TotMeths(D) are disjoint, the onditions are exlusive. Thisompletes the proof for the one-lous rules.For the two-lous rules, we show the phase for D (the soure) and E (theagent). The on�gurations agree on the on�guration of all boxes other than these.Table 3.2 shows the required values of the phase omponent of D and E for C andC0 aording to eah two-lous rule. The phase for E is not determined for the rules(total-all) and (guard-test), but it is the same in C and C0, as with (ation-start).Comparing the table rows, we see that there is no pair of two-lous rules that areboth satis�ed by (C;C0). This ompletes the proof for the two-lous rules.(End of proof)Eah rule in the semantis de�nes a relation, ontaining all pairs (C;C0) that sat-isfy the rule. Clearly =) is the union of all these relations, and we have fromTheorem 3.34 that all of these single-rule relations are disjoint.102



Rule C:D :� C0:D :�C:E :� C0:E :�(total-all) aept wait�̂ �̂(guard-test) guard pwait�̂ �̂(total-return) wait aeptreturn idle(test-aept) pwait aeptreturn idle(test-rejet) pwait rejetrejet idleTable 3.2: Conditions on the box phase for two-lous rules.De�nition 3.35 For an inferene rule (l), we de�ne a relation with the same nameby the following.l = f (C;C0) j C =) C0 satis�es (l) gThe following Theorems summarize the properties of the relations for the semantirules for TCB.Theorem 3.36 If (l) and (l 0) are semanti rules, and l 6= l 0, thenl disj l 0Theorem 3.37 If f l i j 0 � i < 16g be the set of relations for the rules in the queuesemantis of TCB, then=) = h[ i : 0 � i < 16 : l i iWe an further partition the relation for eah rule by onsidering the loi inthe appliation of the rule. 103



De�nition 3.38 For (l) a one-lous rule, and D 2 B,l(D) = f (C;C0) j C;C0 2 PC ^ (C;C0) satis�es (l) with lous D gFor (l) a two-lous rule, and D ;E 2 B,l(D ;E ) = f (C;C0)j C;C0 2 PC ^(C;C0) satis�es (l) with soure D and agent EgWe write L for a typial label, either a one-lous label l(D), or a two lous labell(D ;E ). We write ChLiC0 for (C;C0) 2 L. We all L a label or step.We use the fat eah label is a subrelation of the relation for one of the rules, andwe write, for exampleL � loal-stepto meanh9 D :: L = loal-step(D) iand L � total-allto meanh9 D ;E :: L = total-all(D ;E ) iWe de�ne the set ontaining all the labels for the queue semantis.104



De�nition 3.39Lab , f Lj L is a label generated by one of(ation-start) (guard-rejet)(guard-test) (loal-step)(total-all) (pro-term)(p-ation-init) (ation-end)(p-method-init) (ation-rejet)(t-ation-init) (test-aept)(t-method-init) (test-rejet)(guard-aept) (total-return)gWe use the following funtion to refer to the loi of a label.De�nition 3.40 For L 2 Lab,Loi(L) , fDg if L = l(D)fD ;Eg if L = l(D ;E )We have the following result.Theorem 3.41h8 C;C0: C;C0 2 PC ^ C =) C0 ^ C 6= C0: h9! L : L 2 Lab : ChLiC0 iiProof 105



We already have, from Theorem 3.34, that there is a unique rule satis�ed by any(C;C0) 2 =). Thus, we need only show for a one-lous rule (l1), that l1(D) andl1(D 0) are disjoint for D 6= D 0, and for a two-lous rule (l2), that l2(D ;E ) andl2(D 0;E 0) are disjoint for (D ;E ) 6= (D 0;E 0).For (l1), assume that we have D ;D 0 2 B, and (C;C0), suh that C 6= C0,(C;C0) 2 l1(D), and (C;C0) 2 l1(D 0). First we have(C;C0) 2 l1(D)) f Theorem 3.32 gh8 E : E 6= D : C:E = C0:E i� f trading; C 6= C0 gh8 E : C:E 6= C0:E : E = D i ^ h9 E :: C:E 6= C0:E i� f ^ over 9 gh9 E :: h8 E : C:E 6= C0:E : E = D i ^ C:E 6= C0:E i) f instantiation gh9 E :: E = D ^ C:E 6= C0:E i� f one-point rule gC:D 6= C0:DNow we have(C;C0) 2 l1(D) ^ (C;C0) 2 l1(D 0)) f Theorem 3.32, above result gh8 E : E 6= D : C:E = C0:E i ^ C:D 0 6= C0:D 0) f instantiate for D 0 g(D 0 6= D ) C:D 0 = C0:D 0) ^ C:D 0 6= C0:D 0� f ontraposition g(C:D 0 6= C0:D 0 ) D 0 = D) ^ C:D 0 6= C0:D 0) f modus ponens gD 0 = D 106



For (l2), assume that we have D ;E ;D 0;E 0 2 B, and (C;C0) suh that(C;C0) 2 l2(D ;E ), and (C;C0) 2 l2(D 0;E 0). We �rst note that D 6= E , andD 0 6= E 0, sine no suh methods alls appear in a well-formed program. Also, asnoted in the proof of Theorem 3.34,(C;C0) 2 l(D ;E ) ) C:D 6= C0:D ^ C:E 6= C0:EWe have (C;C0) 2 l2(D ;E ) ^ (C;C0) 2 l2(D 0;E 0)) f Theorem 3.42, above observation gh8 D 00 : D 00 62 fD ;Eg : C:D 00 = C0:D 00 i ^ C:D 0 6= C0:D 0) f instantiate for D 0 g(D 0 62 fD ;Eg ) C:D 0 = C0:D 0) ^ C:D 0 6= C0:D 0� f ontraposition g(C:D 0 6= C0:D 0 ) D 0 2 fD ;Eg) ^ C:D 0 6= C0:D 0) f modus ponens gD 0 2 fD ;EgSimilarly, we an show that E 0 2 fD ;Eg, and sine D 0 6= E 0, we have fD 0;E 0g =fD ;Eg. To omplete the proof, we need to show that l2(D ;E ) and l2(E ;D) aredisjoint. From Table 3.2 we observe that there is no two-lous rule where the soureand the agent have equal phases before the step, and equal phases after the step.Thus the relations are disjoint.(End of proof)As noted in the above proof, for (C;C0) 2 l(D ;E ), we have C:D 6= C0:D , andC:E 6= C0:E . For (C;C0) 2 l(D), for almost all ases, we similarly have C:D 6= C0:D .The one exeption is (C;C0) 2 loal-step(D). SupposeC:D = (aept; �; ; �) 107



and there is a TCBlo transition(�; �) �! (�; �)then (C;C) 2 loal-step(D)Suh a step is alled a stuttering step. Stuttering steps are problemati beause, inoperational terms, the on�guration after the step is the same as that before, so thestep an be repeated inde�nitely, and thus a proedure all an exeute an in�nitenumber of steps without terminating.For a step that is not stuttering, we an rewrite Theorem 3.32 in a strongerform, as follows.Theorem 3.42h8 L;C;C0: L 2 Lab ^ ChLiC0 ^ L is not a stuttering step: h8 D : D 2 B : D 2 Loi(L) 6� C:D = C0:D iiProofAssume we have C;C0 2 PC , and L 2 Lab, suh that ChLiC0 and L is not astuttering step, and D 2 B. If D 62 Loi (L), then, by Theorem 3.32, C:D = C0:D .If D 2 Loi(L), then, sine L is not stuttering, we have from the above disussion,C:D 6= C0:D .(End of proof)
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The �nal result in this setion shows that the hanges a step makes to itsloi are independent of the on�gurations of the other boxes in the program.Theorem 3.43h8 L;C0;C00;C1: L 2 Lab ^ C0hLiC00 ^ C1 2 PC ^h8 D : D 2 Loi(L) : C0:D = C1:D i: h9 C01 : C1hLiC01 : h8 D : D 2 Loi(L) : C00:D = C01:D i iiProofBy examination of the rules.(End of proof)3.4.3 Enabled stepsIn the last setion we showed that, for a given pair of on�gurations (C;C0), thereis at most one step L suh that ChLiC0. We now turn to the operational view of aprogram and onsider, for a given program on�guration C, how many steps thereare where C is the on�guration before the step.De�nition 3.44 For C 2 PC, and L 2 LabL is enabled in C , h9 C0 :: ChLiC0 iExamining the rules, we see that there are three ases where there is norestrition on the on�guration of a lous before a step: an ation-start(D) stepis enabled for any on�guration of D ; and a total-all(E ;D), or guard-test(E ;D)step is enabled in any on�guration where E has the right on�guration, regardlessof D 's on�guration. We de�ne some notation to distinguish these steps.109



De�nition 3.45 For D 2 B,Unond (D) , fation-start(D)g [f l ;E: l 2 ftotal-all;guard-testg ^ E 2 B n fDg: l(E ;D)gCond (D) , f L j D 2 Loi(L) ^ L 62 Unond(D) gFor L 2 Lab,ULoi(L) , f D j L 2 Unond (D) gCLoi(L) , f D j L 2 Cond (D) gWe all Unond (D) the unonditional steps, and Cond (D) the onditional steps,for D. We all ULoi(L) the unonditional loi, and CLoi(L) the onditional loifor L.The unonditional steps for D are those whih have D as a lous, but whih are en-abled regardless of D 's on�guration. The onditional steps for D are the remainingsteps with D as a lous. By de�nition, Unond(D) and Cond (D) partition the setof steps with D as a lous, and so ULoi(L) and CLoi(L) partition Loi(L).We note that ation-start(D) is an unonditional step for its only lous, andthat total-all(E ;D) guard-test(E ;D) are unonditional steps for D , and ondi-tional steps for E . Thus ation-start(D) is the only step that is unonditional forall of its loi. In a quiesent on�guration, there is no box with a onditional stepenabled, and only ation-start steps are enabled.The following theorem shows that the on�gurations of the onditional loidetermine whether or not a step is enabled. If D 62 CLoi (L), in partiular, if110



D 2 ULoi(L), then L is enabled regardless of D 's on�guration.Theorem 3.46h8 L;C;C0: L 2 Lab ^ C;C0 2 PC ^ h8 D : D 2 CLoi (L) : C:D = C0:D i: L is enabled in C � L is enabled in C0iProofUse De�nition 3.45 and the semanti rules.(End of proof)Table 3.3 shows the onditions on a program on�guration C suh that aonditional step for D is enabled. In the ase of the two-lous rules that are on-ditional for both loi, the onditions on the other lous, box E , are also given. Ineah rule, E is K :C:D orW :C:D , depending on the rule.The table represents a partition of the on�gurations, from the point of viewof box D . The primary partition is on the phase of D in C. Eah line to the right ofa phase represents a ondition on the phase disjoint from all others for that phase.The ase analysis is exhaustive for eah phase. For phases return and rejet,this relies on the fat that C is loally well-formed and all orret.The following theorem shows an important inferene we an draw from thetable, that there is at most one onditional step enabled for a box in any well-formedon�guration.
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Table 3.3: Conditions on C to enable a onditional step for D .
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Theorem 3.47h8 C;D: C 2 PC ^ D 2 B: h# L : L 2 Cond (D) : L is enabled in C i � 1iProofWe hek that eah pair of rows in Table 3.3 desribes disjoint onditions on C:D ,and thus there is no on�guration in whih two onditional steps are enabled.(End of proof)Theorem 3.47 allows the de�nition of the following funtion.De�nition 3.48 For C 2 PC, and D 2 B,Enabled (C;D) , L if L 2 Cond (D) ^ L enabled in C? if no suh L existsWe all Enabled (C;D) the enabled step for D in C.Suppose C:D :� = aept, then, aording to Table 3.3, no step is enabled for boxD if C:D :� 6= ?, C:D :� 6= E :m(�), and there is no loal step (C:D :� ; C:D:� ) �!(�0; �0). We note from the rules de�ning TCBlo that there is a step de�ned for any(�; �) provided � 6= ?, and �rst(�) 6= E :m(�). Thus the \otherwise" ondition ofthis line for this phase never applies, and Enabled(C;D) 6= ?. This is not a generalproperty of sequential language semantis, so, in the interests of generality, we makeit an expliit assumption.
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Assumption 3.49h8 C;D: C 2 PC ^ D 2 B ^ C:D :� = aept: Enabled(C;D) 6= ?iFor Seuss languages where Assumption 3.49 does not hold, the following theorem,and some of the results that follow from it | in partiular the omplete exeutiontheorem | require additional onditions.The following theorem gives the onditions under whih no onditional stepis enabled for a box.Theorem 3.50h8 C;D: C 2 PC ^ D 2 B: Enabled(C;D) = ? � ( C:D :� = idle ^ C:D : = ? ) _( C:D :� = pwait ^C:(Wp:C:D):� 62 freturn;rejetg ) _( C:D :� = wait ^C:(Wt :C:D):� 6= return )iProofWe observe that the onditions given are exatly those in whih there is an entry\none" in the �nal olumn of Table 3.3. As noted above, Assumption 3.49 exludesthe ase where C:D :� = wait.(End of proof) 114



The following theorem shows an important stability property of Enabled (C;D). Theproof is in Appendix B.Theorem 3.51h8 L;C;C0;D: L 2 Lab ^ ChLiC0 ^ D 2 B ^ Enabled(C;D) 62 f?;Lg: Enabled(C;D) = Enabled(C0;D)i3.4.4 Enabled steps for a all stakWe showed in Setion 3.3.3 that for eah ation all ative in C 2 PC there is aall stak 
 whih ontains all boxes that are exeuting on behalf of that ationall. Every nonquiesent box in the on�guration is in exatly one all stak, andall the boxes in eah all stak, exept possibly the �rst, are in a waiting phase.We onsider what onditional steps are enabled for the boxes in a all stak �. For0 < i < j
j, we haveC:
[i℄:� 2 fpwait;waitgSo, by Theorem 3.50, there is no onditional step enabled for 
[i℄, for 1 < i < j
j.Thus only 
[0℄ and 
[1℄ may have enabled steps. A step is enabled for 
[1℄ onlyif C:
[0℄:� 2 freturn;rejetg, and the enabled step, whih is a (test-aept),(test-rejet), or (total-return) step, is also a onditional step for 
[0℄. Therefore,if a onditional step is enabled for any box in the stak, it is enabled for 
[0℄.Box 
[0℄ is not quiesent, so by Theorem 3.50 it has a onditional stepenabled unless it is waiting for box D =W :C:(
[0℄), and D is not ready to return.If there is no onditional step enabled for 
[0℄, then D is not exeuting for 
[0℄,sine 
[0℄ 62 rng(K :C), by De�nition 3.21. In this ase, the next step for the thread115



is a method initialization step at D . In the on�guration resulting from this step,D is added to the front of the all stak.Thus we see that there is at most one step enabled for a thread in anywell-formed on�guration.3.5 ExeutionsWe onsider the exeution of a program under the queue semantis from Chapter 2.We de�ne an exeution as a sequene of on�gurations and a parallel sequeneof steps. Eah pair of adjaent on�gurations in the on�guration sequene arerelated by the orresponding step in the step sequene. The exeution reords allthe on�gurations seen during the program, and the steps taken to reah theseon�gurations.We de�ne exeutions relative to a set of well-formed on�gurations, and astep of labels.De�nition 3.52 For P � PC, and L � P � P ,Exeutions(P;L) , f (�;�)j � 2 P1 ^ � 2 L1 ^ j�j = j�j+ 1 ^h8 i : 0 � i < j�j : (�[i℄;�[i + 1℄) 2 �[i℄ igAn exeution is, as desribed above, a pair of sequenes, one ontaining programon�gurations, and the other ontaining program steps. The �rst sequene ontainsthe on�gurations attained during program exeution, in order, and the seondsequene ontains the steps from one on�guration to the next. The sequenes anbe �nite or in�nite, and if �nite, the on�guration sequene is one element longerthan the step sequene. The on�guration sequene annot be empty. We de�ne116



a set of exeutions using the whole of PC for the on�gurations, and Lab for thelabels.De�nition 3.53Z , Exeutions(PC ;Lab)We de�ne some funtions and operators for exeutions.De�nition 3.54 For " 2 Z , where " = (�;�),CSeq(") , �SSeq(") , �j"j , j�jStart(") , �rst(�)Final (") , last(�) if j"j <1First(") , �rst(�)Last(") , last(�) if j"j <1"[i℄ , �[i℄ if 0 � i � j"j"hii , �[i℄ if 0 � i < j"j"hi : : : ji , ( �[i : : : (j + 1)℄ ; �[i : : : j℄ )if 0 � i � j < j"j" is �nite if j"j <1" is in�nite if j"j =1Thus an exeution " takes j"j steps, starting from on�guration Start("). If thenumber of steps is �nite, the exeution terminates in on�guration Final ("). Con-�guration "[i℄ is before step "hii, and on�guration "[i + 1℄ is after. The segment"hi : : : ji is steps i through j of ", with the orresponding on�gurations. This is anexeution, sine " is. 117



If we have exeutions " and "0, where " is �nite, and Final(") = Start("0),then we an ompose " and "0. We also de�ne omposition for the ase that " isin�nite.De�nition 3.55 For "; "0 2 Z where s = j"j, s0 = j"0j, ands =1 _ (s <1 ^ Final (") = Start("0))the sequential omposition of " and "0, written "; "0, is (�;�) 2 PC1 � Lab1,satisfying the following.j�j = s+ s0 + 1 ^ j�j = s+ s0 ^h8 i : 0 � i < s : �[i℄ = "[i℄ ^ �[i℄ = "hii iand, if s <1,h8 i : s � i � s+ s0 : �[i℄ = "0[i� s℄ i ^h8 i : s � i < s+ s0 : �[i℄ = "0hi� si iIf " is �nite, and "; "0 is de�ned, then the mathing on�guration appears only onein "; "0. If, for example,CSeq(") = hC0;C1;C2iCSeq("0) = hC2;C3ithen the on�guration sequene for "; "0 ishC0;C1;C2;C3iThe following results about sequential omposition are simple to prove from thede�nition. 118



Theorem 3.56h8 "; "0 : "; "0 2 Z ^ "; "0 is de�ned : "; "0 2 Z iTheorem 3.57h8 "; "0; "00: "; "0; "00 2 Z ^ ("; "0); "00 is de�ned: "; ("0; "00) is de�ned ^ ("; "0); "00 = "; ("0; "00)iThe last theorem shows that sequential omposition is assoiative, so we omit paren-theses, and write "; "0; "00 for the sequential omposition of ", "0 and "00.We de�ne an order on Z , using the order on the underlying sequenes.De�nition 3.58 For "; "0 2 Z ," v "0 , CSeq(") v CSeq("0) ^ SSeq(") v SSeq("0)Theorem 3.59 (Z ;v) is a omplete partial order.Sine (Z ;v) is a CPO, we an de�ne in�nite exeutions as the limit of a hain of�nite exeutions.3.6 DisussionThe onditions we de�ne for well-formed box and program on�gurations exludemany problemati or illogial on�gurations from onsideration. We showed that ourde�nition is sound in that a step from a well-formed on�guration reahes anotherwell-formed on�guration. 119



The set of well-formed on�gurations is larger than the set of on�gurationsthat we expet to see during the exeution of a program. There is a restrited set ofvalues that the ode omponent for a box an take during the exeution of a program.For TCB, we do not expet to enounter the statement \x := 2" at the front of theode omponent unless this statement appears somewhere in the body ode for theurrently exeuting proedure. De�nition 3.5 plaes only two restritions on the odeomponent: that it be empty when the phase is idle, guard, return or rejet,and that its �rst element be a proedure all when the phase is pwait or wait.Other than these restritions, a well-formed box on�guration an have anything inits ode omponent. In partiular, we an form a well-formed box on�guration inwhih box D is waiting for the return of a method all to box E , and E is exeutingthe all, but there is no all statement for a method in E anywhere in the programode of box D .When we require stronger onditions on the ode omponent than those givenby De�nitions 3.5 and 3.20, as we do when we disuss deadlok in the next hapter,we restrit our attention to on�gurations that an appear in an exeution startingfrom a quiesent state. This ensures that every statement that appears in the odeomponent for a box appears in the program ode for the box. Restriting the setof on�gurations in this way limits our attention to the reahable on�gurations.3.6.1 Deterministi and nondeterministi stepsThe queue semantis has the pleasant properties that in any on�guration, there isat most one onditional step enabled for a box and, one enabled, a onditional stepremains enabled until it is taken.It an be shown that every step in the semantis, with two exeptions, isdeterministi. That is, for any program on�guration C and label L, if L is enabledin C, there is exatly one C0 suh that ChLiC0. If L is deterministi, the transition120



relation is a funtion. The two potentially nondeterministi steps are ation-startand loal-step.For nondeterministi ation-start steps, onsider a box D with ations a0and a1 . Choose C;C0;C1 2 PC , suh thatC:D = (�; �; ; �)C0 = C [D 7! (�; �;  / (a0 ); �)℄C1 = C [D 7! (�; �;  / (a1 ); �)℄We have C0 6= C1, and (C;C0); (C;C1) 2 ation-start(D).A loal-step is de�ned by a transition for the loal language TCBlo. Allsteps for this language are deterministi. But it is not diÆult to de�ne a Seusslanguage with a nondeterministi loal language. For suh a language, there areloal on�gurations (�; �), (�0; �0), and (�1; �1), where(�; �) �! (�0; �0)(�; �) �! (�1; �1)(�0; �0) 6= (�1; �1)Suppose we an �nd C 2 PC , and D 2 B suh thatC:D = (�; �; ; �)Then we de�ne C0;C1 2 PC byC0 , C [D 7! (�; �0; ; �0)℄C1 , C [D 7! (�; �1; ; �1)℄We have C0 6= C1, and (C;C0); (C;C1) 2 loal-step(D).121



3.6.2 ThreadsWe hose, in de�ning the semantis, to represent eah box independently. The box-entri view of an exeution models a simple implementation of TCB on a networkof proessors. The exeution of a box is a sequene of omplete proedure alls. Ifthere is a method all during the exeution of a proedure all, the box suspendsexeution until the method all is exeuted.A single thread may exeute at many boxes. We de�ned funtions K :C andW :C for program on�guration C so we an disuss exeutions in terms of threads.We use the \is exeuting for" funtion K :C to identify the root ation of anexeution step. We use this to determine if two steps are from the same or di�erentthreads. We use the \is waiting for" funtion W :C to �nd the box that an takethe next step for a thread.For well-founded C, there are no yles in K :C. This ensures that everynonidle box is exeuting on behalf of an ation. The funtionW :C is not neessarilyayli. In a on�guration C in whih W :C ontains a yle there is deadlok. Athread that is ative at a deadloked box annot omplete its exeution. In the nexthapter we disuss deadlok further, and onsider ways to avoid it.
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Chapter 4
Complete exeutions
4.1 IntrodutionIn this hapter, we de�ne the proper exeutions and the omplete exeutions, and wede�ne the neessary and suÆient onditions for a proper exeution to be omplete.In the remaining hapters, we give redution theorems for omplete exeutions.A proper exeution is one that starts with no ative threads, and, if it is �nite,no onditional step is enabled in the �nal on�guration. A �nite proper exeutionan only be extended by starting a new thread.The steps for every thread in a proper exeution start with the �rst step |an ation-start step | for the thread. However, it is not neessarily the ase thatthe last step of the thread is in the exeution. If a thread has an in�nite number ofsteps, then every step has a suessor, and so none of the steps an be the last step.Also, a thread may take a �nite number of steps and reah a on�guration whereno step for the thread is enabled, and no step is enabled for any other thread.The omplete exeutions are those that ontain the �rst and last step | andthus all the steps | for every thread.We onsider ways that a thread may fail to terminate. The �rst is deadlok,123



where the thread is permanently disabled, and an take no more steps. The seondis nontermination, where the thread takes an in�nite number of steps. We showthat, for a proper exeution with a �nite number of threads, avoiding deadlok andin�nite threads gives a omplete exeution. For exeutions with an in�nite numberof threads, we need a third ondition. This ondition, thread fairness ensures that,if a step is enabled for a thread, then a step is eventually taken for the thread. Theomplete exeution theorem says that the proper exeutions that are deadlok-free,ontain no in�nite threads, and are thread fair are exatly the omplete exeutions.The remainder of the hapter investigates requirements on a system imple-menting a TCB program to ensure that there is no deadlok, that every thread ter-minates, and that it is thread fair. To avoid deadlok and nonterminating threads,we plae onditions on the program ode and on whih pairs of ations an haveonurrent threads. We use ontrol relations to express the restritions on onur-reny. We show how the ontrol relation and the program ode together determineif a program is deadlok-free, and if it allows only �nite threads. The requirementsfor thread fairness are onditions on the run-time system.Given a system implementing a TCB program, we an obtain proper exeu-tions from the implemented system by starting it from a quiesent on�guration,and only stopping the system if there is no step enabled for a urrently exeut-ing thread. This essentially means we let the system run \long enough" that eahenabled step is taken. If, in addition, we ensure that this system avoids deadlokand nontermination, and is thread fair, then running the system \long enough" isguaranteed to give omplete exeutions.The material in this hapter an thus be regarded as guidane for implement-ing Seuss systems so that all exeutions are omplete.
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4.1.1 Proedure setsFor some of this work, we onsider the program as a set of proedures. The identity ofthe boxes ontaining the ations is of seondary importane, so we use the followingsets ontaining the ations, methods, and proedures from the program, and thesubsets of partial and total elements of eah type.De�nition 4.1A , f D :p j D 2 B ^ p 2 Ations(D) gAp , f D :p j D 2 B ^ p 2 PartAts(D) gAt , f D :p j D 2 B ^ p 2 TotAts(D) gM , f D :p j D 2 B ^ p 2 Methods(D) gMp , f D :p j D 2 B ^ p 2 PartMeths(D) gMt , f D :p j D 2 B ^ p 2 TotMeths(D) gP , A [MPp , Ap [MpPt , At [MtWe use �, �, and � for typial members of A, M, and P, respetively.We use the following funtion when we need to refer to the box of a proedure.De�nition 4.2 For � 2 P,Box (�) , D if h9 p :: � = D :p iWe de�ne an equivalene relation on P.
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De�nition 4.3 For �; �0 2 P,� � �0 , Box (�) = Box (�0)If � � �0, we say � box-equals �0.4.2 Proper exeutions and omplete exeutionsA proper exeution is one that starts in a quiesent on�guration, and an only beextended by starting another thread. It is a maximal exeution for the threads thathave started in it.De�nition 4.4 For " 2 Z ,Maximal (") , j"j =1 _( j"j <1 ^h8 D : D 2 B : Enabled (Final (");D) = ? i )Proper (") , qt(Start (")) ^ Maximal(")For X a set of exeutions,Proper (X) , f " j " 2 X ^ Proper (") gTo de�ne omplete exeutions, we note that eah thread starts and ends with a stepat the same box. The following funtions return, for a given exeution and box, thenumber of steps in the exeution that start a thread at the box, and the number ofsteps that end a thread at the box.
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De�nition 4.5 For " 2 Z , L 2 Lab, and D 2 B,NumSteps(";L) , h# i : 0 � i < j"j : "hii = L iNumStarts(";D) , NumSteps("; ation-start(D))NumEnds(";D) , NumSteps("; ation-end(D)) +NumSteps("; ation-rejet(D))If every thread that starts at box D terminates, then the number of start stepsequals the number of end steps. Conversely, if a thread does not terminate, its boxhas more start steps than it has end steps.De�nition 4.6 For " 2 Z ,Complete(") , Proper (") ^h8 D : D 2 B : NumStarts(";D) = NumEnds(";D) iIf X is a set of exeutions,Complete(X) , f " j " 2 X ^ Complete(") gThe following theorem states that in a omplete exeution, no box is permanentlynonidle. The proof of the theorem is in Appendix B.
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Theorem 4.7h8 ": " 2 Complete(Z ): h8 D ; i: D 2 B ^ 0 � i � j"j: h9 j : i � j � j"j : "[j℄:D :� = idle iiiThe following theorem gives a simple haraterization of omplete �nite exeutions.The proof is in Appendix B.Theorem 4.8h8 " : " 2 Z ^ j"j <1 : Complete(") � qt(Start(")) ^ qt(Final(")) iThe number of threads in an exeution is the number of start steps aross all theboxes.De�nition 4.9 For " 2 Z ,NumThreads(") , h� D : D 2 B : NumStarts(";D) iIf NumThreads(") is �nite for some ", but " is in�nite, then one of the threads in "has an in�nite number of steps. None of these an be an end step, beause a theadtakes no steps after its end step. Thus the exeution is not omplete. A ompleteexeution with a �nite number of threads is thus a �nite exeution. So we get thefollowing orollary to Theorem 4.8.
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box Dation a :: E :nmethod m :: (� � � � �)endbox Eation b :: D :mmethod n :: (� � � � �)endFigure 4.1: Program that an deadlokCorollary 4.10h8 ": " 2 Z ^ NumThreads(") <1: Complete(") � Proper (") ^ j"j <1 ^ qt(Final ("))iA proper exeution that has a �nite number of threads, and is not omplete, eitherhas an in�nite thread, or it ends in a nonquiesent on�guration in whih no stepis enabled.We disuss these possibilities in the following setions. We �rst disuss on-�gurations in whih no onditional step is enabled, and then we onsider in�nitethreads.4.3 DeadlokConsider the program in Figure 4.1. This program ontains two ations, D :a , whihalls method E :n, and E :b, whih alls method D :m . Now onsider the followingexeution. Starting from a quiesent on�guration, the �rst step starts a thread for129



