Copyright
by
William Edward Adams

2000

Untangling the threads: reduction for a concurrent

object-based programming model

by

William Edward Adams, BA, MS

Dissertation
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2000

Untangling the threads: reduction for a concurrent

object-based programming model

Approved by
Dissertation Committee:

To Beverly

Acknowledgments

The time I have spent at the University of Texas has been the most enriching and
stimulating period of my life. The Computer Sciences Department has the fortu-
nate combination of excellent faculty, outstanding graduate students, and helpful
support staff. Jayadev Misra has proved to be an excellent advisor. His insights
have provided the foundations for my work, and I hope I have learnt some of his
ability to reach the core of a problem, focusing on the important elements, and
ignoring irrelevant details. Professors Allen Emerson and Edsger Dijkstra have also
been major influences on my development as a computer scientist. I have learnt
much from my discussions with various members of Dr Misra’s research groups,
in particular Ernie Cohen, Rajeev Joshi, Markus Kaltenbach, Jacob Kornerup, Al
Carruth, and J R Rao. Gloria Ramirez in the Graduate Office was the first person
I met in the Department, and she has been a regular source of information and help
ever since.

Attending graduate school requires not only intellectual curiosity, but also
financial support. This work was supported in part by National Science Foundation
Award CCR-9803842, and by a research assistantship at the Computer Engineering
Research Center, funded by Fujitsu Laboratories of America. Summer employment,
with Schlumberger Laboratory for Computer Science, Microsoft Corporation, IBM
T J Watson Research Center, and Fujistsu Laboratories of America, has provided

income, and a welcome opportunity to travel around the United States. In the past

two years, I have been employed by IBM Austin Research Laboratory. The support,
both material and moral, that I have received there has been invaluable in the final
stages of this work. I thank Sani Nassif and Warren Hunt, Jr, in particular.
Finally, this dissertation would not have been written without the forbear-
ance of my wife, Beverly, and my stepson, Summer. They have shown uncommon

love and tolerance during the countless hours that I have spent writing.

WiLLiaAM EDWARD ADAMS

The University of Texas at Austin
August 2000

vi

Untangling the threads: reduction for a concurrent

object-based programming model

Publication No.

William Edward Adams, Ph.D.
The University of Texas at Austin, 2000

Supervisor: Jayadev Misra

Reduction is a technique for simplifying reasoning about systems where a set of
sequential executions, which we call threads, are executed concurrently. In a con-
current execution, steps from different threads are interleaved. A reduction theorem
shows that a concurrent execution is equivalent to an execution in which all the steps
of a given thread appear contiguously. These steps can be replaced by a single atomic
step representing the complete execution of the thread.

Applying reduction to each thread in turn, we reduce a concurrent execution
to an atomic execution, where every step is an atomic step. Reasoning about the
atomic execution is significantly simpler than reasoning about the original concur-
rent execution. In the atomic execution, we do not need to consider the interactions
of steps from different threads.

We describe a model for concurrent systems, called Seuss. In this model, a
program is a set of independently executing boxes, which communicate using a form
of remote procedure call. We show how to reduce a concurrent execution of a Seuss

program to an atomic execution. Since every concurrent execution is equivalent to

vil

an atomic execution, we can understand all possible executions of a Seuss program
by understanding just its atomic executions.

We show three main results. One gives sufficient conditions to guarantee
that all threads in an execution terminate. The other two concern reduction of
executions in which all threads terminate.

We express the reduction results relative to restrictions on which pairs of
threads can run concurrently. The first reduction theorem shows a restriction on
concurrency that guarantees that every execution can be reduced to a sequential
execution. The second reduction theorem gives a stronger restriction on concurrency
(so less concurrency is allowed in an execution), but, in return, gives a reduced
sequential execution that has stronger fairness properties (and thus better progress
properties) than we get with the first theorem.

To show these results, we use an operational semantics for a simple Seuss
language. The semantics is such that our results apply to any language implementing

the Seuss model.

viii

Contents

Acknowledgments v
Abstract vii
List of Tables xvi
List of Figures xvii

Chapter 1 Introduction 1
1.1 A model for concurrent systems L. 3
1.1.1 Action systems 3

1.1.2 The Seuss model 5

1.1.3 Partial and total procedures 7

1.1.4 Atomic executions of Seuss programs 11

1.1.5 Mutual exclusionon boxes 13

1.1.6 Concurrent execution in Seuss 14

1.2 Reduction 17
1.2.1 The two-phase locking protocol 18

1.2.2 Reduction for Seuss oo 20

1.3 Summary of the material 0L, 24
1.3.1 Chapteroverview i 25

X

1.4 Related work L 26
1.AT Seusso e e e 26

1.4.2 Reduction 27

1.4.3 Transaction processing 29

1.4.4 Concurrent object-based languages 30

1.5 Notation e 31
Chapter 2 The definition of TCB 36
2.1 Introduction. 36
2.2 Syntax 37
2.2.1 Variables, states, values and expressions 37
2.2.2 Syntax for TCBloc 38

2.3 Syntaxfor TCB. 41
2.4 Well-formed programs 43
2.5 Run-time errorso e e e 45
2.6 Operational semantics 45
2.7 Operational semantics for TCBloc 49
2.7.1 Program configuration for TCBloc 49
2.7.2 Semantic rules for TCBloc. 49

2.8 Defining the semantics for TCB 52
2.8.1 Modelling boxes 52

2.9 Rendezvous semantics for TCBtot 54
2.9.1 Static information for a TCBtot box %
2.9.2 Static infomation for a TCBtot program 56
2.9.3 Box configuration for TCBtot 57
2.9.4 Program configuration for TCBtot 60
2.9.5 Semantic rules for TCBtot 60

2.10 Rendezvous semantics for TCB 64

2.11

2.12

2.10.1 Static infomation fora TCBbox
2.10.2 Static information for a TCB program
2.10.3 Box configuration for TCB
2.10.4 Program configuration for TCB
2.10.5 Rendezvous semantic rules for TCB
Queue semantics for TCB,
2.11.1 Call queues o v v i i i
2.11.2 Box and program configurations for the queue semantics . . .
2.11.3 Queue semantic rules for TCB
Summaryo e e

2.12.1 Run-time errors. o v i e e e

Chapter 3 Execution of TCB programs

3.1
3.2
3.3

3.4

3.5
3.6

Introductiono
Box configurations L o oo
Program Configurations,
3.3.1 Relations induced by calls
3.3.2 Well-formed program configurations
3.3.3 Callstacks
334 Waitlines
3.3.5 Persistent states o000
Program steps.
3.4.1 Steps and configurations
3.42 Steplabels o
3.4.3 Enabledsteps
3.4.4 Enabled steps for acall stack
Executions e
Discussion

xi

3.6.1 Deterministic and nondeterministic steps 120

3.6.2 Threads 122
Chapter 4 Complete executions 123
4.1 Introduction. e 123
4.1.1 Proceduresets oo 125

4.2 Proper executions and complete executions 126
4.3 Deadlock 129
4.4 TInfinite procedure callso 132
4.5 Executions with a finite number of threads 135
4.6 Thread fairnesso 136
4.6.1 Fairness for rendezvous procedure calls 137

4.7 The complete execution theorem 138
4.8 Control relations L oL 142
4.8.1 TImplementing control relations 144

4.9 Avoiding deadlock oo 145
4.9.1 Nonblocking control relations 147

4.10 Avoiding infinite threadso 152
4.11 Implementing thread fairness 153
412 Summary o e e e e e e e e e 154
4.12.1 Avoiding run-time errors. 154
Chapter 5 Reduction 155
5.1 Introduction. 155
5.1.1 Right-movers and left-movers in TCB 156
5.1.2 Transforming an execution 157

5.2 Compound steps 158
5.2.1 Rendezvouscalls 159

xii

5.2.2 Atomicsteps 161

5.2.3 Executions with compound steps 167

5.3 Step types o 170
5.3.1 Decisionsteps. o 170

5.3.2 Right-movers and left-movers 172
5.3.3 The format of a thread 173
5.3.4 A strategy for reduction Lo oL 175

54 Reduction relations Lo L L Lo 176
5.4.1 Accept decision stepso oo 176
5.4.2 Similar executions L0000 177

5.4.3 Swappingstepso L 179
5.4.4 Reduce-equivalence 0oL 181
5.4.5 Finite reduction oo, 183
5.4.6 The reduction relation 186

5.5 Relating concurrent and sequential configurations 190
5.6 Reductionrules L Lo 195
5.7 Reduction rule for tmstepso oL 200
5.7.1 Weak compatibility 0 oL 203
5.7.2 Reduction that respects control relations. 207

5.8 The first reduction theorem 208
5.8.1 Outline of the proof 208
5.8.2 Proofof Lemma 558 0oL 210
Chapter 6 Fairness 218
6.1 Introduction. 218
6.2 Fairness conditions for TCB 221
6.2.1 Weak fairness L L oo 222
6.2.2 Minimal fairness oL oL 0oL 223

xiii

6.3
6.4
6.5
6.6
6.7

Program properties Lo
Fairness for weak compatibility
Strong compatibility Lo oo
The second reduction theorem

Scheduling TCB programs« . v v i v i v oo

Chapter 7 Conclusions

7.1
7.2

Summary of the main results
Future work
7.2.1 Reasoning about Seuss programs
7.2.2 Concurrent termination,

7.2.3 Negative alternatives

Appendix A Semantics for TCB languages

Al

Rendezvous semantics for TCBtot v ...

A.2 Rendezvous semantics for TCB v i

A.3 Queue semantics for TCB

Appendix B Additional proofs

B.1

B.2

Proofs for Chapter 3
B.1.1 Proof of Theorem 3.33
B.1.2 Proof of Theorem 3.51
B.1.3 Proof of Theorem 3.14
B.1.4 Proof of Theorem 3.15
B.1.5 Proof of Theorem 3.16
Proofs for Chapter 4 oo
B.2.1 Proof of Theorem 4.7
B.2.2 Proof of Theorem 4.8
B.2.3 Proof of Theorem 4.12

Xiv

245
245
246
246
247
247

248
248
250
253

B.2.4 Proof of Theorem 4.14 280

B.3 Proofs for Chapter 5 o oL 286
B.3.1 Proof of Theorem 5.56 286
Bibliography 288
Vita 292

XV

List of Tables

3.1
3.2
3.3

5.1

Conditions on the box phase for one-locus rules. 101
Conditions on the box phase for two-locus rules. 103
Conditions on C to enable a conditional step for D. 112
Configurations for a method call from Dto £ 159

xvi

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

2.12
2.13

A producer-consumer program 6
Code for box Buff 7
Boxes Prod and Cons 9
Partial procedure with alternatives 10
Program with commuting and noncommuting methods 21
TCBloc code to divide x by d L. 39
Syntax for TCBloc i 40
A TCB program with three boxes 41
Syntax for TCB e 42
Semantics for TCBloc 50
Transition diagram for phases of a TCBtot box. 58
Semantics for TCBtot: action start and method call 61
Semantics for TCBtot: procedure body execution. 62
Semantics for TCBtot: procedure return 63
Transition diagram for phases of a TCBbox. 69
Rendezvous semantics for TCB: starting and rejecting a partial ac-

tioncall L 72
Rendezvous semantics for TCB: guard evaluation 73
Rendezvous semantics for TCB: test return 75

xVii

2.14 Queue semantic rules for TCB: procedure call 80

2.15 Queue semantic rules for TCB: procedure initialization 81
4.1 Program that can deadlock 129
4.2 Program with nonterminating procedure 133
5.1 Adding a probe to a program L. 195
6.1 Program with fairness-dependent unavoidability properties 227
6.2 The semaphore with a kill action 229

XViil

Chapter 1

Introduction

Implementing concurrent systems that function correctly is a difficult task. To
understand the behaviour of two sequential programs executing concurrently, we
must understand not only the behaviour of each separately, but also the ways in
which they interact.

We can understand an execution of a sequential program as a transformation
from its start state to its final state. In this view, the intermediate states are ignored.
We separate what the program does, from how it does it. If we run two sequential
programs one after the other, we can determine the transformation effected by the
execution as a whole from the transformations for the separate programs.

There is not the same separation between what is done and how it is done
when we consider concurrent execution of sequential programs. Consider the fol-

lowing programs.

a = zr=z+1l;rx:=x+1

o o oxi=1x%2

Program « adds 2 to z, and program «' doubles z. Executing the programs one

after the other from a state where x = 2, we reach a state where £ = 8 for the

execution «;c’, and a state where x = 6 for the execution o';a. Consider now
executing the programs concurrently. We assume that each statement is atomic,
so the interference occurs only if the statement from o' occurs between the two
statements from «a. In this case, z = 7 in the final state.

To understand the concurrent execution of o and o/, we must understand
the internal workings of each, and consider ways that they may interfere. Here the
doubling of = by o' overwrites an intermediate result written by « to =, and so o’
interferes with o’s execution.

Note that we can replace the two assignments in o with a single assignment
adding 2 to z, and the above interfering computation is no longer possible. The
amount of interference possible depends on the internal structure of the programs.

There are short programs, so there is a limited number of interleavings of
their statements. For longer programs, there is a larger number of interleavings,
and consequently more opportunity for interference.

Note that not all sequential programs interfere when run concurrently. Pro-
grams that access disjoint parts of the state space do not interfere. Neither do
certain programs that access shared variables. Consider running two copies of «
concurrently. The overall effect is to add 4 to z, regardless of the interleaving of
the statements. For noninterfering programs, running the programs concurrently is
equivalent to running them sequentially, in some order.

We propose a model for concurrent systems, called Seuss, in which we sep-
arate the transformational aspects of the sequential programs from the issues of
interference between programs. A Seuss program is a set of individual sequential
programs, called actions, that access a shared state. An execution of a program
consists of repeatedly choosing one of the actions and executing it to completion.
One action is executed at a time, so we can understand the effect of each execution

of an action without considering internal details. This gives us a simple model for

proving properties of programs.

In the implementation of Seuss, we allow actions to execute concurrently.
But we do so in a controlled way. As we saw above, allowing any two actions to run
concurrently allows interference. We allow only actions that do not interfere with
each other to execute concurrently.

Building a system in Seuss follows the following outline. First, we define
the actions, and show that a sequential execution of the program has the desired
properties. Then we examine each pair of actions and decide if they are interfering
or noninterfering. We implement the program so that only noninterfering actions
run concurrently.

Our work addresses the second part of this outline. We define the Seuss
model, and we give a condition on pairs of actions that guarantees noninterference.
We show that for any execution where only noninterfering actions run concurrently,

there is a sequential execution with the same behaviour.

1.1 A model for concurrent systems

1.1.1 Action systems

A sequential program « can be specified by a set of assertions, called Hoare triples
[16], of the form {P} a{Q}, where P and @ are predicates on the state. This
assertion is true if every execution of « that starts from a state satisfying P ends in
a state satisfying Q. We call P the precondition, and @ the postcondition. In the
transformational view of sequential programs, two programs are equivalent if there
is no assertion satisfied by one that is not satisfied by the other.

Representing sequential programs by the assertions they satisfy discards in-
formation about the internal computations of the program. So, for example, if «

satisfies the Hoare triple {P} o {Q}, where P is “A is an array of integers”, and @

is “A contains the same values as before, in sorted order”, then this assertion gives
no information about the algorithm used to implement the sort, or any intermedi-
ate values that array A takes during the execution of the program. Any program
satisfying the assertion is equivalent for our purposes.’

An action system consists of a set of terminating sequential programs, called
actions, that read and write a set of shared variables. A single execution of an action
is called a thread. An execution of an action system is a sequence of threads.

An action system represents a simple concurrent system. Here, concurrency
is represented by alternating threads for different actions. For example, consider a
system with two actions, Produce and Consume. A thread for the former produces
an item, and a thread for the latter consumes an item. An execution of this system
consists of a sequence of threads, some for Produce, and some for Consume. We
regard this as representing the concurrent execution of a producer process, which
repeatedly executes action Produce, with a consumer process, which repeatedly
executes action Consume. The interleaving in an execution of an action system is
at the granularity of complete threads.

To prove properties of the executions of an action system, we first consider
each action separately, and show a set of assertions satisfied by a single thread for
the action. Given this, we can represent the complete execution of a thread as a
single step, which satisfies the Hoare triples for the corresponding action. We call
the step representing a complete thread an atomic step.

An atomic execution is an execution where every thread is represented by an
atomic step. The properties of an atomic executions are derived from the assertions
satisfied by the atomic steps.

Here there is a clean separation of concerns. We examine the internal struc-

ture of each action separately to determine the set of Hoare triples it satisfies. During

LOf course, the choice of sorting algorithm has a major impact on the time taken for the program
to complete execution, but this issue does not concern us here.

this process, we must consider the states internal to a thread’s execution, but the
resulting assertions are given in terms of the start and final state alone. Having done
this, we consider an atomic execution, in which all states internal to the execution
of a thread have been elided.

The actions are terminating sequential computations, whereas an execution
of an action system is generally nonterminating. The above scheme separates the se-
quential, terminating aspects of the execution of a single thread from the concurrent,

nonterminating aspects of the overall system execution.

1.1.2 The Seuss model

We define a programming model, called Seuss [25], based on action systems. We
extend the action system model in two ways. We distribute the state space and the
code of the actions across a set of bozes, and we allow for concurrent execution of
threads. We consider the distribution of the data and code first.

Boxes are rudimentary objects. A box contains some variables, and some
procedures. A variable in a box can be read or written only by a procedure in that
box. The procedures are of two types: actions and methods. Actions are top-level
procedures. In this model, a thread is the complete execution of an action call.
The code of a procedure contains statements reading and writing variables local
to its box, and calls to methods on other boxes. Actions are not called by other
procedures. Methods may take parameters, both input and output, but actions take
none.

We use compound identifiers for the variables and procedures in a box, with
the box name as part of the identifier. Thus D.z is the name of a local variable z
in box D, and D.qa is the name of an action a in D.

A thread for D.a starts executing the code of a at box D. If the execution

reaches a method call statement for method F.m, then execution at D is suspended

Prod Cons

N

Buff

Figure 1.1: A producer-consumer program

while the code for m is executed at E. Execution continues at D when the execution
of E.m completes.

Consider a simple example of such a program with three boxes, shown pic-
torially in Figure 1.1. This program contains three boxes, called Prod, Cons, and
Buff. The program represents a simple producer-consumer system. The box Prod
produces some items which are consumed by box Cons. A buffer, implemented by
box Buff, holds items that have been produced by Prod, but not yet consumed by
Cons. We assume that Buff implements a buffer of unbounded size that obeys a
first-in-first-out (FIFO) discipline.

The line in the diagram from box Prod to box Buff indicates that procedures
in Prod call methods in Buff, and similarly for the line from Cons to Buff. There
are no method calls between boxes Prod and Cons.

Box Buff has two methods, and no actions. Method Buff.put takes a single
item as an input parameter. The call Buff.put(z) adds item z to back of the buffer.
Method Buff.get returns a single item as an output parameter. A call Buff.get(y)
removes the front item from the buffer and returns it in .

Box Prod has one action, and no methods. Action Prod.make produces an
item, and calls Buff.put to put this item in the buffer. Box Cons similarly has a

single action, and no methods. Action Cons.use calls Buff.get to retrieve an item

box Buff
var s:sequence of integer
method put(in z : integer)
Hosi=84T
method get(out z : integer)
s# L — x:=first(s) ; s := rest(s)
end

Figure 1.2: Code for box Buff

from the buffer, and then consumes this item.

1.1.3 Partial and total procedures

The first question that arises is what to do in the case that a thread for Cons.use is
called when there is no item in the buffer. In this case the call to Buff.get cannot
return an item. We handle this by putting a guard in the code for Buff.get. The
guard contains a predicate on the local state. The code for box Buff is shown in
Figure 1.2. For simplicity, we assume that the buffer holds integer items. The
code for Buff declares a variable s, which is a sequence of integers, representing
the contents of the buffer. The header for method put declares an input integer
parameter. We use :: to separate the header from the procedure body. The body
of this method consists of a single assignment that appends the input parameter to
the end of s. We use the operator < to add an item to the end of a finite sequence.
The header for method get declares an output integer parameter. The code of this
procedure contains a guard and a couple of assignments. We use — to separate the
guard from the statements. The guard is a check that the buffer is nonempty. We use
L for the empty sequence. The assignment statements assign the first element of s
to the output parameter, and remove this item from s. We use first(X) and rest(X)

for the first element of sequence X, and the remaining elements, respectively.

The assignment statements for get can only be executed if the predicate in
the guard is true. If Buff.get is called when s in nonempty, we say that the call
accepts. In this case, the assignments are executed, and an item is returned to the
box that called the procedure. If Buff.get is called when s is empty, we say that the
call rejects. In this case, the assignments are not executed, and no item is returned
to the box that called the procedure.

Consider now the action Cons.use. This has a call to Buff.get to retrieve
an item. If the call accepts, then the action proceeds to consume the item returned
by the call, but if the call rejects, then there is no item to consume, and the action
cannot proceed.

We make a rule that if, during the execution of a procedure call, a call to
a method rejects, then the procedure call rejects as well. We further require that,
as with Buff.get, a rejecting call to a procedure makes no change to the program
state.

The method Buff.put has no guard, since it is always possible to append an
item to an unbounded buffer. A call to this method always accepts. Note that if we
implement a bounded buffer, method Buff.put may reject, since an item cannot be
added to a full buffer.

We call a procedure that never rejects total, and one that may reject partial.
From this definition and the above rule, a total procedure calls only total methods.

To ensure that rejecting procedure calls do not change the system state, we
allow only the first method call in the execution of a partial procedure call to be a
call to a partial method. All method calls other than the first are to total methods.
This gives only two ways that a partial procedure call can reject. The first is if the
local predicate in the guard is false, and the second is if the (single) partial method
call rejects. Both these occur before any change is made to the system state, in

particular, before any calls to total methods.

box Prod

var 1 :integer

action make = (x---%); Buff.put(i)
end

box Cons

var k:integer

action use : true & Buff.get(k) — (x--- %)
end

Figure 1.3: Boxes Prod and Cons

The code for boxes Prod and Cons is shown in Figure 1.3. The code for
action Prod.make contains no guard, since the action is total. The commented
ellipsis represents the omitted code that sets the value of ;. The final statement is
a call to Buff.put. The code for action Cons.use contains a guard which has two
components, separated by & . The first component is a predicate on the local state,
as before. We call this the condition. In this case, the condition is the predicate
true. The second component is a call to a partial method. We call this the test.?
Here, the test is a call to Buff.get. If this accepts, the action call continues to
execute the statements after the guard (again, we have omitted these), and itself
accepts. There are no calls to partial methods in the statements after the guard. If
the test rejects, then the action call rejects without executing further.

The structure of partial procedures ensures that no local variable is updated
unless a procedure is accepting. This enforces the requirement that a rejecting call
leave the state unchanged.

Models for transaction processing (see [14]) also have this notion of accepting

and rejecting, under the names committing and aborting. During the execution of a

2In [25], the components of the guard are called the precondition and the preprocedure, respec-
tively.

box Cons?2
var j :integer

k : integer
b : boolean init false
action use : —b & Buff0.get(j) — b:= true
| b & Buffl.get(k) — (x---%); b:= false

end

Figure 1.4: Partial procedure with alternatives

transaction, the changes that are made to the system state are tentative. When a
transaction commits, all the changes are made permanent. A transaction aborts if
it discovers that a required resource is not available, so it is unable to complete its
execution. Ifit aborts, all the tentative changes made up to the point of abortion are
discarded. Implementing this often requires complex mechanisms for rolling back
the state of a system to a previous consistent state. In contrast, the restriction we
give, that the decision to accept or reject be made before the state is altered, means
we do not have to provide for rollback.

The restriction, however, means that we cannot write an action that requires
two independent resources. We extend the syntax of partial procedures to provide
for this. We allow a partial procedure to be written as a set of alternatives. In
Figure 1.4 we show a partial procedure with two alternatives. Box Cons2 is part
of a program that contains boxes Buff0 and Buff1, both of which are copies of box
Buff. Action Cons2.use requires an item from each buffer before it can execute.
The items are retrieved one at a time, using calls to Buff0.get and Buff1.get. The
action has two alternatives, separated by |. One retrieves an item from Buff0), and
the other retrieves an item from Buff1, and then consumes both items. The items
are retrieved into variables 7 and k. We use a boolean variable b to sequence the
retrieval of the items. Initially, b is false, and it is true only when the first item has

been retrieved but the second has not.

10

The first alternative accepts if b is false, and an item is successfully retrieved
from Buff0 into item j. If it accepts, b is set to true. The second alternative accepts
if b is true, and an item is successfully retrieved from Buff1 into item k. If it accepts,
the items are consumed, and then b is set to false again. It takes two accepting calls
to Cons.use2 to retrieve and consume two items.

We allow any number of alternatives in a partial procedure. Each alternative
has a guard, which contains a condition, and, optionally, a test. We require that the
conditions on any pair of alternatives be disjoint, so that, in any state, the condition
holds for at most one alternative. The execution of a partial procedure is described

by the following algorithm.
e If no alternative has a condition that holds in the current state, then reject.

e Otherwise, choose the (single) alternative with a condition that holds in the

current state.
e If this alternative has a test, then call the test.
e If the test rejects, then reject.

e Otherwise, if there no test, or the test accepts, execute the body of the alter-

native, and accept.

1.1.4 Atomic executions of Seuss programs

The programming model presented above is a form of action system. To reason
about atomic executions of a Seuss program, we use the separation described above
between the sequential properties of the individual actions, and the concurrent prop-
erties of the atomic execution.

The encapsulation of data and code in boxes is intended as an aid to the

proving sequential properties of the individual actions. A box such a Buff that

11

contains no method calls can be specified as an abstract data type [1]. That is, we
define the methods it provides, and how each updates the state of the box.

This abstract data type viewpoint supports hierarchical reasoning about the
behaviour of an action. We prove sequential properties for the methods of Buff. We
then do the same for the actions in Prod and Cons, regarding each call to a method
in Buff as a single step satisfying the same assertions as the method.

Execution of action Prod.make updates the state of Prod and Buff. A com-
plete specification of this action gives the changes to both boxes. In general, an
action can change the state of any box where a procedure is executed during a
thread for the action. But the box structure provides a way to divide a program
into parts, where each part consists of one or a few boxes, and the interface between
the parts is well-defined. The model facilitates compositional reasoning.

The code given for box Buff is itself an abstraction of a real implementation of
a buffer. It serves as a specification of the behaviour we expect from a buffer. We can
use refinement [17] to define more detailed and realistic code. A real implementation
of a buffer may best be expressed as a set of boxes, one of which provides the Buff
interface. We can refine the data and code within a box, and we can define sets of
boxes that are refinements of a single box.

As noted above, we reason about the atomic execution in terms of the spec-
ifications for the individual actions. The techniques for reasoning about such ex-
ecutions have been extensively studied. Various forms of temporal logic (see [11])
can be used to express and derive properties. The application of these techniques
to atomic executions in the Seuss model has been less widely studied, though there
is some promising preliminary work.

The work presented here does not address these issues, important though
they are. The main conclusion we draw from this discussion is that developing

a system for reasoning about atomic executions of Seuss system appears to be a

12

tractable problem, and the structure of the Seuss model supports many of the rea-

soning styles that have proven useful in other programming models.

1.1.5 Mutual exclusion on boxes

An abstract data type is often specified, in part, by an invariant. This is a predicate
which holds at the start of the execution, and which holds after every execution of
a method on the box. For box Buff, suppose P is the sequence of values passed as
values to put, and G is the sequence of values returned by accepting calls to get,

then an invariant is

P = Gos

Here o is the append operator on sequences.

To show that an invariant holds for a box, we show that if it holds before
a call to a procedure in the box, it holds after the call. We do not require that in
invariant be maintained during the execution of the call, only that it be reéstablished
at the end. For this reason, it is important that the execution of a procedure call
at a box is not interrupted, since the box’s state may not satisfy the invariant.

We make the rule that once a box starts executing a procedure call, it does
not start another procedure call until the first is complete. A box encapsulates
control, by ensuring mutual exclusion on the execution of its procedures. It is a
form of monitor [18].

Consider the execution of a single thread, where the thread starts executing
at box D. Suppose that during the execution, there is a call to a method on box
E, and during the execution of this method call, there is a call to a method on
box D. At this point, D is part way through executing a procedure call, and it
cannot execute the method call from E until this procedure call completes. But the

procedure call cannot complete until the method call is executed. Thus box D is

13

stuck, waiting for itself. This is deadlock.
We call a method call by a thread to a box already executing for a thread a
cyclic call. One implication of the the mutual exclusion on boxes is that we must

avoid cyclic calls if we are to avoid deadlock.

1.1.6 Concurrent execution in Seuss

In Seuss, a program consists of a set of boxes. Suppose we implement a Seuss
program so that each box is allocated a separate processor, and procedure calls are
implemented using a communication network. We identify a box and its processor,
using the name “box” for either. A scheduler program decides when threads should
be started, and sends a message to the appropriate box to start the thread.

