
CopyrightbyWilliam Edward Adams2000

Untangling the threads: redu
tion for a
on
urrentobje
t-based programming modelbyWilliam Edward Adams, BA, MS
DissertationPresented to the Fa
ulty of the Graduate S
hool ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDo
tor of Philosophy

The University of Texas at AustinAugust 2000

Untangling the threads: redu
tion for a
on
urrentobje
t-based programming model

Approved byDissertation Committee:

To Beverly

A
knowledgments
The time I have spent at the University of Texas has been the most enri
hing andstimulating period of my life. The Computer S
ien
es Department has the fortu-nate
ombination of ex
ellent fa
ulty, outstanding graduate students, and helpfulsupport sta�. Jayadev Misra has proved to be an ex
ellent advisor. His insightshave provided the foundations for my work, and I hope I have learnt some of hisability to rea
h the
ore of a problem, fo
using on the important elements, andignoring irrelevant details. Professors Allen Emerson and Edsger Dijkstra have alsobeen major in
uen
es on my development as a
omputer s
ientist. I have learntmu
h from my dis
ussions with various members of Dr Misra's resear
h groups,in parti
ular Ernie Cohen, Rajeev Joshi, Markus Kaltenba
h, Ja
ob Kornerup, AlCarruth, and J R Rao. Gloria Ramirez in the Graduate OÆ
e was the �rst personI met in the Department, and she has been a regular sour
e of information and helpever sin
e.Attending graduate s
hool requires not only intelle
tual
uriosity, but also�nan
ial support. This work was supported in part by National S
ien
e FoundationAward CCR{9803842, and by a resear
h assistantship at the Computer EngineeringResear
h Center, funded by Fujitsu Laboratories of Ameri
a. Summer employment,with S
hlumberger Laboratory for Computer S
ien
e, Mi
rosoft Corporation, IBMT J Watson Resear
h Center, and Fujistsu Laboratories of Ameri
a, has providedin
ome, and a wel
ome opportunity to travel around the United States. In the pastv

two years, I have been employed by IBM Austin Resear
h Laboratory. The support,both material and moral, that I have re
eived there has been invaluable in the �nalstages of this work. I thank Sani Nassif and Warren Hunt, Jr, in parti
ular.Finally, this dissertation would not have been written without the forbear-an
e of my wife, Beverly, and my stepson, Summer. They have shown un
ommonlove and toleran
e during the
ountless hours that I have spent writing.
William Edward AdamsThe University of Texas at AustinAugust 2000

vi

Untangling the threads: redu
tion for a
on
urrentobje
t-based programming modelPubli
ation No.William Edward Adams, Ph.D.The University of Texas at Austin, 2000Supervisor: Jayadev MisraRedu
tion is a te
hnique for simplifying reasoning about systems where a set ofsequential exe
utions, whi
h we
all threads, are exe
uted
on
urrently. In a
on-
urrent exe
ution, steps from di�erent threads are interleaved. A redu
tion theoremshows that a
on
urrent exe
ution is equivalent to an exe
ution in whi
h all the stepsof a given thread appear
ontiguously. These steps
an be repla
ed by a single atomi
step representing the
omplete exe
ution of the thread.Applying redu
tion to ea
h thread in turn, we redu
e a
on
urrent exe
utionto an atomi
 exe
ution, where every step is an atomi
 step. Reasoning about theatomi
 exe
ution is signi�
antly simpler than reasoning about the original
on
ur-rent exe
ution. In the atomi
 exe
ution, we do not need to
onsider the intera
tionsof steps from di�erent threads.We des
ribe a model for
on
urrent systems,
alled Seuss. In this model, aprogram is a set of independently exe
uting boxes, whi
h
ommuni
ate using a formof remote pro
edure
all. We show how to redu
e a
on
urrent exe
ution of a Seussprogram to an atomi
 exe
ution. Sin
e every
on
urrent exe
ution is equivalent tovii

an atomi
 exe
ution, we
an understand all possible exe
utions of a Seuss programby understanding just its atomi
 exe
utions.We show three main results. One gives suÆ
ient
onditions to guaranteethat all threads in an exe
ution terminate. The other two
on
ern redu
tion ofexe
utions in whi
h all threads terminate.We express the redu
tion results relative to restri
tions on whi
h pairs ofthreads
an run
on
urrently. The �rst redu
tion theorem shows a restri
tion on
on
urren
y that guarantees that every exe
ution
an be redu
ed to a sequentialexe
ution. The se
ond redu
tion theorem gives a stronger restri
tion on
on
urren
y(so less
on
urren
y is allowed in an exe
ution), but, in return, gives a redu
edsequential exe
ution that has stronger fairness properties (and thus better progressproperties) than we get with the �rst theorem.To show these results, we use an operational semanti
s for a simple Seusslanguage. The semanti
s is su
h that our results apply to any language implementingthe Seuss model.

viii

Contents
A
knowledgments vAbstra
t viiList of Tables xviList of Figures xviiChapter 1 Introdu
tion 11.1 A model for
on
urrent systems . 31.1.1 A
tion systems . 31.1.2 The Seuss model . 51.1.3 Partial and total pro
edures 71.1.4 Atomi
 exe
utions of Seuss programs 111.1.5 Mutual ex
lusion on boxes . 131.1.6 Con
urrent exe
ution in Seuss 141.2 Redu
tion . 171.2.1 The two-phase lo
king proto
ol 181.2.2 Redu
tion for Seuss . 201.3 Summary of the material . 241.3.1 Chapter overview . 25ix

1.4 Related work . 261.4.1 Seuss . 261.4.2 Redu
tion . 271.4.3 Transa
tion pro
essing . 291.4.4 Con
urrent obje
t-based languages 301.5 Notation . 31Chapter 2 The de�nition of TCB 362.1 Introdu
tion . 362.2 Syntax . 372.2.1 Variables, states, values and expressions 372.2.2 Syntax for TCBlo
 . 382.3 Syntax for TCB . 412.4 Well-formed programs . 432.5 Run-time errors . 452.6 Operational semanti
s . 452.7 Operational semanti
s for TCBlo
 492.7.1 Program
on�guration for TCBlo
 492.7.2 Semanti
 rules for TCBlo
 . 492.8 De�ning the semanti
s for TCB . 522.8.1 Modelling boxes . 522.9 Rendezvous semanti
s for TCBtot 542.9.1 Stati
 information for a TCBtot box 542.9.2 Stati
 infomation for a TCBtot program 562.9.3 Box
on�guration for TCBtot 572.9.4 Program
on�guration for TCBtot 602.9.5 Semanti
 rules for TCBtot . 602.10 Rendezvous semanti
s for TCB . 64x

2.10.1 Stati
 infomation for a TCB box 642.10.2 Stati
 information for a TCB program 672.10.3 Box
on�guration for TCB 682.10.4 Program
on�guration for TCB 712.10.5 Rendezvous semanti
 rules for TCB 712.11 Queue semanti
s for TCB . 742.11.1 Call queues . 762.11.2 Box and program
on�gurations for the queue semanti
s . . . 772.11.3 Queue semanti
 rules for TCB 782.12 Summary . 822.12.1 Run-time errors . 82Chapter 3 Exe
ution of TCB programs 833.1 Introdu
tion . 833.2 Box
on�gurations . 843.3 Program Con�gurations . 873.3.1 Relations indu
ed by
alls . 903.3.2 Well-formed program
on�gurations 943.3.3 Call sta
ks . 943.3.4 Wait lines . 963.3.5 Persistent states . 983.4 Program steps . 993.4.1 Steps and
on�gurations . 993.4.2 Step labels . 1003.4.3 Enabled steps . 1093.4.4 Enabled steps for a
all sta
k 1153.5 Exe
utions . 1163.6 Dis
ussion . 119xi

3.6.1 Deterministi
 and nondeterministi
 steps 1203.6.2 Threads . 122Chapter 4 Complete exe
utions 1234.1 Introdu
tion . 1234.1.1 Pro
edure sets . 1254.2 Proper exe
utions and
omplete exe
utions 1264.3 Deadlo
k . 1294.4 In�nite pro
edure
alls . 1324.5 Exe
utions with a �nite number of threads 1354.6 Thread fairness . 1364.6.1 Fairness for rendezvous pro
edure
alls 1374.7 The
omplete exe
ution theorem . 1384.8 Control relations . 1424.8.1 Implementing
ontrol relations 1444.9 Avoiding deadlo
k . 1454.9.1 Nonblo
king
ontrol relations 1474.10 Avoiding in�nite threads . 1524.11 Implementing thread fairness . 1534.12 Summary . 1544.12.1 Avoiding run-time errors . 154Chapter 5 Redu
tion 1555.1 Introdu
tion . 1555.1.1 Right-movers and left-movers in TCB 1565.1.2 Transforming an exe
ution 1575.2 Compound steps . 1585.2.1 Rendezvous
alls . 159xii

5.2.2 Atomi
 steps . 1615.2.3 Exe
utions with
ompound steps 1675.3 Step types . 1705.3.1 De
ision steps . 1705.3.2 Right-movers and left-movers 1725.3.3 The format of a thread . 1735.3.4 A strategy for redu
tion . 1755.4 Redu
tion relations . 1765.4.1 A

ept de
ision steps . 1765.4.2 Similar exe
utions . 1775.4.3 Swapping steps . 1795.4.4 Redu
e-equivalen
e . 1815.4.5 Finite redu
tion . 1835.4.6 The redu
tion relation . 1865.5 Relating
on
urrent and sequential
on�gurations 1905.6 Redu
tion rules . 1955.7 Redu
tion rule for tm steps . 2005.7.1 Weak
ompatibility . 2035.7.2 Redu
tion that respe
ts
ontrol relations 2075.8 The �rst redu
tion theorem . 2085.8.1 Outline of the proof . 2085.8.2 Proof of Lemma 5.58 . 210Chapter 6 Fairness 2186.1 Introdu
tion . 2186.2 Fairness
onditions for TCB . 2216.2.1 Weak fairness . 2226.2.2 Minimal fairness . 223xiii

6.3 Program properties . 2246.4 Fairness for weak
ompatibility . 2296.5 Strong
ompatibility . 2326.6 The se
ond redu
tion theorem . 2376.7 S
heduling TCB programs . 241Chapter 7 Con
lusions 2457.1 Summary of the main results . 2457.2 Future work . 2467.2.1 Reasoning about Seuss programs 2467.2.2 Con
urrent termination . 2477.2.3 Negative alternatives . 247Appendix A Semanti
s for TCB languages 248A.1 Rendezvous semanti
s for TCBtot 248A.2 Rendezvous semanti
s for TCB . 250A.3 Queue semanti
s for TCB . 253Appendix B Additional proofs 257B.1 Proofs for Chapter 3 . 257B.1.1 Proof of Theorem 3.33 . 257B.1.2 Proof of Theorem 3.51 . 262B.1.3 Proof of Theorem 3.14 . 266B.1.4 Proof of Theorem 3.15 . 267B.1.5 Proof of Theorem 3.16 . 269B.2 Proofs for Chapter 4 . 271B.2.1 Proof of Theorem 4.7 . 271B.2.2 Proof of Theorem 4.8 . 272B.2.3 Proof of Theorem 4.12 . 274xiv

B.2.4 Proof of Theorem 4.14 . 280B.3 Proofs for Chapter 5 . 286B.3.1 Proof of Theorem 5.56 . 286Bibliography 288Vita 292

xv

List of Tables
3.1 Conditions on the box phase for one-lo
us rules. 1013.2 Conditions on the box phase for two-lo
us rules. 1033.3 Conditions on C to enable a
onditional step for D 1125.1 Con�gurations for a method
all from D to E 159

xvi

List of Figures
1.1 A produ
er-
onsumer program . 61.2 Code for box Bu� . 71.3 Boxes Prod and Cons . 91.4 Partial pro
edure with alternatives 101.5 Program with
ommuting and non
ommuting methods 212.1 TCBlo

ode to divide x by d . 392.2 Syntax for TCBlo
 . 402.3 A TCB program with three boxes 412.4 Syntax for TCB . 422.5 Semanti
s for TCBlo
 . 502.6 Transition diagram for phases of a TCBtot box. 582.7 Semanti
s for TCBtot: a
tion start and method
all 612.8 Semanti
s for TCBtot: pro
edure body exe
ution. 622.9 Semanti
s for TCBtot: pro
edure return 632.10 Transition diagram for phases of a TCB box. 692.11 Rendezvous semanti
s for TCB: starting and reje
ting a partial a
-tion
all . 722.12 Rendezvous semanti
s for TCB: guard evaluation 732.13 Rendezvous semanti
s for TCB: test return 75xvii

2.14 Queue semanti
 rules for TCB: pro
edure
all 802.15 Queue semanti
 rules for TCB: pro
edure initialization 814.1 Program that
an deadlo
k . 1294.2 Program with nonterminating pro
edure 1335.1 Adding a probe to a program . 1956.1 Program with fairness-dependent unavoidability properties 2276.2 The semaphore with a kill a
tion . 229

xviii

Chapter 1
Introdu
tion
Implementing
on
urrent systems that fun
tion
orre
tly is a diÆ
ult task. Tounderstand the behaviour of two sequential programs exe
uting
on
urrently, wemust understand not only the behaviour of ea
h separately, but also the ways inwhi
h they intera
t.We
an understand an exe
ution of a sequential program as a transformationfrom its start state to its �nal state. In this view, the intermediate states are ignored.We separate what the program does, from how it does it. If we run two sequentialprograms one after the other, we
an determine the transformation e�e
ted by theexe
ution as a whole from the transformations for the separate programs.There is not the same separation between what is done and how it is donewhen we
onsider
on
urrent exe
ution of sequential programs. Consider the fol-lowing programs.� :: x := x+ 1 ; x := x+ 1�0 :: x := x � 2Program � adds 2 to x, and program �0 doubles x. Exe
uting the programs oneafter the other from a state where x = 2, we rea
h a state where x = 8 for the1

exe
ution �;�0, and a state where x = 6 for the exe
ution �0;�. Consider nowexe
uting the programs
on
urrently. We assume that ea
h statement is atomi
,so the interferen
e o

urs only if the statement from �0 o

urs between the twostatements from �. In this
ase, x = 7 in the �nal state.To understand the
on
urrent exe
ution of � and �0, we must understandthe internal workings of ea
h, and
onsider ways that they may interfere. Here thedoubling of x by �0 overwrites an intermediate result written by � to x, and so �0interferes with �'s exe
ution.Note that we
an repla
e the two assignments in � with a single assignmentadding 2 to x, and the above interfering
omputation is no longer possible. Theamount of interferen
e possible depends on the internal stru
ture of the programs.There are short programs, so there is a limited number of interleavings oftheir statements. For longer programs, there is a larger number of interleavings,and
onsequently more opportunity for interferen
e.Note that not all sequential programs interfere when run
on
urrently. Pro-grams that a

ess disjoint parts of the state spa
e do not interfere. Neither do
ertain programs that a

ess shared variables. Consider running two
opies of �
on
urrently. The overall e�e
t is to add 4 to x, regardless of the interleaving ofthe statements. For noninterfering programs, running the programs
on
urrently isequivalent to running them sequentially, in some order.We propose a model for
on
urrent systems,
alled Seuss, in whi
h we sep-arate the transformational aspe
ts of the sequential programs from the issues ofinterferen
e between programs. A Seuss program is a set of individual sequentialprograms,
alled a
tions, that a

ess a shared state. An exe
ution of a program
onsists of repeatedly
hoosing one of the a
tions and exe
uting it to
ompletion.One a
tion is exe
uted at a time, so we
an understand the e�e
t of ea
h exe
utionof an a
tion without
onsidering internal details. This gives us a simple model for2

proving properties of programs.In the implementation of Seuss, we allow a
tions to exe
ute
on
urrently.But we do so in a
ontrolled way. As we saw above, allowing any two a
tions to run
on
urrently allows interferen
e. We allow only a
tions that do not interfere withea
h other to exe
ute
on
urrently.Building a system in Seuss follows the following outline. First, we de�nethe a
tions, and show that a sequential exe
ution of the program has the desiredproperties. Then we examine ea
h pair of a
tions and de
ide if they are interferingor noninterfering. We implement the program so that only noninterfering a
tionsrun
on
urrently.Our work addresses the se
ond part of this outline. We de�ne the Seussmodel, and we give a
ondition on pairs of a
tions that guarantees noninterferen
e.We show that for any exe
ution where only noninterfering a
tions run
on
urrently,there is a sequential exe
ution with the same behaviour.1.1 A model for
on
urrent systems1.1.1 A
tion systemsA sequential program �
an be spe
i�ed by a set of assertions,
alled Hoare triples[16℄, of the form fPg � fQg, where P and Q are predi
ates on the state. Thisassertion is true if every exe
ution of � that starts from a state satisfying P ends ina state satisfying Q. We
all P the pre
ondition, and Q the post
ondition. In thetransformational view of sequential programs, two programs are equivalent if thereis no assertion satis�ed by one that is not satis�ed by the other.Representing sequential programs by the assertions they satisfy dis
ards in-formation about the internal
omputations of the program. So, for example, if �satis�es the Hoare triple fPg � fQg, where P is \A is an array of integers", and Q3

is \A
ontains the same values as before, in sorted order", then this assertion givesno information about the algorithm used to implement the sort, or any intermedi-ate values that array A takes during the exe
ution of the program. Any programsatisfying the assertion is equivalent for our purposes.1An a
tion system
onsists of a set of terminating sequential programs,
alleda
tions, that read and write a set of shared variables. A single exe
ution of an a
tionis
alled a thread. An exe
ution of an a
tion system is a sequen
e of threads.An a
tion system represents a simple
on
urrent system. Here,
on
urren
yis represented by alternating threads for di�erent a
tions. For example,
onsider asystem with two a
tions, Produ
e and Consume. A thread for the former produ
esan item, and a thread for the latter
onsumes an item. An exe
ution of this system
onsists of a sequen
e of threads, some for Produ
e , and some for Consume. Weregard this as representing the
on
urrent exe
ution of a produ
er pro
ess, whi
hrepeatedly exe
utes a
tion Produ
e , with a
onsumer pro
ess, whi
h repeatedlyexe
utes a
tion Consume. The interleaving in an exe
ution of an a
tion system isat the granularity of
omplete threads.To prove properties of the exe
utions of an a
tion system, we �rst
onsiderea
h a
tion separately, and show a set of assertions satis�ed by a single thread forthe a
tion. Given this, we
an represent the
omplete exe
ution of a thread as asingle step, whi
h satis�es the Hoare triples for the
orresponding a
tion. We
allthe step representing a
omplete thread an atomi
 step.An atomi
 exe
ution is an exe
ution where every thread is represented by anatomi
 step. The properties of an atomi
 exe
utions are derived from the assertionssatis�ed by the atomi
 steps.Here there is a
lean separation of
on
erns. We examine the internal stru
-ture of ea
h a
tion separately to determine the set of Hoare triples it satis�es. During1Of
ourse, the
hoi
e of sorting algorithm has a major impa
t on the time taken for the programto
omplete exe
ution, but this issue does not
on
ern us here.4

this pro
ess, we must
onsider the states internal to a thread's exe
ution, but theresulting assertions are given in terms of the start and �nal state alone. Having donethis, we
onsider an atomi
 exe
ution, in whi
h all states internal to the exe
utionof a thread have been elided.The a
tions are terminating sequential
omputations, whereas an exe
utionof an a
tion system is generally nonterminating. The above s
heme separates the se-quential, terminating aspe
ts of the exe
ution of a single thread from the
on
urrent,nonterminating aspe
ts of the overall system exe
ution.1.1.2 The Seuss modelWe de�ne a programming model,
alled Seuss [25℄, based on a
tion systems. Weextend the a
tion system model in two ways. We distribute the state spa
e and the
ode of the a
tions a
ross a set of boxes, and we allow for
on
urrent exe
ution ofthreads. We
onsider the distribution of the data and
ode �rst.Boxes are rudimentary obje
ts. A box
ontains some variables, and somepro
edures. A variable in a box
an be read or written only by a pro
edure in thatbox. The pro
edures are of two types: a
tions and methods. A
tions are top-levelpro
edures. In this model, a thread is the
omplete exe
ution of an a
tion
all.The
ode of a pro
edure
ontains statements reading and writing variables lo
alto its box, and
alls to methods on other boxes. A
tions are not
alled by otherpro
edures. Methods may take parameters, both input and output, but a
tions takenone. We use
ompound identi�ers for the variables and pro
edures in a box, withthe box name as part of the identi�er. Thus D :x is the name of a lo
al variable xin box D , and D :a is the name of an a
tion a in D .A thread for D :a starts exe
uting the
ode of a at box D . If the exe
utionrea
hes a method
all statement for method E :m , then exe
ution at D is suspended5

Prod Cons

BuffFigure 1.1: A produ
er-
onsumer programwhile the
ode for m is exe
uted at E . Exe
ution
ontinues at D when the exe
utionof E :m
ompletes.Consider a simple example of su
h a program with three boxes, shown pi
-torially in Figure 1.1. This program
ontains three boxes,
alled Prod , Cons , andBu� . The program represents a simple produ
er-
onsumer system. The box Prodprodu
es some items whi
h are
onsumed by box Cons . A bu�er, implemented bybox Bu� , holds items that have been produ
ed by Prod , but not yet
onsumed byCons . We assume that Bu� implements a bu�er of unbounded size that obeys a�rst-in-�rst-out (FIFO) dis
ipline.The line in the diagram from box Prod to box Bu� indi
ates that pro
eduresin Prod
all methods in Bu� , and similarly for the line from Cons to Bu� . Thereare no method
alls between boxes Prod and Cons .Box Bu� has two methods, and no a
tions. Method Bu� :put takes a singleitem as an input parameter. The
all Bu� :put(x) adds item x to ba
k of the bu�er.Method Bu� :get returns a single item as an output parameter. A
all Bu� :get(y)removes the front item from the bu�er and returns it in y.Box Prod has one a
tion, and no methods. A
tion Prod :make produ
es anitem, and
alls Bu� :put to put this item in the bu�er. Box Cons similarly has asingle a
tion, and no methods. A
tion Cons :use
alls Bu� :get to retrieve an item6

box Bu�var s : sequen
e of integermethod put(in x : integer):: s := s / xmethod get(out x : integer):: s 6= ? �! x := �rst(s) ; s := rest(s)end Figure 1.2: Code for box Bu�from the bu�er, and then
onsumes this item.1.1.3 Partial and total pro
eduresThe �rst question that arises is what to do in the
ase that a thread for Cons :use is
alled when there is no item in the bu�er. In this
ase the
all to Bu� :get
annotreturn an item. We handle this by putting a guard in the
ode for Bu� :get . Theguard
ontains a predi
ate on the lo
al state. The
ode for box Bu� is shown inFigure 1.2. For simpli
ity, we assume that the bu�er holds integer items. The
ode for Bu� de
lares a variable s, whi
h is a sequen
e of integers, representingthe
ontents of the bu�er. The header for method put de
lares an input integerparameter. We use :: to separate the header from the pro
edure body. The bodyof this method
onsists of a single assignment that appends the input parameter tothe end of s. We use the operator / to add an item to the end of a �nite sequen
e.The header for method get de
lares an output integer parameter. The
ode of thispro
edure
ontains a guard and a
ouple of assignments. We use �! to separate theguard from the statements. The guard is a
he
k that the bu�er is nonempty. We use? for the empty sequen
e. The assignment statements assign the �rst element of sto the output parameter, and remove this item from s. We use �rst(X) and rest(X)for the �rst element of sequen
e X, and the remaining elements, respe
tively.7

The assignment statements for get
an only be exe
uted if the predi
ate inthe guard is true. If Bu� :get is
alled when s in nonempty, we say that the
alla

epts. In this
ase, the assignments are exe
uted, and an item is returned to thebox that
alled the pro
edure. If Bu� :get is
alled when s is empty, we say that the
all reje
ts. In this
ase, the assignments are not exe
uted, and no item is returnedto the box that
alled the pro
edure.Consider now the a
tion Cons :use. This has a
all to Bu� :get to retrievean item. If the
all a

epts, then the a
tion pro
eeds to
onsume the item returnedby the
all, but if the
all reje
ts, then there is no item to
onsume, and the a
tion
annot pro
eed.We make a rule that if, during the exe
ution of a pro
edure
all, a
all toa method reje
ts, then the pro
edure
all reje
ts as well. We further require that,as with Bu� :get , a reje
ting
all to a pro
edure makes no
hange to the programstate. The method Bu� :put has no guard, sin
e it is always possible to append anitem to an unbounded bu�er. A
all to this method always a

epts. Note that if weimplement a bounded bu�er, method Bu� :put may reje
t, sin
e an item
annot beadded to a full bu�er.We
all a pro
edure that never reje
ts total, and one that may reje
t partial.From this de�nition and the above rule, a total pro
edure
alls only total methods.To ensure that reje
ting pro
edure
alls do not
hange the system state, weallow only the �rst method
all in the exe
ution of a partial pro
edure
all to be a
all to a partial method. All method
alls other than the �rst are to total methods.This gives only two ways that a partial pro
edure
all
an reje
t. The �rst is if thelo
al predi
ate in the guard is false, and the se
ond is if the (single) partial method
all reje
ts. Both these o

ur before any
hange is made to the system state, inparti
ular, before any
alls to total methods.8

box Prodvar i : integera
tion make :: (� � � � �) ; Bu� :put(i)endbox Consvar k : integera
tion use :: true & Bu� :get(k) �! (� � � � �)end Figure 1.3: Boxes Prod and ConsThe
ode for boxes Prod and Cons is shown in Figure 1.3. The
ode fora
tion Prod :make
ontains no guard, sin
e the a
tion is total. The
ommentedellipsis represents the omitted
ode that sets the value of i . The �nal statement isa
all to Bu� :put . The
ode for a
tion Cons :use
ontains a guard whi
h has two
omponents, separated by & . The �rst
omponent is a predi
ate on the lo
al state,as before. We
all this the
ondition. In this
ase, the
ondition is the predi
atetrue. The se
ond
omponent is a
all to a partial method. We
all this the test.2Here, the test is a
all to Bu� :get . If this a

epts, the a
tion
all
ontinues toexe
ute the statements after the guard (again, we have omitted these), and itselfa

epts. There are no
alls to partial methods in the statements after the guard. Ifthe test reje
ts, then the a
tion
all reje
ts without exe
uting further.The stru
ture of partial pro
edures ensures that no lo
al variable is updatedunless a pro
edure is a

epting. This enfor
es the requirement that a reje
ting
allleave the state un
hanged.Models for transa
tion pro
essing (see [14℄) also have this notion of a

eptingand reje
ting, under the names
ommitting and aborting. During the exe
ution of a2In [25℄, the
omponents of the guard are
alled the pre
ondition and the prepro
edure, respe
-tively. 9

box Cons2var j : integerk : integerb : boolean init falsea
tion use :: :b & Bu�0 :get(j) �! b := truej b & Bu�1 :get(k) �! (� � � � �) ; b := falseend Figure 1.4: Partial pro
edure with alternativestransa
tion, the
hanges that are made to the system state are tentative. When atransa
tion
ommits, all the
hanges are made permanent. A transa
tion aborts ifit dis
overs that a required resour
e is not available, so it is unable to
omplete itsexe
ution. If it aborts, all the tentative
hanges made up to the point of abortion aredis
arded. Implementing this often requires
omplex me
hanisms for rolling ba
kthe state of a system to a previous
onsistent state. In
ontrast, the restri
tion wegive, that the de
ision to a

ept or reje
t be made before the state is altered, meanswe do not have to provide for rollba
k.The restri
tion, however, means that we
annot write an a
tion that requirestwo independent resour
es. We extend the syntax of partial pro
edures to providefor this. We allow a partial pro
edure to be written as a set of alternatives. InFigure 1.4 we show a partial pro
edure with two alternatives. Box Cons2 is partof a program that
ontains boxes Bu�0 and Bu�1 , both of whi
h are
opies of boxBu� . A
tion Cons2 :use requires an item from ea
h bu�er before it
an exe
ute.The items are retrieved one at a time, using
alls to Bu�0 :get and Bu�1 :get . Thea
tion has two alternatives, separated by j. One retrieves an item from Bu�0 , andthe other retrieves an item from Bu�1 , and then
onsumes both items. The itemsare retrieved into variables j and k . We use a boolean variable b to sequen
e theretrieval of the items. Initially, b is false, and it is true only when the �rst item hasbeen retrieved but the se
ond has not. 10

The �rst alternative a

epts if b is false , and an item is su

essfully retrievedfrom Bu�0 into item j . If it a

epts, b is set to true. The se
ond alternative a

eptsif b is true, and an item is su

essfully retrieved from Bu�1 into item k . If it a

epts,the items are
onsumed, and then b is set to false again. It takes two a

epting
allsto Cons :use2 to retrieve and
onsume two items.We allow any number of alternatives in a partial pro
edure. Ea
h alternativehas a guard, whi
h
ontains a
ondition, and, optionally, a test. We require that the
onditions on any pair of alternatives be disjoint, so that, in any state, the
onditionholds for at most one alternative. The exe
ution of a partial pro
edure is des
ribedby the following algorithm.� If no alternative has a
ondition that holds in the
urrent state, then reje
t.� Otherwise,
hoose the (single) alternative with a
ondition that holds in the
urrent state.� If this alternative has a test, then
all the test.� If the test reje
ts, then reje
t.� Otherwise, if there no test, or the test a

epts, exe
ute the body of the alter-native, and a

ept.1.1.4 Atomi
 exe
utions of Seuss programsThe programming model presented above is a form of a
tion system. To reasonabout atomi
 exe
utions of a Seuss program, we use the separation des
ribed abovebetween the sequential properties of the individual a
tions, and the
on
urrent prop-erties of the atomi
 exe
ution.The en
apsulation of data and
ode in boxes is intended as an aid to theproving sequential properties of the individual a
tions. A box su
h a Bu� that11

ontains no method
alls
an be spe
i�ed as an abstra
t data type [1℄. That is, wede�ne the methods it provides, and how ea
h updates the state of the box.This abstra
t data type viewpoint supports hierar
hi
al reasoning about thebehaviour of an a
tion. We prove sequential properties for the methods of Bu� . Wethen do the same for the a
tions in Prod and Cons , regarding ea
h
all to a methodin Bu� as a single step satisfying the same assertions as the method.Exe
ution of a
tion Prod :make updates the state of Prod and Bu� . A
om-plete spe
i�
ation of this a
tion gives the
hanges to both boxes. In general, ana
tion
an
hange the state of any box where a pro
edure is exe
uted during athread for the a
tion. But the box stru
ture provides a way to divide a programinto parts, where ea
h part
onsists of one or a few boxes, and the interfa
e betweenthe parts is well-de�ned. The model fa
ilitates
ompositional reasoning.The
ode given for box Bu� is itself an abstra
tion of a real implementation ofa bu�er. It serves as a spe
i�
ation of the behaviour we expe
t from a bu�er. We
anuse re�nement [17℄ to de�ne more detailed and realisti

ode. A real implementationof a bu�er may best be expressed as a set of boxes, one of whi
h provides the Bu�interfa
e. We
an re�ne the data and
ode within a box, and we
an de�ne sets ofboxes that are re�nements of a single box.As noted above, we reason about the atomi
 exe
ution in terms of the spe
-i�
ations for the individual a
tions. The te
hniques for reasoning about su
h ex-e
utions have been extensively studied. Various forms of temporal logi
 (see [11℄)
an be used to express and derive properties. The appli
ation of these te
hniquesto atomi
 exe
utions in the Seuss model has been less widely studied, though thereis some promising preliminary work.The work presented here does not address these issues, important thoughthey are. The main
on
lusion we draw from this dis
ussion is that developinga system for reasoning about atomi
 exe
utions of Seuss system appears to be a12

tra
table problem, and the stru
ture of the Seuss model supports many of the rea-soning styles that have proven useful in other programming models.1.1.5 Mutual ex
lusion on boxesAn abstra
t data type is often spe
i�ed, in part, by an invariant. This is a predi
atewhi
h holds at the start of the exe
ution, and whi
h holds after every exe
ution ofa method on the box. For box Bu� , suppose P is the sequen
e of values passed asvalues to put , and G is the sequen
e of values returned by a

epting
alls to get ,then an invariant isP = G Æ sHere Æ is the append operator on sequen
es.To show that an invariant holds for a box, we show that if it holds beforea
all to a pro
edure in the box, it holds after the
all. We do not require that ininvariant be maintained during the exe
ution of the
all, only that it be re�establishedat the end. For this reason, it is important that the exe
ution of a pro
edure
allat a box is not interrupted, sin
e the box's state may not satisfy the invariant.We make the rule that on
e a box starts exe
uting a pro
edure
all, it doesnot start another pro
edure
all until the �rst is
omplete. A box en
apsulates
ontrol, by ensuring mutual ex
lusion on the exe
ution of its pro
edures. It is aform of monitor [18℄.Consider the exe
ution of a single thread, where the thread starts exe
utingat box D . Suppose that during the exe
ution, there is a
all to a method on boxE , and during the exe
ution of this method
all, there is a
all to a method onbox D . At this point, D is part way through exe
uting a pro
edure
all, and it
annot exe
ute the method
all from E until this pro
edure
all
ompletes. But thepro
edure
all
annot
omplete until the method
all is exe
uted. Thus box D is13

stu
k, waiting for itself. This is deadlo
k.We
all a method
all by a thread to a box already exe
uting for a thread a
y
li

all. One impli
ation of the the mutual ex
lusion on boxes is that we mustavoid
y
li

alls if we are to avoid deadlo
k.1.1.6 Con
urrent exe
ution in SeussIn Seuss, a program
onsists of a set of boxes. Suppose we implement a Seussprogram so that ea
h box is allo
ated a separate pro
essor, and pro
edure
alls areimplemented using a
ommuni
ation network. We identify a box and its pro
essor,using the name \box" for either. A s
heduler program de
ides when threads shouldbe started, and sends a message to the appropriate box to start the thread.Initially, every box in the system is idle. Box D starts exe
uting a thread fora
tion D :a when it re
eives a message to do so from the s
heduler. If there is a
allto method E :m during exe
ution of the
ode of D :a, then D sends a message to Eand suspends exe
ution until it re
eives a message ba
k from E , indi
ating that the
all is
omplete. When D rea
hes the end of D :a 's
ode, D sends a message to thes
heduler that the thread has ended, and be
omes idle again.Ea
h box in this model is largely independent. There is only syn
hronizationbetween boxes for pro
edure
all and return. The s
heduler de
ides whi
h threadsto run, and when to start them, but has no further
ontrol over the exe
ution of athread. The s
heduler
an be de�ned to exe
ute a single thread at a time, as in ana
tion system. We
all this a sequential exe
ution. In a sequential exe
ution, at mostone box is exe
uting at any time. The rest are either idle, or suspended, waiting foranother box to
omplete a method
all. Note that repla
ing ea
h
omplete threadin a sequential exe
ution by an atomi
 step gives an atomi
 exe
ution.Consider boxes Prod and Cons . The
ode in Prod :make that produ
es anitem does not involve
alls to boxes Bu� or Cons . Similarly, the
ode in Cons :use14

that
onsumes the item does not involve
all to boxes Bu� or Prod . These se
tionsof
ode exe
ute on disjoint boxes.Box Prod is idle during the exe
ution of a thread for Cons :use. Considerstarting a thread for Prod :make while a thread for Cons :use is exe
uting. Thethread exe
utes initially at Prod , whi
h is otherwise idle. The
all to Bu� :put atthe end of the
ode obeys the mutual ex
lusion at Bu� with the
all to Bu� :getfrom the thread for Cons :use.Suppose there is an item in the bu�er at the start. The thread for Cons :usea

epts, retrieving the �rst item from the bu�er and
onsuming it, and the threadfor Prod :make produ
es an item and puts it at the ba
k of the bu�er. The itemretrieved is in the bu�er at the start, so the order of the method
alls to Bu� fromthe two threads does not a�e
t the item retrieved, or the �nal state of the bu�er.The �nal state is the same as is rea
hed by exe
uting the threads sequentially, ineither order.Suppose, on the other hand, that the bu�er is empty at the start. In this
asethe thread for Cons :use reje
ts if it
alls Bu� :get before the thread for Prod :make
alls Bu� :put , and it a

epts if it
alls after. In the �rst
ase, an item is produ
ed,but none is
onsumed, and there is a single item in the bu�er at the end. Thisis what happens if we exe
ute the thread for Cons :use followed by the thread forProd :make . In the se
ond
ase, an item is produ
ed, added to the bu�er, removedfrom the bu�er, and
onsumed, leaving the bu�er empty. This is what happens ifwe exe
ute the threads in the opposite order.Thus, the �nal state after the
on
urrent exe
ution of the two threads isa state rea
hable by exe
uting the threads sequentially. We
an extend this by
onsidering exe
utions
ontaining n threads for Prod :make and Cons :use, wherethreads are exe
uted
on
urrently, obeying the mutual ex
lusion on boxes. We
laim that, for any exe
ution in this set, there is a sequential exe
ution of the same15

set of threads with the same start and �nal states.In general, if we take two sequential programs with shared variables andrun them
on
urrently, we
an expe
t to rea
h an �nal state that is not rea
hableby running the programs one after the other. This interferen
e between separatethreads of
ontrol is what makes
on
urrent programming diÆ
ult. But in thisexample, it seems that a
on
urrent exe
ution of these pro
edures has the samebehaviour as a sequential exe
ution.Sin
e the
on
urrent exe
ution allows exe
ution at more than one box, itallows a more eÆ
ient use of the
omputing resour
es. In the produ
er-
onsumerexample, we might expe
t that produ
ing and
onsuming the items in parallel takesabout half the time of an equivalent sequential exe
ution.For the example, it seems we have the following happy
ir
umstan
es. Theprogram
an be implemented
on
urrently, for reasons of eÆ
ien
y, but the
on-
urrent exe
utions introdu
e no behaviours that are not observable in sequentialexe
utions. If we show that all sequential exe
utions have a
ertain behaviour, thenwe
an
on
lude that all
on
urrent exe
utions have that behaviour. To show prop-erties of the sequential exe
utions, we use the separation noted above, and givesequential spe
i�
ations for the a
tions, and use these to show properties for atomi
exe
utions. We have a dual view of exe
ution for the program:
on
urrent exe
utionfor implementation, and atomi
 exe
ution for proving properties of the program.The remainder of this work is an investigation of the
ir
umstan
es underwhi
h this dual view of a program's exe
ution is possible. We show suÆ
ient
on-ditions on programs, and restri
tions on exe
utions, su
h that every
on
urrentexe
ution is equivalent to an atomi
 exe
ution.
16

1.2 Redu
tionA
on
urrent exe
ution of a program in the Seuss model
onsists of a sequen
e ofsteps, ea
h involving one or two boxes. Ea
h step advan
es one of the threads a
tiveat that point in the exe
ution. We represent the
on
urrent exe
ution of di�erentthreads by interleaving the steps of the threads.In an atomi
 exe
ution, the system state is represented by the values of theprogram variables. For a
on
urrent exe
ution, we need to re
ord more informationabout the system state between two steps. In addition to the values of the box vari-ables, we re
ord, for ea
h box, whi
h pro
edure, if any, is
urrently being exe
uted,and where the box has rea
hed in the exe
ution of the pro
edure's
ode. We
all thesum of the relevant information about the system state in a
on
urrent exe
utionthe
on�guration of the system. None of the extra information is ne
essary for anatomi
 exe
ution, sin
e every box is idle after every step.An atomi
 exe
ution has simpler states, and larger steps than a
on
urrentexe
ution. We
an reason about an atomi
 exe
ution at a higher level of abstra
tion,where many of the details re
orded in a
on
urrent exe
ution have been hidden.To show that there is an atomi
 exe
ution
orresponding to every
on
urrentexe
ution, we use redu
tion. This is a te
hnique for transforming an exe
ution intoan equivalent exe
ution by applying lo
al transformations to the sequen
e of steps ina
on
urrent exe
ution. We prove rules that allow parti
ular pairs of adja
ent stepsto be swapped, without a�e
ting the remainder of the exe
ution, and we apply theserules repeatedly to rea
h an exe
ution where the steps of a given thread appear inan unbroken sequen
e, with no interleaved steps from other threads. If we
an dothis with every thread, the resulting exe
ution is sequential, whi
h, as we have seen,
orresponds to an atomi
 exe
ution.Lipton [24℄ introdu
ed the term \redu
tion" for this pro
ess of rearrangingthe steps in a
on
urrent exe
ution to bring together all the steps for a single thread.17

His theory applied to a restri
ted
lass of programs using semaphores, and to prop-erties of the form \the program never be
omes deadlo
ked". We apply redu
tionto a wider
lass of programs, but the essential ideas from Lipton's theory guide ourwork.1.2.1 The two-phase lo
king proto
olFor an example of redu
tion,
onsider two-phase lo
king proto
ol from databasetheory [12℄. The exe
ution model is one in whi
h data items (re
ords in a database,for example) have resour
es asso
iated with them. All transa
tions a
quire theasso
iated resour
es before a

essing a data item. The transa
tion releases theresour
es after it has a

essed the data item. An a
tion that a

esses multiple itemsat the same time �rst a
quires the asso
iated resour
es for ea
h. Resour
es thatallow read a

ess to an item are shared, meaning that multiple transa
tions
anread the item
on
urrently, whereas resour
es that allow write a

ess to an item areex
lusive, meaning that only one transa
tion
an write to the item at a time. Fornow, we
onsider just ex
lusive resour
es.An a
tion is
alled two-phase if in any exe
ution, it a
quires no new resour
esafter it has released a resour
e. This means that every exe
ution of a two-phasetransa
tion
an be divided into two parts. In the �rst part, resour
es are a
quired,and in the se
ond part they are released. The two-phase lo
king theorem says thatfor any
on
urrent exe
ution of a set of two-phase transa
tions there is a sequentialexe
ution of the same set of transa
tions where ea
h data item has exa
tly the sameoperations applied to it, in the same order, as in the
on
urrent exe
ution.The following example shows the ideas behind the two-phase lo
king theorem.The exe
ution below shows a thread for a two-phase a
tion �, exe
uting
on
urrentlywith threads for other a
tions. The steps ai, b, and
i are the steps of the thread
18

for �, with ellipses representing the steps from other threads.a0 ; � � � ; a1 ; � � � ; a2 ; � � � ; b ; � � � ;
2 ; � � � ;
1 ; � � � ;
0Resour
e a
quisition steps
an fail, be
ause the resour
e is unavailable. Only su
-
essful a
quisition steps are shown in the exe
ution. Note that a step that a

essesan item is from a thread that holds the ne
essary resour
es.The thread for � a
quires three resour
es, R0, R1, and R2, with steps a0,a1, and a2. These allow it to a

ess some items with step b. It then releases theresour
es with steps
2,
1, and
0.Consider step a2. Before this step, no thread holds resour
e R2, and afterit step, the thread for � holds it. The resour
es available after a2 are a subset ofthose available before. If s is the step after a2 in the exe
ution, and s is from adi�erent thread, s does not a
quire R2. Sin
e it su

eeds after a2 it will su

eedbefore, sin
e any resour
es it a
quires are available. Resour
e R2 is available after sif it is available before, so both steps su

eed if we reverse their order. We swap thesteps, and repeat the argument with every step between a2 and b, and then repeatthe whole pro
ess with steps a1 and a0. This gives us the following exe
ution.� � � ; a0 ; a1 ; a2 ; b ; � � � ;
2 ; � � � ;
1 ; � � � ;
0Here there are no steps from other threads between the �rst four steps of the thread.Now
onsider step
2. This releases resour
e R2, so the resour
es availableafter it exe
utes are a superset of those before. This step
an be moved left over allthe intervening steps until it is next to b. Likewise, we
an move
1 and
0. We getthe following exe
ution.� � � ; a0 ; a1 ; a2 ; b ;
2 ;
1 ;
0 ; � � �19

Here all steps from the thread are
ontiguous. Any step from another thread thatwas before step b in the original exe
ution is before it in this redu
ed exe
tion, andsimilarly with the steps after b. Thus the relative order in whi
h the threads a

essthe items is the same as in the original exe
ution. If all the a
tions in the programare two-phase, we
an apply the above redu
tion to any
on
urrent exe
ution byapplying it to ea
h a
tion in turn, and this gives a sequential exe
ution in whi
ha
tions a

ess items in the same order as in the original exe
ution.Lipton used the names right-movers for steps su
h as ai in the above example,and left-movers for steps su
h as
i. He identi�ed right-movers as steps that a
quireresour
es, and left-movers as those that release them.1.2.2 Redu
tion for SeussIn Seuss, the items a

essed by thread are the box variables. The resour
es thatallow a

ess to these items are the boxes themselves. A thread holds a box if it isexe
uting a pro
edure
all at that box. Be
ause of the mutual ex
lusion on boxes,a box is an ex
lusive resour
e.From this, we
an see that a thread is two-phase, in the above sense, onlyif it
alls at most one method during its exe
ution, and the method
alled itselfonly
all one method, and so on. The
lass of two-phase Seuss programs with thisrestri
tion is limited. It is diÆ
ult to imagine that we
an �nd a two-phase program\equivalent" to any Seuss program. Thus, for a useful redu
tion theory for Seuss,the two-phase
ondition is too stri
t.The following example demonstrates the issues involved in redu
ing Seussprograms, and provides some motivation for the approa
h we take. Consider theprogram in Figure 1.5. The program
ontains a box X , whi
h has a lo
al variablex , and two methods, add , and mult . Both take a single input parameter. The �rstadds the parameter value to x , while the se
ond multiplies x by the parameter value.20

box Xvar x : integermethod add (in a : integer):: x := x + amethod mult(in a : integer):: x := x � aendbox Da
tion aa :: X :add (3) ; X :add (4)endbox Ea
tion a :: X :add (2)a
tion b :: X :mult(2)endFigure 1.5: Program with
ommuting and non
ommuting methodsBoxes D and E have no variables. A
tion D :aa makes two
alls to method X :add ,and a
tion E :a makes one
all. A
tion E :b makes one
all to method X :mult .Consider a
on
urrent exe
ution of a
tions D :aa and E :a with the followingoutline.initD ; initE ; X :add (3)D ; X :add (2)E ; X :add (4)D ; termD ; termEHere initD represents the steps initializing the thread at D , termD represents thesteps to
omplete the thread at D after the method
alls, and X :add (3)D representsall the steps of a su

essful
all to X :add . The other steps have a similar interpre-tation, with the subs
ript E meaning that a step is taken on behalf of box E . Inthis exe
ution, the
all to X :add from E :a o

urs between the
alls from D :aa .Clearly, D :aa is not two-phase, sin
e it releases box X and then rea
quiresit. However, we note that any two
alls to X :add
ommute, meaning that the �nal21

e�e
t on X :x is the same regardless of the order. Thus, we argue that we
an repla
eX :add (2)E ;X :add (4)Dwith X :add (4)D;X :add (2)Esin
e the overall e�e
t in either
ase is to add 6 to X :x .Using this, we redu
e the above exe
ution to the following, equivalent, exe-
ution.initD ; initE ; X :add (3)D ; X :add (4)D ; X :add (2)E ; termD ; termENow we argue that, sin
e initE a�e
ts only box E , and X :add (3)D a�e
ts only boxesD and X , that these steps
an be ex
hanged. We apply a similar argument for initEand X :add (4)D, so we end up with the following exe
ution.initD ; X :add (3)D ; X :add (4)D ; initE ; X :add (2)E ; termD ; termEFinally, we argue as above that termD
an be ex
hanged with X :add (2)E and initE ,sin
e again the steps a�e
t disjoint parts of the program. The end result is asequential exe
ution, as follows.initD ; X :add (3)D ; X :add (4)D ; termD ; initE ; X :add (2)E ; termEHere we were able to redu
e the original exe
ution to a sequential exe
ution by usingtwo fa
ts:� Any two
alls to X :add
ommute. 22