D :a , and the next step starts a thread for E :b. Both threads exeute onurrently.When the exeution of D :a's thread reahes the all to E :m , an entry for this all isplaed at the bak of E 's all queue. Box D waits until this all ompletes. Whenthe exeution of E :b's thread reahes the all to D :n , an entry for this all is plaedat the bak of D 's all queue. Box E waits until this all ompletes. Let C be theon�guration where both boxes are waiting. By Theorem 3.50, no onditional stepis enabled for either box. We have W :C:D = E , and W :C:E = D . There is a ylein W :C, so box D is waiting for box E , whih is waiting for D , so ultimately, D iswaiting for itself to take a step, whih is not possible. Similarly, box E is waitingfor itself. We say that the boxes are deadloked. We de�ne deadlok using W :C.De�nition 4.11 For C 2 PC, a sequene T 2 B+ is a knot in C ifh8 i : 0 � i < jT j : W :C:(T [i℄) = T [i� 1℄ iwhere � is addition modulo jT j. For D 2 B,dl(C;D) , h9 T; n : T is a knot in C ^ n � 0 : (W :C)n:D 2 T idl(C) , h9 D : D 2 B : dl(C;D) idl(") , h9 i : 0 � i � j"j : dl("[i℄) iIf dl(C;D), we say that D is deadloked in C; if dl(C) or dl("), we say that C or" is deadloked.A knot is a yle of boxes, eah of whih is waiting for the next, and so no onditionalstep is enabled for any box in the knot. A box is deadloked in a on�guration ifit is in a knot, or (transitively) waiting for a box in a knot. The following theoremstates that deadlok is a stable property. That is, if a box is deadloked at someon�guration in an exeution, then it is deadloked at every on�guration from thaton�guration on. The proof is in Appendix B.130



Theorem 4.12h8 "; k;D: " 2 Z ^ 0 � k � j"j ^ D 2 B ^ dl("[k℄;D): h8 i : k � i � j"j : dl("[i℄;D) iiThe following orollary states that a deadloked exeution is not omplete. Threadsthat are deadloked annot omplete exeution.Corollary 4.13h8 " : " 2 Z ^ dl(") : :Complete(") iProofAssume " 2 Z and dl("). By De�nition 4.11, we an hoose i, suh that 0 � i � j"j,and dl("[i℄). We havetrue� f assumption gdl("[i℄)� f De�nition 4.11 gh9 D :: dl("[i℄;D ) i) f Theorem 4.12 gh9 D :: h8 j : i � j < j"j : dl("[j℄;D) i i) f deadloked box is waiting gh9 D :: h8 j : i � j < j"j : "[j℄:D :� 2 fpwait;waitg i i) f weakening gh9 D :: h8 j : i � j < j"j : "[j℄:D :� 6= idle i i� f prediate alulus g 131



:h8 D :: h9 j : i � j < j"j : "[j℄:D :� = idle i i) f Theorem 4.7 g:Complete(")(End of proof)The �nal theorem in this setion says that if there is no onditional step enabled ina on�guration, then every box is either quiesent or deadloked. The proof is inAppendix B.Theorem 4.14h8 C: C 2 PC: h8 D :: Enabled(C;D) = ? i � h8 D :: qt(C:D) _ dl(C;D) ii4.4 In�nite proedure allsConsider the program in Figure 4.2. The program ontains boxes X and D . BoxX has a loal integer variable x , an ation in that inrements the value of x , anda method de that derements the value of x and returns the deremented value.Box D ontains an ation a that loops until X :de returns a nonpositive value. Ifa thread for ation D :a is exeuted by itself, then the thread is �nite. If X :inexeutes onurrently with D :a , and there are enough threads for X :in to keepthe value of X :x positive, then the thread for D :a loops endlessly, taking an in�nitenumber of steps without terminating.A thread that takes an in�nite number of steps does not ontain an end step,beause a thread takes no steps after its end step. Thus, for a omplete exeution,we must ensure that no thread is in�nite. We de�ne a prediate that is true of all132



box Xvar x : integeration in :: x := x+ 1method de(out y : integer):: x := x� 1 ; y := xendbox Dvar n : integer init 1ation a :: while n > 0 do X :de( ; n)endFigure 4.2: Program with nonterminating proedureexeutions ontaining a in�nite thread. First, we identify an exeution that ontainsall the steps from a proedure all.De�nition 4.15 For " 2 Z , and D :p 2 P, then " is a full exeution of D :p ifStart("):D :� = idle ^ Pro("[1℄:D :) = p ^h8 i : 0 < i < j"j : ("[i℄):D :� 6= idle ^ :dl("[i℄;D) i ^( j"j = 1 _ dl(Final (");D) _ Final ("):D :� = idle )From this de�nition, if " is a full exeution for D :p, then in the initial on�guration,D is idle. In every on�guration, exept the �rst and possibly the last, D is notidle. In every on�guration, exept possibly the last, D is not deadloked. In theon�guration after the �rst step, D is not idle, and its urrent all is for p. Sothe �rst step is a proedure initialization step for p. Proedure p is the urrentall for D for the whole of the exeution, sine D must beome idle to lear itsurrent all. The exeution is in�nite, or it is �nite, and in the �nal on�gurationD is deadloked, or it is idle. These over all the possibilities for an exeution of aproedure in a maximal exeution. 133



An in�nite thread must inlude a proedure all with an in�nite numberof steps. Note that an in�nite full exeution for a proedure does not neessarilyontain an in�nite number of steps for the proedure all's thread, sine it mayontain a �nite number of steps for the proedure all's thread, with an in�nitenumber of steps for other threads.The steps taken by a proedure all are all taken on behalf of the same rootation. We de�ne the root ation for a step in an exeution, using the root ationsof the boxes in the on�gurations. This allows us to indentify pairs of steps in a fullexeution that are from the same thread.De�nition 4.16 Letpro-init , partial-ation-init [ partial-method-init [total-ation-init [ total-method-initFor " 2 Z , and 0 � i < j"j,Root ("; i) , ? if "hii � ation-startRoot("[i + 1℄;D) if "hii = l(D) ^ "hii � pro-initRoot("[i℄;D ) if "hii = l(D ;E ) _("hii = l(D) ^"hii 6� pro-init [ ation-start)The root ation for an ation-start step is ?, sine suh a step is never taken onbehalf of a urrently exeuting ation all. For any other type of step, the root ationfor the step is the root ation for its �rst lous. For the proedure initialization steps(represented by pro-init), we use the root ation for the lous in the on�gurationafter the step, sine its lous is idle before the step, and exeuting for the initializedproedure after the step. For every other step, we take the root ation for its �rstlous before the step, sine for these steps, the �rst lous is exeuting the urrent134



proedure all before the step.We now de�ne a prediate that is true of a full exeution for a proedure �if it ontains a �nite number of steps for �'s thread. Note the the �rst step of a fullexeution is always a step initializing the all. So every step with the same root asthis step is in �'s thread.De�nition 4.17 For � 2 P, and " 2 Z , suh that " is a full exeution for �,FiniteThread (") , h# i : 0 � i < j"j : Root ("; i) = Root ("; 0) i < 1De�nition 4.18 For " 2 Proper (Z ),inf (") , h9 �; i; j: � 2 A ^ 0 � i � j � 1 ^"hi : : : ji is a full exeution for �: :FiniteThread ("hi : : : ji)i4.5 Exeutions with a �nite number of threadsWe now show that, if we limit our attention to exeutions ontaining a �nite numberof threads, then the omplete exeutions are exatly the proper exeutions that arenot deadloked and ontain no in�nite proedure alls.Theorem 4.19h8 ": " 2 Z ^ NumThreads(") <1: Complete(") � Proper (") ^ :dl(") ^ :inf (")i 135



ProofAssume that " 2 Z , and NumThreads(") <1. We showProper (") ) ( :dl(") ^ :inf (") � j"j <1 ^ qt(Final (")) )The result then follows from this and Corollary 4.10. Assume Proper ("). If we have:dl(") and :inf ("), then sine the number of threads is �nite, and no thread has anin�nite number of steps, we have j"j <1. Also, sine " is proper, no step is enabledin its �nal on�guration. Sine " is not deadloked, by Theorem 4.14, every box isquiesent in the �nal on�guration, so qt(Final (")). Conversely, if we have j"j <1and qt(Final (")), then the �rst gives us that there there are no in�nite threads, andthe seond means that there is no deadlok, sine, by Theorem 4.12, a deadlokedexeution is deadloked in its �nal on�guration.(End of proof)4.6 Thread fairnessTheorem 4.19 does not apply to exeutions with an in�nite number of threads. Tosee this, suppose we have ations � and �0 that exeute on disjoint sets of boxes.Consider an exeution that onsists of some of the steps of a thread for �, leavingthis thread inomplete and with an enabled onditional step, followed by an in�nitenumber of threads for �0, eah of whih has a �nite number of steps. There is noin�nite thread in this exeution, and there is no deadlok, yet it is not omplete.The problem here is that, when there are multiple steps enabled at eahon�guration in an in�nite exeution, there is no guarantee that a given enabledstep is ever taken. This problem is one that arises whenever we have a systemwith multiple threads of ontrol, where eah step in an exeution onsists of anondeterministi hoie from among the enabled steps. An exeution of suh a136



system an hoose to ignore any given enabled step inde�nitely. The standardtehnique for dealing with this problem is to de�ne a fairness ondition [13℄. FromTheorem 3.51, a onditional step remains enabled until it is taken, so the fairnessthat we require in this ase is that every enabled onditional step is eventually taken.We express this in the following way.De�nition 4.20 For " 2 Z ,tf (") , h8 D ; k: D 2 B ^ 0 � k < j"j ^ Enabled("[k℄;D) 6= ?: h9 i : k � i < j"j : "hii = Enabled("[k℄;D) iiIf tf ("), we say that " is thread fair.Thread fairness for �nite exeutions holds if there is no onditional step enabled inthe �nal on�guration.Theorem 4.21h8 ": " 2 Z ^ j"j <1: tf (") � h8 D : D 2 B : Enabled(Final (");D) = ? ii4.6.1 Fairness for rendezvous proedure allsThe problem of ontention for aess to a box to exeute a proedure all under therendezvous semantis, whih we handled by introduing the all queue, is also anissue that an be dealt with by imposing a fairness ondition.The fairness required for proedure alls is di�erent in nature to thread fair-ness. A rendezvous method all step does not have the stability property of the137



onditional steps in the queue semantis. In an exeution under the rendezvoussemantis, a method all step for boxes D and E is enabled if box D is in phaseaept, and has a method all to E at the front of its ode, and box E is in phaseidle. The last of these onditions is falsi�ed if E starts a proedure for a threadother than D 's.One a rendezvous method all step is enabled for D and E , it is eithertaken, or it beomes disabled, beause E takes a di�erent proedure all step. Ifthe proedure all started at E terminates, the step for D and E is again enabled.Otherwise, the proedure all does not terminate, and D is bloked for the rest ofthe exeution.The exeutions we want to avoid are one where the method all step is en-abled in�nitely often but is never taken. In the standard terminology of fairness,exeutions that have this property are alled strongly fair, whereas thread fair exe-utions are weakly fair.4.7 The omplete exeution theoremWe now give an extension of Theorem 4.19 that holds for exeution with a �nite orin�nite number of threads.Theorem 4.22 (Complete exeution theorem)h8 " : " 2 Z : Complete(") � Proper (") ^ :dl(") ^ :inf (") ^ tf (") iProofAssume " 2 Z . First onsider the ase that NumThreads(") is �nite. If Proper ("),then we have:dl(") ^ :inf (")� f Theorem 4.19, Corollary 4.10 g138



j"j <1 ^ qt(Final("))) f No step enabled in a quiesent on�guration, Theorem 4.21 gtf (")So we have :dl(") ^ :inf (") ) tf ("). This gives usProper (") ^ :dl(") ^ :inf (") ^ tf (")� f above gProper (") ^ :dl(") ^ :inf (")� f Theorem 4.19 gComplete(")Now onsider the ase where NumThreads(") is in�nite. We prove the equivaleneas two impliations.Case ):Assume Complete("). Sine NumThreads(") is in�nite, so is j"j, and thus Proper (")follows from De�nition 4.6 and De�nition 4.4. In a omplete exeution, every threadreahes its �nal step and eases to be ative. This means that the thread annot bedeadloked, nor an it have an in�nite number of steps. Also, all onditional stepsfor every thread are taken, sine every thread �nishes, so the exeution is threadfair.Case (:Assume Proper ("), :dl("), :inf ("), and tf ("). For any i, suh that 0 � i < j"j, weall "hii a start step if"hii � ation-start [ guard-test [ total-all
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and we all "hii an end step if"hii � ation-end [ ation-rejet [test-aept [ test-rejet [ total-returnA start step begins a proedure all, and an end step ompletes it. For any i suhthat "hii is a start step, let "i to be the segment of " starting with step i, and endingwith the end step that ompletes the proedure all started by step i, or, if thereis no end step orresponding to step i, the in�nite suÆx of " starting with step i.We show that "i is �nite for every i suh that "hii is a start step, and thus everyproedure all, inluding every ation all, terminates. This gives us Complete(").Let D be the unonditional lous of step "hii, and letVi = f E j h9 j; n : 0 � j � j"ij ^ 0 � n : (W :("i[j℄))n:D = E i gThe set Vi ontains D , and every box for whih D is waiting during exeution "i. Theboxes in Vi are all the boxes whose exeution a�ets the progress of "hii's thread.Let ̂ = "[i+ 1℄:D :. This is D 's all queue after the all started by "hii hasbeen added. Exeution "i is �nite i� every all in ̂ is eventually removed from D 'sall queue. We prove that "i is �nite by indution on #Vi. Note that #Vi � #Bfor every "i.For the basis, assume #Vi = 1. Thus Vi = fDg, and all the alls in ̂ donot make any method alls during their exeution. We show that the front entryin ̂ is eventually removed from D 's all queue. Sine there are no proedure alls,D is not waiting at any on�guration in "i, and there is an entry in its all queuethroughout the exeution (exept perhaps at Final ("i)), and thus it is not quiesent.By Theorem 3.50, a onditional step for D is enabled at every on�guration in "i,exept the last. Sine tf ("), there are a �nite number of steps from other threadsbetween eah step for box D . Sine :inf ("), the all at the front of the queue takes140



a �nite number of steps to omplete. When it does so it is removed from the queue.Iterating this argument, we have that every all in ̂ is eventually removed from D 'sall queue, and thus "i is �nite.For the indution step, Suppose #Vi = n, for n > 0, and assume that every"k is �nite, for "hki a start step, and #Vk < n, We again show that the front entryin ̂ is eventually removed from D 's all queue. The argument is similar to that forthe basis, exept that, in this ase, the thread may ontain method alls. Supposethat "ihji is a method all step with onditional lous D . That is, it is a methodall step from a proedure all exeuting at D . This is a start step, orrespondingto step "hi + ji. Let k = i + j. We have Vk � Vi, sine every step in the visitedset for this all is in the visited set for the all started by "hii. If Vk = Vi, thenD 2 Vk. In this ase there is deadlok, beause we have (W :C)n:D = D for someon�guration C in "k, and some n > 0. Thus, sine :dl("), we have #Vk < #Vi,and, by the indution hypothesis, "k is �nite. The �nal step of this exeution makesa step enabled at box D . Again by thread fairness and the lak of in�nite proedurealls, we have that the front entry in D 's queue is eventually removed. Iteratingthis argument, as above, we have that "i is �nite.(End of proof)Theorem 4.22 gives a set of onditions equivalent to Complete("), for any exeution". A system implementing a TCB program is thus omplete if and only if everyexeution of the system is proper, is not deadloked, ontains no in�nite threads,and is thread fair. We argued at the beginning of this hapter that Proper (") anbe ensured by letting the system run for a suÆiently long time. In the followingsetions, we disuss ways to ensure that eah exeution of the system satis�es theother three onditions.
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4.8 Control relationsThe program in Figure 4.1 an deadlok, and that in Figure 4.2 an have an in�nitethread. In the �rst program, deadlok is possible if threads for D :a and E :b are runonurrently. In the seond, a thread for D :a may take an in�nite number of stepsif it is run onurrently with an in�nite number of threads for X :in.One way to avoid deadlok in an exeution of the program in Figure 4.1 is torequire that threads for D :a and E :b are not run onurrently. In this ase, therean be no deadlok. Similarly, we an avoid an in�nite thread in an exeution ofthe program in Figure 4.2 if we require that threads for D :a and X :in are not runonurrently. So we see that the potential for a program to deadlok, or to havean in�nite thread, depends on whih pairs of ations we allow to have onurrentthreads.Control relations express restritions on onurreny. We show how theserelations an be used to ensure that exeutions are deadlok-free, and all threadsare �nite.De�nition 4.23 A ontrol relation for a program is a symmetri binary relationon A. The set of all ontrol relations is CR.The intended meaning of a ontrol relation T 2 CR is that threads for � and �0may be exeuted onurrently if and only if � T �0. Note that De�nition 4.23requires neither reexivity nor irreexivity of ontrol relations. If � T �, thenmultiple threads for � an be run onurrently; otherwise, at most one thread for �an be ative at any time during an exeution. However, the notion of \exeutingonurrently" is rather tenuous for threads for � and �0, where ���0 (whih is trueif � = �0). By design, eah box exeutes a single proedure all at a time. Whileone ation all is exeuting on a box, all others on the same box wait their turn inthe all queue. 142



For a given ontrol relation, some on�gurations respet the relation, meaningthat all pairs of ations ative in the on�guration are in the ontrol relation, andsome do not. An exeution respets a ontrol relation if eah of its on�gurationsdoes. To de�ne this, we must identify ations with multiple onurrent threads.The set Atives(C) annot be used for this purpose, sine this does not distinguishations with one ative thread from those with multiple ative threads.De�nition 4.24 For C 2 PC,Multis(C) , f D :aj D 2 B ^ a 2 Ations(D) ^h# i : 0 � i < jC:D :j : C:D :[i℄ = (a) i > 1gDe�nition 4.25 For T 2 CR, A0 � A, C 2 PC, and " 2 Z ,A0 resp T , h8 �; �0 : �; �0 2 A0 ^ � 6= �0 : � T �0 iC resp T , Atives(C) resp T ^ h8 � : � 2Multis(C) : � T � i" resp T , h8 i : 0 � i � j"j : "[i℄ resp T iIf X resp T, we say X respets T.An exeution that respets T allows only onurreny permitted by T. The ondi-tion on Multis(C) deals with ations having multiple onurrent alls, as disussedabove. The relation resp is monotoni in the ontrol relation, as the following theo-rem shows. Larger ontrol relations allow more onurreny, and thus are respetedby more on�gurations or exeutions.
143



Theorem 4.26h8 T;T0: T;T0 2 CR ^ T � T0: h8 A0 : A0 � A : A0 resp T ) A0 resp T0 i ^h8 C : C 2 PC : C resp T ) C resp T0 i ^h8 " : " 2 Z : " resp T ) " resp T0 iiProofFrom De�nition 4.25.(End of proof)The simplest ontrol relation is ;, the empty relation; this allows at most asingle ative ation all at any point in an exeution. An exeution that respetsthis ontrol relation is sequential, that is, an exeution in whih eah ation allis started and run to ompletion before another ation all is started. We use theempty ontrol relation to de�ne sequential exeutions.De�nition 4.27 For " 2 Z ," is sequential , " resp ;4.8.1 Implementing ontrol relationsControl relations are used to de�ne subsets of the set of exeutions having desirableproperties. A suitably hosen ontrol relation guarantees a deadlok-free exeution,or an exeution with no in�nite thread. If threads for ations � and �0 an deadlok,we an avoid this possibility by using a ontrol relation that does not ontain (�; �0).If threads for �, �0, and �00 an deadlok, we use a ontrol relation that does notontain one of (�; �0), (�; �00), and (�0; �00).144



If ontrol relation T guarantees a deadlok-free exeution, then so does T0,for any T0 � T, sine every exeution that respets T0 also respets T. So theintersetion of a set of ontrol relations, eah of whih guarantees a single propertyof the exeution, gives a ontrol relation that guarantees all of the properties.Control relations thus give uniform way to ensure desirable properties ofexeutions. Part of the implementation of a TCB program is a sheduler, a programthat deides whih threads to start, in whih order. A thread for ation � is startedwhen the sheduler sends a start(�) message to �'s box. When the ation ompletes,the box sends an aept(�) or rejet(�) message to the sheduler, depending on theoutome of the thread's exeution. The proessors exeute independently, so thesheduler has no ontrol over the order in whih threads end.The sheduler keeps a reord of all ations that have ative threads from thesequene of start and end messages. Shedulers implement a ontrol relation byensuring that the set of ative ations respets the ontrol relation. For a ontrolrelation T, a sheduler sends a start(�) message only if � T �0 for every �0 with anative thread.We onsider further requirements for a sheduler for TCB in Chapter 6. Fornow, we note that, if we an de�ne a ontrol relation that guarantees a property ofthe exeutions of a program, then we an implement the program using a shedulerthat respets the ontrol relation, and all exeutions of the implementation have thedesired property.4.9 Avoiding deadlokWe saw that for the program in Figure 4.1, a ontrol relation an be used to avoiddeadlok. Spei�ally, if T is a ontrol relation where (D :a ;E :b) 62 T, then anyexeution of the program that respets T does not deadlok.We de�ne a prediate on ontrol relations that is true preisely when a ontrol145



relation does not allow deadlok in an exeution.De�nition 4.28 For T 2 CR,DF (T) , h8 " : " 2 Proper (Z ) ^ " resp T : :dl(") iIf DF (T), we say that T is deadlok-free.Deadlok-freedom is antimonotoni in the ontrol relation. A smaller ontrol relationallows less onurreny, whih means fewer possibilities for deadlok.Theorem 4.29h8 T;T0 : T;T0 2 CR ^ T � T0 : DF (T) ( DF (T0) iFrom this theorem, we see that is any ontrol relation is deadlok-free, then so is theempty ontrol relation. Equivalently, if the empty ontrol relation is not deadlok-free, then no ontrol relation is deadlok-free. The empty ontrol relation allowsonly sequential exeutions, so if it is not deadlok-free, then there is a deadlokedsequential exeution.Let " be a deadloked proper exeution that respets ;, and let "[i℄ be thelast nondeadloked on�guration in ". The start on�guration is quiesent, so suhan i exists. Thus, W :("[i℄) is ayli, and W :("[i + 1℄) is yli. Step "hii is amethod all step to a box that is waiting. Sine there is only one exeuting thread,the soure and agent of this all are exeuting for the same thread. We all thisa yli all. There is no hope of ensuring deadlok-free exeution for a programontaining an ation that allows a yli all.The requirements to ensure deadlok-free exeution are �rst, that the emptyrelation is deadlok-free. We do not attempt to implement programs for whih thisis not the ase. Seond, that the exeution respets a deadlok-free ontrol relation.146