Initially, every box in the system is idle. Box D starts executing a thread for
action D.a when it receives a message to do so from the scheduler. If there is a call
to method E.m during execution of the code of D.a, then D sends a message to F
and suspends execution until it receives a message back from F, indicating that the
call is complete. When D reaches the end of D.a’s code, D sends a message to the
scheduler that the thread has ended, and becomes idle again.

Each box in this model is largely independent. There is only synchronization
between boxes for procedure call and return. The scheduler decides which threads
to run, and when to start them, but has no further control over the execution of a
thread. The scheduler can be defined to execute a single thread at a time, as in an
action system. We call this a sequential execution. In a sequential execution, at most
one box is executing at any time. The rest are either idle, or suspended, waiting for
another box to complete a method call. Note that replacing each complete thread
in a sequential execution by an atomic step gives an atomic execution.

Consider boxes Prod and Cons. The code in Prod.make that produces an

item does not involve calls to boxes Buff or Cons. Similarly, the code in Cons.use

14

that consumes the item does not involve call to boxes Buff or Prod. These sections
of code execute on disjoint boxes.

Box Prod is idle during the execution of a thread for Cons.use. Consider
starting a thread for Prod.make while a thread for Cons.use is executing. The
thread executes initially at Prod, which is otherwise idle. The call to Buff.put at
the end of the code obeys the mutual exclusion at Buff with the call to Buff.get
from the thread for Cons.use.

Suppose there is an item in the buffer at the start. The thread for Cons.use
accepts, retrieving the first item from the buffer and consuming it, and the thread
for Prod.make produces an item and puts it at the back of the buffer. The item
retrieved is in the buffer at the start, so the order of the method calls to Buff from
the two threads does not affect the item retrieved, or the final state of the buffer.
The final state is the same as is reached by executing the threads sequentially, in
either order.

Suppose, on the other hand, that the buffer is empty at the start. In this case
the thread for Cons.use rejects if it calls Buff.get before the thread for Prod.make
calls Buff.put, and it accepts if it calls after. In the first case, an item is produced,
but none is consumed, and there is a single item in the buffer at the end. This
is what happens if we execute the thread for Cons.use followed by the thread for
Prod.make. In the second case, an item is produced, added to the buffer, removed
from the buffer, and consumed, leaving the buffer empty. This is what happens if
we execute the threads in the opposite order.

Thus, the final state after the concurrent execution of the two threads is
a state reachable by executing the threads sequentially. We can extend this by
considering executions containing n threads for Prod.make and Cons.use, where
threads are executed concurrently, obeying the mutual exclusion on boxes. We

claim that, for any execution in this set, there is a sequential execution of the same

15

set of threads with the same start and final states.

In general, if we take two sequential programs with shared variables and
run them concurrently, we can expect to reach an final state that is not reachable
by running the programs one after the other. This interference between separate
threads of control is what makes concurrent programming difficult. But in this
example, it seems that a concurrent execution of these procedures has the same
behaviour as a sequential execution.

Since the concurrent execution allows execution at more than one box, it
allows a more efficient use of the computing resources. In the producer-consumer
example, we might expect that producing and consuming the items in parallel takes
about half the time of an equivalent sequential execution.

For the example, it seems we have the following happy circumstances. The
program can be implemented concurrently, for reasons of efficiency, but the con-
current executions introduce no behaviours that are not observable in sequential
executions. If we show that all sequential executions have a certain behaviour, then
we can conclude that all concurrent executions have that behaviour. To show prop-
erties of the sequential executions, we use the separation noted above, and give
sequential specifications for the actions, and use these to show properties for atomic
executions. We have a dual view of execution for the program: concurrent execution
for implementation, and atomic execution for proving properties of the program.

The remainder of this work is an investigation of the circumstances under
which this dual view of a program’s execution is possible. We show sufficient con-
ditions on programs, and restrictions on executions, such that every concurrent

execution is equivalent to an atomic execution.

16

1.2 Reduction

A concurrent execution of a program in the Seuss model consists of a sequence of
steps, each involving one or two boxes. Each step advances one of the threads active
at that point in the execution. We represent the concurrent execution of different
threads by interleaving the steps of the threads.

In an atomic execution, the system state is represented by the values of the
program variables. For a concurrent execution, we need to record more information
about the system state between two steps. In addition to the values of the box vari-
ables, we record, for each box, which procedure, if any, is currently being executed,
and where the box has reached in the execution of the procedure’s code. We call the
sum of the relevant information about the system state in a concurrent execution
the configuration of the system. None of the extra information is necessary for an
atomic execution, since every box is idle after every step.

An atomic execution has simpler states, and larger steps than a concurrent
execution. We can reason about an atomic execution at a higher level of abstraction,
where many of the details recorded in a concurrent execution have been hidden.

To show that there is an atomic execution corresponding to every concurrent
execution, we use reduction. This is a technique for transforming an execution into
an equivalent execution by applying local transformations to the sequence of steps in
a concurrent execution. We prove rules that allow particular pairs of adjacent steps
to be swapped, without affecting the remainder of the execution, and we apply these
rules repeatedly to reach an execution where the steps of a given thread appear in
an unbroken sequence, with no interleaved steps from other threads. If we can do
this with every thread, the resulting execution is sequential, which, as we have seen,
corresponds to an atomic execution.

Lipton [24] introduced the term “reduction” for this process of rearranging

the steps in a concurrent execution to bring together all the steps for a single thread.

17

His theory applied to a restricted class of programs using semaphores, and to prop-
erties of the form “the program never becomes deadlocked”. We apply reduction
to a wider class of programs, but the essential ideas from Lipton’s theory guide our

work.

1.2.1 The two-phase locking protocol

For an example of reduction, consider two-phase locking protocol from database
theory [12]. The execution model is one in which data items (records in a database,
for example) have resources associated with them. All transactions acquire the
associated resources before accessing a data item. The transaction releases the
resources after it has accessed the data item. An action that accesses multiple items
at the same time first acquires the associated resources for each. Resources that
allow read access to an item are shared, meaning that multiple transactions can
read the item concurrently, whereas resources that allow write access to an item are
exclusive, meaning that only one transaction can write to the item at a time. For
now, we consider just exclusive resources.

An action is called two-phase if in any execution, it acquires no new resources
after it has released a resource. This means that every execution of a two-phase
transaction can be divided into two parts. In the first part, resources are acquired,
and in the second part they are released. The two-phase locking theorem says that
for any concurrent execution of a set of two-phase transactions there is a sequential
execution of the same set of transactions where each data item has exactly the same
operations applied to it, in the same order, as in the concurrent execution.

The following example shows the ideas behind the two-phase locking theorem.
The execution below shows a thread for a two-phase action «, executing concurrently

with threads for other actions. The steps a;, b, and ¢; are the steps of the thread

18

for «, with ellipses representing the steps from other threads.

ap;-criar;cccyazs by serr a0

Resource acquisition steps can fail, because the resource is unavailable. Only suc-
cessful acquisition steps are shown in the execution. Note that a step that accesses
an item is from a thread that holds the necessary resources.

The thread for « acquires three resources, Ry, R, and R, with steps ag,
a1, and ag. These allow it to access some items with step b. It then releases the
resources with steps co, ¢1, and cp.

Consider step ao. Before this step, no thread holds resource Rs, and after
it step, the thread for a holds it. The resources available after as are a subset of
those available before. If s is the step after ao in the execution, and s is from a
different thread, s does not acquire Ry. Since it succeeds after ao it will succeed
before, since any resources it acquires are available. Resource Ry is available after s
if it is available before, so both steps succeed if we reverse their order. We swap the
steps, and repeat the argument with every step between as and b, and then repeat

the whole process with steps a1 and ag. This gives us the following execution.

“3ap; a1 02305 a5y 0

Here there are no steps from other threads between the first four steps of the thread.

Now consider step c3. This releases resource Rs, so the resources available
after it executes are a superset of those before. This step can be moved left over all
the intervening steps until it is next to b. Likewise, we can move ¢; and cy. We get

the following execution.

“sap;ar;az;bycas eyt

19

Here all steps from the thread are contiguous. Any step from another thread that
was before step b in the original execution is before it in this reduced exection, and
similarly with the steps after b. Thus the relative order in which the threads access
the items is the same as in the original execution. If all the actions in the program
are two-phase, we can apply the above reduction to any concurrent execution by
applying it to each action in turn, and this gives a sequential execution in which
actions access items in the same order as in the original execution.

Lipton used the names right-mowers for steps such as a; in the above example,
and left-mowers for steps such as ¢;. He identified right-movers as steps that acquire

resources, and left-movers as those that release them.

1.2.2 Reduction for Seuss

In Seuss, the items accessed by thread are the box variables. The resources that
allow access to these items are the boxes themselves. A thread holds a box if it is
executing a procedure call at that box. Because of the mutual exclusion on boxes,
a box is an exclusive resource.

From this, we can see that a thread is two-phase, in the above sense, only
if it calls at most one method during its execution, and the method called itself
only call one method, and so on. The class of two-phase Seuss programs with this
restriction is limited. It is difficult to imagine that we can find a two-phase program
“equivalent” to any Seuss program. Thus, for a useful reduction theory for Seuss,
the two-phase condition is too strict.

The following example demonstrates the issues involved in reducing Seuss
programs, and provides some motivation for the approach we take. Consider the
program in Figure 1.5. The program contains a box X, which has a local variable
z, and two methods, add, and mult. Both take a single input parameter. The first

adds the parameter value to z, while the second multiplies z by the parameter value.

20

box X
var z :integer
method add(in a : integer)

r:=z+a
method mult(in a : integer)
T:=Ixa
end
box D
action aa :: X.add(3); X.add(4)
end
box E
action a :: X.add(2)
action b 1 X.mult(2)
end

Figure 1.5: Program with commuting and noncommuting methods

Boxes D and E have no variables. Action D.aa makes two calls to method X.add,
and action E.a makes one call. Action E.b makes one call to method X.mult.
Consider a concurrent execution of actions D.aa and E.a with the following

outline.

initp ; initp ; X.add(3)p; X.add(2)g; X.add(4)p ; termp ; termp

Here initp represents the steps initializing the thread at D, termp represents the
steps to complete the thread at D after the method calls, and X.add(3)p represents
all the steps of a successful call to X.add. The other steps have a similar interpre-
tation, with the subscript £ meaning that a step is taken on behalf of box E. In
this execution, the call to X.add from E.a occurs between the calls from D.aa.
Clearly, D.aa is not two-phase, since it releases box X and then reacquires

it. However, we note that any two calls to X.add commute, meaning that the final

21

effect on X .z is the same regardless of the order. Thus, we argue that we can replace

X.add(2)g; X.add(4)p

with

X.add(4)p; X.add(2) g

since the overall effect in either case is to add 6 to X.z.
Using this, we reduce the above execution to the following, equivalent, exe-

cution.

initp ; initp ; X.add(3)p; X.add(4)p ; X.add(2)g ; termp ; termp

Now we argue that, since init g affects only box F, and X .add(3)p affects only boxes
D and X, that these steps can be exchanged. We apply a similar argument for initg

and X.add(4)p, so we end up with the following execution.

initp ; X.add(3)p ; X.add(4)p ; initg ; X.add(2)g ; termp ; termp

Finally, we argue as above that term p can be exchanged with X.add(2) g and init g,
since again the steps affect disjoint parts of the program. The end result is a

sequential execution, as follows.

initp ; X.add(3)p ; X.add(4)p ; termp ; initg ; X.add(2)g ; termp

Here we were able to reduce the original execution to a sequential execution by using

two facts:

e Any two calls to X.add commute.

22

e Any two steps that affect disjoint parts of the state space commute.

Note that the effect of the final sequential execution is to add 7 to X.z, and the
original concurrent execution has exactly the same effect on X.z. So this reduction
seems reasonable.

Consider now a similar execution to the above, but with actions D.aa and

E.b.

initp ; initp ; X.add(3)p ; X.mult(2)g ; X.add(4)p ; termp ; termp

Now if we try to apply the above argument, we get stuck at the first step, because
X .mult(2)p; X.add(4)p is not equivalent to X.add(4)p; X.mult(2)g, because the
effect of doubling number and then adding 4 is not the same as that of adding 4
and then doubling.

If the above execution of D.aa and E.b is started from a configuration where
X .z = 3, then the execution ends in a configuration where X .z = 16. The sequential
execution D.aa; E.b starting from the same configuration, ends with X.z = 20, and
the execution D.aa; E.b ends with X.z = 13. Thus there is no way to represent the
above concurrent execution as a sequential execution of D.aa and E.b.

This suggests that we distinguish pairs of actions, such as D.aa and FE.a,
which are “well-behaved” with regards to reduction, from pairs such as D.aa and
E.b which are not. A pair of actions is well-behaved if a procedure called during
a thread for one commutes with every procedure called during a thread for the
other. If we execute the program so that only well-behaved pairs of actions run
concurrently, then method calls can be reordered, as we did above to show the
reduction for D.aa and E.a.

This is our approach to reduction. We define control relations as a general
mechanism for controlling concurrency. A control relation contains pairs of actions

that may have concurrent threads. An execution respects a control relation if, at

23

all times, any pair of concurrently executing threads are for actions in the control
relation. We define control relations that allow as much concurrency as possible,
while allowing the reduction of every execution that respects the relation to an
atomic execution. In particular, we run the program above under a control relation

that contains (D.aa, E.a) but not (D.aa, E.b).

1.3 Summary of the material

The main results we prove are the following.

Complete execution theorem A complete execution is one where all threads ter-
minate without errors. The theorem gives some conditions on executions that
ensure that every thread terminates. We define conditions on a program, and

on an implementation of the program, such that every execution is complete.

First reduction theorem We define a control relation in terms of commutativity
conditions on procedure calls. The theorem shows that every complete execu-

tion respecting this control relation can be reduced to an atomic execution.

Second reduction theorem We consider the fairness conditions satisfied by a
concurrent execution and its atomic reduction. The theorem shows a control
relation for any subset of the actions, such that a complete execution respecting
this control relation can be reduced to an atomic execution, where the original
and reduced executions satisfy the same fairness conditions for actions in the

subset.

The results are stated and proven in terms of a specific language, TCB, that im-
plements the Seuss model. We define an operational semantics for this language,
and we prove the above results for executions under this semantics. However, the

results are applicable to any language implementing the Seuss model. The basic

24

mechanisms for starting and ending threads, implementing method call and return,
and ensuring mutual exclusion on the boxes are common to all these languages, and

these are the features of the semantics that are important in proving the theorems.

1.3.1 Chapter overview

Chapter 2 defines a syntax and an operational semantics for TCB. We define a pro-
gram configuration for representing the system state during a concurrent execution,
and we give the semantics as a relation on program configurations, defined by a set
of inference rules.

Chapter 3 proves some basic results about the program configurations and
inference rules in the semantics for TCB. We define the label for a step, and use
this to define a program execution.

Chapter 4 investigates the causes of nonterminating threads. We prove the
complete execution theorem, which defines exactly the conditions necessary for ter-
mination of all threads in an execution. We define control relations, and show how
they can be used to avoid nonterminating threads due to deadlock or infinite exe-
cution.

Chapter 5 contains the first reduction theorem, and its proof. We define
a control relation, called weak compatibility, using a commutativity condition on
procedure calls. We show that any execution that respects this control relation can
be reduced to an atomic execution. We show a correspondence between the original
concurrent execution and the reduced atomic execution, which can be used to infer
properties of the concurrent execution from properties of the atomic execution.

Chapter 6 discusses the impact of fairness conditions on the progress proper-
ties that can be proven of an atomic execution. We define two types of fairness, weak
fairness and minimal fairness, and show that executions respecting the first have

more progress properties than executions respecting the second. We show that there

25

are weakly fair executions respecting weak compatibility where the reduction guar-
anteed by the first reduction theorem gives an atomic execution that is not weakly
fair. We show a stronger control relation, and the second reduction theorem, which
shows that weakly fair executions satisfying this control relation can be reduced to
weakly fair atomic executions.

Chapter 7 contains some concluding remarks and observations. Appendix A
contains the semantic rules for TCB. Appendix B contains some of the proofs

omitted from earlier chapters.

1.4 Related work

1.4.1 Seuss

The Seuss model was first described by Jayadev Misra in [25]. Early drafts of that
work stated, but did not completely prove, a reduction theorem similar to the first
reduction theorem in Chapter 5.

We implement all features of Seuss as outlined by Misra, with the exception of
negative alternatives. In the full Seuss model, the alternatives in a partial procedure
are of two types: positive and negative. The alternatives shown in Section 1.1.3 are
positive alternatives. The execution of a negative alternative is the same as for a
positive alternative, except that a negative alternative always rejects, regardless of
the evaluation of the guard and the body. A procedure with negative alternatives
can change the value of box variables on a rejecting call.

Misra shows that negative alternatives add to the expressive power of the
language. A strong semaphore, one that guarantees that every action attempting
to acquire the semaphore eventually succeeds, cannot be defined with positive al-
ternatives alone. With negative alternatives, the P operation on the semaphore is

written so that the identity of the caller is recorded when the semphore is not avail-

26

able, but the call rejects, indicating to the calling procedure that the semaphore is
not available.

Rajeev Joshi and Misra show in [20] that the correct functioning of a strong
semaphore coded with negative alternatives requires that all actions that attempt to
acquire the semaphore be persistent. An action « is persistent in a given execution
if there are an infinite number of threads for « in the execution, or the final thread
for « is accepting. Equivalently, « is persistent if every rejecting thread for « is
followed by another thread for c.

Negative alternatives thus violate the rule that a rejecting thread does not
change the state, and they introduce additional complications, so, in the interests

of simplicity, we choose not to implement them in our work.

1.4.2 Reduction

Richard Lipton’s paper [24], introduced the term reduction for the transformation
of an execution to an equivalent one in which all the steps of a given thread appear
contiguously, and thus may be regarded as atomic. The motivation for his work,
as with the current work, is that the reduced execution has a coarser grain of in-
terleaving than the original, so there is less interaction, and thus less possibility for
interference, between concurrently executing threads.

Lipton introduced the terms right-mowver, for a step that can be moved right
(that is, delayed), and left-mover, for a step that can be moved left (that is, ad-
vanced). The result he gives applies only to two-phase programs, where every exe-
cution consists of a sequence of right-movers followed by a sequence of left-movers.
The reduction theorem guarantees that the reduced execution is deadlock-free if and
only if the original execution is.

Several researchers have extended Lipton’s ideas. In [10], Doeppner defines

expansions that allow a single large action in a program to be replaced with a series

27

of smaller steps. He defines various notions of consistency between programs and
their expansions, and shows that an execution that can be reduced by Lipton’s
reduction theorem is a consistent expansion of its reduced execution.

In [22], Leslie Lamport gives a reduction theorem for two-phase threads,
consisting of a sequence of right-movers, followed by a single central step, and a
sequence of left-movers. In [23], Lamport and Fred Schneider give a theorem for a
reduction of two-phase threads that preserves all safety properties.

Ralph-Johan Back, in [2] and, with Joakim von Wright, in [3], presents a
technique for refining action systems by repeatedly replacing a single action with
an equivalent action system. This is called atomicity refinement. If action system
A is refined to action system A’ by this technique, then executions of A’ have a
finer grain of interleaving than executions of A. The technique is aimed at termi-
nating programs, and the refinement guarantees that A and A’ have the same total
correctness properties.

In [6], Ernie Cohen proves the reduction theorems of Lipton, Doeppner, and
Lamport and Schneider, and the partial correctness part of Back’s theorem, in terms
of Kleene algebra (an algebra of regular expressions). Presenting the results in a
uniform framework allows the relationships between the theorems to be explored.

In [7], Cohen and Lamport show a reduction theorem that preserves not
only safety (or partial correctness) properties, but also weak and strong fairness
properties. As with Lipton’s theorem, and Lamport’s earlier reduction results, the
theorem applies only to two-phase threads.

The above reduction theorems apply to any execution of a set of two-phase
threads. Threads in Seuss that call total methods are not two-phase. We cannot
show a reduction theorem that applies to any execution of an arbitrary Seuss pro-
gram. Instead, we define a restriction on concurrency, and we show a reduction for

all executions obeying this restriction.

28

In [28], Susan Owicki and David Gries give sufficient conditions between se-
quential programs that they do not interfere with each other’s execution if run con-
currently. Their method involves checking every statement in one program against
every statement in the other. The restriction on concurrency that we define to
ensure reduction is defined by a similar condition between actions, except that we
exploit the mutual exclusion on procedure execution at a box. In the condition we
define, each procedure called during execution of a thread for one action is checked

against every procedure called by a thread for the other.

1.4.3 Transaction processing

The two-phase locking theorem says that any set of two-phase transactions can be
run concurrently and the resulting execution is serializable. However, the two-phase
format is a severe restriction on the allowed form of transactions. Transactions
are often written so that a lock is acquired long before, or released long after, the
associated data is accessed. This decreases the opportunity for concurrent execution.

There has been some research into non-two-phase locking protocols, with
the aim of increasing the concurrent execution of transactions. In [26], C Mohan,
Don Fussell and Avi Silberschatz describe a locking scheme using invisible locks, in
addition to standard shared and exclusive locks. The invisible locks allow neither
reading nor writing of the associated data, but a transaction must hold some invisible
locks before it can acquire an exclusive lock.

The locking protocol with invisible locks assures serializability of accesses to
the data items, even for non-two-phase transactions. The protocol does not allow
a transaction to reacquire a lock it has released, but it may acquire other locks.
One of the interesting results presented in this work is that every deadlock involves
a transaction holding only invisible locks, and this transaction has not changed to

value of any data. Thus to break the deadlock, the transaction with only invisible

29

locks can be aborted. There is no need for a mechanism to roll back the state of the
system on such an abort, since the aborted transaction has made no state changes.

Eliot Moss’s work on nested transactions [27], extends the single-level trans-
action model to one in which a transaction may call several subtransactions during
its execution. Each of these subtransactions is itself a transaction, and each may
commit or abort independently. A transaction is not obliged to abort if a subtrans-
action aborts. The intention is to provide a robust mechanism for implementing
programs on unreliable hardware. The implementation of the model ensures that
each part of a computation can be regarded as an uninterrupted atomic action.

The nested transaction model allows for changes to the underlying state
prior to a decision to abort a transaction. If a transaction is aborted, all changes
made to the state by the local code of the transaction, and by any committed
subtransactions, is rolled back. Much of Moss’s research concerns the managing of
dependencies between transactions. This is required so that during rollback for an
abort of a transaction, any other transaction that has read values written by the
aborted transaction is itself aborted.

Seuss procedures can be regarded as transactions, and method calls are thus
calls to nested transactions. However, Seuss requires no mechanisms for rollback
on rejection, since we ensure that the state is never changed unless a thread has

committed.

1.4.4 Concurrent object-based languages

There are a number of languages that offer both concurrent execution and object-
based encapsulation of data and code. Many of these use an existing language as a
basis. For example, COOL [4] is one of a number of proposals for extending C++
with concurrent execution, and ABCL [33], and its various descendents, are based

on Lisp. We are not aware of work applying reduction to any of these languages.

30

In [19], Steve Hodges and Cliff Jones present an operational semantics for
the language mofA, a concurrent object-based modeling language. They use this
semantics to prove the validity of optimizations allowing increased concurrency. The
main optimization is early return. In this a call to procedure «’ from procedure =
returns as soon as the values of the return parameters are available. The remainder
of the executions of the calls to 7' and 7 are executed concurrently.

The semantics for mo given by Hodges and Jones is based on the Structured
Operational Semantics outlined by Gordon Plotkin in [29]. The semantics we give

for Seuss is strongly influenced by that given in [19].

1.5 Notation

We use the operator £ to mean “is equal by definition”. We use the following general

format for quantification.

(ox : Rz : Tux)

Here o is a commutative associative binary operator. We call z the dummy, R.x
the range, and T.xz the term. The range is a boolean expression, and the term
is an expression of the correct type to be a operand of o. The meaning of the
quantification is the result of applying operator o to the set of values T.z for all x

satisfying R.z.

31

We use the following instances of this notation.

(Vz : Rz : T.x) =2 forallz, if Rz then T.x

(3z : Rz : T.x) 2 there exists an z, such that R.x and T.z

(32 : Rx : T.x) 2 there exists a unique z, such that R.x and T.x

(X2 : Rx : T.ax') = thesum of T.z, for z satisfying R.z,

(#2 : Rz : T.x) 2 the number of z satisfying R.z and T.x
(minz : Rz : T.x) 2 the minimum of T.z, for z satisfying R.z,

(Uz : Rz : T.x') %= the union of T.z, for z satisfying R.z,

When the range is true or understood from the context, we omit it, and write
(Vz : T.r). For long formulae, we write the quantification over several lines as

follows.

vV z
: Ry.x N Ri.x N Ro.x N R3.x N Ryx N Rs.x AN Rg.x
cTo.x N Thx N To.x N T3.x N Thx N Ts.x N Tgx

)

For sets, we use the following form of quantification
{z : Rx : T.x} %= theset ofall T.z, for z satisfing R.z
For set quantification where the term is z, we use the comprehension notation.
{z| Rz} & {2z : Rz : z}

We use the following operator to express the fact that two sets are disjoint. For sets

32

A and B,
AdisiB & ANB=10
For a set A,

#A £ the number of elements in A

Al = AU{J_}

Here, 1 is an element not in set A. A common use of a set A is to define a function
that returns either an element of A, or L indicating “no such item”.

For sets A and B, A — B is the set of total functions from A to B, and
A — B is the set of partial functions from A to B. For a function f, we write
dom(f) and rng(f) for the domain and range of f.

For a set A, A* is the set of finite sequences over A, and A is the set of
finite and infinite sequences over A. For s € A>, we write |s| for the length of s. If
s ¢ A*, then |s| = co. We use the indexing operator s[i] for the i* element of s, for
0 < i < |s|. Element indices start at 0. We use the segment operator s[i... j| for
the segment of s containing elements s[i] through s[j] inclusive, for 0 < i < j < |s].
For an infinite sequence, we allow segments s[i... 00|, meaning the segment from

element s[i] on. With these, we define

first(s) 2 s[0]
s[1...(]s| = 1]

last(s) = s[|s| —1] if |s| < o0

lI>

rest(s)

For s,t € A, the concatenation of s and ¢ is written sot. If |s| = oo, then sot = s.

33

Sequences are ordered by the prefix ordering.
sCt 2 (35 : §€A® : so0s'=t)

Under this order, the set A is a complete partial order (CPO) (see [8]). By defini-
tion, the least upper bound of any chain is an element of A°°. That is, if sg, s1, 2, . ..
are such that for all ¢, s; € A%, and s; C s; for all 4, j, such that < < j, then the
least upper bound of the s;, written (i : 0 <17 : s;), is an element of A>. This
means we can define elements in A% as the limit of a chain of finite sequences. We
use L for the empty list. This is the bottom element in the prefix order.

We write proofs in the style of [9]. The following proof fragment shows the

essential features of this format.

“(a=bAb=c) N (b=cV c=4d)

{ predicate calculus }
(a=b=0b#c) N (b#c = c=d)
= { transitivity of = }

a=b=c=d
= { assumption a = b }

c=d

The proof shows derivation of ¢ = d, from the formula in the first line, and the
assumption a = b. The proof consists of alternating lines of terms and hints. A
hint line starts with a connective. The second line of the proof (the first hint) says
that the term in the first line is equivalent to the term in the third line. The hint
justifies this claim with a reference to the appropriate mathematical law, theorem,
definition, or assumption. The proof as a whole says that the first term implies the

last term.

34

We define tuples with typed components as in the following example.

T 2 record
r:integer
b : boolean

end

This defines the type T as a tuple consisting of an integer r and a boolean b. If
t € T, we write ¢.r for the first component of ¢, and ¢.b for the second component.

We write an arbitrary element of T as (r, b).

35

Chapter 2

The definition of TCB

2.1 Introduction

All Seuss languages have the same mechanisms for communication between boxes,
and for evaluation of guards, so the major difference between them is the sequential
language used to write procedure bodies. TCB is a Seuss language that uses a simple
sequential language, called T'CBloc, for procedure bodies. We define a syntax and
operational semantics for both languages.

TCBloc is a simple language, and it has a simple semantics with a single
thread of control. In the semantics of T'CB, we must represent threads executing
concurrently at different boxes.

We define the semantics for TCBtot, a restricted form of T'CB in which all
procedures are total. In this semantics, we represent the execution of each box in the
program separately, with communication between boxes for method call and return.
The semantics implements procedure call and return, but does not implement guard
evaluation or rejecting procedure calls, since there are no partial procedures.

We extend the semantics for TCBtot to a semantics for the full TCB lan-

guage. The extension implements guard evaluation and rejecting procedure calls.

36

We give two semantic definitions for T'CB, using different models for procedure call.

The differences are discussed below.

2.2 Syntax

The syntax of T'CB is essentially the same as that used for the example programs in
Chapter 1. We define a simple sequential language, called TCBloc. This has some
of the standard features of an imperative language: assignment, alternation, and
iteration. We define TCB as a Seuss language that uses TCBloc, augmented with a

procedure call statement, as the language for the bodies of procedures.

2.2.1 Variables, states, values and expressions

The set Id contains the legal identifiers. We use z, y and z as typical variables, D
and E as typical boxes, a as a typical action, m and n as typical methods, and p
as a typical procedure.