� Any two steps that a�e
t disjoint parts of the state spa
e
ommute.Note that the e�e
t of the �nal sequential exe
ution is to add 7 to X :x , and theoriginal
on
urrent exe
ution has exa
tly the same e�e
t on X :x . So this redu
tionseems reasonable.Consider now a similar exe
ution to the above, but with a
tions D :aa andE :b. initD ; initE ; X :add (3)D ; X :mult(2)E ; X :add (4)D ; termD ; termENow if we try to apply the above argument, we get stu
k at the �rst step, be
auseX :mult(2)E ;X :add (4)D is not equivalent to X :add (4)D;X :mult(2)E , be
ause thee�e
t of doubling number and then adding 4 is not the same as that of adding 4and then doubling.If the above exe
ution of D :aa and E :b is started from a
on�guration whereX :x = 3, then the exe
ution ends in a
on�guration where X :x = 16. The sequentialexe
ution D :aa ;E :b starting from the same
on�guration, ends with X :x = 20, andthe exe
ution D :aa ;E :b ends with X :x = 13. Thus there is no way to represent theabove
on
urrent exe
ution as a sequential exe
ution of D :aa and E :b.This suggests that we distinguish pairs of a
tions, su
h as D :aa and E :a ,whi
h are \well-behaved" with regards to redu
tion, from pairs su
h as D :aa andE :b whi
h are not. A pair of a
tions is well-behaved if a pro
edure
alled duringa thread for one
ommutes with every pro
edure
alled during a thread for theother. If we exe
ute the program so that only well-behaved pairs of a
tions run
on
urrently, then method
alls
an be reordered, as we did above to show theredu
tion for D :aa and E :a .This is our approa
h to redu
tion. We de�ne
ontrol relations as a generalme
hanism for
ontrolling
on
urren
y. A
ontrol relation
ontains pairs of a
tionsthat may have
on
urrent threads. An exe
ution respe
ts a
ontrol relation if, at23

all times, any pair of
on
urrently exe
uting threads are for a
tions in the
ontrolrelation. We de�ne
ontrol relations that allow as mu
h
on
urren
y as possible,while allowing the redu
tion of every exe
ution that respe
ts the relation to anatomi
 exe
ution. In parti
ular, we run the program above under a
ontrol relationthat
ontains (D :aa ;E :a) but not (D :aa ;E :b).1.3 Summary of the materialThe main results we prove are the following.Complete exe
ution theorem A
omplete exe
ution is one where all threads ter-minate without errors. The theorem gives some
onditions on exe
utions thatensure that every thread terminates. We de�ne
onditions on a program, andon an implementation of the program, su
h that every exe
ution is
omplete.First redu
tion theorem We de�ne a
ontrol relation in terms of
ommutativity
onditions on pro
edure
alls. The theorem shows that every
omplete exe
u-tion respe
ting this
ontrol relation
an be redu
ed to an atomi
 exe
ution.Se
ond redu
tion theorem We
onsider the fairness
onditions satis�ed by a
on
urrent exe
ution and its atomi
 redu
tion. The theorem shows a
ontrolrelation for any subset of the a
tions, su
h that a
omplete exe
ution respe
tingthis
ontrol relation
an be redu
ed to an atomi
 exe
ution, where the originaland redu
ed exe
utions satisfy the same fairness
onditions for a
tions in thesubset.The results are stated and proven in terms of a spe
i�
 language, TCB, that im-plements the Seuss model. We de�ne an operational semanti
s for this language,and we prove the above results for exe
utions under this semanti
s. However, theresults are appli
able to any language implementing the Seuss model. The basi
24

me
hanisms for starting and ending threads, implementing method
all and return,and ensuring mutual ex
lusion on the boxes are
ommon to all these languages, andthese are the features of the semanti
s that are important in proving the theorems.1.3.1 Chapter overviewChapter 2 de�nes a syntax and an operational semanti
s for TCB. We de�ne a pro-gram
on�guration for representing the system state during a
on
urrent exe
ution,and we give the semanti
s as a relation on program
on�gurations, de�ned by a setof inferen
e rules.Chapter 3 proves some basi
 results about the program
on�gurations andinferen
e rules in the semanti
s for TCB. We de�ne the label for a step, and usethis to de�ne a program exe
ution.Chapter 4 investigates the
auses of nonterminating threads. We prove the
omplete exe
ution theorem, whi
h de�nes exa
tly the
onditions ne
essary for ter-mination of all threads in an exe
ution. We de�ne
ontrol relations, and show howthey
an be used to avoid nonterminating threads due to deadlo
k or in�nite exe-
ution.Chapter 5
ontains the �rst redu
tion theorem, and its proof. We de�nea
ontrol relation,
alled weak
ompatibility, using a
ommutativity
ondition onpro
edure
alls. We show that any exe
ution that respe
ts this
ontrol relation
anbe redu
ed to an atomi
 exe
ution. We show a
orresponden
e between the original
on
urrent exe
ution and the redu
ed atomi
 exe
ution, whi
h
an be used to inferproperties of the
on
urrent exe
ution from properties of the atomi
 exe
ution.Chapter 6 dis
usses the impa
t of fairness
onditions on the progress proper-ties that
an be proven of an atomi
 exe
ution. We de�ne two types of fairness, weakfairness and minimal fairness, and show that exe
utions respe
ting the �rst havemore progress properties than exe
utions respe
ting the se
ond. We show that there25

are weakly fair exe
utions respe
ting weak
ompatibility where the redu
tion guar-anteed by the �rst redu
tion theorem gives an atomi
 exe
ution that is not weaklyfair. We show a stronger
ontrol relation, and the se
ond redu
tion theorem, whi
hshows that weakly fair exe
utions satisfying this
ontrol relation
an be redu
ed toweakly fair atomi
 exe
utions.Chapter 7
ontains some
on
luding remarks and observations. Appendix A
ontains the semanti
 rules for TCB. Appendix B
ontains some of the proofsomitted from earlier
hapters.1.4 Related work1.4.1 SeussThe Seuss model was �rst des
ribed by Jayadev Misra in [25℄. Early drafts of thatwork stated, but did not
ompletely prove, a redu
tion theorem similar to the �rstredu
tion theorem in Chapter 5.We implement all features of Seuss as outlined by Misra, with the ex
eption ofnegative alternatives. In the full Seuss model, the alternatives in a partial pro
edureare of two types: positive and negative. The alternatives shown in Se
tion 1.1.3 arepositive alternatives. The exe
ution of a negative alternative is the same as for apositive alternative, ex
ept that a negative alternative always reje
ts, regardless ofthe evaluation of the guard and the body. A pro
edure with negative alternatives
an
hange the value of box variables on a reje
ting
all.Misra shows that negative alternatives add to the expressive power of thelanguage. A strong semaphore, one that guarantees that every a
tion attemptingto a
quire the semaphore eventually su

eeds,
annot be de�ned with positive al-ternatives alone. With negative alternatives, the P operation on the semaphore iswritten so that the identity of the
aller is re
orded when the semphore is not avail-26

able, but the
all reje
ts, indi
ating to the
alling pro
edure that the semaphore isnot available.Rajeev Joshi and Misra show in [20℄ that the
orre
t fun
tioning of a strongsemaphore
oded with negative alternatives requires that all a
tions that attempt toa
quire the semaphore be persistent. An a
tion � is persistent in a given exe
utionif there are an in�nite number of threads for � in the exe
ution, or the �nal threadfor � is a

epting. Equivalently, � is persistent if every reje
ting thread for � isfollowed by another thread for �.Negative alternatives thus violate the rule that a reje
ting thread does not
hange the state, and they introdu
e additional
ompli
ations, so, in the interestsof simpli
ity, we
hoose not to implement them in our work.1.4.2 Redu
tionRi
hard Lipton's paper [24℄, introdu
ed the term redu
tion for the transformationof an exe
ution to an equivalent one in whi
h all the steps of a given thread appear
ontiguously, and thus may be regarded as atomi
. The motivation for his work,as with the
urrent work, is that the redu
ed exe
ution has a
oarser grain of in-terleaving than the original, so there is less intera
tion, and thus less possibility forinterferen
e, between
on
urrently exe
uting threads.Lipton introdu
ed the terms right-mover, for a step that
an be moved right(that is, delayed), and left-mover, for a step that
an be moved left (that is, ad-van
ed). The result he gives applies only to two-phase programs, where every exe-
ution
onsists of a sequen
e of right-movers followed by a sequen
e of left-movers.The redu
tion theorem guarantees that the redu
ed exe
ution is deadlo
k-free if andonly if the original exe
ution is.Several resear
hers have extended Lipton's ideas. In [10℄, Doeppner de�nesexpansions that allow a single large a
tion in a program to be repla
ed with a series27

of smaller steps. He de�nes various notions of
onsisten
y between programs andtheir expansions, and shows that an exe
ution that
an be redu
ed by Lipton'sredu
tion theorem is a
onsistent expansion of its redu
ed exe
ution.In [22℄, Leslie Lamport gives a redu
tion theorem for two-phase threads,
onsisting of a sequen
e of right-movers, followed by a single
entral step, and asequen
e of left-movers. In [23℄, Lamport and Fred S
hneider give a theorem for aredu
tion of two-phase threads that preserves all safety properties.Ralph-Johan Ba
k, in [2℄ and, with Joakim von Wright, in [3℄, presents ate
hnique for re�ning a
tion systems by repeatedly repla
ing a single a
tion withan equivalent a
tion system. This is
alled atomi
ity re�nement. If a
tion systemA is re�ned to a
tion system A0 by this te
hnique, then exe
utions of A0 have a�ner grain of interleaving than exe
utions of A. The te
hnique is aimed at termi-nating programs, and the re�nement guarantees that A and A0 have the same total
orre
tness properties.In [6℄, Ernie Cohen proves the redu
tion theorems of Lipton, Doeppner, andLamport and S
hneider, and the partial
orre
tness part of Ba
k's theorem, in termsof Kleene algebra (an algebra of regular expressions). Presenting the results in auniform framework allows the relationships between the theorems to be explored.In [7℄, Cohen and Lamport show a redu
tion theorem that preserves notonly safety (or partial
orre
tness) properties, but also weak and strong fairnessproperties. As with Lipton's theorem, and Lamport's earlier redu
tion results, thetheorem applies only to two-phase threads.The above redu
tion theorems apply to any exe
ution of a set of two-phasethreads. Threads in Seuss that
all total methods are not two-phase. We
annotshow a redu
tion theorem that applies to any exe
ution of an arbitrary Seuss pro-gram. Instead, we de�ne a restri
tion on
on
urren
y, and we show a redu
tion forall exe
utions obeying this restri
tion. 28

In [28℄, Susan Owi
ki and David Gries give suÆ
ient
onditions between se-quential programs that they do not interfere with ea
h other's exe
ution if run
on-
urrently. Their method involves
he
king every statement in one program againstevery statement in the other. The restri
tion on
on
urren
y that we de�ne toensure redu
tion is de�ned by a similar
ondition between a
tions, ex
ept that weexploit the mutual ex
lusion on pro
edure exe
ution at a box. In the
ondition wede�ne, ea
h pro
edure
alled during exe
ution of a thread for one a
tion is
he
kedagainst every pro
edure
alled by a thread for the other.1.4.3 Transa
tion pro
essingThe two-phase lo
king theorem says that any set of two-phase transa
tions
an berun
on
urrently and the resulting exe
ution is serializable. However, the two-phaseformat is a severe restri
tion on the allowed form of transa
tions. Transa
tionsare often written so that a lo
k is a
quired long before, or released long after, theasso
iated data is a

essed. This de
reases the opportunity for
on
urrent exe
ution.There has been some resear
h into non-two-phase lo
king proto
ols, withthe aim of in
reasing the
on
urrent exe
ution of transa
tions. In [26℄, C Mohan,Don Fussell and Avi Silbers
hatz des
ribe a lo
king s
heme using invisible lo
ks, inaddition to standard shared and ex
lusive lo
ks. The invisible lo
ks allow neitherreading nor writing of the asso
iated data, but a transa
tion must hold some invisiblelo
ks before it
an a
quire an ex
lusive lo
k.The lo
king proto
ol with invisible lo
ks assures serializability of a

esses tothe data items, even for non-two-phase transa
tions. The proto
ol does not allowa transa
tion to rea
quire a lo
k it has released, but it may a
quire other lo
ks.One of the interesting results presented in this work is that every deadlo
k involvesa transa
tion holding only invisible lo
ks, and this transa
tion has not
hanged tovalue of any data. Thus to break the deadlo
k, the transa
tion with only invisible29

lo
ks
an be aborted. There is no need for a me
hanism to roll ba
k the state of thesystem on su
h an abort, sin
e the aborted transa
tion has made no state
hanges.Eliot Moss's work on nested transa
tions [27℄, extends the single-level trans-a
tion model to one in whi
h a transa
tion may
all several subtransa
tions duringits exe
ution. Ea
h of these subtransa
tions is itself a transa
tion, and ea
h may
ommit or abort independently. A transa
tion is not obliged to abort if a subtrans-a
tion aborts. The intention is to provide a robust me
hanism for implementingprograms on unreliable hardware. The implementation of the model ensures thatea
h part of a
omputation
an be regarded as an uninterrupted atomi
 a
tion.The nested transa
tion model allows for
hanges to the underlying stateprior to a de
ision to abort a transa
tion. If a transa
tion is aborted, all
hangesmade to the state by the lo
al
ode of the transa
tion, and by any
ommittedsubtransa
tions, is rolled ba
k. Mu
h of Moss's resear
h
on
erns the managing ofdependen
ies between transa
tions. This is required so that during rollba
k for anabort of a transa
tion, any other transa
tion that has read values written by theaborted transa
tion is itself aborted.Seuss pro
edures
an be regarded as transa
tions, and method
alls are thus
alls to nested transa
tions. However, Seuss requires no me
hanisms for rollba
kon reje
tion, sin
e we ensure that the state is never
hanged unless a thread has
ommitted.1.4.4 Con
urrent obje
t-based languagesThere are a number of languages that o�er both
on
urrent exe
ution and obje
t-based en
apsulation of data and
ode. Many of these use an existing language as abasis. For example, COOL [4℄ is one of a number of proposals for extending C++with
on
urrent exe
ution, and ABCL [33℄, and its various des
endents, are basedon Lisp. We are not aware of work applying redu
tion to any of these languages.30

In [19℄, Steve Hodges and Cli� Jones present an operational semanti
s forthe language �o��, a
on
urrent obje
t-based modeling language. They use thissemanti
s to prove the validity of optimizations allowing in
reased
on
urren
y. Themain optimization is early return. In this a
all to pro
edure �0 from pro
edure �returns as soon as the values of the return parameters are available. The remainderof the exe
utions of the
alls to �0 and � are exe
uted
on
urrently.The semanti
s for �o�� given by Hodges and Jones is based on the Stru
turedOperational Semanti
s outlined by Gordon Plotkin in [29℄. The semanti
s we givefor Seuss is strongly in
uen
ed by that given in [19℄.1.5 NotationWe use the operator , to mean \is equal by de�nition". We use the following generalformat for quanti�
ation.hÆ x : R:x : T:x iHere Æ is a
ommutative asso
iative binary operator. We
all x the dummy, R:xthe range, and T:x the term. The range is a boolean expression, and the termis an expression of the
orre
t type to be a operand of Æ. The meaning of thequanti�
ation is the result of applying operator Æ to the set of values T:x for all xsatisfying R:x.

31

We use the following instan
es of this notation.h8 x : R:x : T:x i , for all x, if R:x then T:xh9 x : R:x : T:x i , there exists an x, su
h that R:x and T:xh9! x : R:x : T:x i , there exists a unique x, su
h that R:x and T:xh� x : R:x : T:x i , the sum of T:x, for x satisfying R:x,h# x : R:x : T:x i , the number of x satisfying R:x and T:xhmin x : R:x : T:x i , the minimum of T:x, for x satisfying R:x,h[x : R:x : T:x i , the union of T:x, for x satisfying R:x,When the range is true or understood from the
ontext, we omit it, and writeh8 x :: T:x i. For long formulae, we write the quanti�
ation over several lines asfollows.h8 x: R0:x ^ R1:x ^ R2:x ^ R3:x ^ R4:x ^ R5:x ^ R6:x: T0:x ^ T1:x ^ T2:x ^ T3:x ^ T4:x ^ T5:x ^ T6:xiFor sets, we use the following form of quanti�
ationf x : R:x : T:x g , the set of all T:x, for x satis�ng R:xFor set quanti�
ation where the term is x, we use the
omprehension notation.f x j R:x g , f x : R:x : x gWe use the following operator to express the fa
t that two sets are disjoint. For sets
32

A and B,A disjB , A \B = ;For a set A,#A , the number of elements in AA? , A [f?gHere, ? is an element not in set A. A
ommon use of a set A? is to de�ne a fun
tionthat returns either an element of A, or ? indi
ating \no su
h item".For sets A and B, A ! B is the set of total fun
tions from A to B, andA ,! B is the set of partial fun
tions from A to B. For a fun
tion f , we writedom(f) and rng(f) for the domain and range of f .For a set A, A� is the set of �nite sequen
es over A, and A1 is the set of�nite and in�nite sequen
es over A. For s 2 A1, we write jsj for the length of s. Ifs 62 A�, then jsj =1. We use the indexing operator s[i℄ for the ith element of s, for0 � i < jsj. Element indi
es start at 0. We use the segment operator s[i : : : j℄ forthe segment of s
ontaining elements s[i℄ through s[j℄ in
lusive, for 0 � i � j < jsj.For an in�nite sequen
e, we allow segments s[i : : :1℄, meaning the segment fromelement s[i℄ on. With these, we de�ne�rst(s) , s[0℄rest(s) , s[1 : : : (jsj � 1)℄last(s) , s[jsj � 1℄ if jsj <1For s; t 2 A1, the
on
atenation of s and t is written sÆ t. If jsj =1, then sÆ t = s.
33

Sequen
es are ordered by the pre�x ordering.s v t , h9 s0 : s0 2 A1 : s Æ s0 = t iUnder this order, the set A1 is a
omplete partial order (CPO) (see [8℄). By de�ni-tion, the least upper bound of any
hain is an element of A1. That is, if s0; s1; s2; : : :are su
h that for all i, si 2 A1, and si v sj for all i, j, su
h that i < j, then theleast upper bound of the si, written ht i : 0 � i : si i, is an element of A1. Thismeans we
an de�ne elements in A1 as the limit of a
hain of �nite sequen
es. Weuse ? for the empty list. This is the bottom element in the pre�x order.We write proofs in the style of [9℄. The following proof fragment shows theessential features of this format.:(a = b ^ b =
) ^ (b =
 _
 = d)� f predi
ate
al
ulus g(a = b) b 6=
) ^ (b 6=
)
 = d)) f transitivity of) ga = b)
 = d) f assumption a = b g
 = dThe proof shows derivation of
 = d, from the formula in the �rst line, and theassumption a = b. The proof
onsists of alternating lines of terms and hints. Ahint line starts with a
onne
tive. The se
ond line of the proof (the �rst hint) saysthat the term in the �rst line is equivalent to the term in the third line. The hintjusti�es this
laim with a referen
e to the appropriate mathemati
al law, theorem,de�nition, or assumption. The proof as a whole says that the �rst term implies thelast term.
34

We de�ne tuples with typed
omponents as in the following example.T , re
ordr : integerb : booleanendThis de�nes the type T as a tuple
onsisting of an integer r and a boolean b. Ift 2 T , we write t :r for the �rst
omponent of t , and t :b for the se
ond
omponent.We write an arbitrary element of T as (r ; b).

35

Chapter 2
The de�nition of TCB
2.1 Introdu
tionAll Seuss languages have the same me
hanisms for
ommuni
ation between boxes,and for evaluation of guards, so the major di�eren
e between them is the sequentiallanguage used to write pro
edure bodies. TCB is a Seuss language that uses a simplesequential language,
alled TCBlo
, for pro
edure bodies. We de�ne a syntax andoperational semanti
s for both languages.TCBlo
 is a simple language, and it has a simple semanti
s with a singlethread of
ontrol. In the semanti
s of TCB, we must represent threads exe
uting
on
urrently at di�erent boxes.We de�ne the semanti
s for TCBtot, a restri
ted form of TCB in whi
h allpro
edures are total. In this semanti
s, we represent the exe
ution of ea
h box in theprogram separately, with
ommuni
ation between boxes for method
all and return.The semanti
s implements pro
edure
all and return, but does not implement guardevaluation or reje
ting pro
edure
alls, sin
e there are no partial pro
edures.We extend the semanti
s for TCBtot to a semanti
s for the full TCB lan-guage. The extension implements guard evaluation and reje
ting pro
edure
alls.36

We give two semanti
 de�nitions for TCB, using di�erent models for pro
edure
all.The di�eren
es are dis
ussed below.2.2 SyntaxThe syntax of TCB is essentially the same as that used for the example programs inChapter 1. We de�ne a simple sequential language,
alled TCBlo
. This has someof the standard features of an imperative language: assignment, alternation, anditeration. We de�ne TCB as a Seuss language that uses TCBlo
, augmented with apro
edure
all statement, as the language for the bodies of pro
edures.2.2.1 Variables, states, values and expressionsThe set Id
ontains the legal identi�ers. We use x , y and z as typi
al variables, Dand E as typi
al boxes, a as a typi
al a
tion, m and n as typi
al methods, and pas a typi
al pro
edure.We are deliberately vague about the language used for expressions in thislanguage. We assume that we
an represent values of the following types.boolean = ftrue ; falseginteger = f: : : ;�2;�1; 0; 1; 2; : : : gWe de�neVal , boolean � integerType , fboolean ; integergHere � is the disjoint union operator. The set Val
ontains all values that
an beassigned to a variable. We use v for a typi
al member of Val . The set Type
ontainsthe all the types in TCB. 37

We use standard operators for the boolean and integer types, in
luding equal-ity, logi
al operators su
h ^ and :, and integer operators su
h as + and �. Set Exp
ontains all legal expressions. We use e for a typi
al expression, and b for a typi
alboolean expression.We use a state to give the values of the variables in a program. A state is amap from variable identi�ers to values.De�nition 2.1State , Id ,! Val?A State is a partial fun
tion, sin
e only a subset of Id are de�ned as variables inany given program. We use � for a typi
al member of State . For any x 2 VarId ,if x 2 dom(�), �:x is the value of x in �. If �:x = ?, then x is de�ned in �, butuninitialized.The evaluation operator [[�℄℄ is de�ned so that for any expression e, and anystate � su
h that every variable in e is de�ned in �, with a value of the appropriatetype, the value of e in � is [[e℄℄�.The type VarTypeList is used to represent a list of variable ids and theirasso
iated types (for example, for a parameter list). The elements of VarTypeListare sequen
es over Id�Type, su
h that all the Id entries in the sequen
e are distin
t.A typi
al element of VarTypeList is V . For L 2 VarTypeList , VarList(L) is thesequen
e of ids in L.2.2.2 Syntax for TCBlo
A TCBlo
 program is shown in Figure 2.1. This example shows all the
onstru
tsof TCBlo
, a minimal language of the Algol-Pas
al family. A program
onsists ofa variable de
laration blo
k, started by var, followed by the
ode of the program38

var x : integerd : integer init 4q : integerr : integerb : boolean init falsebeginq := �23if x < 0 then x := �x else b := truer := x ; q := 0while r � d do j[r := r � d ; q := q + 1 ℄jend Figure 2.1: TCBlo

ode to divide x by dbetween begin and end. The program shown implements integer division usingrepeated subtra
tion. Four integer variables and one boolean variable are de
lared.Variable d is initialized to 4, b to false , and x, q, and r are uninitialized. The �rststatement of the
ode assigns a value to x. The se
ond statement
he
ks if x isnegative, and if it is, negates it. The next line
ontains two assignment statementsin sequen
e. The �nal line is a loop statement that
he
ks if r is at least d, and ifit is, updates r and q and repeats. The two assignments in the loop are en
losedin bra
kets indi
ating that they form a
ompound statement, whi
h is treated as asingle statement.The syntax for TCBlo
 is shown in Figure 2.2. It is given as a set ofBa
kus Normal Form (BNF) produ
tion rules. Terminals and nonterminals of thegrammar are en
losed in angle bra
kets. On the right-hand side of the produ
tionrules, we use quotation marks around elements of the
on
rete syntax, and we use
39

hlo
prog i ::= \var" hde
l i� \begin" hstmti� \end"hde
l i ::= hidi \:" htypei [\init" hvaluei ℄hstmti ::= hassigni j hifelsei j hwhiledoi j h
ompound ihassigni ::= hidi \:=" hexpihifelsei ::= \if" hexpi \then" hstmti \else" hstmtihwhiledoi ::= \while" hexpi \do" hstmtih
ompound i ::= \j[" hstmti� \℄j"
Figure 2.2: Syntax for TCBlo
the following operators.S� , S repeated 0 or more timesS+ , S repeated 1 or more timesS S0 , S followed by S0S j S0 , S or S0[S ℄ , S is optionalThe operators are given in order of pre
eden
e, from highest to lowest. We useparentheses for grouping when ne
essary.Thus, the �rst produ
tion rule in Figure 2.2 says that a program hlo
prog i isthe keyword var, followed by zero or more hde
lis, followed by the keyword begin,followed by zero or more hstmtis, followed by the keyword end. The se
ond rule saysthat a de
laration hde
li is an hidi, followed by the separator :, followed by a htypei,optionally followed by the keyword init and a hvaluei. The third rule says that astatement hstmti is one of an hassigni, an hifelsei, a hwhiledoi, or a h
ompound i.40

box Semvar n : integer init 1method P :: n > 0 �! n := n� 1method V :: n := n+ 1endbox Dvar x : integer init 0a
tion a
t :: true & Sem:P �! x := x+ 1 ; Sem:Vendbox Evar y : integer init 0b : boolean init falsea
tion a
q :: :b & Sem:P �! b := truea
tion rel :: b �! y := y + 1 ; b := false ; Sem:Vend Figure 2.3: A TCB program with three boxesWe assume that the terminals hidi (for identi�ers), htypei (for typenames),and hexpi (for expressions) are de�ned elsewhere.2.3 Syntax for TCBAn example TCB program with three boxes is shown in Figure 2.3. The �rstbox, Sem, implements a general semaphore. The box has a lo
al integer variable n,whi
h is initially 1, and two methods, P and V . Method P is partial; a
all to thismethod a

epts only if n > 0. If a
all to Sem:P a

epts, then the semaphore hasbeen granted to the
aller. The method V releases the semaphore. This method istotal, so it always a

epts.Boxes D and E show two di�erent styles for using the semaphore. Box D
ontains a single a
tion a
t . This is a partial a
tion. The
ondition is true. The test41

hprogram i ::= hbox i+hbox i ::= \box" hidi \var" hde
l i� hpro
i+ \end"hpro
i ::= (\a
tion" j \method") hheader i \::"(hpartial i j htotal i)hheader i ::= hidi \(" [\in" hde
li+ ℄ \;" [\out" hde
l i+ ℄ \)"hpartial i ::= halterni+halterni ::= hboolexpi [\&" h
alli ℄ \�!" hstmti�htotal i ::= hstmti�hstmti ::= h
all i j hassigni j hifelsei j hwhiledoi j h
ompih
all i ::= hidi \:" hid i [\(" hexpi� \;" hidi� \)" ℄hassigni ::= hidi \:=" hexpihifelsei ::= \if" hboolexpi \then" hstmti \else" hstmtihwhiledoi ::= \while" hboolexpi \do" hstmtih
ompi ::= \j[" hstmti� \℄j"hde
l i ::= hidi \:" htypei [\init" hvaluei ℄
Figure 2.4: Syntax for TCBis a
all to Sem:P to obtain the semaphore. If the test a

epts, box D in
rements x ,and then
alls Sem:V to release the semaphore. Box E has two a
tions. The lo
alboolean variable b indi
ates if the box holds the semaphore. The �rst a
tion, a
q ,attempts to a
quire the semaphore, if it does not already hold it. If it su

eeds, itsets
ag b to true. This enables a
tion rel , whi
h in
rements y , and then releasesthe semaphore, and resets b.The syntax for TCB is shown in Figure 2.4. This syntax
orresponds to thesyntax we have been using for the examples so far. There is one slight extension:a pro
edure header, and a pro
edure
all, has a semi
olon between the input andoutput parameters. Thus we write a
all to a method D :m with input and output42

parameters as D :m(~e; ~x), where ~e is a sequen
e of expressions giving values forthe input parameters, and ~x is a sequen
e of variable ids to re
eive the outputparameter values. We omit the semi
olon on a header or a
all if there is only onetype of parameter. We omit the parenthesis if there are no parameters.Note that the produ
tion for hstmti has one alternative more than the equiv-alent produ
tion in the syntax of TCBlo
. The extra alternative is the method
allstatement.2.4 Well-formed programsThere are synta
ti
ally legal TCBlo
 and TCB programs that
annot be imple-mented. The syntax given ignores issues of variable s
ope, and type
orre
tness,sin
e these
annot easily to expressed in a BNF grammar.For the remainder of this work, we
onsider only well-formed programs, thatis, programs that respe
t s
oping rules and are type
orre
t. We do not give anexa
t de�nition of a well-formed program. Rather, we list the assumptions that wemake in de�ning the semanti
s for well-formed programs.We de�ne the s
ope of a variable de
laration in a TCBlo
 program to be allthe statements. In TCB, the s
ope of a box variable is all the pro
edures in thebox, and the s
ope of a pro
edure parameter is the pro
edure where it is de
lared.We assume that ea
h operator in the expression language has a type signature,giving the type of its operands and result. We assume that the expression languagede�nes the set of well-typed expressions, and assigns a unique type to ea
h. Theseare the expressions where every operator is used with expressions of the
orre
t typefor its operands, as given by the type signature. The type of a well-typed expressionis the result type of the top-level operator. If e is an expression
ontaining variables,then the type of e is de�ned relative to a type assignment a partial fun
tion fromvariable ids to types. If e
ontains a variable whose type is unde�ned, then it is not43

well-typed.For example, the expression \:b ^ (x = y)" is well-typed, with respe
t to atype assignment that gives b type boolean , and x and y type integer , assuming theoperators have the
ustomary type signatures. The expression \true + 17" is notwell-typed.For ea
h statement in a program, we de�ne a type assignment mapping x toT for every de
laration \x : T" whose s
ope in
ludes the statement. Any expressionin the statement is typed relative to this type assignment.Assumption 2.2 For a well-formed program,1. Every variable is used in the s
ope of a de
laration.2. Every expression is well-typed.3. For every assignment statement, the expression of the right-hand side has thesame type as the variable on the left-hand side.4. The expression if every if-else and while-do statement is of type boolean.5. Every method
all statement in TCB is to a method de
lared in another box,and the types of expressions for the input parameters, and of the variables forthe output parameters, mat
hes the de
lared parameter types for the method.6. A
tions have no parameters.For e 2 Exp, and x 2 Id , we say that e mat
hes x if the type of e mat
hes thetype of variable x . We use this only in a
ontext where the types of e and x isunderstood, that is, in the s
ope of the ne
essary de
larations. We extend this tosequen
es in the obvious way. For ~e 2 Exp�, and ~x 2 Id�, we say that ~e mat
hes ~xif ~e and ~x are the same length, and ea
h expression in ~e mat
hes the
orrespondingvariable in ~x . 44

2.5 Run-time errorsRun-time errors des
ribe steps of a program
aused by the failure to evaluate anexpression in the
urrent state. Often, a run-time error is de�ned for division byzero, or a

essing an array outside its bounds. We
hoose not to de�ne any run-timeerrors for TCB, sin
e we thereby avoid adding to the
omplexity of the semanti
s.That is, we make the following assumption.Assumption 2.3 A TCB expression e is de�ned in every state � that assigns avalue of the
orre
t type to every variable in e.We indi
ate extensions to the semanti
s and to the
omplete exe
ution theorem thatare required if we do not make this assumption.2.6 Operational semanti
sWe give semanti
 de�nitions in the Stru
tured Operational Semanti
s style intro-du
ed by Plotkin [29℄. We
hoose this style be
ause it allows us to present thesemanti
s in a way that
losely models the informal explanation of the exe
ution ofTCB programs given in earlier
hapters.For ea
h semanti
 de�nition, we �rst de�ne a
on�guration that in
ludes (atleast) a state, and a sequen
e of program statements (the
ode). A
on�gurationrepresents a \snapshot" of a system. The state gives values to the program variables,and the
ode is the part of the program
ode left to exe
ute.The exe
ution of a program steps from
on�guration to
on�guration asstatements are exe
uted, and the state is updated. We use fun
tion update todes
ribe the
hanges to the state. For a state �, the state�0 = � [x 7! v℄ 45

is de�ned by�0:x = vand, for y any identi�er other than x,�0:y = �:yFor � 2 State, and � 2 Statement�, let C = (�; �) be a
on�guration. Thesemanti
 rules de�ne a transition relation on
on�gurations. Con�guration C isrelated to C0 = (�0; �0) if the semanti
s allows a step from C to C0. We
all C0a su

essor of C. The rules de�ning the relation generally depend on the �rststatement in �, and on the state �. Component �0 is the updated
ode after the�rst statement has been exe
uted, and the �0 is � updated with the e�e
t of thestatement.An exe
ution of a program starts from a
on�guration C0 = (�0; �0) in whi
h�0 maps ea
h variable to its initial value, and �0 is the whole program. Exe
utionpro
eeds by taking a step from C0 to C1, where C1 is a su

essor of C0, and thentaking a step from C1 to C2, one of its su

essors, and
ontinuing in this way. Ifan exe
ution rea
hes a
on�guration with no su

essors in the transition relation,the exe
ution stops. There are no su

essors for
on�gurations with an empty
ode
omponent. In su
h a
on�guration, there is no more
ode to exe
ute. An exe
utionthat rea
hes su
h a
on�guration has terminated.The sequential language TCBlo
 is very simple, and its operational semanti
sis
orresponding simple. The semanti
 de�nition serves mainly as an introdu
tion tothe Stru
tured Operational Semanti
s style before we ta
kle
on
urrent exe
ution.The semanti
s for TCBtot and TCB represents an exe
uting program a sys-tem
omprised of separately exe
uting nodes, one for ea
h box. Ea
h node exe
utes
alls to pro
edures from its asso
iated box. We identify ea
h box in the program46

with its node, and use the name \box" to mean either, depending on
ontext. Abox that is not
urrently exe
uting a pro
edure
all is
alled quies
ent. Initially, allboxes are quies
ent.The exe
ution of a thread for a
tion D :a begins with box D starting to exe-
ute a's
ode. If the exe
ution of D :a rea
hes a
all to method E :m , this is exe
utedby suspending exe
ution at D , and starting exe
ution at E . When the exe
ution ofE :m's
ode is
omplete, D be
omes a
tive again, and E be
omes quies
ent.In a TCBtot program, every pro
edure is total, so every pro
edure
all duringan exe
ution is a

epting. The semanti
s is simpli�ed by not having to deal withreje
ting pro
edure
alls.We implement a simple model of pro
edure
all for TCBtot. In this model,a pro
edure
all step o

urs when a box D has a
all to E :m as the �rst statementin its
ode, and E is quies
ent. If E is exe
uting a pro
edure
all, D is blo
keduntil this
all
ompletes. When E is quies
ent, D is able to make the
all. The
on�gurations of D and E are updated in the same step: D enters a waiting phase,and E is updated with the
all from D . Box E is then
ommitted to exe
uting this
all. When it
ompletes the
all, the
on�gurations of D and E are again updatedin a single step: D is updated with the values of the output parameters from E ,and
ontinues exe
uting the rest of its
ode, and E be
omes quies
ent again. We
all this model of pro
edure
all a rendezvous between the sour
e and the agent;the step is enabled only if both boxes are in the right
on�guration. We
all thesemanti
s for TCBtot a rendezvous semanti
s.The �rst semanti
s we de�ne for the full TCB language uses the rendezvousmodel for pro
edure
all. This extends the ideas from the TCBtot semanti
s, andimplements guard evaluation and a

epting and reje
ting
alls to partial pro
edures.The rendezvous model for pro
edure
all is inadequate for
ases when thereis
ontention for a

ess to a box. Suppose pro
edure
alls are exe
uting
on
urrently47

at boxes D and D 0, and both are ready to
all a method on box E . Box D
annotpro
eed until E exe
utes its method
all, and similarly for D 0. When E is idle, it
an start exe
uting only one of the
alls, say the one from D 0. Box D waits whileE exe
utes the
all from D 0. When E is again idle, it may start D 's
all, or it maystart a
all from yet another box. If there are enough boxes trying to
all methodson E , there may be
ontention ea
h time E is quies
ent, and box D may always losethis
ontention.An exe
ution with a nonterminating thread
annot be represented by a se-quential exe
ution. To get an exe
ution in whi
h all threads terminate, we mustensure that every pro
edure
all is eventually exe
uted by its agent. The above ex-ample shows that the rendezvous semanti
s does not guarantee this. We introdu
ea di�erent model for pro
edure
all, one that uses a
all queue for ea
h box.In the new model, a box D rea
hes a
all to a pro
edure on box E , an entryis pla
ed at the ba
k of E 's
all queue, regardless of E 's
on�guration. Box Denters a waiting state. When E is idle and there is an entry in its
all queue, itstarts exe
uting the front entry. When it
ompletes the
all it returns any outputparameters to the
all's sour
e, and the sour
e
ontinues exe
uting. The frontentry is removed from the queue, and E be
omes idle, so it again
he
ks to seeif the queue is empty. Assuming ea
h pro
edure
all terminates, the
all from Deventually rea
hes the front of the queue, and E exe
utes it.The queue model ensures that no box is permanently prevented from a
-
essing a box to exe
ute a method. We
all a semanti
s using this model a queuesemanti
s.Note that the rendezvous form for pro
edure return does not
ause similar
ontention problems, sin
e we restri
t our attention to well-formed program
on�g-urations, one of whose
hara
teristi
s is that if an agent is ready to return from amethod
all, then the sour
e of the
all is waiting, ready to exe
ute the return.48

Our �nal semanti
s is a queue semanti
s for the full TCB language. Weextend the program
on�gurations from the rendezvous semanti
s to in
lude the
all queues, and we de�ne a transition relation on these extended
on�gurations.This semanti
s is the one whi
h we use as the semanti
s of TCB in later
hapters.2.7 Operational semanti
s for TCBlo
We de�ne the semanti
s of a TCBlo
 program, using the Stru
tured OperationalSemanti
s style.2.7.1 Program
on�guration for TCBlo
The
on�guration of a TCBlo
 program is given by the type Lo
Con�g .De�nition 2.4Lo
Con�g , re
ord� : State� : Statement�endComponent � is the value of the program variables, and
omponent � is the sequen
eof statements | the
ode | remaining to be exe
uted.2.7.2 Semanti
 rules for TCBlo
The semanti
s for this language is given as a set of inferen
e rules whi
h togetherde�ne a relation �! over Lo
Con�g . These inferen
e rules are shown in Figure 2.5.The intended operational meaning of these rules is as follows.(assign) If �rst(�) is an assignment statement, evaluate the right-hand side of theassignment in the
urrent state, and update the state to give the variable of49

(assign) � = (x := e); �0�0 = � [x 7! [[e℄℄�℄(�; �) �! (�0; �0)(blo
k) � = j[�0 ℄j; �1�0 = �0; �1(�; �) �! (�; �0)(if-true) � = (if b then S 0 else S 1); �̂[[b℄℄� = true�0 = S 0; �̂(�; �) �! (�; �0)(if-false) � = (if b then S 0 else S 1); �̂[[b℄℄� = false�0 = S 1; �̂(�; �) �! (�; �0)(while-true) � = (while b do S); �̂[[b℄℄� = true�0 = S ; (while b do S); �̂(�; �) �! (�; �0)(while-false) � = (while b do S); �0[[b℄℄� = false(�; �) �! (�; �0)Figure 2.5: Semanti
s for TCBlo

50

the left-hand side of the assignment the value
omputed;
ontinue exe
utingthe rest of the program after the assignment.(blo
k) If �rst(�) is a blo
k statement, prepend the statements in the blo
k to the
ode, without
hanging the state.(if-true)(if-false) If �rst(�) is an if-else statement, �rst evaulate the
ondition expression inthe
urrent state; if it is true, exe
ute the then-statement, if it is false, exe
utethe else-statement; afterwards,
ontinue with the rest of the program.(while-true)(while-false) If �rst(�) is a while-do statement, �rst evaluate the
ondition expres-sion in the
urrent state; if it is true, exe
ute the body of the loop, and thenexe
ute the loop again, if it is false ,
ontinue with the rest of the programafter the loop.An exe
ution of a TCBlo
 program starts from a
on�guration (�0; �0), where �0 isthe initial state, and �0 is the whole
ode of the program. State � assigns values toall the variables de�ned for the program, and to no others.From the initial
on�guration (�0; �0), the exe
ution takes a step to
on�gu-ration (�1; �1), where (�0; �0) �! (�1; �1), and then it takes a step to (�2; �2), where(�1; �1) �! (�2; �2). The exe
ution
ontinues in this manner. If exe
ution rea
hesa
on�guration (�n; �n) where �n = ?, no further transitions are possible, and wesay that the exe
ution has terminated, and �n is the �nal state.Note that none of the semanti
 rules extend the domain of the state
om-ponent of the
on�guration. In this simple programming language all variables areglobal, and last the lifetime of the program.The semanti
s given is standard, and we do not investigate it further sin
eit is not the fo
us of our work. The semanti
s of the TCBlo
 have little e�e
t on51

results that we prove for TCB. The main feature of this semanti
s we use in theremainder of our work is that it that for every (�; �), where � 6= ?, there is a (�0; �0)su
h that (�; �) �! (�0; �0).The results that we show
an be extended to a Seuss language using anysequential language for the bodies of the pro
edures, not just TCB. We
hoseTCBlo
 as a simple representative sequential language.See [29℄ for examples of Stru
tured Operational Semanti
s de�nitions of lan-guages with lo
al variables, subroutines, and dynami
 allo
ation. For our purposes,a ri
her sequential language is unne
essary.2.8 De�ning the semanti
s for TCBWe dis
uss below a number of the design de
isions that were made in de�ning thesemanti
s for TCB.2.8.1 Modelling boxesAs noted in the introdu
tion, the
on�guration of a TCB program
onsists of the
on�guration of ea
h box in the program. The box
on�guration has several
ompo-nents. As with TCBlo
, it in
ludes the lo
al state, whi
h gives the values of all thevariables de
lared in the box, and some
ode, whi
h, in this
ase, is the statementsremaining to be exe
uted for the
urrent pro
edure
all. The other
omponents arethe phase, and the
all information.Exe
ution for ea
h box
onsists of a sequen
e of
omplete pro
edure
alls.The phase for a box re
ords where the box stands in the
y
le of waiting to startexe
ution of a pro
edure
all, de
iding to a

ept or reje
t the
all, exe
uting thepro
edure body, and so on. The phase is the state for a �nite state automaton
ontrolling this aspe
t of the box's exe
ution.52

The
all information re
ords information about the
urrently exe
uting pro-
edure
all. This is needed for, among other things, determining the values to returnto the sour
e on return from a pro
edure
all.During the exe
ution of a TCB program, the box
on�gurations are inter-related. For example, if box D is exe
uting a method
all with sour
e E , then weexpe
t E to be waiting for
ontrol to return from the method
all. In Chapter 3, wede�ne the set of well-formed box
on�guration and program
on�gurations. Theseare the only
on�gurations we expe
t to see during the exe
ution of a program. Weshow that an exe
ution starting from a well-formed
on�guration never rea
hes a
on�guration that is not well-formed.The program
on�guration we de�ne allows for independent a
tivity at ea
hbox. The model allows an a
tion
all to be started when other a
tion
alls arerunning. Ea
h a
tion
all is a separate thread. The model is one in whi
h there
anbe multiple threads a
tive at one time.Note The three semanti
s that we introdu
e share many similarities, and we de�nesimilar but di�erent types and inferen
e rules for di�erent semanti
s. We adopt anaming
onvention (with the aid of hindsight) for these entities, as follows.� If an entity is used in the semanti
s of TCBtot, but not in the rendezvoussemanti
s of TCB, it is named with the suÆx -tot .� If an entity is used in the rendezvous semanti
s of TCB, but not in the queuesemanti
s of TCB, it is named with the suÆx -rdv .� If an entity is used in the queue semanti
s of TCB, it is named with neitherof these suÆxes.So, for example, ProgCon�g-tot is the program
on�guration for the TCBtot seman-ti
s; ProgCon�g-rdv is that for the rendezvous semanti
s of TCB; and ProgCon�g is53

that for the queue semanti
s of TCB. In the TCBtot semanti
s, we use names withboth suÆxes, and with none; in the rendezvous semanti
s for TCB we use nameswith the suÆx -rdv , and names with no suÆx; in the queue semanti
s for TCB weuse only names with no suÆx. (End of note)2.9 Rendezvous semanti
s for TCBtotWe present a rendezvous semanti
s for TCBtot. In the semanti
s, we need to referto information about boxes and pro
edures from the program. When a pro
edure
all is initialized, for example, the semanti
s uses the names of input parametersde
lared for that pro
edure to
orre
tly update the state with the input parametervalues. We de�ne some types for this stati
 information.2.9.1 Stati
 information for a TCBtot boxWe de�ne a type for the information about pro
edures de�ned in a box.De�nition 2.5TotalDef , re
ordI : VarTypeListO : VarTypeListC : Statement�endHere I represents the input parameters and their types, O represents the outputparameters and their types, and C represents the
ode for the body of the method.For an a
tion, both I and O are empty lists. We use VarTypeList rather than aState for the input and output parameters be
ause we use positional mat
hing topass multiple a
tual parameter values to multiple formal parameters. That is, if we54

have the parameter list h(x ; Integer); (y ; Integer)i, and we have the parameter valuelist h5; 9i, then we give x the value 5, and y the value 9. The translation of the
odeof a well-formed TCBtot pro
edure to a TotalDef is straightforward.The type BoxInfo-tot re
ords the stati
 information for a box.De�nition 2.6BoxInfo-tot , re
ord�0 : StateT : Id ,! TotalDefA : dom(T)! BoolendComponent �0 represents the initial state, whi
h assigns initial values of the appro-priate type to the box variables, T represents the total pro
edures de�ned in thebox (for the present
ase, all pro
edures are total), and A indi
ates whi
h of thepro
edures in dom(T) are a
tions; A:p holds if and only if pro
edure p is an a
tion.Again, translating the
ode of a TCBtot box into a BoxInfo-tot is a straight-forward pro
ess. Translating the well-formedness
onditions on TCBtot programsto the equivalent
onditions on the generated BoxInfo-tot , we assume the followingabout any BoxInfo-tot .Assumption 2.7 If (�0;T ;A) is a BoxInfo-tot generated from the
ode of a well-

55

formed TCBtot box,h8 p: p 2 dom(T): (A:p) T :p = (?;?;C)) ^dom(�0) disj dom(T :p:I) ^dom(�0) disj dom(T :p:O) ^dom(T :p:I) disj dom(T :p:O)iThe �rst
onjun
t in the term states that a
tions have no input or output parame-ters. The remaining
onjun
ts require that the names of the input parameters, andthe output parameters be distin
t from ea
h other and from the names of the boxvariables. This restri
tion means that we do not have to deal with the
ase when thename of a parameter hides the name of a box variable. This simpli�es the de�nitionof the semanti
 rules.2.9.2 Stati
 infomation for a TCBtot programLet B be the set of boxes in the program. The stati
 information asso
iated witha TCB program is represented by a map I that maps ea
h box to its asso
iatedBoxInfo-tot .I : B! BoxInfo-totThis map is generated from the program text. When we use the following fun
tions,whi
h use I impli
itly, we do so in a
ontext in whi
h there is an identi�ed programunder
onsideration, so the value of I is given.
56

De�nition 2.8 For D 2 B,InitState(D) , I:D :�0BoxVars(D) , dom(InitState(D))TotA
ts(D) , f p j p 2 dom(I:D :T) ^ I:D :A:p gTotMeths(D) , f p j p 2 dom(I:D :T) ^ :I:D :A:p gFor p 2 dom(I:D :T),InParam(D :p) , VarList(I.D.T .p.I)OutParam(D :p) , VarList(I.D.T .p.O)Code(D :p) , I:D :T :p:C2.9.3 Box
on�guration for TCBtotThe type BoxCon�g-tot is used to represent the
on�guration of a TCBtot boxduring the exe
ution of a program. To de�ne this we �rst de�ne a type to representthe phase of an exe
uting box. At ea
h point during the exe
ution of a program, abox is in one of the following phases.� Not
urrently exe
uting a pro
edure
all.� Exe
uting the lo
al
ode of a pro
edure
all.� Waiting for a
all on a method in another box to return.� Ready to return
ontrol and output parameter values to the sour
e.The following type represents the phase.De�nition 2.9BoxPhase-tot , fidle;a

ept;wait;returng57

IDLE RETURN

ACCEPT

WAIT

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

Figure 2.6: Transition diagram for phases of a TCBtot box.These values
orrespond, in order, to the phases listed above. The diagram inFigure 2.6 shows the possible phase
hanges for a single box.The type CallInfo is used to re
ord information regarding a pro
edure
all.De�nition 2.10CallInfo , re
ordp : IdQ :B?~v : Val�endHere p is the name of the pro
edure, and Q is the sour
e. We use the ? for the sour
eof an a
tion. The sequen
e ~v is used to hold values for output parameters (and, inother semanti
 de�nitions, values for input parameters). During the exe
ution of apro
edure
all it is always ?, until the box enters phase return, at whi
h point58

it is set to the output parameter values. Sin
e a
tions have
aller ?, and have noparameters, a CallInfo for an a
tion a is always of the form (a ;?;?). We dropthe trailing ? values and write this as (a). We also write (p;D) for (p;D ;?). Thefollowing fun
tions are a

essors for
omponents of a CallInfo.De�nition 2.11 For
 2 CallInfo, where
 = (p;Q ; ~v),Pro
(
) , pSour
e(
) , QNow we de�ne the type that represents the
on�guration of a box duringprogram exe
ution.De�nition 2.12BoxCon�g-tot , re
ord� : BoxPhase-tot� : State
 : CallInfo?� : Statement�endIn our intended model of program exe
ution, when a box is idle, or ready to return,it has no
ode to exe
ute, that is, � = ?. So, for� 2 fidle;returngwe let(�; �;
) = (�; �;
;?) 59