4.9.1 Nonbloking ontrol relationsDe�nition 4.28 does not help partiularly in deiding a priori if a partiular ontrolrelation allows deadlok. The de�nition essentially says that a ontrol relation doesnot allow deadlok if it does not allow deadlok. We de�ne a ondition that issuÆient to ensure that a ontrol relation is deadlok-free, and is simpler to hekthan the onditions of De�nition 4.28.No rule in the semantis reates a statement that is not already present in theode. When the ode omponent for a proedure all is initialized, it is initializedto the body ode from the proedure's de�nition. Thus, for boxes D and E , andon�guration C from a proper exeution, if W :C:D = E , then the ode for urrentproedure in D ontains a method all statement for a method in E .We de�ne the following relation on proedures.De�nition 4.30 For � 2 P, we say that � 2M appears in � if there is a all to �in the ode of the body of �. We write this as � � �.If � � �, then there may possibly be a all to � during an exeution of �. Note thatif � is partial, � � � if � appears as a test or in the body of one of �'s alternatives.If � is total, � � � if � appears in the body of �. We have the following theorem,whih shows that � limits the values of W :C for every reahable C.Theorem 4.31h8 "; i;D ;E: " 2 Proper (Z ) ^ 0 � i � j"j ^ W :("[i℄):D = E: h9 �; �0 : � � �0 : Box (�) = D ^ Box (�0) = E iiNote that if � � �, then it is not the ase that every all to � inludes a all to �.If the ode of � ontains the statement \if false then �", then � � �, but no all147



to � is ever made by exeuting this statement. But, from Theorem 4.31, if there isa all to � during an exeution of �, then � � �. This relation gives us an \upperbound" on the method alls that may be made during a proedure all.If proedure � alls method �, then Box (�) waits for Box (�) until the allompletes. It must also wait for any proedure all exeuting at Box (�) before theall to � is started. The following relation gives all the proedures whose exeutionmay blok the exeution of a all to a given proedure. It is a ombination of the\appears in" relation, and box equality.De�nition 4.32bb , �;�For �; �0 2 P, if � bb �0 we say that � is bloked by �0.We de�ne a \bloked-by" graph for a program.De�nition 4.33BB , (P; bb)Thus BB is the direted graph with vertex set P, and an edge from � to �0 i�� bb �0.If there is a yle in BB , then there is the possibility of reahing deadlokduring an exeution in whih there are no restritions on onurreny. As we sawabove, the possibility for deadlok an be eliminated if use a ontrol relation thatlimits onurreny.Suppose we have a subset A0 � A. We remove from BB all verties forproedures that are not alled by ations in A0, and all edges inident on them.The remaining graph ontains all the alls that may be made during a onurrent148



exeution of the ations in A0. If this restrited graph is ayli, then there is nopossibility for deadlok during suh an exeution. This suggests that we onsidersubgraphs of BB aording to the sets of ations that an have onurrent threads,as given by a ontrol relation.We �rst de�ne the nodes in representing proedures that may be alled duringthe exeution of a thread for an ation, or a set of ations.De�nition 4.34 For � 2 A, and A0 � A,Range(�) , f � : � 2 P : � �� � gRange(A0) , h[ � : � 2 A0 : Range(�) iThe set Range(�) ontains �, and all methods reahable from it by �. This gives abound on the proedures that are alled during exeution of a thread for �.The theorem we wish to prove is that for any subset A0 � A, the subgraph ofBB on the verties in Range(Atives(C)) is a bound onW :C in any on�guration Cfrom a proper exeution. Therefore, if the subgraph is ayli, C is not deadloked.We de�ne the restrition of a graph to a subset of its verties.De�nition 4.35 For a graph G = (V;E), and U � V ,G � U , (U;E0) where E0 = E \ (U � U)Using this, we de�ne subgraphs of BB for subsets of the ations.De�nition 4.36BB(A0) , BB � Range(A0)Now we have a theorem 149



Theorem 4.37h8 "; i: " 2 Proper (Z ) ^ 0 � i � j"j: BB(Atives("[i℄)) is ayli ) :dl("[i℄)iNow we de�ne a ondition on ontrol relations based on the above observations.De�nition 4.38 For T 2 CR,T is nonbloking , h8 A0 : A0 resp T : BB(A0) is ayli iA ontrol relation is nonbloking if there are no yles in the bloked-by graph forany set of ations that an exeute onurrently. The following theorem followsimmediately from Theorem 4.37 and De�ntion 4.38.Theorem 4.39h8 T : T 2 CR ^ T is nonbloking : DF (T) iThe theorem says that a nonbloking ontrol relation is deadlok-free, so there is nodeadlok in any proper exeution.Note that if BB is ayli, then so is BB(A0), for any A0 � A. In this ase,any ontrol relation is nonbloking, and so all exeutions are deadlok-free. Oneway to ensure that BB is ayli is to de�ne a partial order on the boxes, and writethe ode for the proedures suh that a all to a method in box E appears in aproedure in box D only if D is before E in the order. Suh a program an neverdeadlok.To show that a TCB program is implementable without deadlok, it is suÆ-ient to show that BB(�) is ayli for every � 2 A. To guarantee that the exeution150



of an implemented system does not deadlok, it is suÆient to ensure that the im-plementation ensures exeutions that respet a nonbloking ontrol relation.A nonbloking ontrol relation is not neessary to ensure deadlok-free exe-ution, as the following example shows. Consider a program with methods � and�0, in di�erent boxes, de�ned as follows.�(in b : boolean) :: if b then �0(false)�0(in b : boolean) :: if b then �(false)There is a yle in relation � on these methods, whih means there is a possibilityfor a yli all. But deadlok is not possible, sine a all to �(false) makes nomethod alls, and a all to �(true) alls �0(false), whih makes no method alls.Suppose we have ations � and �0 in di�erent boxes, as follows.� :: �(false)�0 :: �0(false)Threads for these ations annot ause deadlok when run onurrently. In fat, theyexeute on disjoint sets of boxes, so neither bloks the other. From De�nition 4.38,if ontrol relation T is nonbloking, then (�; �0) 62 T, so threads for � and �0 annotbe exeuted onurrently under any nonbloking ontrol relation.For some programs, the approah to avoiding deadlok using the graph BBexludes onurrent exeution of ations that annot ause deadlok. This is beausewe ignore semanti information | in the above example, the parameter valuespassed in method alls | and instead use only syntati information about thepossible alls between proedures. For this slight loss of preision, the nonblokingondition redues the task of determining if a ontrol relation an allow deadlokfrom a hek of all possible exeutions to a stati hek of the program ode.
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4.10 Avoiding in�nite threadsAs we saw in Setion 4.4, for the program in Figure 4.2, there are no in�nite threadsif the program is run under a ontrol relation T suh that (D :a;X :in) 62 T. Wenow de�ne a ondition on ontrol relations that ensures terminating threads.De�nition 4.40 For � 2 P, P0 � P, and T 2 CR,term(�;T) , h8 ": " 2 Z ^ " resp T ^ " is a full exeution for �: h# i : 0 � i < j"j : Root ("; i) = Root ("; 0) i <1iterm(P0;T) , h8 � : � 2 P0 : term(�;T) iIf term(A;T), then all threads in an exeution respeting T have a �nite numberof steps. As with De�nition 4.28, this de�nition does not say muh more than thatthe ontrol relation and the program do not allow in�nite proedure alls.Showing termination of sequential ode is a problem outside the sope ofthis work. The language TCB is ertainly apable of expressing programs withnonterminating ations, and, sine the Halting Problem is insoluble (see [30℄), thereis no algorithm that an detet suh programs.The tehniques used for proving termination for a sequential program (see[15℄, for example), generally require that, for eah ation, we onstrut a funtion(alled a measure) that maps the program on�guration to some well-founded set,and show that eah step taken by a thread for the ation dereases the measure.Sine there is no in�nite dereasing sequene of values from a well-founded set, thisensures that the eah thread is terminating.Proving termination of proedure alls exeuting onurrently with otherthreads is a more ompliated problem than proving termination for a sequential152



program. Again, we do not address this issue further here. We assume that theprogram has been erti�ed, by some means, to allow only terminating threads.4.11 Implementing thread fairnessConsider an implementation model for TCB programs, where eah box is imple-mented by a separate omputing unit (a single proessor, or a proess on a proes-sor). The thread-fairness ondition says that if a step is enabled for one of theseunits, then that step is eventually taken. This orresponds to the reasonable assump-tion that the units are suÆiently independent that eah takes a step from time totime, if it is able. The thread fairness ondition is, for many implementations, guar-anteed by the nature of the implementation. We assume that the run-time systemof any implementation guarantees thread fairness. Again, we do not address thisissue in greater detail here.On the question of strong fairness for rendezvous proedure alls, let " be athread fair exeution under the queue semantis. Between any proedure all step in" and its orresponding proedure, there are a �nite number of on�gurations wherethe agent for the all is idle. If there is no orresponding proedure initializationstep in the exeution, then there is an in�nite pre�x where the agent is not idle.We laim that exeution " is equivalent to an exeution where all proedureall steps are removed, and the proedure initialization steps are replae with ren-dezvous proedure all steps. In this ase, no rendezvous all step is enabled in anin�nite number of on�gurations but never taken. So weak thread fairness, togetherwith the all queues, provides an implementation of strong fairness for proedurealls. We return to this transformation of queue semantis exeution to rendezvoussemantis exeutions in Chapter 5. 153



4.12 SummaryWe have identi�ed omplete exeutions as the desirable exeutions for a TCB pro-gram. Theorem 4.22 gives gives exatly the onditions needed to ensure that anexeution be omplete. It must be proper, deadlok-free, ontain no in�nite threads,and be thread fair.We showed how ontrol relations, and restritions on the program ode guar-antee that proper exeutions are deadlok-free, and there are no in�nite threads. Weargued that the run-time system an ensure a proper exeution that is thread fair.Together, these give us a way to implement programs so that all exeutions areomplete.4.12.1 Avoiding run-time errorsAs noted in Setion 2.5, we do not handle run-time errors in the semantis we havepresented. In Setion 2.12 we show a way to extend the semantis to deal with thisissue. In this extension, there is a new phase, fail, and a run-time error at a boxauses it to enter this phase, and remain in it for the remainder of the exeution.An exeution with a run-time error is not omplete. Avoiding run-time errors isan issue for the sequential language and the expression language, and we do notaddress it further here. We assume that programs are erti�ed, by some means, toavoid run-time errors.
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Chapter 5
Redution
5.1 IntrodutionThe last hapter outlined suÆient onditions on the implementation of a TCBprogram that ensure that every exeution is omplete. The onditions inlude re-stritions on onurreny, expressed using ontrol relations. In this hapter we showa further restrition on onurreny that ensures that for every omplete exeution" there is a sequential exeution "0 suh that " and "0 have losely related behaviour.Again, we use a ontrol relation to express the neessary restrition on onurreny.With the results from the last hapter, this result gives us a way to implementa TCB program suh that the behaviours of all onurrent exeutions of the systeman be dedued by onsidering just the sequential exeutions.To show the existene of a sequential exeution for any omplete " respetingthe ontrol relation by showing a way to rearrange the steps of " so that the stepsfrom eah thread are ontiguous. The rearrangement onsists of a sequene of loaltransformations, suh as reversing the order of two onseutive steps, or replaing asequene of steps by a single step, or removing a step entirely.We de�ne a redution relation between exeutions, written ;. We show155



that a omplete exeution " and its sequential rearrangement "0 formed by theabove proedure satisfy " ; "0. We also show, from the de�nition of ;, that thisguarantees that the behaviours of " and "0 are losely related, and that we andedue the behaviour of " from the behaviour of "0.5.1.1 Right-movers and left-movers in TCBIn the two-phase loking protool, a single ation onsists of a sequene of resoureaquisition steps, followed by a single update step, and a sequene of resoure releasesteps. We saw that aquisition steps an be delayed, or \moved right", and releasesteps an be advaned, or \moved left". Steps that aquire resoures are all right-movers, and steps that release resoures are alled left-movers.In TCB, there are two type of resoures ontrolling the exeution of a thread.Before a thread an exeute at a box it must �rst plae an entry in the all queue,and then this all must reah the front of the queue and be initialized by the box.The resoures required for a thread to exeute at a box are the queue and the boxitself. A thread that has an entry in a all queue holds the queue resoure. This isa shared resoure, sine there an be multiple entries in the queue. A thread that isexeuting at a box holds the box resoure. This is an exlusive resoure, sine onlyone thread at a time an exeute at a box.We identify a single step in eah thread alled the deision step. This is thestep that �rst puts a box exeuting for the thread in phase aept or rejet.One a box enters this phase, the outome of the thread, in terms of aeptaneor rejetion, is determined. We use this step to mark the position in the exeutionabout whih we oalese the steps of the thread. We all the deision step an aeptdeision step if it is from an aepting thread, and a rejet deision step if it is froma rejeting thread.Every step, other than the deision step, is lassi�ed as a step that aquires156



a resoure, a step that releases a resoure, or a step that omputes loally, neitheraquiring or releasing a resoure. The �rst group are the right-movers, and the othertwo are the left-movers.In every thread all steps before the deision step are right-movers. Threadsdo not, however, have a two-phase struture, sine there an be right-movers |resoure aquisition steps | after the deision step. These are the steps for a totalmethod all. A total-all step aquires a queue resoure, and a t-method-init stepaquires a box resoure. Both these steps appear after the deision step in a thread.5.1.2 Transforming an exeutionTo redue a thread to a sequene of ontiguous steps we apply a sequene of loaltransformations to an exeution. Eah transformation replaes a �nite sequene ofsteps with a di�erent sequene, suh that the replaement has the same startingand ending on�guration. The transformations are swapping two adjaent steps,replaing a sequene of steps with a single step, and removing a step.The swap transformations allow a right-mover to be swapped with a stepfrom a di�erent thread that is immediately to its right in the exeution. The right-mover moves right over the other step. Similarly, a left-mover moves left over a stepfrom a di�erent thread.We de�ne two new types of step: rendezvous all steps, and steps representinga omplete proedure all. We show that show that a pair of onseutive stepsonsisting of a proedure all step followed by a proedure initialization step forthe same thread an be replaed by a single rendezvous all step, and we showthat a ontiguous sequene of steps from the same thread representing the ompleteexeution of a proedure all an be replaed by a single step representing the wholeall. We all the steps representing omplete proedure alls atomi steps. The157



atomi steps for an ation represent a omplete exeution of a all to that ation,that is, a omplete thread. In reduing the exeution, our �nal aim is an exeutionwhere all threads have been redued to a single atomi step.The �nal type of transformation is the removal of an atomi step representinga rejeting thread. We have de�ned TCB suh that a rejeting thread does nothange the persistent state of a program, so this transformation always gives a validexeution.The material in this hapter is organized as follows. Setion 5.2 de�nes therendezvous all steps and the atomi steps. We de�ne some new sets of exeutionsusing these steps. Setion 5.3 lassi�es the steps as deision steps, right-movers, andleft-movers. Setion 5.4 de�nes a redution relation on exeutions in terms of thesequene of aept deision steps. For exeutions " and "0, we write "; "0 if "0 is theexeution formed from " by moving some right-movers right, and moving some leftmovers left. We show that there is a lose orrespondene between the on�gurationin " and "0 if " ; "0. Setion 5.6 de�nes the transformations desribed above, andshows that they an all be applied an any exeution, with the exeption of swappingan atomi step for a total method all with another step. Setion 5.7 de�nes aontrol relation that limits exeutions to ones in whih we an swap atomi totalmethod alls, as required for the redution. Setion 5.8 states the �rst redutiontheorem, and gives its proof.5.2 Compound stepsWe de�ne two new sets of steps that are used during redution to replae sequenesof steps. The �rst set of steps are those de�ned by the proedure all rules in therendezvous semantis, that is rules p-ation-start-rdv, p-ation-start-rdv, guard-test-rdv, and total-all-rdv. The seond set of steps are the atomi steps, whihrepresent the omplete exeution of a proedure all. We de�ne some new sets of158



Con�guration D E"[i℄ (aept; �0; 0; �0) (idle; �1;?)"[i+ 1℄ (wait; �0; 0; �0) (idle; �1; (m ;D ; ~v))"[i+ 2℄ (wait; �0; 0; �0) (aept; �01; (m ;D); �0)Table 5.1: Con�gurations for a method all from D to Eexeutions using these labels.5.2.1 Rendezvous allsSuppose " 2 Z ontains the following pair of steps for some i, D and E ."hii = total-all(D ;E )"hi + 1i = t-method-init(E )Suppose further that Root ("; i) = Root ("; i + 1). From the de�nition of the Rootfuntion, we an dedue that D and E are in the same member of Staks("[i + 2℄).Sine, in on�guration "[i + 1℄, E is not in a all stak, and D is the top elementin its stak, and, in "[i + 2℄, E is in a all stak, Kt :("[i + 2℄):E = D . Thus thefront entry in E 's all queue has soure D . Sine E 's on�guration is well-formed,there is only one entry in the queue with D as aller. So the entry added to thequeue by step "hii must be the front entry in the queue in "[i + 2℄. We thus havethat "[i℄:E :� = ?. From this, the de�nition of the rules, and the well-formedness ofthe on�gurations, we an dedue the values of the on�gurations for D and E forthis segment of the exeution. The results are show in Table 5.1. In these equationswe write (m ;D) for the singleton list h(m ;D)i. We now note that on�gurations"[i℄ and "[i + 2℄ satisfy the onditions for rule (total-all-rdv) from the rendezvoussemantis (using the onvention for singleton lists mentioned above).159



The rule (total-all-rdv) requires that E be quiesent before the step. Also,a total-all(D ;E ) step followed by a t-method-init(E ) step are steps from the samethread only if E is quiesent before the �rst step.The above argument an be repeated for the other three proedure all rulesin the rendezvous semantis. Eah orresponds to two steps from the queue seman-tis. We use De�nition 3.35 to de�ne the following relations.p-ation-start-rdvt-ation-start-rdvguard-test-rdvtotal-all-rdvWe use De�nition 3.38 to de�ne the following labels, for D ;E 2 B.p-ation-start-rdv(D)t-ation-start-rdv(D)guard-test-rdv(D ;E )total-all-rdv(D ;E )We de�ne the set of on�gurations in whih a box is quiesent.De�nition 5.1 For D 2 B,PC q(D) , fC j C 2 PC ^ qt(C:D) gWe now de�ne an relation equal to eah of the new relations. We use the abovesubsets of PC to restrit the before on�gurations for these relations to those wherethe agent is quiesent.
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Theorem 5.2h8 D: D 2 B: t-ation-start-rdv(D) =ation-start(D); t-ation-init(D) \ (PC q(D)� PC ) ^p-ation-start-rdv(D) =ation-start(D);p-ation-init(D) \ (PC q(D)� PC )ih8 D ;E: D ;E 2 B: guard-test-rdv(D ;E ) =guard-test(D ;E );p-method-init(E ) \ (PC q(E )� PC ) ^total-all-rdv(D ;E ) =total-all(D ;E ); t-method-init(E ) \ (PC q(E )� PC )iProofUse the de�nitions of the appropriate rules.(End of proof)5.2.2 Atomi stepsWe de�ne atomi steps to represent the omplete exeution of a all to a proedure.First we de�ne an exeution that ontains all the steps of a proedure all, and nosteps from other threads.
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De�nition 5.3 For " 2 Z , D 2 B, and p 2 Pros(D)," is a ompat exeution of D :p , F (";D) ^ G(") ^Pro("[1℄:D :) = pwhereF (";D) , j"j <1 ^ qt(Start ("):D) ^ qt(Final ("):D) ^:qt("[1℄:D) ^ h8 i : 1 < i < j"j : "[i℄:D :� 6= idle iG(") , ( Root("; 0) = Root ("; 1) _ Root ("; 0) = ? ) ^Root ("; 1) 6= ? ^h8 i : 1 < i < j"j : Root ("; i) = Root ("; 1) iThe de�nition of a ompat exeution has three parts. The �rst part, prediateF (";D), requires that " be �nite, that box D be quiesent in the start and �nalon�gurations, that it be nonquiesent after the �rst step, and that it be nonidleafter the seond step. The intention is that the �rst step plaes an entry in D 's allqueue, making it nonquiesent, and the seond step initializes this all, making Dnonidle. Box D is nonidle until the �nal step, whih leaves it quiesent. The segmentof " from step 1 to the end is a terminating full exeution of a proedure all at D .The seond part, prediate G("), requires that every step in " have the same rootation, with the possible exeption of the �rst step. We allow the �rst step to be anation-start step, and this has root ation ?. The third part, Pro("[1℄:D :) = p,requires that the �rst step of " be one that puts a all for proedure p in D 's allqueue. Together these onditions limit an exeution to one that ontains a singleexeution of a all to D :p, and no steps from other threads.We now de�ne �ve types of atomi step. There are steps for an aeptingall to an ation, or to a partial method, steps for rejeting alls to eah, and a stepfor a all to a total method. 162



De�nition 5.4 For D :a 2 A,aept(D :a) , f (C;C0)j h9 ": " 2 Z ^ " is a ompat exeution of D :a: Start(") = C ^ Final (") = C0 ^Last(") = ation-end(D)igrejet(D :a) , f (C;C0)j h9 ": " 2 Z ^ " is a ompat exeution of D :a: Start(") = C ^ Final (") = C0 ^Last(") = ation-rejet(D)igFor D 2 B, E :m 2M, and D 6= E,pm-aept(D ;E :m) , f (C;C0)j h9 ": " 2 Z ^ " is a ompat exeution of E :m: Start(") = C ^ Final (") = C0 ^Last(") = test-aept(D ;E )ig
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pm-rejet(D ;E :m) , f (C;C0)j h9 ": " 2 Z ^ " is a ompat exeution of E :m: Start(") = C ^ Final (") = C0 ^Last(") = test-rejet(D ;E )igtm(D ;E :m) , f (C;C0)j h9 ": " 2 Z ^ " is a ompat exeution of E :m: Start(") = C ^ Final (") = C0 ^Last(") = total-return(D ;E )igWe de�neaept , h[ � : � 2 A : aept(�) irejet , h[ � : � 2 A : rejet(�) ipm-aept , h[ D ;E ;m: D 2 B ^ E :m 2M ^ D 6= E: pm-aept(D ;E :m)ipm-rejet , h[ D ;E ;m: D 2 B ^ E :m 2M ^ D 6= E: pm-rejet(D ;E :m)i 164



tm , h[ D ;E ;m: D 2 B ^ E :m 2M ^ D 6= E: tm(D ;E :m)iatomi , aept [ rejet [ pm-aept [ pm-rejet [ tmThe following theorems give some of the properties of the atomi steps. The �rsttheorem is for aepting atomi steps.Theorem 5.5 LetQT (C;C0;D) , qt(C:D) ^ qt(C0:D)H (C;C0;D) , QT (C;C0;D) _ C:D = C0:Din h8 D ; a ;C;C0: D :a 2 A ^ (C;C0) 2 aept(D :a): QT (C;C0;D) ^ h8 D 0 : D 0 2 B : H (C;C0;D 0) iih8 D ;E ;m;C;C0: D 2 B ^ E :m 2Mp ^ D 6= E ^(C;C0) 2 pm-aept(D ;E :m): C:D:� = guard ^ C0:D :� = aept ^ C:D : = C0:D : ^QT (C;C0;E ) ^ h8 D 0 : D 0 2 B ^ D 0 6= D : H (C;C0;D 0) ii
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h8 D ;E ;m;C;C0: D 2 B ^ E :m 2Mt ^ D 6= E ^(C;C0) 2 tm(D ;E :m): C:D:� = aept ^ C0:D :� = aept ^ C:D : = C0:D : ^QT (C;C0;E ) ^ h8 D 0 : D 0 2 B ^ D 0 6= D : H (C;C0;D 0) iiThe prediateQT (C;C0;D) holds i� D is quiesent in bothC andC0. The prediateH (C;C0;D) holds if either D has the same on�guration in C and C0, or if it isquiesent in both on�gurations. Note that if QT (C;C0;D), then we an haveC:D :� 6= C0:D :�, but all other omponents forD are the same in both on�gurations.This prediate expresses the ondition on the boxes that may be a�eted by theatomi step. That is, the on�guration of a box an be only be a�eted by anatomi step if it is quiesent before the step. This is beause the step representsan uninterrupted exeution of the proedure. If a method all is made during thisproedure all, it must be to a box that is quiesent, sine a all to a nonquiesentbox annot exeute until another thread takes some steps.For all three aepting atomi steps, the agent for the proedure all (boxD for the aept ase, box E for the method alls) is quiesent before and afterthe step. All boxes, exept the soure, for the method all steps, satisfy prediateH . The soure of a pm-aept step is in phase guard before the step, and phaseaept after the step. The soure of a tm step is in phase aept before and afterthe step. In both ases, the soure's all queue is una�eted by the step.The theorem for rejeting atomi steps is simpler. A rejet step does nothange the on�guration, and a pm-rejet step hanges the on�guration only of itssoure.
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Theorem 5.6h8 D ; a ;C;C0: D :a 2 A ^ (C;C0) 2 rejet(D :a): qt(C:D) ^ C = C0ih8 D ;E ;m;C;C0: D 2 B ^ E :m 2Mp ^ D 6= E ^(C;C0) 2 pm-rejet(D ;E :m): C:D:� = guard ^ C0:D :� = rejet ^qt(C:E ) ^ h8 D 0 : D 0 2 B ^ D 0 6= D : C:D 0 = C0:D 0 ii5.2.3 Exeutions with ompound stepsWe de�ne some sets new sets of exeution, using the rendezvous proedure all stepsand the atomi steps.We de�ne groups of proedure all rules, aording to the funtion of eahrule, queue all, initialization, or rendezvous all. We �rst de�ne some groups ofrules for proedure all and initialization.De�nition 5.7queue , ation-start [ guard-test [ total-allinit , p-ation-init [ p-method-init [t-ation-init [ t-method-initrdv , p-ation-start-rdv [ t-ation-start-rdv [guard-test-rdv [ total-all-rdv167



The steps in queue are the queue semantis proedure all steps; those in init are thequeue semantis proedure initialization steps; and those in rdv are the rendezvousproedure all steps. Note that the steps in queue are the only steps with anunonditional lous. The rules for the rdv steps have no unonditional loi.We de�ne three sets of exeutions. The �rst set ontains exeutions withany of the labels de�ned so far, the labels from the queue semantis, the rendezvousalls, and the atomi steps. This is the most general type of exeution that we use.We all these mixed exeutions. The seond set ontains mixed exeutions with noqueue or init steps, so all proedure all steps are rdv steps. We all the rendezvousexeutions. The �nal set ontains exeutions with only aept and rejet steps, thatis, every step is the omplete exeution of a thread. We all these atomi exeutions.First we de�ne some restrited sets of on�gurations for these exeutions.The �rst set ontains only on�gurations where every box is quiesent. These arethe on�gurations used for atomi exeutions. The seond ontains only on�gura-tions where eah box is either quiesent, or nonidle, and has a single entry in itsall queue. These are the on�gurations used for the rendezvous semantis. Theyexlude on�gurations where there are more than one entry in the all queue, oron�gurations where a box is idle and has an entry in its all queue.De�nition 5.8 If C 2 PC, thenPC q , fC j C 2 PC ^ qt(C) grv(C) , h8 D: D 2 B: qt(C:D) _ ( jC:D :j = 1 ^ C:D :� 6= idle )iPC r , fC j C 2 PC ^ rv(C) g168



De�nition 5.9 LetLab0 , f Lj L is a label generated by one of(p-ation-start-rdv)(t-ation-start-rdv)(guard-test-rdv)(total-all-rdv)gLab1 , f D ;E ;m ; l: D ;E 2 B ^ D 6= E ^ m 2 PartMeths(E ) ^l 2 fpm-aept;pm-rejetg: l(D ;E :m)gLab2 , f D ;E ;m: D ;E 2 B ^ D 6= E ^ m 2 TotMeths(E ): total-method(D ;E :m)gin Laba , f �; l : � 2 A ^ l 2 faept; rejetg : l(�) gLabm , Lab [ Laba [ Lab0 [ Lab1 [ Lab2Labr , f L j L 2 Labm ^ L 6� queue [ init gZ a , Exeutions(PC q;Laba)Zm , Exeutions(PC ;Labm)Z r , Exeutions(PC r;Labr)169