We are deliberately vague about the language used for expressions in this

language. We assume that we can represent values of the following types.

boolean = {true, false}
integer = {...,-2,-1,0,1,2,...}
We define

Val £ boolean @ integer

Type = {boolean, integer}

Here @ is the disjoint union operator. The set Val contains all values that can be
assigned to a variable. We use v for a typical member of Val. The set Type contains

the all the types in TCB.

37

We use standard operators for the boolean and integer types, including equal-
ity, logical operators such A and —, and integer operators such as + and *. Set Ezp
contains all legal expressions. We use e for a typical expression, and b for a typical
boolean expression.

We use a state to give the values of the variables in a program. A state is a

map from variable identifiers to values.

Definition 2.1

State & Id — Val |

A State is a partial function, since only a subset of Id are defined as variables in
any given program. We use ¢ for a typical member of State. For any z € Varld,
if z € dom(o), 0.z is the value of z in 0. If 0.z = L, then z is defined in o, but
uninitialized.

The evaluation operator [-] is defined so that for any expression e, and any
state o such that every variable in e is defined in o, with a value of the appropriate
type, the value of e in o is [e]o.

The type VarTypeList is used to represent a list of variable ids and their
associated types (for example, for a parameter list). The elements of VarTypeList
are sequences over Id x Type, such that all the Id entries in the sequence are distinct.
A typical element of VarTypeList is V. For L € VarTypeList, VarList(L) is the

sequence of ids in L.

2.2.2 Syntax for TCBloc

A TCBloc program is shown in Figure 2.1. This example shows all the constructs
of TCBloc, a minimal language of the Algol-Pascal family. A program consists of

a variable declaration block, started by var, followed by the code of the program

38

var z:integer
d : integer init 4
q : integer
r :integer
b : boolean init false

q:=—23

if z <0 then z:= —z elseb:= true

r:=x;q:=0

while r >d do |[r:=r—d; q:=q+ 1]
end

Figure 2.1: TCBloc code to divide x by d

between begin and end. The program shown implements integer division using
repeated subtraction. Four integer variables and one boolean variable are declared.
Variable d is initialized to 4, b to false, and z, ¢, and r are uninitialized. The first
statement of the code assigns a value to x. The second statement checks if z is
negative, and if it is, negates it. The next line contains two assignment statements
in sequence. The final line is a loop statement that checks if r is at least d, and if
it is, updates r and ¢ and repeats. The two assignments in the loop are enclosed
in brackets indicating that they form a compound statement, which is treated as a
single statement.

The syntax for TCBloc is shown in Figure 2.2. It is given as a set of
Backus Normal Form (BNF) production rules. Terminals and nonterminals of the
grammar are enclosed in angle brackets. On the right-hand side of the production

rules, we use quotation marks around elements of the concrete syntax, and we use

39

(locprog) n= “var” (decl)* “begin” (stmt)* “end”

(decl) = (id) “7 (type) | “init” (value) |

(stmt) == (assign) | (ifelse) | (whiledo) | (compound)
(assign) n= (id) “=" (exp)

(ifelse) n= “f” (exp) “then” (stmt) “else” (stmt)
(whiledo) = “while” (exp) “do” (stmt)

(compound) == |7 (stmt)* “]|”

Figure 2.2: Syntax for TCBloc

the following operators.

S* £ S repeated 0 or more times
ST £ S repeated 1 or more times
SS £ 8 followed by S’
S8 & Sord
[S] 2 S isoptional

The operators are given in order of precedence, from highest to lowest. We use
parentheses for grouping when necessary.

Thus, the first production rule in Figure 2.2 says that a program (locprog) is
the keyword var, followed by zero or more (decl)s, followed by the keyword begin,
followed by zero or more (stmt)s, followed by the keyword end. The second rule says
that a declaration (decl) is an (id), followed by the separator :, followed by a (type),
optionally followed by the keyword init and a (value). The third rule says that a

statement (stmt) is one of an (assign), an (ifelse), a (whiledo), or a (compound).

40

box Sem
var n : integer init 1

method P = n>0 — n:=n-1
method V. 1 n:=n+1
end
box D
var z :integer init 0
action act : true & Sem.P — z:=x+1; Sem.V
end
box E

var y: integer init ()
b : boolean init false

action acq :: b & Sem.P — b:= true
action rel :: b — y:=y+1;b:= false; Sem.V
end

Figure 2.3: A TCB program with three boxes

We assume that the terminals (id) (for identifiers), (type) (for typenames),

and (ezp) (for expressions) are defined elsewhere.

2.3 Syntax for TCB

An example TCB program with three boxes is shown in Figure 2.3. The first
box, Sem, implements a general semaphore. The box has a local integer variable n,
which is initially 1, and two methods, P and V. Method P is partial; a call to this
method accepts only if n > 0. If a call to Sem.P accepts, then the semaphore has
been granted to the caller. The method V releases the semaphore. This method is
total, so it always accepts.

Boxes D and E show two different styles for using the semaphore. Box D

contains a single action act. This is a partial action. The condition is true. The test

41

(program) == (boz)™

(boz) = “box” (id) “var” (decl)* (proc)™ “end”

(proc) = (“action” | “method”) (header) “:”
((partial) | (total))

(header) = (id) “(” [“in” (decl)™] %7 [“out” (decl)™] “)”
{(partial) = (altern)™

(altern) = (boolexp) | “&” (call) | “—7 (stmt)*

(total) = (stmt)*

(stmt) = (call) | (assign) | (ifelse) | (whiledo) | (comp)
call) a= (id) 7 (id) [0 Geap)® 57 (id)* *)]

(assign) = (id) “=" (exp)

(ifelse) n= “if” (boolezp) “then” (stmt) “else” (stmt)
(whiledo) = “while” (boolezp) “do” (stmt)

(comp) m= Y (stmt)y* “])7

(decl) = (id) “7 (type) | “init” (value)]

Figure 2.4: Syntax for TCB

is a call to Sem.P to obtain the semaphore. If the test accepts, box D increments z,
and then calls Sem.V to release the semaphore. Box F has two actions. The local
boolean variable b indicates if the box holds the semaphore. The first action, acq,
attempts to acquire the semaphore, if it does not already hold it. If it succeeds, it
sets flag b to true. This enables action rel, which increments y, and then releases
the semaphore, and resets b.

The syntax for TCB is shown in Figure 2.4. This syntax corresponds to the
syntax we have been using for the examples so far. There is one slight extension:
a procedure header, and a procedure call, has a semicolon between the input and

output parameters. Thus we write a call to a method D.m with input and output

42

parameters as D.m(é; %), where e is a sequence of expressions giving values for
the input parameters, and Z is a sequence of variable ids to receive the output
parameter values. We omit the semicolon on a header or a call if there is only one
type of parameter. We omit the parenthesis if there are no parameters.

Note that the production for (stmt) has one alternative more than the equiv-
alent production in the syntax of TCBloc. The extra alternative is the method call

statement.

2.4 Well-formed programs

There are syntactically legal TCBloc and TCB programs that cannot be imple-
mented. The syntax given ignores issues of variable scope, and type correctness,
since these cannot easily to expressed in a BNF grammar.

For the remainder of this work, we consider only well-formed programs, that
is, programs that respect scoping rules and are type correct. We do not give an
exact definition of a well-formed program. Rather, we list the assumptions that we
make in defining the semantics for well-formed programs.

We define the scope of a variable declaration in a TCBloc program to be all
the statements. In TCB, the scope of a box variable is all the procedures in the
box, and the scope of a procedure parameter is the procedure where it is declared.

We assume that each operator in the expression language has a type signature,
giving the type of its operands and result. We assume that the expression language
defines the set of well-typed expressions, and assigns a unique type to each. These
are the expressions where every operator is used with expressions of the correct type
for its operands, as given by the type signature. The type of a well-typed expression
is the result type of the top-level operator. If e is an expression containing variables,
then the type of e is defined relative to a type assignment a partial function from

variable ids to types. If e contains a variable whose type is undefined, then it is not

43

well-typed.

For example, the expression “=b A (x = y)” is well-typed, with respect to a
type assignment that gives b type boolean, and x and y type integer, assuming the
operators have the customary type signatures. The expression “true + 17”7 is not
well-typed.

For each statement in a program, we define a type assignment mapping = to
T for every declaration “z : T” whose scope includes the statement. Any expression

in the statement is typed relative to this type assignment.
Assumption 2.2 For a well-formed program,
1. Every variable is used in the scope of a declaration.
2. BEvery expression is well-typed.

3. For every assignment statement, the expression of the right-hand side has the

same type as the variable on the left-hand side.
4. The expression if every if-else and while-do statement is of type boolean.

5. Every method call statement in TCB is to a method declared in another box,
and the types of expressions for the input parameters, and of the variables for

the output parameters, matches the declared parameter types for the method.
6. Actions have no parameters.

For e € Fxp, and z € Id, we say that e matches z if the type of e matches the
type of variable z. We use this only in a context where the types of e and z is
understood, that is, in the scope of the necessary declarations. We extend this to
sequences in the obvious way. For & € Exzp*, and Z € Id*, we say that ¢ matches
if € and z are the same length, and each expression in & matches the corresponding

variable in Z.

44

2.5 Run-time errors

Run-time errors describe steps of a program caused by the failure to evaluate an
expression in the current state. Often, a run-time error is defined for division by
zero, or accessing an array outside its bounds. We choose not to define any run-time
errors for T'CB, since we thereby avoid adding to the complexity of the semantics.

That is, we make the following assumption.

Assumption 2.3 A TCB ezpression e is defined in every state o that assigns a

value of the correct type to every variable in e.

We indicate extensions to the semantics and to the complete execution theorem that

are required if we do not make this assumption.

2.6 Operational semantics

We give semantic definitions in the Structured Operational Semantics style intro-
duced by Plotkin [29]. We choose this style because it allows us to present the
semantics in a way that closely models the informal explanation of the execution of
TCB programs given in earlier chapters.

For each semantic definition, we first define a configuration that includes (at
least) a state, and a sequence of program statements (the code). A configuration
represents a “snapshot” of a system. The state gives values to the program variables,
and the code is the part of the program code left to execute.

The execution of a program steps from configuration to configuration as
statements are executed, and the state is updated. We use function update to

describe the changes to the state. For a state o, the state

45

is defined by

and, for y any identifier other than z,

ocdy = oy

For o € State, and 0 € Statement®, let C = (0,6) be a configuration. The
semantic rules define a transition relation on configurations. Configuration C is
related to C' = (0’,6’) if the semantics allows a step from C to C'. We call C'
a successor of C. The rules defining the relation generally depend on the first
statement in @, and on the state 0. Component €' is the updated code after the
first statement has been executed, and the ¢’ is o updated with the effect of the
statement.

An execution of a program starts from a configuration Cy = (09, fy) in which
op maps each variable to its initial value, and 0y is the whole program. Execution
proceeds by taking a step from Cj to Ci, where C; is a successor of Cy, and then
taking a step from C; to Cs, one of its successors, and continuing in this way. If
an execution reaches a configuration with no successors in the transition relation,
the execution stops. There are no successors for configurations with an empty code
component. In such a configuration, there is no more code to execute. An execution
that reaches such a configuration has terminated.

The sequential language TCBloc is very simple, and its operational semantics
is corresponding simple. The semantic definition serves mainly as an introduction to
the Structured Operational Semantics style before we tackle concurrent execution.

The semantics for TCBtot and T'CB represents an executing program a sys-
tem comprised of separately executing nodes, one for each box. Each node executes

calls to procedures from its associated box. We identify each box in the program

46

with its node, and use the name “box” to mean either, depending on context. A
box that is not currently executing a procedure call is called quiescent. Initially, all
boxes are quiescent.

The execution of a thread for action D.a begins with box D starting to exe-
cute a’s code. If the execution of D.a reaches a call to method E.m, this is executed
by suspending execution at D, and starting execution at £. When the execution of
E.m’s code is complete, D becomes active again, and E becomes quiescent.

In a TCBtot program, every procedure is total, so every procedure call during
an execution is accepting. The semantics is simplified by not having to deal with
rejecting procedure calls.

We implement a simple model of procedure call for TCBtot. In this model,
a procedure call step occurs when a box D has a call to E.m as the first statement
in its code, and FE is quiescent. If F is executing a procedure call, D is blocked
until this call completes. When FE is quiescent, D is able to make the call. The
configurations of D and F are updated in the same step: D enters a waiting phase,
and F is updated with the call from D. Box F is then committed to executing this
call. When it completes the call, the configurations of D and E are again updated
in a single step: D is updated with the values of the output parameters from F,
and continues executing the rest of its code, and E becomes quiescent again. We
call this model of procedure call a rendezvous between the source and the agent;
the step is enabled only if both boxes are in the right configuration. We call the
semantics for TCBtot a rendezvous semantics.

The first semantics we define for the full TCB language uses the rendezvous
model for procedure call. This extends the ideas from the TCBtot semantics, and
implements guard evaluation and accepting and rejecting calls to partial procedures.

The rendezvous model for procedure call is inadequate for cases when there

is contention for access to a box. Suppose procedure calls are executing concurrently

47

at boxes D and D', and both are ready to call a method on box E. Box D cannot
proceed until E executes its method call, and similarly for D'. When E is idle, it
can start executing only one of the calls, say the one from D’. Box D waits while
E executes the call from D’. When F is again idle, it may start D’s call, or it may
start a call from yet another box. If there are enough boxes trying to call methods
on E, there may be contention each time E is quiescent, and box D may always lose
this contention.

An execution with a nonterminating thread cannot be represented by a se-
quential execution. To get an execution in which all threads terminate, we must
ensure that every procedure call is eventually executed by its agent. The above ex-
ample shows that the rendezvous semantics does not guarantee this. We introduce
a different model for procedure call, one that uses a call queue for each box.

In the new model, a box D reaches a call to a procedure on box F, an entry
is placed at the back of E’s call queue, regardless of E’s configuration. Box D
enters a waiting state. When FE is idle and there is an entry in its call queue, it
starts executing the front entry. When it completes the call it returns any output
parameters to the call’s source, and the source continues executing. The front
entry is removed from the queue, and E becomes idle, so it again checks to see
if the queue is empty. Assuming each procedure call terminates, the call from D
eventually reaches the front of the queue, and E executes it.

The queue model ensures that no box is permanently prevented from ac-
cessing a box to execute a method. We call a semantics using this model a queue
semantics.

Note that the rendezvous form for procedure return does not cause similar
contention problems, since we restrict our attention to well-formed program config-
urations, one of whose characteristics is that if an agent is ready to return from a

method call, then the source of the call is waiting, ready to execute the return.

48

Our final semantics is a queue semantics for the full TCB language. We
extend the program configurations from the rendezvous semantics to include the
call queues, and we define a transition relation on these extended configurations.

This semantics is the one which we use as the semantics of TCB in later chapters.

2.7 Operational semantics for TCBloc

We define the semantics of a T'CBloc program, using the Structured Operational

Semantics style.

2.7.1 Program configuration for TCBloc

The configuration of a TCBloc program is given by the type LocConfig.

Definition 2.4

LocConfig £ record
o : State
0 : Statement™

end

Component o is the value of the program variables, and component 8 is the sequence

of statements — the code — remaining to be executed.

2.7.2 Semantic rules for TCBloc

The semantics for this language is given as a set of inference rules which together
define a relation — over LocConfig. These inference rules are shown in Figure 2.5.

The intended operational meaning of these rules is as follows.

(assign) If first() is an assignment statement, evaluate the right-hand side of the

assignment in the current state, and update the state to give the variable of

49

(assign) 0= (z:=c¢e)0
o' =olz — [e]o]
(0,0) — (0',0")

(block) 0=1[00]];61
0" = 6p; 6,
(0,0) — (0,0")

~

(if-true) 0 = (if b then S, else S1);0
[b]o = true

0 = So;0
(Ua 0) — (07 91)

(if-false) 0 = (if b then S, else §;);0
[b]o = false
0 = 5.;0
(0,0) — (0,0")

~

(while-true) 0 = (while b do §);0
[b]o = true
9' = S; (while b do §);0
(6,0) — (0,0")

(while-false) 6 = (while b do 5);¢’
[b]o = false
(Ua 0) — (Ua 0,)

Figure 2.5: Semantics for TCBloc

50

the left-hand side of the assignment the value computed; continue executing

the rest of the program after the assignment.

(block) If first(#) is a block statement, prepend the statements in the block to the

code, without changing the state.

(if-true)
(if-false) If first(0) is an if-else statement, first evaulate the condition expression in
the current state; if it is true, execute the then-statement, if it is false, execute

the else-statement; afterwards, continue with the rest of the program.

(while-true)

(while-false) If first(#) is a while-do statement, first evaluate the condition expres-
sion in the current state; if it is ¢{rue, execute the body of the loop, and then
execute the loop again, if it is false, continue with the rest of the program

after the loop.

An execution of a TCBloc program starts from a configuration (og,), where oy is
the initial state, and 6y is the whole code of the program. State o assigns values to
all the variables defined for the program, and to no others.

From the initial configuration (oyg, 8y), the execution takes a step to configu-
ration (o1, 61), where (0g,00) — (o1, 61), and then it takes a step to (o9, 02), where
(01,01) — (02,62). The execution continues in this manner. If execution reaches
a configuration (o, #,) where 6, = L, no further transitions are possible, and we
say that the execution has terminated, and o, is the final state.

Note that none of the semantic rules extend the domain of the state com-
ponent of the configuration. In this simple programming language all variables are
global, and last the lifetime of the program.

The semantics given is standard, and we do not investigate it further since

it is not the focus of our work. The semantics of the T'CBloc have little effect on

ol

results that we prove for TCB. The main feature of this semantics we use in the
remainder of our work is that it that for every (o,), where 8 # L, there is a (o/,0")
such that (o,0) — (o',0").

The results that we show can be extended to a Seuss language using any
sequential language for the bodies of the procedures, not just TCB. We chose
TCBloc as a simple representative sequential language.

See [29] for examples of Structured Operational Semantics definitions of lan-
guages with local variables, subroutines, and dynamic allocation. For our purposes,

a richer sequential language is unnecessary.

2.8 Defining the semantics for TCB

We discuss below a number of the design decisions that were made in defining the

semantics for TCB.

2.8.1 Modelling boxes

As noted in the introduction, the configuration of a TCB program consists of the
configuration of each box in the program. The box configuration has several compo-
nents. As with TCBloc, it includes the local state, which gives the values of all the
variables declared in the box, and some code, which, in this case, is the statements
remaining to be executed for the current procedure call. The other components are
the phase, and the call information.

Execution for each box consists of a sequence of complete procedure calls.
The phase for a box records where the box stands in the cycle of waiting to start
execution of a procedure call, deciding to accept or reject the call, executing the
procedure body, and so on. The phase is the state for a finite state automaton

controlling this aspect of the box’s execution.

92

The call information records information about the currently executing pro-
cedure call. This is needed for, among other things, determining the values to return
to the source on return from a procedure call.

During the execution of a TCB program, the box configurations are inter-
related. For example, if box D is executing a method call with source E, then we
expect F to be waiting for control to return from the method call. In Chapter 3, we
define the set of well-formed box configuration and program configurations. These
are the only configurations we expect to see during the execution of a program. We
show that an execution starting from a well-formed configuration never reaches a
configuration that is not well-formed.

The program configuration we define allows for independent activity at each
box. The model allows an action call to be started when other action calls are
running. Each action call is a separate thread. The model is one in which there can

be multiple threads active at one time.

Note The three semantics that we introduce share many similarities, and we define
similar but different types and inference rules for different semantics. We adopt a

naming convention (with the aid of hindsight) for these entities, as follows.

e If an entity is used in the semantics of T'CBtot, but not in the rendezvous

semantics of TCB, it is named with the suffix -tot.

e If an entity is used in the rendezvous semantics of T'CB, but not in the queue

semantics of TCB, it is named with the suffix -rdv.

e If an entity is used in the queue semantics of T'CB, it is named with neither

of these suffixes.

So, for example, ProgConfig-tot is the program configuration for the TCBtot seman-

tics; ProgConfig-rdv is that for the rendezvous semantics of TCB; and ProgConfig is

93

that for the queue semantics of TCB. In the T'CBtot semantics, we use names with
both suffixes, and with none; in the rendezvous semantics for TCB we use names
with the suffix -rdv, and names with no suffix; in the queue semantics for TCB we

use only names with no suffix. (End of note)

2.9 Rendezvous semantics for TCBtot

We present a rendezvous semantics for T'CBtot. In the semantics, we need to refer
to information about boxes and procedures from the program. When a procedure
call is initialized, for example, the semantics uses the names of input parameters
declared for that procedure to correctly update the state with the input parameter

values. We define some types for this static information.

2.9.1 Static information for a T'CBtot box

We define a type for the information about procedures defined in a box.

Definition 2.5

TotalDef = record
I : VarTypeList
O : VarTypeList
C : Statement™

end

Here I represents the input parameters and their types, O represents the output
parameters and their types, and C represents the code for the body of the method.
For an action, both I and O are empty lists. We use VarTypeList rather than a
State for the input and output parameters because we use positional matching to

pass multiple actual parameter values to multiple formal parameters. That is, if we

o4

have the parameter list ((x, Integer), (y, Integer)), and we have the parameter value
list (5,9), then we give z the value 5, and y the value 9. The translation of the code
of a well-formed TCBtot procedure to a TotalDef is straightforward.

The type BozxInfo-tot records the static information for a box.

Definition 2.6

BozInfo-tot = record
og : State
T : Id — TotalDef
A :dom(T) — Bool

end

Component o represents the initial state, which assigns initial values of the appro-
priate type to the box variables, T represents the total procedures defined in the
box (for the present case, all procedures are total), and A indicates which of the
procedures in dom(7T) are actions; A.p holds if and only if procedure p is an action.

Again, translating the code of a TCBtot box into a BozInfo-tot is a straight-
forward process. Translating the well-formedness conditions on T'CBtot programs
to the equivalent conditions on the generated BozlInfo-tot, we assume the following

about any BozlInfo-tot.

Assumption 2.7 If (0g, T, A) is a BoxInfo-tot generated from the code of a well-

95

formed TCBtot boz,

(v p

: p € dom(T)

:(Ap = Top=(L,L1,0)) A
dom(oyg) disj dom(T.p.I) A
dom(oyg) disj dom(T.p.O) A
dom(7.p.I) disj dom(T.p.0)

The first conjunct in the term states that actions have no input or output parame-
ters. The remaining conjuncts require that the names of the input parameters, and
the output parameters be distinct from each other and from the names of the box
variables. This restriction means that we do not have to deal with the case when the
name of a parameter hides the name of a box variable. This simplifies the definition

of the semantic rules.

2.9.2 Static infomation for a TCBtot program

Let B be the set of boxes in the program. The static information associated with
a TCB program is represented by a map I that maps each box to its associated

BoxInfo-tot.

I: B — BoxInfo-tot

This map is generated from the program text. When we use the following functions,
which use I implicitly, we do so in a context in which there is an identified program

under consideration, so the value of I is given.

o6

Definition 2.8 For D € B,

InitState(D) £ I1.D.oy

(D)
BozVars(D) % dom(InitState(D))
TotActs(D) = {p | p€dom(I.D.T)ALD.Ap}
TotMeths(D) 2 {p | p €dom(L.D.T)A-LD.A.p}

For p € dom(1.D.T),

InParam(D.p) = VarList(I.D.T.p.I)

OutParam(D.p) % VarList(1.D.T.p.0)

Code(D.p) I.D.T.p.C

2.9.3 Box configuration for TCBtot

The type BoxConfig-tot is used to represent the configuration of a TCBtot box
during the execution of a program. To define this we first define a type to represent
the phase of an executing box. At each point during the execution of a program, a

box is in one of the following phases.

e Not currently executing a procedure call.
e Executing the local code of a procedure call.
e Waiting for a call on a method in another box to return.

e Ready to return control and output parameter values to the source.
The following type represents the phase.
Definition 2.9

BozPhase-tot = {IDLE, ACCEPT, WAIT, RETURN}

o7

IDLE RETURN

ACCEPT]

WAIT

Figure 2.6: Transition diagram for phases of a T'CBtot box.

These values correspond, in order, to the phases listed above. The diagram in
Figure 2.6 shows the possible phase changes for a single box.

The type Calllnfo is used to record information regarding a procedure call.

Definition 2.10

Calllnfo = record

Here p is the name of the procedure, and () is the source. We use the L for the source
of an action. The sequence v is used to hold values for output parameters (and, in
other semantic definitions, values for input parameters). During the execution of a

procedure call it is always 1, until the box enters phase RETURN, at which point

58

it is set to the output parameter values. Since actions have caller 1, and have no
parameters, a Calllnfo for an action a is always of the form (a, L, 1). We drop
the trailing | values and write this as (a). We also write (p, D) for (p, D, L). The

following functions are accessors for components of a Calllnfo.
Definition 2.11 For v € Calllnfo, where v = (p, Q, v),

Proc(y) =

Source(y) = Q

Now we define the type that represents the configuration of a box during

program execution.

Definition 2.12

BozConfig-tot £ record
¢ : BozPhase-tot
o : State
v : Calllnfo |
0 : Statement*

end

In our intended model of program execution, when a box is idle, or ready to return,

it has no code to execute, that is, 8 = L. So, for
¢ € {IDLE,RETURN}

we let

(¢7 0-7 ’Y) = (QS’ 0-7 77 J_)

99

2.9.4 Program configuration for TCBtot

The configuration of a program is given by a BozConfig-tot for each box in it.

Definition 2.13

ProgConfig-tot 2 B — BozConfig-tot

The program starts in a quiescent configuration where every box has its initial state.

Definition 2.14 The initial configuration for the program is C;niy € ProgConfig-tot
such that, for all D € B

Cinit-D = (IDLE, InitState(D), 1)

2.9.5 Semantic rules for TCBtot

The transition relation for TCBtot is written =>. As with T'CBloc, we define this

relation using a set of inference rules.

Action start, method call, and procedure initialization

The inference rules in Figure 2.7 concern procedure calls. An explanation of these

rules follows.

(t-action-start-rdv) A box in phase IDLE, with an empty call information, can start
a call of any of its actions. It sets its call information for the action, its code

to the code for the body of the action, and enters phase ACCEPT.

(total-call-rdv) A box in phase ACCEPT that has a method call as the first statement
of its code can execute the call when the agent is in phase IDLE, and its call
information is empty. The source evaluates the actual values for the input

parameters, leaves the method call at the head of its code, and enters phase

60

(t-action-start-rdv) C.D = (IDLE, 0, 1)
a € TotActs(D)

/

v = (a)
0’ = Code(D.a)
C = C|[D + (ACCEPT, 0,7, 0")]

(total-call-rdv) C.D = (ACCEPT, 00,70, 60)
Oy = E.m(é;i’);é
C.E = (IDLE, 0y, 1)
U= [[é]]O'O
y = InParam(E.m)
z = OutParam(E.m)
ol =0z L][§ 7]
71 = (mv D)
0] = Code(E.m)
C—C D (WAIT,U(),’)/(),O[))
E +— (ACCEPT, 01,7}, 6}))

Figure 2.7: Semantics for TCBtot: action start and method call

61

(local-step) C.D = (ACCEPT, 0,7, 0)
(Ja 0) — (Jla 9,)
C = C|[D — (ACCEPT,0’,~,6)]

(proc-term-rdv) C.D = (ACCEPT, 0,7, 1)
v=(p, Q)

z = OutParam(D.p)
/

v =[z]o
71 - (pa Q, ’D)

C = C[D — (RETURN, ¢’,7')]

Figure 2.8: Semantics for TCBtot: procedure body execution.

WAIT. The agent extends its state with the input and output parameters,
initializes the input parameters according to the values from the source, saves
the name of the source and the method in its call information, sets its code to

the code for the body of the method, and enters phase ACCEPT.

Note that the rule (t-action-start-rdv) says nothing about scheduling of actions: it
does not require, for example, that there is only one action active at a time, nor does
it require that all actions in a box are given a chance to run at some point during
an execution. As we noted in the introduction, these issues are handled separately

from the semantics.

Procedure body execution

The inference rules in Figure 2.8 concern the execution of a procedure body. An

explanation of these rules follows.

(local-step) A box in phase ACCEPT takes a local step if there is a TCBloc tran-

sition defined for its values of o and 6. The step updates o and # as in the

62

(action-end-rdv) C.D = (RETURN, 0,7)
’)l =

(a)

C = C[D — (IDLE, 0, 1)]

(total-return-rdv) C.D = (WAIT, 00,70, 00)
6y = E.m(e; z); 6,
C.E = (RETURN, 01, 71)
M= (ma D, f))
oy = oo [T — 7]

C— C D — (ACCEPT, 0y, Y0, 6})
E—

(IDLE, 01, 1)

Figure 2.9: Semantics for TCBtot: procedure return

TCBloc transition, and leaves the other components of the box’s configuration
unchanged. Note that a TCBloc transition is defined only if the first statement

of 6 is a statement of T'CBloc (that is, it is not a method call).