2.9.4 Program
on�guration for TCBtotThe
on�guration of a program is given by a BoxCon�g-tot for ea
h box in it.De�nition 2.13ProgCon�g-tot , B! BoxCon�g-totThe program starts in a quies
ent
on�guration where every box has its initial state.De�nition 2.14 The initial
on�guration for the program is Cinit 2 ProgCon�g-totsu
h that, for all D 2 BCinit :D = (idle; InitState(D);?)2.9.5 Semanti
 rules for TCBtotThe transition relation for TCBtot is written =). As with TCBlo
, we de�ne thisrelation using a set of inferen
e rules.A
tion start, method
all, and pro
edure initializationThe inferen
e rules in Figure 2.7
on
ern pro
edure
alls. An explanation of theserules follows.(t-a
tion-start-rdv) A box in phase idle, with an empty
all information,
an starta
all of any of its a
tions. It sets its
all information for the a
tion, its
odeto the
ode for the body of the a
tion, and enters phase a

ept.(total-
all-rdv) A box in phase a

ept that has a method
all as the �rst statementof its
ode
an exe
ute the
all when the agent is in phase idle, and its
allinformation is empty. The sour
e evaluates the a
tual values for the inputparameters, leaves the method
all at the head of its
ode, and enters phase60

(t-a
tion-start-rdv) C:D = (idle; �;?)a 2 TotA
ts(D)
0 = (a)�0 = Code(D :a)C =) C [D 7! (a

ept; �;
0; �0)℄(total-
all-rdv) C:D = (a

ept; �0;
0; �0)�0 = E :m(~e; ~x); �̂C:E = (idle; �1;?)~v = [[~e℄℄�0~y = InParam(E :m)~z = OutParam(E :m)�01 = � [~z 7! ~?℄ [~y 7! ~v ℄
01 = (m ;D)�01 = Code(E :m)C =) C�D 7! (wait; �0;
0; �0)E 7! (a

ept; �01;
01; �01))�Figure 2.7: Semanti
s for TCBtot: a
tion start and method
all

61

(lo
al-step) C:D = (a

ept; �;
; �)(�; �) �! (�0; �0)C =) C [D 7! (a

ept; �0;
; �0)℄(pro
-term-rdv) C:D = (a

ept; �;
;?)
 = (p;Q)~z = OutParam(D :p)�0 = � � BoxVars(D)~v = [[~z ℄℄�
0 = (p;Q ; ~v)C =) C [D 7! (return; �0;
0)℄Figure 2.8: Semanti
s for TCBtot: pro
edure body exe
ution.wait. The agent extends its state with the input and output parameters,initializes the input parameters a

ording to the values from the sour
e, savesthe name of the sour
e and the method in its
all information, sets its
ode tothe
ode for the body of the method, and enters phase a

ept.Note that the rule (t-a
tion-start-rdv) says nothing about s
heduling of a
tions: itdoes not require, for example, that there is only one a
tion a
tive at a time, nor doesit require that all a
tions in a box are given a
han
e to run at some point duringan exe
ution. As we noted in the introdu
tion, these issues are handled separatelyfrom the semanti
s.Pro
edure body exe
utionThe inferen
e rules in Figure 2.8
on
ern the exe
ution of a pro
edure body. Anexplanation of these rules follows.(lo
al-step) A box in phase a

ept takes a lo
al step if there is a TCBlo
 tran-sition de�ned for its values of � and �. The step updates � and � as in the62

(a
tion-end-rdv) C:D = (return; �;
)
 = (a)C =) C [D 7! (idle; �;?)℄(total-return-rdv) C:D = (wait; �0;
0; �0)�0 = E :m(~e; ~x); �00C:E = (return; �1;
1)
1 = (m ;D ; ~v)�00 = �0 [~x 7! ~v ℄C =) C�D 7! (a

ept; �00;
0; �00)E 7! (idle; �1;?) �
Figure 2.9: Semanti
s for TCBtot: pro
edure returnTCBlo
 transition, and leaves the other
omponents of the box's
on�gurationun
hanged. Note that a TCBlo
 transition is de�ned only if the �rst statementof � is a statement of TCBlo
 (that is, it is not a method
all).(pro
-term-rdv) A box in phase a

ept that has no
ode left to exe
ute (so it has
ompleted the exe
ution of the
urrent pro
edure
all) evaluates the values ofthe output parameters in its
urrent state, puts these in the
all information,removes from its state any values for variables other than the box variables,and enters phase return.Return from a pro
edure
allThe inferen
e rules in Figure 2.9
on
ern the return of
ontrol to the sour
e at theend of a pro
edure
all. An explanation of these rules follows.(a
tion-end-rdv) A box in phase return that has an a
tion
all in its
all infor-mation ends the a
tion. The box
lears its
all information and enters phaseidle. 63

(total-return-rdv) A box in phase return that has a method
all in its
all infor-mation ends the
all, returning the output parameter values to the sour
e. Theagent
lears its
all information and enters phase idle. The sour
e updatesits state with the output parameter values and re�enters phase a

ept.2.10 Rendezvous semanti
s for TCBIn this se
tion, we extend the rendezvous semanti
s for TCBtot to a rendezvoussemanti
s for the full TCB language. Sin
e the di�eren
e between these languagesis the absen
e of partial pro
edures in TCBtot, the extensions all
on
ern the eval-uation of guards, and handling reje
ted pro
edure
alls.2.10.1 Stati
 infomation for a TCB boxA partial pro
edure
onsists of a set of alternatives, ea
h of whi
h has a guard,
onsisting of a
ondition, whi
h is a boolean expression on the lo
al state, in
ludingany pro
edure parameters, and, optionally, a test, whi
h is a
all to a partial method.We require that the
onditions on the alternatives in a single pro
edure be disjoint,so any value for the lo
al state satis�es the
ondition for at most one alternative.To model a partial pro
edure, we use a fun
tion with the type Alternative.De�nition 2.15Alternative , State ,! (Pro
Call? � Statement�)?Note that a fun
tion in Alternative is partial, sin
e it is only de�ned for states thatgive values to all variables needed to evaluate the
onditions and the tests. As an
64

example,
onsider the following partial pro
edure with two alternatives.� :: b0 & E :m(~x ; ~v) �! �0j b1 �! �1The Alternative fun
tion for this pro
edure is the fun
tion G , where, for all � su
hthat b0 and b1 are de�ned in �,G :� , (E :m(~x ; ~v); �0) if [[b0℄℄�(?; �1) if [[b1℄℄�? if :[[b0℄℄� ^ :[[b1℄℄�When
ondition b0 holds, G returns the test
all and the body
ode from the �rstalternative; when b1 holds, G returns an empty test
all and the body
ode fromthe se
ond alternative; and when neither
ondition is true, G returns ?. To exe
utea
all on this pro
edure, we
he
k the value of G :�. If it is ?, the
all reje
ts, and
ontrol returns to the sour
e; if it is (?; �), the
all a

epts, and � is exe
uted before
ontrol returns to the sour
e; and if it is (E :m(~x ; ~v); �),
ontrol is passed to box Eto exe
ute the test
all, and when that
all ends, if it reje
ts, then the
urrent
allreje
ts, and
ontrol returns to the sour
e, and if it a

epts, then the
urrent
alla

epts, and � is exe
uted before
ontrol returns to the sour
e.We now de�ne a type to represent a partial pro
edure.De�nition 2.16PartialDef , re
ordI : VarTypeListO : VarTypeListG : Alternativeend 65

Here I and O are as in TotalDef , and G is a fun
tion used for evaluating the guardsand sele
ting the appropriate test and body
ode, as des
ribed above.We next de�ne the type for the stati
 information for a TCB box.De�nition 2.17BoxInfo , re
ord�0 : StateP : Id ,! PartialDefT : Id ,! TotalDefA : (dom(P) [dom(T))! BoolendComponents �0 and T are as in the de�nition of BoxInfo-tot . Component P rep-resents the partial pro
edures de�ned in the box, and predi
ate A is extended todom(P).Ea
h box in a program is translated into a BoxInfo, and from the well-formedness
onditions on TCB programs, we get the following results.Assumption 2.18 If (�0;P ;T ;A) is a BoxInfo generated from the
ode of a well-formed TCB box, thendom(P) disj dom(T) ^h8 X ; p: X 2 fP ;Tg ^ p 2 dom(X): (A:p) X :p:I = ? ^ X :p:O = ?) ^dom(�0) disj dom(X :p:I) ^dom(�0) disj dom(X :p:O) ^dom(X :p:I) disj dom(X :p:O)i 66

2.10.2 Stati
 information for a TCB programAs with TCBtot, the stati
 information for a TCB program is a fun
tion that mapsea
h box to a BoxInfo.I : B! BoxInfoWe use I impli
itly via the fun
tions in the following de�nition.De�nition 2.19 For D 2 B,InitState(D) , I:D :�0PartA
ts(D) , f p j p 2 dom(I:D :P) ^ I:D :A:p gPartMeths(D) , f p j p 2 dom(I:D :P) ^ :I:D :A:p gTotA
ts(D) , f p j p 2 dom(I:D :T) ^ I:D :A:p gTotMeths(D) , f p j p 2 dom(I:D :T) ^ :I:D :A:p gA
tions(D) , PartA
ts(D) [TotA
ts(D)Methods(D) , PartMeths(D) [TotMeths(D)Partials(D) , PartA
ts(D) [PartMeths(D)Totals(D) , TotA
ts(D) [TotMeths(D)Pro
s(D) , A
tions(D) [Methods(D)InParam(D :p) , VarList(I.D.P.p.I) if p 2 dom(I:D :P)VarList(I.D.T .p.I) if p 2 dom(I:D :T)OutParam(D :p) , VarList(I.D.P.p.O) if p 2 dom(I:D :P)VarList(I.D.T .p.O) if p 2 dom(I:D :T)Alt(D :p; �) , I:D :P :p:G :� if p 2 dom(I:D :P)Code(D :p) , I:D :T :p:C if p 2 dom(I:D :T)Note that Alt(D :p; �) is de�ned only for partial D :p, and Code(D :p) is de�ned onlyfor total D :p. 67

2.10.3 Box
on�guration for TCBTo implement the evaluation of the guard on partial pro
edures, we need to extendthe set of phases. The type BoxPhase extends the type BoxPhase-tot .De�nition 2.20BoxPhase , BoxPhase-tot [fguard;pwait;reje
tgThe phases BoxPhase-tot as used as before. A box is in phase guard when it has
ommitted to exe
uting a partial pro
edure, but has yet to de
ide whether to a

eptor to reje
t. A box in phase pwait has
alled a test, and is waiting for the result ofthe
all. A box in phase reje
t has failed to su

essfully evaluate a guard (eitherno alternative has a
ondition that holds in the
urrent state, or an alternative wassele
ted, but the test
all reje
ted) and the box is ready to return
ontrol to thesour
e. A pro
edure
all that ends in phase reje
t is a reje
ting
all. Conversely,one that ends in phase return is a

epting (so every
all in TCBtot a

epts, asexpe
ted).The diagram in Figure 2.10 shows the phase
hanges for a single box. Some ofthe transitions in the diagram are only possible when exe
uting a partial pro
edure,and some only when exe
uting a total pro
edure. The diagram is isomorphi
 to thatin Figure 2.6 on the phases in BoxPhase-tot .The phases idle, a

ept, and reje
t are emphasized in the transitiondiagram, be
ause these phases play an important rôle in the semanti
s. A box inphase idle is between the exe
ution of two pro
edure
alls. We expe
t ea
h box tobe in this phase repeatedly during an exe
ution.From the diagram, we
an see that on
e a box enters phase a

ept whileexe
uting a pro
edure, it
an only return to phase idle via phase return, whi
hindi
ates that the
all was a

epted. There is no way for the box to reje
t on
e it has68

GUARDREJECT

PWAIT

partial procedures only

total and partial procedures

total procedures only

IDLE RETURN

ACCEPT

WAIT

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

Figure 2.10: Transition diagram for phases of a TCB box.
69

entered phase a

ept. Similarly, on
e a box that enters phase reje
t, the de
isionhas been made to reje
t, and this
annot be revoked. Note that every nonemptypath from idle ba
k to itself passes through either phase a

ept or reje
t. Sowe see that the �rst step during the exe
ution of a pro
edure
all whi
h leaves abox in phase a

ept or reje
t (and there is always su
h a step) determines theoverall out
ome of the
all from the point of view of a

eptan
e or reje
tion.Again from the diagram, we
an see that there is a possibility for a box toexe
ute an unbounded number of steps a pro
edure, yet never return to the idlestate. There is a self-loop on a

ept, and a loop
ontaining a

ept and wait,so a path in the diagram through either of these phases
an be extended withoutlimit. We want to avoid su
h exe
utions, and ensure that every box returns to phaseidle at some point after starting to exe
ute a pro
edure, or, in other words, thatea
h pro
edure
all terminates. We do not address this issue of termination in thesemanti
 de�nition. In Chapter 4, we develop
onditions that ensure that everypro
edure
all terminates.The type BoxCon�g-rdv is used to re
ord the dynami
 information for aTCB box in the rendezvous semanti
s. Apart from
omponent �, the entries in thisre
ord are the same as for BoxCon�g-tot .De�nition 2.21BoxCon�g-rdv , re
ord� : BoxPhase� : State
 : CallInfo?� : Statement�end
70

As with BoxCon�g-tot , we omit the �nal
omponent of a BoxCon�g-rdv valuewhen the phase is su
h that it is ne
essarily ?. In the
urrent
ase, if� 2 fidle;guard;return;reje
tgthen we let(�; �;
) = (�; �;
;?)2.10.4 Program
on�guration for TCBWe de�ne a program
on�guration for a TCB program under the rendezvous se-manti
s as a BoxCon�g-rdv for ea
h box.De�nition 2.22ProgCon�g-rdv , B! BoxCon�g-rdv2.10.5 Rendezvous semanti
 rules for TCBAll six semanti
 rules for TCBtot
arry over as rules for the rendezvous semanti
sof TCB. When we
arry the rules over, we apply them to program
on�gurationsfrom ProgCon�g-rdv rather than from ProgCon�g-tot . The TCBtot rules are theonly ones needed to exe
ute total pro
edure
alls. We add to these seven rules forexe
uting partial pro
edure
alls.The additional rules deal with the issues of guard evaluation, and reje
tion,sin
e these are parti
ular to partial pro
edures. The evaluation of total pro
edures,and the evaluation of the bodies of partial pro
edures during any a

epting
all, arehandled by the TCBtot rules.The �rst
ouple of added rules deal with starting a partial a
tion, and endinga partial a
tion that has reje
ted. These are shown in Figure 2.11. The rules are71

(p-a
tion-start-rdv) C:D = (idle; �;?)a 2 PartA
ts(D)
0 = (a)C =) C [D 7! (guard; �;
0)℄(a
tion-reje
t-rdv) C:D = (reje
t; �;
)
 = (a)C =) C [D 7! (idle; �;?)℄Figure 2.11: Rendezvous semanti
s for TCB: starting and reje
ting a partial a
tion
allexplained below.(p-a
tion-start-rdv) A box in phase idle, with an empty
all information,
an starta
all of any of its partial a
tions. It sets it
all information for the a
tion,and enters phase guard. Unlike rule (t-a
tion-start-rdv), it does not set the
ode, sin
e this is determined during guard evaluation.(a
tion-reje
t-rdv) This rule is exa
tly the same as rule (a
tion-end-rdv), ex
eptthat, before the step, the box is in phase reje
t.We de�ne separate rules for ending an a
tion that a

epts and ending an a
tion thatreje
t, even though they are implemented similarly, be
ause we use the name of therule for a transition as a label for that transition. For some of our later purposes,having a simple way to distinguish these steps is useful.The remainder of the added rules
on
ern guard evaluation. These rulesdes
ribe the transitions on the left-hand side of the diagram in Figure 2.10. Threerules are shown in Figure 2.12.(guard-a

ept-rdv) If the value of the alternative fun
tion is a pair with no test,the
urrent
all a

epts, and the box sets its
ode to the
ode
omponent of72

(guard-a

ept) C:D = (guard; �;
)p = Pro
(
)Alt(D :p; �) = (?; �0)C =) C [D 7! (a

ept; �;
; �0)℄(guard-reje
t) C:D = (guard; �;
)p = Pro
(
)Alt(D :p; �) = ?�0 = � � BoxVars(D)C =) C [D 7! (reje
t; �0;
)℄(guard-test-rdv) C:D = (guard; �0;
0)p = Pro
(
)Alt(D :p; �0) = (E :m(~e; ~x); �)�00 = E :m(~e; ~x); �̂C:E = (idle; �1;?)~v = [[~e℄℄�0~y = InParam(E :m)~z = OutParam(E :m)�01 = �1 [~z 7! ~?℄ [~y 7! ~v ℄
01 = (m ;D)C =) C�D 7! (pwait; �0;
0; �00)E 7! (guard; �01;
01) �
Figure 2.12: Rendezvous semanti
s for TCB: guard evaluation

73

the pair, and enters phase a

ept.(guard-reje
t-rdv) If the value of the alternative fun
tion is ?, the
urrent
allreje
ts, and the box restri
ts its state to the box variables, and enters phasereje
t.(guard-test-rdv) If the value of the alternative fun
tion is a pair
ontaining a test
all, and the target box of the
all is in phase idle and its
all informationis empty, the
all
an be initiated, in a way similar to rule (total-
all-rdv).The sour
e box sets its
ode to the
ode
omponent of the pair, with the test
all prepended (sin
e the output parameters from the
all are required forthe return from the pro
edure), and enters phase pwait; the agent box addsa
all information, extends its state with the parameters from the
all andenters phase guard.The remaining two rules deal with the return from the test
all. These rules areshown in Figure 2.13.(test-a

ept-rdv) If a box is in phase pwait, and the agent is in phase return, thepro
edure at the sour
e a

epts. The returning of output parameter values ishandled as in rule (total-return-rdv).(test-reje
t-rdv) If a box is in phase pwait, and the agent is in phase reje
t, thepro
edure at the sour
e reje
ts. The sour
e
leans up its state,
lears its
ode,and enters phase reje
t, and the agent
lears its
all information, and entersphase idle.2.11 Queue semanti
s for TCBAs noted in the introdu
tion, the rendezvous semanti
s that we have presented forTCBtot and full TCB fail to deal adequately with
ontention between threads for74

(test-a

ept-rdv) C:D = (pwait; �0;
0; �0)�0 = E :m(~e; ~x); �00C:E = (return; �1;
1)
1 = (m;D ; ~v)�00 = �0 [~x 7! ~v ℄C =) C�D 7! (a

ept; �00;
0; �00)E 7! (idle; �1;?) �
(test-reje
t-rdv) C:D = (pwait; �0;
0; �0)�0 = E :m(~e; ~x); �̂C:E = (reje
t; �1;
1)
1 = (m ;D)�00 = �0 � BoxVars(D)C =) C�D 7! (reje
t; �00;
0)E 7! (idle; �1;?) �

Figure 2.13: Rendezvous semanti
s for TCB: test return

75

a

ess to a box. The pro
edure
all rules (a
tion-start-rdv), (total-
all-rdv), and(guard-test), all require that the
all information for the agent is empty beforethe step, and full after the step. We show in Chapter 3 that all the rules, ex
eptthese three, have the property that from a
on�guration in whi
h a step is enableda

ording to the rule, no step by a box other than D
an rea
h a
on�guration wherethis step is not enabled. This is an important stability property, sin
e it allows us toreason su

essfully about the termination of pro
edure
alls. Certainly this stabilityseems plausible. To de
ide if rule (lo
al-step), for example,
an be applied to takea step for box D , we need only look at the
on�guration of box D . A step for anyother box does not
hange D 's
on�guration, so the lo
al step for D remains enableduntil it is taken.For the three pro
edure
all rules, we do not have this stability property.That is, from a
on�guration where a pro
edure
all from box D to box E is enabled,a step involving E and another box
an rea
h a
on�guration where the pro
edure
all step for D is no longer enabled.We now de�ne a queue semanti
s that addresses this short
oming. In thenext
hapter, we show that every rule in the queue semanti
s has the above stabilityproperty.We use the same sour
e language as for the last semanti
s, and we require noextra stati
 information, so we use the fun
tion I for the stati
 program information,as des
ribed in Se
tion 2.10.1. We de�ne a program
on�guration for the newsemanti
s.2.11.1 Call queuesFor the queue semanti
s, we repla
e the single CallInfo
omponent of the box
on-�guration with a
all queue, whi
h we represent by an element of CallInfo�. Apro
edure
all on a box is started by appending a CallInfo to the end of this se-76

quen
e, and a box that is idle
an initialize the
all at the head of the queue. Thuswe split the rendezvous pro
edure
all into two steps. In the �rst step the sour
eadds an entry to the agent's
all queue, and in the se
ond step, whi
h o

urs whenthis entry has rea
hed the front of the queue, and the agent is idle, the agent startsthe pro
edure
all. When the the �rst step is taken, the input parameter values fromthe sour
e are in
luded with the
all information pla
ed in the queue, sin
e, unlikethe rendezvous semanti
s, the agent does not immediately initialize the parametersfor the pro
edure
all.In this new model, a nonidle box is exe
uting the
all at the head of its
allqueue. We rede�ne Pro
(
), and Sour
e(
) for
 2 CallInfo�.De�nition 2.23 For
 2 CallInfo�, where
 = (p;Q ; ~v) .
̂,Pro
(
) , pSour
e(
) , Q2.11.2 Box and program
on�gurations for the queue semanti
sThe type BoxCon�g is used to represent the
on�guration of a box in the queuesemanti
s. The only
hange from the type BoxCon�g-rdv is the type of
omponent
, whi
h is a sequen
e of CallInfo entries, rather than a single CallInfo.De�nition 2.24BoxCon�g , re
ord� : BoxPhase� : State
 : CallInfo�� : Statement�end 77

We omit an empty � for the same phases as with BoxCon�g-rdv .A program
on�guration is, as may be expe
ted, a map mapping ea
h boxin the program to a BoxCon�g .De�nition 2.25ProgCon�g , B! BoxCon�g2.11.3 Queue semanti
 rules for TCBThe major
hange we make to the rendezvous semanti
s to give the queue semanti
sis the splitting of pro
edure
alls into two independent steps, one under the
ontrol ofthe sour
e, and the other under the
ontrol of the agent. We repla
e the rendezvouspro
edure
all rules(p-a
tion-start-rdv)(t-a
tion-start-rdv)(total-
all-rdv)(guard-test-rdv)with seven rules implementing the two-step pro
edure
all. We also repla
e ea
h ofthe following rules(pro
-term-rdv)(a
tion-end-rdv)(a
tion-reje
t-rdv)(test-a

ept-rdv)(test-reje
t-rdv)(total-return-rdv) 78

with a rule named without the -rdv suÆx. The
hanges for these rules are minor
hanges needed be
ause of the
hange from a single
all information to a
all queue.The remaining rules,(guard-a

ept)(guard-reje
t)(lo
al-step)are used as is. We show only the repla
ements for the �rst group of rules here. Thefull set of queue semanti
 rules for TCB is given in Appendix A.The �rst three new rules are shown in Figure 2.14. These rules implementthe �rst step of the two-step pro
edure
all outlined above. In ea
h
ase, the pro-
edure
all is made by pla
ing an entry
ontaining the name of the pro
edure, thesour
e, and the values for the input parameters (if any) at the ba
k of the agent's
all queue, regardless of the agent's
on�guration. Note that rule (a
tion-start) isused for both partial and total a
tions.The other four rules, whi
h implement the se
ond of the two steps, are shownin Figure 2.15. There are separate rules for all four
ombinations of partial/totaland a
tion/method. These rules involve only the agent of the
all. When a boxis idle, and there is an entry in its
all queue, a
all
an be initialized for the �rstentry. The value list from this entry is used to initialize the input parameters, andthese values are then removed from the entry.For partial pro
edures, the box enters phase guard after the initializationstep. For total pro
edures, the enters box phase a

ept after the step, and its
odeis initialized, as in the rendezvous semanti
s.The rules for a
tions are a spe
ial
ase of those for methods, sin
e a
tionshave no parameters. However, as with (a
tion-end) and (a
tion-reje
t), we useseparate rules to give separate labels to the
orresponding step in the semanti
s.79

(a
tion-start) C:D = (�; �;
; �)a 2 A
tions(D)
0 =
 / (a)C =) C [D 7! (�; �;
0; �)℄(total-
all) C:D = (a

ept; �0;
0; �0)�0 = E :m(~e; ~x); �̂C:E = (�1; �1;
1; �1)~v = [[~e℄℄�0
01 =
1 / (m;D ; ~v)C =) C�D 7! (wait; �0;
0; �0)E 7! (�1; �1;
01; �1) �
(guard-test) C:D = (guard; �0;
0)p = Pro
(
)Alt(D :p; �0) = (E :m(~e; ~x); �)�00 = E :m(~e; ~x); �̂C:E = (�1; �1;
1; �1)~v = [[~e℄℄�0
01 =
1 / (m ;D ; ~v)C =) C�D 7! (pwait; �0;
0; �00)E 7! (�1; �1;
01; �1) �

Figure 2.14: Queue semanti
 rules for TCB: pro
edure
all
80

(p-a
tion-init) C:D = (idle; �;
)p = Pro
(
)p 2 PartA
ts(D)C =) C [D 7! (guard; �;
)℄(p-method-init) C:D = (idle; �;
)
 = (p;Q ; ~v) .
̂p 2 PartMeths(D)~y = InParam(D :p)~z = OutParam(D :p)�0 = � [~z 7! ~?℄ [~y 7! ~v ℄
0 = (p;Q) .
̂C =) C [D 7! (guard; �0;
0)℄(t-a
tion-init) C:D = (idle; �;
)p = Pro
(
)p 2 TotA
ts(D)�0 = Code(D :p)C =) C [D 7! (a

ept; �;
; �0)℄(t-method-init) C:D = (idle; �;
)
 = (p;Q ; ~v) .
̂p 2 TotMeths(D)~y = InParam(D :p)~z = OutParam(D :p)�0 = � [~z 7! ~?℄ [~y 7! ~v ℄
0 = (p;Q) .
̂�0 = Code(D :p)C =) C [D 7! (a

ept; �0;
0; �0)℄Figure 2.15: Queue semanti
 rules for TCB: pro
edure initialization
81

2.12 SummaryWe have given two semanti
 de�nitions for TCB, a rendezvous semanti
s and aqueue semanti
s. We regard the queue semanti
s as the true des
ription of theexe
ution of TCB programs. In the next
hapter, we explore some of the propertiesof program
on�gurations and exe
utions for this semanti
s.In the remaining
hapters, we explore the properties of the queue semanti
sfor TCB. In Chapter 5, we use the exe
ution generated by the rendezvous semanti
sas an intermediate form as we rearrange the steps of a
on
urrent exe
ution to givea sequential exe
ution.2.12.1 Run-time errorsAs noted in Se
tion 2.5, we avoid the issue of run-time errors with Assumption 2.3.If we
hoose not to make this assumption, we
an extend the semanti
s of TCB tohandle run-time errors as follows.We de�ne a new phase fail, and, for ea
h rule that involves evaluation ofan expression, either dire
tly, as in rules (lo
al-step) and (total-
all), or indire
tly,as in rule (guard-a

ept), we add a rule that de�nes a transition to fail for a boxwhere evaluation of an expression
auses a run-time error. We de�ne no rules thattake a step for a box in phase fail. This means that a run-time error puts a box ina failed
on�guration, and it remains in this
on�guration for the remainder of theexe
ution.

82

Chapter 3
Exe
ution of TCB programs
3.1 Introdu
tionThis
hapter dis
usses the elements, and some of the
onsequen
es, of the queuesemanti
s for TCB de�ned in Chapter 2.We de�ne subsets of BoxCon�g and ProgCon�g
ontaining the well-formedelements of these types. These subsets
ontain only the elements that we expe
t toarise during an exe
ution. They ex
lude, for example, box
on�gurations in whi
hthe phase is a

ept, but the
all queue is empty, and program
on�gurations inwhi
h box D is exe
uting a method
all for box E , but box E is in phase idle.We next
onsider the transition relation de�ned by the semanti
 rules. Wede�ne a way to assign labels to steps between
on�gurations allowed by the rules.A step is enabled in a
on�guration if there is any step allowed by the rules startingfrom that
on�guration; a step is enabled for box D if the step is enabled, and takingit
hanges D 's
on�guration. We show that, in any
on�guration, all steps enabledfor D have the same label.We show that a step from a well-formed
on�guration
annot rea
h a
on�g-uration that is not well-formed. By indu
tion, we have that any sequen
e of steps,83

starting from a well-formed
on�guration, passes through only well-formed
on�g-urations. Thus we
an
on�ne our attention to well-formed program
on�gurationsfor the remainder of this work.Exe
utions are paths made up of labelled steps between program
on�gura-tions, where ea
h step is allowed by some semanti
 rule. We give a de�nition for
onstru
ting a set of exe
utions from a set of
on�gurations and a set of labels,and we use this to de�ne the exe
utions for a TCB program using the well-formedprogram
on�gurations and the step labels.3.2 Box
on�gurationsThe type BoxCon�g is used for represent the dynami
 information asso
iated with abox (its
on�guration) during program exe
ution under the queue semanti
s. Firstwe de�ne some mild abuse of notation for
omponents of the box
on�guration.De�nition 3.1 For
 2 CallInfo�,(p;Q) 2
 , h9 ~v :: (p;Q ; ~v) 2
 iDe�nition 3.2 For S 2 Statement,S = E :m(�) , h9 ~x ; ~v :: S = E :m(~x ; ~v) iWe de�ne the following terminology for box
on�gurations.De�nition 3.3 For b
 2 BoxCon�g,qt(b
) , b
:
 = ?If qt(b
), then we say that b
 is quies
ent.84

De�nition 3.4 For D 2 B, and b
 2 BoxCon�g, where b
 is the
on�gurationasso
iated with D, a
all of pro
edure p is a
tive in D ifh9 Q : Q 2 B? : (p;Q) 2 b
:
 iIf (p;Q ; ~v) 2 b
:
, Q is the sour
e, and D is the agent for this
all.As noted in Chapter 2 not all possible
ombinations of
omponent values fora box
on�guration make sense in terms of the intended interpretation. We de�nethe set of well-formed
on�gurations.De�nition 3.5 For b
 2 BoxCon�g, b
 is a well-formed
on�guration for D if allthe following hold.1. b
:� 6= idle) b
:
 6= ?2. b
:� 2 fidle;guard;return;reje
tg) b
:� = ?3. b
:� 2 fwait;pwaitg) h9 E ;m :: �rst(b
:�) = E :m(�) i4. b
:� 2 fguard;pwait;reje
tg) Pro
(b
:
) 2 Partials(D)5. b
:� 2 fidle;return;reje
tg) dom(b
:�) = BoxVars(D)6. dom(b
:�) � BoxVars(D)7. h8 (p;Q): (p;Q) 2 b
:
: p 2 Pro
s(D) ^ Q 6= D ^ (p 2 A
tions(D) � Q = ?)i8. h8 E : E 2 B : h# (m;Q ; ~v) : (m;Q ; ~v) 2 b
:
 : Q = E i � 1 i
85

9. h8 (p;Q ; ~v): (b
:� = idle ^ (p;Q ; ~v) 2 b
:
) _(b
:� 6= idle ^ (p;Q ; ~v) 2 rest(b
:
)): ~v mat
hes InParam(D :p)i10. b
:� = return ^ �rst(b
:
) = (p;Q ; ~v)) ~v mat
hes OutParam(D :p)For D 2 B,BC (D) , f b
 j b
 is a well-formed
on�guration for D gCondition 1 ensures that a box that is exe
uting a
all has an entry in the
allqueue that identi�es the
all. Note that this
ondition means that if b
 2 BC (D)and qt(b
), then b
:� = idle. Condition 2 justi�es the abbreviated form used for box
on�gurations for the given phases. Condition 3 ensures that the any waiting box hasthe pro
edure
all for whi
h it is waiting at the front of its
ode. Condition 4 ensuresthat the phases asso
iated with guard evaluation and pro
edure reje
tion are onlyrea
hed while exe
uting a partial pro
edure. Condition 5 ensures that the state ofea
h box between pro
edure
alls gives values only to the box variables. Condition 6ensures that the state gives values to the box variables, at least. Condition 7 ensuresthat a box never
alls a method on itself, that the pro
edure names in the
all queueare valid, and that there is a box as sour
e in ea
h method
all, and none in ea
ha
tion
all. Condition 8 says that at any time, a box has at most one a
tive method
all for any parti
ular sour
e. Condition 9 ensures that all
alls that have not yetstarted have the right types in their input parameter lists. Condition 10 ensuresthat a box that is ready to return to its sour
e has the
orre
t types in its outputparameter list.For TCB, the state of ea
h box satis�es stronger
onditions than Conditions 5and 6 in De�nition 3.5. During the evaluation of a guard, and the exe
ution of the86

body of a pro
edure, a box's state is extended by the input and output parametersof the pro
edure in the
urrent
all. This stronger
ondition is an artifa
t of thesimple de�nition of TCBlo
, and the
onditions given allow for a lo
al language thatextends the lo
al state in more
omplex ways during pro
edure exe
ution.For a well-formed box
on�guration that is not in phase idle, we
all thefront entry in the
all queue the
urrent
all. This is the
all that the box is
urrentlyexe
uting. If the phase is idle, the
urrent
all is not de�ned.We de�ne a partial order on box
on�gurations using to the pre�x order onthe
all queue. A pair of
on�gurations in this order have the same value for theother
omponents.De�nition 3.6 For D 2 B, and b
; b
0 2 BC (D),b
 v b
0 , b
:� = b
0:� ^ b
:
 v b
0:
 ^ b
:� = b
0:� ^ b
:� = b
0:�3.3 Program Con�gurationsA program
on�guration maps ea
h box name to its asso
iated box
on�guration.We extend the terminology for box
on�gurations to program
on�gurations in thenatural way.De�nition 3.7 For C 2 ProgCon�g,qt(C) , h8 D : D 2 B : qt(C:D) iIf qt(C), we say C is quies
ent.De�nition 3.8 A
all of pro
edure D.p is a
tive in C if an
all of p is a
tive inD. A
tives(C) , f D :a j a 2 A
tions(D) ^ D :a is a
tive in C g87

The set A
tives(C)
ontains all a
tions that have a
tive threads in C.As with box
on�gurations, we de�ne well-formed program
on�gurations.The �rst requirement is that ea
h box has a well-formed box
on�guration.De�nition 3.9 For C 2 ProgCon�g,C is lo
ally well-formed , h8 D : D 2 B : C:D 2 BC (D) iFor a program
on�guration to be well-formed, we also need to ensure that the
on-�guration respe
ts the mutual dependen
ies between the values of the
on�gurationsfor di�erent boxes. For example, if a box is exe
uting a method
all for a sour
e,then we expe
t the sour
e to be waiting for the results of the
all. Conversely, if abox is waiting for a method
all to return, we expe
t the method
all to be in the
all queue for the agent. We de�ne
onditions on a program
on�guration to
apturethis restri
tion. We use the following fun
tion, whi
h returns the appropriate phasefor the sour
e of a method
all.De�nition 3.10 For D 2 B, and m 2 Methods(D),WaitPhase(D :m) , pwait if m 2 PartMeths(D)wait if m 2 TotMeths(D)De�nition 3.11 For C 2 ProgCon�g,C is
all
orre
t ,h8 D ;E ;m: D ;E 2 B ^ m 2 Methods(E): (m ;D) 2 C:E :
 �C:D :� =WaitPhase(E :m) ^ �rst(C:D :�) = E :m(�)i 88

Note that the term of the quanti�
ation in De�nition 3.11 is an equivalen
e, so itex
ludes
on�gurations in whi
h there is a method
all with sour
e D in a
all queue,but D is not waiting, and the
ase when D is waiting for E but there is no method
all with sour
e D in E 's
all queue.The following theorem is a dire
t
onsequen
e of De�nitions 3.9 and 3.11.Theorem 3.12 If C is lo
ally well-formed and
all
orre
t program
on�guration,and if D is waiting in C, then there is exa
tly one
all queue entry with sour
e Din C.ProofSuppose C is a lo
ally well-formed and
all
orre
t program
on�guration, and thatC:D :� = pwait.C:D :� = pwait� f C is lo
ally well-formed, so C:D 2 BC (D) gC:D :� = pwait^ h9 E ;m : E 2 B ^ m 2 PartMeths(E) : �rst(C:D :�) = E :m(�) i� f predi
ate
al
ulus gh9 E ;m: m 2 PartMeths(E): C:D :� = pwait ^ �rst(C:D :�) = E :m(�)i� f C is
all
orre
t gh9 E ;m : m 2 PartMeths(E) : (m ;D) 2 C:E :
 iThus, we have that there is at least one box that has a
all queue entry with sour
e D ,when C:D :� = pwait. A similar proof shows the same result when C:D :� = wait.We have(m;D) 2 C:E :
 ^ (m 0;D) 2 C:E 0:
89

) f C is
all
orre
t g�rst(C:D :�) = E :m(�) ^ �rst(C:D :�) = E 0:m 0(�)) f transitivity of =, equality of pro
edure
alls gE = E 0This shows that, if D is waiting, there is a unique box E with a
all queue entrywith sour
e D .Sin
e C is lo
ally well-formed, C:E is well-formed, so there is exa
tly oneentry in its
all queue with sour
e D . Thus there is exa
tly one su
h entry in thewhole of C.(End of proof)3.3.1 Relations indu
ed by
allsLet C be a lo
ally well-formed and
all
orre
t program
on�guration, and supposethat, for some D0 2 B, D0's
urrent
all in C is for an a
tion, and that D0 is ina waiting phase. Then, from Theorem 3.12, there is a unique D1 with a
all queueentry for D0. We say that D0 is waiting for D1. If the
all for D0 is the
urrent
allin D1, then we say that D1 is exe
uting for D0. If D1 is in a waiting phase, thenthere is a unique D2 for whi
h D1 is waiting. Continuing in this way, we
onstru
tthe longest possible sequen
e of boxes,hD0;D1;D2; : : : ;Dn�1iwhere D i is waiting for D i+1, and D i+1 is exe
uting for D i, for 0 � i < n� 1. Ea
hof D0; : : : ;Dn�2 is in a waiting phase, but Dn�1 may not be. If Dn�1 is waiting forsome box Dn, Dn is not exe
uting for Dn�1 (sin
e the sequen
e is maximal), andso the
all for Dn�1 is not the
urrent
all in Dn.In a well-formed
on�guration, we expe
t every box that is not idle to be90

exe
uting as part of a sequen
e like the one above. We de�ne some fun
tions onprogram
on�gurations so we
an express these
onditions. The �rst set of fun
tionsexpress the \is exe
uting for" relation. Sin
e ea
h
all has a unique sour
e, weexpress the relations as partial fun
tions.De�nition 3.13 For C 2 ProgCon�g, and D 2 B,Kp:C:D , Sour
e(C:D :
) if C:D :� 6= idle^ Pro
(C:D :
) 2 Partials(D)Kt :C:D , Sour
e(C:D :
) if C:D :� 6= idle^ Pro
(C:D :
) 2 Totals(D)K :C:D , Kp:C:D if D 2 dom(Kp:C)Kt :C:D if D 2 dom(Kt :C)We haveKp;Kt ;K : ProgCon�g ! B ,! B?Thus Kp:C is a partial fun
tion from B to B?. If Kp:C:D = E , then D is exe
utinga partial method for sour
e E , and if Kp:C:D = ?, then D is exe
uting a partiala
tion, Fun
tions Kt :C and K :C have similar interpretations, the �rst for totalpro
edure
alls, and the se
ond for pro
edure
alls of either kind. If K :C is notde�ned at D , then D is not
urrently exe
uting a pro
edure in C.The following theorems state some useful properties of these fun
tions. Theproofs are given in Appendix B. The �rst theorem states that there is at mostone box exe
uting for any given box. That is, in any well-formed
on�guration C,there
annot be two boxes mapped to the same box by K :C. The fun
tion K :C isone-to-one, ex
ept that multiple boxes
an be mapped to ? by K :C.91

Theorem 3.14h8 C;D ;E: C 2 ProgCon�g ^ C is lo
ally well-formed and
all
orre
t ^D ;E 2 dom(K :C) ^ K :C:D = K :C:E: K :C:D = ? _ D = EiThe next theorem states that if box D is exe
uting for box E , then E is exe
utinga pro
edure.Theorem 3.15h8 C;D: C 2 ProgCon�g ^ C is lo
ally well-formed and
all
orre
t ^D 2 dom(K :C): K :C:D = ? _ K :C:D 2 dom(K :C)iThe �nal theorem says that the sour
e of a partial method
all is never exe
uting atotal pro
edure, whi
h is pre
isely the restri
tion we impose.Theorem 3.16h8 C: C 2 ProgCon�g ^ C is lo
ally well-formed and
all
orre
t: rng(Kp:C) disj dom(Kt :C)iTo follow the
hain of
alls given by K :C, we apply the fun
tion repeatedlyto an argument. We de�ne iteration for a partial fun
tion.92

De�nition 3.17 Let f : S ,! S, be a partial fun
tion on some set S. For x 2 S,f0:x , xand, for any n � 0fn+1:x , f(fn:x) if fn:x is de�ned ^ fn:x 2 dom(f)The following is a useful property of this iteration.Theorem 3.18fn+1:x = fn(f:x)ProofA simple indu
tion, using the asso
iativity of fun
tion
omposition.(End of proof)So, for any D 2 dom(K :C), (K :C)0:D is D , and (K :C)1:D is the box forwhi
h D is exe
uting. If (K :C)1:D 2 dom(K :C), then (K :C)2:D is the box forwhi
h (K :C)1:D is exe
uting, and so on. For any D 2 dom(K :C), we
an
onstru
tthe sequen
e of boxes(K :C)0:D(K :C)1:D(K :C)2:D...If (K :C)k:D = ?, for some k > 0, then the sequen
e is �nite. In this
ase, D is(transitively) exe
uting for a box whi
h is exe
uting an a
tion
all. This what weexpe
t to happen during program exe
ution. Otherwise, if no su
h k exists, then by93

Theorem 3.15, the sequen
e is in�nite. In this
ase, sin
e B is �nite, the sequen
e
ontains repeated elements. We
an use Theorem 3.14 to show that in this
asethere is a k su
h that (K :C)k:D = D . So there is a
y
le of boxes, where ea
h boxin the
y
le is exe
uting a method for the next, so D is transitively exe
uting foritself. We de�ne a
ondition to ex
lude su
h
ases from
onsideration.De�nition 3.19 For C 2 ProgCon�g,C is well-founded ,h8 D : D 2 dom(K :C) : h9 k : k > 0 : (K :C)k:D = ? i i3.3.2 Well-formed program
on�gurationsWe
ombine all the
onditions on program
on�gurations de�ned so far to give thede�nition of a well-formed program
on�guration.De�nition 3.20 For C 2 ProgCon�g,C is well-formed , C is lo
ally well-formed,
all
orre
t, and well-foundedPC , fC j C 2 ProgCon�g ^ C is well-formed g3.3.3 Call sta
ksWe de�ne a
all sta
k for a well-formed program
on�guration as a maximal sequen
egenerated by K :C.De�nition 3.21 For C 2 PC, the sequen
e
 2 B+ is a
all sta
k ifh8 i : 0 � i < j
j � 1 : K :C:(
[i℄) =
[i+ 1℄ i ^�rst(
) 62 rng(K :C) ^ K :C:(last(
)) = ?
94

De�nition 3.22 For C 2 PC,Sta
ks(C) , f
 j
 is a
all sta
k for C gFrom Theorem 3.16, a
all sta
k

an be divided into two parts, a �rst part inwhi
h all boxes are exe
uting a total pro
edure, and a se
ond part in whi
h allboxes are exe
uting a partial pro
edure.The following theorem follows from the de�nitions and theorems above.Theorem 3.23h8 C;D: C 2 PC ^ D 2 B ^ C:D :� 6= idle: h9!
 :
 2 Sta
ks(C) : D 2
 iiTheorem 3.23 shows that the set of a
tive boxes
an be partitioned among the
allsta
ks. The theorem justi�es the following de�nition.De�nition 3.24 For C 2 PC, and D 2 B, where D is not idle in C,CallSta
k (C;D) ,
 where
 2 Sta
ks(C) ^D 2
RootBox (C;D) , last(CallSta
k (C;D))Root (C;D) , E :a where E = RootBox (C;D) ^ a = Pro
(C:E :
)We
all Root (C;D) the root a
tion for D in C.A
tion Root (C;D) is the a
tion whose exe
ution is the ultimate
ause of box D 's
urrent exe
ution in C.
95

3.3.4 Wait linesWe de�ne some partial fun
tions for the \is waiting for" relation between boxes.These fun
tions are almost the inverse of the
all sta
k fun
tion, and it has similarproperties. However, the di�eren
es are signi�
ant. First, we de�ne a fun
tionthat returns the box from a method
all statement at the front of a sequen
e ofstatements.De�nition 3.25 For � 2 Statement�,Agent(�) , E if h9 m :: �rst(�) = E :m(�) iThe following theorem states that in a well-formed
on�guration, every box thatis in a waiting phase has an agent, by the above fun
tion. This is an immediate
onsequen
e of the de�nitions.Theorem 3.26h8 C;D: C 2 PC ^ D 2 B: C:D:� 2 fpwait;waitg) C:D :� 2 dom(Agent)iNow we de�ne the fun
tions for the \is waiting for" relation.De�nition 3.27 For C 2 PC, and D 2 B,Wp:C:D , Agent(C:D :�) if C:D :� = pwaitWt :C:D , Agent(C:D :�) if C:D :� = waitW :C:D , Wp:C:D if D 2 dom(Wp:C)Wt :C:D if D 2 dom(Wt :C)96

The following theorem relates these fun
tions to the \is exe
uting for" fun
tion.Theorem 3.28h8 C;D ;E: C 2 PC ^ D ;E 2 B: (Kp:C:D = E) Wp:C:E = D) ^ (Kt :C:D = E) Wt :C:E = D)iProofFrom De�nitions 3.13, 3.20 and 3.27.(End of proof)From Theorem 3.28, we have, for any
 2 Sta
ks(C),h8 i : 0 < i < j
j : W :C:(
[i℄) =
[i� 1℄ iThus every box in a
all sta
k, ex
ept the �rst, is waiting for the previous box.The �rst box may be in a waiting state, in whi
h
ase there is some D su
h thatW :C:(
[0℄) = D . In this
ase, a
all with sour
e
[0℄ is in D 's
all queue, but it isnot D 's
urrent
all. If box D is waiting, then
[0℄ is also waiting for W :C:D . BoxD may not be exe
uting for the same thread as box
[0℄. Unlike K :C, sequen
esformed by iterating W :C
an in
lude boxes exe
uting for di�erent threads.As with K :C, we
an form a sequen
e by iterating W :C. For any box Dthat is waiting in
on�guration C, we
onstru
t a maximal sequen
e.h D ; W :C:D ; (W :C)2:D ; : : : iBox D is waiting for every box in this sequen
e. Before D
an next take a step,every other box in the sequen
e must return
ontrol to the pre
eding box. We
all97

these sequen
es wait lines. Unlike K :C, fun
tion W :C is not well-founded. We
anrea
h a well-formed
on�guration C in whi
h the wait line for box D is in�nite.De�nition 3.29 For D 2 B, and C 2 PC, the wait line for D in C is a sequen
e
 2 B+ su
h that
[0℄ = D ^ (j
j = 1 _ last(
) 62 dom(W :C)) ^h8 i : 0 � i < j
j � 1 : W :C:(
[i℄) =
[i+ 1℄ iIf the wait line for D in C is �nite, then the last box is not waiting, and it is notquies
ent, so it
an take a
onditional step. If the wait line for D in C is in�nite,then it
ontains repeated elements, sin
e B is �nite. In this
ase, W :C is
y
li
.The wait line has a suÆx
onsisting of the boxes in the
y
le repeated in�nitely.Ea
h box in the
y
le is in a waiting phase, and is waiting for a box in a waitingphase, so no box
an take a step. The boxes are deadlo
ked, as are all boxes whosewait line in
ludes them.Deadlo
k is a permanent
on�guration. If box D is deadlo
ked at
on�gu-ration i in exe
ution ", then, in the exe
ution after "[i℄, D is deadlo
ked in every
on�guration, and there are no
onditional steps for D . The next
hapter dis
ussesdeadlo
k, and de�nes
onditions that ensure deadlo
k-free exe
utions.3.3.5 Persistent statesWhen a box �nishes exe
uting a pro
edure, it restri
t the domain of its state to thebox variables. Any variables added to the state during exe
ution of the pro
edureare dis
arded. The values of the box variables is the box's persistent state. This isthe state that is
arried from one pro
edure
all to the next.We de�ne the persistent state for a box, and an equivalen
e on program
on�gurations based on the persistent states.98

De�nition 3.30 For C;C0 2 PC, and D 2 B,Persist(C;D) , (C:D :�) � BoxVars(D)PersistEq(C;C0) , h8 D : D 2 B : Persist(C;D) = Persist(C0;D) i3.4 Program stepsWe now
onsider single steps of a program. We show that any program
on�gurationrea
hable by a single step from a well-formed program
on�guration is itself well-formed. This allows us to
on�ne our attention to well-formed
on�gurations forthe rest of this work.We
an
onsider the transition relation =) in two ways. One way is as astati
 relation between pairs of program
on�gurations. The other way is to thinkof the relation in in operational terms, where C =) C0 means that an exe
utingTCB program in
on�guration C
an
hange to
on�guration C0 in one indivisiblestep. In the former view we
onsider
onditions on pairs of
on�gurations so thatthey are in the transition relation. In the latter view, we
onsider
onditions on a
on�guration so that it has a su

essor in the transition relation.We prove some properties of the transition relation, or, equivalently, the stepsallowed in the exe
ution of a TCB program.3.4.1 Steps and
on�gurationsWe de�ne some terminology for the boxes where a rule is applied.De�nition 3.31 For C;C0 2 PC, su
h that there is a step C =) C0, the lo
i ofthis step are the boxes whi
h satisfy the
onditions of the semanti
 rule used to admitpair (C;C0).If C =) C0, then C and C0 are mostly the same, as the following theorem shows.99