The �nal aim of redution is to transform an exeution " 2 Z to an exeution inZ a. The intermediate exeutions during redution are from Zm and Z r. We extendthe de�nition of Root to over the new labels.De�nition 5.10 For " 2 Zm, 0 � i < j"j, and "hii 2 Labm n Lab,Root ("; i) , � if "hii = aept(�) _"hii = rejet(�)Root("[i℄;D ) if "hii = guard-test-rdv(D ;E ) _"hii = total-all-rdv(D ;E ) _"hii = pm-aept(D ; �) _"hii = pm-rejet(D ; �) _"hii = tm(D ; �)Root("[i + 1℄;D) if "hii = p-ation-start-rdv(D) _"hii = t-ation-start-rdv(D)5.3 Step typesWe an identify groups of the 25 labels in Labm ontaining labels that play a similarpart during redution. We have already seen the groups of resoure aquisition steps,queue, init, and rdv. We de�ne some groups for the other steps.5.3.1 Deision stepsWe de�ne the groups of deision steps. We show that every omplete thread hasexatly one deision step. The deision step ats as the entral step, the point aboutwhih we oalese the steps for the thread. We hoose as a deision step the �rststep that leaves a box exeuting for the thread in phase aept or rejet. For atotal ation, this is the t-ation-init that initializes the ation. For a partial ation,this is a guard-aept or guard-rejet step in the ation's box, or in one of the170



partial methods alled as a test. A ompound step is a deision step if it ontainsa deision step. Thus the atomi steps for partial methods and for ations, and therendezvous all t-ation-start-rdv are deision steps, We distinguish between aeptand rejet deision steps.De�nition 5.11ACC , aept [ pm-aept [ guard-aept [t-ation-init [ t-ation-start-rdvREJ , rejet [ pm-rejet [ guard-rejetDEC , ACC [ REJFor any L 2 Labm, if L � ACC, we all L an aept deision step; if L � REJ, weall L a rejet deision step; and if L � DEC, we all L a deision step.We use the following de�nition to state the threorems about deision steps.De�nition 5.12 For " 2 Zm, and � 2 P," is a terminating exeution for � ," is a full exeution for � ^ :dl(") ^ j"j <1The following theorem shows that there is exatly one deision step in every thread.Theorem 5.13h8 �; ": � 2 A ^ " 2 Zm ^ " is a terminating exeution for �: h9! i : 0 � i < j"j : Root ("; i) = � ^ "hii � DEC ii 171



The next theorem shows that the type of the deision step orresponds to the typeof the thread.Theorem 5.14h8 �; "; i: � 2 A ^ " 2 Zm ^ " is a terminating exeution for � ^Root("; i) = � ^ "hii � DEC: "hii � ACC � Last(") � ation-end [ aepti5.3.2 Right-movers and left-moversWe de�ne groups for the steps that hold resoures and ompute loally, and for stepsthat end proedures, releasing resoures.De�nition 5.15loal , loal-step [ pro-termend , ation-end [ test-aept [ total-return [ation-rejet [ test-rejetEvery step in Labm, apart from tm, is in one of the groups DEC, queue, init, rdv,loal, or end. We de�ne two �nal groups, for the steps that move right duringredution, and those that move left.De�nition 5.16RM , queue [ init [ rdvLM , loal [ end [ tm 172



For L 2 Labm, if L � RM, we all L a right-mover, and if L � LM, we all L aleft-mover.The groups DEC, RM, and LM partition Labm. We show later that the right-moversan move right over any step from a di�erent thread. That is, in any exeution ",where j"j = 2, and the �rst step of " is a right-mover, and the last step is a stepfrom a di�erent thread, then there is a two-step exeution "0 whereStart("0) = Start(") ^ Final("0) = Final (") ^SSeq("0) = h "h1i ; "h0i iThat is, "0 has the same start and �nal on�gurations as ", and it has the samesteps, but in the reverse order. Thus is any exeution where " appears, it an bereplaed with "0 with no hange to the rest of the exeution. Similarly, we showthat the left-movers, apart from tm, an move left in any exeution. To ompletethe redution for TCB, we need to move tm steps left. We disuss the requirementsfor this later.5.3.3 The format of a threadThe following theorems show some results about the steps before and after thedeision step in a thread. The �rst shows the type of steps that may appear beforethe deision step.Theorem 5.17h8 "; i; k: " 2 Zm ^ 0 � i < k < j"j ^ "hki � DEC ^ Root ("; i) = Root ("; k): "hii � ation-start [ guard-test [ p-ation-init [p-method-init [ p-ation-start-rdv [ guard-test-rdvi 173



The seond theorem shows the type of steps that may appear after an aept deisionstep.Theorem 5.18h8 "; i; k: " 2 Zm ^ 0 � k < i < j"j ^ "hki � ACC ^ Root("; i) = Root ("; k): "hii � total-all [ t-method-init [ total-all-rdv [ ation-end [test-aept [ total-return [ loal [ tmiThe third theorem show the type of steps that may appear after a rejet deisionstep.Theorem 5.19h8 "; i; k: " 2 Zm ^ 0 � k < i < j"j ^ "hki � REJ ^ Root ("; i) = Root ("; k): "hii � ation-rejet [ test-rejetiWe note from these theorems that all steps before a DEC step are from RM. Allsteps after a REJ step are from LM. The steps after an ACC step are a mixture ofright-movers and left-movers.The �nal result in this setion shows that only ertain steps an hange thepersistent state of the system, that is, the values of the box variables.
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Theorem 5.20h8 L;C;C0;D: L 2 Labm ^ ChLiC0 ^L 6� aept [ pm-aept [ tm [loal-step [ test-aept [ total-return: PersistEq(C;C0)iFrom the above theorems, we note that the only steps that hange the persistentstate during an exeution are aept deision steps, or steps that appear in a threadafter an aept deision step. The persistent state is not hanged by a thread beforeits deision step, and it is not hanged by any step from a rejeting thread. Thiswas our intention in de�ning TCB, that the deision to aept or rejet be madeprior to any hange to the box variables, and that rejeting threads leave the stateunhanged.5.3.4 A strategy for redutionTheorem 5.18 shows that there are right-movers in a thread after an aept deisionstep. The aim of redution is to bring all the steps of the thread to the deision step,so the right-movers after the deision steps must be moved left. We aomplish thisusing tm steps.Suppose there is a all to method � during a thread's exeution. The �rsttwo steps for this all are right-movers. First is a total-all, and then a t-method-init. Suppose the remainder of the steps for the all are all loal or end steps, sothere are no further method alls during the exeution of the all. We an movethe total-all step right, and the loal and end steps left, until they are ontiguouswith the t-method-init step. This gives a ompat exeution of the method, whih175



an be replaed with a tm step.Now suppose the all to � is part of another method all. Originally, thesteps for this all ontain two right-movers, the total-all and t-method-init stepsfor the all to �. After the transformation suggested above, these (along with anumber of left-movers) have been replaed with a single tm step, a left-mover.This is the strategy used to move a right-mover after an aept deision step:we move it right until it an be replaed by a tm step, and then move this step left.For a total-all step this gives a rather iruitous route for redution, a ase of \onestep forward, two steps bak".5.4 Redution relationsWe de�ne redution relations on exeutions. We de�ne a relation ; suh that if" ; "0, then "0 an be formed from " by a sequene of steps moving a right-moverright or a left-mover left. This means that the sequene of deision steps is the samein " and "0, sine deision steps are neither right-movers nor left-movers. The aimis to redue an exeution to an atomi exeution by moving steps in this way.We show that if "; "0, then there is a relationship between the on�gurationsof " and "0 that allows us to infer properties of " from properties of "0. If "0 is anatomi exeution, then " has behaviour \equivalent" to an atomi exeution.We de�ne this relation is stages. De�ne a relation �! that is suÆient forreduing �nite exeutions, and we show how to build ; from this so that we anredue in�nite exeutions as well.5.4.1 Aept deision stepsFor the purposes of redution, the basi struture of an exeution is given by thesequene of aept deision steps. These are the deision steps from threads thathange the state of the box variables. 176



De�nition 5.21 For " 2 Zm, and p an asending sequene ontaining every i, suhthat "hii � ACC,NumA(") , jpjAS ("; i) , "hp[i℄iAC ("; i) , "[p[i℄℄EB("; i) , "h0 : : : (p[0℄� 1)i if i = 0"h(p[i � 1℄ + 1) : : : (p[i℄� 1)i if 0 < i < NumA(")ASeq(") , h i : 0 � i < NumA(") : Root ("; p[i℄) iWe all NumA(") the number of aept deision steps in ", AS ("; i) the ith a-ept deision step of ", AC ("; i) the ith aept on�guration of ", EB("; i) the ithexeution blok of ", and ASeq(") the aept sequene of ".For an exeution ", NumA(") is the number of aept deision steps in ". IfNumA(") = 3, then " an be partitioned into aept deision steps and exeutionbloks in the following way.EB("; 0) ; AS ("; 0) ; EB("; 1) ; AS ("; 1) ; EB("; 2) ; AS ("; 2) ; "̂The exeution starts with the steps from exeution blok EB("; 0). The on�gu-ration after these steps is aept on�guration AC ("; 0). The next step the aeptdeision step AS ("; 0), followed by the steps from exeution blok EB("; 1). Theon�guration after these steps is aept on�guration AC ("; 1). The exeution on-tinues in this way. Note that the steps after the �nal aept deision step, given as"̂ above, are in no exeution blok.5.4.2 Similar exeutionsWe de�ne a relation on exeutions using the aept sequene.177



De�nition 5.22 For "; "0 2 Zm," := "0 , Start(") = Start("0) ^ ASeq(") = ASeq("0) ^(j"j =1 � j"0j =1) ^ (Final (") = Final("0) _ j"j =1)If " := "0, we say that " is similar to "0.The following are straightforward onsequenes of this de�nition.Theorem 5.23 := is an equivalene relation.Theorem 5.24h8 "0; "1; "01; "2: "0; "1; "01; "2 2 Zm ^ "0; "1; "2 is de�ned ^ "1 := "01: "0; "01; "2 is de�ned ^ "0; "1; "2 := "0; "01; "2iTheorem 5.24 says that similarity is a ongruene relation, that is, for any exeution", replaing a �nite segment of " with a similar �nite exeution yields an exeutionsimilar to ".A pair of exeutions with no aept deision steps are similar i� they havethe same start and �nal on�guration. This gives the following theorem, whih saysthat an exeution onsisting of a single stuttering step that is not an aept deisionstep is similar to an empty exeution with the same start on�guration.Theorem 5.25h8 L;C: L 2 Labm ^ L 6� ACC ^ ChLiC: ( hC;Ci ; hLi ) := ( hCi ; ? )i 178



Using Theorems 5.24 and 5.25, we an remove a stuttering step from an exeution,and the resulting exeution is similar to the original.5.4.3 Swapping stepsIf two adjaent steps in an exeution exeute at disjoint loations, then the hangesthey make to the on�guration are independent, and so an be taken in either order.The exeution with these steps in the opposite order is similar to the original.We de�ne onditions for two steps to be swapped. If we are to swap twosteps, the steps must be from di�erent threads. We do not want to hange the orderof steps from the same thread. For some steps, we an tell from the labels whetherthey are from the same of di�erent threads. For example, if we have exeution ",whereSSeq(") = h loal-step(D) ; loal-step(D) ithen we an show that these steps are from the same thread. If, on the other hand,we haveSSeq(") = h ation-start(D) ; total-all(E ;D) ithen we an show that these steps are from di�erent threads. Consider the followingase. SSeq(") = h ation-start(D) ; p-ation-init(D) iThese steps may be from the same thread, and they may be from di�erent threads.If D 's all queue is empty before the ation-start step, then the p-ation-init stepinitializes the ation all plaed by the �rst step, and the steps are from the samethread. Otherwise, if D 's all queue is nonempty before the ation-start step, then179



the p-ation-init step initializes a di�erent ation all, and the steps are from dif-ferent threads.Thus we need to know the ontext before we an tell if a pair of steps an beexhanged. Beause of this, we disuss swapping steps in the ontext of exeutionswith two steps. We de�ne the following sets of two-step exeutions, and we de�nethe swap of an exeution in one of these sets.De�nition 5.26 For L;L0 2 Labm,TwoStep(L;L0) , f " j " 2 Zm ^ j"j = 2 ^ Root ("; 0) 6= Root("; 1) gFor " 2 TwoStep(L;L0), Swap(") is an exeution "0 2 TwoStep(L0;L), whereStart(") = Start("0) ^ Final (") = Final("0)If no suh "0 exists, then Swap(") = ?.The swap of a two-step exeution is a two-step exeution with the same steps, inreverse order, and the same start and �nal on�guration. The steps of a two-stepexeution " an be swapped i� Swap(") 6= ?. We de�ne a relation on labels that istrue only if the labels an always be swapped.De�nition 5.27Lx L0 , h8 " : " 2 TwoStep(L;L0) : Swap(") 6= ? iIf Lx L0, then steps L and L0 an be swapped in any exeution where L is followedby L0, and the steps are for di�erent threads. We have the following theorem.
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Theorem 5.28h8 L;L0; ": L;L0 2 Labm ^ Lx L0 ^ ( L 6� ACC _ L0 6� ACC ) ^" 2 TwoStep(L;L0): " := Swap(")iThe theorem says that if steps L and L0 are swappable, that is Lx L0, and at leastone of them is not an aept deision step, then any exeution " with these twosteps is similar to Swap(").5.4.4 Redue-equivaleneSimilarity between exeutions plays an important part in redution. As we rear-range an exeution, we do not hange the aept sequene, the start on�guration,or the �nal on�guration (if any). So we only redue an exeution to similar exeu-tions. These onditions alone are insuÆient for in�nite exeutions, as the followingexample demonstrates.Consider a program ontaining two total ations, � and �0. Ation � non-deterministially assigns 1 or 2 to x, and ation �0 inrements y. In the initialon�guration, x = 0 and y = 0. Consider now two exeutions of this program. Exe-ution " is a sequential exeution that onsists of a single thread for � that assigns1 to x, followed by an in�nite sequene of threads for �0 that suessively inrementy. Exeution "0 has the same form, exept that the initial thread assigns 2 to x.For these exeutions we have " := "0, but all on�gurations, exept the start, aredi�erent between the exeutions. We do not want " to be a redution of "0, or vieversa. We de�ne a relation that distinguishes these two exeutions.181



De�nition 5.29 For "; "0 2 Zm,"$ "0 , " := "0 ^ h8 i : 0 � i < NumA(") : AC ("; i) = AC ("0; i) iIf "$ "0, we say that " and "0 are redue-equivalent.The following theorems summarize the important properties of redue-equivalene.Theorem 5.30 $ is an equivalene relation.Theorem 5.31h8 "0; "1; "01; "2: "0; "1; "01; "2 2 Zm ^ "0; "1; "2 is de�ned ^ "1 $ "01: "0; "01; "2 is de�ned ^ "0; "1; "2 $ "0; "01; "2iTheorem 5.31 means that redue-equivalene is a ongruene, as with similarity.The following theorem shows that in the ase where at least one of theexeutions has no aept deision steps (and thus no aept on�gurations), thensimilarity and redue-equivalene are the same relation.Theorem 5.32h8 "; "0: "; "0 2 Zm ^ ( NumA(") = 0 _ NumA("0) = 0 ): "$ "0 � " := "0iProofImmediate from the de�nitions.(End of proof) 182



From Theorems 5.32 and 5.28 we get the following theorem, whih says that whenit is possible to swap two steps, neither of whih is an aept deision step, theswapped exeution is redue-equivalent to the original.Theorem 5.33h8 L;L0; ": L;L0 2 Labm ^ Lx L0 ^ L 6� ACC ^ L0 6� ACC ^" 2 TwoStep(L;L0): "$ Swap(")i5.4.5 Finite redutionRedue-equivalene gives is a strong relation on exeutions. Clearly two exeutionsthat are redue-equivalent have very similar behaviours. But redue-equivalene istoo strong a relation for redution.Consider " 2 Complete(Z ), and suppose "0 2 Z a is an atomi redution of ".We have " := "0. Consider aept deision steps AS ("; i) and AS ("0; i). The formeris a t-ation-init or guard-aept step, while the latter is a aept step.Aept on�guration AC ("0; i) is quiesent, so there are no ative threads.Aept on�guration AC ("; i), on the other hand, shows the e�et of partly om-pleted threads. Let AS("; k) be the aept deision step for a thread that is ativein AC ("; i). If k < i, then steps from this thread appear after AC ("; i). To makea ompat exeution of this thread, some of its steps must move left over AS ("; i).Similarly, if k � i, then some of the thread's steps must move right over AS ("; i).We de�ne some relations on exeutions that allow suh a swap below. This relationallows a swap where a right-mover moves right over an aept deision step, or aleft-mover moves left. 183



Consider a pair of steps Lr and La, where Lr is a right-mover, and La is anaept deision step. Suppose we show Lr x La, that is, that Lr an move rightover La. Choose " 2 TwoStep(Lr;La), and let "0 = Swap("). By Theorem 5.28, wehave " := "0. There is only one aept on�guration in eah exeution. We haveAC ("; 0) = "[1℄AC ("0; 0) = "0[0℄Sine "[0℄ = "0[0℄, we get (AC ("0; 0);AC ("; 0)) 2 Lr. That is, the aept on�g-uration in " is not equal to that in "0, but it is reahable from it by a single Lrstep. Con�guration AC ("; 0) shows the e�et of exeuting Lr, and on�gurationAC ("0; 0) does not. So in "0, the right-mover has been delayed until after the deisionstep. Consider now a pair of steps Ll and La, where Ll is a left-mover, and La isan aept deision step, and La x Ll. If " 2 TwoStep(La;Ll), and "0 = Swap("),then we get (AC ("; 0);AC ("0; 0)) 2 Ll. In this ase, the left-mover is moved left ofthe aept on�guration, so the aept on�guration is " does not show the e�etof Ll, whereas that in "0 does. We de�ne relations on exeutions using RM andLM. By de�nition, (C;C0) 2 RM, means that there is a right-mover L, suh thatChLiC0, and similarly for (C;C0) 2 LM.
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De�nition 5.34 For "; "0 2 Zm,"!R "0 , " := "0 ^h8 i: 0 � i < NumA("): AC ("; i) = AC ("0; i) _ (AC ("0; i) ; AC ("; i) ) 2 RMi"!L "0 , " := "0 ^h8 i: 0 � i < NumA("): AC ("; i) = AC ("0; i) _ (AC ("; i) ; AC ("0; i) ) 2 LMiIf " !R "0, we say that " right redues to "0, and if " !L "0, we say that " leftredues to "0.Note the asymmetry in these de�nitions. For !R, we require that an aept on�g-uration in the original exeution be reahable from the orresponding aept on-�guration in the redued exeution by zero or one RM steps, whereas for !L, werequire that an aept on�guration in the redued exeution be reahable fromthe orresponding aept on�guration in the original exeution by zero or one LMsteps. This aptures the intention that redution involves delaying RM steps, andadvaning LM steps.The following theorems give some properties of these relations.Theorem 5.35 !R and !L are reexive.
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Theorem 5.36h8 "; "0: "; "0 2 Zm: ( "$ "0 � "!R "0 ^ "!L "0 ) ^ ( "$ "0 � "!R "0 ^ "0 !R " )iRedution, in general requires a sequene of right- and left-redue steps. This anbe expressed with the following relation.De�nition 5.37�! , (!R [ !L)�If " �! "0, then we say that " �nitely redues to "0.Note that �! is reexive and transitive by onstrution.5.4.6 The redution relationRelation �! is suÆient for reduing �nite exeutions, but it is not suÆient forin�nite exeutions, as the following example demonstrates.Consider a program with total ations � and �0, where � and �0 exeute ondisjoint sets of boxes. Clearly, eah step of a thread for � ommutes with a stepfrom �0. Assume, for simpliity, every thread for � an be represented by two steps,an aept deision step, L0, and a left-mover L1. Assume we have an exeution "where every thread for � has been redued to L0 and L1, and every thread for �0has been redued to L0 = aept(�0). Suppose the sequene of steps in " has the
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following form.L0 ; L0 ; L1 ;L0 ; L0 ; L0 ; L1 ;L0 ; L0 ; L0 ; L0 ; L1 ;: : :That is, there is one L0 step between the �rst pair of L0 and L1 steps, two L0steps between the seond pair, and so on, with the number of intervening L0 stepsinreasing by one for eah suessive pair of L0 and L1 steps. Sine ations � and�0 a�et disjoint parts of the state spae, we expet to be able to redue " to thesequential exeution "0, whih has the following sequene of steps.L0 ; L1 ; L0 ;L0 ; L1 ; L0 ; L0 ;L0 ; L1 ; L0 ; L0 ; L0 ;: : :Here the L1 steps have been moved left so they are adjaent to the L0 steps. Movingleft over n aept steps takes n appliations of !L. De�nition 5.34 allows a left-mover to move left over eah aept step for a single appliation of !L. But it onlyallows a given left-mover to move over one aept step for eah appliation. With nappliations of !L, we an make at most the �rst n threads for � sequential. Sinethe sequene is in�nite,h8 n : n > 0 : :("!nL "0) i
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and thus, sine there are no right-movers in ",:(" �! "0)We now de�ne a relation ;, where " ; "0 for the above example. In theabove example, n appliations of !L are enough to redue the �rst n alls to �.After n appliations, the steps in the �rst part of the exeution are not moved againfor the remainder of the redution. We an generate a sequene of exeutions"0 ; "1 ; "1 ; : : :where " �! "i, for i � 0, and "i is sequential up to at least the thread ontainingthe ith aept deision step. Note that "i and "j , for 0 � i � j, share a ommonsequential pre�x, ontaining at least i aept deision steps.We an regard the "i's as a sequene of approximations to a sequential re-dution for ". Let "0 be the limit of this sequene, that is, an exeution where thesequential exeution inludes all the aept deision steps. We de�ne a relation ;below suh that "; "0 in this ase.We �rst de�ne a relation to express the idea of reduing a pre�x of an exe-ution.De�nition 5.38 For "; "0 2 Zm, and j"0j <1," init! "0 , h9 "00 : "00 2 Zm : " �! "0; "00 iIf " init! "0, we say " initially redues to "0.If " init! "0, then " an be �nitely redued to an exeution that starts with the�nite exeution "0. We de�ne a sequene �nite approximations to a redution of anexeution. 188



De�nition 5.39 For " 2 Zm, and E = h i : 0 � i : "i i a sequene over Zm,where j"ij <1 for all i,E is a onvergent redution sequene for " ,h8 i: 0 � i: "i v "i+1 ^ " init! "i ^( NumA("i) < NumA(") )h9 j : i < j : NumA("i) < NumA("j) i )iWe abbreviate \onvergent redution sequene" to CRS.The �nal onjunt in the term in De�nition 5.39 is a stronger ondition than justrequiring that the exeutions in a CRS be inreasing in length. To see why this isneessary, onsider "i suh that NumA("i) < NumA("), where for some ation �,rejet(�) is enabled in Final("i). Let "0 be an exeution with a single rejet(�) step,If we de�ne"0 , ( h Final("i) ; Final("i) i ; h rejet(�) i )"i+1 , "i; "0"i+2 , "i+1; "0...This gives a sequene of exeutions that satis�es all the other onditions of De�ni-tion 5.39, and is inreasing in length. All exeutions in this sequene from "i havethe same aept sequene as "i, whih is a proper pre�x of "'s aept sequene. Thisis not a sequene that approximates a redution of ".The set Zm is a omplete partial order under v, so every hain has a limit189



in Zm. We use this to de�ne the redution relation ;.De�nition 5.40 For "; "0 2 Zm,"; "0 , h9 E : E is a CRS for " : "0 = ht i : 0 � i : E [i℄ i iIf "; "0, we say " redues to "0.The following result shows that ; is an extension of �!.Theorem 5.41�! $ ;ProofTo show �! �;, we note that for any " and "0 suh that " �! "0, the sequeneh i : 0 � i : "0h0 : : : ii i is a CRS for "0. To show �! 6=;, we refer to the exampleabove, where we showed " and "0 suh that :(" �! "0). The �nite sequential pre�xesof the exeutions "i form a CRS for "0, so we have "; "0.(End of proof)5.5 Relating onurrent and sequential on�gurationsBefore we proeed with the redution rules, we �rst disuss what we an inferabout on�gurations in " from the properties of a sequential exeution "0 suh that" ; "0. An important onept for stating these theorems is that of a thread beingunommitted.
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De�nition 5.42 For C 2 PC, � 2 A, and A0 � A,Unommitted (C; �) , h8 D: D 2 B ^ Root(C;D) = �: C:D:� 2 fguard;pwait;rejetgiUnommitted (C;A0) , h8 � : � 2 A0 : Unommitted (C; �) iThe idea of this de�nition is that Unommitted (C; �) holds in on�guration C ifthere is no thread for � in C that has taken an aept deision step and is the odefrom the body of a proedure. The ation of deiding to update the system stateis alled \ommitting" in transation proessing parlane, whene the name of thisfuntion. If Unommitted (C; �), then either there is no thread ative for � in C,or a thread that is ative for � has yet to take a deision step, or it has deided torejet. If Unommitted (C;A), then no ation is the program has ommitted. Thisis learly the ase if qt(C).If Unommitted (C; �), then to reah a on�guration where this does not holdrequires an aept deision step, as the following lemma shows.Lemma 5.43h8 "; �: " 2 Zm ^ � 2 A ^ j"j <1 ^ NumA(") = 0 ^: Unommitted (Start("); �) ) Unommitted (Final ("); �)iThe theorem below gives us the �rst orrespondene between on�gurations in anexeution and its redution. It says that if any exeution blok in the originalexeution ontains a on�guration where no ation is ommitted, then the valuesfor all the box variables in that on�guration is the same as it is in the orresponding191



aept on�guration of the redued exeution.Theorem 5.44h8 "; "0; i; k: "; "0 2 Zm ^ "; "0 ^ 0 � i < NumA(") ^0 � k < jEB("; i)j ^ Unommitted ( EB("; i)[k℄ ; A ): PersistEq( EB("; i)[k℄ ; AC ("0; i) )iTheorem 5.44 shows a lose orrespondene between the on�gurations in the orig-inal exeution and those in the redued exeution. Note, in partiular, that if theredued exeution "0 is atomi, then AC ("0; i) is a quiesent on�guration prior tothe aepting thread i. From this, we get the following. Suppose we show that \q isinvariant" holds for any sequential exeution of a program. That is, in any sequen-tial exeution, all the quiesent on�gurations between threads satisfy prediate q.For any i, suh 0 � i � j"j, and Unommitted ("[i℄;A), we an onlude that q holdsin "[i℄. One way to use this result is to exeute the onurrent program in a way thatensures that from time to time there is a quiesent on�guration. In a quiesenton�guration "[i℄, Unommitted ("[i℄;A) holds trivially. If we examine the quiesenton�gurations in the onurrent exeution, they satisfy all the invariane propertiesof the sequential exeutions.We an also apply this result to ertain progress properties. Suppose weshow that in any sequential exeution of a program that \q is unavoidable", bywhih we mean that q holds at some on�guration in the exeution, and, one qholds, it ontinues to hold for the remainder of the exeution. If q is unavoidable,then in any exeution there is a �nite pre�x where q does not hold, and a nonemptysuÆx where q holds in every on�guration. Using Theorem 5.44, we laim that if a192