(proc-term-rdv) A box in phase ACCEPT that has no code left to execute (so it has
completed the execution of the current procedure call) evaluates the values of
the output parameters in its current state, puts these in the call information,
removes from its state any values for variables other than the box variables,

and enters phase RETURN.

Return from a procedure call

The inference rules in Figure 2.9 concern the return of control to the source at the

end of a procedure call. An explanation of these rules follows.

(action-end-rdv) A box in phase RETURN that has an action call in its call infor-
mation ends the action. The box clears its call information and enters phase

IDLE.

63

(total-return-rdv) A box in phase RETURN that has a method call in its call infor-
mation ends the call, returning the output parameter values to the source. The
agent clears its call information and enters phase IDLE. The source updates

its state with the output parameter values and reénters phase ACCEPT.

2.10 Rendezvous semantics for TCB

In this section, we extend the rendezvous semantics for T'CBtot to a rendezvous
semantics for the full TCB language. Since the difference between these languages
is the absence of partial procedures in TCBtot, the extensions all concern the eval-

uation of guards, and handling rejected procedure calls.

2.10.1 Static infomation for a TCB box

A partial procedure consists of a set of alternatives, each of which has a guard,
consisting of a condition, which is a boolean expression on the local state, including
any procedure parameters, and, optionally, a test, which is a call to a partial method.
We require that the conditions on the alternatives in a single procedure be disjoint,
so any value for the local state satisfies the condition for at most one alternative.

To model a partial procedure, we use a function with the type Alternative.

Definition 2.15

Alternative = State < (ProcCall | x Statement™) |

Note that a function in Alternative is partial, since it is only defined for states that

give values to all variables needed to evaluate the conditions and the tests. As an

64

example, consider the following partial procedure with two alternatives.

m = by & E.m(z;0) — 6y

| b1 — 01

The Alternative function for this procedure is the function G, where, for all o such

that by and by are defined in o,

(L,61) if [b1]o
1 if ﬁ[[bg]]a/\—'[[bl]]a

When condition by holds, G returns the test call and the body code from the first
alternative; when b; holds, G returns an empty test call and the body code from
the second alternative; and when neither condition is true, G returns L. To execute
a call on this procedure, we check the value of G.o. If it is L, the call rejects, and
control returns to the source; if it is (L, #), the call accepts, and 6 is executed before
control returns to the source; and if it is (E.m(Z;0),0), control is passed to box E
to execute the test call, and when that call ends, if it rejects, then the current call
rejects, and control returns to the source, and if it accepts, then the current call
accepts, and 0 is executed before control returns to the source.

We now define a type to represent a partial procedure.

Definition 2.16

PartialDef £ record
I : VarTypeList
O : VarTypeList
G : Alternative

end

65

Here I and O are as in TotalDef, and G is a function used for evaluating the guards
and selecting the appropriate test and body code, as described above.

We next define the type for the static information for a T'CB box.

Definition 2.17

BozInfo = record
og : State
P : Id — PartialDef
T : Id — TotalDef
A: (dom(P)Udom(T)) — Bool

end

Components oy and T are as in the definition of BozlInfo-tot. Component P rep-
resents the partial procedures defined in the box, and predicate A is extended to
dom(P).

Each box in a program is translated into a BozlInfo, and from the well-

formedness conditions on T'CB programs, we get the following results.

Assumption 2.18 If (0g, P, T, A) is a BoxInfo generated from the code of a well-
formed TCB boz, then

dom(P) disj dom(T) A
(V X,p
: X e{P, T} N pé€dom(X)
c(Ap = XplI=1L AN XpO=1L)A
dom(oyg) disj dom(X.p.I) A
dom(oyg) disj dom(X.p.0) A
dom(X.p.I) disj dom(X.p.O)

66

2.10.2 Static information for a TCB program

As with TCBtot, the static information for a TCB program is a function that maps

each box to a BoxInfo.

I: B — BoxInfo

We use I implicitly via the functions in the following definition.

Definition 2.19 For D € B,

InitState (D
PartActs(D
PartMeths(D
TotActs(D

Methods (D

(

(

(

(
TotMeths (D

(

(
Partials(D
(

)

)

)

)

)
Actions(D)
)

)
Totals(D)
)

)

Procs(D
InParam/(D.p

OutParam(D.p)

Alt(D.p,o)
Code(D.p)

A

>

lI>

lI>

I.D.O’O

{p| pedom(I.D.P)ANL.D.Ap}

()
{p | p € dom(I.D.P)
()

{p| pedom(I.D.T)NI.D.A.p}
{p]| pedom(I.D.T)AN-L.D.A.p}

PartActs(D) U TotActs(D)

PartMeths(D) U TotMeths(D)
PartActs(D) U PartMeths(D)
TotActs(D) U TotMeths(D)

Actions(D) U Methods(D)

VarList(I.D.P.p.I)
VarList(I.D.T.p.I)
VarList(I.D.P.p.0O)
VarList(I.D.T.p.O)
I.D.P.p.G.o
I.D.T.p.C

if
if

p € dom
p € dom

p € dom

Note that Alt(D.p, o) is defined only for partial D.p, and Code(D.p) is defined only

for total D.p.

67

2.10.3 Box configuration for TCB

To implement the evaluation of the guard on partial procedures, we need to extend

the set of phases. The type BozPhase extends the type BoxPhase-tot.

Definition 2.20

BozPhase = BoxPhase-tot U {GUARD, PWAIT, REJECT}

The phases BozPhase-tot as used as before. A box is in phase GUARD when it has
committed to executing a partial procedure, but has yet to decide whether to accept
or to reject. A box in phase PWAIT has called a test, and is waiting for the result of
the call. A box in phase REJECT has failed to successfully evaluate a guard (either
no alternative has a condition that holds in the current state, or an alternative was
selected, but the test call rejected) and the box is ready to return control to the
source. A procedure call that ends in phase REJECT is a rejecting call. Conversely,
one that ends in phase RETURN is accepting (so every call in TCBtot accepts, as
expected).

The diagram in Figure 2.10 shows the phase changes for a single box. Some of
the transitions in the diagram are only possible when executing a partial procedure,
and some only when executing a total procedure. The diagram is isomorphic to that
in Figure 2.6 on the phases in BoxPhase-tot.

The phases IDLE, ACCEPT, and REJECT are emphasized in the transition
diagram, because these phases play an important role in the semantics. A box in
phase IDLE is between the execution of two procedure calls. We expect each box to
be in this phase repeatedly during an execution.

From the diagram, we can see that once a box enters phase ACCEPT while
executing a procedure, it can only return to phase IDLE via phase RETURN, which

indicates that the call was accepted. There is no way for the box to reject once it has

68

RETURN

REJECT |« -----4 GuarD |------ ACCEPT]

— — — ® total procedures only
******* B partial procedures only
—® total and partial procedures

Figure 2.10: Transition diagram for phases of a TCB box.

69

entered phase ACCEPT. Similarly, once a box that enters phase REJECT, the decision
has been made to reject, and this cannot be revoked. Note that every nonempty
path from IDLE back to itself passes through either phase ACCEPT or REJECT. So
we see that the first step during the execution of a procedure call which leaves a
box in phase ACCEPT or REJECT (and there is always such a step) determines the
overall outcome of the call from the point of view of acceptance or rejection.

Again from the diagram, we can see that there is a possibility for a box to
execute an unbounded number of steps a procedure, yet never return to the idle
state. There is a self-loop on ACCEPT, and a loop containing ACCEPT and WAIT,
so a path in the diagram through either of these phases can be extended without
limit. We want to avoid such executions, and ensure that every box returns to phase
IDLE at some point after starting to execute a procedure, or, in other words, that
each procedure call terminates. We do not address this issue of termination in the
semantic definition. In Chapter 4, we develop conditions that ensure that every
procedure call terminates.

The type BoxzConfig-rdv is used to record the dynamic information for a
TCB box in the rendezvous semantics. Apart from component ¢, the entries in this

record are the same as for BoxConfig-tot.

Definition 2.21

BozConfig-rdv = record
¢ : BoxPhase
o : State
: Calllnfo |
0 : Statement*

2

end

70

As with BozConfig-tot, we omit the final component of a BoxConfig-rdv value

when the phase is such that it is necessarily L. In the current case, if
¢ € {IDLE,GUARD,RETURN, REJECT}

then we let

(¢7 0-7 ’Y) = (QS’ 0-7 77 J_)

2.10.4 Program configuration for TCB

We define a program configuration for a TCB program under the rendezvous se-

mantics as a BoxConfig-rdv for each box.

Definition 2.22

ProgConfig-rdv = B — BozConfig-rdv

2.10.5 Rendezvous semantic rules for TCB

All six semantic rules for TCBtot carry over as rules for the rendezvous semantics
of TCB. When we carry the rules over, we apply them to program configurations
from ProgConfig-rdv rather than from ProgConfig-tot. The TCBtot rules are the
only ones needed to execute total procedure calls. We add to these seven rules for
executing partial procedure calls.

The additional rules deal with the issues of guard evaluation, and rejection,
since these are particular to partial procedures. The evaluation of total procedures,
and the evaluation of the bodies of partial procedures during any accepting call, are
handled by the T'CBtot rules.

The first couple of added rules deal with starting a partial action, and ending

a partial action that has rejected. These are shown in Figure 2.11. The rules are

71

(p-action-start-rdv) C.D = (IDLE, 0, 1)
a € PartActs(D)
7' = (a)
C = C[D — (GUARD, 0,7')]

(action-reject-rdv) C.D = (REJECT, 0,7)

v = (a)
C = C[D ~ (IDLE, 0, 1)]

—

Figure 2.11: Rendezvous semantics for T'CB: starting and rejecting a partial action
call

explained below.

(p-action-start-rdv) A box in phase IDLE, with an empty call information, can start
a call of any of its partial actions. It sets it call information for the action,
and enters phase GUARD. Unlike rule (t-action-start-rdv), it does not set the

code, since this is determined during guard evaluation.

(action-reject-rdv) This rule is exactly the same as rule (action-end-rdv), except

that, before the step, the box is in phase REJECT.

We define separate rules for ending an action that accepts and ending an action that
reject, even though they are implemented similarly, because we use the name of the
rule for a transition as a label for that transition. For some of our later purposes,
having a simple way to distinguish these steps is useful.

The remainder of the added rules concern guard evaluation. These rules
describe the transitions on the left-hand side of the diagram in Figure 2.10. Three

rules are shown in Figure 2.12.

(guard-accept-rdv) If the value of the alternative function is a pair with no test,

the current call accepts, and the box sets its code to the code component of

72

(guard-accept) C.D = (GUARD, 0,7)

p = Proc(y)
Alt(D.p,o) = (L,0")
C = C[D ~ (ACCEPT, 0,7, 0")]

(guard-reject) C.D = (GUARD, 7,7)
p

o' =0 | BozVars(D)
C = C|[D ~ (REJECT, 0, 7)]

(guard-test-rdv) C.D = (GUARD, 0¢,0)

p = Proc(v)
Alt(D.p,00) = (E.m(&;%),0)
0 = E.m(e;%);0
C.E = (IDLE, 01, 1)

= [e]oo

(4

y = InParam(E.m)
z = OutParam(E.m)
oy =o01[z— L[y — 7]

1

C— C D~ (PWAIT,UOI, 70,, 6;)
E — (GUARD, 07,7})

Figure 2.12: Rendezvous semantics for TCB: guard evaluation

73

the pair, and enters phase ACCEPT.

(guard-reject-rdv) If the value of the alternative function is L, the current call
rejects, and the box restricts its state to the box variables, and enters phase

REJECT.

(guard-test-rdv) If the value of the alternative function is a pair containing a test
call, and the target box of the call is in phase IDLE and its call information
is empty, the call can be initiated, in a way similar to rule (total-call-rdv).
The source box sets its code to the code component of the pair, with the test
call prepended (since the output parameters from the call are required for
the return from the procedure), and enters phase PWAIT; the agent box adds
a call information, extends its state with the parameters from the call and

enters phase GUARD.

The remaining two rules deal with the return from the test call. These rules are

shown in Figure 2.13.

(test-accept-rdv) If a box is in phase PWAIT, and the agent is in phase RETURN, the
procedure at the source accepts. The returning of output parameter values is

handled as in rule (total-return-rdv).

(test-reject-rdv) If a box is in phase PWAIT, and the agent is in phase REJECT, the
procedure at the source rejects. The source cleans up its state, clears its code,
and enters phase REJECT, and the agent clears its call information, and enters

phase IDLE.

2.11 Queue semantics for T'CB

As noted in the introduction, the rendezvous semantics that we have presented for

TCBtot and full TCB fail to deal adequately with contention between threads for

74

(test-accept-rdv) C.D = (PWAIT, 09, Y0, 0o)
0y = E.m(e; z); 6,
C.E = (RETURN, 01, 71)
M1 = (ma D, f})
oy =09 [Z — 1]

D — (ACCEPT, 0y, 0, 0})

C=2C
E — (IDLE, 01, L)

(test-reject-rdv) C.D = (PWAIT, 09, Y0, o)
0o = E.m(¢;%);0
C.E = (REJECT, 01,71)
"= (mv D)
oy = oo | BoxVars(D)

c—c|P— (REJECT, 0(,70)
E—

(IDLE, 01, 1)

Figure 2.13: Rendezvous semantics for TCB: test return

75

access to a box. The procedure call rules (action-start-rdv), (total-call-rdv), and
(guard-test), all require that the call information for the agent is empty before
the step, and full after the step. We show in Chapter 3 that all the rules, except
these three, have the property that from a configuration in which a step is enabled
according to the rule, no step by a box other than D can reach a configuration where
this step is not enabled. This is an important stability property, since it allows us to
reason successfully about the termination of procedure calls. Certainly this stability
seems plausible. To decide if rule (local-step), for example, can be applied to take
a step for box D, we need only look at the configuration of box D. A step for any
other box does not change D’s configuration, so the local step for D remains enabled
until it is taken.

For the three procedure call rules, we do not have this stability property.
That is, from a configuration where a procedure call from box D to box E is enabled,
a step involving E and another box can reach a configuration where the procedure
call step for D is no longer enabled.

We now define a queue semantics that addresses this shortcoming. In the
next chapter, we show that every rule in the queue semantics has the above stability
property.

We use the same source language as for the last semantics, and we require no
extra static information, so we use the function I for the static program information,
as described in Section 2.10.1. We define a program configuration for the new

semantics.

2.11.1 Call queues

For the queue semantics, we replace the single Calllnfo component of the box con-
figuration with a call queue, which we represent by an element of Calllnfo*. A

procedure call on a box is started by appending a Calllnfo to the end of this se-

76

quence, and a box that is idle can initialize the call at the head of the queue. Thus
we split the rendezvous procedure call into two steps. In the first step the source
adds an entry to the agent’s call queue, and in the second step, which occurs when
this entry has reached the front of the queue, and the agent is idle, the agent starts
the procedure call. When the the first step is taken, the input parameter values from
the source are included with the call information placed in the queue, since, unlike
the rendezvous semantics, the agent does not immediately initialize the parameters
for the procedure call.

In this new model, a nonidle box is executing the call at the head of its call

queue. We redefine Proc(vy), and Source(y) for v € Calllnfo*.

Definition 2.23 For v € Calllnfo*, where v = (p, Q,v) >4,

Proc(v) S

(1>

p
Source(y) Q

2.11.2 Box and program configurations for the queue semantics

The type BoxConfig is used to represent the configuration of a box in the queue
semantics. The only change from the type BoxConfig-rdv is the type of component

v, which is a sequence of Calllnfo entries, rather than a single Calllnfo.

Definition 2.24

BozConfig = record
¢ : BozPhase
o : State
~ : Calllnfo*
0 : Statement™

end

77

We omit an empty 8 for the same phases as with BoxzConfig-rdv.
A program configuration is, as may be expected, a map mapping each box

in the program to a BoxConfig.

Definition 2.25

ProgConfig 2 B — BozConfig

2.11.3 Queue semantic rules for TCB

The major change we make to the rendezvous semantics to give the queue semantics
is the splitting of procedure calls into two independent steps, one under the control of
the source, and the other under the control of the agent. We replace the rendezvous

procedure call rules

(p-action-start-rdv)
(t-action-start-rdv)
(total-call-rdv)

(guard-test-rdv)

with seven rules implementing the two-step procedure call. We also replace each of

the following rules

(proc-term-rdv)
(action-end-rdv)
(action-reject-rdv)
(test-accept-rdv)
(test-reject-rdv)

(total-return-rdv)

78

with a rule named without the -rdv suffix. The changes for these rules are minor
changes needed because of the change from a single call information to a call queue.

The remaining rules,

(guard-accept)
(guard-reject)

(local-step)

are used as is. We show only the replacements for the first group of rules here. The
full set of queue semantic rules for TCB is given in Appendix A.

The first three new rules are shown in Figure 2.14. These rules implement
the first step of the two-step procedure call outlined above. In each case, the pro-
cedure call is made by placing an entry containing the name of the procedure, the
source, and the values for the input parameters (if any) at the back of the agent’s
call queue, regardless of the agent’s configuration. Note that rule (action-start) is
used for both partial and total actions.

The other four rules, which implement the second of the two steps, are shown
in Figure 2.15. There are separate rules for all four combinations of partial/total
and action/method. These rules involve only the agent of the call. When a box
is idle, and there is an entry in its call queue, a call can be initialized for the first
entry. The value list from this entry is used to initialize the input parameters, and
these values are then removed from the entry.

For partial procedures, the box enters phase GUARD after the initialization
step. For total procedures, the enters box phase ACCEPT after the step, and its code
is initialized, as in the rendezvous semantics.

The rules for actions are a special case of those for methods, since actions
have no parameters. However, as with (action-end) and (action-reject), we use

separate rules to give separate labels to the corresponding step in the semantics.

79

(action-start) C.D = (¢,0,v,0)
a € Actions(D)
v =v<(a)
C—= C[D ~ (¢,0,7,0)]

(total-call) C.D = (ACCEPT, 0y, Y, 0o)
0y = E.m(é;i’);é
C.E = (¢1,01,71,01)
v = [e]oo
7{ :714(m7D76)
D~ (WAIT,U(),’)/[),Q())
E— (¢1,01,71,01)

C—=—~C

(guard-test) C.D = (GUARD, 09, 7o)

p = Proc(y)
Alt(D.p,00) = (E.m(&;%),0)
0, = E.m(e;z);0
C.E = (¢1,01,71,01)
U= [[é]]ao
’Yi :’)/14(m,D,17)
CcC—0C D (PWAIT370770306)
E— (¢1701771791)

Figure 2.14: Queue semantic rules for TCB: procedure call

80

(p-action-init) C.D = (IDLE, 0,7)
p = Proc(v)
p € PartActs(D)
C = C[D — (GUARD,0,7)]

(p-method-init) C.D = (IDLE, 0,7)
7= (p,Q,0)>
p € PartMeths(D)
y = InParam(D.p)
z = OutParam(D.p)
o' =clz— L[y — 7]
'=(p,Q)>%
C = C[D ~— (GUARD,0’,%')]

(t-action-init) C.D = (IDLE, 0,)
p = Proc(y)
p € TotActs(D)
0’ = Code(D.p)
C = C|[D ~ (ACCEPT, 0,7, 0")]

(t-method-init) C.D = (IDLE, 0,7)
v=(p,Q,0)>%
p € TotMeths(D)
y = InParam(D.p)
z = OutParam(D.p)
o' =z~ L][j— 0]
v =(p, Q)Y
o' = C’ode(D.p)
C = C|[D ~ (AccEPT, 0’,v',0')]

Figure 2.15: Queue semantic rules for TCB: procedure initialization

81

2.12 Summary

We have given two semantic definitions for T'CB, a rendezvous semantics and a
queue semantics. We regard the queue semantics as the true description of the
execution of TCB programs. In the next chapter, we explore some of the properties
of program configurations and executions for this semantics.

In the remaining chapters, we explore the properties of the queue semantics
for TCB. In Chapter 5, we use the execution generated by the rendezvous semantics
as an intermediate form as we rearrange the steps of a concurrent execution to give

a sequential execution.

2.12.1 Run-time errors

As noted in Section 2.5, we avoid the issue of run-time errors with Assumption 2.3.
If we choose not to make this assumption, we can extend the semantics of TCB to
handle run-time errors as follows.

We define a new phase FAIL, and, for each rule that involves evaluation of
an expression, either directly, as in rules (local-step) and (total-call), or indirectly,
as in rule (guard-accept), we add a rule that defines a transition to FAIL for a box
where evaluation of an expression causes a run-time error. We define no rules that
take a step for a box in phase FAIL. This means that a run-time error puts a box in
a failed configuration, and it remains in this configuration for the remainder of the

execution.

82

Chapter 3

Execution of T'CB programs

3.1 Introduction

This chapter discusses the elements, and some of the consequences, of the queue
semantics for TCB defined in Chapter 2.

We define subsets of BozConfig and ProgConfig containing the well-formed
elements of these types. These subsets contain only the elements that we expect to
arise during an execution. They exclude, for example, box configurations in which
the phase is ACCEPT, but the call queue is empty, and program configurations in
which box D is executing a method call for box E, but box F is in phase IDLE.

We next consider the transition relation defined by the semantic rules. We
define a way to assign labels to steps between configurations allowed by the rules.
A step is enabled in a configuration if there is any step allowed by the rules starting
from that configuration; a step is enabled for box D if the step is enabled, and taking
it changes D’s configuration. We show that, in any configuration, all steps enabled
for D have the same label.

We show that a step from a well-formed configuration cannot reach a config-

uration that is not well-formed. By induction, we have that any sequence of steps,

83

starting from a well-formed configuration, passes through only well-formed config-
urations. Thus we can confine our attention to well-formed program configurations
for the remainder of this work.

Executions are paths made up of labelled steps between program configura-
tions, where each step is allowed by some semantic rule. We give a definition for
constructing a set of executions from a set of configurations and a set of labels,
and we use this to define the executions for a TCB program using the well-formed

program configurations and the step labels.

3.2 Box configurations

The type BoxzConfig is used for represent the dynamic information associated with a
box (its configuration) during program execution under the queue semantics. First

we define some mild abuse of notation for components of the box configuration.

Definition 3.1 For v € Calllnfo*,

(@ ey = 30 = (p,Q V) €Y)
Definition 3.2 For S € Statement,

S=Em(-) & (3i0 = §=Em(#v))

We define the following terminology for box configurations.

Definition 3.3 For bc € BoxConfig,
qt(be) & bey= L

If qt(bc), then we say that be is quiescent.

84

Definition 3.4 For D € B, and bc € BoxzConfig, where bc is the configuration

associated with D, a call of procedure p is active in D if

(3Q : @QeBL : (p,Q)€bery)

If (p, Q,0) € be.ry, Q is the source, and D is the agent for this call.

As noted in Chapter 2 not all possible combinations of component values for

a box configuration make sense in terms of the intended interpretation. We define

the set of well-formed configurations.

Definition 3.5 For bc € BoxConfig, be is a well-formed configuration for D if all
the following hold.

1.

2.

bc.p #IDLE = bey # L

bc.¢ € {IDLE, GUARD, RETURN, REJECT} = bc.0 = L

be.p € {WAIT, PWAIT} = (I E,m :: first(bc.0) = E.m(—))
bc.¢p € {GUARD, PWAIT,REJECT} = Proc(bc.y) € Partials(D)
bc.¢ € {IDLE, RETURN, REJECT} = dom(bc.0) = BozVars(D)

dom(bc.c) 2 BozVars(D)

(v (p, Q)

: (p, Q) € bey
:p € Procs(D) N Q#D A (p€ Actions(D) = Q= 1)

)
(VE : E€B : (#(m,Q,0) : (m,Q,0)€bcy : Q=E) < 1)

85

9. (Vv (p, Q,0)
: (bc.¢p = IDLE A (p, Q,0) € be.y) V
(be.¢p #IDLE A (p, Q,0) € rest(be.y))
: 0 matches InParam(D.p)

)

10. bc.¢p = RETURN A first(be.y) = (p, @,0) = © matches OutParam(D.p)

For D € B,
BC(D) 2 {bc | beis a well-formed configuration for D}

Condition 1 ensures that a box that is executing a call has an entry in the call
queue that identifies the call. Note that this condition means that if bc € BC(D)
and ¢t(bc), then bc.¢p = IDLE. Condition 2 justifies the abbreviated form used for box
configurations for the given phases. Condition 3 ensures that the any waiting box has
the procedure call for which it is waiting at the front of its code. Condition 4 ensures
that the phases associated with guard evaluation and procedure rejection are only
reached while executing a partial procedure. Condition 5 ensures that the state of
each box between procedure calls gives values only to the box variables. Condition 6
ensures that the state gives values to the box variables, at least. Condition 7 ensures
that a box never calls a method on itself, that the procedure names in the call queue
are valid, and that there is a box as source in each method call, and none in each
action call. Condition 8 says that at any time, a box has at most one active method
call for any particular source. Condition 9 ensures that all calls that have not yet
started have the right types in their input parameter lists. Condition 10 ensures
that a box that is ready to return to its source has the correct types in its output
parameter list.

For TCB, the state of each box satisfies stronger conditions than Conditions 5

and 6 in Definition 3.5. During the evaluation of a guard, and the execution of the

86

body of a procedure, a box’s state is extended by the input and output parameters
of the procedure in the current call. This stronger condition is an artifact of the
simple definition of TCBloc, and the conditions given allow for a local language that
extends the local state in more complex ways during procedure execution.

For a well-formed box configuration that is not in phase IDLE, we call the
front entry in the call queue the current call. This is the call that the box is currently
executing. If the phase is IDLE, the current call is not defined.

We define a partial order on box configurations using to the prefix order on
the call queue. A pair of configurations in this order have the same value for the

other components.

Definition 3.6 For D € B, and bc, b’ € BC (D),

be Cbc' 2 bep=bc.¢p N beyC by A be.o=bc'.o A be. = bc'.0

3.3 Program Configurations

A program configuration maps each box name to its associated box configuration.
We extend the terminology for box configurations to program configurations in the

natural way.

Definition 3.7 For C € ProgConfig,
q¢t(C) & (VD : DeB : ¢t(C.D))
If qt(C), we say C is quiescent.

Definition 3.8 A call of procedure D.p is active in C if an call of p is active in

D.
Actives(C) 2 {D.a | a € Actions(D) A D.a is active in C}

87

The set Actives(C) contains all actions that have active threads in C.
As with box configurations, we define well-formed program configurations.

The first requirement is that each box has a well-formed box configuration.

Definition 3.9 For C € ProgConfig,
C is locally well-formed £ (YD : De€B : C.D € BC(D))

For a program configuration to be well-formed, we also need to ensure that the con-
figuration respects the mutual dependencies between the values of the configurations
for different boxes. For example, if a box is executing a method call for a source,
then we expect the source to be waiting for the results of the call. Conversely, if a
box is waiting for a method call to return, we expect the method call to be in the
call queue for the agent. We define conditions on a program configuration to capture
this restriction. We use the following function, which returns the appropriate phase

for the source of a method call.

Definition 3.10 For D € B, and m € Methods(D),

WaitPhase(D.m) = PwAIrT if m € PartMeths(D)
WAIT if m € TotMeths(D)

Definition 3.11 For C € ProgConfig,

C is call correct =
(V D,E,m
: D,E € B A m € Methods(E)
:(m,D)e C.Ey =
C.D.¢ = WaitPhase(E.m) A first(C.D.0) = E.m(—)

88

Note that the term of the quantification in Definition 3.11 is an equivalence, so it
excludes configurations in which there is a method call with source D in a call queue,
but D is not waiting, and the case when D is waiting for E but there is no method
call with source D in E’s call queue.

The following theorem is a direct consequence of Definitions 3.9 and 3.11.

Theorem 3.12 If C is locally well-formed and call correct program configuration,
and if D is waiting in C, then there is exactly one call queue entry with source D

i C.

Proof
Suppose C is a locally well-formed and call correct program configuration, and that

C.D.¢ = PWAIT.

C.D.¢p = PWAIT
{ C is locally well-formed, so C.D € BC(D) }
C.D.¢ = PWAIT
AN{(IE,m : E€B A m € PartMeths(E) : first(C.D.0) = E.m(—))

{ predicate calculus }
(3 E,m
: m € PartMeths(E)
: C.D.¢ = PWAIT A first(C.D.0) = E.m(—)

)

{ C is call correct }
(FE,m : m € PartMeths(E) : (m,D) € C.E.y)

Thus, we have that there is at least one box that has a call queue entry with source D,
when C.D.¢p = PWAIT. A similar proof shows the same result when C.D.¢ = WAIT.

We have
(m,D)e C.Exy A (m',D) € C.E'y

89

= { C is call correct }
first(C.D.0) = E.m(—) A first(C.D.0) = E'.m/(-)
= { transitivity of =, equality of procedure calls }

E=E

This shows that, if D is waiting, there is a unique box F with a call queue entry
with source D.

Since C is locally well-formed, C.E is well-formed, so there is exactly one
entry in its call queue with source D. Thus there is exactly one such entry in the
whole of C.