Theorem 3.32h8 C;C0;D: C =) C0 ^ D 2 B ^ D is not a lo
us for C =) C0: C:D = C0:DiProofWe note that ea
h semanti
 rule requires that the
on�gurations for the boxes notmentioned in the rule be the same before and after the step. By De�nition 3.31, theboxes mentioned in the rule are the lo
i for any step admitted using the rule. Thus,the boxes other than the lo
i are un
hanged by the step.(End of proof)We show that any program
on�guration rea
hable in a single step from awell-formed
on�guration is well-formed. The proof is in Appendix B.Theorem 3.33h8 C;C0 : C 2 PC ^ C =) C0 : C0 2 PC i3.4.2 Step labelsBy de�nition, C =) C0 means that there is some inferen
e rule satis�ed by C andC0. There is never more than one rule satis�ed, as the following theorem shows.Theorem 3.34 If C =) C0, then there is a unique rule satis�ed by (C;C0).ProofAssume C =) C0. If (C;C0) satis�es a two-lo
us rule, then, by examining the ruleswe
an see that C and C0 di�er on the
on�guration of both lo
i. If, on the otherhand, (C;C0) satis�es the
onditions of a one-lo
us rule, then, by Theorem 3.32, C100

Rule C:D :� C0:D :�(a
tion-start) �̂ �̂(p-a
tion-init) idle guard(p-method-init) idle guard(t-a
tion-init) idle a

ept(t-method-init) idle a

ept(guard-a

ept) guard a

ept(guard-reje
t) guard reje
t(lo
al-step) a

ept a

ept(pro
-term) a

ept return(a
tion-end) return idle(a
tion-reje
t) reje
t idleTable 3.1: Conditions on the box phase for one-lo
us rules.and C0 agree on the
on�gurations of all boxes ex
ept one, the lo
us.1 Thus, if rulesl and l 0 are both satis�ed by (C;C0), then l and l 0 have the same number of lo
i.Table 3.1 shows the required values of the phase
omponent of D for C andC0 a

ording to ea
h one-lo
us rule. All the rules in the table require spe
i�
 valuesfor the phase of the lo
us inC andC0, ex
ept for (a
tion-start). All the rules requirethat C and C0 di�er on this value, ex
ept for (a
tion-start) and (lo
al-step), whi
hrequire that the phase be the same before and after.By
omparing rows of the table, we observe that the only pairs of rules that
an possibly both be satis�ed by a pair (C;C0) are(a
tion-start)(lo
al-step)1We dis
uss below whether a pair of
on�gurations satisfying a one-lo
us rule di�er on the
on�guration of the lo
us. For our present purposes, we
an ignore this question.
101

and (t-a
tion-init)(t-method-init)For the �rst pair, we observe from the rules that(C;C0) satis�es (a
tion-start)) C:D :
 6= C0:D :
(C;C0) satis�es (lo
al-step)) C:D :
 = C0:D :
Thus there is no pair (C;C0) that satis�es both of these rules.For the se
ond pair, we have that(C;C0) satis�es (t-a
tion-init)) Pro
(C:D :
) 2 TotA
ts(D)(C;C0) satis�es (t-method-init)) Pro
(C:D :
) 2 TotMeths(D)Sin
e TotA
ts(D) and TotMeths(D) are disjoint, the
onditions are ex
lusive. This
ompletes the proof for the one-lo
us rules.For the two-lo
us rules, we show the phase for D (the sour
e) and E (theagent). The
on�gurations agree on the
on�guration of all boxes other than these.Table 3.2 shows the required values of the phase
omponent of D and E for C andC0 a

ording to ea
h two-lo
us rule. The phase for E is not determined for the rules(total-
all) and (guard-test), but it is the same in C and C0, as with (a
tion-start).Comparing the table rows, we see that there is no pair of two-lo
us rules that areboth satis�ed by (C;C0). This
ompletes the proof for the two-lo
us rules.(End of proof)Ea
h rule in the semanti
s de�nes a relation,
ontaining all pairs (C;C0) that sat-isfy the rule. Clearly =) is the union of all these relations, and we have fromTheorem 3.34 that all of these single-rule relations are disjoint.102

Rule C:D :� C0:D :�C:E :� C0:E :�(total-
all) a

ept wait�̂ �̂(guard-test) guard pwait�̂ �̂(total-return) wait a

eptreturn idle(test-a

ept) pwait a

eptreturn idle(test-reje
t) pwait reje
treje
t idleTable 3.2: Conditions on the box phase for two-lo
us rules.De�nition 3.35 For an inferen
e rule (l), we de�ne a relation with the same nameby the following.l = f (C;C0) j C =) C0 satis�es (l) gThe following Theorems summarize the properties of the relations for the semanti
rules for TCB.Theorem 3.36 If (l) and (l 0) are semanti
 rules, and l 6= l 0, thenl disj l 0Theorem 3.37 If f l i j 0 � i < 16g be the set of relations for the rules in the queuesemanti
s of TCB, then=) = h[i : 0 � i < 16 : l i iWe
an further partition the relation for ea
h rule by
onsidering the lo
i inthe appli
ation of the rule. 103

De�nition 3.38 For (l) a one-lo
us rule, and D 2 B,l(D) = f (C;C0) j C;C0 2 PC ^ (C;C0) satis�es (l) with lo
us D gFor (l) a two-lo
us rule, and D ;E 2 B,l(D ;E) = f (C;C0)j C;C0 2 PC ^(C;C0) satis�es (l) with sour
e D and agent EgWe write L for a typi
al label, either a one-lo
us label l(D), or a two lo
us labell(D ;E). We write ChLiC0 for (C;C0) 2 L. We
all L a label or step.We use the fa
t ea
h label is a subrelation of the relation for one of the rules, andwe write, for exampleL � lo
al-stepto meanh9 D :: L = lo
al-step(D) iand L � total-
allto meanh9 D ;E :: L = total-
all(D ;E) iWe de�ne the set
ontaining all the labels for the queue semanti
s.104

De�nition 3.39Lab , f Lj L is a label generated by one of(a
tion-start) (guard-reje
t)(guard-test) (lo
al-step)(total-
all) (pro
-term)(p-a
tion-init) (a
tion-end)(p-method-init) (a
tion-reje
t)(t-a
tion-init) (test-a

ept)(t-method-init) (test-reje
t)(guard-a

ept) (total-return)gWe use the following fun
tion to refer to the lo
i of a label.De�nition 3.40 For L 2 Lab,Lo
i(L) , fDg if L = l(D)fD ;Eg if L = l(D ;E)We have the following result.Theorem 3.41h8 C;C0: C;C0 2 PC ^ C =) C0 ^ C 6= C0: h9! L : L 2 Lab : ChLiC0 iiProof 105

We already have, from Theorem 3.34, that there is a unique rule satis�ed by any(C;C0) 2 =). Thus, we need only show for a one-lo
us rule (l1), that l1(D) andl1(D 0) are disjoint for D 6= D 0, and for a two-lo
us rule (l2), that l2(D ;E) andl2(D 0;E 0) are disjoint for (D ;E) 6= (D 0;E 0).For (l1), assume that we have D ;D 0 2 B, and (C;C0), su
h that C 6= C0,(C;C0) 2 l1(D), and (C;C0) 2 l1(D 0). First we have(C;C0) 2 l1(D)) f Theorem 3.32 gh8 E : E 6= D : C:E = C0:E i� f trading; C 6= C0 gh8 E : C:E 6= C0:E : E = D i ^ h9 E :: C:E 6= C0:E i� f ^ over 9 gh9 E :: h8 E : C:E 6= C0:E : E = D i ^ C:E 6= C0:E i) f instantiation gh9 E :: E = D ^ C:E 6= C0:E i� f one-point rule gC:D 6= C0:DNow we have(C;C0) 2 l1(D) ^ (C;C0) 2 l1(D 0)) f Theorem 3.32, above result gh8 E : E 6= D : C:E = C0:E i ^ C:D 0 6= C0:D 0) f instantiate for D 0 g(D 0 6= D) C:D 0 = C0:D 0) ^ C:D 0 6= C0:D 0� f
ontraposition g(C:D 0 6= C0:D 0) D 0 = D) ^ C:D 0 6= C0:D 0) f modus ponens gD 0 = D 106

For (l2), assume that we have D ;E ;D 0;E 0 2 B, and (C;C0) su
h that(C;C0) 2 l2(D ;E), and (C;C0) 2 l2(D 0;E 0). We �rst note that D 6= E , andD 0 6= E 0, sin
e no su
h methods
alls appear in a well-formed program. Also, asnoted in the proof of Theorem 3.34,(C;C0) 2 l(D ;E)) C:D 6= C0:D ^ C:E 6= C0:EWe have (C;C0) 2 l2(D ;E) ^ (C;C0) 2 l2(D 0;E 0)) f Theorem 3.42, above observation gh8 D 00 : D 00 62 fD ;Eg : C:D 00 = C0:D 00 i ^ C:D 0 6= C0:D 0) f instantiate for D 0 g(D 0 62 fD ;Eg) C:D 0 = C0:D 0) ^ C:D 0 6= C0:D 0� f
ontraposition g(C:D 0 6= C0:D 0) D 0 2 fD ;Eg) ^ C:D 0 6= C0:D 0) f modus ponens gD 0 2 fD ;EgSimilarly, we
an show that E 0 2 fD ;Eg, and sin
e D 0 6= E 0, we have fD 0;E 0g =fD ;Eg. To
omplete the proof, we need to show that l2(D ;E) and l2(E ;D) aredisjoint. From Table 3.2 we observe that there is no two-lo
us rule where the sour
eand the agent have equal phases before the step, and equal phases after the step.Thus the relations are disjoint.(End of proof)As noted in the above proof, for (C;C0) 2 l(D ;E), we have C:D 6= C0:D , andC:E 6= C0:E . For (C;C0) 2 l(D), for almost all
ases, we similarly have C:D 6= C0:D .The one ex
eption is (C;C0) 2 lo
al-step(D). SupposeC:D = (a

ept; �;
; �) 107

and there is a TCBlo
 transition(�; �) �! (�; �)then (C;C) 2 lo
al-step(D)Su
h a step is
alled a stuttering step. Stuttering steps are problemati
 be
ause, inoperational terms, the
on�guration after the step is the same as that before, so thestep
an be repeated inde�nitely, and thus a pro
edure
all
an exe
ute an in�nitenumber of steps without terminating.For a step that is not stuttering, we
an rewrite Theorem 3.32 in a strongerform, as follows.Theorem 3.42h8 L;C;C0: L 2 Lab ^ ChLiC0 ^ L is not a stuttering step: h8 D : D 2 B : D 2 Lo
i(L) 6� C:D = C0:D iiProofAssume we have C;C0 2 PC , and L 2 Lab, su
h that ChLiC0 and L is not astuttering step, and D 2 B. If D 62 Lo
i (L), then, by Theorem 3.32, C:D = C0:D .If D 2 Lo
i(L), then, sin
e L is not stuttering, we have from the above dis
ussion,C:D 6= C0:D .(End of proof)
108

The �nal result in this se
tion shows that the
hanges a step makes to itslo
i are independent of the
on�gurations of the other boxes in the program.Theorem 3.43h8 L;C0;C00;C1: L 2 Lab ^ C0hLiC00 ^ C1 2 PC ^h8 D : D 2 Lo
i(L) : C0:D = C1:D i: h9 C01 : C1hLiC01 : h8 D : D 2 Lo
i(L) : C00:D = C01:D i iiProofBy examination of the rules.(End of proof)3.4.3 Enabled stepsIn the last se
tion we showed that, for a given pair of
on�gurations (C;C0), thereis at most one step L su
h that ChLiC0. We now turn to the operational view of aprogram and
onsider, for a given program
on�guration C, how many steps thereare where C is the
on�guration before the step.De�nition 3.44 For C 2 PC, and L 2 LabL is enabled in C , h9 C0 :: ChLiC0 iExamining the rules, we see that there are three
ases where there is norestri
tion on the
on�guration of a lo
us before a step: an a
tion-start(D) stepis enabled for any
on�guration of D ; and a total-
all(E ;D), or guard-test(E ;D)step is enabled in any
on�guration where E has the right
on�guration, regardlessof D 's
on�guration. We de�ne some notation to distinguish these steps.109

De�nition 3.45 For D 2 B,Un
ond (D) , fa
tion-start(D)g [f l ;E: l 2 ftotal-
all;guard-testg ^ E 2 B n fDg: l(E ;D)gCond (D) , f L j D 2 Lo
i(L) ^ L 62 Un
ond(D) gFor L 2 Lab,ULo
i(L) , f D j L 2 Un
ond (D) gCLo
i(L) , f D j L 2 Cond (D) gWe
all Un
ond (D) the un
onditional steps, and Cond (D) the
onditional steps,for D. We
all ULo
i(L) the un
onditional lo
i, and CLo
i(L) the
onditional lo
ifor L.The un
onditional steps for D are those whi
h have D as a lo
us, but whi
h are en-abled regardless of D 's
on�guration. The
onditional steps for D are the remainingsteps with D as a lo
us. By de�nition, Un
ond(D) and Cond (D) partition the setof steps with D as a lo
us, and so ULo
i(L) and CLo
i(L) partition Lo
i(L).We note that a
tion-start(D) is an un
onditional step for its only lo
us, andthat total-
all(E ;D) guard-test(E ;D) are un
onditional steps for D , and
ondi-tional steps for E . Thus a
tion-start(D) is the only step that is un
onditional forall of its lo
i. In a quies
ent
on�guration, there is no box with a
onditional stepenabled, and only a
tion-start steps are enabled.The following theorem shows that the
on�gurations of the
onditional lo
idetermine whether or not a step is enabled. If D 62 CLo
i (L), in parti
ular, if110

D 2 ULo
i(L), then L is enabled regardless of D 's
on�guration.Theorem 3.46h8 L;C;C0: L 2 Lab ^ C;C0 2 PC ^ h8 D : D 2 CLo
i (L) : C:D = C0:D i: L is enabled in C � L is enabled in C0iProofUse De�nition 3.45 and the semanti
 rules.(End of proof)Table 3.3 shows the
onditions on a program
on�guration C su
h that a
onditional step for D is enabled. In the
ase of the two-lo
us rules that are
on-ditional for both lo
i, the
onditions on the other lo
us, box E , are also given. Inea
h rule, E is K :C:D orW :C:D , depending on the rule.The table represents a partition of the
on�gurations, from the point of viewof box D . The primary partition is on the phase of D in C. Ea
h line to the right ofa phase represents a
ondition on the phase disjoint from all others for that phase.The
ase analysis is exhaustive for ea
h phase. For phases return and reje
t,this relies on the fa
t that C is lo
ally well-formed and
all
orre
t.The following theorem shows an important inferen
e we
an draw from thetable, that there is at most one
onditional step enabled for a box in any well-formed
on�guration.
111

C:D:�Ot
her
ompone
nts

Enabledstep

idleC
:D:
=?

none

Pro
(C:D:
)
2PartA
ts(D
)
p-a
tion-init
(D)

Pro
(C:D:
)
2PartMeths
(D)
p-method-in
it(D)

Pro
(C:D:
)
2TotA
ts(D
)
t-a
tion-init(
D)

Pro
(C:D:
)
2TotMeths(D
)
t-method-ini
t(D)

guardPr
o
(C:D:
)=
pAlt(D:p;
C:D:�)=?
guard-reje
t(
D)

Alt(D:p;C:D
:�)=(?;�)
guard-a

ept
(D)

Alt(D:p;C:D
:�)=(E:m(�
);�)guard-
test(D;E)

pwaitW
p:C:D=E
C:E:�=ret
urn
test-a

ept(D
;E)

C:E:�=rej
e
t
test-reje
t(D
;E)

otherwise
none

otherwise

none

a

eptC
:D:�=?

pro
-term(D
)

�rst(C:D:�)
=E:m(�)
total-
all(D;
E)

h9�0 ;�0 ::(
C:D:�;C:D
:�)�!(�0 ;�
0)i
lo
al-step(D
)

otherwise

none

waitW
t:C:D=E
C:E:�=ret
urn
total-return(
D;E)

otherwise
none

otherwise

none

returnK
:C:D=?

a
tion-end(D
)

Kp:C:D=E

test-a

ept(E
;D)

Kt:C:D=E

total-return(
E;D)

reje
tKp
:C:D=?

a
tion-reje
t
(D)

Kp:C:D=E

test-reje
t(E
;D)

Table 3.3: Conditions on C to enable a
onditional step for D .
112

Theorem 3.47h8 C;D: C 2 PC ^ D 2 B: h# L : L 2 Cond (D) : L is enabled in C i � 1iProofWe
he
k that ea
h pair of rows in Table 3.3 des
ribes disjoint
onditions on C:D ,and thus there is no
on�guration in whi
h two
onditional steps are enabled.(End of proof)Theorem 3.47 allows the de�nition of the following fun
tion.De�nition 3.48 For C 2 PC, and D 2 B,Enabled (C;D) , L if L 2 Cond (D) ^ L enabled in C? if no su
h L existsWe
all Enabled (C;D) the enabled step for D in C.Suppose C:D :� = a

ept, then, a

ording to Table 3.3, no step is enabled for boxD if C:D :� 6= ?, C:D :� 6= E :m(�), and there is no lo
al step (C:D :� ; C:D:�) �!(�0; �0). We note from the rules de�ning TCBlo
 that there is a step de�ned for any(�; �) provided � 6= ?, and �rst(�) 6= E :m(�). Thus the \otherwise"
ondition ofthis line for this phase never applies, and Enabled(C;D) 6= ?. This is not a generalproperty of sequential language semanti
s, so, in the interests of generality, we makeit an expli
it assumption.
113

Assumption 3.49h8 C;D: C 2 PC ^ D 2 B ^ C:D :� = a

ept: Enabled(C;D) 6= ?iFor Seuss languages where Assumption 3.49 does not hold, the following theorem,and some of the results that follow from it | in parti
ular the
omplete exe
utiontheorem | require additional
onditions.The following theorem gives the
onditions under whi
h no
onditional stepis enabled for a box.Theorem 3.50h8 C;D: C 2 PC ^ D 2 B: Enabled(C;D) = ? � (C:D :� = idle ^ C:D :
 = ?) _(C:D :� = pwait ^C:(Wp:C:D):� 62 freturn;reje
tg) _(C:D :� = wait ^C:(Wt :C:D):� 6= return)iProofWe observe that the
onditions given are exa
tly those in whi
h there is an entry\none" in the �nal
olumn of Table 3.3. As noted above, Assumption 3.49 ex
ludesthe
ase where C:D :� = wait.(End of proof) 114

The following theorem shows an important stability property of Enabled (C;D). Theproof is in Appendix B.Theorem 3.51h8 L;C;C0;D: L 2 Lab ^ ChLiC0 ^ D 2 B ^ Enabled(C;D) 62 f?;Lg: Enabled(C;D) = Enabled(C0;D)i3.4.4 Enabled steps for a
all sta
kWe showed in Se
tion 3.3.3 that for ea
h a
tion
all a
tive in C 2 PC there is a
all sta
k
 whi
h
ontains all boxes that are exe
uting on behalf of that a
tion
all. Every nonquies
ent box in the
on�guration is in exa
tly one
all sta
k, andall the boxes in ea
h
all sta
k, ex
ept possibly the �rst, are in a waiting phase.We
onsider what
onditional steps are enabled for the boxes in a
all sta
k �. For0 < i < j
j, we haveC:
[i℄:� 2 fpwait;waitgSo, by Theorem 3.50, there is no
onditional step enabled for
[i℄, for 1 < i < j
j.Thus only
[0℄ and
[1℄ may have enabled steps. A step is enabled for
[1℄ onlyif C:
[0℄:� 2 freturn;reje
tg, and the enabled step, whi
h is a (test-a

ept),(test-reje
t), or (total-return) step, is also a
onditional step for
[0℄. Therefore,if a
onditional step is enabled for any box in the sta
k, it is enabled for
[0℄.Box
[0℄ is not quies
ent, so by Theorem 3.50 it has a
onditional stepenabled unless it is waiting for box D =W :C:(
[0℄), and D is not ready to return.If there is no
onditional step enabled for
[0℄, then D is not exe
uting for
[0℄,sin
e
[0℄ 62 rng(K :C), by De�nition 3.21. In this
ase, the next step for the thread115

is a method initialization step at D . In the
on�guration resulting from this step,D is added to the front of the
all sta
k.Thus we see that there is at most one step enabled for a thread in anywell-formed
on�guration.3.5 Exe
utionsWe
onsider the exe
ution of a program under the queue semanti
s from Chapter 2.We de�ne an exe
ution as a sequen
e of
on�gurations and a parallel sequen
eof steps. Ea
h pair of adja
ent
on�gurations in the
on�guration sequen
e arerelated by the
orresponding step in the step sequen
e. The exe
ution re
ords allthe
on�gurations seen during the program, and the steps taken to rea
h these
on�gurations.We de�ne exe
utions relative to a set of well-formed
on�gurations, and astep of labels.De�nition 3.52 For P � PC, and L � P � P ,Exe
utions(P;L) , f (�;�)j � 2 P1 ^ � 2 L1 ^ j�j = j�j+ 1 ^h8 i : 0 � i < j�j : (�[i℄;�[i + 1℄) 2 �[i℄ igAn exe
ution is, as des
ribed above, a pair of sequen
es, one
ontaining program
on�gurations, and the other
ontaining program steps. The �rst sequen
e
ontainsthe
on�gurations attained during program exe
ution, in order, and the se
ondsequen
e
ontains the steps from one
on�guration to the next. The sequen
es
anbe �nite or in�nite, and if �nite, the
on�guration sequen
e is one element longerthan the step sequen
e. The
on�guration sequen
e
annot be empty. We de�ne116

a set of exe
utions using the whole of PC for the
on�gurations, and Lab for thelabels.De�nition 3.53Z , Exe
utions(PC ;Lab)We de�ne some fun
tions and operators for exe
utions.De�nition 3.54 For " 2 Z , where " = (�;�),CSeq(") , �SSeq(") , �j"j , j�jStart(") , �rst(�)Final (") , last(�) if j"j <1First(") , �rst(�)Last(") , last(�) if j"j <1"[i℄ , �[i℄ if 0 � i � j"j"hii , �[i℄ if 0 � i < j"j"hi : : : ji , (�[i : : : (j + 1)℄ ; �[i : : : j℄)if 0 � i � j < j"j" is �nite if j"j <1" is in�nite if j"j =1Thus an exe
ution " takes j"j steps, starting from
on�guration Start("). If thenumber of steps is �nite, the exe
ution terminates in
on�guration Final ("). Con-�guration "[i℄ is before step "hii, and
on�guration "[i + 1℄ is after. The segment"hi : : : ji is steps i through j of ", with the
orresponding
on�gurations. This is anexe
ution, sin
e " is. 117

If we have exe
utions " and "0, where " is �nite, and Final(") = Start("0),then we
an
ompose " and "0. We also de�ne
omposition for the
ase that " isin�nite.De�nition 3.55 For "; "0 2 Z where s = j"j, s0 = j"0j, ands =1 _ (s <1 ^ Final (") = Start("0))the sequential
omposition of " and "0, written "; "0, is (�;�) 2 PC1 � Lab1,satisfying the following.j�j = s+ s0 + 1 ^ j�j = s+ s0 ^h8 i : 0 � i < s : �[i℄ = "[i℄ ^ �[i℄ = "hii iand, if s <1,h8 i : s � i � s+ s0 : �[i℄ = "0[i� s℄ i ^h8 i : s � i < s+ s0 : �[i℄ = "0hi� si iIf " is �nite, and "; "0 is de�ned, then the mat
hing
on�guration appears only on
ein "; "0. If, for example,CSeq(") = hC0;C1;C2iCSeq("0) = hC2;C3ithen the
on�guration sequen
e for "; "0 ishC0;C1;C2;C3iThe following results about sequential
omposition are simple to prove from thede�nition. 118

Theorem 3.56h8 "; "0 : "; "0 2 Z ^ "; "0 is de�ned : "; "0 2 Z iTheorem 3.57h8 "; "0; "00: "; "0; "00 2 Z ^ ("; "0); "00 is de�ned: "; ("0; "00) is de�ned ^ ("; "0); "00 = "; ("0; "00)iThe last theorem shows that sequential
omposition is asso
iative, so we omit paren-theses, and write "; "0; "00 for the sequential
omposition of ", "0 and "00.We de�ne an order on Z , using the order on the underlying sequen
es.De�nition 3.58 For "; "0 2 Z ," v "0 , CSeq(") v CSeq("0) ^ SSeq(") v SSeq("0)Theorem 3.59 (Z ;v) is a
omplete partial order.Sin
e (Z ;v) is a CPO, we
an de�ne in�nite exe
utions as the limit of a
hain of�nite exe
utions.3.6 Dis
ussionThe
onditions we de�ne for well-formed box and program
on�gurations ex
ludemany problemati
 or illogi
al
on�gurations from
onsideration. We showed that ourde�nition is sound in that a step from a well-formed
on�guration rea
hes anotherwell-formed
on�guration. 119

The set of well-formed
on�gurations is larger than the set of
on�gurationsthat we expe
t to see during the exe
ution of a program. There is a restri
ted set ofvalues that the
ode
omponent for a box
an take during the exe
ution of a program.For TCB, we do not expe
t to en
ounter the statement \x := 2" at the front of the
ode
omponent unless this statement appears somewhere in the body
ode for the
urrently exe
uting pro
edure. De�nition 3.5 pla
es only two restri
tions on the
ode
omponent: that it be empty when the phase is idle, guard, return or reje
t,and that its �rst element be a pro
edure
all when the phase is pwait or wait.Other than these restri
tions, a well-formed box
on�guration
an have anything inits
ode
omponent. In parti
ular, we
an form a well-formed box
on�guration inwhi
h box D is waiting for the return of a method
all to box E , and E is exe
utingthe
all, but there is no
all statement for a method in E anywhere in the program
ode of box D .When we require stronger
onditions on the
ode
omponent than those givenby De�nitions 3.5 and 3.20, as we do when we dis
uss deadlo
k in the next
hapter,we restri
t our attention to
on�gurations that
an appear in an exe
ution startingfrom a quies
ent state. This ensures that every statement that appears in the
ode
omponent for a box appears in the program
ode for the box. Restri
ting the setof
on�gurations in this way limits our attention to the rea
hable
on�gurations.3.6.1 Deterministi
 and nondeterministi
 stepsThe queue semanti
s has the pleasant properties that in any
on�guration, there isat most one
onditional step enabled for a box and, on
e enabled, a
onditional stepremains enabled until it is taken.It
an be shown that every step in the semanti
s, with two ex
eptions, isdeterministi
. That is, for any program
on�guration C and label L, if L is enabledin C, there is exa
tly one C0 su
h that ChLiC0. If L is deterministi
, the transition120

relation is a fun
tion. The two potentially nondeterministi
 steps are a
tion-startand lo
al-step.For nondeterministi
 a
tion-start steps,
onsider a box D with a
tions a0and a1 . Choose C;C0;C1 2 PC , su
h thatC:D = (�; �;
; �)C0 = C [D 7! (�; �;
 / (a0); �)℄C1 = C [D 7! (�; �;
 / (a1); �)℄We have C0 6= C1, and (C;C0); (C;C1) 2 a
tion-start(D).A lo
al-step is de�ned by a transition for the lo
al language TCBlo
. Allsteps for this language are deterministi
. But it is not diÆ
ult to de�ne a Seusslanguage with a nondeterministi
 lo
al language. For su
h a language, there arelo
al
on�gurations (�; �), (�0; �0), and (�1; �1), where(�; �) �! (�0; �0)(�; �) �! (�1; �1)(�0; �0) 6= (�1; �1)Suppose we
an �nd C 2 PC , and D 2 B su
h thatC:D = (�; �;
; �)Then we de�ne C0;C1 2 PC byC0 , C [D 7! (�; �0;
; �0)℄C1 , C [D 7! (�; �1;
; �1)℄We have C0 6= C1, and (C;C0); (C;C1) 2 lo
al-step(D).121

3.6.2 ThreadsWe
hose, in de�ning the semanti
s, to represent ea
h box independently. The box-
entri
 view of an exe
ution models a simple implementation of TCB on a networkof pro
essors. The exe
ution of a box is a sequen
e of
omplete pro
edure
alls. Ifthere is a method
all during the exe
ution of a pro
edure
all, the box suspendsexe
ution until the method
all is exe
uted.A single thread may exe
ute at many boxes. We de�ned fun
tions K :C andW :C for program
on�guration C so we
an dis
uss exe
utions in terms of threads.We use the \is exe
uting for" fun
tion K :C to identify the root a
tion of anexe
ution step. We use this to determine if two steps are from the same or di�erentthreads. We use the \is waiting for" fun
tion W :C to �nd the box that
an takethe next step for a thread.For well-founded C, there are no
y
les in K :C. This ensures that everynonidle box is exe
uting on behalf of an a
tion. The fun
tionW :C is not ne
essarilya
y
li
. In a
on�guration C in whi
h W :C
ontains a
y
le there is deadlo
k. Athread that is a
tive at a deadlo
ked box
annot
omplete its exe
ution. In the next
hapter we dis
uss deadlo
k further, and
onsider ways to avoid it.

122

Chapter 4
Complete exe
utions
4.1 Introdu
tionIn this
hapter, we de�ne the proper exe
utions and the
omplete exe
utions, and wede�ne the ne
essary and suÆ
ient
onditions for a proper exe
ution to be
omplete.In the remaining
hapters, we give redu
tion theorems for
omplete exe
utions.A proper exe
ution is one that starts with no a
tive threads, and, if it is �nite,no
onditional step is enabled in the �nal
on�guration. A �nite proper exe
ution
an only be extended by starting a new thread.The steps for every thread in a proper exe
ution start with the �rst step |an a
tion-start step | for the thread. However, it is not ne
essarily the
ase thatthe last step of the thread is in the exe
ution. If a thread has an in�nite number ofsteps, then every step has a su

essor, and so none of the steps
an be the last step.Also, a thread may take a �nite number of steps and rea
h a
on�guration whereno step for the thread is enabled, and no step is enabled for any other thread.The
omplete exe
utions are those that
ontain the �rst and last step | andthus all the steps | for every thread.We
onsider ways that a thread may fail to terminate. The �rst is deadlo
k,123

where the thread is permanently disabled, and
an take no more steps. The se
ondis nontermination, where the thread takes an in�nite number of steps. We showthat, for a proper exe
ution with a �nite number of threads, avoiding deadlo
k andin�nite threads gives a
omplete exe
ution. For exe
utions with an in�nite numberof threads, we need a third
ondition. This
ondition, thread fairness ensures that,if a step is enabled for a thread, then a step is eventually taken for the thread. The
omplete exe
ution theorem says that the proper exe
utions that are deadlo
k-free,
ontain no in�nite threads, and are thread fair are exa
tly the
omplete exe
utions.The remainder of the
hapter investigates requirements on a system imple-menting a TCB program to ensure that there is no deadlo
k, that every thread ter-minates, and that it is thread fair. To avoid deadlo
k and nonterminating threads,we pla
e
onditions on the program
ode and on whi
h pairs of a
tions
an have
on
urrent threads. We use
ontrol relations to express the restri
tions on
on
ur-ren
y. We show how the
ontrol relation and the program
ode together determineif a program is deadlo
k-free, and if it allows only �nite threads. The requirementsfor thread fairness are
onditions on the run-time system.Given a system implementing a TCB program, we
an obtain proper exe
u-tions from the implemented system by starting it from a quies
ent
on�guration,and only stopping the system if there is no step enabled for a
urrently exe
ut-ing thread. This essentially means we let the system run \long enough" that ea
henabled step is taken. If, in addition, we ensure that this system avoids deadlo
kand nontermination, and is thread fair, then running the system \long enough" isguaranteed to give
omplete exe
utions.The material in this
hapter
an thus be regarded as guidan
e for implement-ing Seuss systems so that all exe
utions are
omplete.
124

4.1.1 Pro
edure setsFor some of this work, we
onsider the program as a set of pro
edures. The identity ofthe boxes
ontaining the a
tions is of se
ondary importan
e, so we use the followingsets
ontaining the a
tions, methods, and pro
edures from the program, and thesubsets of partial and total elements of ea
h type.De�nition 4.1A , f D :p j D 2 B ^ p 2 A
tions(D) gAp , f D :p j D 2 B ^ p 2 PartA
ts(D) gAt , f D :p j D 2 B ^ p 2 TotA
ts(D) gM , f D :p j D 2 B ^ p 2 Methods(D) gMp , f D :p j D 2 B ^ p 2 PartMeths(D) gMt , f D :p j D 2 B ^ p 2 TotMeths(D) gP , A [MPp , Ap [MpPt , At [MtWe use �, �, and � for typi
al members of A, M, and P, respe
tively.We use the following fun
tion when we need to refer to the box of a pro
edure.De�nition 4.2 For � 2 P,Box (�) , D if h9 p :: � = D :p iWe de�ne an equivalen
e relation on P.
125

De�nition 4.3 For �; �0 2 P,� � �0 , Box (�) = Box (�0)If � � �0, we say � box-equals �0.4.2 Proper exe
utions and
omplete exe
utionsA proper exe
ution is one that starts in a quies
ent
on�guration, and
an only beextended by starting another thread. It is a maximal exe
ution for the threads thathave started in it.De�nition 4.4 For " 2 Z ,Maximal (") , j"j =1 _(j"j <1 ^h8 D : D 2 B : Enabled (Final (");D) = ? i)Proper (") , qt(Start (")) ^ Maximal(")For X a set of exe
utions,Proper (X) , f " j " 2 X ^ Proper (") gTo de�ne
omplete exe
utions, we note that ea
h thread starts and ends with a stepat the same box. The following fun
tions return, for a given exe
ution and box, thenumber of steps in the exe
ution that start a thread at the box, and the number ofsteps that end a thread at the box.
126

De�nition 4.5 For " 2 Z , L 2 Lab, and D 2 B,NumSteps(";L) , h# i : 0 � i < j"j : "hii = L iNumStarts(";D) , NumSteps("; a
tion-start(D))NumEnds(";D) , NumSteps("; a
tion-end(D)) +NumSteps("; a
tion-reje
t(D))If every thread that starts at box D terminates, then the number of start stepsequals the number of end steps. Conversely, if a thread does not terminate, its boxhas more start steps than it has end steps.De�nition 4.6 For " 2 Z ,Complete(") , Proper (") ^h8 D : D 2 B : NumStarts(";D) = NumEnds(";D) iIf X is a set of exe
utions,Complete(X) , f " j " 2 X ^ Complete(") gThe following theorem states that in a
omplete exe
ution, no box is permanentlynonidle. The proof of the theorem is in Appendix B.

127

Theorem 4.7h8 ": " 2 Complete(Z): h8 D ; i: D 2 B ^ 0 � i � j"j: h9 j : i � j � j"j : "[j℄:D :� = idle iiiThe following theorem gives a simple
hara
terization of
omplete �nite exe
utions.The proof is in Appendix B.Theorem 4.8h8 " : " 2 Z ^ j"j <1 : Complete(") � qt(Start(")) ^ qt(Final(")) iThe number of threads in an exe
ution is the number of start steps a
ross all theboxes.De�nition 4.9 For " 2 Z ,NumThreads(") , h� D : D 2 B : NumStarts(";D) iIf NumThreads(") is �nite for some ", but " is in�nite, then one of the threads in "has an in�nite number of steps. None of these
an be an end step, be
ause a theadtakes no steps after its end step. Thus the exe
ution is not
omplete. A
ompleteexe
ution with a �nite number of threads is thus a �nite exe
ution. So we get thefollowing
orollary to Theorem 4.8.
128

box Da
tion a :: E :nmethod m :: (� � � � �)endbox Ea
tion b :: D :mmethod n :: (� � � � �)endFigure 4.1: Program that
an deadlo
kCorollary 4.10h8 ": " 2 Z ^ NumThreads(") <1: Complete(") � Proper (") ^ j"j <1 ^ qt(Final ("))iA proper exe
ution that has a �nite number of threads, and is not
omplete, eitherhas an in�nite thread, or it ends in a nonquies
ent
on�guration in whi
h no stepis enabled.We dis
uss these possibilities in the following se
tions. We �rst dis
uss
on-�gurations in whi
h no
onditional step is enabled, and then we
onsider in�nitethreads.4.3 Deadlo
kConsider the program in Figure 4.1. This program
ontains two a
tions, D :a , whi
h
alls method E :n, and E :b, whi
h
alls method D :m . Now
onsider the followingexe
ution. Starting from a quies
ent
on�guration, the �rst step starts a thread for129

D :a , and the next step starts a thread for E :b. Both threads exe
ute
on
urrently.When the exe
ution of D :a's thread rea
hes the
all to E :m , an entry for this
all ispla
ed at the ba
k of E 's
all queue. Box D waits until this
all
ompletes. Whenthe exe
ution of E :b's thread rea
hes the
all to D :n , an entry for this
all is pla
edat the ba
k of D 's
all queue. Box E waits until this
all
ompletes. Let C be the
on�guration where both boxes are waiting. By Theorem 3.50, no
onditional stepis enabled for either box. We have W :C:D = E , and W :C:E = D . There is a
y
lein W :C, so box D is waiting for box E , whi
h is waiting for D , so ultimately, D iswaiting for itself to take a step, whi
h is not possible. Similarly, box E is waitingfor itself. We say that the boxes are deadlo
ked. We de�ne deadlo
k using W :C.De�nition 4.11 For C 2 PC, a sequen
e T 2 B+ is a knot in C ifh8 i : 0 � i < jT j : W :C:(T [i℄) = T [i� 1℄ iwhere � is addition modulo jT j. For D 2 B,dl(C;D) , h9 T; n : T is a knot in C ^ n � 0 : (W :C)n:D 2 T idl(C) , h9 D : D 2 B : dl(C;D) idl(") , h9 i : 0 � i � j"j : dl("[i℄) iIf dl(C;D), we say that D is deadlo
ked in C; if dl(C) or dl("), we say that C or" is deadlo
ked.A knot is a
y
le of boxes, ea
h of whi
h is waiting for the next, and so no
onditionalstep is enabled for any box in the knot. A box is deadlo
ked in a
on�guration ifit is in a knot, or (transitively) waiting for a box in a knot. The following theoremstates that deadlo
k is a stable property. That is, if a box is deadlo
ked at some
on�guration in an exe
ution, then it is deadlo
ked at every
on�guration from that
on�guration on. The proof is in Appendix B.130

Theorem 4.12h8 "; k;D: " 2 Z ^ 0 � k � j"j ^ D 2 B ^ dl("[k℄;D): h8 i : k � i � j"j : dl("[i℄;D) iiThe following
orollary states that a deadlo
ked exe
ution is not
omplete. Threadsthat are deadlo
ked
annot
omplete exe
ution.Corollary 4.13h8 " : " 2 Z ^ dl(") : :Complete(") iProofAssume " 2 Z and dl("). By De�nition 4.11, we
an
hoose i, su
h that 0 � i � j"j,and dl("[i℄). We havetrue� f assumption gdl("[i℄)� f De�nition 4.11 gh9 D :: dl("[i℄;D) i) f Theorem 4.12 gh9 D :: h8 j : i � j < j"j : dl("[j℄;D) i i) f deadlo
ked box is waiting gh9 D :: h8 j : i � j < j"j : "[j℄:D :� 2 fpwait;waitg i i) f weakening gh9 D :: h8 j : i � j < j"j : "[j℄:D :� 6= idle i i� f predi
ate
al
ulus g 131

:h8 D :: h9 j : i � j < j"j : "[j℄:D :� = idle i i) f Theorem 4.7 g:Complete(")(End of proof)The �nal theorem in this se
tion says that if there is no
onditional step enabled ina
on�guration, then every box is either quies
ent or deadlo
ked. The proof is inAppendix B.Theorem 4.14h8 C: C 2 PC: h8 D :: Enabled(C;D) = ? i � h8 D :: qt(C:D) _ dl(C;D) ii4.4 In�nite pro
edure
allsConsider the program in Figure 4.2. The program
ontains boxes X and D . BoxX has a lo
al integer variable x , an a
tion in
 that in
rements the value of x , anda method de
 that de
rements the value of x and returns the de
remented value.Box D
ontains an a
tion a that loops until X :de
 returns a nonpositive value. Ifa thread for a
tion D :a is exe
uted by itself, then the thread is �nite. If X :in
exe
utes
on
urrently with D :a , and there are enough threads for X :in
 to keepthe value of X :x positive, then the thread for D :a loops endlessly, taking an in�nitenumber of steps without terminating.A thread that takes an in�nite number of steps does not
ontain an end step,be
ause a thread takes no steps after its end step. Thus, for a
omplete exe
ution,we must ensure that no thread is in�nite. We de�ne a predi
ate that is true of all132

box Xvar x : integera
tion in
 :: x := x+ 1method de
(out y : integer):: x := x� 1 ; y := xendbox Dvar n : integer init 1a
tion a :: while n > 0 do X :de
(; n)endFigure 4.2: Program with nonterminating pro
edureexe
utions
ontaining a in�nite thread. First, we identify an exe
ution that
ontainsall the steps from a pro
edure
all.De�nition 4.15 For " 2 Z , and D :p 2 P, then " is a full exe
ution of D :p ifStart("):D :� = idle ^ Pro
("[1℄:D :
) = p ^h8 i : 0 < i < j"j : ("[i℄):D :� 6= idle ^ :dl("[i℄;D) i ^(j"j = 1 _ dl(Final (");D) _ Final ("):D :� = idle)From this de�nition, if " is a full exe
ution for D :p, then in the initial
on�guration,D is idle. In every
on�guration, ex
ept the �rst and possibly the last, D is notidle. In every
on�guration, ex
ept possibly the last, D is not deadlo
ked. In the
on�guration after the �rst step, D is not idle, and its
urrent
all is for p. Sothe �rst step is a pro
edure initialization step for p. Pro
edure p is the
urrent
all for D for the whole of the exe
ution, sin
e D must be
ome idle to
lear its
urrent
all. The exe
ution is in�nite, or it is �nite, and in the �nal
on�gurationD is deadlo
ked, or it is idle. These
over all the possibilities for an exe
ution of apro
edure in a maximal exe
ution. 133

An in�nite thread must in
lude a pro
edure
all with an in�nite numberof steps. Note that an in�nite full exe
ution for a pro
edure does not ne
essarily
ontain an in�nite number of steps for the pro
edure
all's thread, sin
e it may
ontain a �nite number of steps for the pro
edure
all's thread, with an in�nitenumber of steps for other threads.The steps taken by a pro
edure
all are all taken on behalf of the same roota
tion. We de�ne the root a
tion for a step in an exe
ution, using the root a
tionsof the boxes in the
on�gurations. This allows us to indentify pairs of steps in a fullexe
ution that are from the same thread.De�nition 4.16 Letpro
-init , partial-a
tion-init [partial-method-init [total-a
tion-init [total-method-initFor " 2 Z , and 0 � i < j"j,Root ("; i) , ? if "hii � a
tion-startRoot("[i + 1℄;D) if "hii = l(D) ^ "hii � pro
-initRoot("[i℄;D) if "hii = l(D ;E) _("hii = l(D) ^"hii 6� pro
-init [a
tion-start)The root a
tion for an a
tion-start step is ?, sin
e su
h a step is never taken onbehalf of a
urrently exe
uting a
tion
all. For any other type of step, the root a
tionfor the step is the root a
tion for its �rst lo
us. For the pro
edure initialization steps(represented by pro
-init), we use the root a
tion for the lo
us in the
on�gurationafter the step, sin
e its lo
us is idle before the step, and exe
uting for the initializedpro
edure after the step. For every other step, we take the root a
tion for its �rstlo
us before the step, sin
e for these steps, the �rst lo
us is exe
uting the
urrent134

pro
edure
all before the step.We now de�ne a predi
ate that is true of a full exe
ution for a pro
edure �if it
ontains a �nite number of steps for �'s thread. Note the the �rst step of a fullexe
ution is always a step initializing the
all. So every step with the same root asthis step is in �'s thread.De�nition 4.17 For � 2 P, and " 2 Z , su
h that " is a full exe
ution for �,FiniteThread (") , h# i : 0 � i < j"j : Root ("; i) = Root ("; 0) i < 1De�nition 4.18 For " 2 Proper (Z),inf (") , h9 �; i; j: � 2 A ^ 0 � i � j � 1 ^"hi : : : ji is a full exe
ution for �: :FiniteThread ("hi : : : ji)i4.5 Exe
utions with a �nite number of threadsWe now show that, if we limit our attention to exe
utions
ontaining a �nite numberof threads, then the
omplete exe
utions are exa
tly the proper exe
utions that arenot deadlo
ked and
ontain no in�nite pro
edure
alls.Theorem 4.19h8 ": " 2 Z ^ NumThreads(") <1: Complete(") � Proper (") ^ :dl(") ^ :inf (")i 135