onurrent exeution ontains an in�nite number of quiesent on�gurations, thenfor all of these, exept some �nite pre�x, q holds.This is related to Valiant's suggestion for Bulk Synhronous Proessing. In[32℄, he suggests a model for onurrent exeution where proesses (threads, in ourterms) are run asynhronously for the most part (muh as we model the exeution ofTCB programs), but, from time to time, the system is synhronized, meaning thatall partly ompleted proesses are allowed to omplete exeution, without startingany new proesses, until the system has reahed a quiesent on�guration.Theorem 5.44 gives a way of getting a onsistent view of the whole state spaeof a program. For many purposes this is too muh. Imagine a system with manyboxes, and a prediate q, whose value depends a variables in just a small subset ofthe boxes. If we wish to test if q holds at a point in a onurrent exeution, we mustensure that it is tested in a onsistent on�guration, that is, one that does not showthe e�ets of a partly ompleted thread. One way to do this is to use the aboveobservations, and to fore the exeution to beome quiesent from time to time, andto test if q holds in eah quiesent on�guration. This means that all threads, eventhose that annot possibly a�et the value of q, must be ended before we an testfor q. It seems that is should be enough to test for q in a on�guration in whihno thread that an possibly hange the value of q is ommitted. This is indeed thease, as the next theorem shows.The theorem onerns expressions de�ned aross several boxes. We extendthe expression evaluation operator to evaluate these expressions in a program on-�guration. For C 2 PC , we de�ne[[D :x ℄℄C , [[x℄℄(C:D :�)For operators and onstants, [[e℄℄C is de�ned similarly to [[e℄℄�.Theorem 5.45 If e is an expression in the box variables, and A0 is the set of ations193



that all proedures that an hange the value of e, thenh8 "; "0; i; k: "; "0 2 Zm ^ "; "0 ^ 0 � i < NumA(") ^0 � k < jEB("; i)j ^ Unommitted ( EB("; i)[k℄ ; A0 ): [[e℄℄( EB("; i)[k℄ ) = [[e℄℄(AC ("0; i) )iThis theorem says that if "; "0, and there is a on�guration in " where no ationthat an hange the value of e is ommitted, then the value of e in this on�gurationis the same as its value in the orreponding aept on�guration in "0.Theorem 5.45 suggests the following way of onstruting programs that guar-antee that a prediate that is unavoidable in any sequential exeution is eventuallyobserved to hold in a onurrent exeution. Supposeq = D :x > 0 ^ E :y = 3and suppose we show that in any sequential exeution, q is unavoidable. We amendthe program is by adding proedures to D and E , as shown in Figure 5.1. We showonly the proedures added to the program. Here D :testq is a partial ation with asingle alternative. The ondition heks if the part of q loal to D holds, and thetest is a all to E :testq . This latter proedure aepts only if the part of q loal toE holds. Ation D :testq aepts i� q holds.If we run the amended program under a ontrol relation that does not allowD :testq to run onurrently with any ation that an hange the value of q, then ifD :testq aepts, we know that it has done so in a on�guration in whih none ofthese other ations is ative.We laim that the property \q is unavoidable" for the sequential exeutionsof the original program orresponds to the property \eventually D :testq aepts"194



box D ...ation testq :: x > 0 & E :testq �! (� � � � �)...endbox E ...method testq :: y = 3 �! (� � � � �)...end Figure 5.1: Adding a probe to a programin any onurrent exeution of the augmented program that respets the ontrolrelation.We all an ation suh as D :testq a probe. Obviously, the format we usedabove works only for prediates that an be expressed as onjuntions of loal terms.We an evaluate a general expression q in the following way. Suppose D0,D1, : : : , Dn�1 are the boxes with variables in q. We write an ation D0:testq . Thishas a all to D1:testq as the test. The parameters for this all are the values of D0'svariables from q. Method D1:testq passes these parameters on to method D2:testq ,along with the values for D1's variables in q. Continuing in this way, the values forall variables in q are passed to Dn�1:testq , whih an evaluate q.5.6 Redution rulesWe redue an exeution by performing a sequene of loal transformations, eah ofwhih is one of the following.� remove a rejet step 195



� replae adjaent queue and init steps with a rdv step� replae a ompat exeution of a proedure with an atomi step� move a right-mover right� move a left-mover leftWe prove a set of theorems that give rules for applying applying these transforma-tions. Eah theorem gives onditions on �nite exeution " when one of the abovetransformations an be applied to give "0 suh that " �! "0. First we have the rulefor removing rejet steps.Theorem 5.46 (Rejet removal rule)h8 C; �: C 2 PC ^ � 2 A ^ (C;C) 2 rejet(�): ( hC ; C i ; h rejet(�) i ) �! ( hC i ; ? )iProofUse Theorems 5.25 and 5.32.(End of proof)The next theorem shows the four ases when a rdv step an replae a queue and aninit step. To state these theorems, we de�ne a set of two-step exeutions, TS (L;L0),for every pair of labels L;L0 2 Labm. This set di�ers from TwoStep(L;L0) in thatit requires that the steps be from the same thread.
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Theorem 5.47 (Rendezvous rule) For L;L0 2 Labm, letTS (L;L0) , f "j " 2 Zm ^ j"j = 2 ^ Root ("; 0) = Root ("; 1) ^SSeq(") = hL;L0igin h8 D ; ": D 2 B ^ " 2 TS ( ation-start(D) ; p-ation-init(D) ): " �! ( h Start(") ; Final (") i ; h p-ation-start-rdv(D) i )ih8 D ; ": D 2 B ^ " 2 TS ( ation-start(D) ; t-ation-init(D) ): " �! ( h Start(") ; Final (") i ; h t-ation-start-rdv(D) i )ih8 D ;E ; ": D ;E 2 B ^ D 6= E ^" 2 TS ( guard-test(D ;E ) ; p-method-init(E ) ): " �! ( h Start(") ; Final (") i ; h guard-test-rdv(D ;E ) i )i
197



h8 D ;E ; ": D ;E 2 B ^ D 6= E ^" 2 TS ( total-all(D ;E ) ; t-method-init(E ) ): " �! ( h Start(") ; Final (") i ; h total-all-rdv(D ;E ) i )iThe next theorem overs the �ve ases for replaing a ompat exeution of a threadwith an atomi step.Theorem 5.48 (Atomi rule)h8 ";D ; a: " 2 Zm ^ D 2 B ^ a 2 TotAts(D) ^" is a ompat exeution for D :a ^ Last(") = ation-end(D): " �! ( h Start(") ; Final (") i ; h aept(D :a) i )ih8 ";D ; a: " 2 Zm ^ D 2 B ^ a 2 TotAts(D) ^" is a ompat exeution for D :a ^ Last(") = ation-rejet(D): " �! ( h Start(") ; Final (") i ; h rejet(D :a) i )ih8 ";D ;E ;m: " 2 Zm ^ D ;E 2 B ^ D 6= E ^ m 2 PartMeths(E ) ^" is a ompat exeution for E :m ^ Last(") = test-aept(D ;E ): " �! ( h Start(") ; Final (") i ; h pm-aept(D ;E :m) i )i 198



h8 "; "0;D ;E ;m: " 2 Zm ^ D ;E 2 B ^ D 6= E ^ m 2 PartMeths(E ) ^" is a ompat exeution for E :m ^Last(") = test-rejet(D ;E ): " �! ( h Start(") ; Final (") i ; h pm-rejet(D ;E :m) i )ih8 "; "0;D ;E ;m: " 2 Zm ^ D ;E 2 B ^ D 6= E ^ m 2 TotMeths(E ) ^" is a ompat exeution for E :m ^Last(") = total-return(D ;E ): " �! ( h Start(") ; Final (") i ; h tm(D ;E :m) i )iNext we have the rule for right-movers. Any right-mover an move right, with aslight restrition on queue steps. Note that ? is not an exeution, so there is noexeution " suh that " �! ?. Thus, the term " �! Swap(") implies Swap(") 6= ?.Theorem 5.49 (Right-mover rule)h8 L;L0; ": L;L0 2 Labm ^ L � RM ^ " 2 TwoStep(L;L0) ^( L � queue ) ULoi("h0i) disj ULoi("h1i) ): " �! Swap(")iThe �nal theorem in this setion gives the rule for moving left-movers left. It appliesonly to loal and end steps, and not to tm steps.199



Theorem 5.50 (Left-mover rule)h8 L;L0; ": L;L0 2 Labm ^ L0 � loal[ end ^ " 2 TwoStep(L;L0): " �! Swap(")iWe now have �ve redution rules: the rejet removal rule, the rendezvous rule, theatomi rule, the right-mover rule, and the left-mover rule. All these rules apply inany exeution. So, for example, in any exeution, if there is a loal step following aqueue step from a di�erent thread, the loal step an be moved left. Showing thatthis is possible involves showing that the steps ommute, that is, the steps have thesame e�et on the on�guration, regardless of the order in whih they are taken.5.7 Redution rule for tm stepsSuppose " is a omplete exeution in whih no thread alls a total method. Inthis ase, eah thread has no right-movers after the deision step, only loal andend steps. Thus eah thread obeys the two-phase loking protool. As we haveseen, if all threads are two-phase, then we an serialize any exeution. Threadsfor TCB are not two-phase beause of the total method alls. In this setion, weonsider redution rules for tm steps. We show the following rule for tm steps inany exeution.
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Theorem 5.51h8 L;L0; ": L;L0 2 Labm ^ L 6� atomi [ end ^ L0 � tm ^" 2 TwoStep(L;L0): " �! Swap(")iThat is, in any exeution a tm step an move left over any step that is not an atomistep, or an end step. If we organize the redution arefully, we never need to movetm steps left over end steps. We onsider here how to ensure that tm steps moveleft over atomi steps.Consider the program in Figure 1.5. We saw that if there are two alls toX :add from di�erent threads, then these alls an happen in either order, and the�nal result is the same. The same is not true for a all to X :add and a all toX :mult . In this ase the �nal value of X :x depends on the order in whih thealls are made. Using the ommutativity of X :add with itself, we an redue anyonurrent exeution of threads for D :aa and E :a to a sequential exeution. Forthe onurrent exeution of D :aa and E :b where the all to X :mult from E :b fallsbetween the two alls to X :add from D :aa reahes a �nal on�guration that is notreahable by exeuting the two ations sequentially in either order.Sine we annot redue an exeution ontaining onurrent threads, one ofwhih alls X :mult , and the other of whih alls X :add , we exlude suh exeutionsfrom onsideration. As with deadlok, and termination, we de�ne a ontrol relationto exlude the problemati exeutions.The ontrol relation we de�ne here, alled weak ompatibility, and written�, is de�ned so that if � � �0, then there is suÆient ommutativity between theproedures that may be alled during a thread for � and proedures that may be201



alled during a thread for �0.To deide what ommutativity on proedures is suÆient for the redution,we must �rst deide how to handle rejeting threads. The rejet removal rule allowsus to remove a rejet step from an exeution. All rejeting threads are two-phase,with queue and init steps before the deision step, and end steps after it. Beauseof the two-phase struture, we an redue a rejeting thread to an atomi step inany exeution. We an then apply the rejet removal rule to remove the thread fromthe exeution.If we apply this proedure to every rejeting thread in the exeution, wenever have to move a tm step over a rejeting atomi step. This is the approah wetake in this hapter. Essentially, we are pretending that if a thread rejets, then wean pretend that the thread was never exeuted at all. This is the interpretation ofrejeting threads given in [25℄, where a rejeting thread is represented by the emptyrelation, whih orresponds to the empty set of exeutions.In Chapter 6 we onsider the issue of fairness between ation exeutions,whih onerns ensuring that threads for an ation are started \often enough" duringan exeution to ensure progress properties. We show that removing some or all of therejeted threads from an exeution an result in an exeution that meets a weakerfairness ondition than the original. Thus, from the standpoint of fairness, rejetedthreads are omputationally signi�ant. We show in that hapter how to redue anexeution so that every thread, aepting and rejeting, from the original exeutionappears in the redued exeution, and thus the redued exeution meets the samefairness ondition as the original exeution.There is a trade-o� involved here, as there usually is. To get the strongerredution that preserves fairness, we need stronger ommutativity onditions thanwe do for the redution than we present in this hapter. The stronger ommutativityonditions mean that fewer pairs of ations an be run onurrently, and so we trade202



onurreny for fairness.5.7.1 Weak ompatibilityWe now de�ne the weak ompatibility ontrol relation that allows us to ompletethe set of rules we use to show the redution of a TCB exeution. We de�ne this interms of a relation between a proedure and a total method.De�nition 5.52 For � 2 P, and � 2Mt,� wl � , h8 D ;E: D ;E 2 B ^ D 6= E: (� 2 A ) aept(�)x tm(D ; �)) ^(� 2Mp ) pm-aept(E ; �)x tm(D ; �)) ^(� 2Mt ) tm(E ; �)x tm(D ; �))iIf � wl �, we say that � weakly left-ommutes with �.Thus if � wl �, then a tm step for � an move left over an atomi step for �,provided that the step for � is not rejeting. The relation does not use the rejetingatomi steps, sine during redution, as disussed above, we an use the rejetremoval rule to remove these from the exeution, so no tm step moves left over arejet or pm-rejet step.We give some examples of weak left ommutativity. The �rst examples on-ern the box Sem in Figure 2.3.Sem:P wl Sem :VSem :V wl Sem :V
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To show Sem:P wl Sem:V , we must show for any D ;E 2 B, suh D 6= E ,pm-aept(E ;Sem :P) x tm(D ;Sem :V )That is, we must show that, for any on�guration in whih a pm-aept(E ;Sem:P)step is enabled, the on�gurations reahable by exeuting this step followed by atm(D ;Sem :V ) step, are reahable by exeuting the steps in the opposite order.Consider a on�guration C in whih pm-aept(E ;Sem:P) is enabled. Wehave C:Sem: = ?, from Theorem 5.5. From the guard of Sem:P , we also havethat the semaphore is available in C, that is, C:Sem:�:n > 0. From suh a on�gu-ration, the all to Sem:P followed by the all to Sem :V leaves the value of C:Semunhanged, and updates the on�gurations of D and E to reet the fat that theproedure alls have been exeuted. Exeuting the alls in the reversed order hasexatly the same e�et, and thus we have weak left ommutativity.To show Sem:V wl Sem :V , we must show for any D ;E 2 B, suh thatD 6= E ,tm(E ;Sem:V ) x tm(D ;Sem :V )Sine Sem:V is total, the steps are enabled in any on�guration. The e�et ofexeuting the proedure alls in either order is to add 2 to Sem:n , and to updatethe on�gurations of D and E to reet the exeution of the alls. Thus we haveweak left ommutativity.Below are some examples of left ommutativity using the box Bu� fromFigure 1.2.Bu� :get wl Bu� :put:( Bu� :put wl Bu� :put ) 204



We show Bu� :get wl Bu� :put in a way similar to that we used for Sem:P andSem:V , above. We note that an aepting all to Bu� :get is only enabled in aon�guration in whih Bu� :s is not empty. Suppose Bu� :s = x . ŝ. If the all toBu� :put puts the value y in the queue, we an see that, exeuting the alls in eitherorder, we end up with Bu� :s = ŝ / y, and x is returned to the aller of Bu� :get .Thus we have weak left ommutativity.To show :(Bu� :put wl Bu� :put), we observe that alling Bu� :put withinput parameter x, and then alling it from a di�erent box with input parametery leaves Bu� :s = ŝ / x / y, whereas making these alls in the opposite order givesBu� :s = ŝ / y / x. Clearly ŝ / x / y 6= ŝ / y / x, unless x = y. Thus, we do not haveweak left ommutativity.The following theorem gives a simple ondition for determining weak leftommutativity: a proedure weakly left ommutes with a total method if theyexeute on disjoint sets of boxes.Theorem 5.53h8 �; �: � 2 P ^ � 2Mt ^h8 �0; �0 : �0 2 Range(�) ^ �0 2 Range(�) : :(�0 � �0) i: � wl �iWe an now de�ne weak ompatibility.
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De�nition 5.54 (Weak ompatibility) For �; �0 2 A,� � �0 , h8 �; �0: � 2 Range(�) ^ �0 2 Range(�0): (� 2Mt ) �0 wl �) ^ (�0 2Mt ) � wl �0)iIf � � �0, we say that � is weakly ompatible with �0.The symmetri form of the de�nition guarantees that � is symmetri, and thus� 2 CR. The de�nition of weak ompatibility gives exatly the onditions neededto de�ne a left-moving rule for total method alls. Note that the de�nition does notrequire any ommutativity between the ations � and �0.From the results given above for wl on the methods of box Sem in Figure 2.3,we get the following.D :at � E :aqD :at � E :relFor the ations in Figure 1.3 that use the methods of box Bu� in Figure 1.2, wehave Prod :make � Cons :useSuppose we have � and �0, whereRange(�) disj MtRange(�0) disj MtIn this ase, the onditions for � � �0 are trivially satis�ed. These onditions meanthat no total methods are reahable from � or �0 by �, or, in other words, that206



only partial methods are alled during the exeution of any thread for either ation.If � is total, this means no thread for � alls a method, sine only total methodsan be alled from a total ation. If � is partial, we have that a thread for � allsonly partial methods that do not all total methods. Sine there an be at mostone all to a partial method in any alternative in a partial proedure, this gives usa two-phase struture for all the threads for �, with the deision step in the lowestpartial proedure all, all resoure aquisition steps before the deision step, andall resoure release steps after. For pairs of suh threads, the two-phase lokingtheorem gives us serializability under any ontrol relation.If we restrit attention to exeutions that respet weak ompatibility, we getthe following rule for moving a tm step left.Theorem 5.55 (Weak ompatibility rule)h8 L;L0; ": L;L0 2 Labm ^ L 6� REJ [ end ^ L0 � tm ^" 2 TwoStep(L;L0) ^ " resp �: " �! Swap(")i5.7.2 Redution that respets ontrol relationsFor redution, we restrit ourselves to TCB exeutions that respet �. This allowsus to use the weak ompatibility rule to move tm steps left. It is important, then,that we ensure that every transformation that we apply to an exeution " suh that" resp � returns an exeution "0 suh that "0 resp �.Considering this question more generally, for any T 2 CR, if " resp T andwe apply one of the redution rules to part of ", yielding the redued exeution "0,does "0 resp T? We have the following meta-theorem. The proof is in Appendix B.207



Theorem 5.56h8 "; "0;T: "; "0 2 Zm ^ " resp T ^" �! "0 by Theorem 5.46, 5.47, 5.48, 5.49, 5.50, or 5.55: "0 resp Ti5.8 The �rst redution theoremWe are now ready to state and prove the �rst redution theorem. This theorems saysthat we an redue any omplete exeution that respets � to an atomi exeution.Theorem 5.57 (First redution theorem)h8 " : " 2 Complete(Z ) ^ " resp � : h9 "0 : "0 2 Z a : "; "0 i i5.8.1 Outline of the proofWe prove the theorem using the following lemma. Note that we state the lemma forexeutions in Complete(Zm), rather than for Complete(Z ). The latter is a subsetof the former, so this is a generalization that allows us to use mixed exeutions forintermediate results during exeution.
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Lemma 5.58h8 ": " 2 Complete(Zm) ^ NumA(") > 0 ^ " resp �: h9 "0; "00: "0 2 Z a ^ "00 2 Complete(Zm) ^ NumA("0) = 1: " �! "0; "00 ^ "0; "00 resp �iiWe show the proof for this lemma below. Given Lemma 5.58 we omplete the proofof Theorem 5.57 as follows.Given " 2 Complete(Zm), we onstrut a sequene of pairs of exeutions ofthe following form."0 "00"0; "1 "01"0; "1; "2 "02... ...Eah entry in the left olumn is a sequene of atomi exeutions, and eah entry inthe right olumn is an exeution in Complete(Zm). We onstrut "0 and "00 from" using Lemma 5.58. For i � 0, we onstrut "i+1 and "0i+1 from "0i by the samelemma. If NumA(") < 1 this proess ends after a �nite number of steps. In thisase, we make the sequenes in�nite by repeating the last line.The �rst olumn is a hain of �nite exeutions in (Z a;v). Sine this orderedset is a CPO, the hain has a limit in Z a. Let "0 be the limit.The �rst olumn is also a CRS for the sequential exeution, sine for eahentry, the orresponding exeution in the seond olumn is the witness required for209



showing initial redution. Eah suessive entry in the �rst olumn has one moreaept step than the previous one, up to NumA("), by Lemma 5.58. This gives us"; "0 and "0 2 Z a, and the proof is omplete.One way to think of this proof is that we start with the exeution ", and weplae a marker at the beginning. We reorganize the beginning of the ", until thereis a single aept step next to the marker. Then we move the marker over this step,and repeat the proess with the remainder of the exeution. As the marker movesthrough the exeution in this way, the steps of the atomi exeution appear in orderon its left.5.8.2 Proof of Lemma 5.58We assume" 2 Complete(Zm) ^ NumA(") > 0 ^ " resp �we onstrut "0 and "00, where"0 2 Z a ^ "00 2 Complete(Zm) ^ NumA("0) = 1 ^" �! "0; "00 ^ "0; "00 resp �We do this by onstruting a sequene of pairs ("i; "0i), where eah pair satis�esertain onditions. For larity in the exposition, we use  as a base for names forexeutions as we present the onstrution of ("i+1; "0i+1) from ("i; "0i). Let D be the�rst aept step in ". Let F be the last step for D's thread. Thus, if this thread isfor ation �, D is the �rst ACC step, and F is the �rst ation-end(Box (�)) step, orthe �rst aept(�) step. Note that in the seond ase, D and F are the same step.
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We use the following prediates on exeutions.Imm(") , h8 k: 0 � k < j"j ^ "hki � DEC: h9 j: 0 � j < k: h8 i : 0 � i < j : Root ("; i) 6= Root("; k) i ^h8 i : j � i < k : Root ("; i) = Root ("; k) iiiDef (") , h8 k: 0 � k < j"j ^ "hki � RM: h9 j: k � j < j"j: Root ("; j) = Root ("; k) ^ "hki 6� RMiiIf Imm(") holds, then for every thread with a deision step in ", all steps in " forthe thread up to and inluding the deision step appear as a ontiguous sequene.If qt(Start (")), then this mean for every thread with a deision step in ", all stepsfrom the �rst step of the thread up to and inluding the deision step appear as aontiguous sequene. We all suh an exeution immediate.If Def (") holds then the last step for every thread with steps in " is not anRM step. In partiular, sine all steps before the deision step are RM steps, ifqt(Start(")), then this means that every thread with steps in " has a deision stepin ". We all suh an exeution de�nite.If Imm("), Def (") and qt(Start(")) hold, then every thread in " begins with211



an unbroken sequene of steps ending with a deision step.Rendezvous redutionWe redue " to an exeution in whih all RM steps before F are rdv steps. Let" =  0; 00 where Last( 0) = FChoose a box D 2 B. Let L be the last queue step before F in  0 that has D asits unonditional lous. Step F annot be the next step for L's thread, sine a initstep follows every queue step. By onstrution, no step from L up to and inludingF has D as its unonditional lous, so we use the right-mover rule to move L rightuntil it reahes the position after F, or the position before the init step that is nextin its thread, whihever is reahed �rst. In the latter ase, apply the rendezvous ruleto replae the queue and init steps with a rdv step. Note that the new step doesnot have an unonditional lous. Repeat this proedure for every other queue stepin  0 that has D as its unonditional lous. Then repeat the whole proess for everyother box. At the end of this, we have exeution  1, where  0 �!  1 and  1 ontainsno queue steps before F. There are no init steps before F, sine qt(Start( 1)), andevery init step is preeded by a queue step. Thus all RM steps before F are rdvsteps. Let 1 = "0; 01 where Last("0) = F"00 =  01; 00We have ("0; "00), where"0 2 Z r ^ j"0j <1 ^ Last("0) = F ^"0; "00 2 Complete(Zm) ^ " �! "0; "00 ^ "0; "00 resp �212