(End of proof)

3.3.1 Relations induced by calls

Let C be a locally well-formed and call correct program configuration, and suppose
that, for some Dy € B, Dy’s current call in C is for an action, and that Dy is in
a waiting phase. Then, from Theorem 3.12, there is a unique D with a call queue
entry for Dg. We say that Dy is waiting for D;. If the call for Dy is the current call
in D1, then we say that D is executing for Dqy. If Dy is in a waiting phase, then
there is a unique Do for which D; is waiting. Continuing in this way, we construct

the longest possible sequence of boxes,

(Do,D1,Da,...,Dp_1)

where D; is waiting for D;11, and D;1; is executing for D;, for 0 <47 < n — 1. Each
of Dy, ... ,Dy, o is in a waiting phase, but D, may not be. If D,,_; is waiting for
some box D, D,, is not executing for D,,_1 (since the sequence is maximal), and
so the call for D,_; is not the current call in D,,.

In a well-formed configuration, we expect every box that is not idle to be

90

executing as part of a sequence like the one above. We define some functions on
program configurations so we can express these conditions. The first set of functions
express the “is executing for” relation. Since each call has a unique source, we

express the relations as partial functions.

Definition 3.13 For C € ProgConfig, and D € B,

Kp.C.D %2 Source(C.D.y) if C.D.}# IDLE
A Proc(C.D.vy) € Partials(D)

Kt.C.D 2 Source(C.D.y) if C.D.¢ # IDLE
A Proc(C.D.y) € Totals(D)

K.CD 2 Kp.C.D if Dc dom(Kp.C)
Kt.C.D if D € dom(Kt.C)

We have
Kp,Kt, K : ProgConfig - B — B

Thus Kp.C is a partial function from B to B, . If Kp.C.D = E, then D is executing
a partial method for source F, and if Kp.C.D = L, then D is executing a partial
action, Functions K¢t.C and K.C have similar interpretations, the first for total
procedure calls, and the second for procedure calls of either kind. If K.C is not
defined at D, then D is not currently executing a procedure in C.

The following theorems state some useful properties of these functions. The
proofs are given in Appendix B. The first theorem states that there is at most
one box executing for any given box. That is, in any well-formed configuration C,
there cannot be two boxes mapped to the same box by K.C. The function K.C is

one-to-one, except that multiple boxes can be mapped to L by K.C.

91

Theorem 3.14

(VvC,D,E
: C € ProgConfig N C is locally well-formed and call correct A
D,E € dom(K.C) A K.C.D =K.C.E
:KCD=1V D=FE
)

The next theorem states that if box D is executing for box E, then F is executing

a procedure.

Theorem 3.15

(Vv C,D
: C € ProgConfig N C is locally well-formed and call correct A
D € dom(K.C)
: K.C.D=1 Vv K.C.D € dom(K.C)

)

The final theorem says that the source of a partial method call is never executing a

total procedure, which is precisely the restriction we impose.
Theorem 3.16
(v C

: C € ProgConfig N C is locally well-formed and call correct
: rng(Kp.C) disj dom(Kt.C)

To follow the chain of calls given by K.C, we apply the function repeatedly

to an argument. We define iteration for a partial function.

92

Definition 3.17 Let f : S — S, be a partial function on some set S. For © € S,

(1>

O
and, for any n >0
e & f(fra) if f".ais defined A f".x € dom(f)

The following is a useful property of this iteration.

Theorem 3.18

e = f(fa)

Proof
A simple induction, using the associativity of function composition.

(End of proof)

So, for any D € dom(K.C), (K.C)°.D is D, and (K.C)'.D is the box for
which D is executing. If (K.C)!.D € dom(K.C), then (K.C)2.D is the box for
which (K.C)'.D is executing, and so on. For any D € dom(K.C), we can construct

the sequence of boxes

If (K.C)*.D = 1, for some k > 0, then the sequence is finite. In this case, D is
(transitively) executing for a box which is executing an action call. This what we

expect to happen during program execution. Otherwise, if no such k exists, then by

93

Theorem 3.15, the sequence is infinite. In this case, since B is finite, the sequence
contains repeated elements. We can use Theorem 3.14 to show that in this case
there is a k such that (K.C)*¥.D = D. So there is a cycle of boxes, where each box
in the cycle is executing a method for the next, so D is transitively executing for

itself. We define a condition to exclude such cases from consideration.

Definition 3.19 For C € ProgConfig,

C is well-founded =
(YD : Dedom(K.C) : 3k : k>0 : (K.C¥*D=1))

3.3.2 Well-formed program configurations

We combine all the conditions on program configurations defined so far to give the

definition of a well-formed program configuration.

Definition 3.20 For C € ProgConfig,

C is well-formed £ C is locally well-formed, call correct, and well-founded

PC 2 {C | C e ProgConfig A C is well-formed }

3.3.3 Call stacks

We define a call stack for a well-formed program configuration as a maximal sequence

generated by K.C.

Definition 3.21 For C € PC, the sequence Q € B is a call stack if

(Vi : 0<i<|Q—1 : K.C(Q])=Q[+1]) A
first(Q2) € rng(K.C) A K.C.(last(Q2)) = L

94

Definition 3.22 For C € PC,
Stacks(C) = {Q | Q is a call stack for C}

From Theorem 3.16, a call stack €2 can be divided into two parts, a first part in

which all boxes are executing a total procedure, and a second part in which all

boxes are executing a partial procedure.

The following theorem follows from the definitions and theorems above.

Theorem 3.23

(Vv C,D

:CePC N DeB A C.D.¢ # IDLE
(3 2 Qe Stacks(C) : DeQ)
)

Theorem 3.23 shows that the set of active boxes can be partitioned among the call

stacks. The theorem justifies the following definition.

Definition 3.24 For C € PC, and D € B, where D is not idle in C,

CallStack(C,D) 2 Q where Q € Stacks(C) A D € Q
RootBoz(C,D) %2 last(CallStack(C, D))

Root(C,D) = E.a where E = RootBox(C,D) A a = Proc(C.E.y)
We call Root(C, D) the root action for D in C.

Action Root(C, D) is the action whose execution is the ultimate cause of box D’s

current execution in C.

95

3.3.4 Wait lines

We define some partial functions for the “is waiting for” relation between boxes.
These functions are almost the inverse of the call stack function, and it has similar
properties. However, the differences are significant. First, we define a function
that returns the box from a method call statement at the front of a sequence of

statements.

Definition 3.25 For 6 € Statement™,
Agent(d) = E if (3m = first(d) = E.m(—))

The following theorem states that in a well-formed configuration, every box that
is in a waiting phase has an agent, by the above function. This is an immediate

consequence of the definitions.
Theorem 3.26
(Vv C,D

:CePC N DeB
: C.D.¢ € {pwAIT, WAIT} = C.D.f0 € dom(Agent)

)

Now we define the functions for the “is waiting for” relation.

Definition 3.27 For C € PC, and D € B,

Wp.C.D % Agent(C.D.§) if C.D.p = PWAIT

lI>

Wt.C.D Agent(C.D.0) if C.D.¢p = WAIT

lI>

W.C.D Wp.C.D if D € dom(Wp.C)

Wt.C.D if D € dom(Wt.C)

96

The following theorem relates these functions to the “is executing for” function.

Theorem 3.28

(Vv C,D,E
:CePC N D,EEB
: (Kp.C.D=E = Wp.C.E=D) A (Kt.C.D=E = Wit.C.E =D)
)

Proof
From Definitions 3.13, 3.20 and 3.27.
(End of proof)

From Theorem 3.28, we have, for any €2 € Stacks(C),
(Vi : 0<i<|Q : W.C.(Qi]) =Qli —1])

Thus every box in a call stack, except the first, is waiting for the previous box.
The first box may be in a waiting state, in which case there is some D such that
W.C.(2[0]) = D. In this case, a call with source Q[0] is in D’s call queue, but it is
not D’s current call. If box D is waiting, then Q[0] is also waiting for W.C.D. Box
D may not be executing for the same thread as box ©[0]. Unlike K.C, sequences
formed by iterating W.C can include boxes executing for different threads.

As with K.C, we can form a sequence by iterating W.C. For any box D

that is waiting in configuration C, we construct a maximal sequence.
(D, W.C.D, (W.C)2.D , ...)

Box D is waiting for every box in this sequence. Before D can next take a step,

every other box in the sequence must return control to the preceding box. We call

97

these sequences wait lines. Unlike K.C, function W.C is not well-founded. We can

reach a well-formed configuration C in which the wait line for box D is infinite.

Definition 3.29 For D € B, and C € PC, the wait line for D in C is a sequence
Q € B* such that

Q0] =D A (|9 = o0 V last(Q) € dom(W.C)) A
(Vi : 0<i<|Q -1 : W.C.(Q)=Q[i+1])

If the wait line for D in C is finite, then the last box is not waiting, and it is not
quiescent, so it can take a conditional step. If the wait line for D in C is infinite,
then it contains repeated elements, since B is finite. In this case, W.C is cyclic.
The wait line has a suffix consisting of the boxes in the cycle repeated infinitely.
Each box in the cycle is in a waiting phase, and is waiting for a box in a waiting
phase, so no box can take a step. The boxes are deadlocked, as are all boxes whose
wait line includes them.

Deadlock is a permanent configuration. If box D is deadlocked at configu-
ration ¢ in execution ¢, then, in the execution after £[i], D is deadlocked in every
configuration, and there are no conditional steps for D. The next chapter discusses

deadlock, and defines conditions that ensure deadlock-free executions.

3.3.5 Persistent states

When a box finishes executing a procedure, it restrict the domain of its state to the
box variables. Any variables added to the state during execution of the procedure
are discarded. The values of the box variables is the box’s persistent state. This is
the state that is carried from one procedure call to the next.

We define the persistent state for a box, and an equivalence on program

configurations based on the persistent states.

98

Definition 3.30 For C,C’' € PC, and D € B,

Persist(C,D) = (C.D.o) | BozVars(D)

PersistEq(C,C') & (VD : D€B : Persist(C,D) = Persist(C', D))

3.4 Program steps

We now consider single steps of a program. We show that any program configuration
reachable by a single step from a well-formed program configuration is itself well-
formed. This allows us to confine our attention to well-formed configurations for
the rest of this work.

We can consider the transition relation = in two ways. One way is as a
static relation between pairs of program configurations. The other way is to think
of the relation in in operational terms, where C = C' means that an executing
TCB program in configuration C can change to configuration C’ in one indivisible
step. In the former view we consider conditions on pairs of configurations so that
they are in the transition relation. In the latter view, we consider conditions on a
configuration so that it has a successor in the transition relation.

We prove some properties of the transition relation, or, equivalently, the steps

allowed in the execution of a TCB program.

3.4.1 Steps and configurations

We define some terminology for the boxes where a rule is applied.

Definition 3.31 For C,C’' € PC, such that there is a step C = C’, the loci of
this step are the bozes which satisfy the conditions of the semantic rule used to admit

pair (C,C').

If C = C’, then C and C' are mostly the same, as the following theorem shows.

99

Theorem 3.32

v C,C',D
:C=C" AN DeB A D isnot a locus for C = C’
: C.D=C'D
)
Proof

We note that each semantic rule requires that the configurations for the boxes not
mentioned in the rule be the same before and after the step. By Definition 3.31, the
boxes mentioned in the rule are the loci for any step admitted using the rule. Thus,
the boxes other than the loci are unchanged by the step.

(End of proof)

We show that any program configuration reachable in a single step from a

well-formed configuration is well-formed. The proof is in Appendix B.

Theorem 3.33

(VC,C' : CeEPC A C=C" : C'ePC)

3.4.2 Step labels

By definition, C = C’ means that there is some inference rule satisfied by C and

C'. There is never more than one rule satisfied, as the following theorem shows.
Theorem 3.34 If C = C', then there is a unique rule satisfied by (C,C’).

Proof
Assume C = C'. If (C, C') satisfies a two-locus rule, then, by examining the rules
we can see that C and C' differ on the configuration of both loci. If, on the other

hand, (C, C') satisfies the conditions of a one-locus rule, then, by Theorem 3.32, C

100

Rule CD.¢ |CDg

(action-start) ¢ ¢
(p-action-init) | IDLE GUARD
(p-method-init) | IDLE GUARD
(t-action-init) IDLE ACCEPT
(t-method-init) | IDLE ACCEPT

(guard-accept) | GUARD | ACCEPT
(guard-reject) GUARD | REJECT

(local-step) ACCEPT | ACCEPT
(proc-term) ACCEPT | RETURN
(action-end) RETURN | IDLE

(action-reject) | REJECT | IDLE

Table 3.1: Conditions on the box phase for one-locus rules.

and C' agree on the configurations of all boxes except one, the locus.! Thus, if rules
[and [" are both satisfied by (C,C’), then [and [’ have the same number of loci.

Table 3.1 shows the required values of the phase component of D for C and
C’ according to each one-locus rule. All the rules in the table require specific values
for the phase of the locus in C and C’, except for (action-start). All the rules require
that C and C' differ on this value, except for (action-start) and (local-step), which
require that the phase be the same before and after.

By comparing rows of the table, we observe that the only pairs of rules that

can possibly both be satisfied by a pair (C, C’) are

(action-start)

(local-step)

'We discuss below whether a pair of configurations satisfying a one-locus rule differ on the
configuration of the locus. For our present purposes, we can ignore this question.

101

and

(t-action-init)

(t-method-init)
For the first pair, we observe from the rules that

(C, C') satisfies (action-start) = C.D.y # C'.D.y
(C,C’) satisfies (local-step) = C.D.y=C'D.y

Thus there is no pair (C, C’) that satisfies both of these rules.

For the second pair, we have that

(C, C') satisfies (t-action-init) = Proc(C.D.y) € TotActs(D)
(C, C') satisfies (t-method-init) = Proc(C.D.y) € TotMeths(D)

Since TotActs(D) and TotMeths(D) are disjoint, the conditions are exclusive. This
completes the proof for the one-locus rules.

For the two-locus rules, we show the phase for D (the source) and E (the
agent). The configurations agree on the configuration of all boxes other than these.
Table 3.2 shows the required values of the phase component of D and E for C and
C’ according to each two-locus rule. The phase for E is not determined for the rules
(total-call) and (guard-test), but it is the same in C and C’, as with (action-start).
Comparing the table rows, we see that there is no pair of two-locus rules that are
both satisfied by (C, C’). This completes the proof for the two-locus rules.

(End of proof)

Each rule in the semantics defines a relation, containing all pairs (C, C’) that sat-
isfy the rule. Clearly = is the union of all these relations, and we have from

Theorem 3.34 that all of these single-rule relations are disjoint.

102

Rule CD.¢ |CDg
C.E¢ |C.E.¢

(total-call) ACCEPT | WAIT
¢ ¢
(guard-test) | GUARD | PWAIT
¢ ¢
(total-return) | waIT ACCEPT

RETURN | IDLE
(test-accept) | PWAIT | ACCEPT
RETURN | IDLE
(test-reject) | PWAIT | REJECT
REJECT | IDLE

Table 3.2: Conditions on the box phase for two-locus rules.

Definition 3.35 For an inference rule (1), we define a relation with the same name

by the following.
I = {(C,C") | C= C satisfies (I) }

The following Theorems summarize the properties of the relations for the semantic

rules for TCB.

Theorem 3.36 If (I) and (I') are semantic rules, and 1 # I', then
[disj U

Theorem 3.37 If{I;| 0 <i < 16} be the set of relations for the rules in the queue
semantics of TCB, then

= = (Ui : 0<i<16 : ;)

We can further partition the relation for each rule by considering the loci in

the application of the rule.

103

Definition 3.38 For (I) a one-locus rule, and D € B,
I(D) = {(C,C'")| C,C"ePC A (C,C) satisfies (I) with locus D }
For (1) a two-locus rule, and D, E € B,

I(D,E) = {(C,C)
| C,C" € PC A
(C, C') satisfies (1) with source D and agent E

}

We write L for a typical label, either a one-locus label [(D), or a two locus label

I(D,E). We write C(LYC' for (C,C') € L. We call L a label or step.

We use the fact each label is a subrelation of the relation for one of the rules, and

we write, for example
L C local-step
to mean
(3D :: L =local-step(D))
and
L C total-call
to mean
(3D,E : L =total-call(D,FE))
We define the set containing all the labels for the queue semantics.

104

Definition 3.39

Lab £ { L

| L is a label generated by one of
(action-start) (guard-reject)
(guard-test) (local-step)
(total-call) (proc-term)
(p-action-init) (action-end)
(p-method-init) (action-reject)
(t-action-init) (test-accept)
(t-method-init) (test-reject)

(guard-accept) (total-return)

We use the following function to refer to the loci of a label.
Definition 3.40 For L € Lab,

Loci(L) 2 {D} if L=1(D)

{D,E} if L=I(D,E)

We have the following result.
Theorem 3.41

(v c,c

:C,CePC N C=C AN C#C

. (AL : LeLab : CL)C)
)

Proof

105

We already have, from Theorem 3.34, that there is a unique rule satisfied by any
(C,C') € =. Thus, we need only show for a one-locus rule (/1), that /(D) and
I1(D") are disjoint for D # D', and for a two-locus rule (l3), that I3(D, E) and
I5(D', E') are disjoint for (D, E) # (D', E').

For (I1), assume that we have D, D' € B, and (C, C’), such that C # C’,
(C,C’) € I1(D), and (C,C’) € I1(D"). First we have

(C,C') € Li(D)
= { Theorem 3.32 }
VE : E#D : C.E=C.E)
{ trading; C # C' }
(WE : CE#C.E : E=D) AN (3E = CCE#£C.E)
= { Aover 3}
(3E = (YE : CE#C'E : E=D) A C.E#C.E)

= { instantiation }
(3E = E=D A C.E£C.E)
= { one-point rule }
C.D #C'.D
Now we have
(C,C') € I14(D) A (C,C') € ly(D")
= { Theorem 3.32, above result }
VE : E£D : CE=C.E) A C.D'#C.D'
= { instantiate for D’ }

(D'# D= C.D'=C.D') A C.D'#C.D'

{ contraposition }
(C.D' #C'D' = D' = D) A C.D'# C.D'
= { modus ponens }

D'=D

106

For (l2), assume that we have D, E, D' E' € B, and (C,C’) such that
(C,C') € I3(D,E), and (C,C') € Iy(D',E'). We first note that D # E, and
D' # E', since no such methods calls appear in a well-formed program. Also, as

noted in the proof of Theorem 3.34,
(C,C"Yel(D,E) = C.D#C'D N C.E#+C'E

We have

(C,C") ely(D,E) N (C,C')els(D'E"
= { Theorem 3.42, above observation }
(VD" . D"¢{D,E} : C.D"=C.D") A C.D'+C.D'
= { instantiate for D }
(D' ¢ {D,E}= C.D'=C.D') A C.D'#C.D'
= { contraposition }
(C.D'£C'D' = D' € {D,E}) A C.D'+C.D'
= { modus ponens }
D' € {D,E}
Similarly, we can show that E' € {D, E}, and since D' # E', we have {D', E'} =
{D,E}. To complete the proof, we need to show that lo(D, E) and I3(FE, D) are
disjoint. From Table 3.2 we observe that there is no two-locus rule where the source
and the agent have equal phases before the step, and equal phases after the step.

Thus the relations are disjoint.

(End of proof)

As noted in the above proof, for (C,C') € (D, E), we have C.D # C'D, and
C.E # C.E. For (C,C') € (D), for almost all cases, we similarly have C.D # C'.D.
The one exception is (C, C') € local-step(D). Suppose

C.D = (ACCEPT, 0,7, 0)

107

and there is a TCBloc transition

(0,0) — (0,0)

then

(C,C) € local-step(D)

Such a step is called a stuttering step. Stuttering steps are problematic because, in
operational terms, the configuration after the step is the same as that before, so the
step can be repeated indefinitely, and thus a procedure call can execute an infinite
number of steps without terminating.

For a step that is not stuttering, we can rewrite Theorem 3.32 in a stronger

form, as follows.

Theorem 3.42

(Vv L,C,C
: L e Lab AN CL)C' A L is not a stuttering step
: (VD : DeB : D¢€ Loci(L) # C.D=C'D)
)

Proof

Assume we have C,C’ € PC, and L € Lab, such that C(L)C’ and L is not a
stuttering step, and D € B. If D ¢ Loci(L), then, by Theorem 3.32, C.D = C'.D.
If D € Loci(L), then, since L is not stuttering, we have from the above discussion,
C.D +C'D.

(End of proof)

108

The final result in this section shows that the changes a step makes to its

loci are independent of the configurations of the other boxes in the program.

Theorem 3.43

(¥ L,Cq,C), C,
: L€ Lab AN Co(L)C, A C; € PC A
(VD : D€ Loci(L) : Co.D=Cy.D)
:(3C) : C(L)C, : (YD : De€ Loci(L) : Cy.D=C|.D))
)

Proof
By examination of the rules.

(End of proof)

3.4.3 Enabled steps

In the last section we showed that, for a given pair of configurations (C, C’), there
is at most one step L such that C(L)C’. We now turn to the operational view of a
program and consider, for a given program configuration C, how many steps there

are where C is the configuration before the step.

Definition 3.44 For C € PC, and L € Lab
L is enabled in C 2 (3C' :: C(L)C')

Examining the rules, we see that there are three cases where there is no
restriction on the configuration of a locus before a step: an action-start(D) step
is enabled for any configuration of D; and a total-call(E, D), or guard-test(FE, D)
step is enabled in any configuration where £ has the right configuration, regardless

of D’s configuration. We define some notation to distinguish these steps.

109

Definition 3.45 For D € B,

Uncond(D) %= {action-start(D)} U
{LE
: | € {total-call,guard-test} A E € B\ {D}
: l(E,D)
}
Cond(D) £ {L | D€ Loci(L) A L ¢ Uncond(D)}

For L € Lab,

ULoci(L) = {D | L € Uncond(D)}

CLoci(L) 2 {D | L& Cond(D)}

We call Uncond(D) the unconditional steps, and Cond (D) the conditional steps,
for D. We call ULoci(L) the unconditional loci, and CLoci(L) the conditional loci
for L.

The unconditional steps for D are those which have D as a locus, but which are en-
abled regardless of D’s configuration. The conditional steps for D are the remaining
steps with D as a locus. By definition, Uncond(D) and Cond (D) partition the set
of steps with D as a locus, and so ULoci(L) and CLoci(L) partition Loci(L).

We note that action-start(D) is an unconditional step for its only locus, and
that total-call(E, D) guard-test(F, D) are unconditional steps for D, and condi-
tional steps for E. Thus action-start(D) is the only step that is unconditional for
all of its loci. In a quiescent configuration, there is no box with a conditional step
enabled, and only action-start steps are enabled.

The following theorem shows that the configurations of the conditional loci

determine whether or not a step is enabled. If D ¢ CLoci(L), in particular, if

110

D € ULoci(L), then L is enabled regardless of D’s configuration.

Theorem 3.46

v L,C,C
:LelLab N C,CePC AN (ND : De€CLoci(L) : C.D=C.D)
: L is enabled in C = L is enabled in C'

Proof
Use Definition 3.45 and the semantic rules.

(End of proof)

Table 3.3 shows the conditions on a program configuration C such that a
conditional step for D is enabled. In the case of the two-locus rules that are con-
ditional for both loci, the conditions on the other locus, box F, are also given. In
each rule, £ is K.C.D or W.C.D, depending on the rule.

The table represents a partition of the configurations, from the point of view
of box D. The primary partition is on the phase of D in C. Each line to the right of
a phase represents a condition on the phase disjoint from all others for that phase.
The case analysis is exhaustive for each phase. For phases RETURN and REJECT,
this relies on the fact that C is locally well-formed and call correct.

The following theorem shows an important inference we can draw from the
table, that there is at most one conditional step enabled for a box in any well-formed

configuration.

111

(@ ‘@)1230e1-1591 qd=a9dy
()3199lo1-uonoe T=q0dy | 1oaray
(@ ‘{7)win121-je103 d=aom
(@ ‘77)1dadde-1s9 qd=aody
((7)pua-uonoe T=q0D Y | NdnLTY
ouou 9STM.I9Y 0
auou 9SIMIST)O
(A ‘@)uaniai-jeroy NYNLIE = ¢ i7" D) qJ=aqaOmm LIVM
auou 9STMI9Y 0
(@)de3s-jeao| (90— (9aD ‘' oan) * §°F)
(4 ‘a)nes-jer03 (-wg = (6d D)1y
(@)wua3-20ad T=0dD | LdIDDV
auou 9SIMIAT[}0
auou 9SIMIST)O
(7 ‘@)129la4-1593 LOArad = ¢ 1D
(7 ¢ @)1dadoe-1s0] NYNLAY = ¢ 7D J=aqd04dm LIVMd
(i ‘@)ser-pren3 | (9'(—)w i) = (o@D 'da@)ny
((7)1d@dde-piens 0‘T)=(ocao‘da)ny
((7)129[01-paen3 T=(0qao‘dq)uy = (L@ D)o0oLg | aavad
(@)nu-poyraw-y (a v%§§§ > (k@ 0)ooid
(@)nur-uonse-y (@)spyior > (bap)roid
(@)nu-poyraw-d (@)syrmrnd > (L@ p)20id
(@)nur-uonoe-d (@)spyrnd > (bap)2oid
ouou T=LadoD HT1A1
doys parqeuy | syuouoduon w10 | o@D |

Table 3.3: Conditions on C to enable a conditional step for D.

112

Theorem 3.47

v C,D
:CePC N DeB
:(#L : L€ Cond(D) : L isenabled inC) <1

)

Proof
We check that each pair of rows in Table 3.3 describes disjoint conditions on C.D,
and thus there is no configuration in which two conditional steps are enabled.

(End of proof)

Theorem 3.47 allows the definition of the following function.

Definition 3.48 For C € PC, and D € B,

Enabled(C,D) = L if L € Cond(D) AL enabled in C

1L if no such L exists
We call Enabled(C, D) the enabled step for D in C.

Suppose C.D.¢ = ACCEPT, then, according to Table 3.3, no step is enabled for box
Dif C.D.O # 1, C.D.0 # E.m(—), and there is no local step (C.D.oc, C.D.0) —
(¢',0"). We note from the rules defining TCBloc that there is a step defined for any
(0,0) provided 6 # L, and first(f) # E.m(—). Thus the “otherwise” condition of
this line for this phase never applies, and Enabled(C, D) # L. This is not a general
property of sequential language semantics, so, in the interests of generality, we make

it an explicit assumption.

113

Assumption 3.49

(Vv C,D
:CePC N DeB A C.D.¢p = ACCEPT
: Enabled(C,D) # L
)

For Seuss languages where Assumption 3.49 does not hold, the following theorem,
and some of the results that follow from it — in particular the complete execution
theorem — require additional conditions.

The following theorem gives the conditions under which no conditional step

is enabled for a box.

Theorem 3.50

(Vv C,D
:CePC N DeB
: Enabled(C,D) =1 = (C.D.¢g=mLE A C.D.y=_1) v
(C.D.¢ = PWAIT A
C.(Wp.C.D).¢ ¢ {RETURN, REJECT}) V
(C.D.¢ = wAIT A
C.(Wt.C.D).¢ # RETURN)
)
Proof

We observe that the conditions given are exactly those in which there is an entry
“none” in the final column of Table 3.3. As noted above, Assumption 3.49 excludes
the case where C.D.¢ = WAIT.

(End of proof)

114

The following theorem shows an important stability property of Enabled (C, D). The
proof is in Appendix B.

Theorem 3.51

v L,C,C', D
.LelLab A CIL)C' A DeB A Enabled(C,D) ¢ {1,L}
: Enabled(C, D) = Enabled(C’, D)
)

3.4.4 Enabled steps for a call stack

We showed in Section 3.3.3 that for each action call active in C € PC there is a
call stack Q which contains all boxes that are executing on behalf of that action
call. Every nonquiescent box in the configuration is in exactly one call stack, and
all the boxes in each call stack, except possibly the first, are in a waiting phase.
We consider what conditional steps are enabled for the boxes in a call stack I". For

0 < i < |9, we have
C.Qil.¢ € {PWAIT, WAIT}

So, by Theorem 3.50, there is no conditional step enabled for Q[7], for 1 < i < |Q].
Thus only [0] and ©[1] may have enabled steps. A step is enabled for 2[1] only
if C.Q[0].¢ € {RETURN, REJECT}, and the enabled step, which is a (test-accept),
(test-reject), or (total-return) step, is also a conditional step for ©2[0]. Therefore,
if a conditional step is enabled for any box in the stack, it is enabled for Q[0].

Box 0] is not quiescent, so by Theorem 3.50 it has a conditional step
enabled unless it is waiting for box D = W.C.(€[0]), and D is not ready to return.
If there is no conditional step enabled for ©[0], then D is not executing for Q[0],
since [0] € rng(K.C), by Definition 3.21. In this case, the next step for the thread

115

is a method initialization step at D. In the configuration resulting from this step,
D is added to the front of the call stack.
Thus we see that there is at most one step enabled for a thread in any

well-formed configuration.

3.5 Executions

We consider the execution of a program under the queue semantics from Chapter 2.
We define an execution as a sequence of configurations and a parallel sequence
of steps. Each pair of adjacent configurations in the configuration sequence are
related by the corresponding step in the step sequence. The execution records all
the configurations seen during the program, and the steps taken to reach these
configurations.