ProofAssume that " 2 Z , and NumThreads(") <1. We showProper (")) (:dl(") ^ :inf (") � j"j <1 ^ qt(Final (")))The result then follows from this and Corollary 4.10. Assume Proper ("). If we have:dl(") and :inf ("), then sin
e the number of threads is �nite, and no thread has anin�nite number of steps, we have j"j <1. Also, sin
e " is proper, no step is enabledin its �nal
on�guration. Sin
e " is not deadlo
ked, by Theorem 4.14, every box isquies
ent in the �nal
on�guration, so qt(Final (")). Conversely, if we have j"j <1and qt(Final (")), then the �rst gives us that there there are no in�nite threads, andthe se
ond means that there is no deadlo
k, sin
e, by Theorem 4.12, a deadlo
kedexe
ution is deadlo
ked in its �nal
on�guration.(End of proof)4.6 Thread fairnessTheorem 4.19 does not apply to exe
utions with an in�nite number of threads. Tosee this, suppose we have a
tions � and �0 that exe
ute on disjoint sets of boxes.Consider an exe
ution that
onsists of some of the steps of a thread for �, leavingthis thread in
omplete and with an enabled
onditional step, followed by an in�nitenumber of threads for �0, ea
h of whi
h has a �nite number of steps. There is noin�nite thread in this exe
ution, and there is no deadlo
k, yet it is not
omplete.The problem here is that, when there are multiple steps enabled at ea
h
on�guration in an in�nite exe
ution, there is no guarantee that a given enabledstep is ever taken. This problem is one that arises whenever we have a systemwith multiple threads of
ontrol, where ea
h step in an exe
ution
onsists of anondeterministi

hoi
e from among the enabled steps. An exe
ution of su
h a136

system
an
hoose to ignore any given enabled step inde�nitely. The standardte
hnique for dealing with this problem is to de�ne a fairness
ondition [13℄. FromTheorem 3.51, a
onditional step remains enabled until it is taken, so the fairnessthat we require in this
ase is that every enabled
onditional step is eventually taken.We express this in the following way.De�nition 4.20 For " 2 Z ,tf (") , h8 D ; k: D 2 B ^ 0 � k < j"j ^ Enabled("[k℄;D) 6= ?: h9 i : k � i < j"j : "hii = Enabled("[k℄;D) iiIf tf ("), we say that " is thread fair.Thread fairness for �nite exe
utions holds if there is no
onditional step enabled inthe �nal
on�guration.Theorem 4.21h8 ": " 2 Z ^ j"j <1: tf (") � h8 D : D 2 B : Enabled(Final (");D) = ? ii4.6.1 Fairness for rendezvous pro
edure
allsThe problem of
ontention for a

ess to a box to exe
ute a pro
edure
all under therendezvous semanti
s, whi
h we handled by introdu
ing the
all queue, is also anissue that
an be dealt with by imposing a fairness
ondition.The fairness required for pro
edure
alls is di�erent in nature to thread fair-ness. A rendezvous method
all step does not have the stability property of the137

onditional steps in the queue semanti
s. In an exe
ution under the rendezvoussemanti
s, a method
all step for boxes D and E is enabled if box D is in phasea

ept, and has a method
all to E at the front of its
ode, and box E is in phaseidle. The last of these
onditions is falsi�ed if E starts a pro
edure for a threadother than D 's.On
e a rendezvous method
all step is enabled for D and E , it is eithertaken, or it be
omes disabled, be
ause E takes a di�erent pro
edure
all step. Ifthe pro
edure
all started at E terminates, the step for D and E is again enabled.Otherwise, the pro
edure
all does not terminate, and D is blo
ked for the rest ofthe exe
ution.The exe
utions we want to avoid are one where the method
all step is en-abled in�nitely often but is never taken. In the standard terminology of fairness,exe
utions that have this property are
alled strongly fair, whereas thread fair exe-
utions are weakly fair.4.7 The
omplete exe
ution theoremWe now give an extension of Theorem 4.19 that holds for exe
ution with a �nite orin�nite number of threads.Theorem 4.22 (Complete exe
ution theorem)h8 " : " 2 Z : Complete(") � Proper (") ^ :dl(") ^ :inf (") ^ tf (") iProofAssume " 2 Z . First
onsider the
ase that NumThreads(") is �nite. If Proper ("),then we have:dl(") ^ :inf (")� f Theorem 4.19, Corollary 4.10 g138

j"j <1 ^ qt(Final("))) f No step enabled in a quies
ent
on�guration, Theorem 4.21 gtf (")So we have :dl(") ^ :inf (")) tf ("). This gives usProper (") ^ :dl(") ^ :inf (") ^ tf (")� f above gProper (") ^ :dl(") ^ :inf (")� f Theorem 4.19 gComplete(")Now
onsider the
ase where NumThreads(") is in�nite. We prove the equivalen
eas two impli
ations.Case):Assume Complete("). Sin
e NumThreads(") is in�nite, so is j"j, and thus Proper (")follows from De�nition 4.6 and De�nition 4.4. In a
omplete exe
ution, every threadrea
hes its �nal step and
eases to be a
tive. This means that the thread
annot bedeadlo
ked, nor
an it have an in�nite number of steps. Also, all
onditional stepsfor every thread are taken, sin
e every thread �nishes, so the exe
ution is threadfair.Case (:Assume Proper ("), :dl("), :inf ("), and tf ("). For any i, su
h that 0 � i < j"j, we
all "hii a start step if"hii � a
tion-start [guard-test [total-
all
139

and we
all "hii an end step if"hii � a
tion-end [a
tion-reje
t [test-a

ept [test-reje
t [total-returnA start step begins a pro
edure
all, and an end step
ompletes it. For any i su
hthat "hii is a start step, let "i to be the segment of " starting with step i, and endingwith the end step that
ompletes the pro
edure
all started by step i, or, if thereis no end step
orresponding to step i, the in�nite suÆx of " starting with step i.We show that "i is �nite for every i su
h that "hii is a start step, and thus everypro
edure
all, in
luding every a
tion
all, terminates. This gives us Complete(").Let D be the un
onditional lo
us of step "hii, and letVi = f E j h9 j; n : 0 � j � j"ij ^ 0 � n : (W :("i[j℄))n:D = E i gThe set Vi
ontains D , and every box for whi
h D is waiting during exe
ution "i. Theboxes in Vi are all the boxes whose exe
ution a�e
ts the progress of "hii's thread.Let
̂ = "[i+ 1℄:D :
. This is D 's
all queue after the
all started by "hii hasbeen added. Exe
ution "i is �nite i� every
all in
̂ is eventually removed from D 's
all queue. We prove that "i is �nite by indu
tion on #Vi. Note that #Vi � #Bfor every "i.For the basis, assume #Vi = 1. Thus Vi = fDg, and all the
alls in
̂ donot make any method
alls during their exe
ution. We show that the front entryin
̂ is eventually removed from D 's
all queue. Sin
e there are no pro
edure
alls,D is not waiting at any
on�guration in "i, and there is an entry in its
all queuethroughout the exe
ution (ex
ept perhaps at Final ("i)), and thus it is not quies
ent.By Theorem 3.50, a
onditional step for D is enabled at every
on�guration in "i,ex
ept the last. Sin
e tf ("), there are a �nite number of steps from other threadsbetween ea
h step for box D . Sin
e :inf ("), the
all at the front of the queue takes140

a �nite number of steps to
omplete. When it does so it is removed from the queue.Iterating this argument, we have that every
all in
̂ is eventually removed from D 's
all queue, and thus "i is �nite.For the indu
tion step, Suppose #Vi = n, for n > 0, and assume that every"k is �nite, for "hki a start step, and #Vk < n, We again show that the front entryin
̂ is eventually removed from D 's
all queue. The argument is similar to that forthe basis, ex
ept that, in this
ase, the thread may
ontain method
alls. Supposethat "ihji is a method
all step with
onditional lo
us D . That is, it is a method
all step from a pro
edure
all exe
uting at D . This is a start step,
orrespondingto step "hi + ji. Let k = i + j. We have Vk � Vi, sin
e every step in the visitedset for this
all is in the visited set for the
all started by "hii. If Vk = Vi, thenD 2 Vk. In this
ase there is deadlo
k, be
ause we have (W :C)n:D = D for some
on�guration C in "k, and some n > 0. Thus, sin
e :dl("), we have #Vk < #Vi,and, by the indu
tion hypothesis, "k is �nite. The �nal step of this exe
ution makesa step enabled at box D . Again by thread fairness and the la
k of in�nite pro
edure
alls, we have that the front entry in D 's queue is eventually removed. Iteratingthis argument, as above, we have that "i is �nite.(End of proof)Theorem 4.22 gives a set of
onditions equivalent to Complete("), for any exe
ution". A system implementing a TCB program is thus
omplete if and only if everyexe
ution of the system is proper, is not deadlo
ked,
ontains no in�nite threads,and is thread fair. We argued at the beginning of this
hapter that Proper (")
anbe ensured by letting the system run for a suÆ
iently long time. In the followingse
tions, we dis
uss ways to ensure that ea
h exe
ution of the system satis�es theother three
onditions.
141

4.8 Control relationsThe program in Figure 4.1
an deadlo
k, and that in Figure 4.2
an have an in�nitethread. In the �rst program, deadlo
k is possible if threads for D :a and E :b are run
on
urrently. In the se
ond, a thread for D :a may take an in�nite number of stepsif it is run
on
urrently with an in�nite number of threads for X :in
.One way to avoid deadlo
k in an exe
ution of the program in Figure 4.1 is torequire that threads for D :a and E :b are not run
on
urrently. In this
ase, there
an be no deadlo
k. Similarly, we
an avoid an in�nite thread in an exe
ution ofthe program in Figure 4.2 if we require that threads for D :a and X :in
 are not run
on
urrently. So we see that the potential for a program to deadlo
k, or to havean in�nite thread, depends on whi
h pairs of a
tions we allow to have
on
urrentthreads.Control relations express restri
tions on
on
urren
y. We show how theserelations
an be used to ensure that exe
utions are deadlo
k-free, and all threadsare �nite.De�nition 4.23 A
ontrol relation for a program is a symmetri
 binary relationon A. The set of all
ontrol relations is CR.The intended meaning of a
ontrol relation T 2 CR is that threads for � and �0may be exe
uted
on
urrently if and only if � T �0. Note that De�nition 4.23requires neither re
exivity nor irre
exivity of
ontrol relations. If � T �, thenmultiple threads for �
an be run
on
urrently; otherwise, at most one thread for �
an be a
tive at any time during an exe
ution. However, the notion of \exe
uting
on
urrently" is rather tenuous for threads for � and �0, where ���0 (whi
h is trueif � = �0). By design, ea
h box exe
utes a single pro
edure
all at a time. Whileone a
tion
all is exe
uting on a box, all others on the same box wait their turn inthe
all queue. 142

For a given
ontrol relation, some
on�gurations respe
t the relation, meaningthat all pairs of a
tions a
tive in the
on�guration are in the
ontrol relation, andsome do not. An exe
ution respe
ts a
ontrol relation if ea
h of its
on�gurationsdoes. To de�ne this, we must identify a
tions with multiple
on
urrent threads.The set A
tives(C)
annot be used for this purpose, sin
e this does not distinguisha
tions with one a
tive thread from those with multiple a
tive threads.De�nition 4.24 For C 2 PC,Multis(C) , f D :aj D 2 B ^ a 2 A
tions(D) ^h# i : 0 � i < jC:D :
j : C:D :
[i℄ = (a) i > 1gDe�nition 4.25 For T 2 CR, A0 � A, C 2 PC, and " 2 Z ,A0 resp T , h8 �; �0 : �; �0 2 A0 ^ � 6= �0 : � T �0 iC resp T , A
tives(C) resp T ^ h8 � : � 2Multis(C) : � T � i" resp T , h8 i : 0 � i � j"j : "[i℄ resp T iIf X resp T, we say X respe
ts T.An exe
ution that respe
ts T allows only
on
urren
y permitted by T. The
ondi-tion on Multis(C) deals with a
tions having multiple
on
urrent
alls, as dis
ussedabove. The relation resp is monotoni
 in the
ontrol relation, as the following theo-rem shows. Larger
ontrol relations allow more
on
urren
y, and thus are respe
tedby more
on�gurations or exe
utions.
143

Theorem 4.26h8 T;T0: T;T0 2 CR ^ T � T0: h8 A0 : A0 � A : A0 resp T) A0 resp T0 i ^h8 C : C 2 PC : C resp T) C resp T0 i ^h8 " : " 2 Z : " resp T) " resp T0 iiProofFrom De�nition 4.25.(End of proof)The simplest
ontrol relation is ;, the empty relation; this allows at most asingle a
tive a
tion
all at any point in an exe
ution. An exe
ution that respe
tsthis
ontrol relation is sequential, that is, an exe
ution in whi
h ea
h a
tion
allis started and run to
ompletion before another a
tion
all is started. We use theempty
ontrol relation to de�ne sequential exe
utions.De�nition 4.27 For " 2 Z ," is sequential , " resp ;4.8.1 Implementing
ontrol relationsControl relations are used to de�ne subsets of the set of exe
utions having desirableproperties. A suitably
hosen
ontrol relation guarantees a deadlo
k-free exe
ution,or an exe
ution with no in�nite thread. If threads for a
tions � and �0
an deadlo
k,we
an avoid this possibility by using a
ontrol relation that does not
ontain (�; �0).If threads for �, �0, and �00
an deadlo
k, we use a
ontrol relation that does not
ontain one of (�; �0), (�; �00), and (�0; �00).144

If
ontrol relation T guarantees a deadlo
k-free exe
ution, then so does T0,for any T0 � T, sin
e every exe
ution that respe
ts T0 also respe
ts T. So theinterse
tion of a set of
ontrol relations, ea
h of whi
h guarantees a single propertyof the exe
ution, gives a
ontrol relation that guarantees all of the properties.Control relations thus give uniform way to ensure desirable properties ofexe
utions. Part of the implementation of a TCB program is a s
heduler, a programthat de
ides whi
h threads to start, in whi
h order. A thread for a
tion � is startedwhen the s
heduler sends a start(�) message to �'s box. When the a
tion
ompletes,the box sends an a

ept(�) or reje
t(�) message to the s
heduler, depending on theout
ome of the thread's exe
ution. The pro
essors exe
ute independently, so thes
heduler has no
ontrol over the order in whi
h threads end.The s
heduler keeps a re
ord of all a
tions that have a
tive threads from thesequen
e of start and end messages. S
hedulers implement a
ontrol relation byensuring that the set of a
tive a
tions respe
ts the
ontrol relation. For a
ontrolrelation T, a s
heduler sends a start(�) message only if � T �0 for every �0 with ana
tive thread.We
onsider further requirements for a s
heduler for TCB in Chapter 6. Fornow, we note that, if we
an de�ne a
ontrol relation that guarantees a property ofthe exe
utions of a program, then we
an implement the program using a s
hedulerthat respe
ts the
ontrol relation, and all exe
utions of the implementation have thedesired property.4.9 Avoiding deadlo
kWe saw that for the program in Figure 4.1, a
ontrol relation
an be used to avoiddeadlo
k. Spe
i�
ally, if T is a
ontrol relation where (D :a ;E :b) 62 T, then anyexe
ution of the program that respe
ts T does not deadlo
k.We de�ne a predi
ate on
ontrol relations that is true pre
isely when a
ontrol145

relation does not allow deadlo
k in an exe
ution.De�nition 4.28 For T 2 CR,DF (T) , h8 " : " 2 Proper (Z) ^ " resp T : :dl(") iIf DF (T), we say that T is deadlo
k-free.Deadlo
k-freedom is antimonotoni
 in the
ontrol relation. A smaller
ontrol relationallows less
on
urren
y, whi
h means fewer possibilities for deadlo
k.Theorem 4.29h8 T;T0 : T;T0 2 CR ^ T � T0 : DF (T) (DF (T0) iFrom this theorem, we see that is any
ontrol relation is deadlo
k-free, then so is theempty
ontrol relation. Equivalently, if the empty
ontrol relation is not deadlo
k-free, then no
ontrol relation is deadlo
k-free. The empty
ontrol relation allowsonly sequential exe
utions, so if it is not deadlo
k-free, then there is a deadlo
kedsequential exe
ution.Let " be a deadlo
ked proper exe
ution that respe
ts ;, and let "[i℄ be thelast nondeadlo
ked
on�guration in ". The start
on�guration is quies
ent, so su
han i exists. Thus, W :("[i℄) is a
y
li
, and W :("[i + 1℄) is
y
li
. Step "hii is amethod
all step to a box that is waiting. Sin
e there is only one exe
uting thread,the sour
e and agent of this
all are exe
uting for the same thread. We
all thisa
y
li

all. There is no hope of ensuring deadlo
k-free exe
ution for a program
ontaining an a
tion that allows a
y
li

all.The requirements to ensure deadlo
k-free exe
ution are �rst, that the emptyrelation is deadlo
k-free. We do not attempt to implement programs for whi
h thisis not the
ase. Se
ond, that the exe
ution respe
ts a deadlo
k-free
ontrol relation.146

4.9.1 Nonblo
king
ontrol relationsDe�nition 4.28 does not help parti
ularly in de
iding a priori if a parti
ular
ontrolrelation allows deadlo
k. The de�nition essentially says that a
ontrol relation doesnot allow deadlo
k if it does not allow deadlo
k. We de�ne a
ondition that issuÆ
ient to ensure that a
ontrol relation is deadlo
k-free, and is simpler to
he
kthan the
onditions of De�nition 4.28.No rule in the semanti
s
reates a statement that is not already present in the
ode. When the
ode
omponent for a pro
edure
all is initialized, it is initializedto the body
ode from the pro
edure's de�nition. Thus, for boxes D and E , and
on�guration C from a proper exe
ution, if W :C:D = E , then the
ode for
urrentpro
edure in D
ontains a method
all statement for a method in E .We de�ne the following relation on pro
edures.De�nition 4.30 For � 2 P, we say that � 2M appears in � if there is a
all to �in the
ode of the body of �. We write this as � � �.If � � �, then there may possibly be a
all to � during an exe
ution of �. Note thatif � is partial, � � � if � appears as a test or in the body of one of �'s alternatives.If � is total, � � � if � appears in the body of �. We have the following theorem,whi
h shows that � limits the values of W :C for every rea
hable C.Theorem 4.31h8 "; i;D ;E: " 2 Proper (Z) ^ 0 � i � j"j ^ W :("[i℄):D = E: h9 �; �0 : � � �0 : Box (�) = D ^ Box (�0) = E iiNote that if � � �, then it is not the
ase that every
all to � in
ludes a
all to �.If the
ode of �
ontains the statement \if false then �", then � � �, but no
all147

to � is ever made by exe
uting this statement. But, from Theorem 4.31, if there isa
all to � during an exe
ution of �, then � � �. This relation gives us an \upperbound" on the method
alls that may be made during a pro
edure
all.If pro
edure �
alls method �, then Box (�) waits for Box (�) until the
all
ompletes. It must also wait for any pro
edure
all exe
uting at Box (�) before the
all to � is started. The following relation gives all the pro
edures whose exe
utionmay blo
k the exe
ution of a
all to a given pro
edure. It is a
ombination of the\appears in" relation, and box equality.De�nition 4.32bb , �;�For �; �0 2 P, if � bb �0 we say that � is blo
ked by �0.We de�ne a \blo
ked-by" graph for a program.De�nition 4.33BB , (P; bb)Thus BB is the dire
ted graph with vertex set P, and an edge from � to �0 i�� bb �0.If there is a
y
le in BB , then there is the possibility of rea
hing deadlo
kduring an exe
ution in whi
h there are no restri
tions on
on
urren
y. As we sawabove, the possibility for deadlo
k
an be eliminated if use a
ontrol relation thatlimits
on
urren
y.Suppose we have a subset A0 � A. We remove from BB all verti
es forpro
edures that are not
alled by a
tions in A0, and all edges in
ident on them.The remaining graph
ontains all the
alls that may be made during a
on
urrent148

exe
ution of the a
tions in A0. If this restri
ted graph is a
y
li
, then there is nopossibility for deadlo
k during su
h an exe
ution. This suggests that we
onsidersubgraphs of BB a

ording to the sets of a
tions that
an have
on
urrent threads,as given by a
ontrol relation.We �rst de�ne the nodes in representing pro
edures that may be
alled duringthe exe
ution of a thread for an a
tion, or a set of a
tions.De�nition 4.34 For � 2 A, and A0 � A,Range(�) , f � : � 2 P : � �� � gRange(A0) , h[� : � 2 A0 : Range(�) iThe set Range(�)
ontains �, and all methods rea
hable from it by �. This gives abound on the pro
edures that are
alled during exe
ution of a thread for �.The theorem we wish to prove is that for any subset A0 � A, the subgraph ofBB on the verti
es in Range(A
tives(C)) is a bound onW :C in any
on�guration Cfrom a proper exe
ution. Therefore, if the subgraph is a
y
li
, C is not deadlo
ked.We de�ne the restri
tion of a graph to a subset of its verti
es.De�nition 4.35 For a graph G = (V;E), and U � V ,G � U , (U;E0) where E0 = E \ (U � U)Using this, we de�ne subgraphs of BB for subsets of the a
tions.De�nition 4.36BB(A0) , BB � Range(A0)Now we have a theorem 149

Theorem 4.37h8 "; i: " 2 Proper (Z) ^ 0 � i � j"j: BB(A
tives("[i℄)) is a
y
li
) :dl("[i℄)iNow we de�ne a
ondition on
ontrol relations based on the above observations.De�nition 4.38 For T 2 CR,T is nonblo
king , h8 A0 : A0 resp T : BB(A0) is a
y
li
 iA
ontrol relation is nonblo
king if there are no
y
les in the blo
ked-by graph forany set of a
tions that
an exe
ute
on
urrently. The following theorem followsimmediately from Theorem 4.37 and De�ntion 4.38.Theorem 4.39h8 T : T 2 CR ^ T is nonblo
king : DF (T) iThe theorem says that a nonblo
king
ontrol relation is deadlo
k-free, so there is nodeadlo
k in any proper exe
ution.Note that if BB is a
y
li
, then so is BB(A0), for any A0 � A. In this
ase,any
ontrol relation is nonblo
king, and so all exe
utions are deadlo
k-free. Oneway to ensure that BB is a
y
li
 is to de�ne a partial order on the boxes, and writethe
ode for the pro
edures su
h that a
all to a method in box E appears in apro
edure in box D only if D is before E in the order. Su
h a program
an neverdeadlo
k.To show that a TCB program is implementable without deadlo
k, it is suÆ-
ient to show that BB(�) is a
y
li
 for every � 2 A. To guarantee that the exe
ution150

of an implemented system does not deadlo
k, it is suÆ
ient to ensure that the im-plementation ensures exe
utions that respe
t a nonblo
king
ontrol relation.A nonblo
king
ontrol relation is not ne
essary to ensure deadlo
k-free exe-
ution, as the following example shows. Consider a program with methods � and�0, in di�erent boxes, de�ned as follows.�(in b : boolean) :: if b then �0(false)�0(in b : boolean) :: if b then �(false)There is a
y
le in relation � on these methods, whi
h means there is a possibilityfor a
y
li

all. But deadlo
k is not possible, sin
e a
all to �(false) makes nomethod
alls, and a
all to �(true)
alls �0(false), whi
h makes no method
alls.Suppose we have a
tions � and �0 in di�erent boxes, as follows.� :: �(false)�0 :: �0(false)Threads for these a
tions
annot
ause deadlo
k when run
on
urrently. In fa
t, theyexe
ute on disjoint sets of boxes, so neither blo
ks the other. From De�nition 4.38,if
ontrol relation T is nonblo
king, then (�; �0) 62 T, so threads for � and �0
annotbe exe
uted
on
urrently under any nonblo
king
ontrol relation.For some programs, the approa
h to avoiding deadlo
k using the graph BBex
ludes
on
urrent exe
ution of a
tions that
annot
ause deadlo
k. This is be
ausewe ignore semanti
 information | in the above example, the parameter valuespassed in method
alls | and instead use only synta
ti
 information about thepossible
alls between pro
edures. For this slight loss of pre
ision, the nonblo
king
ondition redu
es the task of determining if a
ontrol relation
an allow deadlo
kfrom a
he
k of all possible exe
utions to a stati

he
k of the program
ode.
151

4.10 Avoiding in�nite threadsAs we saw in Se
tion 4.4, for the program in Figure 4.2, there are no in�nite threadsif the program is run under a
ontrol relation T su
h that (D :a;X :in
) 62 T. Wenow de�ne a
ondition on
ontrol relations that ensures terminating threads.De�nition 4.40 For � 2 P, P0 � P, and T 2 CR,term(�;T) , h8 ": " 2 Z ^ " resp T ^ " is a full exe
ution for �: h# i : 0 � i < j"j : Root ("; i) = Root ("; 0) i <1iterm(P0;T) , h8 � : � 2 P0 : term(�;T) iIf term(A;T), then all threads in an exe
ution respe
ting T have a �nite numberof steps. As with De�nition 4.28, this de�nition does not say mu
h more than thatthe
ontrol relation and the program do not allow in�nite pro
edure
alls.Showing termination of sequential
ode is a problem outside the s
ope ofthis work. The language TCB is
ertainly
apable of expressing programs withnonterminating a
tions, and, sin
e the Halting Problem is insoluble (see [30℄), thereis no algorithm that
an dete
t su
h programs.The te
hniques used for proving termination for a sequential program (see[15℄, for example), generally require that, for ea
h a
tion, we
onstru
t a fun
tion(
alled a measure) that maps the program
on�guration to some well-founded set,and show that ea
h step taken by a thread for the a
tion de
reases the measure.Sin
e there is no in�nite de
reasing sequen
e of values from a well-founded set, thisensures that the ea
h thread is terminating.Proving termination of pro
edure
alls exe
uting
on
urrently with otherthreads is a more
ompli
ated problem than proving termination for a sequential152

program. Again, we do not address this issue further here. We assume that theprogram has been
erti�ed, by some means, to allow only terminating threads.4.11 Implementing thread fairnessConsider an implementation model for TCB programs, where ea
h box is imple-mented by a separate
omputing unit (a single pro
essor, or a pro
ess on a pro
es-sor). The thread-fairness
ondition says that if a step is enabled for one of theseunits, then that step is eventually taken. This
orresponds to the reasonable assump-tion that the units are suÆ
iently independent that ea
h takes a step from time totime, if it is able. The thread fairness
ondition is, for many implementations, guar-anteed by the nature of the implementation. We assume that the run-time systemof any implementation guarantees thread fairness. Again, we do not address thisissue in greater detail here.On the question of strong fairness for rendezvous pro
edure
alls, let " be athread fair exe
ution under the queue semanti
s. Between any pro
edure
all step in" and its
orresponding pro
edure, there are a �nite number of
on�gurations wherethe agent for the
all is idle. If there is no
orresponding pro
edure initializationstep in the exe
ution, then there is an in�nite pre�x where the agent is not idle.We
laim that exe
ution " is equivalent to an exe
ution where all pro
edure
all steps are removed, and the pro
edure initialization steps are repla
e with ren-dezvous pro
edure
all steps. In this
ase, no rendezvous
all step is enabled in anin�nite number of
on�gurations but never taken. So weak thread fairness, togetherwith the
all queues, provides an implementation of strong fairness for pro
edure
alls. We return to this transformation of queue semanti
s exe
ution to rendezvoussemanti
s exe
utions in Chapter 5. 153

4.12 SummaryWe have identi�ed
omplete exe
utions as the desirable exe
utions for a TCB pro-gram. Theorem 4.22 gives gives exa
tly the
onditions needed to ensure that anexe
ution be
omplete. It must be proper, deadlo
k-free,
ontain no in�nite threads,and be thread fair.We showed how
ontrol relations, and restri
tions on the program
ode guar-antee that proper exe
utions are deadlo
k-free, and there are no in�nite threads. Weargued that the run-time system
an ensure a proper exe
ution that is thread fair.Together, these give us a way to implement programs so that all exe
utions are
omplete.4.12.1 Avoiding run-time errorsAs noted in Se
tion 2.5, we do not handle run-time errors in the semanti
s we havepresented. In Se
tion 2.12 we show a way to extend the semanti
s to deal with thisissue. In this extension, there is a new phase, fail, and a run-time error at a box
auses it to enter this phase, and remain in it for the remainder of the exe
ution.An exe
ution with a run-time error is not
omplete. Avoiding run-time errors isan issue for the sequential language and the expression language, and we do notaddress it further here. We assume that programs are
erti�ed, by some means, toavoid run-time errors.

154

Chapter 5
Redu
tion
5.1 Introdu
tionThe last
hapter outlined suÆ
ient
onditions on the implementation of a TCBprogram that ensure that every exe
ution is
omplete. The
onditions in
lude re-stri
tions on
on
urren
y, expressed using
ontrol relations. In this
hapter we showa further restri
tion on
on
urren
y that ensures that for every
omplete exe
ution" there is a sequential exe
ution "0 su
h that " and "0 have
losely related behaviour.Again, we use a
ontrol relation to express the ne
essary restri
tion on
on
urren
y.With the results from the last
hapter, this result gives us a way to implementa TCB program su
h that the behaviours of all
on
urrent exe
utions of the system
an be dedu
ed by
onsidering just the sequential exe
utions.To show the existen
e of a sequential exe
ution for any
omplete " respe
tingthe
ontrol relation by showing a way to rearrange the steps of " so that the stepsfrom ea
h thread are
ontiguous. The rearrangement
onsists of a sequen
e of lo
altransformations, su
h as reversing the order of two
onse
utive steps, or repla
ing asequen
e of steps by a single step, or removing a step entirely.We de�ne a redu
tion relation between exe
utions, written ;. We show155

that a
omplete exe
ution " and its sequential rearrangement "0 formed by theabove pro
edure satisfy " ; "0. We also show, from the de�nition of ;, that thisguarantees that the behaviours of " and "0 are
losely related, and that we
andedu
e the behaviour of " from the behaviour of "0.5.1.1 Right-movers and left-movers in TCBIn the two-phase lo
king proto
ol, a single a
tion
onsists of a sequen
e of resour
ea
quisition steps, followed by a single update step, and a sequen
e of resour
e releasesteps. We saw that a
quisition steps
an be delayed, or \moved right", and releasesteps
an be advan
ed, or \moved left". Steps that a
quire resour
es are
all right-movers, and steps that release resour
es are
alled left-movers.In TCB, there are two type of resour
es
ontrolling the exe
ution of a thread.Before a thread
an exe
ute at a box it must �rst pla
e an entry in the
all queue,and then this
all must rea
h the front of the queue and be initialized by the box.The resour
es required for a thread to exe
ute at a box are the queue and the boxitself. A thread that has an entry in a
all queue holds the queue resour
e. This isa shared resour
e, sin
e there
an be multiple entries in the queue. A thread that isexe
uting at a box holds the box resour
e. This is an ex
lusive resour
e, sin
e onlyone thread at a time
an exe
ute at a box.We identify a single step in ea
h thread
alled the de
ision step. This is thestep that �rst puts a box exe
uting for the thread in phase a

ept or reje
t.On
e a box enters this phase, the out
ome of the thread, in terms of a

eptan
eor reje
tion, is determined. We use this step to mark the position in the exe
utionabout whi
h we
oales
e the steps of the thread. We
all the de
ision step an a

eptde
ision step if it is from an a

epting thread, and a reje
t de
ision step if it is froma reje
ting thread.Every step, other than the de
ision step, is
lassi�ed as a step that a
quires156

a resour
e, a step that releases a resour
e, or a step that
omputes lo
ally, neithera
quiring or releasing a resour
e. The �rst group are the right-movers, and the othertwo are the left-movers.In every thread all steps before the de
ision step are right-movers. Threadsdo not, however, have a two-phase stru
ture, sin
e there
an be right-movers |resour
e a
quisition steps | after the de
ision step. These are the steps for a totalmethod
all. A total-
all step a
quires a queue resour
e, and a t-method-init stepa
quires a box resour
e. Both these steps appear after the de
ision step in a thread.5.1.2 Transforming an exe
utionTo redu
e a thread to a sequen
e of
ontiguous steps we apply a sequen
e of lo
altransformations to an exe
ution. Ea
h transformation repla
es a �nite sequen
e ofsteps with a di�erent sequen
e, su
h that the repla
ement has the same startingand ending
on�guration. The transformations are swapping two adja
ent steps,repla
ing a sequen
e of steps with a single step, and removing a step.The swap transformations allow a right-mover to be swapped with a stepfrom a di�erent thread that is immediately to its right in the exe
ution. The right-mover moves right over the other step. Similarly, a left-mover moves left over a stepfrom a di�erent thread.We de�ne two new types of step: rendezvous
all steps, and steps representinga
omplete pro
edure
all. We show that show that a pair of
onse
utive steps
onsisting of a pro
edure
all step followed by a pro
edure initialization step forthe same thread
an be repla
ed by a single rendezvous
all step, and we showthat a
ontiguous sequen
e of steps from the same thread representing the
ompleteexe
ution of a pro
edure
all
an be repla
ed by a single step representing the whole
all. We
all the steps representing
omplete pro
edure
alls atomi
 steps. The157

atomi
 steps for an a
tion represent a
omplete exe
ution of a
all to that a
tion,that is, a
omplete thread. In redu
ing the exe
ution, our �nal aim is an exe
utionwhere all threads have been redu
ed to a single atomi
 step.The �nal type of transformation is the removal of an atomi
 step representinga reje
ting thread. We have de�ned TCB su
h that a reje
ting thread does not
hange the persistent state of a program, so this transformation always gives a validexe
ution.The material in this
hapter is organized as follows. Se
tion 5.2 de�nes therendezvous
all steps and the atomi
 steps. We de�ne some new sets of exe
utionsusing these steps. Se
tion 5.3
lassi�es the steps as de
ision steps, right-movers, andleft-movers. Se
tion 5.4 de�nes a redu
tion relation on exe
utions in terms of thesequen
e of a

ept de
ision steps. For exe
utions " and "0, we write "; "0 if "0 is theexe
ution formed from " by moving some right-movers right, and moving some leftmovers left. We show that there is a
lose
orresponden
e between the
on�gurationin " and "0 if " ; "0. Se
tion 5.6 de�nes the transformations des
ribed above, andshows that they
an all be applied an any exe
ution, with the ex
eption of swappingan atomi
 step for a total method
all with another step. Se
tion 5.7 de�nes a
ontrol relation that limits exe
utions to ones in whi
h we
an swap atomi
 totalmethod
alls, as required for the redu
tion. Se
tion 5.8 states the �rst redu
tiontheorem, and gives its proof.5.2 Compound stepsWe de�ne two new sets of steps that are used during redu
tion to repla
e sequen
esof steps. The �rst set of steps are those de�ned by the pro
edure
all rules in therendezvous semanti
s, that is rules p-a
tion-start-rdv, p-a
tion-start-rdv, guard-test-rdv, and total-
all-rdv. The se
ond set of steps are the atomi
 steps, whi
hrepresent the
omplete exe
ution of a pro
edure
all. We de�ne some new sets of158

Con�guration D E"[i℄ (a

ept; �0;
0; �0) (idle; �1;?)"[i+ 1℄ (wait; �0;
0; �0) (idle; �1; (m ;D ; ~v))"[i+ 2℄ (wait; �0;
0; �0) (a

ept; �01; (m ;D); �0)Table 5.1: Con�gurations for a method
all from D to Eexe
utions using these labels.5.2.1 Rendezvous
allsSuppose " 2 Z
ontains the following pair of steps for some i, D and E ."hii = total-
all(D ;E)"hi + 1i = t-method-init(E)Suppose further that Root ("; i) = Root ("; i + 1). From the de�nition of the Rootfun
tion, we
an dedu
e that D and E are in the same member of Sta
ks("[i + 2℄).Sin
e, in
on�guration "[i + 1℄, E is not in a
all sta
k, and D is the top elementin its sta
k, and, in "[i + 2℄, E is in a
all sta
k, Kt :("[i + 2℄):E = D . Thus thefront entry in E 's
all queue has sour
e D . Sin
e E 's
on�guration is well-formed,there is only one entry in the queue with D as
aller. So the entry added to thequeue by step "hii must be the front entry in the queue in "[i + 2℄. We thus havethat "[i℄:E :� = ?. From this, the de�nition of the rules, and the well-formedness ofthe
on�gurations, we
an dedu
e the values of the
on�gurations for D and E forthis segment of the exe
ution. The results are show in Table 5.1. In these equationswe write (m ;D) for the singleton list h(m ;D)i. We now note that
on�gurations"[i℄ and "[i + 2℄ satisfy the
onditions for rule (total-
all-rdv) from the rendezvoussemanti
s (using the
onvention for singleton lists mentioned above).159

The rule (total-
all-rdv) requires that E be quies
ent before the step. Also,a total-
all(D ;E) step followed by a t-method-init(E) step are steps from the samethread only if E is quies
ent before the �rst step.The above argument
an be repeated for the other three pro
edure
all rulesin the rendezvous semanti
s. Ea
h
orresponds to two steps from the queue seman-ti
s. We use De�nition 3.35 to de�ne the following relations.p-a
tion-start-rdvt-a
tion-start-rdvguard-test-rdvtotal-
all-rdvWe use De�nition 3.38 to de�ne the following labels, for D ;E 2 B.p-a
tion-start-rdv(D)t-a
tion-start-rdv(D)guard-test-rdv(D ;E)total-
all-rdv(D ;E)We de�ne the set of
on�gurations in whi
h a box is quies
ent.De�nition 5.1 For D 2 B,PC q(D) , fC j C 2 PC ^ qt(C:D) gWe now de�ne an relation equal to ea
h of the new relations. We use the abovesubsets of PC to restri
t the before
on�gurations for these relations to those wherethe agent is quies
ent.
160

Theorem 5.2h8 D: D 2 B: t-a
tion-start-rdv(D) =a
tion-start(D); t-a
tion-init(D) \ (PC q(D)� PC) ^p-a
tion-start-rdv(D) =a
tion-start(D);p-a
tion-init(D) \ (PC q(D)� PC)ih8 D ;E: D ;E 2 B: guard-test-rdv(D ;E) =guard-test(D ;E);p-method-init(E) \ (PC q(E)� PC) ^total-
all-rdv(D ;E) =total-
all(D ;E); t-method-init(E) \ (PC q(E)� PC)iProofUse the de�nitions of the appropriate rules.(End of proof)5.2.2 Atomi
 stepsWe de�ne atomi
 steps to represent the
omplete exe
ution of a
all to a pro
edure.First we de�ne an exe
ution that
ontains all the steps of a pro
edure
all, and nosteps from other threads.
161

De�nition 5.3 For " 2 Z , D 2 B, and p 2 Pro
s(D)," is a
ompa
t exe
ution of D :p , F (";D) ^ G(") ^Pro
("[1℄:D :
) = pwhereF (";D) , j"j <1 ^ qt(Start ("):D) ^ qt(Final ("):D) ^:qt("[1℄:D) ^ h8 i : 1 < i < j"j : "[i℄:D :� 6= idle iG(") , (Root("; 0) = Root ("; 1) _ Root ("; 0) = ?) ^Root ("; 1) 6= ? ^h8 i : 1 < i < j"j : Root ("; i) = Root ("; 1) iThe de�nition of a
ompa
t exe
ution has three parts. The �rst part, predi
ateF (";D), requires that " be �nite, that box D be quies
ent in the start and �nal
on�gurations, that it be nonquies
ent after the �rst step, and that it be nonidleafter the se
ond step. The intention is that the �rst step pla
es an entry in D 's
allqueue, making it nonquies
ent, and the se
ond step initializes this
all, making Dnonidle. Box D is nonidle until the �nal step, whi
h leaves it quies
ent. The segmentof " from step 1 to the end is a terminating full exe
ution of a pro
edure
all at D .The se
ond part, predi
ate G("), requires that every step in " have the same roota
tion, with the possible ex
eption of the �rst step. We allow the �rst step to be ana
tion-start step, and this has root a
tion ?. The third part, Pro
("[1℄:D :
) = p,requires that the �rst step of " be one that puts a
all for pro
edure p in D 's
allqueue. Together these
onditions limit an exe
ution to one that
ontains a singleexe
ution of a
all to D :p, and no steps from other threads.We now de�ne �ve types of atomi
 step. There are steps for an a

epting
all to an a
tion, or to a partial method, steps for reje
ting
alls to ea
h, and a stepfor a
all to a total method. 162

De�nition 5.4 For D :a 2 A,a

ept(D :a) , f (C;C0)j h9 ": " 2 Z ^ " is a
ompa
t exe
ution of D :a: Start(") = C ^ Final (") = C0 ^Last(") = a
tion-end(D)igreje
t(D :a) , f (C;C0)j h9 ": " 2 Z ^ " is a
ompa
t exe
ution of D :a: Start(") = C ^ Final (") = C0 ^Last(") = a
tion-reje
t(D)igFor D 2 B, E :m 2M, and D 6= E,pm-a

ept(D ;E :m) , f (C;C0)j h9 ": " 2 Z ^ " is a
ompa
t exe
ution of E :m: Start(") = C ^ Final (") = C0 ^Last(") = test-a

ept(D ;E)ig
163

pm-reje
t(D ;E :m) , f (C;C0)j h9 ": " 2 Z ^ " is a
ompa
t exe
ution of E :m: Start(") = C ^ Final (") = C0 ^Last(") = test-reje
t(D ;E)igtm(D ;E :m) , f (C;C0)j h9 ": " 2 Z ^ " is a
ompa
t exe
ution of E :m: Start(") = C ^ Final (") = C0 ^Last(") = total-return(D ;E)igWe de�nea

ept , h[� : � 2 A : a

ept(�) ireje
t , h[� : � 2 A : reje
t(�) ipm-a

ept , h[D ;E ;m: D 2 B ^ E :m 2M ^ D 6= E: pm-a

ept(D ;E :m)ipm-reje
t , h[D ;E ;m: D 2 B ^ E :m 2M ^ D 6= E: pm-reje
t(D ;E :m)i 164

tm , h[D ;E ;m: D 2 B ^ E :m 2M ^ D 6= E: tm(D ;E :m)iatomi
 , a

ept [reje
t [pm-a

ept [pm-reje
t [tmThe following theorems give some of the properties of the atomi
 steps. The �rsttheorem is for a

epting atomi
 steps.Theorem 5.5 LetQT (C;C0;D) , qt(C:D) ^ qt(C0:D)H (C;C0;D) , QT (C;C0;D) _ C:D = C0:Din h8 D ; a ;C;C0: D :a 2 A ^ (C;C0) 2 a

ept(D :a): QT (C;C0;D) ^ h8 D 0 : D 0 2 B : H (C;C0;D 0) iih8 D ;E ;m;C;C0: D 2 B ^ E :m 2Mp ^ D 6= E ^(C;C0) 2 pm-a

ept(D ;E :m): C:D:� = guard ^ C0:D :� = a

ept ^ C:D :
 = C0:D :
 ^QT (C;C0;E) ^ h8 D 0 : D 0 2 B ^ D 0 6= D : H (C;C0;D 0) ii
165

h8 D ;E ;m;C;C0: D 2 B ^ E :m 2Mt ^ D 6= E ^(C;C0) 2 tm(D ;E :m): C:D:� = a

ept ^ C0:D :� = a

ept ^ C:D :
 = C0:D :
 ^QT (C;C0;E) ^ h8 D 0 : D 0 2 B ^ D 0 6= D : H (C;C0;D 0) iiThe predi
ateQT (C;C0;D) holds i� D is quies
ent in bothC andC0. The predi
ateH (C;C0;D) holds if either D has the same
on�guration in C and C0, or if it isquies
ent in both
on�gurations. Note that if QT (C;C0;D), then we
an haveC:D :� 6= C0:D :�, but all other
omponents forD are the same in both
on�gurations.This predi
ate expresses the
ondition on the boxes that may be a�e
ted by theatomi
 step. That is, the
on�guration of a box
an be only be a�e
ted by anatomi
 step if it is quies
ent before the step. This is be
ause the step representsan uninterrupted exe
ution of the pro
edure. If a method
all is made during thispro
edure
all, it must be to a box that is quies
ent, sin
e a
all to a nonquies
entbox
annot exe
ute until another thread takes some steps.For all three a

epting atomi
 steps, the agent for the pro
edure
all (boxD for the a

ept
ase, box E for the method
alls) is quies
ent before and afterthe step. All boxes, ex
ept the sour
e, for the method
all steps, satisfy predi
ateH . The sour
e of a pm-a

ept step is in phase guard before the step, and phasea

ept after the step. The sour
e of a tm step is in phase a

ept before and afterthe step. In both
ases, the sour
e's
all queue is una�e
ted by the step.The theorem for reje
ting atomi
 steps is simpler. A reje
t step does not
hange the
on�guration, and a pm-reje
t step
hanges the
on�guration only of itssour
e.
166

Theorem 5.6h8 D ; a ;C;C0: D :a 2 A ^ (C;C0) 2 reje
t(D :a): qt(C:D) ^ C = C0ih8 D ;E ;m;C;C0: D 2 B ^ E :m 2Mp ^ D 6= E ^(C;C0) 2 pm-reje
t(D ;E :m): C:D:� = guard ^ C0:D :� = reje
t ^qt(C:E) ^ h8 D 0 : D 0 2 B ^ D 0 6= D : C:D 0 = C0:D 0 ii5.2.3 Exe
utions with
ompound stepsWe de�ne some sets new sets of exe
ution, using the rendezvous pro
edure
all stepsand the atomi
 steps.We de�ne groups of pro
edure
all rules, a

ording to the fun
tion of ea
hrule, queue
all, initialization, or rendezvous
all. We �rst de�ne some groups ofrules for pro
edure
all and initialization.De�nition 5.7queue , a
tion-start [guard-test [total-
allinit , p-a
tion-init [p-method-init [t-a
tion-init [t-method-initrdv , p-a
tion-start-rdv [t-a
tion-start-rdv [guard-test-rdv [total-
all-rdv167

The steps in queue are the queue semanti
s pro
edure
all steps; those in init are thequeue semanti
s pro
edure initialization steps; and those in rdv are the rendezvouspro
edure
all steps. Note that the steps in queue are the only steps with anun
onditional lo
us. The rules for the rdv steps have no un
onditional lo
i.We de�ne three sets of exe
utions. The �rst set
ontains exe
utions withany of the labels de�ned so far, the labels from the queue semanti
s, the rendezvous
alls, and the atomi
 steps. This is the most general type of exe
ution that we use.We
all these mixed exe
utions. The se
ond set
ontains mixed exe
utions with noqueue or init steps, so all pro
edure
all steps are rdv steps. We
all the rendezvousexe
utions. The �nal set
ontains exe
utions with only a

ept and reje
t steps, thatis, every step is the
omplete exe
ution of a thread. We
all these atomi
 exe
utions.First we de�ne some restri
ted sets of
on�gurations for these exe
utions.The �rst set
ontains only
on�gurations where every box is quies
ent. These arethe
on�gurations used for atomi
 exe
utions. The se
ond
ontains only
on�gura-tions where ea
h box is either quies
ent, or nonidle, and has a single entry in its
all queue. These are the
on�gurations used for the rendezvous semanti
s. Theyex
lude
on�gurations where there are more than one entry in the
all queue, or
on�gurations where a box is idle and has an entry in its
all queue.De�nition 5.8 If C 2 PC, thenPC q , fC j C 2 PC ^ qt(C) grv(C) , h8 D: D 2 B: qt(C:D) _ (jC:D :
j = 1 ^ C:D :� 6= idle)iPC r , fC j C 2 PC ^ rv(C) g168

De�nition 5.9 LetLab0 , f Lj L is a label generated by one of(p-a
tion-start-rdv)(t-a
tion-start-rdv)(guard-test-rdv)(total-
all-rdv)gLab1 , f D ;E ;m ; l: D ;E 2 B ^ D 6= E ^ m 2 PartMeths(E) ^l 2 fpm-a

ept;pm-reje
tg: l(D ;E :m)gLab2 , f D ;E ;m: D ;E 2 B ^ D 6= E ^ m 2 TotMeths(E): total-method(D ;E :m)gin Laba , f �; l : � 2 A ^ l 2 fa

ept; reje
tg : l(�) gLabm , Lab [Laba [Lab0 [Lab1 [Lab2Labr , f L j L 2 Labm ^ L 6� queue [init gZ a , Exe
utions(PC q;Laba)Zm , Exe
utions(PC ;Labm)Z r , Exe
utions(PC r;Labr)169

The �nal aim of redu
tion is to transform an exe
ution " 2 Z to an exe
ution inZ a. The intermediate exe
utions during redu
tion are from Zm and Z r. We extendthe de�nition of Root to
over the new labels.De�nition 5.10 For " 2 Zm, 0 � i < j"j, and "hii 2 Labm n Lab,Root ("; i) , � if "hii = a

ept(�) _"hii = reje
t(�)Root("[i℄;D) if "hii = guard-test-rdv(D ;E) _"hii = total-
all-rdv(D ;E) _"hii = pm-a

ept(D ; �) _"hii = pm-reje
t(D ; �) _"hii = tm(D ; �)Root("[i + 1℄;D) if "hii = p-a
tion-start-rdv(D) _"hii = t-a
tion-start-rdv(D)5.3 Step typesWe
an identify groups of the 25 labels in Labm
ontaining labels that play a similarpart during redu
tion. We have already seen the groups of resour
e aquisition steps,queue, init, and rdv. We de�ne some groups for the other steps.5.3.1 De
ision stepsWe de�ne the groups of de
ision steps. We show that every
omplete thread hasexa
tly one de
ision step. The de
ision step a
ts as the
entral step, the point aboutwhi
h we
oales
e the steps for the thread. We
hoose as a de
ision step the �rststep that leaves a box exe
uting for the thread in phase a

ept or reje
t. For atotal a
tion, this is the t-a
tion-init that initializes the a
tion. For a partial a
tion,this is a guard-a

ept or guard-reje
t step in the a
tion's box, or in one of the170

partial methods
alled as a test. A
ompound step is a de
ision step if it
ontainsa de
ision step. Thus the atomi
 steps for partial methods and for a
tions, and therendezvous
all t-a
tion-start-rdv are de
ision steps, We distinguish between a

eptand reje
t de
ision steps.De�nition 5.11ACC , a

ept [pm-a

ept [guard-a

ept [t-a
tion-init [t-a
tion-start-rdvREJ , reje
t [pm-reje
t [guard-reje
tDEC , ACC [REJFor any L 2 Labm, if L � ACC, we
all L an a

ept de
ision step; if L � REJ, we
all L a reje
t de
ision step; and if L � DEC, we
all L a de
ision step.We use the following de�nition to state the threorems about de
ision steps.De�nition 5.12 For " 2 Zm, and � 2 P," is a terminating exe
ution for � ," is a full exe
ution for � ^ :dl(") ^ j"j <1The following theorem shows that there is exa
tly one de
ision step in every thread.Theorem 5.13h8 �; ": � 2 A ^ " 2 Zm ^ " is a terminating exe
ution for �: h9! i : 0 � i < j"j : Root ("; i) = � ^ "hii � DEC ii 171

The next theorem shows that the type of the de
ision step
orresponds to the typeof the thread.Theorem 5.14h8 �; "; i: � 2 A ^ " 2 Zm ^ " is a terminating exe
ution for � ^Root("; i) = � ^ "hii � DEC: "hii � ACC � Last(") � a
tion-end [a

epti5.3.2 Right-movers and left-moversWe de�ne groups for the steps that hold resour
es and
ompute lo
ally, and for stepsthat end pro
edures, releasing resour
es.De�nition 5.15lo
al , lo
al-step [pro
-termend , a
tion-end [test-a

ept [total-return [a
tion-reje
t [test-reje
tEvery step in Labm, apart from tm, is in one of the groups DEC, queue, init, rdv,lo
al, or end. We de�ne two �nal groups, for the steps that move right duringredu
tion, and those that move left.De�nition 5.16RM , queue [init [rdvLM , lo
al [end [tm 172

For L 2 Labm, if L � RM, we
all L a right-mover, and if L � LM, we
all L aleft-mover.The groups DEC, RM, and LM partition Labm. We show later that the right-movers
an move right over any step from a di�erent thread. That is, in any exe
ution ",where j"j = 2, and the �rst step of " is a right-mover, and the last step is a stepfrom a di�erent thread, then there is a two-step exe
ution "0 whereStart("0) = Start(") ^ Final("0) = Final (") ^SSeq("0) = h "h1i ; "h0i iThat is, "0 has the same start and �nal
on�gurations as ", and it has the samesteps, but in the reverse order. Thus is any exe
ution where " appears, it
an berepla
ed with "0 with no
hange to the rest of the exe
ution. Similarly, we showthat the left-movers, apart from tm,
an move left in any exe
ution. To
ompletethe redu
tion for TCB, we need to move tm steps left. We dis
uss the requirementsfor this later.5.3.3 The format of a threadThe following theorems show some results about the steps before and after thede
ision step in a thread. The �rst shows the type of steps that may appear beforethe de
ision step.Theorem 5.17h8 "; i; k: " 2 Zm ^ 0 � i < k < j"j ^ "hki � DEC ^ Root ("; i) = Root ("; k): "hii � a
tion-start [guard-test [p-a
tion-init [p-method-init [p-a
tion-start-rdv [guard-test-rdvi 173

The se
ond theorem shows the type of steps that may appear after an a

ept de
isionstep.Theorem 5.18h8 "; i; k: " 2 Zm ^ 0 � k < i < j"j ^ "hki � ACC ^ Root("; i) = Root ("; k): "hii � total-
all [t-method-init [total-
all-rdv [a
tion-end [test-a

ept [total-return [lo
al [tmiThe third theorem show the type of steps that may appear after a reje
t de
isionstep.Theorem 5.19h8 "; i; k: " 2 Zm ^ 0 � k < i < j"j ^ "hki � REJ ^ Root ("; i) = Root ("; k): "hii � a
tion-reje
t [test-reje
tiWe note from these theorems that all steps before a DEC step are from RM. Allsteps after a REJ step are from LM. The steps after an ACC step are a mixture ofright-movers and left-movers.The �nal result in this se
tion shows that only
ertain steps
an
hange thepersistent state of the system, that is, the values of the box variables.
174