Right-mover redutionWe onstrut a redution of " where the exeution is immediate up to F, and everythread with steps before F has a deision step before F. Let L be any deision stepin "0. Choose the last step from L's thread before it in "0. This is a rdv step (sine" 2 Z r, so use the right-mover rule to bring it adjaent to L. Repeat this with theremaining steps from L's thread to its left, and then repeat with all other deisionsteps in "0, giving exeution  0, where "0 �!  0. We have Imm( 0) by onstrution.Now hoose a thread whose last step before F is in RM. Use the right-mover ruleto move it to the right of F. Repeat this proess until there are no suh threads,giving exeution  1, where "0 �!  0. Let 1 = "1; "01 where Last("1) = F"01 = "01; "00We have ("1; "01), where"1 2 Z r ^ j"1j <1 ^ Imm("1) ^ Def ("1) ^ Last("1) = F ^"1; "01 2 Complete(Zm) ^ " �! "1; "01 ^ "1; "01 resp �Rejet removalWe onstrut a redution of " in whih there are no REJ steps before F. Let 0 = "1; "01If  0 ontains no REJ steps before F then we are done. Otherwise, let L be oneof the REJ steps before F. We redue the steps for L's thread to a rejet step.If L is atomi we are done. Otherwise, sine Imm("1), the steps before L in itsthread appear to it immediate left. By Theorem 5.19, all steps after L in its threadare ation-rejet or test-rejet steps. By the left-mover rule, we an move all of213



these steps left over steps from other threads until all steps for L's thread are thenontiguous. By the atomi rule, these steps an be replaed by a single rejet step.By the rejet removal rule, we an remove the rejet step from the exeution. Repeatthis proess for every REJ step before F, ending with exeution  1, where  �!  0,and  1 ontains no REJ steps before F. Let 1 = "2; 01 where Last("1) = F"02 =  01; "01We have ("2; "02), where"2 2 Z r ^ j"2j <1 ^ Last("2) = F ^Imm("2) ^ Def ("2) ^h8 i : 0 � i < j"2j : "2hii 6� REJ i ^"2; "02 2 Complete(Zm) ^ " �! "2; "02 ^ "2; "02 resp �Left-mover redutionWe onstrut a redution of " in whih has an aept step as its �rst step. First wehave a lemma, whih gives the ore of the left-mover redution.Lemma 5.59 LetN ( ) = h8 i : 0 � i < j j :  hii 6� REJ i#end( ) = h# i : 0 � i < j j :  hki � end i#omp( ) = h# i: 0 � i < j j:  hki � aept [ ation-end [ ation-rejeti 214



h8  :  2 Z r ^ j j <1 ^ qt(Start ( )) ^Imm( ) ^ Def ( ) ^ N ( ) ^0 < #end( ): h9  0:  0 2 Z r ^ j 0j <1 ^ qt(Start ( )) ^Imm( 0) ^ Def ( 0) ^ N ( 0) ^#end( 0) < #end( ):  �!  0 ^ #omp( ) = #omp( 0)iiProofAssume we have a  as in the anteedent of the universal quanti�ation. Let L be the�rst end step in  2. Sine qt(Start ( )), we an �nd step L0, the step that aquiredthe box that L releases. Sine  2 Z r, L0 is a rdv step, it is the only RM step for theproedure all, so it is the �rst step of a ompat exeution of the proedure. Let 0 be the segment of  from the L0 to L. We have #end( 0) = 1, by onstrution.Consider the steps in  0 from L's thread. There are no end steps among thesesteps, and so, sine resoures are released in reverse order of aquisition, there areno RM steps either. If exeution is for a partial proedure, we have, sine Imm( )and N ( ),  0h1i � ACC. The steps for the proedure all thread in the regionfrom  0h2i on, for a partial proedure, and from  0h1i on, for a total proedure,are after the thread's deision step. Sine there are no RM steps, and no end steps,by Theorem 5.18, all the steps in this region for the proedure all's thread arethus loal or tm steps. By the left-mover rule, the loal steps an be moved left.There are no REJ or end steps between L0 and L from any thread, so, by the weakompatibility rule, the tm steps an be moved left. By the left-mover rule, L an215



be moved left. Thus we move all these steps left until all steps for the proedureall are ontiguous at the beginning of the exeution. The redued exeution startswith a ompat exeution for a proedure, so we use the atomi rule to replaethese steps with an atomi step, giving  1, where  0 �!  1, #end( 1) = 0, and#omp( 1) = #omp( 0).Let  0 be  with  0 replaed by  1. We have  0 2 Z r, j 0j <1, qt(Start( )),N ( 0), and #end( 0) < #end( ),  �!  0, and #omp( ) = #omp( 0), byonstrution. To show Imm( 0), we note that "0 ontains all the steps of ", in thesame order, for the threads other than the one redued. For the redued thread,all steps for a proedure all have been deleted, and the rdv step that starts theall has been replaed by an atomi step. When a partial proedure is replaed,the RM step removed is replaed by a deision step, so immediay is preserved.There is nothing to show for a total ation, sine there are no RM steps before thet-ation-start-rdv step that is its deision step. To show Def ( 0), we note that theredution removes a RM step and some nonRM steps, and replaes it with a singlenon-RM step for the thread. Thus Def ( 0) must hold.(End of proof)To show the main redution, we note that by the priniple of indution,we an apply the redution in Lemma 5.59 repeatedly to "2 until we get  , where#end( ) = 0, and #omp( ) = #omp("2). Sine the  ontains the end step forthe �rst thread, this thread must be a single aept step. Sine we never move aRM step left over an ACC step, this step is First( ). Let = "3; 0 where j"3j = 1"3 =  0; "02
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We have ("3; "03), where"3 2 Z a ^ j"3j = 1 ^ NumA("3) = 1 ^"3; "03 2 Complete(Zm) ^ " �! "3; "03 ^ "3; "03 resp �Let "0 = "3 and "00 = "03, and we are done with the proof of Lemma 5.58.
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Chapter 6
Fairness
6.1 IntrodutionThe last hapter showed a ontrol relation � that guarantees a redution to anatomi exeution for every omplete exeution respeting �. We showed a orre-spondene between on�gurations in the original exeution and the redued atomiexeution, whih allow us to infer properties of the onurrent exeution from thoseof the atomi exeution.The purpose of a redution theorem is to show that a set of onurrentexeutions an be represented by a set of atomi exeutions, suh that the sequentialexeutions over all possible behaviours of the onurrent exeutions. In this way,we avoid having to reason diretly about the behaviour of the onurrent exeutions,and an instead reason about the behaviour of just the atomi exeutions. For thisinferene to be valid, we must preisely de�ne the set of atomi exeutions that isgenerated when we redue a given set of onurrent exeutions.In this hapter, we onsider properties of atomi exeutions, and we showthat ertain types of properties, alled progress properties, are not guaranteed inall atomi exeutions, but are guaranteed in exeutions satisfying ertain fairness218



onditions. We then onsider the subset of the onurrent exeutions whose atomiredutions satisfy a given fairness ondition.Consider a program ontaining an ation � that inrements the value ofinteger variable x , and suppose no other ation in the program a�ets the value ofx . What an we say about the sequene of values taken by x during an exeution?We know that it never dereases, sine its value is only hanged by inreasing it.What we annot show, for general atomi exeutions, is that the value of x inreasesin every exeution. Consider an atomi exeution that ontains no steps for �. Thevalue of x does not hange during this exeution.Consider an in�nite atomi exeution of the program ontaining an in�nitenumber of steps for �. In suh an exeution, we an see that the value of x inreaseswithout bound. That is, for any on�guration in the program, there is a lateron�guration in whih x has a greater value.In Chapter 4, we showed that fairness in the hoie of steps in an exeutionis required to ensure an exeution where every thread terminates. In a similar waywe de�ne fairness onditions on the sequene of ations for the steps in an atomiexeution that an ensure that exeutions have desirable properties. This is fairnessat a higher level than thread fairness, whih onerns the hoie of queue semantissteps. We are now onerned with the hoie of ations. As with thread-fairness,the fairness onditions in this hapter are of relevane only for in�nite exeutions.In an atomi exeution, every on�guration is quiesent, and so, for every� 2 A, a step for � is enabled, either an aept(�) step or, if � is partial, anrejet(�) step. Note that the queue semantis steps before the deision step aredeterministi, so eah ation has exatly one step enabled in eah on�guration.The �rst fairness ondition for ations is weak fairness. An in�nite atomiexeution " is weakly fair for an ation � if " ontains an in�nite number of stepsfor �. For the example ation above, if " is weakly fair for �, then the value of x219



inreases without bound in ".Weak fairness guarantees absene of individual starvation for an ation. Inthe standard analogy used for this type of problem, an ation is always hungry fora step. An ation starves if it waits an in�nite time to take a step, where timeis measured in steps. Requiring an in�nite number of steps for � is equivalent torequiring that every step for � be followed, after a �nite number of steps, by anotherstep for �. Thus, in an exeution that is weakly fair for �, no ation starves.By design, a rejet step does not hange the on�guration. So if rejet(�)is enabled in on�guration C, it is still enabled after any rejet step. If a exeutionreahes a on�guration C in whih only rejet steps are enabled, the on�gurationdoes not hange from this point on in the exeution. We all C a �xpoint of theprogram.A less stringent ondition that weak fairness is minimal fairness. Exeution" is minimally fair if every on�guration C in ", where C is not a �xpoint is followedeventually by an aept step. An aept step is enabled in C, by de�nition, andan aept(�) step remains enabled at least until an aept step is taken. In theexample above, if there is a total ation �0 in the program, other than �, then theminimally fair exeutions inlude an exeution onsisting of nothing but aept(�0)steps. In this exeution, x does not inrease at all.Minimal fairness guarantees absene of global starvation for the program. Interms of the analogy, the program is hungry for an aept step in any non�xponton�guration. In a minimally fair exeution, there are an in�nite number of aeptsteps or the exeution reahes a �xpoint. Note that an exeution that is weakly fairin all ations is a minimally fair exeution.We extend weak fairness and minimal fairness to onurrent exeutions, bymapping the sequene of deision steps in the exeution onto aept and rejet stepsin the obvious way. We show that the redution given in the last hapter an redue220



a onurrent exeution that is weakly fair in all ations to an atomi exeution thatis minimally fair, but not neessarily weakly fair in all ations.This means that to apture all behaviours of exeutions under weak ompat-ibility, we need to onsider minimally fair sequential exeutions that are weakly fairin a subset of the ations. Suh exeutions satisfy fewer properties than exeutionsthat weakly fair in all ations.We de�ne a ontrol relation, alled strong ompatibility, that allows less on-urreny than weak ompatibility. We prove a seond redution theorem that showshow we an use ontrol relations ombining weak and strong ompatibility to guar-antee a redution of a weakly fair onurrent exeution to an atomi exeution thatis weakly fair for a given subset of the ations.In the example, we need only weak fairness for � to guarantee that x isinreasing. We do not need weak fairness on any other ation. This observationsuggests a strategy for implementing TCB programs to guarantee a given progressproperty. We identify the ations whose weak fairness is required to establish thatan atomi exeution has the desired property, and we then use a ontrol relationthat ensures exeutions that an be redued to atomi exeutions that are weaklyfair in the appropriate ations.In the �nal setion of this hapter, we onsider the implementation of fairnessonditions and ontrol relations, using a sheduler.6.2 Fairness onditions for TCBTo apply fairness to the exeution of TCB programs, we must deide on a sequeneof events that gives a linear order to the threads. Sine the redution maintainsthe order of deision steps, we use these steps to represent the order of the threads.For the fairness onditions we de�ne, we must reord rejeting threads as well asaepting threads, so we de�ne the following.221



De�nition 6.1 If " 2 Zm, and 0 � i < j"j, thenDLabel("; i) , aept(Root ("; i)) if "hii � ACCrejet(Root ("; i)) if "hii � REJFor p an asending sequene ontaining every i, suh that "hii � DEC,DSeq(") , h i : 0 � i < jpj : DLabel("; p[i℄) iDS , f " : " 2 Complete(Zm) ^ j"j =1 : DSeq(") gWe all DSeq(") the deision sequene for ". We use � for a typial element of DS.The set DS ontains in�nite sequenes over Laba. Fairness are only relevant for in�-nite exeutions, so we on�ne our attention to in�nite deision sequenes. Note that,if an in�nite exeution is omplete, it has an in�nite deision sequene. If " 2 Z a,then DSeq(") = SSeq("). The deision sequene then, is an idealized representationof an in�nite exeution as an atomi exeution. The following funtion returns theation for an label in a deision sequene.De�nition 6.2 If L 2 LabaDAt(L) , � if L = aept(�) _ L = rejet(�)6.2.1 Weak fairnessAn in�nite exeution is weakly fair for � 2 A if there is an in�nite number of threadsfor �. We formulate this in terms of deision sequenes.De�nition 6.3 (Weak fairness) If � 2 DS, � 2 A, and A0 � A, thenWF(�; �) , h# i : 0 � i : DAt(�[i℄) = � i =1WF(�;A0) , h8 � : � 2 A0 : WF(�; �) iWF(�) , WF(�;A) 222



If WF(�; x), we say that � is weakly fair for x. If WF(�), we say that � isweakly fair.If � is weakly fair for � then � ontains an in�nite number of labels for �. Notethat only a �nite number of these need be aept(�) labels, the rest an be rejet(�)labels.6.2.2 Minimal fairnessAn in�nite exeution is minimally fair if there is an in�nite number of aeptingthreads in it, or, it reahes a on�guration where no thread an aept. This �nalondition is diÆult to state in terms of deision sequenes, so we use the following,slightly stronger formulation: an in�nite exeution is minimally fair if there is anin�nite number of aepting threads in it, or, if after all the aepting threads, thereis at least one rejeting thread for every ation. We use the following funtion tohelp with the de�nition.De�nition 6.4 If � 2 DS, thenLastA(�) , hmin k : 0 < k : h8 i : k < i : �[i℄ � rejet i iNote that if there is an in�nite number of aept steps in �, then the range for theminimum is empty, and so LastA(�) =1De�nition 6.5 (Minimal fairness) If � 2 DS, thenMF(�) , LastA(�) =1 _h8 �: � 2 A: h9 i : LastA(�) < i : �[i℄ = rejet(�) ii 223



If MF(�), we say that � is minimally fair.Theorem 6.6h8 � : � 2 DS : WF(�) ) MF(�) i6.3 Program propertiesA property is a subset the in�nite atomi exeutions of a program. We de�ne prop-erties to inlude only exeutions satisfying a ondition on the sequene of persistentstates. We use onditions suh as \the value of x does not derease", or \x inreaseswithout bound", for an integer box variable x. We identify a subset of exeutionswith the ondition de�ning it, using the name \property" for either.Program properties an be lassi�ed as safety properties and progress (orliveness) properties [21℄. A safety property says that \nothing bad happens". The�rst example above is a safety property, asserting that a derease in the value of xdoes not our. Safety properties an always be satis�ed by a program that doesnothing. A progress property says that \something good happens". The seondexample above is a progress property, asserting that there are an in�nite number ofsteps inreasing the value of x. A progress property requires some ation be takenby the exeuting program.Our aim is to investigate the properties satis�ed by all exeutions, and prop-erties satis�ed by all exeutions satisfying one of the fairness onditions from the lastsetion. We de�ne a ouple of types of property, one for safety, and one for progress.We show that fair exeutions satisfy more progress properties than all exeutions,but that both fair and unfair exeutions satisfy the same safety properties.We extend the fairness operators to exeutions in the obvious way, writingWF(") instead of WF(DSeq(")), for example. Using this, we de�ne the followingsets of exeutions. 224



De�nition 6.7Z i , f " j " 2 Z a ^ j"j =1 gW i , f " j " 2 Z i ^ WF(") gM i , f " j " 2 Z i ^ MF(") gFrom Theorem 6.6, we have W i � M i.Let P be a property, that is, a subset of Z i. If Z i = P, then every exeutionof the program satis�es P. If W i � P, then every weakly fair exeution of theprogram satis�es P. If M i � P, then every minimally fair exeution of the programsatis�es P.We de�ne some simple properties.De�nition 6.8 For q � PC q,stab(q) , f " j " 2 Z i ^ h8 i; j : 0 � i < j : "[i℄ 2 q ) "[j℄ 2 q i gunav(q) , f " j " 2 stab(q) ^ h9 k : 0 � k : "[i℄ 2 q i gWe all stab(q) a stable property, and unav(q) an unavoidable property.We identify a boolean expression over the box variables of a program with the subsetof PC q for whih it is the membership prediate. So, we write D :x > 5 to mean theset fC j C 2 PC q ^ [[D :x > 5℄℄C g. If q is suh an expression, we say \q holds inC" to mean C 2 q.For " 2 stab(q), if q holds at any on�guration in ", it holds in every on�g-uration after that one. Note that " 2 stab(q) if q does not hold at any on�gurationin ". Properties stab(q) are safety properties. For " 2 unav(q), q does not hold ina �nite pre�x of the on�gurations of ", and it holds in the remainder. Propertiesunav(q) are progress properties. 225



The following theorem shows an important di�erene between stable prop-erties and unavoidable properties: stable properties are oblivious to fairness.Theorem 6.9h8 q: q � PC q: (W i � stab(q) � Z i � stab(q)) ^ (M i � stab(q) � Z i � stab(q))iProofWe prove the �rst onjunt of the term. The proof for the seond is similar. Assumeq � PC q. We showW i � stab(q) � Z i � stab(q)We prove the equivalene as two impliations.Case (:An immediate onsequene of W i � Z i.Case ):We prove the ontrapositive form.Z i 6� stab(q) ) W i 6� stab(q)Assume Z i 6� stab(q). Choose " 2 Z i suh that " 62 stab(q). From De�nition 6.8,we an �nd i and j, where 0 � i < j, "[i℄ 2 q, and "[j℄ 62 q. Let "0 be an in�niteexeution, where Start("0) = "[j℄, and SSeq("0) is an in�nite sequene of atomi stepsfor the ations of the program in yli order. This exeution is well-formed, sineany ation an be started in a quiesent on�guration, and it ontains an in�nite226



box Dvar b : boolean : booleanation r :: b := falseation s :: :b �!  := falseendFigure 6.1: Program with fairness-dependent unavoidability propertiesnumber of deision steps for eah ation, so "0 2 W i. Let "00 = "h0 : : : (j � 1)i; "0.The omposition is de�ned by onstrution, and "00 2 W i. Sine "00[i℄ = "[i℄, and"00[j℄ = "[j℄, we have "00 62 stab(q). Thus W i 6� stab(q).(End of proof)Theorem 6.9 brings out an important property of stability: if an exeution violatesstability, there is a �nite pre�x of the exeution that shows the violation. The resulthere is a general one: restriting exeutions to those satisfying a fairness onditiondoes not widen the lass of valid safety properties.We do not have a result suh as Theorem 6.9 for unavoidable properties, andother progress properties. We show this using the program in Figure 6.1. Theprogram ontains a single box D , so we drop the box omponent of identi�ers, andwrite b for D :b. We show the followingZ i 6� unav(:b)Z i 6� unav(:) M i 6� unav(:b)M i � unav(:) W i � unav(:b)W i � unav(:)Sine the program text ontains no statement that assigns true to any variable, wehave the following.Z i � stab(:b)Z i � stab(:) 227



To show the results for Z i, let C be a on�guration satisfying b ^ . Notethat if a thread for ation s is started from C, the thread rejets. Let" = ( C1 ; rejet(s)1 )Exeution " onsists of an in�nite sequene of rejeting threads for s . All on�gu-rations are C. Thus " 62 unav(:b), and " 62 unav(:). This gives usZ i 6� unav(:b)Z i 6� unav(:)For the ase of M i, we note that, sine ation r is total, any thread for itaepts. Thus any "0 2 M i ontains an in�nite number of aept steps. The �rst ofthese is an aept(r), sine a thread for s rejets fromC. If "0hii is the �rst aept(r )step, then : holds in "0[i+ 1℄. Thus "0 2 unav(:). If C;C0 2 PC q, b holds in C,and (C;C0) 2 aept(r), then b^: holds in C0. Thus (C0;C0) 2 aept(r), so wean de�ne" = ( C Æ (C0)1 ; aept(r)1 )Then " 2 M i, and " 62 unav(:b). ThusM i 6� unav(:b)M i � unav(:)For the ase of W i, we note that W i � unav(:) follows from W i � M i.To show W i � unav(:b), assume " 2W i. Sine " is weakly fair, it ontains a stepfor r . If the �rst suh step is "hii, : holds in all "[j℄ for i < j. Again, sine "is weakly fair, it ontains a step for s after step i. Let the �rst suh step be "hki.228



box Semkvar n : integerb : booleanation K :: n > 0 �! b := falsemethod P :: n > 0 ^ b �! n := n� 1method V :: n := n+ 1endbox Dvar x : integeration a :: true & Semk :P �! x := x+ 1 ; Semk :Vend Figure 6.2: The semaphore with a kill ationThen :b holds in "[k + 1℄. ThusW i � unav(:b)W i � unav(:)6.4 Fairness for weak ompatibilityWe onsider the issue of fairness in relation to programs run under the weak ompat-ibility ontrol relation. Consider the program in Figure 6.2. The program ontainsa box Semk , whih is a variant of box sem. Box Semk has an ation K , in additionto the P and V methods from sem. The box has an additional variable, a booleanb, whih is initially true. Method P is amended so that a all to it aepts, andgrants the semaphore to the soure of the all, only if the semaphore is available(that is, n > 0), and b holds. A all to ation K aepts only if the semaphore isavailable, and, if it is, b is set to false . Box D ontains an integer variable x , andan ation a. A all to a aepts, and inrements x , if the semaphore is suessfullygranted. Ation a releases the semaphore before terminating.229



From the text of the program, we an see that it has the following stabilityproperty.Z i � stab(Semk :n � 0 _ :Semk :b)To show this, we note that, if Semk :n � 0 holds at any point in an exeution,then no thread aepts, and the on�guration is the same for the remainder of theexeution.If Semk :n > 0^:Semk :b holds in any on�guration, then a thread for ationD :a rejets, and a thread for ation Semk :K aepts, leaving the on�gurationunhanged.For the progress properties we haveW i � unav(Semk :n � 0 _ :Semk :b)M i 6� unav(Semk :n � 0 _ :Semk :b)To show the �rst of these, assume we have " 2W i. If Semk :n � 0 _ :Semk :b holdsin Start("), then we are done. Assume this is not the ase, so Semk :n > 0 ^ Semk :bholds in Start("). A thread for D :a started from suh a on�guration leaves theon�guration unhanged on these values. A thread for Semk :K inverts the value ofSemk :b. Sine " 2W i, there is a thread for Semk :K in ", so there is a on�gurationwhere Semk :n � 0 _ :Semk :b holds, and so W i � unav(Semk :n � 0 _ :Semk :b).To show the seond, let " be an exeution where Semk :n > 0 ^ Semk :b holdsin Start("), and all steps in " are for D :a. Eah of these threads aepts (so " 2 M i),and after eah step the values of Semk :n and Semk :b are unhanged. Therefore," 62 unav(Semk :n � 0 _ :Semk :b), and so M i 6� unav(Semk :n � 0 _ :Semk :b).Consider now the onurrent exeutions of the program. We �rst hek the
230



ations for weak ompatibility. We haveSemk :K � D :aUsing De�nition 5.54, we get just the following ondition to hek.aept(Semk :K ) x tm(D ;Semk :V )We an see that this holds by heking the ode.Suppose we start from a on�guration satisfying Semk :n > 0 ^ Semk :b. Wean onstrut the following exeution of a thread for Semk :K exeuting onurrentlywith a thread for D :a ."0 ; "0 ; "1The exeution of the thread for D :a is split between exetions "0 and "1. Thisthread aepts. The �rst ontains all the steps up to and inluding the assignmentto D :n , and the seond ontains the rest. Exeution "0 is a ompat exeution forSemk :K . This must be a rejeting thread, sine Semk :b is false after "0. The �nalon�guration is quiesent, and Semk :n > 0 ^ Semk :b holdsWe an repeat the above exeution in�nitely many times to generate a on-urrent exeution " ontaining an in�nite number of threads for D :a , and an in�nitenumber for Semk :K . Thus WF("). Note that " has a quiesent on�guration be-tween eah interleaved exeution of two threads, and Semk :n > 0 ^ Semk :b holdsin eah of these on�gurations. As we have seen, there is no weakly fair atomi exe-ution of the program in whih Semk :n > 0 ^ Semk :b holds in every on�guration.Thus the atomi redution of " annot be in W i.If we follow through the redution proess in Chapter 5 for exeution ", we seethat eah of the rejeting threads for Semk :K is removed during the rejet removal231



step. So the atomi redution of " is an exeution ontaining only aepting stepsto D :a . Therefore, the redution is not weakly fair for Semk :K .Note that, in the redution in Chapter 5, every aepting thread from theoriginal exeution appears in the atomi redution. From this, we onlude thatif " is a weakly fair exeution that respets weak ompatibility, then the atomiredution of " may not be weakly fair in any ation that has only a �nite numberof aepting threads in ".The reason for this loss of fairness is our hoie to disard rejet steps duringredution. The justi�ation given for disarding steps is that they are omputation-ally insigni�ant. But, as we have seen, the fat that there was a rejeted threadfor an ation is signi�ant from the standpoint of fairness.We next show a stronger ontrol relation suh that we an guarantee, forsome set A0 2 A every thread in a onurrent exeution for an ation in A0 appearsin the atomi redution. Using this ontrol relation, if the onurrent exeution isweakly fair in �, and � 2 A0, then the atomi redution is weakly fair in �.6.5 Strong ompatibilityWe de�ne a ontrol relation, alled strong ompatibility, that allows us to maintainweak fairness for a given ation during redution. That is, we de�ne a ontrol relation� suh that if in any onurrent exeution ", if � is only exeuted onurrentlywith ations �0 suh that � � �0, then we an redue the exeution to an atomiexeution, where every deision step for threads for �, both aepting and rejeting,appears in the atomi redution.To see how to do this, we look at two aspets of the proof of the �rst redutiontheorem. Consider the step that removes rejet steps. This is neessary beausethe weak ompatibility rule does not allow a tm step to move left over a REJ step.In the proof of Lemma 5.59, we used the weak ompatibility rule to move a tm step232



left over a sequene of steps from other threads. To apply this rule, we must showthat the sequene of steps ontains no REJ steps. Thus, removing the rejet stepsis required for the left-mover redution to sueed.We an ertainly argue that our hoie to remove all rejet steps is over-zealous. We ould ertainly organize redution so that we remove a rejet step onlyif we reah a position where a left-moving tm step is to its right. This ensuresthat we remove the only those rejet steps that absolutely must be removed for theredution to go through.In the proof of the �rst redution theorem, we also ignore any part of theoriginal exeution after the �nal aepting thread. The redued sequene withoutthis suÆx meets the requirements to be a redution of the original sequene, sothis does not ause problems with the proof. It would not be hard to extend theredution from Chapter 5 to redue a suÆx with no ACC steps (that is, an exeutionontaining only steps for rejeting threads) to an atomi exeution ontaining thesame sequene of rejeting deision steps as the original. As we have seen, rejetingthreads are two-phase, so the redution is straightforward.But even with these improvements, we still annot preserve weak fairness.Take the example from Figure 6.2. There annot be a weakly fair exeution thatis a redution of the partiular onurrent exeution that we show, beause in theonurrent exeution every thread for Semk :K rejets, but a step for this ation inan atomi exeution with the same starting on�guration always aepts. So thethreads for Semk :K annot appear in an atomi exeution.We de�ned weak ompatibility to have the minimum onditions that allowedthe redution theorem to go through. One hoie we made was to disard all rejetedthreads. To redue an exeution, and not remove rejeting threads, we need a ontrolrelation that allows tm steps to move left over a rejet or pm-rejet step.The format of the de�nition of � is similar to that for �. We �rst de�ne a233



ommutativity ondition on proedures.De�nition 6.10 For � 2Mt, and � 2 P,� sl � , h8 D ;E: D ;E 2 B ^ D 6= E: ( � 2 A ) aept(�)x tm(D ; �) ^rejet(�)x tm(D ; �) ) ^( � 2Mp ) pm-aept(E ; �)x tm(D ; �) ^pm-rejet(E ; �)x tm(D ; �) ) ^( � 2Mt ) tm(E ; �)x tm(D ; �) )iThe de�nition of strong left ommutativity di�ers from the de�nition of weak leftommutativity in that it requires ommutativity with both aepting and rejetingatomi steps, not just with aepting steps. If � sl �, then a tm step for � anmove left over any atomi step for �, aepting or rejeting. We have a ouple ofproperties of sl that are immediate from this de�nition.Theorem 6.11h8 �: � 2Mt: h8 � : � 2 Pp : � sl � ) � wl � i ^h8 � : � 2 Pt : � sl � � � wl � iiBelow we repeat the examples used for weak left ommutativity. The �rst exam-ples are for the box Sem from Figure 2.3. The �rst line shows that strong left
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ommutativity is truly a stronger relation than weak left ommutativity.:( Sem:P sl Sem:V )Sem :V sl Sem:VFor the �rst of these, the ondition that fails is, as may be expeted,pm-rejet(Sem :P) x tm(Sem :V )This fails beause a all to Sem:P immediately after a all to Sem :V alway aepts,so TwoStep( tm(Sem:V ) ; pm-rejet(Sem:P) ) = ;Also, a pm-rejet(Sem :P) is enabled in a on�guration in whih Sem:n = 0, and atm(Sem:V ) is enabled in any on�guration, so we have soTwoStep( pm-rejet(Sem :P) ; tm(Sem :V ) ) 6= ;So for any " 2 TwoStep( pm-rejet(Sem :P) ; tm(Sem:V ) ), we have Swap(") = ?.The ommutativity of Sem:V with itself follows from the orresponding result withwl, and Theorem 6.11.For the box Semk in Figure 6.2, we have:( Semk :P sl Semk :V ):( Semk :K sl Semk :V )The arguments for these are similar to the above argument for box Sem .
235