We define executions relative to a set of well-formed configurations, and a

step of labels.

Definition 3.52 For P C PC, and LC P x P,

Ezecutions(P,L) 2 { (T,A)
| TeP® AN AeL™® A T|=]Al4+1A
Vi : 0<i<|A] : (CELTl+1)) € A[])

An execution is, as described above, a pair of sequences, one containing program
configurations, and the other containing program steps. The first sequence contains
the configurations attained during program execution, in order, and the second
sequence contains the steps from one configuration to the next. The sequences can
be finite or infinite, and if finite, the configuration sequence is one element longer

than the step sequence. The configuration sequence cannot be empty. We define

116

a set of executions using the whole of PC for the configurations, and Lab for the

labels.

Definition 3.53

7 %2 Ezecutions(PC, Lab)

We define some functions and operators for executions.

Definition 3.54 For e € Z, where e = (T, A),

CSeq(e) £ T

SSeq(s) = A
RN

Start(e) = first(I)

Final(e) 2 last(T) if |e| < o0

First(e) £ first(A)

Last(e) 2 last(A) if |g] < oo
]

2 T[] if 0<i<]|e
) & Al if 0<i<]|e
e(i...5) & (Tl...G+1)], Afli...4])
if 0<i<j<le
e s finite if |e| < o0

e s infinite if || =00

Thus an execution ¢ takes || steps, starting from configuration Start(e). If the
number of steps is finite, the execution terminates in configuration Final(e). Con-
figuration £[i] is before step (i), and configuration e[i + 1] is after. The segment
e(i...7) is steps 7 through j of £, with the corresponding configurations. This is an

execution, since € is.

117

If we have executions ¢ and &', where ¢ is finite, and Final(e) = Start(e'),
then we can compose ¢ and ¢. We also define composition for the case that ¢ is

infinite.

Definition 3.55 For e, € 7 where s = |¢|, s' = |¢/|, and

s=00 V (s<oo A Final(e) = Start(e"))

the sequential composition of ¢ and €', written e;¢', is (I';)A) € PC*® x Lab*™,

satisfying the following.

I =s+s+1 A A =s+5 A
(Vi : 0<i<s : T[i]=c¢[i] N Ali]=¢(5))

and, if s < 00,

(Vi : s<i<s+s : T[l]=€li—s]) A
(Vi + s<i<s+s : Ali]=¢€{i—s))

If ¢ is finite, and ¢; &’ is defined, then the matching configuration appears only once
? ’ 7 g g

in g;¢’. If, for example,

CSeq(a) = (CO,Cl,CQ)
CSeq(e') = (C,, C3)

then the configuration sequence for ¢;¢’ is

<007 Cl7 CQa C3>

The following results about sequential composition are simple to prove from the

definition.

118

Theorem 3.56

(Ve e : e, €Z N g€ isdefined : ;' € 7)

Theorem 3.57

(V e, e e"
ce el e’ e Z N (g;€);€" is defined

gy (els€”) is defined N (g;¢');e" = g5 (el;€")

The last theorem shows that sequential composition is associative, so we omit paren-
theses, and write £;¢’;¢” for the sequential composition of ¢, ¢’ and ¢”.

We define an order on 7, using the order on the underlying sequences.

Definition 3.58 For e, € Z,
eCe £ (Seq(e) T CSeq(e') N SSeq(e) C SSeq(e’)
Theorem 3.59 (Z,C) is a complete partial order.
Since (Z,C) is a CPO, we can define infinite executions as the limit of a chain of
finite executions.

3.6 Discussion

The conditions we define for well-formed box and program configurations exclude
many problematic or illogical configurations from consideration. We showed that our
definition is sound in that a step from a well-formed configuration reaches another

well-formed configuration.

119

The set of well-formed configurations is larger than the set of configurations
that we expect to see during the execution of a program. There is a restricted set of
values that the code component for a box can take during the execution of a program.
For TCB, we do not expect to encounter the statement “z := 2" at the front of the
code component unless this statement appears somewhere in the body code for the
currently executing procedure. Definition 3.5 places only two restrictions on the code
component: that it be empty when the phase is IDLE, GUARD, RETURN or REJECT,
and that its first element be a procedure call when the phase is PWAIT or WAIT.
Other than these restrictions, a well-formed box configuration can have anything in
its code component. In particular, we can form a well-formed box configuration in
which box D is waiting for the return of a method call to box E, and F is executing
the call, but there is no call statement for a method in E anywhere in the program
code of box D.

When we require stronger conditions on the code component than those given
by Definitions 3.5 and 3.20, as we do when we discuss deadlock in the next chapter,
we restrict our attention to configurations that can appear in an execution starting
from a quiescent state. This ensures that every statement that appears in the code
component for a box appears in the program code for the box. Restricting the set

of configurations in this way limits our attention to the reachable configurations.

3.6.1 Deterministic and nondeterministic steps

The queue semantics has the pleasant properties that in any configuration, there is
at most one conditional step enabled for a box and, once enabled, a conditional step
remains enabled until it is taken.

It can be shown that every step in the semantics, with two exceptions, is
deterministic. That is, for any program configuration C and label L, if L is enabled

in C, there is exactly one C’ such that C(L)C’. If L is deterministic, the transition

120

relation is a function. The two potentially nondeterministic steps are action-start
and local-step.
For nondeterministic action-start steps, consider a box D with actions a0

and al. Choose C,Cy, C; € PC, such that

C.D = (¢,0,7,0)
Cy = C[D>—)(¢,O’,’y<1((10),9)]

C, = C[Dw~(¢,0,v7<(al),b)]

We have Cj # Cq, and (C, Cy), (C, C;) € action-start(D).

A local-step is defined by a transition for the local language T'CBloc. All
steps for this language are deterministic. But it is not difficult to define a Seuss
language with a nondeterministic local language. For such a language, there are

local configurations (o,), (o9,60), and (o1, 6;), where

(0,0) — (00,0)
(0',9) — (01,91)

(00,60) # (o1,61)

Suppose we can find C € PC, and D € B such that
C.D = (¢,0,7,0)

Then we define Cy, C; € PC by

CO £ C[D'_)(¢30077700)]

Cl £ C [D = (¢a 0177701)]

We have Cy # Cy, and (C, Cy), (C, Cy) € local-step(D).

121

3.6.2 Threads

We chose, in defining the semantics, to represent each box independently. The box-
centric view of an execution models a simple implementation of TCB on a network
of processors. The execution of a box is a sequence of complete procedure calls. If
there is a method call during the execution of a procedure call, the box suspends
execution until the method call is executed.

A single thread may execute at many boxes. We defined functions K.C and
W .C for program configuration C so we can discuss executions in terms of threads.

We use the “is executing for” function K.C to identify the root action of an
execution step. We use this to determine if two steps are from the same or different
threads. We use the “is waiting for” function W.C to find the box that can take
the next step for a thread.

For well-founded C, there are no cycles in K.C. This ensures that every
nonidle box is executing on behalf of an action. The function W.C is not necessarily
acyclic. In a configuration C in which W.C contains a cycle there is deadlock. A
thread that is active at a deadlocked box cannot complete its execution. In the next

chapter we discuss deadlock further, and consider ways to avoid it.

122

Chapter 4

Complete executions

4.1 Introduction

In this chapter, we define the proper executions and the complete executions, and we
define the necessary and sufficient conditions for a proper execution to be complete.
In the remaining chapters, we give reduction theorems for complete executions.

A proper execution is one that starts with no active threads, and, if it is finite,
no conditional step is enabled in the final configuration. A finite proper execution
can only be extended by starting a new thread.

The steps for every thread in a proper execution start with the first step —
an action-start step — for the thread. However, it is not necessarily the case that
the last step of the thread is in the execution. If a thread has an infinite number of
steps, then every step has a successor, and so none of the steps can be the last step.
Also, a thread may take a finite number of steps and reach a configuration where
no step for the thread is enabled, and no step is enabled for any other thread.

The complete executions are those that contain the first and last step — and
thus all the steps — for every thread.

We consider ways that a thread may fail to terminate. The first is deadlock,

123

where the thread is permanently disabled, and can take no more steps. The second
is nontermination, where the thread takes an infinite number of steps. We show
that, for a proper execution with a finite number of threads, avoiding deadlock and
infinite threads gives a complete execution. For executions with an infinite number
of threads, we need a third condition. This condition, thread fairness ensures that,
if a step is enabled for a thread, then a step is eventually taken for the thread. The
complete execution theorem says that the proper executions that are deadlock-free,
contain no infinite threads, and are thread fair are exactly the complete executions.

The remainder of the chapter investigates requirements on a system imple-
menting a T'CB program to ensure that there is no deadlock, that every thread ter-
minates, and that it is thread fair. To avoid deadlock and nonterminating threads,
we place conditions on the program code and on which pairs of actions can have
concurrent threads. We use control relations to express the restrictions on concur-
rency. We show how the control relation and the program code together determine
if a program is deadlock-free, and if it allows only finite threads. The requirements
for thread fairness are conditions on the run-time system.

Given a system implementing a T'CB program, we can obtain proper execu-
tions from the implemented system by starting it from a quiescent configuration,
and only stopping the system if there is no step enabled for a currently execut-
ing thread. This essentially means we let the system run “long enough” that each
enabled step is taken. If, in addition, we ensure that this system avoids deadlock
and nontermination, and is thread fair, then running the system “long enough” is
guaranteed to give complete executions.

The material in this chapter can thus be regarded as guidance for implement-

ing Seuss systems so that all executions are complete.

124

4.1.1 Procedure sets

For some of this work, we consider the program as a set of procedures. The identity of
the boxes containing the actions is of secondary importance, so we use the following
sets containing the actions, methods, and procedures from the program, and the

subsets of partial and total elements of each type.

Definition 4.1

A 2 {Dp|DeB A pc Actions(D) }

>
bS]
1>

{D.p | DeB A pe€ PartActs(D) }

A, 2 {D.p|DeB A pc TotActs(D) }

<
I

{D.p | DeB A pe€ Methods(D) }

s
>

{D.p | DeB A pe PartMeths(D) }

M, £ {D.p| DéeB A péc TotMeths(D) }

P £ AuM
P, £ A,UM,
Pt - AtUMt

We use a, p, and 7 for typical members of A, M, and P, respectively.
We use the following function when we need to refer to the box of a procedure.

Definition 4.2 For m € P,
Boz(r) & D if 3p = 7n=D.p)

We define an equivalence relation on P.

125

Definition 4.3 For n,n’ € P,
nB7" £ Boz(n) = Boz(n')

If B ', we say ™ box-equals 7’.

4.2 Proper executions and complete executions

A proper execution is one that starts in a quiescent configuration, and can only be
extended by starting another thread. It is a mazimal execution for the threads that

have started in it.
Definition 4.4 Fore € 7,
Mazimal(e) = |e|=o00 V
(le] <00 A

(VD : DeB : Enabled(Final(e),D)= 1))
Proper(e) 2 qt(Start(e)) A Mazimal(e)

For X a set of executions,
Proper(X) 2 {e|e€X A Proper(e)}

To define complete executions, we note that each thread starts and ends with a step
at the same box. The following functions return, for a given execution and box, the
number of steps in the execution that start a thread at the box, and the number of

steps that end a thread at the box.

126

Definition 4.5 Fore € Z, L € Lab, and D € B,

NumSteps(e,L) = (#i : 0<i<]|e| : (i) =L)
NumStarts(e, D) = NumSteps(e,action-start(D))
NumEnds(e,D) = NumSteps(e,action-end(D)) +

NumSteps (e, action-reject(D))

If every thread that starts at box D terminates, then the number of start steps
equals the number of end steps. Conversely, if a thread does not terminate, its box

has more start steps than it has end steps.

Definition 4.6 Fore € 7,

Complete(e) = Proper(e) A
(VD : DeB : NumStarts(e,D) = NumEnds(e, D))

If X is a set of executions,
Complete(X) = {e|e€ X A Complete(e) }

The following theorem states that in a complete execution, no box is permanently

nonidle. The proof of the theorem is in Appendix B.

127

Theorem 4.7

(Ve
: € € Complete(Z)
. (Y D,
:DEBA0<i<e
. (3j + i<j<lel : e[jl.D.¢=mLB)

)

The following theorem gives a simple characterization of complete finite executions.

The proof is in Appendix B.

Theorem 4.8

(Ve : e€Z N |e] <oo : Complete(c) = qt(Start(e)) A qt(Final(e)))

The number of threads in an execution is the number of start steps across all the

boxes.

Definition 4.9 Fore € Z,
NumThreads(e) 2 (XD : D€B : NumStarts(s, D))

If NumThreads(g) is finite for some €, but ¢ is infinite, then one of the threads in ¢
has an infinite number of steps. None of these can be an end step, because a thead
takes no steps after its end step. Thus the execution is not complete. A complete
execution with a finite number of threads is thus a finite execution. So we get the

following corollary to Theorem 4.8.

128

box D

action a : E.n
method m = (*---%)
end
box E
action b : D.m
method n = (x--- %)
end

Figure 4.1: Program that can deadlock

Corollary 4.10

(Ve
: € € Z N NumThreads(g) < oo
: Complete(e) = Proper(e) A || <oo A qt(Final(e))

)

A proper execution that has a finite number of threads, and is not complete, either
has an infinite thread, or it ends in a nonquiescent configuration in which no step
is enabled.

We discuss these possibilities in the following sections. We first discuss con-
figurations in which no conditional step is enabled, and then we consider infinite

threads.

4.3 Deadlock

Consider the program in Figure 4.1. This program contains two actions, D.a, which
calls method E.n, and E.b, which calls method D.m. Now consider the following

execution. Starting from a quiescent configuration, the first step starts a thread for

129

D.a, and the next step starts a thread for £.b. Both threads execute concurrently.
When the execution of D.a’s thread reaches the call to E.m, an entry for this call is
placed at the back of E’s call queue. Box D waits until this call completes. When
the execution of E.b’s thread reaches the call to D.n, an entry for this call is placed
at the back of D’s call queue. Box F waits until this call completes. Let C be the
configuration where both boxes are waiting. By Theorem 3.50, no conditional step
is enabled for either box. We have W.C.D = E, and W.C.E = D. There is a cycle
in W.C, so box D is waiting for box E, which is waiting for D, so ultimately, D is
waiting for itself to take a step, which is not possible. Similarly, box F is waiting

for itself. We say that the boxes are deadlocked. We define deadlock using W.C.

Definition 4.11 For C € PC, a sequence T € BT is a knot in C if

Vi : 0<i<|T| : W.C.Tl]) =Tli®1])

where & is addition modulo |T|. For D € B,

(1>

dl(C, D) (I3T,n : TisaknotinC An>0: (W.C)".DeT)

di(C) 2 (3D : DeB : di(C,D))

(1>

di(e) Fi 2 0<i<|e| : di(eli]))

If dI(C, D), we say that D is deadlocked in C; if di(C) or di(¢), we say that C or
e is deadlocked.

A knot is a cycle of boxes, each of which is waiting for the next, and so no conditional
step is enabled for any box in the knot. A box is deadlocked in a configuration if
it is in a knot, or (transitively) waiting for a box in a knot. The following theorem
states that deadlock is a stable property. That is, if a box is deadlocked at some
configuration in an execution, then it is deadlocked at every configuration from that

configuration on. The proof is in Appendix B.

130

Theorem 4.12

(V ek, D

ceeZ NO<k<|e| A DeB A di([k], D)
(Vi k<i<l|e| : dl(e[i],D))

)

The following corollary states that a deadlocked execution is not complete. Threads

that are deadlocked cannot complete execution.

Corollary 4.13

(Ve : e€Z A dl(e) : ~Complete(e))

Proof
Assume ¢ € Z and dl(¢). By Definition 4.11, we can choose i, such that 0 <i < |¢|,
and dl(g[i]). We have

true

{ assumption }
dl(eli)
= { Definition 4.11 }
(3D = di(eli],D))
= { Theorem 4.12 }
@D = (j :i<j<lel ¢ dilD)))
= { deadlocked box is waiting }
(3D = (Vj : i<j<lel : €[j].D.¢ € {PWAIT, WAIT}))
= { weakening }

(3D = (Vj : i<j<lel : €[j].D.¢ #IDLE))

{ predicate calculus }

131

VD = (Fj : i<j<l|el : e[j].D.¢ =IDLE))
= { Theorem 4.7 }

—Complete(e)

(End of proof)

The final theorem in this section says that if there is no conditional step enabled in
a configuration, then every box is either quiescent or deadlocked. The proof is in

Appendix B.

Theorem 4.14

(v C

: Ce PC

: (VD : Enabled(C,D)=1) = (VD = ¢qt(C.D) V dI(C,D))
)

4.4 Infinite procedure calls

Consider the program in Figure 4.2. The program contains boxes X and D. Box
X has a local integer variable z, an action inc that increments the value of z, and
a method dec that decrements the value of z and returns the decremented value.
Box D contains an action ¢ that loops until X.dec returns a nonpositive value. If
a thread for action D.a is executed by itself, then the thread is finite. If X.inc
executes concurrently with D.a, and there are enough threads for X.inc to keep
the value of X .z positive, then the thread for D.a loops endlessly, taking an infinite
number of steps without terminating.

A thread that takes an infinite number of steps does not contain an end step,
because a thread takes no steps after its end step. Thus, for a complete execution,

we must ensure that no thread is infinite. We define a predicate that is true of all

132

box X
var z:integer
action inc = z:=zx+1
method dec(out y : integer)
r=x—1l;y=z

end
box D

var n : integer init 1

action ¢ : while n >0 do X.dec(; n)
end

Figure 4.2: Program with nonterminating procedure

executions containing a infinite thread. First, we identify an execution that contains

all the steps from a procedure call.

Definition 4.15 Fore € Z, and D.p € P, then € is a full execution of D.p if

Start(e).D.¢ = IDLE A Proc(e[l].D.y) =p A
(Vi : 0<i<l|el : (efi]).D.¢ # DLE A =dl(e[i],D)) A
(lel = oo V di(Final(e),D) V Final(e).D.¢ = IDLE)

From this definition, if € is a full execution for D.p, then in the initial configuration,
D is idle. In every configuration, except the first and possibly the last, D is not
idle. In every configuration, except possibly the last, D is not deadlocked. In the
configuration after the first step, D is not idle, and its current call is for p. So
the first step is a procedure initialization step for p. Procedure p is the current
call for D for the whole of the execution, since D must become idle to clear its
current call. The execution is infinite, or it is finite, and in the final configuration
D is deadlocked, or it is idle. These cover all the possibilities for an execution of a

procedure in a maximal execution.

133

An infinite thread must include a procedure call with an infinite number
of steps. Note that an infinite full execution for a procedure does not necessarily
contain an infinite number of steps for the procedure call’s thread, since it may
contain a finite number of steps for the procedure call’'s thread, with an infinite
number of steps for other threads.

The steps taken by a procedure call are all taken on behalf of the same root
action. We define the root action for a step in an execution, using the root actions
of the boxes in the configurations. This allows us to indentify pairs of steps in a full

execution that are from the same thread.

Definition 4.16 Let

proc-init £ partial-action-init U partial-method-init U

total-action-init U total-method-init

Foree Z, and 0 <1i < |e|,

Root(e,i) = L if (i) C action-start
Root(e[i +1],D) if (i) =1(D) A (i) C proc-init
Root(eli], D) if e(i)=1I(D,E) V
(e(@)y =1(D) A

(
{

™

i) ¢ proc-init U action-start)

The root action for an action-start step is 1, since such a step is never taken on
behalf of a currently executing action call. For any other type of step, the root action
for the step is the root action for its first locus. For the procedure initialization steps
(represented by proc-init), we use the root action for the locus in the configuration
after the step, since its locus is idle before the step, and executing for the initialized
procedure after the step. For every other step, we take the root action for its first

locus before the step, since for these steps, the first locus is executing the current

134

procedure call before the step.

We now define a predicate that is true of a full execution for a procedure 7
if it contains a finite number of steps for n’s thread. Note the the first step of a full
execution is always a step initializing the call. So every step with the same root as

this step is in 7’s thread.

Definition 4.17 For 7 € P, and € € Z, such that € is a full execution for m,
FiniteThread(e) 2 (#i : 0<i<|e| : Root(e,i) = Root(e,0))} < oo
Definition 4.18 For e € Proper(Z),

inf(e) = (3 iy
ta€eA N D0<i<j<o A
e(i...7) is a full execution for a

: = FiniteThread (e(i . .. 7))

4.5 Executions with a finite number of threads

We now show that, if we limit our attention to executions containing a finite number
of threads, then the complete executions are exactly the proper executions that are

not deadlocked and contain no infinite procedure calls.
Theorem 4.19
(Ve
e €7 N NumThreads(e) < oo

: Complete(e) = Proper(e) A —dl(e) N —inf(e)

)

135

Proof

Assume that ¢ € Z, and NumThreads(e) < oo. We show

Proper(e) = (—dl(e) A —inf(e) = |e| < oo A qt(Final(e)))

The result then follows from this and Corollary 4.10. Assume Proper(c). If we have
—dl(e) and —inf(e), then since the number of threads is finite, and no thread has an
infinite number of steps, we have || < co. Also, since ¢ is proper, no step is enabled
in its final configuration. Since ¢ is not deadlocked, by Theorem 4.14, every box is
quiescent in the final configuration, so gt(Final(e)). Conversely, if we have |¢| < oo
and gt(Final(e)), then the first gives us that there there are no infinite threads, and
the second means that there is no deadlock, since, by Theorem 4.12, a deadlocked
execution is deadlocked in its final configuration.

(End of proof)

4.6 Thread fairness

Theorem 4.19 does not apply to executions with an infinite number of threads. To
see this, suppose we have actions « and o that execute on disjoint sets of boxes.
Consider an execution that consists of some of the steps of a thread for «, leaving
this thread incomplete and with an enabled conditional step, followed by an infinite
number of threads for o/, each of which has a finite number of steps. There is no
infinite thread in this execution, and there is no deadlock, yet it is not complete.
The problem here is that, when there are multiple steps enabled at each
configuration in an infinite execution, there is no guarantee that a given enabled
step is ever taken. This problem is one that arises whenever we have a system
with multiple threads of control, where each step in an execution consists of a

nondeterministic choice from among the enabled steps. An execution of such a

136

system can choose to ignore any given enabled step indefinitely. The standard

technique for dealing with this problem is to define a fairness condition [13]. From
Theorem 3.51, a conditional step remains enabled until it is taken, so the fairness

that we require in this case is that every enabled conditional step is eventually taken.

We express this in the following way.

Definition 4.20 Fore € Z,

tfe) = (Y D,k
:DeB AN 0<k<|e|] A Enabled(e[k],D) # L
: (31 k<i<|e| : e(i) = Enabled(e[k], D))

)
If tf (e), we say that € is thread fair.
Thread fairness for finite executions holds if there is no conditional step enabled in

the final configuration.

Theorem 4.21

(Ve
e €Z N el < o0
:tf(e) = (VD : DeB : Enabled(Final(e),D) = 1)

)

4.6.1 Fairness for rendezvous procedure calls

The problem of contention for access to a box to execute a procedure call under the
rendezvous semantics, which we handled by introducing the call queue, is also an

issue that can be dealt with by imposing a fairness condition.

The fairness required for procedure calls is different in nature to thread fair-

ness. A rendezvous method call step does not have the stability property of the

137

conditional steps in the queue semantics. In an execution under the rendezvous
semantics, a method call step for boxes D and F is enabled if box D is in phase
ACCEPT, and has a method call to E at the front of its code, and box F is in phase
IDLE. The last of these conditions is falsified if £ starts a procedure for a thread
other than D’s.

Once a rendezvous method call step is enabled for D and E, it is either
taken, or it becomes disabled, because E takes a different procedure call step. If
the procedure call started at E terminates, the step for D and F is again enabled.
Otherwise, the procedure call does not terminate, and D is blocked for the rest of
the execution.

The executions we want to avoid are one where the method call step is en-
abled infinitely often but is never taken. In the standard terminology of fairness,
executions that have this property are called strongly fair, whereas thread fair exe-

cutions are weakly fair.

4.7 The complete execution theorem

We now give an extension of Theorem 4.19 that holds for execution with a finite or

infinite number of threads.

Theorem 4.22 (Complete execution theorem)
(Ve : eeZ : Complete(c) = Proper(e) N —dl(e) A —inf(e) A tf(e))

Proof
Assume ¢ € Z. First consider the case that NumThreads(e) is finite. If Proper(e),

then we have

—dl(e) N —inf(e)
{ Theorem 4.19, Corollary 4.10 }

138

le] < oo A gt(Final(e))
= { No step enabled in a quiescent configuration, Theorem 4.21 }

tf ()
So we have —di(e) A —inf(e) = tf(e). This gives us

Proper(e) A —dl(e) A —inf(e) A tf(e)
{ above }

Proper(e) A —dl(e) A —inf(e)
{ Theorem 4.19 }

Complete(e)

Now consider the case where Num Threads(¢) is infinite. We prove the equivalence

as two implications.

Case =

Assume Complete(e). Since NumThreads(e) is infinite, so is |¢|, and thus Proper(¢)
follows from Definition 4.6 and Definition 4.4. In a complete execution, every thread
reaches its final step and ceases to be active. This means that the thread cannot be
deadlocked, nor can it have an infinite number of steps. Also, all conditional steps
for every thread are taken, since every thread finishes, so the execution is thread

fair.

Case «:
Assume Proper(g), —dl(e), —inf(e), and tf (¢). For any i, such that 0 < i < |e|, we

call (i) a start step if

e(i) C action-start U guard-test U total-call

139

and we call £(7) an end step if

e(i) C action-end U action-reject U

test-accept U test-reject U total-return

A start step begins a procedure call, and an end step completes it. For any 7 such
that £(i) is a start step, let &; to be the segment of € starting with step ¢, and ending
with the end step that completes the procedure call started by step 4, or, if there
is no end step corresponding to step 4, the infinite suffix of £ starting with step 1.
We show that ¢; is finite for every ¢ such that (i) is a start step, and thus every
procedure call, including every action call, terminates. This gives us Complete(e).

Let D be the unconditional locus of step (i), and let
Vi = {E|[Q@4n : 0<j<|a| A0O<n : (W.(a[j])"D=E)}

The set V; contains D, and every box for which D is waiting during execution ¢;. The
boxes in V; are all the boxes whose execution affects the progress of £(i)’s thread.

Let 4 = e[i 4+ 1].D.y. This is D’s call queue after the call started by (i) has
been added. Execution ¢; is finite iff every call in 4 is eventually removed from D’s
call queue. We prove that ¢; is finite by induction on #V;. Note that #V; < #B
for every ¢;.

For the basis, assume #V; = 1. Thus V; = {D}, and all the calls in ¥ do
not make any method calls during their execution. We show that the front entry
in 4 is eventually removed from D’s call queue. Since there are no procedure calls,
D is not waiting at any configuration in £;, and there is an entry in its call queue
throughout the execution (except perhaps at Final(g;)), and thus it is not quiescent.
By Theorem 3.50, a conditional step for D is enabled at every configuration in ¢;,
except the last. Since ¢f (g), there are a finite number of steps from other threads

between each step for box D. Since —inf (), the call at the front of the queue takes

140

a finite number of steps to complete. When it does so it is removed from the queue.
Iterating this argument, we have that every call in ¥ is eventually removed from D’s
call queue, and thus ¢; is finite.

For the induction step, Suppose #V; = n, for n > 0, and assume that every
ek is finite, for (k) a start step, and #Vj; < n, We again show that the front entry
in 4 is eventually removed from D’s call queue. The argument is similar to that for
the basis, except that, in this case, the thread may contain method calls. Suppose
that £;(j) is a method call step with conditional locus D. That is, it is a method
call step from a procedure call executing at D. This is a start step, corresponding
to step (1 + j). Let k = i+ 5. We have V}, C V;, since every step in the visited
set for this call is in the visited set for the call started by e(i). If V = Vj, then
D € V. In this case there is deadlock, because we have (W.C)".D = D for some
configuration C in g, and some n > 0. Thus, since —dl(e), we have #V, < #V;,
and, by the induction hypothesis, ¢ is finite. The final step of this execution makes
a step enabled at box D. Again by thread fairness and the lack of infinite procedure
calls, we have that the front entry in D’s queue is eventually removed. Iterating
this argument, as above, we have that ¢; is finite.

(End of proof)

Theorem 4.22 gives a set of conditions equivalent to Complete(e), for any execution
e. A system implementing a TCB program is thus complete if and only if every
execution of the system is proper, is not deadlocked, contains no infinite threads,
and is thread fair. We argued at the beginning of this chapter that Proper(e) can
be ensured by letting the system run for a sufficiently long time. In the following
sections, we discuss ways to ensure that each execution of the system satisfies the

other three conditions.

141

4.8 Control relations

The program in Figure 4.1 can deadlock, and that in Figure 4.2 can have an infinite
thread. In the first program, deadlock is possible if threads for D.a and E.b are run
concurrently. In the second, a thread for D.a may take an infinite number of steps
if it is run concurrently with an infinite number of threads for X.inc.