Theorem 5.20h8 L;C;C0;D: L 2 Labm ^ ChLiC0 ^L 6� a

ept [pm-a

ept [tm [lo
al-step [test-a

ept [total-return: PersistEq(C;C0)iFrom the above theorems, we note that the only steps that
hange the persistentstate during an exe
ution are a

ept de
ision steps, or steps that appear in a threadafter an a

ept de
ision step. The persistent state is not
hanged by a thread beforeits de
ision step, and it is not
hanged by any step from a reje
ting thread. Thiswas our intention in de�ning TCB, that the de
ision to a

ept or reje
t be madeprior to any
hange to the box variables, and that reje
ting threads leave the stateun
hanged.5.3.4 A strategy for redu
tionTheorem 5.18 shows that there are right-movers in a thread after an a

ept de
isionstep. The aim of redu
tion is to bring all the steps of the thread to the de
ision step,so the right-movers after the de
ision steps must be moved left. We a

omplish thisusing tm steps.Suppose there is a
all to method � during a thread's exe
ution. The �rsttwo steps for this
all are right-movers. First is a total-
all, and then a t-method-init. Suppose the remainder of the steps for the
all are all lo
al or end steps, sothere are no further method
alls during the exe
ution of the
all. We
an movethe total-
all step right, and the lo
al and end steps left, until they are
ontiguouswith the t-method-init step. This gives a
ompa
t exe
ution of the method, whi
h175

an be repla
ed with a tm step.Now suppose the
all to � is part of another method
all. Originally, thesteps for this
all
ontain two right-movers, the total-
all and t-method-init stepsfor the
all to �. After the transformation suggested above, these (along with anumber of left-movers) have been repla
ed with a single tm step, a left-mover.This is the strategy used to move a right-mover after an a

ept de
ision step:we move it right until it
an be repla
ed by a tm step, and then move this step left.For a total-
all step this gives a rather
ir
uitous route for redu
tion, a
ase of \onestep forward, two steps ba
k".5.4 Redu
tion relationsWe de�ne redu
tion relations on exe
utions. We de�ne a relation ; su
h that if" ; "0, then "0
an be formed from " by a sequen
e of steps moving a right-moverright or a left-mover left. This means that the sequen
e of de
ision steps is the samein " and "0, sin
e de
ision steps are neither right-movers nor left-movers. The aimis to redu
e an exe
ution to an atomi
 exe
ution by moving steps in this way.We show that if "; "0, then there is a relationship between the
on�gurationsof " and "0 that allows us to infer properties of " from properties of "0. If "0 is anatomi
 exe
ution, then " has behaviour \equivalent" to an atomi
 exe
ution.We de�ne this relation is stages. De�ne a relation �! that is suÆ
ient forredu
ing �nite exe
utions, and we show how to build ; from this so that we
anredu
e in�nite exe
utions as well.5.4.1 A

ept de
ision stepsFor the purposes of redu
tion, the basi
 stru
ture of an exe
ution is given by thesequen
e of a

ept de
ision steps. These are the de
ision steps from threads that
hange the state of the box variables. 176

De�nition 5.21 For " 2 Zm, and p an as
ending sequen
e
ontaining every i, su
hthat "hii � ACC,NumA(") , jpjAS ("; i) , "hp[i℄iAC ("; i) , "[p[i℄℄EB("; i) , "h0 : : : (p[0℄� 1)i if i = 0"h(p[i � 1℄ + 1) : : : (p[i℄� 1)i if 0 < i < NumA(")ASeq(") , h i : 0 � i < NumA(") : Root ("; p[i℄) iWe
all NumA(") the number of a

ept de
ision steps in ", AS ("; i) the ith a
-
ept de
ision step of ", AC ("; i) the ith a

ept
on�guration of ", EB("; i) the ithexe
ution blo
k of ", and ASeq(") the a

ept sequen
e of ".For an exe
ution ", NumA(") is the number of a

ept de
ision steps in ". IfNumA(") = 3, then "
an be partitioned into a

ept de
ision steps and exe
utionblo
ks in the following way.EB("; 0) ; AS ("; 0) ; EB("; 1) ; AS ("; 1) ; EB("; 2) ; AS ("; 2) ; "̂The exe
ution starts with the steps from exe
ution blo
k EB("; 0). The
on�gu-ration after these steps is a

ept
on�guration AC ("; 0). The next step the a

eptde
ision step AS ("; 0), followed by the steps from exe
ution blo
k EB("; 1). The
on�guration after these steps is a

ept
on�guration AC ("; 1). The exe
ution
on-tinues in this way. Note that the steps after the �nal a

ept de
ision step, given as"̂ above, are in no exe
ution blo
k.5.4.2 Similar exe
utionsWe de�ne a relation on exe
utions using the a

ept sequen
e.177

De�nition 5.22 For "; "0 2 Zm," := "0 , Start(") = Start("0) ^ ASeq(") = ASeq("0) ^(j"j =1 � j"0j =1) ^ (Final (") = Final("0) _ j"j =1)If " := "0, we say that " is similar to "0.The following are straightforward
onsequen
es of this de�nition.Theorem 5.23 := is an equivalen
e relation.Theorem 5.24h8 "0; "1; "01; "2: "0; "1; "01; "2 2 Zm ^ "0; "1; "2 is de�ned ^ "1 := "01: "0; "01; "2 is de�ned ^ "0; "1; "2 := "0; "01; "2iTheorem 5.24 says that similarity is a
ongruen
e relation, that is, for any exe
ution", repla
ing a �nite segment of " with a similar �nite exe
ution yields an exe
utionsimilar to ".A pair of exe
utions with no a

ept de
ision steps are similar i� they havethe same start and �nal
on�guration. This gives the following theorem, whi
h saysthat an exe
ution
onsisting of a single stuttering step that is not an a

ept de
isionstep is similar to an empty exe
ution with the same start
on�guration.Theorem 5.25h8 L;C: L 2 Labm ^ L 6� ACC ^ ChLiC: (hC;Ci ; hLi) := (hCi ; ?)i 178

Using Theorems 5.24 and 5.25, we
an remove a stuttering step from an exe
ution,and the resulting exe
ution is similar to the original.5.4.3 Swapping stepsIf two adja
ent steps in an exe
ution exe
ute at disjoint lo
ations, then the
hangesthey make to the
on�guration are independent, and so
an be taken in either order.The exe
ution with these steps in the opposite order is similar to the original.We de�ne
onditions for two steps to be swapped. If we are to swap twosteps, the steps must be from di�erent threads. We do not want to
hange the orderof steps from the same thread. For some steps, we
an tell from the labels whetherthey are from the same of di�erent threads. For example, if we have exe
ution ",whereSSeq(") = h lo
al-step(D) ; lo
al-step(D) ithen we
an show that these steps are from the same thread. If, on the other hand,we haveSSeq(") = h a
tion-start(D) ; total-
all(E ;D) ithen we
an show that these steps are from di�erent threads. Consider the following
ase. SSeq(") = h a
tion-start(D) ; p-a
tion-init(D) iThese steps may be from the same thread, and they may be from di�erent threads.If D 's
all queue is empty before the a
tion-start step, then the p-a
tion-init stepinitializes the a
tion
all pla
ed by the �rst step, and the steps are from the samethread. Otherwise, if D 's
all queue is nonempty before the a
tion-start step, then179

the p-a
tion-init step initializes a di�erent a
tion
all, and the steps are from dif-ferent threads.Thus we need to know the
ontext before we
an tell if a pair of steps
an beex
hanged. Be
ause of this, we dis
uss swapping steps in the
ontext of exe
utionswith two steps. We de�ne the following sets of two-step exe
utions, and we de�nethe swap of an exe
ution in one of these sets.De�nition 5.26 For L;L0 2 Labm,TwoStep(L;L0) , f " j " 2 Zm ^ j"j = 2 ^ Root ("; 0) 6= Root("; 1) gFor " 2 TwoStep(L;L0), Swap(") is an exe
ution "0 2 TwoStep(L0;L), whereStart(") = Start("0) ^ Final (") = Final("0)If no su
h "0 exists, then Swap(") = ?.The swap of a two-step exe
ution is a two-step exe
ution with the same steps, inreverse order, and the same start and �nal
on�guration. The steps of a two-stepexe
ution "
an be swapped i� Swap(") 6= ?. We de�ne a relation on labels that istrue only if the labels
an always be swapped.De�nition 5.27Lx L0 , h8 " : " 2 TwoStep(L;L0) : Swap(") 6= ? iIf Lx L0, then steps L and L0
an be swapped in any exe
ution where L is followedby L0, and the steps are for di�erent threads. We have the following theorem.
180

Theorem 5.28h8 L;L0; ": L;L0 2 Labm ^ Lx L0 ^ (L 6� ACC _ L0 6� ACC) ^" 2 TwoStep(L;L0): " := Swap(")iThe theorem says that if steps L and L0 are swappable, that is Lx L0, and at leastone of them is not an a

ept de
ision step, then any exe
ution " with these twosteps is similar to Swap(").5.4.4 Redu
e-equivalen
eSimilarity between exe
utions plays an important part in redu
tion. As we rear-range an exe
ution, we do not
hange the a

ept sequen
e, the start
on�guration,or the �nal
on�guration (if any). So we only redu
e an exe
ution to similar exe
u-tions. These
onditions alone are insuÆ
ient for in�nite exe
utions, as the followingexample demonstrates.Consider a program
ontaining two total a
tions, � and �0. A
tion � non-deterministi
ally assigns 1 or 2 to x, and a
tion �0 in
rements y. In the initial
on�guration, x = 0 and y = 0. Consider now two exe
utions of this program. Exe-
ution " is a sequential exe
ution that
onsists of a single thread for � that assigns1 to x, followed by an in�nite sequen
e of threads for �0 that su

essively in
rementy. Exe
ution "0 has the same form, ex
ept that the initial thread assigns 2 to x.For these exe
utions we have " := "0, but all
on�gurations, ex
ept the start, aredi�erent between the exe
utions. We do not want " to be a redu
tion of "0, or vi
eversa. We de�ne a relation that distinguishes these two exe
utions.181

De�nition 5.29 For "; "0 2 Zm,"$ "0 , " := "0 ^ h8 i : 0 � i < NumA(") : AC ("; i) = AC ("0; i) iIf "$ "0, we say that " and "0 are redu
e-equivalent.The following theorems summarize the important properties of redu
e-equivalen
e.Theorem 5.30 $ is an equivalen
e relation.Theorem 5.31h8 "0; "1; "01; "2: "0; "1; "01; "2 2 Zm ^ "0; "1; "2 is de�ned ^ "1 $ "01: "0; "01; "2 is de�ned ^ "0; "1; "2 $ "0; "01; "2iTheorem 5.31 means that redu
e-equivalen
e is a
ongruen
e, as with similarity.The following theorem shows that in the
ase where at least one of theexe
utions has no a

ept de
ision steps (and thus no a

ept
on�gurations), thensimilarity and redu
e-equivalen
e are the same relation.Theorem 5.32h8 "; "0: "; "0 2 Zm ^ (NumA(") = 0 _ NumA("0) = 0): "$ "0 � " := "0iProofImmediate from the de�nitions.(End of proof) 182

From Theorems 5.32 and 5.28 we get the following theorem, whi
h says that whenit is possible to swap two steps, neither of whi
h is an a

ept de
ision step, theswapped exe
ution is redu
e-equivalent to the original.Theorem 5.33h8 L;L0; ": L;L0 2 Labm ^ Lx L0 ^ L 6� ACC ^ L0 6� ACC ^" 2 TwoStep(L;L0): "$ Swap(")i5.4.5 Finite redu
tionRedu
e-equivalen
e gives is a strong relation on exe
utions. Clearly two exe
utionsthat are redu
e-equivalent have very similar behaviours. But redu
e-equivalen
e istoo strong a relation for redu
tion.Consider " 2 Complete(Z), and suppose "0 2 Z a is an atomi
 redu
tion of ".We have " := "0. Consider a

ept de
ision steps AS ("; i) and AS ("0; i). The formeris a t-a
tion-init or guard-a

ept step, while the latter is a a

ept step.A

ept
on�guration AC ("0; i) is quies
ent, so there are no a
tive threads.A

ept
on�guration AC ("; i), on the other hand, shows the e�e
t of partly
om-pleted threads. Let AS("; k) be the a

ept de
ision step for a thread that is a
tivein AC ("; i). If k < i, then steps from this thread appear after AC ("; i). To makea
ompa
t exe
ution of this thread, some of its steps must move left over AS ("; i).Similarly, if k � i, then some of the thread's steps must move right over AS ("; i).We de�ne some relations on exe
utions that allow su
h a swap below. This relationallows a swap where a right-mover moves right over an a

ept de
ision step, or aleft-mover moves left. 183

Consider a pair of steps Lr and La, where Lr is a right-mover, and La is ana

ept de
ision step. Suppose we show Lr x La, that is, that Lr
an move rightover La. Choose " 2 TwoStep(Lr;La), and let "0 = Swap("). By Theorem 5.28, wehave " := "0. There is only one a

ept
on�guration in ea
h exe
ution. We haveAC ("; 0) = "[1℄AC ("0; 0) = "0[0℄Sin
e "[0℄ = "0[0℄, we get (AC ("0; 0);AC ("; 0)) 2 Lr. That is, the a

ept
on�g-uration in " is not equal to that in "0, but it is rea
hable from it by a single Lrstep. Con�guration AC ("; 0) shows the e�e
t of exe
uting Lr, and
on�gurationAC ("0; 0) does not. So in "0, the right-mover has been delayed until after the de
isionstep. Consider now a pair of steps Ll and La, where Ll is a left-mover, and La isan a

ept de
ision step, and La x Ll. If " 2 TwoStep(La;Ll), and "0 = Swap("),then we get (AC ("; 0);AC ("0; 0)) 2 Ll. In this
ase, the left-mover is moved left ofthe a

ept
on�guration, so the a

ept
on�guration is " does not show the e�e
tof Ll, whereas that in "0 does. We de�ne relations on exe
utions using RM andLM. By de�nition, (C;C0) 2 RM, means that there is a right-mover L, su
h thatChLiC0, and similarly for (C;C0) 2 LM.

184

De�nition 5.34 For "; "0 2 Zm,"!R "0 , " := "0 ^h8 i: 0 � i < NumA("): AC ("; i) = AC ("0; i) _ (AC ("0; i) ; AC ("; i)) 2 RMi"!L "0 , " := "0 ^h8 i: 0 � i < NumA("): AC ("; i) = AC ("0; i) _ (AC ("; i) ; AC ("0; i)) 2 LMiIf " !R "0, we say that " right redu
es to "0, and if " !L "0, we say that " leftredu
es to "0.Note the asymmetry in these de�nitions. For !R, we require that an a

ept
on�g-uration in the original exe
ution be rea
hable from the
orresponding a

ept
on-�guration in the redu
ed exe
ution by zero or one RM steps, whereas for !L, werequire that an a

ept
on�guration in the redu
ed exe
ution be rea
hable fromthe
orresponding a

ept
on�guration in the original exe
ution by zero or one LMsteps. This
aptures the intention that redu
tion involves delaying RM steps, andadvan
ing LM steps.The following theorems give some properties of these relations.Theorem 5.35 !R and !L are re
exive.
185

Theorem 5.36h8 "; "0: "; "0 2 Zm: ("$ "0 � "!R "0 ^ "!L "0) ^ ("$ "0 � "!R "0 ^ "0 !R ")iRedu
tion, in general requires a sequen
e of right- and left-redu
e steps. This
anbe expressed with the following relation.De�nition 5.37�! , (!R [!L)�If " �! "0, then we say that " �nitely redu
es to "0.Note that �! is re
exive and transitive by
onstru
tion.5.4.6 The redu
tion relationRelation �! is suÆ
ient for redu
ing �nite exe
utions, but it is not suÆ
ient forin�nite exe
utions, as the following example demonstrates.Consider a program with total a
tions � and �0, where � and �0 exe
ute ondisjoint sets of boxes. Clearly, ea
h step of a thread for �
ommutes with a stepfrom �0. Assume, for simpli
ity, every thread for �
an be represented by two steps,an a

ept de
ision step, L0, and a left-mover L1. Assume we have an exe
ution "where every thread for � has been redu
ed to L0 and L1, and every thread for �0has been redu
ed to L0 = a

ept(�0). Suppose the sequen
e of steps in " has the
186

following form.L0 ; L0 ; L1 ;L0 ; L0 ; L0 ; L1 ;L0 ; L0 ; L0 ; L0 ; L1 ;: : :That is, there is one L0 step between the �rst pair of L0 and L1 steps, two L0steps between the se
ond pair, and so on, with the number of intervening L0 stepsin
reasing by one for ea
h su

essive pair of L0 and L1 steps. Sin
e a
tions � and�0 a�e
t disjoint parts of the state spa
e, we expe
t to be able to redu
e " to thesequential exe
ution "0, whi
h has the following sequen
e of steps.L0 ; L1 ; L0 ;L0 ; L1 ; L0 ; L0 ;L0 ; L1 ; L0 ; L0 ; L0 ;: : :Here the L1 steps have been moved left so they are adja
ent to the L0 steps. Movingleft over n a

ept steps takes n appli
ations of !L. De�nition 5.34 allows a left-mover to move left over ea
h a

ept step for a single appli
ation of !L. But it onlyallows a given left-mover to move over one a

ept step for ea
h appli
ation. With nappli
ations of !L, we
an make at most the �rst n threads for � sequential. Sin
ethe sequen
e is in�nite,h8 n : n > 0 : :("!nL "0) i
187

and thus, sin
e there are no right-movers in ",:(" �! "0)We now de�ne a relation ;, where " ; "0 for the above example. In theabove example, n appli
ations of !L are enough to redu
e the �rst n
alls to �.After n appli
ations, the steps in the �rst part of the exe
ution are not moved againfor the remainder of the redu
tion. We
an generate a sequen
e of exe
utions"0 ; "1 ; "1 ; : : :where " �! "i, for i � 0, and "i is sequential up to at least the thread
ontainingthe ith a

ept de
ision step. Note that "i and "j , for 0 � i � j, share a
ommonsequential pre�x,
ontaining at least i a

ept de
ision steps.We
an regard the "i's as a sequen
e of approximations to a sequential re-du
tion for ". Let "0 be the limit of this sequen
e, that is, an exe
ution where thesequential exe
ution in
ludes all the a

ept de
ision steps. We de�ne a relation ;below su
h that "; "0 in this
ase.We �rst de�ne a relation to express the idea of redu
ing a pre�x of an exe-
ution.De�nition 5.38 For "; "0 2 Zm, and j"0j <1," init! "0 , h9 "00 : "00 2 Zm : " �! "0; "00 iIf " init! "0, we say " initially redu
es to "0.If " init! "0, then "
an be �nitely redu
ed to an exe
ution that starts with the�nite exe
ution "0. We de�ne a sequen
e �nite approximations to a redu
tion of anexe
ution. 188

De�nition 5.39 For " 2 Zm, and E = h i : 0 � i : "i i a sequen
e over Zm,where j"ij <1 for all i,E is a
onvergent redu
tion sequen
e for " ,h8 i: 0 � i: "i v "i+1 ^ " init! "i ^(NumA("i) < NumA("))h9 j : i < j : NumA("i) < NumA("j) i)iWe abbreviate \
onvergent redu
tion sequen
e" to CRS.The �nal
onjun
t in the term in De�nition 5.39 is a stronger
ondition than justrequiring that the exe
utions in a CRS be in
reasing in length. To see why this isne
essary,
onsider "i su
h that NumA("i) < NumA("), where for some a
tion �,reje
t(�) is enabled in Final("i). Let "0 be an exe
ution with a single reje
t(�) step,If we de�ne"0 , (h Final("i) ; Final("i) i ; h reje
t(�) i)"i+1 , "i; "0"i+2 , "i+1; "0...This gives a sequen
e of exe
utions that satis�es all the other
onditions of De�ni-tion 5.39, and is in
reasing in length. All exe
utions in this sequen
e from "i havethe same a

ept sequen
e as "i, whi
h is a proper pre�x of "'s a

ept sequen
e. Thisis not a sequen
e that approximates a redu
tion of ".The set Zm is a
omplete partial order under v, so every
hain has a limit189

in Zm. We use this to de�ne the redu
tion relation ;.De�nition 5.40 For "; "0 2 Zm,"; "0 , h9 E : E is a CRS for " : "0 = ht i : 0 � i : E [i℄ i iIf "; "0, we say " redu
es to "0.The following result shows that ; is an extension of �!.Theorem 5.41�! $;ProofTo show �! �;, we note that for any " and "0 su
h that " �! "0, the sequen
eh i : 0 � i : "0h0 : : : ii i is a CRS for "0. To show �! 6=;, we refer to the exampleabove, where we showed " and "0 su
h that :(" �! "0). The �nite sequential pre�xesof the exe
utions "i form a CRS for "0, so we have "; "0.(End of proof)5.5 Relating
on
urrent and sequential
on�gurationsBefore we pro
eed with the redu
tion rules, we �rst dis
uss what we
an inferabout
on�gurations in " from the properties of a sequential exe
ution "0 su
h that" ; "0. An important
on
ept for stating these theorems is that of a thread beingun
ommitted.
190

De�nition 5.42 For C 2 PC, � 2 A, and A0 � A,Un
ommitted (C; �) , h8 D: D 2 B ^ Root(C;D) = �: C:D:� 2 fguard;pwait;reje
tgiUn
ommitted (C;A0) , h8 � : � 2 A0 : Un
ommitted (C; �) iThe idea of this de�nition is that Un
ommitted (C; �) holds in
on�guration C ifthere is no thread for � in C that has taken an a

ept de
ision step and is the
odefrom the body of a pro
edure. The a
tion of de
iding to update the system stateis
alled \
ommitting" in transa
tion pro
essing parlan
e, when
e the name of thisfun
tion. If Un
ommitted (C; �), then either there is no thread a
tive for � in C,or a thread that is a
tive for � has yet to take a de
ision step, or it has de
ided toreje
t. If Un
ommitted (C;A), then no a
tion is the program has
ommitted. Thisis
learly the
ase if qt(C).If Un
ommitted (C; �), then to rea
h a
on�guration where this does not holdrequires an a

ept de
ision step, as the following lemma shows.Lemma 5.43h8 "; �: " 2 Zm ^ � 2 A ^ j"j <1 ^ NumA(") = 0 ^: Un
ommitted (Start("); �)) Un
ommitted (Final ("); �)iThe theorem below gives us the �rst
orresponden
e between
on�gurations in anexe
ution and its redu
tion. It says that if any exe
ution blo
k in the originalexe
ution
ontains a
on�guration where no a
tion is
ommitted, then the valuesfor all the box variables in that
on�guration is the same as it is in the
orresponding191

a

ept
on�guration of the redu
ed exe
ution.Theorem 5.44h8 "; "0; i; k: "; "0 2 Zm ^ "; "0 ^ 0 � i < NumA(") ^0 � k < jEB("; i)j ^ Un
ommitted (EB("; i)[k℄ ; A): PersistEq(EB("; i)[k℄ ; AC ("0; i))iTheorem 5.44 shows a
lose
orresponden
e between the
on�gurations in the orig-inal exe
ution and those in the redu
ed exe
ution. Note, in parti
ular, that if theredu
ed exe
ution "0 is atomi
, then AC ("0; i) is a quies
ent
on�guration prior tothe a

epting thread i. From this, we get the following. Suppose we show that \q isinvariant" holds for any sequential exe
ution of a program. That is, in any sequen-tial exe
ution, all the quies
ent
on�gurations between threads satisfy predi
ate q.For any i, su
h 0 � i � j"j, and Un
ommitted ("[i℄;A), we
an
on
lude that q holdsin "[i℄. One way to use this result is to exe
ute the
on
urrent program in a way thatensures that from time to time there is a quies
ent
on�guration. In a quies
ent
on�guration "[i℄, Un
ommitted ("[i℄;A) holds trivially. If we examine the quies
ent
on�gurations in the
on
urrent exe
ution, they satisfy all the invarian
e propertiesof the sequential exe
utions.We
an also apply this result to
ertain progress properties. Suppose weshow that in any sequential exe
ution of a program that \q is unavoidable", bywhi
h we mean that q holds at some
on�guration in the exe
ution, and, on
e qholds, it
ontinues to hold for the remainder of the exe
ution. If q is unavoidable,then in any exe
ution there is a �nite pre�x where q does not hold, and a nonemptysuÆx where q holds in every
on�guration. Using Theorem 5.44, we
laim that if a192

on
urrent exe
ution
ontains an in�nite number of quies
ent
on�gurations, thenfor all of these, ex
ept some �nite pre�x, q holds.This is related to Valiant's suggestion for Bulk Syn
hronous Pro
essing. In[32℄, he suggests a model for
on
urrent exe
ution where pro
esses (threads, in ourterms) are run asyn
hronously for the most part (mu
h as we model the exe
ution ofTCB programs), but, from time to time, the system is syn
hronized, meaning thatall partly
ompleted pro
esses are allowed to
omplete exe
ution, without startingany new pro
esses, until the system has rea
hed a quies
ent
on�guration.Theorem 5.44 gives a way of getting a
onsistent view of the whole state spa
eof a program. For many purposes this is too mu
h. Imagine a system with manyboxes, and a predi
ate q, whose value depends a variables in just a small subset ofthe boxes. If we wish to test if q holds at a point in a
on
urrent exe
ution, we mustensure that it is tested in a
onsistent
on�guration, that is, one that does not showthe e�e
ts of a partly
ompleted thread. One way to do this is to use the aboveobservations, and to for
e the exe
ution to be
ome quies
ent from time to time, andto test if q holds in ea
h quies
ent
on�guration. This means that all threads, eventhose that
annot possibly a�e
t the value of q, must be ended before we
an testfor q. It seems that is should be enough to test for q in a
on�guration in whi
hno thread that
an possibly
hange the value of q is
ommitted. This is indeed the
ase, as the next theorem shows.The theorem
on
erns expressions de�ned a
ross several boxes. We extendthe expression evaluation operator to evaluate these expressions in a program
on-�guration. For C 2 PC , we de�ne[[D :x ℄℄C , [[x℄℄(C:D :�)For operators and
onstants, [[e℄℄C is de�ned similarly to [[e℄℄�.Theorem 5.45 If e is an expression in the box variables, and A0 is the set of a
tions193

that
all pro
edures that
an
hange the value of e, thenh8 "; "0; i; k: "; "0 2 Zm ^ "; "0 ^ 0 � i < NumA(") ^0 � k < jEB("; i)j ^ Un
ommitted (EB("; i)[k℄ ; A0): [[e℄℄(EB("; i)[k℄) = [[e℄℄(AC ("0; i))iThis theorem says that if "; "0, and there is a
on�guration in " where no a
tionthat
an
hange the value of e is
ommitted, then the value of e in this
on�gurationis the same as its value in the
orreponding a

ept
on�guration in "0.Theorem 5.45 suggests the following way of
onstru
ting programs that guar-antee that a predi
ate that is unavoidable in any sequential exe
ution is eventuallyobserved to hold in a
on
urrent exe
ution. Supposeq = D :x > 0 ^ E :y = 3and suppose we show that in any sequential exe
ution, q is unavoidable. We amendthe program is by adding pro
edures to D and E , as shown in Figure 5.1. We showonly the pro
edures added to the program. Here D :testq is a partial a
tion with asingle alternative. The
ondition
he
ks if the part of q lo
al to D holds, and thetest is a
all to E :testq . This latter pro
edure a

epts only if the part of q lo
al toE holds. A
tion D :testq a

epts i� q holds.If we run the amended program under a
ontrol relation that does not allowD :testq to run
on
urrently with any a
tion that
an
hange the value of q, then ifD :testq a

epts, we know that it has done so in a
on�guration in whi
h none ofthese other a
tions is a
tive.We
laim that the property \q is unavoidable" for the sequential exe
utionsof the original program
orresponds to the property \eventually D :testq a

epts"194

box D ...a
tion testq :: x > 0 & E :testq �! (� � � � �)...endbox E ...method testq :: y = 3 �! (� � � � �)...end Figure 5.1: Adding a probe to a programin any
on
urrent exe
ution of the augmented program that respe
ts the
ontrolrelation.We
all an a
tion su
h as D :testq a probe. Obviously, the format we usedabove works only for predi
ates that
an be expressed as
onjun
tions of lo
al terms.We
an evaluate a general expression q in the following way. Suppose D0,D1, : : : , Dn�1 are the boxes with variables in q. We write an a
tion D0:testq . Thishas a
all to D1:testq as the test. The parameters for this
all are the values of D0'svariables from q. Method D1:testq passes these parameters on to method D2:testq ,along with the values for D1's variables in q. Continuing in this way, the values forall variables in q are passed to Dn�1:testq , whi
h
an evaluate q.5.6 Redu
tion rulesWe redu
e an exe
ution by performing a sequen
e of lo
al transformations, ea
h ofwhi
h is one of the following.� remove a reje
t step 195

� repla
e adja
ent queue and init steps with a rdv step� repla
e a
ompa
t exe
ution of a pro
edure with an atomi
 step� move a right-mover right� move a left-mover leftWe prove a set of theorems that give rules for applying applying these transforma-tions. Ea
h theorem gives
onditions on �nite exe
ution " when one of the abovetransformations
an be applied to give "0 su
h that " �! "0. First we have the rulefor removing reje
t steps.Theorem 5.46 (Reje
t removal rule)h8 C; �: C 2 PC ^ � 2 A ^ (C;C) 2 reje
t(�): (hC ; C i ; h reje
t(�) i) �! (hC i ; ?)iProofUse Theorems 5.25 and 5.32.(End of proof)The next theorem shows the four
ases when a rdv step
an repla
e a queue and aninit step. To state these theorems, we de�ne a set of two-step exe
utions, TS (L;L0),for every pair of labels L;L0 2 Labm. This set di�ers from TwoStep(L;L0) in thatit requires that the steps be from the same thread.
196

Theorem 5.47 (Rendezvous rule) For L;L0 2 Labm, letTS (L;L0) , f "j " 2 Zm ^ j"j = 2 ^ Root ("; 0) = Root ("; 1) ^SSeq(") = hL;L0igin h8 D ; ": D 2 B ^ " 2 TS (a
tion-start(D) ; p-a
tion-init(D)): " �! (h Start(") ; Final (") i ; h p-a
tion-start-rdv(D) i)ih8 D ; ": D 2 B ^ " 2 TS (a
tion-start(D) ; t-a
tion-init(D)): " �! (h Start(") ; Final (") i ; h t-a
tion-start-rdv(D) i)ih8 D ;E ; ": D ;E 2 B ^ D 6= E ^" 2 TS (guard-test(D ;E) ; p-method-init(E)): " �! (h Start(") ; Final (") i ; h guard-test-rdv(D ;E) i)i
197

h8 D ;E ; ": D ;E 2 B ^ D 6= E ^" 2 TS (total-
all(D ;E) ; t-method-init(E)): " �! (h Start(") ; Final (") i ; h total-
all-rdv(D ;E) i)iThe next theorem
overs the �ve
ases for repla
ing a
ompa
t exe
ution of a threadwith an atomi
 step.Theorem 5.48 (Atomi
 rule)h8 ";D ; a: " 2 Zm ^ D 2 B ^ a 2 TotA
ts(D) ^" is a
ompa
t exe
ution for D :a ^ Last(") = a
tion-end(D): " �! (h Start(") ; Final (") i ; h a

ept(D :a) i)ih8 ";D ; a: " 2 Zm ^ D 2 B ^ a 2 TotA
ts(D) ^" is a
ompa
t exe
ution for D :a ^ Last(") = a
tion-reje
t(D): " �! (h Start(") ; Final (") i ; h reje
t(D :a) i)ih8 ";D ;E ;m: " 2 Zm ^ D ;E 2 B ^ D 6= E ^ m 2 PartMeths(E) ^" is a
ompa
t exe
ution for E :m ^ Last(") = test-a

ept(D ;E): " �! (h Start(") ; Final (") i ; h pm-a

ept(D ;E :m) i)i 198

h8 "; "0;D ;E ;m: " 2 Zm ^ D ;E 2 B ^ D 6= E ^ m 2 PartMeths(E) ^" is a
ompa
t exe
ution for E :m ^Last(") = test-reje
t(D ;E): " �! (h Start(") ; Final (") i ; h pm-reje
t(D ;E :m) i)ih8 "; "0;D ;E ;m: " 2 Zm ^ D ;E 2 B ^ D 6= E ^ m 2 TotMeths(E) ^" is a
ompa
t exe
ution for E :m ^Last(") = total-return(D ;E): " �! (h Start(") ; Final (") i ; h tm(D ;E :m) i)iNext we have the rule for right-movers. Any right-mover
an move right, with aslight restri
tion on queue steps. Note that ? is not an exe
ution, so there is noexe
ution " su
h that " �! ?. Thus, the term " �! Swap(") implies Swap(") 6= ?.Theorem 5.49 (Right-mover rule)h8 L;L0; ": L;L0 2 Labm ^ L � RM ^ " 2 TwoStep(L;L0) ^(L � queue) ULo
i("h0i) disj ULo
i("h1i)): " �! Swap(")iThe �nal theorem in this se
tion gives the rule for moving left-movers left. It appliesonly to lo
al and end steps, and not to tm steps.199

Theorem 5.50 (Left-mover rule)h8 L;L0; ": L;L0 2 Labm ^ L0 � lo
al[end ^ " 2 TwoStep(L;L0): " �! Swap(")iWe now have �ve redu
tion rules: the reje
t removal rule, the rendezvous rule, theatomi
 rule, the right-mover rule, and the left-mover rule. All these rules apply inany exe
ution. So, for example, in any exe
ution, if there is a lo
al step following aqueue step from a di�erent thread, the lo
al step
an be moved left. Showing thatthis is possible involves showing that the steps
ommute, that is, the steps have thesame e�e
t on the
on�guration, regardless of the order in whi
h they are taken.5.7 Redu
tion rule for tm stepsSuppose " is a
omplete exe
ution in whi
h no thread
alls a total method. Inthis
ase, ea
h thread has no right-movers after the de
ision step, only lo
al andend steps. Thus ea
h thread obeys the two-phase lo
king proto
ol. As we haveseen, if all threads are two-phase, then we
an serialize any exe
ution. Threadsfor TCB are not two-phase be
ause of the total method
alls. In this se
tion, we
onsider redu
tion rules for tm steps. We show the following rule for tm steps inany exe
ution.
200

Theorem 5.51h8 L;L0; ": L;L0 2 Labm ^ L 6� atomi
 [end ^ L0 � tm ^" 2 TwoStep(L;L0): " �! Swap(")iThat is, in any exe
ution a tm step
an move left over any step that is not an atomi
step, or an end step. If we organize the redu
tion
arefully, we never need to movetm steps left over end steps. We
onsider here how to ensure that tm steps moveleft over atomi
 steps.Consider the program in Figure 1.5. We saw that if there are two
alls toX :add from di�erent threads, then these
alls
an happen in either order, and the�nal result is the same. The same is not true for a
all to X :add and a
all toX :mult . In this
ase the �nal value of X :x depends on the order in whi
h the
alls are made. Using the
ommutativity of X :add with itself, we
an redu
e any
on
urrent exe
ution of threads for D :aa and E :a to a sequential exe
ution. Forthe
on
urrent exe
ution of D :aa and E :b where the
all to X :mult from E :b fallsbetween the two
alls to X :add from D :aa rea
hes a �nal
on�guration that is notrea
hable by exe
uting the two a
tions sequentially in either order.Sin
e we
annot redu
e an exe
ution
ontaining
on
urrent threads, one ofwhi
h
alls X :mult , and the other of whi
h
alls X :add , we ex
lude su
h exe
utionsfrom
onsideration. As with deadlo
k, and termination, we de�ne a
ontrol relationto ex
lude the problemati
 exe
utions.The
ontrol relation we de�ne here,
alled weak
ompatibility, and written�, is de�ned so that if � � �0, then there is suÆ
ient
ommutativity between thepro
edures that may be
alled during a thread for � and pro
edures that may be201

alled during a thread for �0.To de
ide what
ommutativity on pro
edures is suÆ
ient for the redu
tion,we must �rst de
ide how to handle reje
ting threads. The reje
t removal rule allowsus to remove a reje
t step from an exe
ution. All reje
ting threads are two-phase,with queue and init steps before the de
ision step, and end steps after it. Be
auseof the two-phase stru
ture, we
an redu
e a reje
ting thread to an atomi
 step inany exe
ution. We
an then apply the reje
t removal rule to remove the thread fromthe exe
ution.If we apply this pro
edure to every reje
ting thread in the exe
ution, wenever have to move a tm step over a reje
ting atomi
 step. This is the approa
h wetake in this
hapter. Essentially, we are pretending that if a thread reje
ts, then we
an pretend that the thread was never exe
uted at all. This is the interpretation ofreje
ting threads given in [25℄, where a reje
ting thread is represented by the emptyrelation, whi
h
orresponds to the empty set of exe
utions.In Chapter 6 we
onsider the issue of fairness between a
tion exe
utions,whi
h
on
erns ensuring that threads for an a
tion are started \often enough" duringan exe
ution to ensure progress properties. We show that removing some or all of thereje
ted threads from an exe
ution
an result in an exe
ution that meets a weakerfairness
ondition than the original. Thus, from the standpoint of fairness, reje
tedthreads are
omputationally signi�
ant. We show in that
hapter how to redu
e anexe
ution so that every thread, a

epting and reje
ting, from the original exe
utionappears in the redu
ed exe
ution, and thus the redu
ed exe
ution meets the samefairness
ondition as the original exe
ution.There is a trade-o� involved here, as there usually is. To get the strongerredu
tion that preserves fairness, we need stronger
ommutativity
onditions thanwe do for the redu
tion than we present in this
hapter. The stronger
ommutativity
onditions mean that fewer pairs of a
tions
an be run
on
urrently, and so we trade202

on
urren
y for fairness.5.7.1 Weak
ompatibilityWe now de�ne the weak
ompatibility
ontrol relation that allows us to
ompletethe set of rules we use to show the redu
tion of a TCB exe
ution. We de�ne this interms of a relation between a pro
edure and a total method.De�nition 5.52 For � 2 P, and � 2Mt,� wl
 � , h8 D ;E: D ;E 2 B ^ D 6= E: (� 2 A) a

ept(�)x tm(D ; �)) ^(� 2Mp) pm-a

ept(E ; �)x tm(D ; �)) ^(� 2Mt) tm(E ; �)x tm(D ; �))iIf � wl
 �, we say that � weakly left-
ommutes with �.Thus if � wl
 �, then a tm step for �
an move left over an atomi
 step for �,provided that the step for � is not reje
ting. The relation does not use the reje
tingatomi
 steps, sin
e during redu
tion, as dis
ussed above, we
an use the reje
tremoval rule to remove these from the exe
ution, so no tm step moves left over areje
t or pm-reje
t step.We give some examples of weak left
ommutativity. The �rst examples
on-
ern the box Sem in Figure 2.3.Sem:P wl
 Sem :VSem :V wl
 Sem :V
203

To show Sem:P wl
 Sem:V , we must show for any D ;E 2 B, su
h D 6= E ,pm-a

ept(E ;Sem :P) x tm(D ;Sem :V)That is, we must show that, for any
on�guration in whi
h a pm-a

ept(E ;Sem:P)step is enabled, the
on�gurations rea
hable by exe
uting this step followed by atm(D ;Sem :V) step, are rea
hable by exe
uting the steps in the opposite order.Consider a
on�guration C in whi
h pm-a

ept(E ;Sem:P) is enabled. Wehave C:Sem:
 = ?, from Theorem 5.5. From the guard of Sem:P , we also havethat the semaphore is available in C, that is, C:Sem:�:n > 0. From su
h a
on�gu-ration, the
all to Sem:P followed by the
all to Sem :V leaves the value of C:Semun
hanged, and updates the
on�gurations of D and E to re
e
t the fa
t that thepro
edure
alls have been exe
uted. Exe
uting the
alls in the reversed order hasexa
tly the same e�e
t, and thus we have weak left
ommutativity.To show Sem:V wl
 Sem :V , we must show for any D ;E 2 B, su
h thatD 6= E ,tm(E ;Sem:V) x tm(D ;Sem :V)Sin
e Sem:V is total, the steps are enabled in any
on�guration. The e�e
t ofexe
uting the pro
edure
alls in either order is to add 2 to Sem:n , and to updatethe
on�gurations of D and E to re
e
t the exe
ution of the
alls. Thus we haveweak left
ommutativity.Below are some examples of left
ommutativity using the box Bu� fromFigure 1.2.Bu� :get wl
 Bu� :put:(Bu� :put wl
 Bu� :put) 204

We show Bu� :get wl
 Bu� :put in a way similar to that we used for Sem:P andSem:V , above. We note that an a

epting
all to Bu� :get is only enabled in a
on�guration in whi
h Bu� :s is not empty. Suppose Bu� :s = x . ŝ. If the
all toBu� :put puts the value y in the queue, we
an see that, exe
uting the
alls in eitherorder, we end up with Bu� :s = ŝ / y, and x is returned to the
aller of Bu� :get .Thus we have weak left
ommutativity.To show :(Bu� :put wl
 Bu� :put), we observe that
alling Bu� :put withinput parameter x, and then
alling it from a di�erent box with input parametery leaves Bu� :s = ŝ / x / y, whereas making these
alls in the opposite order givesBu� :s = ŝ / y / x. Clearly ŝ / x / y 6= ŝ / y / x, unless x = y. Thus, we do not haveweak left
ommutativity.The following theorem gives a simple
ondition for determining weak left
ommutativity: a pro
edure weakly left
ommutes with a total method if theyexe
ute on disjoint sets of boxes.Theorem 5.53h8 �; �: � 2 P ^ � 2Mt ^h8 �0; �0 : �0 2 Range(�) ^ �0 2 Range(�) : :(�0 � �0) i: � wl
 �iWe
an now de�ne weak
ompatibility.
205

De�nition 5.54 (Weak
ompatibility) For �; �0 2 A,� � �0 , h8 �; �0: � 2 Range(�) ^ �0 2 Range(�0): (� 2Mt) �0 wl
 �) ^ (�0 2Mt) � wl
 �0)iIf � � �0, we say that � is weakly
ompatible with �0.The symmetri
 form of the de�nition guarantees that � is symmetri
, and thus� 2 CR. The de�nition of weak
ompatibility gives exa
tly the
onditions neededto de�ne a left-moving rule for total method
alls. Note that the de�nition does notrequire any
ommutativity between the a
tions � and �0.From the results given above for wl
 on the methods of box Sem in Figure 2.3,we get the following.D :a
t � E :a
qD :a
t � E :relFor the a
tions in Figure 1.3 that use the methods of box Bu� in Figure 1.2, wehave Prod :make � Cons :useSuppose we have � and �0, whereRange(�) disj MtRange(�0) disj MtIn this
ase, the
onditions for � � �0 are trivially satis�ed. These
onditions meanthat no total methods are rea
hable from � or �0 by �, or, in other words, that206

only partial methods are
alled during the exe
ution of any thread for either a
tion.If � is total, this means no thread for �
alls a method, sin
e only total methods
an be
alled from a total a
tion. If � is partial, we have that a thread for �
allsonly partial methods that do not
all total methods. Sin
e there
an be at mostone
all to a partial method in any alternative in a partial pro
edure, this gives usa two-phase stru
ture for all the threads for �, with the de
ision step in the lowestpartial pro
edure
all, all resour
e a
quisition steps before the de
ision step, andall resour
e release steps after. For pairs of su
h threads, the two-phase lo
kingtheorem gives us serializability under any
ontrol relation.If we restri
t attention to exe
utions that respe
t weak
ompatibility, we getthe following rule for moving a tm step left.Theorem 5.55 (Weak
ompatibility rule)h8 L;L0; ": L;L0 2 Labm ^ L 6� REJ [end ^ L0 � tm ^" 2 TwoStep(L;L0) ^ " resp �: " �! Swap(")i5.7.2 Redu
tion that respe
ts
ontrol relationsFor redu
tion, we restri
t ourselves to TCB exe
utions that respe
t �. This allowsus to use the weak
ompatibility rule to move tm steps left. It is important, then,that we ensure that every transformation that we apply to an exe
ution " su
h that" resp � returns an exe
ution "0 su
h that "0 resp �.Considering this question more generally, for any T 2 CR, if " resp T andwe apply one of the redu
tion rules to part of ", yielding the redu
ed exe
ution "0,does "0 resp T? We have the following meta-theorem. The proof is in Appendix B.207

Theorem 5.56h8 "; "0;T: "; "0 2 Zm ^ " resp T ^" �! "0 by Theorem 5.46, 5.47, 5.48, 5.49, 5.50, or 5.55: "0 resp Ti5.8 The �rst redu
tion theoremWe are now ready to state and prove the �rst redu
tion theorem. This theorems saysthat we
an redu
e any
omplete exe
ution that respe
ts � to an atomi
 exe
ution.Theorem 5.57 (First redu
tion theorem)h8 " : " 2 Complete(Z) ^ " resp � : h9 "0 : "0 2 Z a : "; "0 i i5.8.1 Outline of the proofWe prove the theorem using the following lemma. Note that we state the lemma forexe
utions in Complete(Zm), rather than for Complete(Z). The latter is a subsetof the former, so this is a generalization that allows us to use mixed exe
utions forintermediate results during exe
ution.