For the Bu� example from Figure 1.2, we have:( Bu� :get sl Bu� :put ):( Bu� :put sl Bu� :put )The �rst of these is shown using a similar argument to that for the �rst ase forSem, above. The seond follows from the negative result for wl and Theorem 6.11.We now de�ne the strong ompatibility relation.De�nition 6.12 (Strong ompatibility) For �; �0 2 A,� � �0 , h8 �; �0: � 2 Range(�) ^ �0 2 Range(�0): (� 2Mt ) �0 sl �) ^ (�0 2Mt ) � sl �0)iIf � � �0, we say that � is strongly ompatible with �0.For the ations in Figure 2.3, we have:( D :at � E :aq ):( D :at � E :rel )For the ations in Figure 6.2, we have:( Semk :K � D :a )For the ations in Figure 1.3, we have:( Prod :make � Cons :use )From these we see that strong ompatibility allows less onurreny that weak om-236



patibility. In partiular, for the Semk example, running the program under strongompatibility exludes the exeution in whih all threads for Semk :K rejet. Thereis no magi involved here. We have not found a way to run ations Semk :K and D :aonurrently while preserving fairness in redution. We are simply notiing wherethe problems arise, and de�ning suÆient onditions to exlude the problematiases. The redution rule for � allows a tm step to move left over REJ steps inaddition to the steps allowed by the weak ompatibility rule.Theorem 6.13 (Strong ompatibility rule)h8 L;L0; ": L;L0 2 Labm ^ L 6� end ^ L0 � tm ^" 2 TwoStep(L;L0) ^ " resp �: " �! Swap(")i6.6 The seond redution theoremWe now have the mahinery to show a redution that preserves weak fairness. Firstwe de�ne a rather more general ontrol relation, one that is part way between weakand strong ompatibility.It is often the ase that a program has a progress property beause of thepresene of a single ation. An example is the property unav(:Semk :b) in theprogram in Figure 6.2. To show that " 2 unav(:Semk :b), it is suÆient to haveWF(";Semk :K ). That is, we do not use WF(";D :a) in the proof. The argumentgiven is valid, even if there are no threads for D :a in ".For the example in Figure 6.1, to show that " 2 unav(:b), we show thatthere is an aepting thread in " for ation D :r , and that there is an aepting237



thread for ation D :s ourring later in ". For the �rst of these, MF(") is enough.So again, for this example, we do not require WF(";D :r ). We an show that if" 2 Z i, and MF(") and WF(";D :s), then " 2 unav(:b).As we saw above, strong ompatibility is a stringent requirement on ations,so an exeution running under this ontrol relation has restrited onurreny. Theabove observations suggest that we tailor the ontrol relation to the properties thatwe require of the program. That is, we �nd a subset of ations A0 suh that forany " 2 Z i where MF("), and WF(";A0), we an show that the " has the desiredproperties. The aim is to make the set A0 as small as possible. Having done this,we an relax the ontrol relation on the ations in A n A0. We de�ne a ontrolrelation that ensures that every onurrent exeution " suh that WF("), there isan atomi exeution "0 ontaining the same aept sequene as ", and for every� 2 A0, "0 ontains every deision step for � that is in ". Then we have MF("0),and WF("0;A0), as required.We show the redution for this more general ase. The redution for exeu-tions respeting � as the ontrol relation is a speial ase, when A0 = A. We �rstde�ne a ontrol relation relative to a set of ations.De�nition 6.14 For A0 � A,U(A0) = � [ f (�; �0) j � � �0 ^ f�; �0g disj (A0 \Ap) gThe ontrol relation U(A0) is � extended with pairs of weakly ompatible ations(�; �0) where neither ation is a partial ation in A0. The following theorem givessome properties of U(A0) that follow from this de�nition.
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Theorem 6.15h8 A0;A00: A00 � A: A0 � A00 ) U(A0) � U(A00)iU(A) = �U(At) = �The �rst part of the theorem shows that U(A0) is antimonotoni in it argument.The other two parts show that the extreme ases of this relation.Below we give the seond redution theorem. This theorem states that aonurrent exeution that is weakly fair and respets U(A0) an be redued to anatomi exeution that is minimally fair, and weakly fair in A0.Theorem 6.16 (Seond redution theorem)h8 ";A0: " 2 Complete(Z ) ^ WF(") ^ A0 � A ^ " resp U(A0): h9 "0 : "0 2 Z a : "; "0 ^ MF("0) ^ WF("0;A0) iiProofThe proof proeeds muh as in the proof of the �rst redution theorem. We donot repeat the details here, but we note the relevant hanges. We use the followinglemma.
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Lemma 6.17h8 C;A0: C 2 PC ^ A0 � A ^ Atives(C) \ A0 \ Ap ^ C resp U(A0): C resp �iThe lemma says that in any on�guration where a partial ation in A0 is ative, ifthe on�guration respets U(A0), then it also respets �.We state and prove a variant of Lemma 5.58 that says we an redue thebeginning of " to an exeution starting with an aept or rejet step, rather thanjust the former. The proof of this proeeds muh as with Lemma 5.58. Afterthe rendezvous redution and the right-mover redution, we do not use the rejetremoval step. Instead we proeed with the left-mover redution, this time reduingaepting and rejeting threads at the same time. Whenever there is a tm step tothe right of a REJ step, and the tm step must move left, there are two ases. If theREJ step is from a thread for an ation in A0, then, using Lemma 6.17, we have thatthe strong ompatibility rule is appliable, so we apply it to move the tm step overthe REJ step; otherwise, the REJ step is from a thread for an ation not in A0, sowe move any nonontiguous steps for the rejeting thread left, using the left-moverrule, and we remove these steps, using the atomi rule, and the rejet removal rule.This gives us the neessary redution. To show that the redued exetionhas the required fairness properties, we �rst note that the only time a REJ stepis removed from the exeution during the redution is when a tm step must moveleft. In this ase, the thread for the REJ is running onurrently with a ommittedthread. Also, the only REJ steps removed are rejet(�) steps for � 62 A0. Let"0 be the atomi redution of " produed by the proedure desribed above. Wehave NumA(") = NumA("0), so if NumA(") = 1, then MF("0). Otherwise, if240



NumA(") <1, then none of the rejeting threads in " with deision steps appearingafter the last ation-end step is removed by the above proess. Sine WF("), thereis at least one thread for eah ation among these, so MF("0). If � 2 A0, then noDEC step for � is removed during the redution. Sine WF("), there is an in�nitenumber of them in ", and thus an in�nite number in "0, giving WF("0; �).(End of proof)6.7 Sheduling TCB programsThe sheduler is the major omponent of an implementation of a TCB program. Thesheduler is a ontrol program that deides when to start a thread. The shedulerhas two tasks: to ensure that the exeution of the program respets the given ontrolrelation, and to ensure that a threads for di�erent ations are started often enoughto satisfy the given fairness ondition.The ontrol relation, as we have seen, is hosen to ensure that all treads areterminating, and that all onurrent exeutions are reduible to atomi exeutions.The fairness ondition, together with the ontrol relation, determines the fairnessondition satis�ed by the redued exeutions.For onurrent exeution, we restrit our attention to weak fairness. Mini-mally fair sequential exeutions have very weak progress properties. We have seenthat, with a weakly fair onurrent exeution, and an appropriate ontrol relation,we an guarantee a redution to an atomi exeution that is weakly fair for anysubset of the ations. For a minimally fair onurrent exeution, we an show onlyredution to a minimally fair atomi exeution.The requirements of the ontrol relation and the fairness ondition must behandled in onjuntion. To ensure that a thread for an ation � is started in�nitelyoften, we must ensure that in�nitely often there is no thread running for an ation�0 suh that (�; �0) is not in the ontrol relation.241



We assume that the sheduler only interats with the program to startthreads and end threads. To start a thread for ation D :a , the sheduler putsan entry for a in D 's all queue, aording to rule (ation-start). There are noation-start steps in the exeution, other than those taken by the sheduler. Toensure that the ontrol relation is respeted, the sheduler keeps a reord of theations with ative threads at eah point in the exeution. One a thread is started,the sheduler has no further inuene over its exeution. The boxes exeute inde-pendently aording to the semantis. When the thread ompletes, the shedulerupdates its reord of ative threads. The ompletion of a thread for ation � maymake it possible to start a thread for an ation �0, where (�; �0) is not in the ontrolrelation.We an abstrat the problem of sheduling as follows. A sheduler is aprogram that interats with an exeuting TCB program. The sheduler's task is toensure that every exeution respets a given ontrol relation and fairness ondition.The sheduler and the program interat using messages S (�), A(�), and R(�), for� 2 A. The sheduler sends S (�) messages to the exeuting program to start athread for ation �, and the exeuting program sends A(�) and R(�) messages tothe sheduler when a thread ompletes. The �rst is sent for an aepting threadand the seond for a rejeting thread. The program exeutes aording to the queuesemantis, with the following additions. An ation-start step is taken for ation �whenever an S (�) message is reeived from the sheduler, and when an ation-endor ation-rejet step is taken for this thread, an A(�) or R(�) message is sent tothe sheduler.For the sheduler's purposes, a thread is ative from the time the S (�) mes-sage is sent, to the time the orresponding A(�) or R(�) step is reeived from theexeuting program. The �rst of these is sent at a time deided by the sheduler.When the others are sent is outside of the sheduler's ontrol. We assume only that242



for every S (�) message sent, an A(�) or R(�) is reeived at some later time, thatis, that every thread terminates.We de�ned fairness onditions in terms of the sequene of deision steps.The sheduler has impreise information about the exat sequene of deision steps.We assume only that the deision step for a thread happens at some time betweenthe time the sheduler sends the start message for the thread, and when it reeivesthe orresponding reply. But note that we an reast the weak fairness ondition interms of the sheduler messages as follows.WF("; �) , the number of S (�) messages sent is in�niteThis is learly equivalent to the earlier de�nition of WF("; �), assuming that everythread terminates, and thus every thread that is started takes a deision step beforeit ends.This problem of sheduling an exeution that is weakly fair, and respets agiven ontrol relation, is an instane of a well-known problem in distibuted om-puting, the problem of the dining philosophers [5℄. This problem onerns a set ofphilosophers, eah of whih an be in one of three phases, thinking, hungry, or eating.We start with all philosophers in the thinking phase. A philosopher beomes hun-gry when it wishes to eat. There is a ontrol program that deides when a hungryphilosphers an start eating. We assume that every eating philosopher eventuallystops eating, an enters phase thinking. To eat again, the philosopher enters phasehungry and waits for the ontrol program to let it start eating.We restrit the behaviour of the ontrol program using an inompatibilitygraph. The graph ontains a node for eah philospher, and an edge between twonodes if the orresponding philosophers are not allowed to eat at the same time. Theproblem is then to write a ontrol program suh that ensures that every exeutionrespets the inompatibility graph, and every hungry philosopher eventually eats.243



The ations in a TCB program are the philosophers. For this ase, the eatingphase orresponds to the exeution of a thread for an ation. There is no need for athinking phase, sine when a thread for an ation � ompletes, the system is readyto start another thread for � as soon as it is able. That is, a philosopher that is noteating is hungry.The inompatibility graph is the omplement of the ontrol relation. Thereis an edge from the node for � to the node for �0 if (�; �0) is not in the ontrolrelation.There are several solutions to this problem, some de�ned in terms a singleontrol program, some de�ned in terms of a network of o�operating programs. In[25℄, Misra gives an algorithm for a Seuss sheduler that ensures weak fairness.
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Chapter 7
Conlusions
7.1 Summary of the main resultsThe three main theorems of this work, the omplete exeution theorem, and the tworedution theorems, give a framework for using the Seuss model.The omplete exeution theorem gives a set of neessary and suÆient on-ditions for an exeution to be omplete. The disussion following the theorem inChapter 4 gives guidelines for implementing a TCB system so that all exeutionsare omplete.The redution theorems show that a onurrent exeution respeting a givenontrol relations an be redued to an atomi exeution, where the exeutions havethe same sequene of aepting ations, and their on�guration sequenes are loselyrelated. The �rst redution theorem shows a redution without regard to fairness,and the seond theorem shows that we an trade onurreny for fairness onditionsin the redution.
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7.2 Future workBelow we present a number of areas for future researh stemming from the presentwork.7.2.1 Reasoning about Seuss programsWe argued in the introdution that reasoning about atomi exeutions of Seussprograms is simpler than reasoning diretly about onurrent exeutions. This is themotivation for the redution theorems. Given the theorems, the proof of orretnessof a Seuss program is separated into two parts. One is proving properties of atomiexeutions of a program, and the other is deriving properties of the onurrentexeutions from the atomi exeution properties.We also argued in the introdution that the struture of a Seuss program isdesigned to allow the appliation of several ommon tehniques for building orretprograms | hierarhial reasoning, ompositional reasoning, and program re�ne-ment. These an all be applied to reasoning about atomi exeutions.A logi for atomi exeutions is under development. The intention is todesign a logi that allows the spei�ation of a proedure to be derived from theproedure's ode, and the spei�ations of any methods alled in the ode.Before Seuss is a usable system for writing and proving programs, the rela-tionship between the properties of a onurrent exeution and the properties of itsatomi redution must be learly established. The disussion in Setion 5.5 showssome ideas for this.The properties of an atomi exeution an be expressed in terms of thevalues of program variables. Properties suh as \x � y is invariant" have a learinterpretation for atomi exeutions. This property is true of an atomi exeutionif x � y holds in every on�guration.Consider now a onurrent exeution of a program whose atomi exeution246



satis�es the above property. We annot laim that x � y holds in every on�gura-tion. From the disussion in Setion 5.5, we know only that the prediate holds inevery quiesent on�guration. This tells us nothing about an exeution that ontainsno quiesent on�gurations.The example using the probe ation suggests that properties of onurrentexeutions may be best expressed not only in terms of the values of program vari-ables, but also in terms of the aeptane or rejetion of a thread for a given ation.If we add ation � to the program, where � is a probe for x � y, and exeute theprogram so that � does not exeute onurrently with ations that hange the valueof x � y, then the property \every thread for ation � aepts" is a onsequene ofthe invariane of x � y in the atomi exeutions.7.2.2 Conurrent terminationThe problem of identifying a ontrol relation that ensures that all threads in a TCBprogram are terminating is nontrivial. One approah is to de�ne \noninterferene"onditions between ations, just as we use ommutativity onditions to ensure thatations do not interfere with eah other's exeution for the purposes of redution.7.2.3 Negative alternativesAs noted in Setion 1.4, we hoose not to implement negative alternatives in TCB.Extending the syntax and semantis of the language to inlude negative alternativesis fairly straightforward. The rejet removal rule is not valid if a rejeting thread anhange the values of the program variables, so this suggests that we must use strongompatibility to ensure redution for ations that may all negative alternatives.
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Appendix A
Semantis for TCB languagesA.1 Rendezvous semantis for TCBtot(t-ation-start-rdv) C:D = (idle; �;?)a 2 TotAts(D)0 = (a)�0 = Code(D :a)C =) C [D 7! (aept; �; 0; �0)℄(total-all-rdv) C:D = (aept; �0; 0; �0)�0 = E :m(~e; ~x ); �̂C:E = (idle; �1;?)~v = [[~e℄℄�0~y = InParam(E :m)~z = OutParam(E :m)�01 = � [~z 7! ~?℄ [~y 7! ~v ℄01 = (m ;D)�01 = Code(E :m)C =) C�D 7! (wait; �0; 0; �0)E 7! (aept; �01; 01; �01))�
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(loal-step) C:D = (aept; �; ; �)(�; �) �! (�0; �0)C =) C [D 7! (aept; �0; ; �0)℄(pro-term-rdv) C:D = (aept; �; ;?) = (p;Q)~z = OutParam(D :p)�0 = � � BoxVars(D)~v = [[~z ℄℄�0 = (p;Q ; ~v)C =) C [D 7! (return; �0; 0)℄(ation-end-rdv) C:D = (return; �; ) = (a)C =) C [D 7! (idle; �;?)℄(total-return-rdv) C:D = (wait; �0; 0; �0)�0 = E :m(~e; ~x ); �00C:E = (return; �1; 1)1 = (m ;D ; ~v)�00 = �0 [~x 7! ~v ℄C =) C�D 7! (aept; �00; 0; �00)E 7! (idle; �1;?) �
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A.2 Rendezvous semantis for TCB(p-ation-start-rdv) C:D = (idle; �;?)a 2 PartAts(D)0 = (a)C =) C [D 7! (guard; �; 0)℄(t-ation-start-rdv) C:D = (idle; �;?)a 2 TotAts(D)0 = (a)�0 = Code(D :a)C =) C [D 7! (aept; �; 0; �0)℄(guard-test-rdv) C:D = (guard; �0; 0)p = Pro()Alt(D :p; �0) = (E :m(~e; ~x ); �)�00 = E :m(~e; ~x ); �̂C:E = (idle; �1;?)~v = [[~e℄℄�0~y = InParam(E :m)~z = OutParam(E :m)�01 = �1 [~z 7! ~?℄ [~y 7! ~v ℄01 = (m ;D)C =) C�D 7! (pwait; �0; 0; �00)E 7! (guard; �01; 01) �
(total-all-rdv) C:D = (aept; �0; 0; �0)�0 = E :m(~e; ~x ); �̂C:E = (idle; �1;?)~v = [[~e℄℄�0~y = InParam(E :m)~z = OutParam(E :m)�01 = � [~z 7! ~?℄ [~y 7! ~v ℄01 = (m;D)�01 = Code(E :m)C =) C�D 7! (wait; �0; 0; �0)E 7! (aept; �01; 01; �01))�250



(guard-aept) C:D = (guard; �; )p = Pro()Alt(D :p; �) = (?; �0)C =) C [D 7! (aept; �; ; �0)℄(guard-rejet) C:D = (guard; �; )p = Pro()Alt(D :p; �) = ?�0 = � � BoxVars(D)C =) C [D 7! (rejet; �0; )℄(loal-step) C:D = (aept; �; ; �)(�; �) �! (�0; �0)C =) C [D 7! (aept; �0; ; �0)℄(pro-term-rdv) C:D = (aept; �; ;?) = (p;Q)~z = OutParam(D :p)�0 = � � BoxVars(D)~v = [[~z ℄℄�0 = (p;Q ; ~v)C =) C [D 7! (return; �0; 0)℄
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(ation-end-rdv) C:D = (return; �; ) = (a)C =) C [D 7! (idle; �;?)℄(ation-rejet-rdv) C:D = (rejet; �; ) = (a)C =) C [D 7! (idle; �;?)℄(test-aept-rdv) C:D = (pwait; �0; 0; �0)�0 = E :m(~e; ~x ); �00C:E = (return; �1; 1)1 = (m;D ; ~v)�00 = �0 [~x 7! ~v ℄C =) C�D 7! (aept; �00; 0; �00)E 7! (idle; �1;?) �
(test-rejet-rdv) C:D = (pwait; �0; 0; �0)�0 = E :m(~e; ~x ); �̂C:E = (rejet; �1; 1)1 = (m ;D)�00 = �0 � BoxVars(D)C =) C�D 7! (rejet; �00; 0)E 7! (idle; �1;?) �

(total-return-rdv) C:D = (wait; �0; 0; �0)�0 = E :m(~e; ~x ); �00C:E = (return; �1; 1)1 = (m ;D ; ~v)�00 = �0 [~x 7! ~v ℄C =) C�D 7! (aept; �00; 0; �00)E 7! (idle; �1;?) �
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A.3 Queue semantis for TCB(ation-start) C:D = (�; �; ; �)a 2 Ations(D)0 =  / (a)C =) C [D 7! (�; �; 0; �)℄(guard-test) C:D = (guard; �0; 0)p = Pro()Alt(D :p; �0) = (E :m(~e; ~x ); �)�00 = E :m(~e; ~x ); �̂C:E = (�1; �1; 1; �1)~v = [[~e℄℄�001 = 1 / (m ;D ; ~v)C =) C�D 7! (pwait; �0; 0; �00)E 7! (�1; �1; 01; �1) �
(total-all) C:D = (aept; �0; 0; �0)�0 = E :m(~e; ~x ); �̂C:E = (�1; �1; 1; �1)~v = [[~e℄℄�001 = 1 / (m;D ; ~v)C =) C�D 7! (wait; �0; 0; �0)E 7! (�1; �1; 01; �1) �
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(p-ation-init) C:D = (idle; �; )p = Pro()p 2 PartAts(D)C =) C [D 7! (guard; �; )℄(p-method-init) C:D = (idle; �; ) = (p;Q ; ~v) . ̂p 2 PartMeths(D)~y = InParam(D :p)~z = OutParam(D :p)�0 = � [~z 7! ~?℄ [~y 7! ~v ℄0 = (p;Q) . ̂C =) C [D 7! (guard; �0; 0)℄(t-ation-init) C:D = (idle; �; )p = Pro()p 2 TotAts(D)�0 = Code(D :p)C =) C [D 7! (aept; �; ; �0)℄(t-method-init) C:D = (idle; �; ) = (p;Q ; ~v) . ̂p 2 TotMeths(D)~y = InParam(D :p)~z = OutParam(D :p)�0 = � [~z 7! ~?℄ [~y 7! ~v ℄0 = (p;Q) . ̂�0 = Code(D :p)C =) C [D 7! (aept; �0; 0; �0)℄
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(guard-aept) C:D = (guard; �; )p = Pro()Alt(D :p; �) = (?; �0)C =) C [D 7! (aept; �; ; �0)℄(guard-rejet) C:D = (guard; �; )p = Pro()Alt(D :p; �) = ?�0 = � � BoxVars(D)C =) C [D 7! (rejet; �0; )℄(loal-step) C:D = (aept; �; ; �)(�; �) �! (�0; �0)C =) C [D 7! (aept; �0; ; �0)℄(pro-term) C:D = (aept; �; ;?) = (p;Q) . ̂~z = OutParam(D :p)�0 = � � BoxVars(D)~v = [[~z ℄℄�0 = (p;Q ; ~v) . ̂C =) C [D 7! (return; �0; 0)℄
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(ation-end) C:D = (return; �; ) = (a) . 0C =) C [D 7! (idle; �; 0)℄(ation-rejet) C:D = (rejet; �; ) = (a) . 0C =) C [D 7! (idle; �; 0)℄(test-aept) C:D = (pwait; �0; 0; �0)�0 = E :m(~e; ~x ); �00C:E = (return; �1; 1)1 = (m ;D ; ~v) . 01�00 = �0 [~x 7! ~v ℄C =) C�D 7! (aept; �00; 0; �00)E 7! (idle; �1; 01) �
(test-rejet) C:D = (pwait; �0; 0; �0)�0 = E :m(~e; ~x ); �̂C:E = (rejet; �1; 1)1 = (m;D) . 01�00 = �0 � BoxVars(D)C =) C�D 7! (rejet; �00; 0)E 7! (idle; �1; 01) �

(total-return) C:D = (wait; �0; 0; �0)�0 = E :m(~e; ~x ); �00C:E = (return; �1; 1)1 = (m ;D ; ~v) . 01�00 = �0 [~x 7! ~v ℄C =) C�D 7! (aept; �00; 0; �00)E 7! (idle; �1; 01) �
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Appendix B
Additional proofs
B.1 Proofs for Chapter 3B.1.1 Proof of Theorem 3.33We showh8 C;C0 : C 2 PC ^ C =) C0 : C0 2 PC iAssume that C =) C0 and that C is well-formed. We show that C0 is loallywell-formed, all orret, and well-founded.C0 is loally well-formedBy assumption, C is loally well-formed. From Theorem 3.32 all nonlous boxeshave the same on�guration in C0 as they do in C, and they are thus well-formed.For the loi of the rule, we hek that eah of the onditions of De�nition 3.5 issatis�ed by the lous box on�guration(s) in C0.For Condition 1, we note that, for this ondition to be violated, the stepfrom C to C0 must leave a lous D with a phase other than idle, and an empty allqueue. Sine C:D is well-formed before the step, the step must involve a transition257



from a nonempty queue to an empty queue, or a transition from idle to some otherphase. The only rules that an hange a nonempty all queue to an empty one are(ation-end)(ation-rejet)(test-aept)(test-rejet)(total-return)In eah of these rules, the soure is left in phase idle. The only rules that move abox out of the idle phase are(p-ation-init)(p-method-init)(t-ation-init)(t-method-init)In eah of these, the all queue must be nonempty before the rule, and it is nothanged by the rule.For Condition 2, we note that every new box on�guration introdued by therules obeys this ondition.For Condition 3, we note that the only rules that leave a box in phase pwaitor wait are(total-all)(guard-test)and that both of these rules leave the all with a method all at the head of its ode.
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For Condition 4, we letP = fguard;pwait;rejetgWe note that the rules that leave a box's phase in P are(p-pro-init)(guard-rejet)(guard-test)(test-rejet)We note that none of these hanges the proedure in the �rst entry in the all queue.Eah of the rules, other than the �rst, requires that its lous's phase be in P beforethe step, and the �rst rule is only appliable if the proedure in the �rst entry inthe all queue is partial.For Condition 5, we note that the rules that leave a box in phase return orrejet are(pro-term)(guard-rejet)(test-rejet)and that these set the domain of the loal state for the box to the required value.The rules that leave a box in phase idle are(ation-end)(ation-rejet)(test-aept)(test-rejet)(total-return) 259