One way to avoid deadlock in an execution of the program in Figure 4.1 is to
require that threads for D.a and E.b are not run concurrently. In this case, there
can be no deadlock. Similarly, we can avoid an infinite thread in an execution of
the program in Figure 4.2 if we require that threads for D.a and X.inc are not run
concurrently. So we see that the potential for a program to deadlock, or to have
an infinite thread, depends on which pairs of actions we allow to have concurrent
threads.

Control relations express restrictions on concurrency. We show how these
relations can be used to ensure that executions are deadlock-free, and all threads

are finite.

Definition 4.23 A control relation for a program is a symmetric binary relation

on A. The set of all control relations is CR.

The intended meaning of a control relation T € CR is that threads for o and o’
may be executed concurrently if and only if « T «'. Note that Definition 4.23
requires neither reflexivity nor irreflexivity of control relations. If o T «, then
multiple threads for a can be run concurrently; otherwise, at most one thread for «
can be active at any time during an execution. However, the notion of “executing
concurrently” is rather tenuous for threads for o and ', where e Ha’ (which is true
if @« = o). By design, each box executes a single procedure call at a time. While
one action call is executing on a box, all others on the same box wait their turn in

the call queue.

142

For a given control relation, some configurations respect the relation, meaning
that all pairs of actions active in the configuration are in the control relation, and
some do not. An execution respects a control relation if each of its configurations
does. To define this, we must identify actions with multiple concurrent threads.
The set Actives(C) cannot be used for this purpose, since this does not distinguish

actions with one active thread from those with multiple active threads.

Definition 4.24 For C € PC,

Multis(C) = { D.a
| DeB A a € Actions(D) A
(#i : 0<i<|C.Dy| : C.DAli]=(a))>1
}

Definition 4.25 For Te€ CR, A'CA,Ce PC, andc € Z,

Alresp T &2 Na,d @ a,dd eANa#d @ aTd)
Cresp T 2 Actives(C)resp T A (VYa : «€ Multis(C) : aTa)

eresp T 2 (Vi : 0<i<le| : eli] resp T)
If X resp T, we say X respects T.

An execution that respects T allows only concurrency permitted by T. The condi-
tion on Multis(C) deals with actions having multiple concurrent calls, as discussed
above. The relation resp is monotonic in the control relation, as the following theo-
rem shows. Larger control relations allow more concurrency, and thus are respected

by more configurations or executions.

143

Theorem 4.26

vV T, T

. T,T¢ CR AN TCT

(VA" :A'C A AlrespT = AlrespT') A
(W C:CePC:CrespT = CrespT) A

(Ve :e€ Z : ecrespT = ¢ respT)

Proof
From Definition 4.25.
(End of proof)

The simplest control relation is (), the empty relation; this allows at most a
single active action call at any point in an execution. An execution that respects
this control relation is sequential, that is, an execution in which each action call
is started and run to completion before another action call is started. We use the

empty control relation to define sequential executions.

Definition 4.27 Fore € Z,
€ is sequential £ ¢ resp ()

4.8.1 Implementing control relations

Control relations are used to define subsets of the set of executions having desirable
properties. A suitably chosen control relation guarantees a deadlock-free execution,
or an execution with no infinite thread. If threads for actions o and ' can deadlock,
we can avoid this possibility by using a control relation that does not contain (a, o').
If threads for o, o/, and o” can deadlock, we use a control relation that does not

contain one of (o, '), (o, "), and (¢,).

144

If control relation T guarantees a deadlock-free execution, then so does T',
for any T/ C T, since every execution that respects T’ also respects T. So the
intersection of a set of control relations, each of which guarantees a single property
of the execution, gives a control relation that guarantees all of the properties.

Control relations thus give uniform way to ensure desirable properties of
executions. Part of the implementation of a TCB program is a scheduler, a program
that decides which threads to start, in which order. A thread for action « is started
when the scheduler sends a start(«) message to a’s box. When the action completes,
the box sends an accept(«) or reject(a) message to the scheduler, depending on the
outcome of the thread’s execution. The processors execute independently, so the
scheduler has no control over the order in which threads end.

The scheduler keeps a record of all actions that have active threads from the
sequence of start and end messages. Schedulers implement a control relation by
ensuring that the set of active actions respects the control relation. For a control
relation T, a scheduler sends a start(«) message only if « T o for every o/ with an
active thread.

We consider further requirements for a scheduler for TCB in Chapter 6. For
now, we note that, if we can define a control relation that guarantees a property of
the executions of a program, then we can implement the program using a scheduler
that respects the control relation, and all executions of the implementation have the

desired property.

4.9 Avoiding deadlock

We saw that for the program in Figure 4.1, a control relation can be used to avoid
deadlock. Specifically, if T is a control relation where (D.a, E.b) ¢ T, then any
execution of the program that respects T does not deadlock.

We define a predicate on control relations that is true precisely when a control

145

relation does not allow deadlock in an execution.

Definition 4.28 For T € CR,

(1>

DF(T) (Ve : €€ Proper(Z) N eresp T : —dl(e))

If DF(T), we say that T is deadlock-free.

Deadlock-freedom is antimonotonic in the control relation. A smaller control relation

allows less concurrency, which means fewer possibilities for deadlock.

Theorem 4.29

VT, T : T,T"e CR A TCT : DF(T) « DF(T'))

From this theorem, we see that is any control relation is deadlock-free, then so is the
empty control relation. Equivalently, if the empty control relation is not deadlock-
free, then no control relation is deadlock-free. The empty control relation allows
only sequential executions, so if it is not deadlock-free, then there is a deadlocked
sequential execution.

Let e be a deadlocked proper execution that respects (), and let e[i] be the
last nondeadlocked configuration in €. The start configuration is quiescent, so such
an i exists. Thus, W.(c[i]) is acyclic, and W.(e[i 4+ 1]) is cyclic. Step (i) is a
method call step to a box that is waiting. Since there is only one executing thread,
the source and agent of this call are executing for the same thread. We call this
a cyclic call. There is no hope of ensuring deadlock-free execution for a program
containing an action that allows a cyclic call.

The requirements to ensure deadlock-free execution are first, that the empty
relation is deadlock-free. We do not attempt to implement programs for which this

is not the case. Second, that the execution respects a deadlock-free control relation.

146

4.9.1 Nonblocking control relations

Definition 4.28 does not help particularly in deciding a priori if a particular control
relation allows deadlock. The definition essentially says that a control relation does
not allow deadlock if it does not allow deadlock. We define a condition that is
sufficient to ensure that a control relation is deadlock-free, and is simpler to check
than the conditions of Definition 4.28.

No rule in the semantics creates a statement that is not already present in the
code. When the code component for a procedure call is initialized, it is initialized
to the body code from the procedure’s definition. Thus, for boxes D and E, and
configuration C from a proper execution, if W.C.D = E, then the code for current
procedure in D contains a method call statement for a method in E.

We define the following relation on procedures.

Definition 4.30 For m € P, we say that ;n € M appears in 7 if there is a call to p
in the code of the body of w. We write this as m > .

If 7 > p, then there may possibly be a call to u during an execution of . Note that
if m is partial, # > p if 4 appears as a test or in the body of one of 7’s alternatives.
If 7 is total, 7 > p if ;4 appears in the body of 7. We have the following theorem,

which shows that > limits the values of W.C for every reachable C.
Theorem 4.31
(V e,i,D,E
: € € Proper(Z) N 0<i<|e| A W.([i]).D=E

: @m," : w=7" : Box(r)=D A Box(r')=E)
)

Note that if m > p, then it is not the case that every call to 7 includes a call to p.

If the code of 7 contains the statement “if false then p”, then w > u, but no call

147

to p is ever made by executing this statement. But, from Theorem 4.31, if there is
a call to p during an execution of m, then 7 > p. This relation gives us an “upper
bound” on the method calls that may be made during a procedure call.

If procedure 7 calls method pu, then Boz () waits for Boz(u) until the call
completes. It must also wait for any procedure call executing at Boz(u) before the
call to is started. The following relation gives all the procedures whose execution
may block the execution of a call to a given procedure. It is a combination of the

“appears in” relation, and box equality.

Definition 4.32

For m,n' € P, if w bb ' we say that w is blocked by 7’.
We define a “blocked-by” graph for a program.

Definition 4.33

BB £ (P,bb)

Thus BB is the directed graph with vertex set P, and an edge from 7 to «' iff
T bb '

If there is a cycle in BB, then there is the possibility of reaching deadlock
during an execution in which there are no restrictions on concurrency. As we saw
above, the possibility for deadlock can be eliminated if use a control relation that
limits concurrency.

Suppose we have a subset A’ C A. We remove from BB all vertices for
procedures that are not called by actions in A’, and all edges incident on them.

The remaining graph contains all the calls that may be made during a concurrent

148

execution of the actions in A’. If this restricted graph is acyclic, then there is no
possibility for deadlock during such an execution. This suggests that we consider
subgraphs of BB according to the sets of actions that can have concurrent threads,
as given by a control relation.

We first define the nodes in representing procedures that may be called during

the execution of a thread for an action, or a set of actions.

Definition 4.34 For a € A, and A’ C A,

Range () {r:7meP : ax-"7}

lI>

Range(A') (Ua : a€ A’ : Range(a))

The set Range(a) contains «, and all methods reachable from it by . This gives a
bound on the procedures that are called during execution of a thread for a.

The theorem we wish to prove is that for any subset A’ C A, the subgraph of
BB on the vertices in Range(Actives(C)) is a bound on W.C in any configuration C
from a proper execution. Therefore, if the subgraph is acyclic, C is not deadlocked.

We define the restriction of a graph to a subset of its vertices.

Definition 4.35 For a graph G = (V, E), and U CV,
GIU 2 (UFE) where E'=En (U xU)

Using this, we define subgraphs of BB for subsets of the actions.

Definition 4.36

Now we have a theorem

149

Theorem 4.37

(V e,i
: € € Proper(Z) N 0<1i<|e
: BB(Actives(e[i])) is acyclic = —dl(e[i])
)

Now we define a condition on control relations based on the above observations.

Definition 4.38 For T € CR,
T is nonblocking = (VA' : A'resp T : BB(A') is acyclic)

A control relation is nonblocking if there are no cycles in the blocked-by graph for
any set of actions that can execute concurrently. The following theorem follows

immediately from Theorem 4.37 and Defintion 4.38.

Theorem 4.39

(VT : Te CR A T isnonblocking : DF(T))

The theorem says that a nonblocking control relation is deadlock-free, so there is no
deadlock in any proper execution.

Note that if BB is acyclic, then so is BB(A'), for any A’ C A. In this case,
any control relation is nonblocking, and so all executions are deadlock-free. One
way to ensure that BB is acyclic is to define a partial order on the boxes, and write
the code for the procedures such that a call to a method in box E appears in a
procedure in box D only if D is before F in the order. Such a program can never
deadlock.

To show that a TCB program is implementable without deadlock, it is suffi-

cient to show that BB(«) is acyclic for every a € A. To guarantee that the execution

150

of an implemented system does not deadlock, it is sufficient to ensure that the im-
plementation ensures executions that respect a nonblocking control relation.

A nonblocking control relation is not necessary to ensure deadlock-free exe-
cution, as the following example shows. Consider a program with methods y and

i, in different boxes, defined as follows.

p(in b: boolean) : if b then p'(false)
p'(in b: boolean) : if b then u(false)

There is a cycle in relation > on these methods, which means there is a possibility
for a cyclic call. But deadlock is not possible, since a call to u(false) makes no
method calls, and a call to u(true) calls p'(false), which makes no method calls.

Suppose we have actions a and o/ in different boxes, as follows.

a o p(false)

!

o = p(false)

Threads for these actions cannot cause deadlock when run concurrently. In fact, they
execute on disjoint sets of boxes, so neither blocks the other. From Definition 4.38,
if control relation T is nonblocking, then (a, ') € T, so threads for @ and o' cannot
be executed concurrently under any nonblocking control relation.

For some programs, the approach to avoiding deadlock using the graph BB
excludes concurrent execution of actions that cannot cause deadlock. This is because
we ignore semantic information — in the above example, the parameter values
passed in method calls — and instead use only syntactic information about the
possible calls between procedures. For this slight loss of precision, the nonblocking
condition reduces the task of determining if a control relation can allow deadlock

from a check of all possible executions to a static check of the program code.

151

4.10 Avoiding infinite threads

As we saw in Section 4.4, for the program in Figure 4.2, there are no infinite threads
if the program is run under a control relation T such that (D.a, X.inc) ¢ T. We

now define a condition on control relations that ensures terminating threads.

Definition 4.40 For n ¢ P, P’ CP, and T € CR,

term(m,T) 2 (Ve
ce€Z N eresp T A € s a full execution for ™
:(#1i : 0<i<|e|] : Root(e,i) = Root(e,0)) < oo
)

term(P',T) & (Y7 : n€P' : term(r,T))

If term (A, T), then all threads in an execution respecting T have a finite number
of steps. As with Definition 4.28, this definition does not say much more than that
the control relation and the program do not allow infinite procedure calls.

Showing termination of sequential code is a problem outside the scope of
this work. The language TCB is certainly capable of expressing programs with
nonterminating actions, and, since the Halting Problem is insoluble (see [30]), there
is no algorithm that can detect such programs.

The techniques used for proving termination for a sequential program (see
[15], for example), generally require that, for each action, we construct a function
(called a measure) that maps the program configuration to some well-founded set,
and show that each step taken by a thread for the action decreases the measure.
Since there is no infinite decreasing sequence of values from a well-founded set, this
ensures that the each thread is terminating.

Proving termination of procedure calls executing concurrently with other

threads is a more complicated problem than proving termination for a sequential

152

program. Again, we do not address this issue further here. We assume that the

program has been certified, by some means, to allow only terminating threads.

4.11 Implementing thread fairness

Consider an implementation model for TCB programs, where each box is imple-
mented by a separate computing unit (a single processor, or a process on a proces-
sor). The thread-fairness condition says that if a step is enabled for one of these
units, then that step is eventually taken. This corresponds to the reasonable assump-
tion that the units are sufficiently independent that each takes a step from time to
time, if it is able. The thread fairness condition is, for many implementations, guar-
anteed by the nature of the implementation. We assume that the run-time system
of any implementation guarantees thread fairness. Again, we do not address this
issue in greater detail here.

On the question of strong fairness for rendezvous procedure calls, let € be a
thread fair execution under the queue semantics. Between any procedure call step in
¢ and its corresponding procedure, there are a finite number of configurations where
the agent for the call is idle. If there is no corresponding procedure initialization
step in the execution, then there is an infinite prefix where the agent is not idle.

We claim that execution ¢ is equivalent to an execution where all procedure
call steps are removed, and the procedure initialization steps are replace with ren-
dezvous procedure call steps. In this case, no rendezvous call step is enabled in an
infinite number of configurations but never taken. So weak thread fairness, together
with the call queues, provides an implementation of strong fairness for procedure
calls.

We return to this transformation of queue semantics execution to rendezvous

semantics executions in Chapter 5.

153

4.12 Summary

We have identified complete executions as the desirable executions for a T'CB pro-
gram. Theorem 4.22 gives gives exactly the conditions needed to ensure that an
execution be complete. It must be proper, deadlock-free, contain no infinite threads,
and be thread fair.

We showed how control relations, and restrictions on the program code guar-
antee that proper executions are deadlock-free, and there are no infinite threads. We
argued that the run-time system can ensure a proper execution that is thread fair.
Together, these give us a way to implement programs so that all executions are

complete.

4.12.1 Avoiding run-time errors

As noted in Section 2.5, we do not handle run-time errors in the semantics we have
presented. In Section 2.12 we show a way to extend the semantics to deal with this
issue. In this extension, there is a new phase, FAIL, and a run-time error at a box
causes it to enter this phase, and remain in it for the remainder of the execution.
An execution with a run-time error is not complete. Avoiding run-time errors is
an issue for the sequential language and the expression language, and we do not
address it further here. We assume that programs are certified, by some means, to

avold run-time errors.

154

Chapter 5

Reduction

5.1 Introduction

The last chapter outlined sufficient conditions on the implementation of a TCB
program that ensure that every execution is complete. The conditions include re-
strictions on concurrency, expressed using control relations. In this chapter we show
a further restriction on concurrency that ensures that for every complete execution
e there is a sequential execution &’ such that € and &’ have closely related behaviour.
Again, we use a control relation to express the necessary restriction on concurrency.

With the results from the last chapter, this result gives us a way to implement
a TCB program such that the behaviours of all concurrent executions of the system
can be deduced by considering just the sequential executions.

To show the existence of a sequential execution for any complete ¢ respecting
the control relation by showing a way to rearrange the steps of ¢ so that the steps
from each thread are contiguous. The rearrangement consists of a sequence of local
transformations, such as reversing the order of two consecutive steps, or replacing a
sequence of steps by a single step, or removing a step entirely.

We define a reduction relation between executions, written ~». We show

155

that a complete execution ¢ and its sequential rearrangement & formed by the
above procedure satisfy ¢ ~ ¢/. We also show, from the definition of ~», that this
guarantees that the behaviours of € and & are closely related, and that we can

deduce the behaviour of € from the behaviour of €’.

5.1.1 Right-movers and left-movers in TCB

In the two-phase locking protocol, a single action consists of a sequence of resource
acquisition steps, followed by a single update step, and a sequence of resource release
steps. We saw that acquisition steps can be delayed, or “moved right”, and release
steps can be advanced, or “moved left”. Steps that acquire resources are call right-
movers, and steps that release resources are called left-mowvers.

In TCB, there are two type of resources controlling the execution of a thread.
Before a thread can execute at a box it must first place an entry in the call queue,
and then this call must reach the front of the queue and be initialized by the box.
The resources required for a thread to execute at a box are the queue and the box
itself. A thread that has an entry in a call queue holds the queue resource. This is
a shared resource, since there can be multiple entries in the queue. A thread that is
executing at a box holds the box resource. This is an exclusive resource, since only
one thread at a time can execute at a box.

We identify a single step in each thread called the decision step. This is the
step that first puts a box executing for the thread in phase ACCEPT or REJECT.
Once a box enters this phase, the outcome of the thread, in terms of acceptance
or rejection, is determined. We use this step to mark the position in the execution
about which we coalesce the steps of the thread. We call the decision step an accept
decision step if it is from an accepting thread, and a reject decision step if it is from
a rejecting thread.

Every step, other than the decision step, is classified as a step that acquires

156

a resource, a step that releases a resource, or a step that computes locally, neither
acquiring or releasing a resource. The first group are the right-movers, and the other
two are the left-movers.

In every thread all steps before the decision step are right-movers. Threads
do not, however, have a two-phase structure, since there can be right-movers —
resource acquisition steps — after the decision step. These are the steps for a total
method call. A total-call step acquires a queue resource, and a t-method-init step

acquires a box resource. Both these steps appear after the decision step in a thread.

5.1.2 Transforming an execution

To reduce a thread to a sequence of contiguous steps we apply a sequence of local
transformations to an execution. Each transformation replaces a finite sequence of
steps with a different sequence, such that the replacement has the same starting
and ending configuration. The transformations are swapping two adjacent steps,
replacing a sequence of steps with a single step, and removing a step.

The swap transformations allow a right-mover to be swapped with a step
from a different thread that is immediately to its right in the execution. The right-
mover moves right over the other step. Similarly, a left-mover moves left over a step
from a different thread.

We define two new types of step: rendezvous call steps, and steps representing
a complete procedure call. We show that show that a pair of consecutive steps
consisting of a procedure call step followed by a procedure initialization step for
the same thread can be replaced by a single rendezvous call step, and we show
that a contiguous sequence of steps from the same thread representing the complete
execution of a procedure call can be replaced by a single step representing the whole
call.

We call the steps representing complete procedure calls atomic steps. The

157

atomic steps for an action represent a complete execution of a call to that action,
that is, a complete thread. In reducing the execution, our final aim is an execution
where all threads have been reduced to a single atomic step.

The final type of transformation is the removal of an atomic step representing
a rejecting thread. We have defined TCB such that a rejecting thread does not
change the persistent state of a program, so this transformation always gives a valid
execution.

The material in this chapter is organized as follows. Section 5.2 defines the
rendezvous call steps and the atomic steps. We define some new sets of executions
using these steps. Section 5.3 classifies the steps as decision steps, right-movers, and
left-movers. Section 5.4 defines a reduction relation on executions in terms of the
sequence of accept decision steps. For executions € and €', we write € ~» £’ if ¢/ is the
execution formed from e by moving some right-movers right, and moving some left
movers left. We show that there is a close correspondence between the configuration
in € and €' if € ~ ¢’. Section 5.6 defines the transformations described above, and
shows that they can all be applied an any execution, with the exception of swapping
an atomic step for a total method call with another step. Section 5.7 defines a
control relation that limits executions to ones in which we can swap atomic total
method calls, as required for the reduction. Section 5.8 states the first reduction

theorem, and gives its proof.

5.2 Compound steps

We define two new sets of steps that are used during reduction to replace sequences
of steps. The first set of steps are those defined by the procedure call rules in the
rendezvous semantics, that is rules p-action-start-rdv, p-action-start-rdv, guard-
test-rdv, and total-call-rdv. The second set of steps are the atomic steps, which

represent the complete execution of a procedure call. We define some new sets of

158

Configuration | D

eli] (ACCEPT, 09, 70, o) (IDLE o1,1)

et +1] (WAIT, 09, Y0, 60) (IDLE, 01, (m, D, 7))

eli + 2] (WAIT, 09, Y0, 60) (ACCEPT, 01,(,D), 0

Table 5.1: Configurations for a method call from D to E

executions using these labels.

5.2.1 Rendezvous calls

Suppose € € Z contains the following pair of steps for some 4, D and F.

e(i) = total-call(D, E)

e(i+1) = t-method-init(E)

Suppose further that Root(e,i) = Root(e,i + 1). From the definition of the Root
function, we can deduce that D and E are in the same member of Stacks(g[i + 2]).
Since, in configuration ¢[i 4+ 1], E is not in a call stack, and D is the top element
in its stack, and, in €[i + 2|, £ is in a call stack, Kt.(¢[i + 2]).E = D. Thus the
front entry in E’s call queue has source D. Since E’s configuration is well-formed,
there is only one entry in the queue with D as caller. So the entry added to the
queue by step £(i) must be the front entry in the queue in €[i + 2]. We thus have
that e[é].E.¢ = L. From this, the definition of the rules, and the well-formedness of
the configurations, we can deduce the values of the configurations for D and FE for
this segment of the execution. The results are show in Table 5.1. In these equations
we write (m, D) for the singleton list ((m, D)). We now note that configurations
eli] and e[i 4 2] satisfy the conditions for rule (total-call-rdv) from the rendezvous

semantics (using the convention for singleton lists mentioned above).

159

The rule (total-call-rdv) requires that E be quiescent before the step. Also,
a total-call(D, E) step followed by a t-method-init(£) step are steps from the same
thread only if E is quiescent before the first step.

The above argument can be repeated for the other three procedure call rules
in the rendezvous semantics. Each corresponds to two steps from the queue seman-

tics. We use Definition 3.35 to define the following relations.

p-action-start-rdv
t-action-start-rdv
guard-test-rdv

total-call-rdv

We use Definition 3.38 to define the following labels, for D, E € B.

p-action-start-rdv (D)
t-action-start-rdv(D)
guard-test-rdv(D, F)
total-call-rdv(D, F)

We define the set of configurations in which a box is quiescent.

Definition 5.1 For D € B,
PC,D) & {C|CePCA q(C.D)}

We now define an relation equal to each of the new relations. We use the above
subsets of PC to restrict the before configurations for these relations to those where

the agent is quiescent.

160

Theorem 5.2

(Vv D
:DeB
: t-action-start-rdv(D) =
action-start(D); t-action-init(D) N (PC,(D) x PC) A
p-action-start-rdv(D) =
action-start(D); p-action-init(D) N (PC,(D) x PC)
)
Vv D,E
. D,E€B
: guard-test-rdv(D, E) =
guard-test(D, E); p-method-init(E) N (PC,(E) x PC) A
total-call-rdv(D, FE) =
total-call(D, E); t-method-init(E) N (PC,(E) x PC)

Proof
Use the definitions of the appropriate rules.

(End of proof)

5.2.2 Atomic steps

We define atomic steps to represent the complete execution of a call to a procedure.
First we define an execution that contains all the steps of a procedure call, and no

steps from other threads.

161

Definition 5.3 Fore € Z, D € B, and p € Procs(D),

£ is a compact execution of D.p = F(e,D) A G(g) A
Proc(e[1].D.y) = p

where

~
o
S

3

le|] < oo A qt(Start(e).D) A qt(Final(e).D) A
—qt(e[l].D) A (Vi @ 1<i<|el : €[i].D.¢ # IDLE)

@Q
—~
™
~
[I>

(Root(e,0) = Root(e,1) V Root(e,0) =1) A
Root(e,1) # L A
(Vi : 1<i<l|el : Root(e,i) = Root(e,1))

The definition of a compact execution has three parts. The first part, predicate
F(e, D), requires that ¢ be finite, that box D be quiescent in the start and final
configurations, that it be nonquiescent after the first step, and that it be nonidle
after the second step. The intention is that the first step places an entry in D’s call
queue, making it nonquiescent, and the second step initializes this call, making D
nonidle. Box D is nonidle until the final step, which leaves it quiescent. The segment
of € from step 1 to the end is a terminating full execution of a procedure call at D.
The second part, predicate G(g), requires that every step in £ have the same root
action, with the possible exception of the first step. We allow the first step to be an
action-start step, and this has root action L. The third part, Proc(e[1].D.y) = p,
requires that the first step of € be one that puts a call for procedure p in D’s call
queue. Together these conditions limit an execution to one that contains a single
execution of a call to D.p, and no steps from other threads.

We now define five types of atomic step. There are steps for an accepting
call to an action, or to a partial method, steps for rejecting calls to each, and a step

for a call to a total method.

162

Definition 5.4 For D.a € A,

accept(D.a) 2 { (C,C)
KEE
te€Z N eis a compact execution of D.a
: Start(e) = C A Final(e) =C' A
Last(e) = action-end(D)

reject(D.a) = { (C,C)

e €7 N eis a compact execution of D.a
: Start(e) = C A Final(e) =C' A

Last(e) = action-reject(D)

}

For DeB, EmeM, and D # E,

pm-accept(D, E.m) & { (C,C)
REE
e €7 N eis a compact execution of E.m
: Start(e) = C A Final(e) =C' A
Last(e) = test-accept(D, E)

163

pm-reject(D,E.m) £ { (C,C")

e € Z N eisa compact execution of E.m
: Start(e) = C A Final(e) = C' A
Last(e) = test-reject(D, F)

¥
tm(D,E.m) £ { (C,C)
| (3 €
e €7 N eis a compact execution of E.m
: Start(e) = C A Final(e) = C' A
Last(e) = total-return(D, E)
)
¥
We define
accept 2 (Ua : a€ A : accept(a))
reject 2 (Ua : a€ A : reject(a))
pm-accept £ (U D, E,m
.DEB A EmeM A D#£E
: pm-accept(D, E.m)
)
pm-reject £ (U D, E,m

:DEB A EmeEM A D#E
: pm-reject(D, E.m)

)

164

(1>

tm (UD,E,m

.DeB A EmeM A D#E
: tm(D, E.m)

)

atomic £ accept U reject U pm-accept U pm-reject U tm

The following theorems give some of the properties of the atomic steps. The first

theorem is for accepting atomic steps.

Theorem 5.5 Let

QT(C,C',D) £ ¢(C.D) A qt(C'.D)

H(C,C',D) & QT(C,C',D) vV C.D=C'D
mn

v D,a,C,C'

: D.ae A N (C,C') € accept(D.a)

. QT(C,C',D) A (¥D' : D'eB : H(C,C', D))
)

(Vv D,E,m,C,C'
.DeB A EmeM, A D#E A
(C,C') € pm-accept(D, E.m)
: C.D.¢p = GUARD A C.D.¢p = AcceprT A C.D.y=C.D.y A
QT(C,C',E) A (YD' : D'eB A D'#D : H(C,C',D"))

165

(Vv D,E,m,C,C’
:DeEB A EmeM, A D#E A
(C,C") etm(D, E.m)
: C.D.¢p = AcCEPT A C'.D.p = AcCCEPT A C.D.y=C.D.y A
QT(C,C',E) A (¥D' : D'eB A D'#D : H(C,C',D'))

The predicate QT (C, C’, D) holds iff D is quiescent in both C and C'. The predicate
H(C,C', D) holds if either D has the same configuration in C and C’, or if it is
quiescent in both configurations. Note that if QT (C,C’, D), then we can have
C.D.o # C'.D.o, but all other components for D are the same in both configurations.
This predicate expresses the condition on the boxes that may be affected by the
atomic step. That is, the configuration of a box can be only be affected by an
atomic step if it is quiescent before the step. This is because the step represents
an uninterrupted execution of the procedure. If a method call is made during this
procedure call, it must be to a box that is quiescent, since a call to a nonquiescent
box cannot execute until another thread takes some steps.