208

Lemma 5.58h8 ": " 2 Complete(Zm) ^ NumA(") > 0 ^ " resp �: h9 "0; "00: "0 2 Z a ^ "00 2 Complete(Zm) ^ NumA("0) = 1: " �! "0; "00 ^ "0; "00 resp �iiWe show the proof for this lemma below. Given Lemma 5.58 we
omplete the proofof Theorem 5.57 as follows.Given " 2 Complete(Zm), we
onstru
t a sequen
e of pairs of exe
utions ofthe following form."0 "00"0; "1 "01"0; "1; "2 "02... ...Ea
h entry in the left
olumn is a sequen
e of atomi
 exe
utions, and ea
h entry inthe right
olumn is an exe
ution in Complete(Zm). We
onstru
t "0 and "00 from" using Lemma 5.58. For i � 0, we
onstru
t "i+1 and "0i+1 from "0i by the samelemma. If NumA(") < 1 this pro
ess ends after a �nite number of steps. In this
ase, we make the sequen
es in�nite by repeating the last line.The �rst
olumn is a
hain of �nite exe
utions in (Z a;v). Sin
e this orderedset is a CPO, the
hain has a limit in Z a. Let "0 be the limit.The �rst
olumn is also a CRS for the sequential exe
ution, sin
e for ea
hentry, the
orresponding exe
ution in the se
ond
olumn is the witness required for209

showing initial redu
tion. Ea
h su

essive entry in the �rst
olumn has one morea

ept step than the previous one, up to NumA("), by Lemma 5.58. This gives us"; "0 and "0 2 Z a, and the proof is
omplete.One way to think of this proof is that we start with the exe
ution ", and wepla
e a marker at the beginning. We reorganize the beginning of the ", until thereis a single a

ept step next to the marker. Then we move the marker over this step,and repeat the pro
ess with the remainder of the exe
ution. As the marker movesthrough the exe
ution in this way, the steps of the atomi
 exe
ution appear in orderon its left.5.8.2 Proof of Lemma 5.58We assume" 2 Complete(Zm) ^ NumA(") > 0 ^ " resp �we
onstru
t "0 and "00, where"0 2 Z a ^ "00 2 Complete(Zm) ^ NumA("0) = 1 ^" �! "0; "00 ^ "0; "00 resp �We do this by
onstru
ting a sequen
e of pairs ("i; "0i), where ea
h pair satis�es
ertain
onditions. For
larity in the exposition, we use as a base for names forexe
utions as we present the
onstru
tion of ("i+1; "0i+1) from ("i; "0i). Let D be the�rst a

ept step in ". Let F be the last step for D's thread. Thus, if this thread isfor a
tion �, D is the �rst ACC step, and F is the �rst a
tion-end(Box (�)) step, orthe �rst a

ept(�) step. Note that in the se
ond
ase, D and F are the same step.
210

We use the following predi
ates on exe
utions.Imm(") , h8 k: 0 � k < j"j ^ "hki � DEC: h9 j: 0 � j < k: h8 i : 0 � i < j : Root ("; i) 6= Root("; k) i ^h8 i : j � i < k : Root ("; i) = Root ("; k) iiiDef (") , h8 k: 0 � k < j"j ^ "hki � RM: h9 j: k � j < j"j: Root ("; j) = Root ("; k) ^ "hki 6� RMiiIf Imm(") holds, then for every thread with a de
ision step in ", all steps in " forthe thread up to and in
luding the de
ision step appear as a
ontiguous sequen
e.If qt(Start (")), then this mean for every thread with a de
ision step in ", all stepsfrom the �rst step of the thread up to and in
luding the de
ision step appear as a
ontiguous sequen
e. We
all su
h an exe
ution immediate.If Def (") holds then the last step for every thread with steps in " is not anRM step. In parti
ular, sin
e all steps before the de
ision step are RM steps, ifqt(Start(")), then this means that every thread with steps in " has a de
ision stepin ". We
all su
h an exe
ution de�nite.If Imm("), Def (") and qt(Start(")) hold, then every thread in " begins with211

an unbroken sequen
e of steps ending with a de
ision step.Rendezvous redu
tionWe redu
e " to an exe
ution in whi
h all RM steps before F are rdv steps. Let" = 0; 00 where Last(0) = FChoose a box D 2 B. Let L be the last queue step before F in 0 that has D asits un
onditional lo
us. Step F
annot be the next step for L's thread, sin
e a initstep follows every queue step. By
onstru
tion, no step from L up to and in
ludingF has D as its un
onditional lo
us, so we use the right-mover rule to move L rightuntil it rea
hes the position after F, or the position before the init step that is nextin its thread, whi
hever is rea
hed �rst. In the latter
ase, apply the rendezvous ruleto repla
e the queue and init steps with a rdv step. Note that the new step doesnot have an un
onditional lo
us. Repeat this pro
edure for every other queue stepin 0 that has D as its un
onditional lo
us. Then repeat the whole pro
ess for everyother box. At the end of this, we have exe
ution 1, where 0 �! 1 and 1
ontainsno queue steps before F. There are no init steps before F, sin
e qt(Start(1)), andevery init step is pre
eded by a queue step. Thus all RM steps before F are rdvsteps. Let 1 = "0; 01 where Last("0) = F"00 = 01; 00We have ("0; "00), where"0 2 Z r ^ j"0j <1 ^ Last("0) = F ^"0; "00 2 Complete(Zm) ^ " �! "0; "00 ^ "0; "00 resp �212

Right-mover redu
tionWe
onstru
t a redu
tion of " where the exe
ution is immediate up to F, and everythread with steps before F has a de
ision step before F. Let L be any de
ision stepin "0. Choose the last step from L's thread before it in "0. This is a rdv step (sin
e" 2 Z r, so use the right-mover rule to bring it adja
ent to L. Repeat this with theremaining steps from L's thread to its left, and then repeat with all other de
isionsteps in "0, giving exe
ution 0, where "0 �! 0. We have Imm(0) by
onstru
tion.Now
hoose a thread whose last step before F is in RM. Use the right-mover ruleto move it to the right of F. Repeat this pro
ess until there are no su
h threads,giving exe
ution 1, where "0 �! 0. Let 1 = "1; "01 where Last("1) = F"01 = "01; "00We have ("1; "01), where"1 2 Z r ^ j"1j <1 ^ Imm("1) ^ Def ("1) ^ Last("1) = F ^"1; "01 2 Complete(Zm) ^ " �! "1; "01 ^ "1; "01 resp �Reje
t removalWe
onstru
t a redu
tion of " in whi
h there are no REJ steps before F. Let 0 = "1; "01If 0
ontains no REJ steps before F then we are done. Otherwise, let L be oneof the REJ steps before F. We redu
e the steps for L's thread to a reje
t step.If L is atomi
 we are done. Otherwise, sin
e Imm("1), the steps before L in itsthread appear to it immediate left. By Theorem 5.19, all steps after L in its threadare a
tion-reje
t or test-reje
t steps. By the left-mover rule, we
an move all of213

these steps left over steps from other threads until all steps for L's thread are then
ontiguous. By the atomi
 rule, these steps
an be repla
ed by a single reje
t step.By the reje
t removal rule, we
an remove the reje
t step from the exe
ution. Repeatthis pro
ess for every REJ step before F, ending with exe
ution 1, where �! 0,and 1
ontains no REJ steps before F. Let 1 = "2; 01 where Last("1) = F"02 = 01; "01We have ("2; "02), where"2 2 Z r ^ j"2j <1 ^ Last("2) = F ^Imm("2) ^ Def ("2) ^h8 i : 0 � i < j"2j : "2hii 6� REJ i ^"2; "02 2 Complete(Zm) ^ " �! "2; "02 ^ "2; "02 resp �Left-mover redu
tionWe
onstru
t a redu
tion of " in whi
h has an a

ept step as its �rst step. First wehave a lemma, whi
h gives the
ore of the left-mover redu
tion.Lemma 5.59 LetN () = h8 i : 0 � i < j j : hii 6� REJ i#end() = h# i : 0 � i < j j : hki � end i#
omp() = h# i: 0 � i < j j: hki � a

ept [a
tion-end [a
tion-reje
ti 214

h8 : 2 Z r ^ j j <1 ^ qt(Start ()) ^Imm() ^ Def () ^ N () ^0 < #end(): h9 0: 0 2 Z r ^ j 0j <1 ^ qt(Start ()) ^Imm(0) ^ Def (0) ^ N (0) ^#end(0) < #end(): �! 0 ^ #
omp() = #
omp(0)iiProofAssume we have a as in the ante
edent of the universal quanti�
ation. Let L be the�rst end step in 2. Sin
e qt(Start ()), we
an �nd step L0, the step that a
quiredthe box that L releases. Sin
e 2 Z r, L0 is a rdv step, it is the only RM step for thepro
edure
all, so it is the �rst step of a
ompa
t exe
ution of the pro
edure. Let 0 be the segment of from the L0 to L. We have #end(0) = 1, by
onstru
tion.Consider the steps in 0 from L's thread. There are no end steps among thesesteps, and so, sin
e resour
es are released in reverse order of a
quisition, there areno RM steps either. If exe
ution is for a partial pro
edure, we have, sin
e Imm()and N (), 0h1i � ACC. The steps for the pro
edure
all thread in the regionfrom 0h2i on, for a partial pro
edure, and from 0h1i on, for a total pro
edure,are after the thread's de
ision step. Sin
e there are no RM steps, and no end steps,by Theorem 5.18, all the steps in this region for the pro
edure
all's thread arethus lo
al or tm steps. By the left-mover rule, the lo
al steps
an be moved left.There are no REJ or end steps between L0 and L from any thread, so, by the weak
ompatibility rule, the tm steps
an be moved left. By the left-mover rule, L
an215

be moved left. Thus we move all these steps left until all steps for the pro
edure
all are
ontiguous at the beginning of the exe
ution. The redu
ed exe
ution startswith a
ompa
t exe
ution for a pro
edure, so we use the atomi
 rule to repla
ethese steps with an atomi
 step, giving 1, where 0 �! 1, #end(1) = 0, and#
omp(1) = #
omp(0).Let 0 be with 0 repla
ed by 1. We have 0 2 Z r, j 0j <1, qt(Start()),N (0), and #end(0) < #end(), �! 0, and #
omp() = #
omp(0), by
onstru
tion. To show Imm(0), we note that "0
ontains all the steps of ", in thesame order, for the threads other than the one redu
ed. For the redu
ed thread,all steps for a pro
edure
all have been deleted, and the rdv step that starts the
all has been repla
ed by an atomi
 step. When a partial pro
edure is repla
ed,the RM step removed is repla
ed by a de
ision step, so immedia
y is preserved.There is nothing to show for a total a
tion, sin
e there are no RM steps before thet-a
tion-start-rdv step that is its de
ision step. To show Def (0), we note that theredu
tion removes a RM step and some nonRM steps, and repla
es it with a singlenon-RM step for the thread. Thus Def (0) must hold.(End of proof)To show the main redu
tion, we note that by the prin
iple of indu
tion,we
an apply the redu
tion in Lemma 5.59 repeatedly to "2 until we get , where#end() = 0, and #
omp() = #
omp("2). Sin
e the
ontains the end step forthe �rst thread, this thread must be a single a

ept step. Sin
e we never move aRM step left over an ACC step, this step is First(). Let = "3; 0 where j"3j = 1"3 = 0; "02
216

We have ("3; "03), where"3 2 Z a ^ j"3j = 1 ^ NumA("3) = 1 ^"3; "03 2 Complete(Zm) ^ " �! "3; "03 ^ "3; "03 resp �Let "0 = "3 and "00 = "03, and we are done with the proof of Lemma 5.58.

217

Chapter 6
Fairness
6.1 Introdu
tionThe last
hapter showed a
ontrol relation � that guarantees a redu
tion to anatomi
 exe
ution for every
omplete exe
ution respe
ting �. We showed a
orre-sponden
e between
on�gurations in the original exe
ution and the redu
ed atomi
exe
ution, whi
h allow us to infer properties of the
on
urrent exe
ution from thoseof the atomi
 exe
ution.The purpose of a redu
tion theorem is to show that a set of
on
urrentexe
utions
an be represented by a set of atomi
 exe
utions, su
h that the sequentialexe
utions
over all possible behaviours of the
on
urrent exe
utions. In this way,we avoid having to reason dire
tly about the behaviour of the
on
urrent exe
utions,and
an instead reason about the behaviour of just the atomi
 exe
utions. For thisinferen
e to be valid, we must pre
isely de�ne the set of atomi
 exe
utions that isgenerated when we redu
e a given set of
on
urrent exe
utions.In this
hapter, we
onsider properties of atomi
 exe
utions, and we showthat
ertain types of properties,
alled progress properties, are not guaranteed inall atomi
 exe
utions, but are guaranteed in exe
utions satisfying
ertain fairness218

onditions. We then
onsider the subset of the
on
urrent exe
utions whose atomi
redu
tions satisfy a given fairness
ondition.Consider a program
ontaining an a
tion � that in
rements the value ofinteger variable x , and suppose no other a
tion in the program a�e
ts the value ofx . What
an we say about the sequen
e of values taken by x during an exe
ution?We know that it never de
reases, sin
e its value is only
hanged by in
reasing it.What we
annot show, for general atomi
 exe
utions, is that the value of x in
reasesin every exe
ution. Consider an atomi
 exe
ution that
ontains no steps for �. Thevalue of x does not
hange during this exe
ution.Consider an in�nite atomi
 exe
ution of the program
ontaining an in�nitenumber of steps for �. In su
h an exe
ution, we
an see that the value of x in
reaseswithout bound. That is, for any
on�guration in the program, there is a later
on�guration in whi
h x has a greater value.In Chapter 4, we showed that fairness in the
hoi
e of steps in an exe
utionis required to ensure an exe
ution where every thread terminates. In a similar waywe de�ne fairness
onditions on the sequen
e of a
tions for the steps in an atomi
exe
ution that
an ensure that exe
utions have desirable properties. This is fairnessat a higher level than thread fairness, whi
h
on
erns the
hoi
e of queue semanti
ssteps. We are now
on
erned with the
hoi
e of a
tions. As with thread-fairness,the fairness
onditions in this
hapter are of relevan
e only for in�nite exe
utions.In an atomi
 exe
ution, every
on�guration is quies
ent, and so, for every� 2 A, a step for � is enabled, either an a

ept(�) step or, if � is partial, anreje
t(�) step. Note that the queue semanti
s steps before the de
ision step aredeterministi
, so ea
h a
tion has exa
tly one step enabled in ea
h
on�guration.The �rst fairness
ondition for a
tions is weak fairness. An in�nite atomi
exe
ution " is weakly fair for an a
tion � if "
ontains an in�nite number of stepsfor �. For the example a
tion above, if " is weakly fair for �, then the value of x219

in
reases without bound in ".Weak fairness guarantees absen
e of individual starvation for an a
tion. Inthe standard analogy used for this type of problem, an a
tion is always hungry fora step. An a
tion starves if it waits an in�nite time to take a step, where timeis measured in steps. Requiring an in�nite number of steps for � is equivalent torequiring that every step for � be followed, after a �nite number of steps, by anotherstep for �. Thus, in an exe
ution that is weakly fair for �, no a
tion starves.By design, a reje
t step does not
hange the
on�guration. So if reje
t(�)is enabled in
on�guration C, it is still enabled after any reje
t step. If a exe
utionrea
hes a
on�guration C in whi
h only reje
t steps are enabled, the
on�gurationdoes not
hange from this point on in the exe
ution. We
all C a �xpoint of theprogram.A less stringent
ondition that weak fairness is minimal fairness. Exe
ution" is minimally fair if every
on�guration C in ", where C is not a �xpoint is followedeventually by an a

ept step. An a

ept step is enabled in C, by de�nition, andan a

ept(�) step remains enabled at least until an a

ept step is taken. In theexample above, if there is a total a
tion �0 in the program, other than �, then theminimally fair exe
utions in
lude an exe
ution
onsisting of nothing but a

ept(�0)steps. In this exe
ution, x does not in
rease at all.Minimal fairness guarantees absen
e of global starvation for the program. Interms of the analogy, the program is hungry for an a

ept step in any non�xpont
on�guration. In a minimally fair exe
ution, there are an in�nite number of a

eptsteps or the exe
ution rea
hes a �xpoint. Note that an exe
ution that is weakly fairin all a
tions is a minimally fair exe
ution.We extend weak fairness and minimal fairness to
on
urrent exe
utions, bymapping the sequen
e of de
ision steps in the exe
ution onto a

ept and reje
t stepsin the obvious way. We show that the redu
tion given in the last
hapter
an redu
e220

a
on
urrent exe
ution that is weakly fair in all a
tions to an atomi
 exe
ution thatis minimally fair, but not ne
essarily weakly fair in all a
tions.This means that to
apture all behaviours of exe
utions under weak
ompat-ibility, we need to
onsider minimally fair sequential exe
utions that are weakly fairin a subset of the a
tions. Su
h exe
utions satisfy fewer properties than exe
utionsthat weakly fair in all a
tions.We de�ne a
ontrol relation,
alled strong
ompatibility, that allows less
on-
urren
y than weak
ompatibility. We prove a se
ond redu
tion theorem that showshow we
an use
ontrol relations
ombining weak and strong
ompatibility to guar-antee a redu
tion of a weakly fair
on
urrent exe
ution to an atomi
 exe
ution thatis weakly fair for a given subset of the a
tions.In the example, we need only weak fairness for � to guarantee that x isin
reasing. We do not need weak fairness on any other a
tion. This observationsuggests a strategy for implementing TCB programs to guarantee a given progressproperty. We identify the a
tions whose weak fairness is required to establish thatan atomi
 exe
ution has the desired property, and we then use a
ontrol relationthat ensures exe
utions that
an be redu
ed to atomi
 exe
utions that are weaklyfair in the appropriate a
tions.In the �nal se
tion of this
hapter, we
onsider the implementation of fairness
onditions and
ontrol relations, using a s
heduler.6.2 Fairness
onditions for TCBTo apply fairness to the exe
ution of TCB programs, we must de
ide on a sequen
eof events that gives a linear order to the threads. Sin
e the redu
tion maintainsthe order of de
ision steps, we use these steps to represent the order of the threads.For the fairness
onditions we de�ne, we must re
ord reje
ting threads as well asa

epting threads, so we de�ne the following.221

De�nition 6.1 If " 2 Zm, and 0 � i < j"j, thenDLabel("; i) , a

ept(Root ("; i)) if "hii � ACCreje
t(Root ("; i)) if "hii � REJFor p an as
ending sequen
e
ontaining every i, su
h that "hii � DEC,DSeq(") , h i : 0 � i < jpj : DLabel("; p[i℄) iDS , f " : " 2 Complete(Zm) ^ j"j =1 : DSeq(") gWe
all DSeq(") the de
ision sequen
e for ". We use � for a typi
al element of DS.The set DS
ontains in�nite sequen
es over Laba. Fairness are only relevant for in�-nite exe
utions, so we
on�ne our attention to in�nite de
ision sequen
es. Note that,if an in�nite exe
ution is
omplete, it has an in�nite de
ision sequen
e. If " 2 Z a,then DSeq(") = SSeq("). The de
ision sequen
e then, is an idealized representationof an in�nite exe
ution as an atomi
 exe
ution. The following fun
tion returns thea
tion for an label in a de
ision sequen
e.De�nition 6.2 If L 2 LabaDA
t(L) , � if L = a

ept(�) _ L = reje
t(�)6.2.1 Weak fairnessAn in�nite exe
ution is weakly fair for � 2 A if there is an in�nite number of threadsfor �. We formulate this in terms of de
ision sequen
es.De�nition 6.3 (Weak fairness) If � 2 DS, � 2 A, and A0 � A, thenWF(�; �) , h# i : 0 � i : DA
t(�[i℄) = � i =1WF(�;A0) , h8 � : � 2 A0 : WF(�; �) iWF(�) , WF(�;A) 222

If WF(�; x), we say that � is weakly fair for x. If WF(�), we say that � isweakly fair.If � is weakly fair for � then �
ontains an in�nite number of labels for �. Notethat only a �nite number of these need be a

ept(�) labels, the rest
an be reje
t(�)labels.6.2.2 Minimal fairnessAn in�nite exe
ution is minimally fair if there is an in�nite number of a

eptingthreads in it, or, it rea
hes a
on�guration where no thread
an a

ept. This �nal
ondition is diÆ
ult to state in terms of de
ision sequen
es, so we use the following,slightly stronger formulation: an in�nite exe
ution is minimally fair if there is anin�nite number of a

epting threads in it, or, if after all the a

epting threads, thereis at least one reje
ting thread for every a
tion. We use the following fun
tion tohelp with the de�nition.De�nition 6.4 If � 2 DS, thenLastA(�) , hmin k : 0 < k : h8 i : k < i : �[i℄ � reje
t i iNote that if there is an in�nite number of a

ept steps in �, then the range for theminimum is empty, and so LastA(�) =1De�nition 6.5 (Minimal fairness) If � 2 DS, thenMF(�) , LastA(�) =1 _h8 �: � 2 A: h9 i : LastA(�) < i : �[i℄ = reje
t(�) ii 223

If MF(�), we say that � is minimally fair.Theorem 6.6h8 � : � 2 DS : WF(�)) MF(�) i6.3 Program propertiesA property is a subset the in�nite atomi
 exe
utions of a program. We de�ne prop-erties to in
lude only exe
utions satisfying a
ondition on the sequen
e of persistentstates. We use
onditions su
h as \the value of x does not de
rease", or \x in
reaseswithout bound", for an integer box variable x. We identify a subset of exe
utionswith the
ondition de�ning it, using the name \property" for either.Program properties
an be
lassi�ed as safety properties and progress (orliveness) properties [21℄. A safety property says that \nothing bad happens". The�rst example above is a safety property, asserting that a de
rease in the value of xdoes not o

ur. Safety properties
an always be satis�ed by a program that doesnothing. A progress property says that \something good happens". The se
ondexample above is a progress property, asserting that there are an in�nite number ofsteps in
reasing the value of x. A progress property requires some a
tion be takenby the exe
uting program.Our aim is to investigate the properties satis�ed by all exe
utions, and prop-erties satis�ed by all exe
utions satisfying one of the fairness
onditions from the lastse
tion. We de�ne a
ouple of types of property, one for safety, and one for progress.We show that fair exe
utions satisfy more progress properties than all exe
utions,but that both fair and unfair exe
utions satisfy the same safety properties.We extend the fairness operators to exe
utions in the obvious way, writingWF(") instead of WF(DSeq(")), for example. Using this, we de�ne the followingsets of exe
utions. 224

De�nition 6.7Z i , f " j " 2 Z a ^ j"j =1 gW i , f " j " 2 Z i ^ WF(") gM i , f " j " 2 Z i ^ MF(") gFrom Theorem 6.6, we have W i � M i.Let P be a property, that is, a subset of Z i. If Z i = P, then every exe
utionof the program satis�es P. If W i � P, then every weakly fair exe
ution of theprogram satis�es P. If M i � P, then every minimally fair exe
ution of the programsatis�es P.We de�ne some simple properties.De�nition 6.8 For q � PC q,stab(q) , f " j " 2 Z i ^ h8 i; j : 0 � i < j : "[i℄ 2 q) "[j℄ 2 q i gunav(q) , f " j " 2 stab(q) ^ h9 k : 0 � k : "[i℄ 2 q i gWe
all stab(q) a stable property, and unav(q) an unavoidable property.We identify a boolean expression over the box variables of a program with the subsetof PC q for whi
h it is the membership predi
ate. So, we write D :x > 5 to mean theset fC j C 2 PC q ^ [[D :x > 5℄℄C g. If q is su
h an expression, we say \q holds inC" to mean C 2 q.For " 2 stab(q), if q holds at any
on�guration in ", it holds in every
on�g-uration after that one. Note that " 2 stab(q) if q does not hold at any
on�gurationin ". Properties stab(q) are safety properties. For " 2 unav(q), q does not hold ina �nite pre�x of the
on�gurations of ", and it holds in the remainder. Propertiesunav(q) are progress properties. 225

The following theorem shows an important di�eren
e between stable prop-erties and unavoidable properties: stable properties are oblivious to fairness.Theorem 6.9h8 q: q � PC q: (W i � stab(q) � Z i � stab(q)) ^ (M i � stab(q) � Z i � stab(q))iProofWe prove the �rst
onjun
t of the term. The proof for the se
ond is similar. Assumeq � PC q. We showW i � stab(q) � Z i � stab(q)We prove the equivalen
e as two impli
ations.Case (:An immediate
onsequen
e of W i � Z i.Case):We prove the
ontrapositive form.Z i 6� stab(q)) W i 6� stab(q)Assume Z i 6� stab(q). Choose " 2 Z i su
h that " 62 stab(q). From De�nition 6.8,we
an �nd i and j, where 0 � i < j, "[i℄ 2 q, and "[j℄ 62 q. Let "0 be an in�niteexe
ution, where Start("0) = "[j℄, and SSeq("0) is an in�nite sequen
e of atomi
 stepsfor the a
tions of the program in
y
li
 order. This exe
ution is well-formed, sin
eany a
tion
an be started in a quies
ent
on�guration, and it
ontains an in�nite226

box Dvar b : boolean
 : booleana
tion r :: b := falsea
tion s :: :b �!
 := falseendFigure 6.1: Program with fairness-dependent unavoidability propertiesnumber of de
ision steps for ea
h a
tion, so "0 2 W i. Let "00 = "h0 : : : (j � 1)i; "0.The
omposition is de�ned by
onstru
tion, and "00 2 W i. Sin
e "00[i℄ = "[i℄, and"00[j℄ = "[j℄, we have "00 62 stab(q). Thus W i 6� stab(q).(End of proof)Theorem 6.9 brings out an important property of stability: if an exe
ution violatesstability, there is a �nite pre�x of the exe
ution that shows the violation. The resulthere is a general one: restri
ting exe
utions to those satisfying a fairness
onditiondoes not widen the
lass of valid safety properties.We do not have a result su
h as Theorem 6.9 for unavoidable properties, andother progress properties. We show this using the program in Figure 6.1. Theprogram
ontains a single box D , so we drop the box
omponent of identi�ers, andwrite b for D :b. We show the followingZ i 6� unav(:b)Z i 6� unav(:
) M i 6� unav(:b)M i � unav(:
) W i � unav(:b)W i � unav(:
)Sin
e the program text
ontains no statement that assigns true to any variable, wehave the following.Z i � stab(:b)Z i � stab(:
) 227

To show the results for Z i, let C be a
on�guration satisfying b ^
. Notethat if a thread for a
tion s is started from C, the thread reje
ts. Let" = (C1 ; reje
t(s)1)Exe
ution "
onsists of an in�nite sequen
e of reje
ting threads for s . All
on�gu-rations are C. Thus " 62 unav(:b), and " 62 unav(:
). This gives usZ i 6� unav(:b)Z i 6� unav(:
)For the
ase of M i, we note that, sin
e a
tion r is total, any thread for ita

epts. Thus any "0 2 M i
ontains an in�nite number of a

ept steps. The �rst ofthese is an a

ept(r), sin
e a thread for s reje
ts fromC. If "0hii is the �rst a

ept(r)step, then :
 holds in "0[i+ 1℄. Thus "0 2 unav(:
). If C;C0 2 PC q, b holds in C,and (C;C0) 2 a

ept(r), then b^:
 holds in C0. Thus (C0;C0) 2 a

ept(r), so we
an de�ne" = (C Æ (C0)1 ; a

ept(r)1)Then " 2 M i, and " 62 unav(:b). ThusM i 6� unav(:b)M i � unav(:
)For the
ase of W i, we note that W i � unav(:
) follows from W i � M i.To show W i � unav(:b), assume " 2W i. Sin
e " is weakly fair, it
ontains a stepfor r . If the �rst su
h step is "hii, :
 holds in all "[j℄ for i < j. Again, sin
e "is weakly fair, it
ontains a step for s after step i. Let the �rst su
h step be "hki.228

box Semkvar n : integerb : booleana
tion K :: n > 0 �! b := falsemethod P :: n > 0 ^ b �! n := n� 1method V :: n := n+ 1endbox Dvar x : integera
tion a :: true & Semk :P �! x := x+ 1 ; Semk :Vend Figure 6.2: The semaphore with a kill a
tionThen :b holds in "[k + 1℄. ThusW i � unav(:b)W i � unav(:
)6.4 Fairness for weak
ompatibilityWe
onsider the issue of fairness in relation to programs run under the weak
ompat-ibility
ontrol relation. Consider the program in Figure 6.2. The program
ontainsa box Semk , whi
h is a variant of box sem. Box Semk has an a
tion K , in additionto the P and V methods from sem. The box has an additional variable, a booleanb, whi
h is initially true. Method P is amended so that a
all to it a

epts, andgrants the semaphore to the sour
e of the
all, only if the semaphore is available(that is, n > 0), and b holds. A
all to a
tion K a

epts only if the semaphore isavailable, and, if it is, b is set to false . Box D
ontains an integer variable x , andan a
tion a. A
all to a a

epts, and in
rements x , if the semaphore is su

essfullygranted. A
tion a releases the semaphore before terminating.229

From the text of the program, we
an see that it has the following stabilityproperty.Z i � stab(Semk :n � 0 _ :Semk :b)To show this, we note that, if Semk :n � 0 holds at any point in an exe
ution,then no thread a

epts, and the
on�guration is the same for the remainder of theexe
ution.If Semk :n > 0^:Semk :b holds in any
on�guration, then a thread for a
tionD :a reje
ts, and a thread for a
tion Semk :K a

epts, leaving the
on�gurationun
hanged.For the progress properties we haveW i � unav(Semk :n � 0 _ :Semk :b)M i 6� unav(Semk :n � 0 _ :Semk :b)To show the �rst of these, assume we have " 2W i. If Semk :n � 0 _ :Semk :b holdsin Start("), then we are done. Assume this is not the
ase, so Semk :n > 0 ^ Semk :bholds in Start("). A thread for D :a started from su
h a
on�guration leaves the
on�guration un
hanged on these values. A thread for Semk :K inverts the value ofSemk :b. Sin
e " 2W i, there is a thread for Semk :K in ", so there is a
on�gurationwhere Semk :n � 0 _ :Semk :b holds, and so W i � unav(Semk :n � 0 _ :Semk :b).To show the se
ond, let " be an exe
ution where Semk :n > 0 ^ Semk :b holdsin Start("), and all steps in " are for D :a. Ea
h of these threads a

epts (so " 2 M i),and after ea
h step the values of Semk :n and Semk :b are un
hanged. Therefore," 62 unav(Semk :n � 0 _ :Semk :b), and so M i 6� unav(Semk :n � 0 _ :Semk :b).Consider now the
on
urrent exe
utions of the program. We �rst
he
k the
230

a
tions for weak
ompatibility. We haveSemk :K � D :aUsing De�nition 5.54, we get just the following
ondition to
he
k.a

ept(Semk :K) x tm(D ;Semk :V)We
an see that this holds by
he
king the
ode.Suppose we start from a
on�guration satisfying Semk :n > 0 ^ Semk :b. We
an
onstru
t the following exe
ution of a thread for Semk :K exe
uting
on
urrentlywith a thread for D :a ."0 ; "0 ; "1The exe
ution of the thread for D :a is split between exe
tions "0 and "1. Thisthread a

epts. The �rst
ontains all the steps up to and in
luding the assignmentto D :n , and the se
ond
ontains the rest. Exe
ution "0 is a
ompa
t exe
ution forSemk :K . This must be a reje
ting thread, sin
e Semk :b is false after "0. The �nal
on�guration is quies
ent, and Semk :n > 0 ^ Semk :b holdsWe
an repeat the above exe
ution in�nitely many times to generate a
on-
urrent exe
ution "
ontaining an in�nite number of threads for D :a , and an in�nitenumber for Semk :K . Thus WF("). Note that " has a quies
ent
on�guration be-tween ea
h interleaved exe
ution of two threads, and Semk :n > 0 ^ Semk :b holdsin ea
h of these
on�gurations. As we have seen, there is no weakly fair atomi
 exe-
ution of the program in whi
h Semk :n > 0 ^ Semk :b holds in every
on�guration.Thus the atomi
 redu
tion of "
annot be in W i.If we follow through the redu
tion pro
ess in Chapter 5 for exe
ution ", we seethat ea
h of the reje
ting threads for Semk :K is removed during the reje
t removal231

step. So the atomi
 redu
tion of " is an exe
ution
ontaining only a

epting stepsto D :a . Therefore, the redu
tion is not weakly fair for Semk :K .Note that, in the redu
tion in Chapter 5, every a

epting thread from theoriginal exe
ution appears in the atomi
 redu
tion. From this, we
on
lude thatif " is a weakly fair exe
ution that respe
ts weak
ompatibility, then the atomi
redu
tion of " may not be weakly fair in any a
tion that has only a �nite numberof a

epting threads in ".The reason for this loss of fairness is our
hoi
e to dis
ard reje
t steps duringredu
tion. The justi�
ation given for dis
arding steps is that they are
omputation-ally insigni�
ant. But, as we have seen, the fa
t that there was a reje
ted threadfor an a
tion is signi�
ant from the standpoint of fairness.We next show a stronger
ontrol relation su
h that we
an guarantee, forsome set A0 2 A every thread in a
on
urrent exe
ution for an a
tion in A0 appearsin the atomi
 redu
tion. Using this
ontrol relation, if the
on
urrent exe
ution isweakly fair in �, and � 2 A0, then the atomi
 redu
tion is weakly fair in �.6.5 Strong
ompatibilityWe de�ne a
ontrol relation,
alled strong
ompatibility, that allows us to maintainweak fairness for a given a
tion during redu
tion. That is, we de�ne a
ontrol relation� su
h that if in any
on
urrent exe
ution ", if � is only exe
uted
on
urrentlywith a
tions �0 su
h that � � �0, then we
an redu
e the exe
ution to an atomi
exe
ution, where every de
ision step for threads for �, both a

epting and reje
ting,appears in the atomi
 redu
tion.To see how to do this, we look at two aspe
ts of the proof of the �rst redu
tiontheorem. Consider the step that removes reje
t steps. This is ne
essary be
ausethe weak
ompatibility rule does not allow a tm step to move left over a REJ step.In the proof of Lemma 5.59, we used the weak
ompatibility rule to move a tm step232

left over a sequen
e of steps from other threads. To apply this rule, we must showthat the sequen
e of steps
ontains no REJ steps. Thus, removing the reje
t stepsis required for the left-mover redu
tion to su

eed.We
an
ertainly argue that our
hoi
e to remove all reje
t steps is over-zealous. We
ould
ertainly organize redu
tion so that we remove a reje
t step onlyif we rea
h a position where a left-moving tm step is to its right. This ensuresthat we remove the only those reje
t steps that absolutely must be removed for theredu
tion to go through.In the proof of the �rst redu
tion theorem, we also ignore any part of theoriginal exe
ution after the �nal a

epting thread. The redu
ed sequen
e withoutthis suÆx meets the requirements to be a redu
tion of the original sequen
e, sothis does not
ause problems with the proof. It would not be hard to extend theredu
tion from Chapter 5 to redu
e a suÆx with no ACC steps (that is, an exe
ution
ontaining only steps for reje
ting threads) to an atomi
 exe
ution
ontaining thesame sequen
e of reje
ting de
ision steps as the original. As we have seen, reje
tingthreads are two-phase, so the redu
tion is straightforward.But even with these improvements, we still
annot preserve weak fairness.Take the example from Figure 6.2. There
annot be a weakly fair exe
ution thatis a redu
tion of the parti
ular
on
urrent exe
ution that we show, be
ause in the
on
urrent exe
ution every thread for Semk :K reje
ts, but a step for this a
tion inan atomi
 exe
ution with the same starting
on�guration always a

epts. So thethreads for Semk :K
annot appear in an atomi
 exe
ution.We de�ned weak
ompatibility to have the minimum
onditions that allowedthe redu
tion theorem to go through. One
hoi
e we made was to dis
ard all reje
tedthreads. To redu
e an exe
ution, and not remove reje
ting threads, we need a
ontrolrelation that allows tm steps to move left over a reje
t or pm-reje
t step.The format of the de�nition of � is similar to that for �. We �rst de�ne a233

ommutativity
ondition on pro
edures.De�nition 6.10 For � 2Mt, and � 2 P,� sl
 � , h8 D ;E: D ;E 2 B ^ D 6= E: (� 2 A) a

ept(�)x tm(D ; �) ^reje
t(�)x tm(D ; �)) ^(� 2Mp) pm-a

ept(E ; �)x tm(D ; �) ^pm-reje
t(E ; �)x tm(D ; �)) ^(� 2Mt) tm(E ; �)x tm(D ; �))iThe de�nition of strong left
ommutativity di�ers from the de�nition of weak left
ommutativity in that it requires
ommutativity with both a

epting and reje
tingatomi
 steps, not just with a

epting steps. If � sl
 �, then a tm step for �
anmove left over any atomi
 step for �, a

epting or reje
ting. We have a
ouple ofproperties of sl
 that are immediate from this de�nition.Theorem 6.11h8 �: � 2Mt: h8 � : � 2 Pp : � sl
 �) � wl
 � i ^h8 � : � 2 Pt : � sl
 � � � wl
 � iiBelow we repeat the examples used for weak left
ommutativity. The �rst exam-ples are for the box Sem from Figure 2.3. The �rst line shows that strong left
234

ommutativity is truly a stronger relation than weak left
ommutativity.:(Sem:P sl
 Sem:V)Sem :V sl
 Sem:VFor the �rst of these, the
ondition that fails is, as may be expe
ted,pm-reje
t(Sem :P) x tm(Sem :V)This fails be
ause a
all to Sem:P immediately after a
all to Sem :V alway a

epts,so TwoStep(tm(Sem:V) ; pm-reje
t(Sem:P)) = ;Also, a pm-reje
t(Sem :P) is enabled in a
on�guration in whi
h Sem:n = 0, and atm(Sem:V) is enabled in any
on�guration, so we have soTwoStep(pm-reje
t(Sem :P) ; tm(Sem :V)) 6= ;So for any " 2 TwoStep(pm-reje
t(Sem :P) ; tm(Sem:V)), we have Swap(") = ?.The
ommutativity of Sem:V with itself follows from the
orresponding result withwl
, and Theorem 6.11.For the box Semk in Figure 6.2, we have:(Semk :P sl
 Semk :V):(Semk :K sl
 Semk :V)The arguments for these are similar to the above argument for box Sem .
235

For the Bu� example from Figure 1.2, we have:(Bu� :get sl
 Bu� :put):(Bu� :put sl
 Bu� :put)The �rst of these is shown using a similar argument to that for the �rst
ase forSem, above. The se
ond follows from the negative result for wl
 and Theorem 6.11.We now de�ne the strong
ompatibility relation.De�nition 6.12 (Strong
ompatibility) For �; �0 2 A,� � �0 , h8 �; �0: � 2 Range(�) ^ �0 2 Range(�0): (� 2Mt) �0 sl
 �) ^ (�0 2Mt) � sl
 �0)iIf � � �0, we say that � is strongly
ompatible with �0.For the a
tions in Figure 2.3, we have:(D :a
t � E :a
q):(D :a
t � E :rel)For the a
tions in Figure 6.2, we have:(Semk :K � D :a)For the a
tions in Figure 1.3, we have:(Prod :make � Cons :use)From these we see that strong
ompatibility allows less
on
urren
y that weak
om-236

patibility. In parti
ular, for the Semk example, running the program under strong
ompatibility ex
ludes the exe
ution in whi
h all threads for Semk :K reje
t. Thereis no magi
 involved here. We have not found a way to run a
tions Semk :K and D :a
on
urrently while preserving fairness in redu
tion. We are simply noti
ing wherethe problems arise, and de�ning suÆ
ient
onditions to ex
lude the problemati

ases. The redu
tion rule for � allows a tm step to move left over REJ steps inaddition to the steps allowed by the weak
ompatibility rule.Theorem 6.13 (Strong
ompatibility rule)h8 L;L0; ": L;L0 2 Labm ^ L 6� end ^ L0 � tm ^" 2 TwoStep(L;L0) ^ " resp �: " �! Swap(")i6.6 The se
ond redu
tion theoremWe now have the ma
hinery to show a redu
tion that preserves weak fairness. Firstwe de�ne a rather more general
ontrol relation, one that is part way between weakand strong
ompatibility.It is often the
ase that a program has a progress property be
ause of thepresen
e of a single a
tion. An example is the property unav(:Semk :b) in theprogram in Figure 6.2. To show that " 2 unav(:Semk :b), it is suÆ
ient to haveWF(";Semk :K). That is, we do not use WF(";D :a) in the proof. The argumentgiven is valid, even if there are no threads for D :a in ".For the example in Figure 6.1, to show that " 2 unav(:b), we show thatthere is an a

epting thread in " for a
tion D :r , and that there is an a

epting237

thread for a
tion D :s o

urring later in ". For the �rst of these, MF(") is enough.So again, for this example, we do not require WF(";D :r). We
an show that if" 2 Z i, and MF(") and WF(";D :s), then " 2 unav(:b).As we saw above, strong
ompatibility is a stringent requirement on a
tions,so an exe
ution running under this
ontrol relation has restri
ted
on
urren
y. Theabove observations suggest that we tailor the
ontrol relation to the properties thatwe require of the program. That is, we �nd a subset of a
tions A0 su
h that forany " 2 Z i where MF("), and WF(";A0), we
an show that the " has the desiredproperties. The aim is to make the set A0 as small as possible. Having done this,we
an relax the
ontrol relation on the a
tions in A n A0. We de�ne a
ontrolrelation that ensures that every
on
urrent exe
ution " su
h that WF("), there isan atomi
 exe
ution "0
ontaining the same a

ept sequen
e as ", and for every� 2 A0, "0
ontains every de
ision step for � that is in ". Then we have MF("0),and WF("0;A0), as required.We show the redu
tion for this more general
ase. The redu
tion for exe
u-tions respe
ting � as the
ontrol relation is a spe
ial
ase, when A0 = A. We �rstde�ne a
ontrol relation relative to a set of a
tions.De�nition 6.14 For A0 � A,U(A0) = � [f (�; �0) j � � �0 ^ f�; �0g disj (A0 \Ap) gThe
ontrol relation U(A0) is � extended with pairs of weakly
ompatible a
tions(�; �0) where neither a
tion is a partial a
tion in A0. The following theorem givessome properties of U(A0) that follow from this de�nition.
238

Theorem 6.15h8 A0;A00: A00 � A: A0 � A00) U(A0) � U(A00)iU(A) = �U(At) = �The �rst part of the theorem shows that U(A0) is antimonotoni
 in it argument.The other two parts show that the extreme
ases of this relation.Below we give the se
ond redu
tion theorem. This theorem states that a
on
urrent exe
ution that is weakly fair and respe
ts U(A0)
an be redu
ed to anatomi
 exe
ution that is minimally fair, and weakly fair in A0.Theorem 6.16 (Se
ond redu
tion theorem)h8 ";A0: " 2 Complete(Z) ^ WF(") ^ A0 � A ^ " resp U(A0): h9 "0 : "0 2 Z a : "; "0 ^ MF("0) ^ WF("0;A0) iiProofThe proof pro
eeds mu
h as in the proof of the �rst redu
tion theorem. We donot repeat the details here, but we note the relevant
hanges. We use the followinglemma.
239

Lemma 6.17h8 C;A0: C 2 PC ^ A0 � A ^ A
tives(C) \ A0 \ Ap ^ C resp U(A0): C resp �iThe lemma says that in any
on�guration where a partial a
tion in A0 is a
tive, ifthe
on�guration respe
ts U(A0), then it also respe
ts �.We state and prove a variant of Lemma 5.58 that says we
an redu
e thebeginning of " to an exe
ution starting with an a

ept or reje
t step, rather thanjust the former. The proof of this pro
eeds mu
h as with Lemma 5.58. Afterthe rendezvous redu
tion and the right-mover redu
tion, we do not use the reje
tremoval step. Instead we pro
eed with the left-mover redu
tion, this time redu
inga

epting and reje
ting threads at the same time. Whenever there is a tm step tothe right of a REJ step, and the tm step must move left, there are two
ases. If theREJ step is from a thread for an a
tion in A0, then, using Lemma 6.17, we have thatthe strong
ompatibility rule is appli
able, so we apply it to move the tm step overthe REJ step; otherwise, the REJ step is from a thread for an a
tion not in A0, sowe move any non
ontiguous steps for the reje
ting thread left, using the left-moverrule, and we remove these steps, using the atomi
 rule, and the reje
t removal rule.This gives us the ne
essary redu
tion. To show that the redu
ed exe
tionhas the required fairness properties, we �rst note that the only time a REJ stepis removed from the exe
ution during the redu
tion is when a tm step must moveleft. In this
ase, the thread for the REJ is running
on
urrently with a
ommittedthread. Also, the only REJ steps removed are reje
t(�) steps for � 62 A0. Let"0 be the atomi
 redu
tion of " produ
ed by the pro
edure des
ribed above. Wehave NumA(") = NumA("0), so if NumA(") = 1, then MF("0). Otherwise, if240

NumA(") <1, then none of the reje
ting threads in " with de
ision steps appearingafter the last a
tion-end step is removed by the above pro
ess. Sin
e WF("), thereis at least one thread for ea
h a
tion among these, so MF("0). If � 2 A0, then noDEC step for � is removed during the redu
tion. Sin
e WF("), there is an in�nitenumber of them in ", and thus an in�nite number in "0, giving WF("0; �).(End of proof)6.7 S
heduling TCB programsThe s
heduler is the major
omponent of an implementation of a TCB program. Thes
heduler is a
ontrol program that de
ides when to start a thread. The s
hedulerhas two tasks: to ensure that the exe
ution of the program respe
ts the given
ontrolrelation, and to ensure that a threads for di�erent a
tions are started often enoughto satisfy the given fairness
ondition.The
ontrol relation, as we have seen, is
hosen to ensure that all treads areterminating, and that all
on
urrent exe
utions are redu
ible to atomi
 exe
utions.The fairness
ondition, together with the
ontrol relation, determines the fairness
ondition satis�ed by the redu
ed exe
utions.For
on
urrent exe
ution, we restri
t our attention to weak fairness. Mini-mally fair sequential exe
utions have very weak progress properties. We have seenthat, with a weakly fair
on
urrent exe
ution, and an appropriate
ontrol relation,we
an guarantee a redu
tion to an atomi
 exe
ution that is weakly fair for anysubset of the a
tions. For a minimally fair
on
urrent exe
ution, we
an show onlyredution to a minimally fair atomi
 exe
ution.The requirements of the
ontrol relation and the fairness
ondition must behandled in
onjun
tion. To ensure that a thread for an a
tion � is started in�nitelyoften, we must ensure that in�nitely often there is no thread running for an a
tion�0 su
h that (�; �0) is not in the
ontrol relation.241

We assume that the s
heduler only intera
ts with the program to startthreads and end threads. To start a thread for a
tion D :a , the s
heduler putsan entry for a in D 's
all queue, a

ording to rule (a
tion-start). There are noa
tion-start steps in the exe
ution, other than those taken by the s
heduler. Toensure that the
ontrol relation is respe
ted, the s
heduler keeps a re
ord of thea
tions with a
tive threads at ea
h point in the exe
ution. On
e a thread is started,the s
heduler has no further in
uen
e over its exe
ution. The boxes exe
ute inde-pendently a

ording to the semanti
s. When the thread
ompletes, the s
hedulerupdates its re
ord of a
tive threads. The
ompletion of a thread for a
tion � maymake it possible to start a thread for an a
tion �0, where (�; �0) is not in the
ontrolrelation.We
an abstra
t the problem of s
heduling as follows. A s
heduler is aprogram that intera
ts with an exe
uting TCB program. The s
heduler's task is toensure that every exe
ution respe
ts a given
ontrol relation and fairness
ondition.The s
heduler and the program intera
t using messages S (�), A(�), and R(�), for� 2 A. The s
heduler sends S (�) messages to the exe
uting program to start athread for a
tion �, and the exe
uting program sends A(�) and R(�) messages tothe s
heduler when a thread
ompletes. The �rst is sent for an a

epting threadand the se
ond for a reje
ting thread. The program exe
utes a

ording to the queuesemanti
s, with the following additions. An a
tion-start step is taken for a
tion �whenever an S (�) message is re
eived from the s
heduler, and when an a
tion-endor a
tion-reje
t step is taken for this thread, an A(�) or R(�) message is sent tothe s
heduler.For the s
heduler's purposes, a thread is a
tive from the time the S (�) mes-sage is sent, to the time the
orresponding A(�) or R(�) step is re
eived from theexe
uting program. The �rst of these is sent at a time de
ided by the s
heduler.When the others are sent is outside of the s
heduler's
ontrol. We assume only that242

for every S (�) message sent, an A(�) or R(�) is re
eived at some later time, thatis, that every thread terminates.We de�ned fairness
onditions in terms of the sequen
e of de
ision steps.The s
heduler has impre
ise information about the exa
t sequen
e of de
ision steps.We assume only that the de
ision step for a thread happens at some time betweenthe time the s
heduler sends the start message for the thread, and when it re
eivesthe
orresponding reply. But note that we
an re
ast the weak fairness
ondition interms of the s
heduler messages as follows.WF("; �) , the number of S (�) messages sent is in�niteThis is
learly equivalent to the earlier de�nition of WF("; �), assuming that everythread terminates, and thus every thread that is started takes a de
ision step beforeit ends.This problem of s
heduling an exe
ution that is weakly fair, and respe
ts agiven
ontrol relation, is an instan
e of a well-known problem in distibuted
om-puting, the problem of the dining philosophers [5℄. This problem
on
erns a set ofphilosophers, ea
h of whi
h
an be in one of three phases, thinking, hungry, or eating.We start with all philosophers in the thinking phase. A philosopher be
omes hun-gry when it wishes to eat. There is a
ontrol program that de
ides when a hungryphilosphers
an start eating. We assume that every eating philosopher eventuallystops eating, an enters phase thinking. To eat again, the philosopher enters phasehungry and waits for the
ontrol program to let it start eating.We restri
t the behaviour of the
ontrol program using an in
ompatibilitygraph. The graph
ontains a node for ea
h philospher, and an edge between twonodes if the
orresponding philosophers are not allowed to eat at the same time. Theproblem is then to write a
ontrol program su
h that ensures that every exe
utionrespe
ts the in
ompatibility graph, and every hungry philosopher eventually eats.243

The a
tions in a TCB program are the philosophers. For this
ase, the eatingphase
orresponds to the exe
ution of a thread for an a
tion. There is no need for athinking phase, sin
e when a thread for an a
tion �
ompletes, the system is readyto start another thread for � as soon as it is able. That is, a philosopher that is noteating is hungry.The in
ompatibility graph is the
omplement of the
ontrol relation. Thereis an edge from the node for � to the node for �0 if (�; �0) is not in the
ontrolrelation.There are several solutions to this problem, some de�ned in terms a single
ontrol program, some de�ned in terms of a network of
o�operating programs. In[25℄, Misra gives an algorithm for a Seuss s
heduler that ensures weak fairness.

244

Chapter 7
Con
lusions
7.1 Summary of the main resultsThe three main theorems of this work, the
omplete exe
ution theorem, and the tworedu
tion theorems, give a framework for using the Seuss model.The
omplete exe
ution theorem gives a set of ne
essary and suÆ
ient
on-ditions for an exe
ution to be
omplete. The dis
ussion following the theorem inChapter 4 gives guidelines for implementing a TCB system so that all exe
utionsare
omplete.The redu
tion theorems show that a
on
urrent exe
ution respe
ting a given
ontrol relations
an be redu
ed to an atomi
 exe
ution, where the exe
utions havethe same sequen
e of a

epting a
tions, and their
on�guration sequen
es are
loselyrelated. The �rst redu
tion theorem shows a redu
tion without regard to fairness,and the se
ond theorem shows that we
an trade
on
urren
y for fairness
onditionsin the redu
tion.