In eah of these rules, the agent is in phase return or idle prior to the step.For Condition 6, We note that the only hanges to the domain of the loalstate are to extend it with parameters, or to reset it to the box variables.For Condition 7, we note that the program is assumed to be well-formed.In partiular, no alls to ations appear in the ode for a box, and no box alls amethod on itself. So if an entry is put on a all queue with a soure other than ?,the all is for an ation on the agent. Rule (ation-start) is the only rule that anput a all for an ation in a all queue, and this rule orretly gives the soure as ?.For Condition 8, we note that no rule inreases the number of all queueentries by more than one. So if box C0:D : has more than one entry for box E ,there is an entry for E in C:D :. Sine C is all orret, this means that C:E :� 2fpwait;waitg. There is no rule that allows box E to plae an entry in a all queuewhen it is one of these phases, so there an be at most one entry for E in D 's allqueue. For Condition 9, We note that an entry in the all queue is not hanged untilit beomes the urrent proedure all, so we need only show that every entry obeysthis ondition when it is added to the queue. For ations, rule (ation-start) setsthe parameter values to ?, whih satis�es the ondition. For a method all, the rules(total-all), and (guard-test), evaluate the parameter values from the expressionsin the method all statement, and by the type rules, these are of the orret type.For Condition 10, we note that the only rule that put a box in phase returnis (pro-term), and this rule sets the parameter values to a list that mathes thetype of the output parameters.C0 is all orretWe note that no rule hanges the proedure name or soure omponent of any allqueue entry, so we on�ne our attention to the rules that add and remove all queue260



entries for methods. The rules that add method all entries are(total-all)(guard-test)For both of these, the soure is not in a waiting phase in C, but it is in C0, and thereis a new entry in the agent's all queue in C0. We note that this is the orret typeof proedure, sine (total-all) is appliable only when a method all statement isenountered in the body ode of the proedure, and, by the type rules, this must bea total method, and (guard-test) is appliable only when the alternative funtionreturns a test, and, again by the type rules, this must be a partial method.C0 is well-foundedWe note from the rules that dom(K :C0) is either the same as dom(K :C), or it hasone member more or less, and that if D 2 dom(K :C0), then D 62 dom(K :C), orK :C0:D = K :C:D . That is, no rule hanges the \is exeuting for" relation otherthan to add or remove an entry. Thus we only need hek rules that hange thedomain of this funtion.From the above, we have that C0 is loally well-formed and all orret, soTheorem 3.15 gives us that a step that removes an entry in K :C, removes an entryfor a D suh that D 62 rng(K :C). Thus, if dom(K :C0) has one fewer entry thandom(K :C), the entry removed is at the beginning of a all stak, and thus all valuesused to reah ? for all the boxes in dom(K :C0) are still present.The rules that add a member to dom(K :C) are(p-pro-init)(t-ation-init)(t-method-init) 261



Suppose one of these rules is applied with lous D . We havetrue� f Theorem 3.15 gK :C0:D = ? _ K :C0:D 2 dom(K :C0)� f C0:D is well-formed, so K :C0:D 6= D gK :C0:D = ? _ K :C0:D 2 dom(K :C)� f C is well-founded gK :C0:D = ? _ h9 k : k > 0 : (K :C)k:(K :C0:D) = ? i) f K :C:E = K :C0:E for E 2 dom(K :C) gK :C0:D = ? _ h9 k : k > 0 : (K :C0)k:(K :C0:D) = ? i� f De�nition 3.17, twie g(K :C0)1:D = ? _ h9 k : k > 0 : (K :C0)k+1:D = ? i� f one-point rule; hange range gh9 k : k = 1 : (K :C0)k:D = ? i _h9 k : k > 1 : (K :C0)k:D = ? i� f ombine ranges gh9 k : k > 0 : (K :C0)k:D = ? iThus C0 is well-founded.B.1.2 Proof of Theorem 3.51We use the following lemmas.Lemma B.1h8 C;L;L0: C 2 PC ^ L;L0 2 Lab ^ L 6= L0 ^ L, L0 enabled in C: CLoi(L) disjCLoi(L0)i 262



ProofAssume we have C 2 PC , and L;L0 2 Lab, where L 6= L0, and L , L0 are enabled inC. We haveD 2 CLoi(L)� f De�nition 3.45 gL 2 Cond(D)) f L, L0 enabled in C, L 6= L0, Theorem 3.47 gL0 62 Cond(D)� f De�nition 3.45 gD 62 CLoi(L0)Thus CLoi (L) disjCLoi(L0), as required.(End of proof)Lemma B.2h8 L;C;C0: L 2 Lab ^ C;C0 2 PC ^ h8 D : D 2 CLoi (L) : C:D v C0:D i: L is enabled in C ) L is enabled in C0iProofSuppose L 2 Lab, C 2 PC . From Theorem 3.46, only the on�gurations of itsonditional loi are relevant for determining if L is enabled in C. Suppose D 2CLoi(L), and let C:D = (�; �; ; �), and  v 0. We haveL is enabled in C) f Theorem 3.50 g:(C:D :� = idle ^ C:D : = ?)� f C:D 2 BC (D), De�nition 3.5 g263



C:D : 6= ?) f  v 0 g�rst() = �rst(0)Thus, if L is enabled in C, then �rst() = �rst(0). We observe from Table 3.3that in eah ase where  is used in the ondition, �rst() is the only element of that is used, either diretly, or in Pro(), or via funtions K :C and W :C, or theirsubfuntions. Thus, if L is enabled in C, andC0 = C [D 7! (�; �; 0; �)℄then L is enabled in C0. If L has a single onditional lous we are done. If not, weapply this argument twie, one for eah onditional lous.(End of proof)Lemma B.3h8 L;C;C0;D : L 2 Lab ^ ChLiC0 ^ D 2 ULoi(L) : C:D v C0:D iProofFrom the rules, we see that in eah of the ases where D is an unonditional lousfor step L, the only hange to D 's on�guration after the step is that an entry hasbeen added to the end of its all queue, so the value of the all queue before thestep is a pre�x of its value after the step.(End of proof)Lemma B.4h8 L;C;C0;D : L 2 Lab ^ ChLiC0 ^ D 62 CLoi(L) : C:D v C0:D iProof 264



Assume L 2 Lab, and ChLiC0. We haveD 62 CLoi(L)� f De�nition 3.45 gD 62 Loi(L) _ D 2 ULoi(L)) f ChLiC0, Theorem 3.32, Lemma B.3 gC:D = C0:D _ C:D v C0:D� f v is reexive gC:D v C0:D(End of proof)For the proof of Theorem 3.51, we showh8 L;C;C0;D: L 2 Lab ^ ChLiC0 ^ D 2 B ^ Enabled(C;D) 62 f?;Lg: Enabled(C;D) = Enabled(C0;D)iAssume we have L 2 Lab, C and C0 suh that ChLiC0, and D 2 B, and letL0 = Enabled(C;D), where L0 62 f?;Lg. Note that the result will follow if we anshow that L0 is enabled in C0, sine at most one onditional step for D is enabledin C0. D 2 CLoi(L0)) f L 6= L0, L and L0 enabled in C, Lemma B.1 gD 62 CLoi(L)) f Lemma B.4 gC:D v C0:DThus we have h8 D : D 2 CLoi (L0) : C:D v C0:D i. Sine L0 is enabled in C,Lemma B.2 implies L0 is enabled in C0, as required.265



B.1.3 Proof of Theorem 3.14We showh8 C;D ;E: C 2 ProgCon�g ^ C is loally well-formed and all orret ^D ;E 2 dom(K :C) ^ K :C:D = K :C:E: K :C:D = ? _ D = EiAssume C 2 ProgCon�g is loally well-formed and all orret, D ;E 2 dom(K :C),and K :C:D = K :C:E . We haveK :C:D 6= ?) f Let D 0 = Soure(C:D :); K :C:D = K :C:E gSoure(C:D :) = D 0 ^ Soure(C:E :) = D 0) f De�nition 2.23 gh9 m :: (m ;D 0) 2 C:D : i ^ h9 m 0 :: (m 0;D 0) 2 C:E : i) f Theorem 3.12, D 0 2 B gD = EThus K :C:D 6= ? ) D = Ewhih is equivalent toK :C:D = ? _ D = Eas required.
266



B.1.4 Proof of Theorem 3.15We use the following lemmas.Lemma B.5h8 C;D: C 2 ProgCon�g ^ D 2 dom(K :C): K :C:D = Soure(C:D :)iProofImmediate from the de�nitions.(End of proof)Lemma B.6h8 C;D: C 2 ProgCon�g ^ C is loally well-formed ^ D 2 B: D 2 dom(K :C) 6� C:D :� = idleiProofAssume C 2 ProgCon�g , C is loally well-formed, and D 2 B.C:D :� 6= idle� f C is loally well-formed, so C:D is well-formed gC:D :� 6= idle ^ C:D : 6= ?� f De�nitions 2.23, 2.19 3.5, and Assumption 2.18 gC:D :� 6= idle ^(Pro(C:D :) 2 PartMeths(D) _ Pro(C:D :) 2 TotMeths(D))267



� f distribute g(C:D :� 6= idle ^ Pro(C:D :) 2 PartMeths(D)) _(C:D :� 6= idle ^ Pro(C:D :) 2 TotMeths(D))� f De�nition 3.13 gD 2 dom(Kp:C) _ D 2 dom(Kt :C)� f De�nition 3.13 gD 2 dom(K :C)(End of proof)For the proof of Theorem 3.15, we showh8 C;D: C 2 ProgCon�g ^ C is loally well-formed and all orret ^D 2 dom(K :C): K :C:D = ? _ K :C:D 2 dom(K :C)iAssume C 2 ProgCon�g is loally well-formed and all orret, and D 2 dom(K :C).As with Theorem 3.14, we showK :C:D 6= ? ) K :C:D 2 dom(K :C)Assume K :C:D 6= ?, and let K :C:D = E , for some E 2 B. We havetrue� f K :C:D = E , Lemma B.5 gE = Soure(C:D :)) f De�nition 2.23 gh9 m :: (m ;E ) 2 C:D : i) f C is all orret, E 2 B g268



C:E :� 2 fpwait;waitg) f C is loally well-formed, Lemma B.6 gE 2 dom(K :C)B.1.5 Proof of Theorem 3.16We use the following lemmas.Lemma B.7h8 C : C 2 ProgCon�g : dom(Kp:C) \ dom(Kt :C) = ; iProofImmediate from the de�nitions, sine PartMeths(D) \ TotMeths(D) = ;.(End of proof)Lemma B.8h8 C;D: C 2 ProgCon�g ^ C is loally well-formed and all orret^ D 2 B: (D 2 rng(Kp:C) ) C:D :� = pwait) ^(D 2 rng(Kt :C) ) C:D :� = wait)iProofAssume C 2 ProgCon�g is loally well-formed and all orret, and D 2 B. Weprove the two onjunts of the term separately. For the �rst part, assume D =Kp:C:E , for some E 2 B.true 269



� f Kp:C:E = D , De�nition 3.13 gh9 m; ~v: m 2 PartMeths(E ) ^ ~v 2 Val�: �rst(C:E :) = (m ;D ; ~v)i) f De�nition 3.1 gh9 m : m 2 PartMeths(E ) : (m ;D) 2 C:E : i) f C is all orret gC:D :� = pwaitThe proof for the seond onjunt is similar.(End of proof)For the proof of Theorem 3.16, we showh8 C: C 2 ProgCon�g ^ C is loally well-formed and all orret: rng(Kp:C) disj dom(Kt :C)iAssume C 2 ProgCon�g is loally well-formed and all orret. Sinedom(Kt :C) � Bit is suÆient to show that, for any D 2 B,D 2 rng(Kp:C) ) D 62 dom(Kt :C)Assume D 2 B. We haveD 2 rng(Kp:C)) f Lemma B.8 g 270



C:D :� = pwait� f C:D is well-formed gC:D :� = pwait ^ Pro(C:D :) 2 Partials(D)) f De�nition 3.13 gD 2 dom(Kp:C)) f Lemma B.7 gD 62 dom(Kt :C)B.2 Proofs for Chapter 4B.2.1 Proof of Theorem 4.7We showh8 ": " 2 Complete(Z ): h8 D ; i: D 2 B ^ 0 � i � j"j: h9 j : i � j � j"j : "[j℄:D :� = idle iiiAssume " 2 Complete(Z ), D 2 B, and 0 � i < j"j. If "[i℄:D :� = idle, then we anhoose j = i, and we are done. Assume "[i℄:D :� 6= idle. If E is the root box forthe urrent all in D in "[i℄, then E is urrently exeuting an ation all. Sine "is omplete, this ation all ompletes at some point. Before it does so, the urrentproedure all in D must omplete. If the last step for this proedure all is step k,then "[k + 1℄:D :� = idle. Choose j = k + 1.271



B.2.2 Proof of Theorem 4.8We use the following lemmas.Lemma B.9h8 C : C 2 PC : Atives(C) = ; � qt(C) iProofAssume C 2 PC . If qt(C), then all all queues are empty, so there are no ativeation alls. If there are no ative ation alls, sine C is well-founded, there an beno ative method alls. Thus all all queues are empty, and qt(C).(End of proof)De�nition B.10 For D 2 B,A(D) , f � j � 2 A ^ Box (�) = D gLemma B.11h8 ";D: " 2 Z ^ j"j <1 ^ qt(Start (")) ^ D 2 B: NumStarts(";D) = NumEnds(";D) � Atives(Final(")) disj A(D)iProofAssume " 2 Z , j"j < 1, qt(Start(")), and D 2 B. Eah ation-start(D) stepin " adds a all for � 2 A(D) to D 's all queue, and eah ation-end(D) oration-rejet(D) step removes a all for an � 2 A(D) from D 's all queue. No othersteps add all for ations to D 's all queue. Thus NumStarts(";D)�NumEnds(";D)is the number of ation alls in D 's all queue at the end of ". The result follows272



from this.(End of proof)For the proof of Theorem 4.8, we showh8 " : " 2 Z ^ j"j <1 : Complete(") � qt(Start(")) ^ qt(Final(")) iAssume " 2 Z , and j"j <1. We haveComplete(")� f De�nition 4.6 gProper (") ^ h8 D : D 2 B : NumStarts(";D) = NumEnds(";D) i� f Proper (")) qt(Start(")), j"j <1, Lemma B.11 gProper (") ^ h8 D : D 2 B : Atives(Final (")) disj A(D) i� f Property of disj gProper (") ^ Atives(Final (")) disj h[ D : D 2 B : A(D) i� f De�nition B.10 gProper (") ^ Atives(Final (")) disj A� f Atives(Final (")) � A gProper (") ^ Atives(Final (")) = ;� f Lemma B.9 gProper (") ^ qt(Final ("))� f De�nition 4.4, j"j < infty gqt(Start (")) ^ qt(Final (")) ^h8 D : D 2 B : Enabled(Final (");D) = ? i� f Seond onjunt implies third, by Theorem 3.50 gqt(Start (")) ^ qt(Final ("))
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B.2.3 Proof of Theorem 4.12We use the following lemmas.Lemma B.12h8 C;C0;D ;E: C;C0 2 PC ^ C =) C0 ^ W :C:D = E ^ E 2 dom(W :C): W :C0:D = EiProofAssume C;C0 2 PC , and L 2 Lab, suh that ChLiC0. Also assume W :C:D = E ,and E 2 dom(W :C). We havetrue� f assumption gD ;E 2 dom(W :C)) f De�nition 3.27 gC:D :�;C:E :� 2 fpwait;waitg� f assumption gW :C:D = E ^ C:D :�;C:E :� 2 fpwait;waitg) f Theorem 3.50, De�nition 3.48 gEnabled(C;D) = ?) f L enabled in C gD 62 CLoi(L)) f ChLiC0, Lemma B.4 gC:D v C0:D) f De�nition 3.6 gC:D :� = C0:D :� ^ C:D: = C0:D :274



) f De�nition 3.27 gW :C0:D =W :C:D� f W :C:D = E gW :C0:D = E(End of proof)Lemma B.13h8 "; T; k: " 2 Z ^ T 2 B+ ^ 0 � k � j"j ^ T is a knot in "[k℄: h8 i : k � i � j"j : T is a knot in "[i℄ iiProofAssume " 2 Z , T 2 B+, and T is a knot in "[k℄. We prove the result by indutionon i. For the basis, i = k, we have the result by assumption. For the indution step,we have, for k � i < j"j,T is a knot in "[i℄� f De�nition 4.11 gh8 n : 0 � n < jT j : W :"[i℄:T [n℄ = T [n� 1℄ i� f de�nition of domain gh8 n: 0 � n < jT j: W :"[i℄:T [n℄ = T [n� 1℄ ^ T [n℄ 2 dom(W :"[i℄)i� f 8 over ^ gh8 n : 0 � n < jT j : W :"[i℄:T [n℄ = T [n� 1℄ i ^h8 n : 0 � n < jT j : T [n℄ 2 dom(W :"[i℄) i275



� f range is not empty gh8 n: 0 � n < jT j: W :"[i℄:T [n℄ = T [n� 1℄ ^h8 n : 0 � n < jT j : T [n℄ 2 dom(W :"[i℄) ii) f instantiate gh8 n: 0 � n < jT j: W :"[i℄:T [n℄ = T [n� 1℄ ^ T [n� 1℄ 2 dom(W :"[i℄)i) f Lemma B.12 gh8 n : 0 � n < jT j : W :"[i+ 1℄:T [n℄ = T [n� 1℄ i� f De�nition 4.11 gT is a knot in "[i+ 1℄(End of proof)Lemma B.14h8 "; k;D ;E: " 2 Z ^ 0 � k � j"j ^ D 2 B ^ W :"[k℄:D = E ^h8 i : k � i � j"j : E 2 dom(W :"[i℄) i: h8 i : k � i � j"j : W :"[i℄:D = E iiProofAssume " 2 Z , 0 � k � j"j, D 2 B, W :"[k℄:D = E andh8 i : k � i � j"j : E 2 dom(W :"[i℄) i276



We have, for k � i < j"j,W :"[i + 1℄:D = E( f Lemma B.12 gW :"[i℄:D = E ^ E 2 dom(W :"[i℄)� f E 2 dom(W :"[i℄) by assumption gW :"[i℄:D = EThus we have W :"[k℄:D = E , and W :"[i℄:D = E )W :"[i + 1℄:D = E , for k � i <j"j, so the result follows by indution.(End of proof)Lemma B.15h8 ";D ; k; n: " 2 Z ^ D 2 B ^ 0 � k � j"j ^0 � n ^ (W :"[k℄)n:D is in a knot in "[k℄: h8 i : k � i < j"j : (W :"[i℄)n:D is in a knot in "[i℄ iiProofAssume " 2 Z , and D 2 B. We prove the result by indution on n.Basis: n = 0For 0 � k � j"j, we have(W :"[i℄)0:D is in a knot in "[k℄� f de�nition gD is in a knot in "[k℄) f Lemma B.13 gh8 i : k � i � j"j : D is in a knot in "[i℄ i277



� f de�nition gh8 i : k � i � j"j : (W :"[i℄)0:D is in a knot in "[i℄ iIndution stepAssume as the indution hypothesis, for 0 � n,h8 D ; k: D 2 B ^ 0 � k � j"j ^ (W :"[k℄)n:D is in a knot in "[k℄: h8 i : k � i � j"j : (W :"[i℄)n:D is in a knot in "[i℄ iiSuppose W :"[k℄:D = E , for 0 � k � j"j. We have(W :"[k℄)n+1:D is in a knot in "[k℄� f de�nition g(W :"[k℄)n:E is in a knot in "[k℄) f indution hypothesis gh8 i : k � i � j"j : (W :"[i℄)n:E is in a knot in "[i℄ i� f de�nition of domain gh8 i: k � i � j"j: (W :"[i℄)n:E is in a knot in "[i℄ ^ E 2 dom(W :"[i℄)i� f 8 over ^ gh8 i : k � i � j"j : (W :"[i℄)n:E is in a knot in "[i℄ i ^h8 i : k � i � j"j : E 2 dom(W :"[i℄) i) f Lemma B.14, W :"[k℄:D = E gh8 i : k � i � j"j : (W :"[i℄)n:E is in a knot in "[i℄ i ^h8 i : k � i � j"j : W :"[i℄:D = E i278



) f 8 over ^ gh8 i: k � i � j"j: W :"[i℄:D = E ^ (W :"[i℄)n:E is in a knot in "[i℄i) f de�nition gh8 i : k � i � j"j : (W :"[i℄)n+1:D is in a knot in "[i℄ i(End of proof)For the proof of Theorem 4.12, we showh8 "; k;D: " 2 Z ^ 0 � k � j"j ^ D 2 B ^ dl("[k℄;D): h8 i : k � i � j"j : dl("[i℄;D) iiAssume " 2 Z , 0 � k � j"j, and D 2 B. We havedl("[k℄;D)� f De�nition 4.11 gh9 n : 0 � n : (W :"[k℄)n:D is in a knot in "[k℄ i) f Lemma B.15 gh9 n: 0 � n: h8 i : k � i � j"j : (W :"[k℄)n:D is in a knot in "[i℄ ii) f interhange quanti�ations g
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h8 i: k � i � j"j: h9 n : 0 � n : (W :"[k℄)n:D is in a knot in "[i℄ ii� f De�nition 4.11 gh8 i : k � i � j"j : dl("[i℄;D) iB.2.4 Proof of Theorem 4.14We use the following lemmas.Lemma B.16h8 C;D: C 2 PC ^ D 2 B ^ dl(C;D): D 2 dom(W :C:D) ^ dl(C;W :C:D)iProofImmediate from De�nitions 3.27 and 4.11.(End of proof)Lemma B.17h8 C;D: C 2 PC ^ D 2 B: dl(C;D) � h8 n : 0 � n : (W :C)n:D is de�ned iiProof 280



Assume C 2 PC , and D 2 B. We prove the equivalene by proving the impliationin both diretions.Case ):We have true� f Lemma B.16 gdl(C;D) ) D 2 dom(W :C) ^ dl(C;W :C:D)� f de�nition gdl(C;D) ) W :C:D is de�ned ^ dl(C;W :C:D)Now we have, for any deadloked D ,true� f above gh8 n: 0 � n ^ dl(C; (W :C)n:D): (W :C)n+1:D is de�ned ^ dl(C; (W :C)n+1:D)i) f 8 antimonotoni in the range gh8 n: 0 � n ^ (W :C)n:D is de�ned ^ dl(C; (W :C)n:D): (W :C)n+1:D is de�ned ^ dl(C; (W :C)n+1:D)i� f De�nition 3.17, assumption g(W :C)0:D is de�ned ^ dl(C; (W :C)0:D) ^
281



h8 n: 0 � n ^ (W :C)n:D is de�ned ^ dl(C; (W :C)n:D): (W :C)n+1:D is de�ned ^ dl(C; (W :C)n+1:D)i) f indution gh8 n : 0 � n : (W :C)n:D is de�ned ^ dl(C; (W :C)n:D) i) f weaken term gh8 n : 0 � n : (W :C)n:D is de�ned iCase (:Assumeh8 n : 0 � n : (W :C)n:D is de�ned iConsider the in�nite sequene U 2 B+,U = hn : 0 � n : (W :C)n:D iEvery element in this sequene is de�ned, by assumption. Sine the sequene isin�nite, and B is �nite, the sequene ontains repeated values. We hoose s and tsuh that s < t, and U [s℄ = U [t℄. Then the sequene U [s : : : t � 1℄ is a knot in C,and (W :C)s:D 2 U [s : : : t� 1℄. Thus dl(C;D).(End of proof)Lemma B.18h8 C;D : C 2 PC ^ D 2 B : :(D 2 rng(W :C) ^ qt(C:D)) iProof 282



Assume C 2 PC , and D 2 B. We showD 2 rng(W :C) ) :qt(C:D) (B.1)whih is equivalent to the term above.D 2 rng(W :C)� f de�nition gh9 E :: W :C:E = D i� f De�nition 3.27 gh9 E :: C:E :� 2 fpwait;waitg ^ Agent(C:E :�) = D i� f De�nition 3.20 gh9 E ;m :: (m ;E ) 2 C:D : i) f list property gC:D : 6= ?� f De�nition 3.3 g:qt(C:D)(End of proof)For the proof of Theorem 4.14, we showh8 C: C 2 PC: h8 D :: Enabled(C;D) = ? i � h8 D :: qt(C:D) _ dl(C;D) iiAssume C 2 PC . We prove the equivalene as two impliations.Case ):We have 283



Enabled(C;D) = ?) f Theorem 3.50, De�nition 3.48 gqt(C:D) _ C:D :� 2 fpwait;waitg) f De�nition 3.27 gqt(C:D) _ D 2 dom(W :C)� f prediate alulus g:qt(C:D) ) D 2 dom(W :C)) f Lemma B.18 gD 2 rng(W :C) ) D 2 dom(W :C)From the �rst and penultimate lines, we getEnabled (C;D) = ? ^ :qt(C:D) ) D 2 dom(W :C)and from the �rst and last lines, we getEnabled (C;D) = ? ) (E 2 rng(W :C) ) E 2 dom(W :C))We now show, for any Dh8 E : E 2 B : Enabled (C;E) = ? i) qt(C:D :) _ dl(C;D)by showing the following, whih is equivalent.:qt(C:D :) ^ h8 E : E 2 B : Enabled(C;E ) = ? i) dl(C;D)We have :qt(C:D :) ^ h8 E :: Enabled(C;E ) = ? i284



� f instantiate g:qt(C:D :) ^ Enabled(C;D) = ? ^h8 E :: Enabled(C;E ) = ? i) f above results gD 2 dom(W :C) ^ h8 E : E 2 rng(W :C) : E 2 dom(W :C) i) f De�nition 3.17 gh8 n : 0 � n : (W :C)n:D is de�ned i� f Lemma B.17 gdl(C;D)Case (:We show the following, stronger, result.h8 D :: qt(C:D) _ dl(C;D) ) Enabled(C;D) = ? iAssume D 2 B. We haveqt(C:D) _ dl(C;D)� f Lemma B.16 gqt(C:D) _ (dl(C;D) ^ dl(C;W :C:D))) f de�nition gqt(C:D) _(C:D :� 2 fpwait;waitg ^ C:(W :C:D):� 2 fpwait;waitg)) f Theorem 3.50, De�nition 3.48 gEnabled(C;D) = ?
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B.3 Proofs for Chapter 5B.3.1 Proof of Theorem 5.56We showh8 "; "0;T: "; "0 2 Zm ^ " resp T ^" �! "0 by Theorem 5.46, 5.47, 5.48, 5.49, 5.50, or 5.55: "0 resp TiAssume "; "0 2 Zm, " resp T, and " �! "0 by Theorem 5.46, 5.47, 5.48, 5.49, 5.50, or5.55. A thread is ative for an ation from the �rst step taken for the thread, whihis one ofaeptrejetation-startp-ation-start-rdvt-ation-start-rdvto the last step taken for the thread, whih is one ofaeptrejetation-endation-rejet
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Note that aept and rejet steps are both the �rst and last for their threads. Twothreads are ative at the same time if one has its �rst step between the �rst andlast step for the other. A transformation that gives :("0 resp T) involves movinga start step left over an end step. Note that the start steps are all right-movers ordeision steps, and that the end steps are all left-movers or deision steps. Thus thisstep involves moving a right-mover or deision step left over a left-mover or deisionstep. Theorem 5.46 removes a thread from the exeution, so does not introduea step that violates T. Theorems 5.47, and 5.48 do not hange the relative orderof the �rst and last steps for any threads. If Theorems 5.49, 5.50, or 5.55 are usedto show " �! "0, then either a right-mover is moved right, or a left-mover is movedleft. None of the theorems allows a right-mover or a deision step to move left overa left-mover or a deision step. Thus "0 resp T.
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