245

7.2 Future workBelow we present a number of areas for future resear
h stemming from the presentwork.7.2.1 Reasoning about Seuss programsWe argued in the introdu
tion that reasoning about atomi
 exe
utions of Seussprograms is simpler than reasoning dire
tly about
on
urrent exe
utions. This is themotivation for the redu
tion theorems. Given the theorems, the proof of
orre
tnessof a Seuss program is separated into two parts. One is proving properties of atomi
exe
utions of a program, and the other is deriving properties of the
on
urrentexe
utions from the atomi
 exe
ution properties.We also argued in the introdu
tion that the stru
ture of a Seuss program isdesigned to allow the appli
ation of several
ommon te
hniques for building
orre
tprograms | hierar
hi
al reasoning,
ompositional reasoning, and program re�ne-ment. These
an all be applied to reasoning about atomi
 exe
utions.A logi
 for atomi
 exe
utions is under development. The intention is todesign a logi
 that allows the spe
i�
ation of a pro
edure to be derived from thepro
edure's
ode, and the spe
i�
ations of any methods
alled in the
ode.Before Seuss is a usable system for writing and proving programs, the rela-tionship between the properties of a
on
urrent exe
ution and the properties of itsatomi
 redu
tion must be
learly established. The dis
ussion in Se
tion 5.5 showssome ideas for this.The properties of an atomi
 exe
ution
an be expressed in terms of thevalues of program variables. Properties su
h as \x � y is invariant" have a
learinterpretation for atomi
 exe
utions. This property is true of an atomi
 exe
utionif x � y holds in every
on�guration.Consider now a
on
urrent exe
ution of a program whose atomi
 exe
ution246

satis�es the above property. We
annot
laim that x � y holds in every
on�gura-tion. From the dis
ussion in Se
tion 5.5, we know only that the predi
ate holds inevery quies
ent
on�guration. This tells us nothing about an exe
ution that
ontainsno quies
ent
on�gurations.The example using the probe a
tion suggests that properties of
on
urrentexe
utions may be best expressed not only in terms of the values of program vari-ables, but also in terms of the a

eptan
e or reje
tion of a thread for a given a
tion.If we add a
tion � to the program, where � is a probe for x � y, and exe
ute theprogram so that � does not exe
ute
on
urrently with a
tions that
hange the valueof x � y, then the property \every thread for a
tion � a

epts" is a
onsequen
e ofthe invarian
e of x � y in the atomi
 exe
utions.7.2.2 Con
urrent terminationThe problem of identifying a
ontrol relation that ensures that all threads in a TCBprogram are terminating is nontrivial. One approa
h is to de�ne \noninterferen
e"
onditions between a
tions, just as we use
ommutativity
onditions to ensure thata
tions do not interfere with ea
h other's exe
ution for the purposes of redu
tion.7.2.3 Negative alternativesAs noted in Se
tion 1.4, we
hoose not to implement negative alternatives in TCB.Extending the syntax and semanti
s of the language to in
lude negative alternativesis fairly straightforward. The reje
t removal rule is not valid if a reje
ting thread
an
hange the values of the program variables, so this suggests that we must use strong
ompatibility to ensure redu
tion for a
tions that may
all negative alternatives.
247

Appendix A
Semanti
s for TCB languagesA.1 Rendezvous semanti
s for TCBtot(t-a
tion-start-rdv) C:D = (idle; �;?)a 2 TotA
ts(D)
0 = (a)�0 = Code(D :a)C =) C [D 7! (a

ept; �;
0; �0)℄(total-
all-rdv) C:D = (a

ept; �0;
0; �0)�0 = E :m(~e; ~x); �̂C:E = (idle; �1;?)~v = [[~e℄℄�0~y = InParam(E :m)~z = OutParam(E :m)�01 = � [~z 7! ~?℄ [~y 7! ~v ℄
01 = (m ;D)�01 = Code(E :m)C =) C�D 7! (wait; �0;
0; �0)E 7! (a

ept; �01;
01; �01))�

248

(lo
al-step) C:D = (a

ept; �;
; �)(�; �) �! (�0; �0)C =) C [D 7! (a

ept; �0;
; �0)℄(pro
-term-rdv) C:D = (a

ept; �;
;?)
 = (p;Q)~z = OutParam(D :p)�0 = � � BoxVars(D)~v = [[~z ℄℄�
0 = (p;Q ; ~v)C =) C [D 7! (return; �0;
0)℄(a
tion-end-rdv) C:D = (return; �;
)
 = (a)C =) C [D 7! (idle; �;?)℄(total-return-rdv) C:D = (wait; �0;
0; �0)�0 = E :m(~e; ~x); �00C:E = (return; �1;
1)
1 = (m ;D ; ~v)�00 = �0 [~x 7! ~v ℄C =) C�D 7! (a

ept; �00;
0; �00)E 7! (idle; �1;?) �

249

A.2 Rendezvous semanti
s for TCB(p-a
tion-start-rdv) C:D = (idle; �;?)a 2 PartA
ts(D)
0 = (a)C =) C [D 7! (guard; �;
0)℄(t-a
tion-start-rdv) C:D = (idle; �;?)a 2 TotA
ts(D)
0 = (a)�0 = Code(D :a)C =) C [D 7! (a

ept; �;
0; �0)℄(guard-test-rdv) C:D = (guard; �0;
0)p = Pro
(
)Alt(D :p; �0) = (E :m(~e; ~x); �)�00 = E :m(~e; ~x); �̂C:E = (idle; �1;?)~v = [[~e℄℄�0~y = InParam(E :m)~z = OutParam(E :m)�01 = �1 [~z 7! ~?℄ [~y 7! ~v ℄
01 = (m ;D)C =) C�D 7! (pwait; �0;
0; �00)E 7! (guard; �01;
01) �
(total-
all-rdv) C:D = (a

ept; �0;
0; �0)�0 = E :m(~e; ~x); �̂C:E = (idle; �1;?)~v = [[~e℄℄�0~y = InParam(E :m)~z = OutParam(E :m)�01 = � [~z 7! ~?℄ [~y 7! ~v ℄
01 = (m;D)�01 = Code(E :m)C =) C�D 7! (wait; �0;
0; �0)E 7! (a

ept; �01;
01; �01))�250

(guard-a

ept) C:D = (guard; �;
)p = Pro
(
)Alt(D :p; �) = (?; �0)C =) C [D 7! (a

ept; �;
; �0)℄(guard-reje
t) C:D = (guard; �;
)p = Pro
(
)Alt(D :p; �) = ?�0 = � � BoxVars(D)C =) C [D 7! (reje
t; �0;
)℄(lo
al-step) C:D = (a

ept; �;
; �)(�; �) �! (�0; �0)C =) C [D 7! (a

ept; �0;
; �0)℄(pro
-term-rdv) C:D = (a

ept; �;
;?)
 = (p;Q)~z = OutParam(D :p)�0 = � � BoxVars(D)~v = [[~z ℄℄�
0 = (p;Q ; ~v)C =) C [D 7! (return; �0;
0)℄

251

(a
tion-end-rdv) C:D = (return; �;
)
 = (a)C =) C [D 7! (idle; �;?)℄(a
tion-reje
t-rdv) C:D = (reje
t; �;
)
 = (a)C =) C [D 7! (idle; �;?)℄(test-a

ept-rdv) C:D = (pwait; �0;
0; �0)�0 = E :m(~e; ~x); �00C:E = (return; �1;
1)
1 = (m;D ; ~v)�00 = �0 [~x 7! ~v ℄C =) C�D 7! (a

ept; �00;
0; �00)E 7! (idle; �1;?) �
(test-reje
t-rdv) C:D = (pwait; �0;
0; �0)�0 = E :m(~e; ~x); �̂C:E = (reje
t; �1;
1)
1 = (m ;D)�00 = �0 � BoxVars(D)C =) C�D 7! (reje
t; �00;
0)E 7! (idle; �1;?) �

(total-return-rdv) C:D = (wait; �0;
0; �0)�0 = E :m(~e; ~x); �00C:E = (return; �1;
1)
1 = (m ;D ; ~v)�00 = �0 [~x 7! ~v ℄C =) C�D 7! (a

ept; �00;
0; �00)E 7! (idle; �1;?) �
252

A.3 Queue semanti
s for TCB(a
tion-start) C:D = (�; �;
; �)a 2 A
tions(D)
0 =
 / (a)C =) C [D 7! (�; �;
0; �)℄(guard-test) C:D = (guard; �0;
0)p = Pro
(
)Alt(D :p; �0) = (E :m(~e; ~x); �)�00 = E :m(~e; ~x); �̂C:E = (�1; �1;
1; �1)~v = [[~e℄℄�0
01 =
1 / (m ;D ; ~v)C =) C�D 7! (pwait; �0;
0; �00)E 7! (�1; �1;
01; �1) �
(total-
all) C:D = (a

ept; �0;
0; �0)�0 = E :m(~e; ~x); �̂C:E = (�1; �1;
1; �1)~v = [[~e℄℄�0
01 =
1 / (m;D ; ~v)C =) C�D 7! (wait; �0;
0; �0)E 7! (�1; �1;
01; �1) �

253

(p-a
tion-init) C:D = (idle; �;
)p = Pro
(
)p 2 PartA
ts(D)C =) C [D 7! (guard; �;
)℄(p-method-init) C:D = (idle; �;
)
 = (p;Q ; ~v) .
̂p 2 PartMeths(D)~y = InParam(D :p)~z = OutParam(D :p)�0 = � [~z 7! ~?℄ [~y 7! ~v ℄
0 = (p;Q) .
̂C =) C [D 7! (guard; �0;
0)℄(t-a
tion-init) C:D = (idle; �;
)p = Pro
(
)p 2 TotA
ts(D)�0 = Code(D :p)C =) C [D 7! (a

ept; �;
; �0)℄(t-method-init) C:D = (idle; �;
)
 = (p;Q ; ~v) .
̂p 2 TotMeths(D)~y = InParam(D :p)~z = OutParam(D :p)�0 = � [~z 7! ~?℄ [~y 7! ~v ℄
0 = (p;Q) .
̂�0 = Code(D :p)C =) C [D 7! (a

ept; �0;
0; �0)℄
254

(guard-a

ept) C:D = (guard; �;
)p = Pro
(
)Alt(D :p; �) = (?; �0)C =) C [D 7! (a

ept; �;
; �0)℄(guard-reje
t) C:D = (guard; �;
)p = Pro
(
)Alt(D :p; �) = ?�0 = � � BoxVars(D)C =) C [D 7! (reje
t; �0;
)℄(lo
al-step) C:D = (a

ept; �;
; �)(�; �) �! (�0; �0)C =) C [D 7! (a

ept; �0;
; �0)℄(pro
-term) C:D = (a

ept; �;
;?)
 = (p;Q) .
̂~z = OutParam(D :p)�0 = � � BoxVars(D)~v = [[~z ℄℄�
0 = (p;Q ; ~v) .
̂C =) C [D 7! (return; �0;
0)℄

255

(a
tion-end) C:D = (return; �;
)
 = (a) .
0C =) C [D 7! (idle; �;
0)℄(a
tion-reje
t) C:D = (reje
t; �;
)
 = (a) .
0C =) C [D 7! (idle; �;
0)℄(test-a

ept) C:D = (pwait; �0;
0; �0)�0 = E :m(~e; ~x); �00C:E = (return; �1;
1)
1 = (m ;D ; ~v) .
01�00 = �0 [~x 7! ~v ℄C =) C�D 7! (a

ept; �00;
0; �00)E 7! (idle; �1;
01) �
(test-reje
t) C:D = (pwait; �0;
0; �0)�0 = E :m(~e; ~x); �̂C:E = (reje
t; �1;
1)
1 = (m;D) .
01�00 = �0 � BoxVars(D)C =) C�D 7! (reje
t; �00;
0)E 7! (idle; �1;
01) �

(total-return) C:D = (wait; �0;
0; �0)�0 = E :m(~e; ~x); �00C:E = (return; �1;
1)
1 = (m ;D ; ~v) .
01�00 = �0 [~x 7! ~v ℄C =) C�D 7! (a

ept; �00;
0; �00)E 7! (idle; �1;
01) �
256

Appendix B
Additional proofs
B.1 Proofs for Chapter 3B.1.1 Proof of Theorem 3.33We showh8 C;C0 : C 2 PC ^ C =) C0 : C0 2 PC iAssume that C =) C0 and that C is well-formed. We show that C0 is lo
allywell-formed,
all
orre
t, and well-founded.C0 is lo
ally well-formedBy assumption, C is lo
ally well-formed. From Theorem 3.32 all nonlo
us boxeshave the same
on�guration in C0 as they do in C, and they are thus well-formed.For the lo
i of the rule, we
he
k that ea
h of the
onditions of De�nition 3.5 issatis�ed by the lo
us box
on�guration(s) in C0.For Condition 1, we note that, for this
ondition to be violated, the stepfrom C to C0 must leave a lo
us D with a phase other than idle, and an empty
allqueue. Sin
e C:D is well-formed before the step, the step must involve a transition257

from a nonempty queue to an empty queue, or a transition from idle to some otherphase. The only rules that
an
hange a nonempty
all queue to an empty one are(a
tion-end)(a
tion-reje
t)(test-a

ept)(test-reje
t)(total-return)In ea
h of these rules, the sour
e is left in phase idle. The only rules that move abox out of the idle phase are(p-a
tion-init)(p-method-init)(t-a
tion-init)(t-method-init)In ea
h of these, the
all queue must be nonempty before the rule, and it is not
hanged by the rule.For Condition 2, we note that every new box
on�guration introdu
ed by therules obeys this
ondition.For Condition 3, we note that the only rules that leave a box in phase pwaitor wait are(total-
all)(guard-test)and that both of these rules leave the
all with a method
all at the head of its
ode.
258

For Condition 4, we letP = fguard;pwait;reje
tgWe note that the rules that leave a box's phase in P are(p-pro
-init)(guard-reje
t)(guard-test)(test-reje
t)We note that none of these
hanges the pro
edure in the �rst entry in the
all queue.Ea
h of the rules, other than the �rst, requires that its lo
us's phase be in P beforethe step, and the �rst rule is only appli
able if the pro
edure in the �rst entry inthe
all queue is partial.For Condition 5, we note that the rules that leave a box in phase return orreje
t are(pro
-term)(guard-reje
t)(test-reje
t)and that these set the domain of the lo
al state for the box to the required value.The rules that leave a box in phase idle are(a
tion-end)(a
tion-reje
t)(test-a

ept)(test-reje
t)(total-return) 259

In ea
h of these rules, the agent is in phase return or idle prior to the step.For Condition 6, We note that the only
hanges to the domain of the lo
alstate are to extend it with parameters, or to reset it to the box variables.For Condition 7, we note that the program is assumed to be well-formed.In parti
ular, no
alls to a
tions appear in the
ode for a box, and no box
alls amethod on itself. So if an entry is put on a
all queue with a sour
e other than ?,the
all is for an a
tion on the agent. Rule (a
tion-start) is the only rule that
anput a
all for an a
tion in a
all queue, and this rule
orre
tly gives the sour
e as ?.For Condition 8, we note that no rule in
reases the number of
all queueentries by more than one. So if box C0:D :
 has more than one entry for box E ,there is an entry for E in C:D :
. Sin
e C is
all
orre
t, this means that C:E :� 2fpwait;waitg. There is no rule that allows box E to pla
e an entry in a
all queuewhen it is one of these phases, so there
an be at most one entry for E in D 's
allqueue. For Condition 9, We note that an entry in the
all queue is not
hanged untilit be
omes the
urrent pro
edure
all, so we need only show that every entry obeysthis
ondition when it is added to the queue. For a
tions, rule (a
tion-start) setsthe parameter values to ?, whi
h satis�es the
ondition. For a method
all, the rules(total-
all), and (guard-test), evaluate the parameter values from the expressionsin the method
all statement, and by the type rules, these are of the
orre
t type.For Condition 10, we note that the only rule that put a box in phase returnis (pro
-term), and this rule sets the parameter values to a list that mat
hes thetype of the output parameters.C0 is
all
orre
tWe note that no rule
hanges the pro
edure name or sour
e
omponent of any
allqueue entry, so we
on�ne our attention to the rules that add and remove
all queue260

entries for methods. The rules that add method
all entries are(total-
all)(guard-test)For both of these, the sour
e is not in a waiting phase in C, but it is in C0, and thereis a new entry in the agent's
all queue in C0. We note that this is the
orre
t typeof pro
edure, sin
e (total-
all) is appli
able only when a method
all statement isen
ountered in the body
ode of the pro
edure, and, by the type rules, this must bea total method, and (guard-test) is appli
able only when the alternative fun
tionreturns a test, and, again by the type rules, this must be a partial method.C0 is well-foundedWe note from the rules that dom(K :C0) is either the same as dom(K :C), or it hasone member more or less, and that if D 2 dom(K :C0), then D 62 dom(K :C), orK :C0:D = K :C:D . That is, no rule
hanges the \is exe
uting for" relation otherthan to add or remove an entry. Thus we only need
he
k rules that
hange thedomain of this fun
tion.From the above, we have that C0 is lo
ally well-formed and
all
orre
t, soTheorem 3.15 gives us that a step that removes an entry in K :C, removes an entryfor a D su
h that D 62 rng(K :C). Thus, if dom(K :C0) has one fewer entry thandom(K :C), the entry removed is at the beginning of a
all sta
k, and thus all valuesused to rea
h ? for all the boxes in dom(K :C0) are still present.The rules that add a member to dom(K :C) are(p-pro
-init)(t-a
tion-init)(t-method-init) 261

Suppose one of these rules is applied with lo
us D . We havetrue� f Theorem 3.15 gK :C0:D = ? _ K :C0:D 2 dom(K :C0)� f C0:D is well-formed, so K :C0:D 6= D gK :C0:D = ? _ K :C0:D 2 dom(K :C)� f C is well-founded gK :C0:D = ? _ h9 k : k > 0 : (K :C)k:(K :C0:D) = ? i) f K :C:E = K :C0:E for E 2 dom(K :C) gK :C0:D = ? _ h9 k : k > 0 : (K :C0)k:(K :C0:D) = ? i� f De�nition 3.17, twi
e g(K :C0)1:D = ? _ h9 k : k > 0 : (K :C0)k+1:D = ? i� f one-point rule;
hange range gh9 k : k = 1 : (K :C0)k:D = ? i _h9 k : k > 1 : (K :C0)k:D = ? i� f
ombine ranges gh9 k : k > 0 : (K :C0)k:D = ? iThus C0 is well-founded.B.1.2 Proof of Theorem 3.51We use the following lemmas.Lemma B.1h8 C;L;L0: C 2 PC ^ L;L0 2 Lab ^ L 6= L0 ^ L, L0 enabled in C: CLo
i(L) disjCLo
i(L0)i 262

ProofAssume we have C 2 PC , and L;L0 2 Lab, where L 6= L0, and L , L0 are enabled inC. We haveD 2 CLo
i(L)� f De�nition 3.45 gL 2 Cond(D)) f L, L0 enabled in C, L 6= L0, Theorem 3.47 gL0 62 Cond(D)� f De�nition 3.45 gD 62 CLo
i(L0)Thus CLo
i (L) disjCLo
i(L0), as required.(End of proof)Lemma B.2h8 L;C;C0: L 2 Lab ^ C;C0 2 PC ^ h8 D : D 2 CLo
i (L) : C:D v C0:D i: L is enabled in C) L is enabled in C0iProofSuppose L 2 Lab, C 2 PC . From Theorem 3.46, only the
on�gurations of its
onditional lo
i are relevant for determining if L is enabled in C. Suppose D 2CLo
i(L), and let C:D = (�; �;
; �), and
 v
0. We haveL is enabled in C) f Theorem 3.50 g:(C:D :� = idle ^ C:D :
 = ?)� f C:D 2 BC (D), De�nition 3.5 g263

C:D :
 6= ?) f
 v
0 g�rst(
) = �rst(
0)Thus, if L is enabled in C, then �rst(
) = �rst(
0). We observe from Table 3.3that in ea
h
ase where
 is used in the
ondition, �rst(
) is the only element of
that is used, either dire
tly, or in Pro
(
), or via fun
tions K :C and W :C, or theirsubfun
tions. Thus, if L is enabled in C, andC0 = C [D 7! (�; �;
0; �)℄then L is enabled in C0. If L has a single
onditional lo
us we are done. If not, weapply this argument twi
e, on
e for ea
h
onditional lo
us.(End of proof)Lemma B.3h8 L;C;C0;D : L 2 Lab ^ ChLiC0 ^ D 2 ULo
i(L) : C:D v C0:D iProofFrom the rules, we see that in ea
h of the
ases where D is an un
onditional lo
usfor step L, the only
hange to D 's
on�guration after the step is that an entry hasbeen added to the end of its
all queue, so the value of the
all queue before thestep is a pre�x of its value after the step.(End of proof)Lemma B.4h8 L;C;C0;D : L 2 Lab ^ ChLiC0 ^ D 62 CLo
i(L) : C:D v C0:D iProof 264

Assume L 2 Lab, and ChLiC0. We haveD 62 CLo
i(L)� f De�nition 3.45 gD 62 Lo
i(L) _ D 2 ULo
i(L)) f ChLiC0, Theorem 3.32, Lemma B.3 gC:D = C0:D _ C:D v C0:D� f v is re
exive gC:D v C0:D(End of proof)For the proof of Theorem 3.51, we showh8 L;C;C0;D: L 2 Lab ^ ChLiC0 ^ D 2 B ^ Enabled(C;D) 62 f?;Lg: Enabled(C;D) = Enabled(C0;D)iAssume we have L 2 Lab, C and C0 su
h that ChLiC0, and D 2 B, and letL0 = Enabled(C;D), where L0 62 f?;Lg. Note that the result will follow if we
anshow that L0 is enabled in C0, sin
e at most one
onditional step for D is enabledin C0. D 2 CLo
i(L0)) f L 6= L0, L and L0 enabled in C, Lemma B.1 gD 62 CLo
i(L)) f Lemma B.4 gC:D v C0:DThus we have h8 D : D 2 CLo
i (L0) : C:D v C0:D i. Sin
e L0 is enabled in C,Lemma B.2 implies L0 is enabled in C0, as required.265

B.1.3 Proof of Theorem 3.14We showh8 C;D ;E: C 2 ProgCon�g ^ C is lo
ally well-formed and
all
orre
t ^D ;E 2 dom(K :C) ^ K :C:D = K :C:E: K :C:D = ? _ D = EiAssume C 2 ProgCon�g is lo
ally well-formed and
all
orre
t, D ;E 2 dom(K :C),and K :C:D = K :C:E . We haveK :C:D 6= ?) f Let D 0 = Sour
e(C:D :
); K :C:D = K :C:E gSour
e(C:D :
) = D 0 ^ Sour
e(C:E :
) = D 0) f De�nition 2.23 gh9 m :: (m ;D 0) 2 C:D :
 i ^ h9 m 0 :: (m 0;D 0) 2 C:E :
 i) f Theorem 3.12, D 0 2 B gD = EThus K :C:D 6= ?) D = Ewhi
h is equivalent toK :C:D = ? _ D = Eas required.
266

B.1.4 Proof of Theorem 3.15We use the following lemmas.Lemma B.5h8 C;D: C 2 ProgCon�g ^ D 2 dom(K :C): K :C:D = Sour
e(C:D :
)iProofImmediate from the de�nitions.(End of proof)Lemma B.6h8 C;D: C 2 ProgCon�g ^ C is lo
ally well-formed ^ D 2 B: D 2 dom(K :C) 6� C:D :� = idleiProofAssume C 2 ProgCon�g , C is lo
ally well-formed, and D 2 B.C:D :� 6= idle� f C is lo
ally well-formed, so C:D is well-formed gC:D :� 6= idle ^ C:D :
 6= ?� f De�nitions 2.23, 2.19 3.5, and Assumption 2.18 gC:D :� 6= idle ^(Pro
(C:D :
) 2 PartMeths(D) _ Pro
(C:D :
) 2 TotMeths(D))267

� f distribute g(C:D :� 6= idle ^ Pro
(C:D :
) 2 PartMeths(D)) _(C:D :� 6= idle ^ Pro
(C:D :
) 2 TotMeths(D))� f De�nition 3.13 gD 2 dom(Kp:C) _ D 2 dom(Kt :C)� f De�nition 3.13 gD 2 dom(K :C)(End of proof)For the proof of Theorem 3.15, we showh8 C;D: C 2 ProgCon�g ^ C is lo
ally well-formed and
all
orre
t ^D 2 dom(K :C): K :C:D = ? _ K :C:D 2 dom(K :C)iAssume C 2 ProgCon�g is lo
ally well-formed and
all
orre
t, and D 2 dom(K :C).As with Theorem 3.14, we showK :C:D 6= ?) K :C:D 2 dom(K :C)Assume K :C:D 6= ?, and let K :C:D = E , for some E 2 B. We havetrue� f K :C:D = E , Lemma B.5 gE = Sour
e(C:D :
)) f De�nition 2.23 gh9 m :: (m ;E) 2 C:D :
 i) f C is
all
orre
t, E 2 B g268

C:E :� 2 fpwait;waitg) f C is lo
ally well-formed, Lemma B.6 gE 2 dom(K :C)B.1.5 Proof of Theorem 3.16We use the following lemmas.Lemma B.7h8 C : C 2 ProgCon�g : dom(Kp:C) \ dom(Kt :C) = ; iProofImmediate from the de�nitions, sin
e PartMeths(D) \ TotMeths(D) = ;.(End of proof)Lemma B.8h8 C;D: C 2 ProgCon�g ^ C is lo
ally well-formed and
all
orre
t^ D 2 B: (D 2 rng(Kp:C)) C:D :� = pwait) ^(D 2 rng(Kt :C)) C:D :� = wait)iProofAssume C 2 ProgCon�g is lo
ally well-formed and
all
orre
t, and D 2 B. Weprove the two
onjun
ts of the term separately. For the �rst part, assume D =Kp:C:E , for some E 2 B.true 269

� f Kp:C:E = D , De�nition 3.13 gh9 m; ~v: m 2 PartMeths(E) ^ ~v 2 Val�: �rst(C:E :
) = (m ;D ; ~v)i) f De�nition 3.1 gh9 m : m 2 PartMeths(E) : (m ;D) 2 C:E :
 i) f C is
all
orre
t gC:D :� = pwaitThe proof for the se
ond
onjun
t is similar.(End of proof)For the proof of Theorem 3.16, we showh8 C: C 2 ProgCon�g ^ C is lo
ally well-formed and
all
orre
t: rng(Kp:C) disj dom(Kt :C)iAssume C 2 ProgCon�g is lo
ally well-formed and
all
orre
t. Sin
edom(Kt :C) � Bit is suÆ
ient to show that, for any D 2 B,D 2 rng(Kp:C)) D 62 dom(Kt :C)Assume D 2 B. We haveD 2 rng(Kp:C)) f Lemma B.8 g 270

C:D :� = pwait� f C:D is well-formed gC:D :� = pwait ^ Pro
(C:D :
) 2 Partials(D)) f De�nition 3.13 gD 2 dom(Kp:C)) f Lemma B.7 gD 62 dom(Kt :C)B.2 Proofs for Chapter 4B.2.1 Proof of Theorem 4.7We showh8 ": " 2 Complete(Z): h8 D ; i: D 2 B ^ 0 � i � j"j: h9 j : i � j � j"j : "[j℄:D :� = idle iiiAssume " 2 Complete(Z), D 2 B, and 0 � i < j"j. If "[i℄:D :� = idle, then we
an
hoose j = i, and we are done. Assume "[i℄:D :� 6= idle. If E is the root box forthe
urrent
all in D in "[i℄, then E is
urrently exe
uting an a
tion
all. Sin
e "is
omplete, this a
tion
all
ompletes at some point. Before it does so, the
urrentpro
edure
all in D must
omplete. If the last step for this pro
edure
all is step k,then "[k + 1℄:D :� = idle. Choose j = k + 1.271

B.2.2 Proof of Theorem 4.8We use the following lemmas.Lemma B.9h8 C : C 2 PC : A
tives(C) = ; � qt(C) iProofAssume C 2 PC . If qt(C), then all
all queues are empty, so there are no a
tivea
tion
alls. If there are no a
tive a
tion
alls, sin
e C is well-founded, there
an beno a
tive method
alls. Thus all
all queues are empty, and qt(C).(End of proof)De�nition B.10 For D 2 B,A(D) , f � j � 2 A ^ Box (�) = D gLemma B.11h8 ";D: " 2 Z ^ j"j <1 ^ qt(Start (")) ^ D 2 B: NumStarts(";D) = NumEnds(";D) � A
tives(Final(")) disj A(D)iProofAssume " 2 Z , j"j < 1, qt(Start(")), and D 2 B. Ea
h a
tion-start(D) stepin " adds a
all for � 2 A(D) to D 's
all queue, and ea
h a
tion-end(D) ora
tion-reje
t(D) step removes a
all for an � 2 A(D) from D 's
all queue. No othersteps add
all for a
tions to D 's
all queue. Thus NumStarts(";D)�NumEnds(";D)is the number of a
tion
alls in D 's
all queue at the end of ". The result follows272

from this.(End of proof)For the proof of Theorem 4.8, we showh8 " : " 2 Z ^ j"j <1 : Complete(") � qt(Start(")) ^ qt(Final(")) iAssume " 2 Z , and j"j <1. We haveComplete(")� f De�nition 4.6 gProper (") ^ h8 D : D 2 B : NumStarts(";D) = NumEnds(";D) i� f Proper (")) qt(Start(")), j"j <1, Lemma B.11 gProper (") ^ h8 D : D 2 B : A
tives(Final (")) disj A(D) i� f Property of disj gProper (") ^ A
tives(Final (")) disj h[D : D 2 B : A(D) i� f De�nition B.10 gProper (") ^ A
tives(Final (")) disj A� f A
tives(Final (")) � A gProper (") ^ A
tives(Final (")) = ;� f Lemma B.9 gProper (") ^ qt(Final ("))� f De�nition 4.4, j"j < infty gqt(Start (")) ^ qt(Final (")) ^h8 D : D 2 B : Enabled(Final (");D) = ? i� f Se
ond
onjun
t implies third, by Theorem 3.50 gqt(Start (")) ^ qt(Final ("))
273

B.2.3 Proof of Theorem 4.12We use the following lemmas.Lemma B.12h8 C;C0;D ;E: C;C0 2 PC ^ C =) C0 ^ W :C:D = E ^ E 2 dom(W :C): W :C0:D = EiProofAssume C;C0 2 PC , and L 2 Lab, su
h that ChLiC0. Also assume W :C:D = E ,and E 2 dom(W :C). We havetrue� f assumption gD ;E 2 dom(W :C)) f De�nition 3.27 gC:D :�;C:E :� 2 fpwait;waitg� f assumption gW :C:D = E ^ C:D :�;C:E :� 2 fpwait;waitg) f Theorem 3.50, De�nition 3.48 gEnabled(C;D) = ?) f L enabled in C gD 62 CLo
i(L)) f ChLiC0, Lemma B.4 gC:D v C0:D) f De�nition 3.6 gC:D :� = C0:D :� ^ C:D:
 = C0:D :
274

) f De�nition 3.27 gW :C0:D =W :C:D� f W :C:D = E gW :C0:D = E(End of proof)Lemma B.13h8 "; T; k: " 2 Z ^ T 2 B+ ^ 0 � k � j"j ^ T is a knot in "[k℄: h8 i : k � i � j"j : T is a knot in "[i℄ iiProofAssume " 2 Z , T 2 B+, and T is a knot in "[k℄. We prove the result by indu
tionon i. For the basis, i = k, we have the result by assumption. For the indu
tion step,we have, for k � i < j"j,T is a knot in "[i℄� f De�nition 4.11 gh8 n : 0 � n < jT j : W :"[i℄:T [n℄ = T [n� 1℄ i� f de�nition of domain gh8 n: 0 � n < jT j: W :"[i℄:T [n℄ = T [n� 1℄ ^ T [n℄ 2 dom(W :"[i℄)i� f 8 over ^ gh8 n : 0 � n < jT j : W :"[i℄:T [n℄ = T [n� 1℄ i ^h8 n : 0 � n < jT j : T [n℄ 2 dom(W :"[i℄) i275

� f range is not empty gh8 n: 0 � n < jT j: W :"[i℄:T [n℄ = T [n� 1℄ ^h8 n : 0 � n < jT j : T [n℄ 2 dom(W :"[i℄) ii) f instantiate gh8 n: 0 � n < jT j: W :"[i℄:T [n℄ = T [n� 1℄ ^ T [n� 1℄ 2 dom(W :"[i℄)i) f Lemma B.12 gh8 n : 0 � n < jT j : W :"[i+ 1℄:T [n℄ = T [n� 1℄ i� f De�nition 4.11 gT is a knot in "[i+ 1℄(End of proof)Lemma B.14h8 "; k;D ;E: " 2 Z ^ 0 � k � j"j ^ D 2 B ^ W :"[k℄:D = E ^h8 i : k � i � j"j : E 2 dom(W :"[i℄) i: h8 i : k � i � j"j : W :"[i℄:D = E iiProofAssume " 2 Z , 0 � k � j"j, D 2 B, W :"[k℄:D = E andh8 i : k � i � j"j : E 2 dom(W :"[i℄) i276

We have, for k � i < j"j,W :"[i + 1℄:D = E(f Lemma B.12 gW :"[i℄:D = E ^ E 2 dom(W :"[i℄)� f E 2 dom(W :"[i℄) by assumption gW :"[i℄:D = EThus we have W :"[k℄:D = E , and W :"[i℄:D = E)W :"[i + 1℄:D = E , for k � i <j"j, so the result follows by indu
tion.(End of proof)Lemma B.15h8 ";D ; k; n: " 2 Z ^ D 2 B ^ 0 � k � j"j ^0 � n ^ (W :"[k℄)n:D is in a knot in "[k℄: h8 i : k � i < j"j : (W :"[i℄)n:D is in a knot in "[i℄ iiProofAssume " 2 Z , and D 2 B. We prove the result by indu
tion on n.Basis: n = 0For 0 � k � j"j, we have(W :"[i℄)0:D is in a knot in "[k℄� f de�nition gD is in a knot in "[k℄) f Lemma B.13 gh8 i : k � i � j"j : D is in a knot in "[i℄ i277

� f de�nition gh8 i : k � i � j"j : (W :"[i℄)0:D is in a knot in "[i℄ iIndu
tion stepAssume as the indu
tion hypothesis, for 0 � n,h8 D ; k: D 2 B ^ 0 � k � j"j ^ (W :"[k℄)n:D is in a knot in "[k℄: h8 i : k � i � j"j : (W :"[i℄)n:D is in a knot in "[i℄ iiSuppose W :"[k℄:D = E , for 0 � k � j"j. We have(W :"[k℄)n+1:D is in a knot in "[k℄� f de�nition g(W :"[k℄)n:E is in a knot in "[k℄) f indu
tion hypothesis gh8 i : k � i � j"j : (W :"[i℄)n:E is in a knot in "[i℄ i� f de�nition of domain gh8 i: k � i � j"j: (W :"[i℄)n:E is in a knot in "[i℄ ^ E 2 dom(W :"[i℄)i� f 8 over ^ gh8 i : k � i � j"j : (W :"[i℄)n:E is in a knot in "[i℄ i ^h8 i : k � i � j"j : E 2 dom(W :"[i℄) i) f Lemma B.14, W :"[k℄:D = E gh8 i : k � i � j"j : (W :"[i℄)n:E is in a knot in "[i℄ i ^h8 i : k � i � j"j : W :"[i℄:D = E i278

) f 8 over ^ gh8 i: k � i � j"j: W :"[i℄:D = E ^ (W :"[i℄)n:E is in a knot in "[i℄i) f de�nition gh8 i : k � i � j"j : (W :"[i℄)n+1:D is in a knot in "[i℄ i(End of proof)For the proof of Theorem 4.12, we showh8 "; k;D: " 2 Z ^ 0 � k � j"j ^ D 2 B ^ dl("[k℄;D): h8 i : k � i � j"j : dl("[i℄;D) iiAssume " 2 Z , 0 � k � j"j, and D 2 B. We havedl("[k℄;D)� f De�nition 4.11 gh9 n : 0 � n : (W :"[k℄)n:D is in a knot in "[k℄ i) f Lemma B.15 gh9 n: 0 � n: h8 i : k � i � j"j : (W :"[k℄)n:D is in a knot in "[i℄ ii) f inter
hange quanti�
ations g
279

h8 i: k � i � j"j: h9 n : 0 � n : (W :"[k℄)n:D is in a knot in "[i℄ ii� f De�nition 4.11 gh8 i : k � i � j"j : dl("[i℄;D) iB.2.4 Proof of Theorem 4.14We use the following lemmas.Lemma B.16h8 C;D: C 2 PC ^ D 2 B ^ dl(C;D): D 2 dom(W :C:D) ^ dl(C;W :C:D)iProofImmediate from De�nitions 3.27 and 4.11.(End of proof)Lemma B.17h8 C;D: C 2 PC ^ D 2 B: dl(C;D) � h8 n : 0 � n : (W :C)n:D is de�ned iiProof 280

Assume C 2 PC , and D 2 B. We prove the equivalen
e by proving the impli
ationin both dire
tions.Case):We have true� f Lemma B.16 gdl(C;D)) D 2 dom(W :C) ^ dl(C;W :C:D)� f de�nition gdl(C;D)) W :C:D is de�ned ^ dl(C;W :C:D)Now we have, for any deadlo
ked D ,true� f above gh8 n: 0 � n ^ dl(C; (W :C)n:D): (W :C)n+1:D is de�ned ^ dl(C; (W :C)n+1:D)i) f 8 antimonotoni
 in the range gh8 n: 0 � n ^ (W :C)n:D is de�ned ^ dl(C; (W :C)n:D): (W :C)n+1:D is de�ned ^ dl(C; (W :C)n+1:D)i� f De�nition 3.17, assumption g(W :C)0:D is de�ned ^ dl(C; (W :C)0:D) ^
281

h8 n: 0 � n ^ (W :C)n:D is de�ned ^ dl(C; (W :C)n:D): (W :C)n+1:D is de�ned ^ dl(C; (W :C)n+1:D)i) f indu
tion gh8 n : 0 � n : (W :C)n:D is de�ned ^ dl(C; (W :C)n:D) i) f weaken term gh8 n : 0 � n : (W :C)n:D is de�ned iCase (:Assumeh8 n : 0 � n : (W :C)n:D is de�ned iConsider the in�nite sequen
e U 2 B+,U = hn : 0 � n : (W :C)n:D iEvery element in this sequen
e is de�ned, by assumption. Sin
e the sequen
e isin�nite, and B is �nite, the sequen
e
ontains repeated values. We
hoose s and tsu
h that s < t, and U [s℄ = U [t℄. Then the sequen
e U [s : : : t � 1℄ is a knot in C,and (W :C)s:D 2 U [s : : : t� 1℄. Thus dl(C;D).(End of proof)Lemma B.18h8 C;D : C 2 PC ^ D 2 B : :(D 2 rng(W :C) ^ qt(C:D)) iProof 282

Assume C 2 PC , and D 2 B. We showD 2 rng(W :C)) :qt(C:D) (B.1)whi
h is equivalent to the term above.D 2 rng(W :C)� f de�nition gh9 E :: W :C:E = D i� f De�nition 3.27 gh9 E :: C:E :� 2 fpwait;waitg ^ Agent(C:E :�) = D i� f De�nition 3.20 gh9 E ;m :: (m ;E) 2 C:D :
 i) f list property gC:D :
 6= ?� f De�nition 3.3 g:qt(C:D)(End of proof)For the proof of Theorem 4.14, we showh8 C: C 2 PC: h8 D :: Enabled(C;D) = ? i � h8 D :: qt(C:D) _ dl(C;D) iiAssume C 2 PC . We prove the equivalen
e as two impli
ations.Case):We have 283

Enabled(C;D) = ?) f Theorem 3.50, De�nition 3.48 gqt(C:D) _ C:D :� 2 fpwait;waitg) f De�nition 3.27 gqt(C:D) _ D 2 dom(W :C)� f predi
ate
al
ulus g:qt(C:D)) D 2 dom(W :C)) f Lemma B.18 gD 2 rng(W :C)) D 2 dom(W :C)From the �rst and penultimate lines, we getEnabled (C;D) = ? ^ :qt(C:D)) D 2 dom(W :C)and from the �rst and last lines, we getEnabled (C;D) = ?) (E 2 rng(W :C)) E 2 dom(W :C))We now show, for any Dh8 E : E 2 B : Enabled (C;E) = ? i) qt(C:D :) _ dl(C;D)by showing the following, whi
h is equivalent.:qt(C:D :) ^ h8 E : E 2 B : Enabled(C;E) = ? i) dl(C;D)We have :qt(C:D :) ^ h8 E :: Enabled(C;E) = ? i284

� f instantiate g:qt(C:D :) ^ Enabled(C;D) = ? ^h8 E :: Enabled(C;E) = ? i) f above results gD 2 dom(W :C) ^ h8 E : E 2 rng(W :C) : E 2 dom(W :C) i) f De�nition 3.17 gh8 n : 0 � n : (W :C)n:D is de�ned i� f Lemma B.17 gdl(C;D)Case (:We show the following, stronger, result.h8 D :: qt(C:D) _ dl(C;D)) Enabled(C;D) = ? iAssume D 2 B. We haveqt(C:D) _ dl(C;D)� f Lemma B.16 gqt(C:D) _ (dl(C;D) ^ dl(C;W :C:D))) f de�nition gqt(C:D) _(C:D :� 2 fpwait;waitg ^ C:(W :C:D):� 2 fpwait;waitg)) f Theorem 3.50, De�nition 3.48 gEnabled(C;D) = ?
285

B.3 Proofs for Chapter 5B.3.1 Proof of Theorem 5.56We showh8 "; "0;T: "; "0 2 Zm ^ " resp T ^" �! "0 by Theorem 5.46, 5.47, 5.48, 5.49, 5.50, or 5.55: "0 resp TiAssume "; "0 2 Zm, " resp T, and " �! "0 by Theorem 5.46, 5.47, 5.48, 5.49, 5.50, or5.55. A thread is a
tive for an a
tion from the �rst step taken for the thread, whi
his one ofa

eptreje
ta
tion-startp-a
tion-start-rdvt-a
tion-start-rdvto the last step taken for the thread, whi
h is one ofa

eptreje
ta
tion-enda
tion-reje
t
286

Note that a

ept and reje
t steps are both the �rst and last for their threads. Twothreads are a
tive at the same time if one has its �rst step between the �rst andlast step for the other. A transformation that gives :("0 resp T) involves movinga start step left over an end step. Note that the start steps are all right-movers orde
ision steps, and that the end steps are all left-movers or de
ision steps. Thus thisstep involves moving a right-mover or de
ision step left over a left-mover or de
isionstep. Theorem 5.46 removes a thread from the exe
ution, so does not introdu
ea step that violates T. Theorems 5.47, and 5.48 do not
hange the relative orderof the �rst and last steps for any threads. If Theorems 5.49, 5.50, or 5.55 are usedto show " �! "0, then either a right-mover is moved right, or a left-mover is movedleft. None of the theorems allows a right-mover or a de
ision step to move left overa left-mover or a de
ision step. Thus "0 resp T.

287

Bibliography
[1℄ Alfred V Aho, John E Hop
roft, and Je�rey D Ullman. Data Stru
tures andAlgorithms. Addison-Wesley, 1983.[2℄ R J R Ba
k. A method for re�ning atomi
ity in parallel algorithms. In EddyOdijk, Martin Rem, and Jean-Claude Syre, editors, PARLE '89: Parallel Ar-
hite
ture and Languages Europe, vol II: Parallel Languages, number 366 inLe
ture Notes in Computer S
ien
e, pages 199{216. Springer-Verlag, 1989.[3℄ R J R Ba
k and J von Wright. Reasoning algebrai
ally about loops. A
taInformati
a, 36:295{334, 1999.[4℄ Rohit Chandra, Anoop Gupta, and John L Hennessy. Cool: an obje
t-basedlanguage for parallel
omputing. Computer, 27(8):13{26, Aug 1994.[5℄ K Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation.Addison-Wesley, 1988.[6℄ Ernie Cohen. A guide to redu
tion. Unpublished manus
ript, 1994.[7℄ Ernie Cohen and Leslie Lamport. Redu
tion in TLA. In Davide Sangiorgi andRobert de Simone, editors, CONCUR '98: Con
urren
y Theory, number 1466in Le
ture Notes in Computer S
ien
e, pages 317{331. Springer-Verlag, 1998.

288

[8℄ B A Davey and H A Priestley. Introdu
tion to Latti
es and Order. CambridgeUniversity Press, 1990.[9℄ Edsger W Dijkstra and Carel S S
holten. Predi
ate Cal
ulus and ProgramSemanti
s. Texts and Monographs in Computer S
ien
e. Springer-Verlag, 1990.[10℄ Thomas W Doeppner, Jr. Parallel program
orre
tness through re�nement. InFourth ACM Symposium on the Prin
iples of Programming Languages, pages155{169, 1977.[11℄ E Allen Emerson. Temporal and modal logi
. In J van Leeuwen, editor, Hand-book of Theoreti
al Computer S
ien
e, pages 996{1071. Elsevier S
ien
e Pub-lishers, 1990.[12℄ K P Eswaran, J N Gray, R A Lorie, and I L Traiger. The notions of
onsis-ten
y and predi
ate lo
ks in a database system. Communi
ations of the ACM,19(11):624{633, Nov 1976.[13℄ Nissim Fran
ez. Fairness. Texts and Monographs in Computer S
ien
e.Springer-Verlag, 1986.[14℄ Jim Gray and Andreas Reuter. Transa
tion Pro
essing: Con
epts and Te
h-niques. Series in Data Management Systems. Morgan Kaufmann, 1992.[15℄ David Gries. The S
ien
e of Programming. Texts and Monographs in ComputerS
ien
e. Springer-Verlag, 1981.[16℄ C A R Hoare. An axiomati
 basis for
omputer programming. Communi
ationsof the ACM, 12(10):576{580, O
t 1969.[17℄ C A R Hoare. Proof of
orre
tness of data representations. A
ta Informati
a,1:271{282, 1972. 289

[18℄ C A R Hoare. Monitors: an operating system stru
turing
on
ept. Communi-
ations of the ACM, 17(10):549{557, O
t 1974.[19℄ Steve J Hodges and Cli� B Jones. Non-interferen
e properties of a
on
urrentobje
t-based language: proofs based on an operational semanti
s. In BurkhardFreitag, Cli� B Jones, Christian Lengauer, and Hans-J�org S
hek, editors, Obje
tOrientation with Parallelism and Persisten
e, pages 1{22. Kluwer A
ademi
Publishers, 1996.[20℄ Rajeev Joshi and Jayadev Misra. On the impossibility of robust solutions for fairresour
e allo
ation. Te
hni
al Report Te
hni
al Report TR-99-14, Universityof Texas at Austin, Department of Computer S
ien
es, Apr 1999.[21℄ Leslie Lamport. Proving the
orre
tness of multipro
ess programs. IEEE Trans-a
tions on Software Engineering, 3(2):125{143, 1977.[22℄ Leslie Lamport. A theorem on atomi
ity in distributed algorithms. DistributedComputing, 4:59{68, 1990.[23℄ Leslie Lamport and Fred B S
hneider. Pretending atomi
ity. Te
hni
al ReportResear
h Report 44, Digital Equipment Corporation, Systems Resear
h Center,1989.[24℄ Ri
hard J Lipton. Redu
tion: a method of proving properties of parallel pro-grams. Communi
ations of the ACM, 18(12):717{724, De
 1975.[25℄ Jayadev Misra. A Dis
ipline of Multiprogramming. Texts and Monographsin Computer S
ien
e. Springer-Verlag, 2000 (in preparation). Parts of themanus
ript are available from ftp://ftp.
s.utexas.edu/pub/psp/seuss/-dis
ipline.ps.gz.[26℄ C Mohan, Donald Fussell, and Abraham Silbers
hatz. Compatibility and
om-mutativity of lo
k modes. Information and Control, 61(1):38{64, April 1984.290

[27℄ J Eliot B Moss. Nested Transa
tions: an Approa
h to Reliable DistributedComputing. The MIT Press, 1985.[28℄ Susan Owi
ki and David Gries. An axiomati
 proof te
hnique for parallel pro-grams i. A
ta Informati
a, 6:319{340, 1976.[29℄ Gordon D Plotkin. The stru
tural approa
h to operational semanti
s. Te
hni
alReport Resear
h Paper DAIMI FN-19, Computer S
ien
e Department, AarhusUniversity, Denmark, Sep 1981.[30℄ A M Turing. On
omputable numbers, with an appli
ation to the Ents
hei-dungsproblem. Pro
eedings of the London Mathemati
al So
iety, Series 2,42:230{265, 1936. Corre
tion in [31℄.[31℄ A M Turing. On
omputable numbers, with an appli
ation to the Ents
hei-dungsproblem. a
orre
tion. Pro
eedings of the London Mathemati
al So
iety,Series 2, 43:544{546, 1937. Corre
tion to [30℄.[32℄ Leslie G Valiant. A bridging model for parallel
omputation. Communi
ationsof the ACM, 33(8):103{111, Aug 1990.[33℄ Akinori Yonezawa, editor. ABCL: An Obje
t-Oriented Con
urrent System. MITPress, 1990.

291

Vita
William Edward Adams was born in Bristol, England on De
ember 5, 1960, toJohn Edward Adams and Sheila Margaret Adams. He attended St Bede's RomanCatholi
 Comprehensive S
hool in Bristol until 1979, when he entered Trinity Col-lege, Cambridge. In 1982, he re
eived a Ba
helor of Arts degree in Mathemati
s fromCambridge University. After leaving Trinity College he lived in London, working atvarious times as a pedal
y
le me
hani
, a photopro
ess operator, and a
omputerprogrammer. He attended graduate
lasses at the City University, London, from1987 to 1989. He also ran a bran
h of the Labour Party, organizing several ele
tion
ampaigns, and helped lead a
ampaign of publi
-se
tor tenants that su

essfullyopposed privatization of publi
 housing. In 1991, he entered the Graduate S
hoolof the University of Texas at Austin. He re
eived a Masters of S
ien
e in ComputerS
ien
es in 1993.Permanent Address: 4605 Ri
hmond AvenueAustin TX 78745USAThis dissertation was typeset with LATEX2"1 by the author.1LATEX2" is an extension of LATEX. LATEX is a
olle
tion of ma
ros for TEX. TEX is a trademark ofthe Ameri
an Mathemati
al So
iety. The ma
ros used in formatting this dissertation were writtenby Dinesh Das, Department of Computer S
ien
es, The University of Texas at Austin.292