For all three accepting atomic steps, the agent for the procedure call (box
D for the accept case, box E for the method calls) is quiescent before and after
the step. All boxes, except the source, for the method call steps, satisfy predicate
H. The source of a pm-accept step is in phase GUARD before the step, and phase
ACCEPT after the step. The source of a tm step is in phase ACCEPT before and after
the step. In both cases, the source’s call queue is unaffected by the step.

The theorem for rejecting atomic steps is simpler. A reject step does not
change the configuration, and a pm-reject step changes the configuration only of its

source.

166

Theorem 5.6

Y D,a,C,C

:D.ae A N (C,C) € reject(D.a)
: gt(C.D) AN C=C'

)

(v D,E,m,C,C'
:DeB A EmeM, A D#E A
(C,C') € pm-reject(D, E.m)
: C.D.¢p = GUARD A C’.D.¢ = REJECT A
gt(C.Ey AN Y¥D' : DeB A D'#D : C.D'=C.D")

5.2.3 Executions with compound steps

We define some sets new sets of execution, using the rendezvous procedure call steps
and the atomic steps.

We define groups of procedure call rules, according to the function of each
rule, queue call, initialization, or rendezvous call. We first define some groups of

rules for procedure call and initialization.

Definition 5.7

queue = action-start U guard-test U total-call
init £ p-action-init U p-method-init U

t-action-init U t-method-init

(1>

rdv p-action-start-rdv U t-action-start-rdv U

guard-test-rdv U total-call-rdv

167

The steps in queue are the queue semantics procedure call steps; those in init are the
queue semantics procedure initialization steps; and those in rdv are the rendezvous
procedure call steps. Note that the steps in queue are the only steps with an
unconditional locus. The rules for the rdv steps have no unconditional loci.

We define three sets of executions. The first set contains executions with
any of the labels defined so far, the labels from the queue semantics, the rendezvous
calls, and the atomic steps. This is the most general type of execution that we use.
We call these mized executions. The second set contains mixed executions with no
queue or init steps, so all procedure call steps are rdv steps. We call the rendezvous
executions. The final set contains executions with only accept and reject steps, that
is, every step is the complete execution of a thread. We call these atomic executions.

First we define some restricted sets of configurations for these executions.
The first set contains only configurations where every box is quiescent. These are
the configurations used for atomic executions. The second contains only configura-
tions where each box is either quiescent, or nonidle, and has a single entry in its
call queue. These are the configurations used for the rendezvous semantics. They
exclude configurations where there are more than one entry in the call queue, or

configurations where a box is idle and has an entry in its call queue.

Definition 5.8 If C € PC, then

PC, 2 {C|CePC A ¢(C)}

>

rv(C) (Vv D

:DeB

: qt(C.D) Vv (|C.Dy|=1 A C.D.¢ #IDLE)
)

PC, & {C|CePC A mC)}

168

Definition 5.9 Let

Laby & { L
| L is a label generated by one of
(p-action-start-rdv)
(t-action-start-rdv)
(guard-test-rdv)
(total-call-rdv)
}
Laby = { D,E,m,I
:D,E€B AN D#E AN m € PartMeths(E) A
[€ {pm-accept, pm-reject}
. (D, E.m)
}
Labs = { D,E,m
:D,E€B AN D#E AN m € TotMeths(E)

: total-method(D, E.m)

}

mn

~
)
>
S
(1>

{a,l : a€ A A | € {accept,reject} : [(a)}

~
=}
>
3
(1>

Lab U Lab, U Laby U Laby U Labsy

™~
I
Sa
S
[I>

{L | L € Lab,, N L Z queue U init }

N
o
(1>

Ezecutions(PC, Lab,)

N
3
>

Ezecutions(PC, Laby,)

N
S
(>

Ezecutions(PCy, Lab,)

169

The final aim of reduction is to transform an execution € € Z to an execution in
Z 4. The intermediate executions during reduction are from Z,, and Z,. We extend

the definition of Root to cover the new labels.

Definition 5.10 Fore € Z,,, 0 <i < |e|, and (i) € Lab,, \ Lab,

Root(e[i +1],D) if e(i

action-start-rdv(D) V

Root(e,i) = « if (i) = accept(a) V
e(i) = reject(«)
Root (e[i], D) if (i) = guard-test-rdv(D, E) V

(i) = total-call-rdv(D,E) V
(i) = pm-accept(D, 1) \Y%
e(i) = pm-reject(D, p1) v
e(i) =tm(D, p)

(i)

(i)

(i action-start-rdv(D)

5.3 Step types

We can identify groups of the 25 labels in Lab,, containing labels that play a similar
part during reduction. We have already seen the groups of resource aquisition steps,

queue, init, and rdv. We define some groups for the other steps.

5.3.1 Decision steps

We define the groups of decision steps. We show that every complete thread has
exactly one decision step. The decision step acts as the central step, the point about
which we coalesce the steps for the thread. We choose as a decision step the first
step that leaves a box executing for the thread in phase ACCEPT or REJECT. For a
total action, this is the t-action-init that initializes the action. For a partial action,

this is a guard-accept or guard-reject step in the action’s box, or in one of the

170

partial methods called as a test. A compound step is a decision step if it contains
a decision step. Thus the atomic steps for partial methods and for actions, and the
rendezvous call t-action-start-rdv are decision steps, We distinguish between accept

and reject decision steps.
Definition 5.11

ACC £ accept U pm-accept U guard-accept U

t-action-init U t-action-start-rdv

REJ £ reject U pm-reject U guard-reject

(1>

DEC ACC U REJ

For any L € Lab,,, if L C ACC, we call L an accept decision step; if L C REJ, we
call L a reject decision step; and if L C DEC, we call L a decision step.
We use the following definition to state the threorems about decision steps.

Definition 5.12 Fore € Z,,, and T € P,

. . . . A
€ is a terminating execution for 7 =

e is a full execution for m A —dl(e) A |e] < o0

The following theorem shows that there is exactly one decision step in every thread.
Theorem 5.13
V aye
€A N e€Z, N €isaterminating execution for «

(3 0<i<|e] : Root(e,i) =a A e(i) CDEC)
)

171

The next theorem shows that the type of the decision step corresponds to the type
of the thread.

Theorem 5.14

V a,e,i
€A N ec€Z, N €isaterminating execution for a A
Root(e,i) = a A e(i) C DEC

: £(i) € ACC = Last(e) C action-end U accept

5.3.2 Right-movers and left-movers

We define groups for the steps that hold resources and compute locally, and for steps

that end procedures, releasing resources.

Definition 5.15

local = local-step U proc-term

end £ action-end U test-accept U total-return U

action-reject U test-reject

Every step in Lab,,, apart from tm, is in one of the groups DEC, queue, init, rdv,
local, or end. We define two final groups, for the steps that move right during

reduction, and those that move left.

Definition 5.16

RM £ queue U init U rdv

LM local U end U tm

172

For L € Laby,, if L C RM, we call L a right-mover, and if L C LM, we call L a

left-mover.

The groups DEC, RM, and LM partition Lab,,. We show later that the right-movers
can move right over any step from a different thread. That is, in any execution ¢,
where || = 2, and the first step of ¢ is a right-mover, and the last step is a step

from a different thread, then there is a two-step execution ¢ where

Start(e') = Start(e) A Final(e') = Final(e) A
§Seq(e') = (e(1), £(0))

That is, €' has the same start and final configurations as e, and it has the same
steps, but in the reverse order. Thus is any execution where ¢ appears, it can be
replaced with ¢ with no change to the rest of the execution. Similarly, we show
that the left-movers, apart from tm, can move left in any execution. To complete
the reduction for TCB, we need to move tm steps left. We discuss the requirements

for this later.

5.3.3 The format of a thread

The following theorems show some results about the steps before and after the
decision step in a thread. The first shows the type of steps that may appear before

the decision step.

Theorem 5.17

(V e,i, k
e €Zm N O0<i<k<le AN e(k) CDEC A Root(e,i) = Root(e, k)
: £(i) C action-start U guard-test U p-action-init U

p-method-init U p-action-start-rdv U guard-test-rdv

173

The second theorem shows the type of steps that may appear after an accept decision

step.

Theorem 5.18

(V e,i, k
e €Zm N O0<k<i<le AN e(k) CACC A Root(e,i) = Root(e, k)
: £(i) C total-call U t-method-init U total-call-rdv U action-end U

test-accept U total-return U local U tm

The third theorem show the type of steps that may appear after a reject decision

step.

Theorem 5.19

(V e,k
ce€Zm N O0<Ek<i<le AN e(k) CREJ A Root(e,i) = Root(e,k)
: £(i) C action-reject U test-reject

)

We note from these theorems that all steps before a DEC step are from RM. All
steps after a REJ step are from LM. The steps after an ACC step are a mixture of
right-movers and left-movers.

The final result in this section shows that only certain steps can change the

persistent state of the system, that is, the values of the box variables.

174

Theorem 5.20

(Vv L,C,C',D
: L € Lab,, A C(L)C' A
L ¢ accept U pm-accept U tm U
local-step U test-accept U total-return
: PersistEq(C, C')
)

From the above theorems, we note that the only steps that change the persistent
state during an execution are accept decision steps, or steps that appear in a thread
after an accept decision step. The persistent state is not changed by a thread before
its decision step, and it is not changed by any step from a rejecting thread. This
was our intention in defining T'CB, that the decision to accept or reject be made
prior to any change to the box variables, and that rejecting threads leave the state

unchanged.

5.3.4 A strategy for reduction

Theorem 5.18 shows that there are right-movers in a thread after an accept decision
step. The aim of reduction is to bring all the steps of the thread to the decision step,
so the right-movers after the decision steps must be moved left. We accomplish this
using tm steps.

Suppose there is a call to method p during a thread’s execution. The first
two steps for this call are right-movers. First is a total-call, and then a t-method-
init. Suppose the remainder of the steps for the call are all local or end steps, so
there are no further method calls during the execution of the call. We can move
the total-call step right, and the local and end steps left, until they are contiguous

with the t-method-init step. This gives a compact execution of the method, which

175

can be replaced with a tm step.

Now suppose the call to p is part of another method call. Originally, the
steps for this call contain two right-movers, the total-call and t-method-init steps
for the call to pu. After the transformation suggested above, these (along with a
number of left-movers) have been replaced with a single tm step, a left-mover.

This is the strategy used to move a right-mover after an accept decision step:
we move it right until it can be replaced by a tm step, and then move this step left.
For a total-call step this gives a rather circuitous route for reduction, a case of “one

step forward, two steps back”.

5.4 Reduction relations

We define reduction relations on executions. We define a relation ~» such that if
e ~ €', then ¢’ can be formed from ¢ by a sequence of steps moving a right-mover
right or a left-mover left. This means that the sequence of decision steps is the same
in € and €', since decision steps are neither right-movers nor left-movers. The aim
is to reduce an execution to an atomic execution by moving steps in this way.

We show that if e ~ £/, then there is a relationship between the configurations
of ¢ and &' that allows us to infer properties of ¢ from properties of &’. If ¢’ is an
atomic execution, then ¢ has behaviour “equivalent” to an atomic execution.

We define this relation is stages. Define a relation — that is sufficient for
reducing finite executions, and we show how to build ~» from this so that we can

reduce infinite executions as well.

5.4.1 Accept decision steps

For the purposes of reduction, the basic structure of an execution is given by the
sequence of accept decision steps. These are the decision steps from threads that

change the state of the box variables.

176

Definition 5.21 Fore € Z,,, and p an ascending sequence containing every i, such

that (i) C ACC,

NumA(e) 2 |p|

AS(e,i) 2 e{pli])

AC(g,i) 2 e[p[i]]

EB(e,i) 2 €(0...(p[0] — 1)) if i=0

e((pli = 1]+ 1)...(p[s] = 1)) if 0<i < NumA(e)
(i :+ 0<i< NumA(e) : Root(e,pli]))

lI>

ASeq(e)

We call NumA(e) the number of accept decision steps in e, AS(e,i) the i" ac-
cept decision step of e, AC(e,4) the i"* accept configuration of ¢, EB(e,i) the it

execution block of €, and ASeq(e) the accept sequence of .

For an execution &£, NumA(e) is the number of accept decision steps in e. If
NumA(e) = 3, then € can be partitioned into accept decision steps and execution

blocks in the following way.
EB(e,0) ; AS(e,0) ; EB(e,1) ; AS(e,1) ; EB(e,2) ; AS(g,2) ; €

The execution starts with the steps from execution block EB(e,0). The configu-
ration after these steps is accept configuration AC(g,0). The next step the accept
decision step AS(¢,0), followed by the steps from execution block EB(e,1). The
configuration after these steps is accept configuration AC(e,1). The execution con-
tinues in this way. Note that the steps after the final accept decision step, given as

¢ above, are in no execution block.

5.4.2 Similar executions

We define a relation on executions using the accept sequence.

177

Definition 5.22 Fore, e € Z,,,

e=¢c 2 Start(e) = Start(e') A ASeq(e) = ASeq(e') A

(lel =00 = |€'] =00) A (Final(e) = Final(e') V |e| = 00)
If e = €', we say that € is similar to €.
The following are straightforward consequences of this definition.

Theorem 5.23 = is an equivalence relation.

Theorem 5.24

!
(V €0,€1,€1,€2
D £0yE1,E1,62 € Ly N €0;€1;€2 18 defined N g1 =€)

: ep; €l is defined N egje1;e0 = €0;€); €9

Theorem 5.24 says that similarity is a congruence relation, that is, for any execution
g, replacing a finite segment of ¢ with a similar finite execution yields an execution
similar to ¢.

A pair of executions with no accept decision steps are similar iff they have
the same start and final configuration. This gives the following theorem, which says
that an execution consisting of a single stuttering step that is not an accept decision

step is similar to an empty execution with the same start configuration.

Theorem 5.25

(¥ L,C
. L € Lab,, A L Z ACC A C(L)C
1 ((C,C), (L)) = ((C), L)
)

178

Using Theorems 5.24 and 5.25, we can remove a stuttering step from an execution,

and the resulting execution is similar to the original.

5.4.3 Swapping steps

If two adjacent steps in an execution execute at disjoint locations, then the changes
they make to the configuration are independent, and so can be taken in either order.
The execution with these steps in the opposite order is similar to the original.

We define conditions for two steps to be swapped. If we are to swap two
steps, the steps must be from different threads. We do not want to change the order
of steps from the same thread. For some steps, we can tell from the labels whether
they are from the same of different threads. For example, if we have execution ¢,

where

SSeq(e) = (local-step(D), local-step(D))

then we can show that these steps are from the same thread. If, on the other hand,

we have

SSeq(e) = (action-start(D), total-call(E, D))

then we can show that these steps are from different threads. Consider the following

case.

SSeq(e) = (action-start(D), p-action-init(D))

These steps may be from the same thread, and they may be from different threads.
If D’s call queue is empty before the action-start step, then the p-action-init step
initializes the action call placed by the first step, and the steps are from the same

thread. Otherwise, if D’s call queue is nonempty before the action-start step, then

179

the p-action-init step initializes a different action call, and the steps are from dif-
ferent threads.

Thus we need to know the context before we can tell if a pair of steps can be
exchanged. Because of this, we discuss swapping steps in the context of executions
with two steps. We define the following sets of two-step executions, and we define

the swap of an execution in one of these sets.

Definition 5.26 For L,L’ € Lab,,,
TwoStep(L,L') 2 {e|e€Zy A |e|=2 A Root(s,0) # Root(e,1) }
For e € TwoStep(L,L"), Swap(e) is an execution ¢’ € TwoStep(L', L), where
Start(¢) = Start(e') A Final(¢) = Final(e")

If no such €' exists, then Swap(e) = L.

The swap of a two-step execution is a two-step execution with the same steps, in
reverse order, and the same start and final configuration. The steps of a two-step
execution ¢ can be swapped iff Swap(e) # L. We define a relation on labels that is

true only if the labels can always be swapped.

Definition 5.27

LAL 2 (Ve : e¢€ TwoStep(L,L’) : Swap(e) # L)

If L A L/, then steps L and L’ can be swapped in any execution where L is followed

by L/, and the steps are for different threads. We have the following theorem.

180

Theorem 5.28

(V L,L' e
. L,L' € Laby A L AL A (LZACC V L' ¢ ACC) A
e € TwoStep(L,L')

: e = Swap(e)

The theorem says that if steps L and L’ are swappable, that is L .~ L/, and at least
one of them is not an accept decision step, then any execution £ with these two

steps is similar to Swap ().

5.4.4 Reduce-equivalence

Similarity between executions plays an important part in reduction. As we rear-
range an execution, we do not change the accept sequence, the start configuration,
or the final configuration (if any). So we only reduce an execution to similar execu-
tions. These conditions alone are insufficient for infinite executions, as the following
example demonstrates.

Consider a program containing two total actions, a and «'. Action « non-
deterministically assigns 1 or 2 to z, and action o' increments y. In the initial
configuration, x = 0 and y = 0. Consider now two executions of this program. Exe-
cution € is a sequential execution that consists of a single thread for « that assigns
1 to x, followed by an infinite sequence of threads for o/ that successively increment
y. Execution & has the same form, except that the initial thread assigns 2 to x.
For these executions we have ¢ = &/, but all configurations, except the start, are
different between the executions. We do not want € to be a reduction of €', or vice
versa.

We define a relation that distinguishes these two executions.

181

Definition 5.29 Fore, e € Z,,,
ewre 2 e A (Vi@ 0<i< NumA(e) : AC(e,i) = AC(¢',i))

If e < €', we say that € and €' are reduce-equivalent.
The following theorems summarize the important properties of reduce-equivalence.

Theorem 5.30 < is an equivalence relation.

Theorem 5.31

!
<V €0,€1,€1,€2
D €0,€1,61,62 € i N €0j€15€2 is defined N ey <> €]

: €03 €569 is defined A ep;e1;e2 ¢ €03€]5 €9

Theorem 5.31 means that reduce-equivalence is a congruence, as with similarity.
The following theorem shows that in the case where at least one of the
executions has no accept decision steps (and thus no accept configurations), then

similarity and reduce-equivalence are the same relation.

Theorem 5.32

(V e, &
ce,e' € Zm N (NumA(e) =0 V. NumA(e') =0)

tewe = e=¢

Proof
Immediate from the definitions.

(End of proof)

182

From Theorems 5.32 and 5.28 we get the following theorem, which says that when
it is possible to swap two steps, neither of which is an accept decision step, the

swapped execution is reduce-equivalent to the original.

Theorem 5.33

(V L,L' e
LI e€lab, A LAL A LZACC A I'Z ACC A
e € TwoStep(L,L')

: € 4> Swap(e)

5.4.5 Finite reduction

Reduce-equivalence gives is a strong relation on executions. Clearly two executions
that are reduce-equivalent have very similar behaviours. But reduce-equivalence is
too strong a relation for reduction.

Consider ¢ € Complete(Z), and suppose €' € Z, is an atomic reduction of .
We have ¢ = ¢'. Consider accept decision steps AS(e,i) and AS(e',i). The former
is a t-action-init or guard-accept step, while the latter is a accept step.

Accept configuration AC(¢',4) is quiescent, so there are no active threads.
Accept configuration AC(e,7), on the other hand, shows the effect of partly com-
pleted threads. Let AS(e, k) be the accept decision step for a thread that is active
in AC(e,i). If k < i, then steps from this thread appear after AC(e,4). To make
a compact execution of this thread, some of its steps must move left over AS(e,1).
Similarly, if k& > 4, then some of the thread’s steps must move right over AS(e,1).
We define some relations on executions that allow such a swap below. This relation
allows a swap where a right-mover moves right over an accept decision step, or a

left-mover moves left.

183

Consider a pair of steps L, and L,, where L, is a right-mover, and L, is an
accept decision step. Suppose we show L, « L,, that is, that L, can move right
over L,. Choose ¢ € TwoStep(L,,L,), and let ¢’ = Swap(e). By Theorem 5.28, we

have € = ¢’. There is only one accept configuration in each execution. We have

AC(e,0) = ¢[1]
AC(€,0) = £[0]

Since €[0] = £'[0], we get (AC(¢',0), AC(e,0)) € L,. That is, the accept config-
uration in € is not equal to that in &/, but it is reachable from it by a single L,
step.

Configuration AC(g,0) shows the effect of executing L,, and configuration
AC(€',0) does not. So in €', the right-mover has been delayed until after the decision
step.

Consider now a pair of steps L; and L,, where L; is a left-mover, and L, is
an accept decision step, and L, ~ L;. If e € TwoStep(L,,L;), and &' = Swap(e),
then we get (AC(e,0), AC(¢',0)) € L. In this case, the left-mover is moved left of
the accept configuration, so the accept configuration is € does not show the effect
of L;, whereas that in & does. We define relations on executions using RM and
LM. By definition, (C,C’) € RM, means that there is a right-mover L, such that
C(L)C', and similarly for (C,C’) € LM.

184

Definition 5.34 Fore, e € Z,,,

e —pe 2 e A
(Vi
: 0 <i < NumA(e)
: AC(e,i) = AC(e'yi) v (AC(€,i), AC(g,i)) € RM
)
e e 2 e A
o i
.0 < i< NumA(e)
: AC(e,1) = AC(',i) vV (AC(e,i), AC(',1)) € LM
)

If ¢ =g €, we say that ¢ right reduces to ', and if ¢ —, €', we say that ¢ left

reduces to €.

Note the asymmetry in these definitions. For —p, we require that an accept config-
uration in the original execution be reachable from the corresponding accept con-
figuration in the reduced execution by zero or one RM steps, whereas for —r,, we
require that an accept configuration in the reduced execution be reachable from
the corresponding accept configuration in the original execution by zero or one LM
steps. This captures the intention that reduction involves delaying RM steps, and
advancing LM steps.

The following theorems give some properties of these relations.

Theorem 5.35 —r and —, are reflexive.

185

Theorem 5.36

(V e,é&
ceeleZy,

c(eewe = esped Ne=rpe) AN (ewe = eope Nl —pe)

Reduction, in general requires a sequence of right- and left-reduce steps. This can

be expressed with the following relation.

Definition 5.37

*

5 2 (spU-—=)

Ife 5 &', then we say that ¢ finitely reduces to €’.

Note that = is reflexive and transitive by construction.

5.4.6 The reduction relation

Relation — is sufficient for reducing finite executions, but it is not sufficient for
infinite executions, as the following example demonstrates.

Consider a program with total actions @ and o/, where a and o/ execute on
disjoint sets of boxes. Clearly, each step of a thread for a commutes with a step
from o'. Assume, for simplicity, every thread for a can be represented by two steps,
an accept decision step, Ly, and a left-mover L;. Assume we have an execution &
where every thread for o has been reduced to Ly and Ly, and every thread for o

has been reduced to L' = accept(«’). Suppose the sequence of steps in ¢ has the

186

following form.

LOaLlaLla
LUaLlaLlaLla
LOaLlaLlaLlaLla

That is, there is one L’ step between the first pair of Ly and L; steps, two L’
steps between the second pair, and so on, with the number of intervening L’ steps
increasing by one for each successive pair of Ly and L; steps. Since actions « and
o affect disjoint parts of the state space, we expect to be able to reduce € to the

sequential execution &', which has the following sequence of steps.

LOaLlaLla
LUaLlaLlaLla
LOaLlaLlaLlaLla

Here the L; steps have been moved left so they are adjacent to the Lg steps. Moving
left over n accept steps takes n applications of — . Definition 5.34 allows a left-
mover to move left over each accept step for a single application of —7,. But it only
allows a given left-mover to move over one accept step for each application. With n
applications of —;,, we can make at most the first n threads for « sequential. Since

the sequence is infinite,

(Vn : n>0 : =(e=T€))

187

and thus, since there are no right-movers in ¢,

We now define a relation ~», where € ~ &’ for the above example. In the
above example, n applications of —; are enough to reduce the first n calls to a.
After n applications, the steps in the first part of the execution are not moved again

for the remainder of the reduction. We can generate a sequence of executions

EQy €1y E1 gy «vn

where ¢ = ¢;, for i > 0, and ¢; is sequential up to at least the thread containing
the i*" accept decision step. Note that ; and ej, for 0 < ¢ < 7, share a common
sequential prefix, containing at least ¢ accept decision steps.

We can regard the ¢;’s as a sequence of approzimations to a sequential re-
duction for . Let ¢ be the limit of this sequence, that is, an execution where the
sequential execution includes all the accept decision steps. We define a relation ~»
below such that £ ~» &' in this case.

We first define a relation to express the idea of reducing a prefix of an exe-

cution.

Definition 5.38 For e, € Z,,, and |¢'| < oo,

ngt !
E — €

(1>

A" ez, e

ing

If e = €', we say ¢ initially reduces to ¢'.

~

If e ™ ¢ , then & can be finitely reduced to an execution that starts with the
finite execution £/. We define a sequence finite approximations to a reduction of an

execution.

188

Definition 5.39 Fore € Z,,, and €= (i : 0<1i : g) a sequence over Z,,

where |e;| < oo for all i,

£ is a convergent reduction sequence for ¢ =
(Vi
:0<
1&g Ceirr A 5m—i>t5¢ A
(NumA(e;) < NumA(e) =

(35 : i<j : NumA(e;) < NumA(e;)))

We abbreviate “convergent reduction sequence” to CRS.

The final conjunct in the term in Definition 5.39 is a stronger condition than just
requiring that the executions in a CRS be increasing in length. To see why this is
necessary, consider ¢; such that NumA(e;) < NumA(e), where for some action a,
reject(«) is enabled in Final(e;). Let ¢ be an execution with a single reject(«) step,

If we define

e & ((Final(e;), Final(g;)) , (reject(a)))

A L
Eir1 = &€

'y -y
Ei+2 = Ei415€

This gives a sequence of executions that satisfies all the other conditions of Defini-
tion 5.39, and is increasing in length. All executions in this sequence from ¢; have
the same accept sequence as ¢;, which is a proper prefix of €’s accept sequence. This
is not a sequence that approximates a reduction of ¢.

The set Z,, is a complete partial order under C, so every chain has a limit

189

in Z,,. We use this to define the reduction relation ~».

Definition 5.40 For e, e € Z,,,
e~e 2 (3E 2 EisaCRS fore : =i : 0<i : E[i]))

If e ~ €', we say e reduces to €.
The following result shows that ~» is an extension of —.

Theorem 5.41

Proof

To show = C ~», we note that for any ¢ and ¢/ such that ¢ = &', the sequence
(i : 0<i : €(0...1))isa CRS for &’. To show - #~», we refer to the example
above, where we showed ¢ and €' such that —(¢ = ¢'). The finite sequential prefixes

of the executions &; form a CRS for €/, so we have £ ~» €.

(End of proof)

5.5 Relating concurrent and sequential configurations

Before we proceed with the reduction rules, we first discuss what we can infer
about configurations in e from the properties of a sequential execution &’ such that
e ~ €. An important concept for stating these theorems is that of a thread being

uncommitted.

190

Definition 5.42 For Ce€ PC, a € A, and A' CA,

Uncommitted(C,o) = (V D
: D e€B A Root(C,D) =«
: C.D.¢ € {GUARD, PWAIT, REJECT}

)

Uncommitted(C,A’) 2 (NVa : a€ A’ : Uncommitted(C,a))

The idea of this definition is that Uncommitted(C,) holds in configuration C if
there is no thread for o in C that has taken an accept decision step and is the code
from the body of a procedure. The action of deciding to update the system state
is called “committing” in transaction processing parlance, whence the name of this
function. If Uncommitted(C, «), then either there is no thread active for a in C,
or a thread that is active for a has yet to take a decision step, or it has decided to
reject. If Uncommitted (C, A), then no action is the program has committed. This
is clearly the case if ¢t(C).

If Uncommitted (C, «v), then to reach a configuration where this does not hold

requires an accept decision step, as the following lemma shows.

Lemma 5.43

Ve,
t€€Zm N a€A N gl <oo A NumA(e) =0 A

: Uncommitted (Start(e),®) = Uncommitted(Final(c), c)

The theorem below gives us the first correspondence between configurations in an
execution and its reduction. It says that if any execution block in the original
execution contains a configuration where no action is committed, then the values

for all the box variables in that configuration is the same as it is in the corresponding

191

accept configuration of the reduced execution.

Theorem 5.44

Ve, e ik
ceff €Zym N e~el AN 0<i < NumA(e) A
0 <k <|EB(e,i)] N Uncommitted(EB(e,i)[k], A)
: PersistEq(EB(e,i)[k], AC(¢',1))

Theorem 5.44 shows a close correspondence between the configurations in the orig-
inal execution and those in the reduced execution. Note, in particular, that if the
reduced execution &’ is atomic, then AC(¢’,7) is a quiescent configuration prior to
the accepting thread 7. From this, we get the following. Suppose we show that “q is
invariant” holds for any sequential execution of a program. That is, in any sequen-
tial execution, all the quiescent configurations between threads satisfy predicate q.
For any 7, such 0 < i < |¢|, and Uncommitted (g[i], A), we can conclude that ¢ holds
in e[g].

One way to use this result is to execute the concurrent program in a way that
ensures that from time to time there is a quiescent configuration. In a quiescent
configuration e[i], Uncommitted (g[i], A) holds trivially. If we examine the quiescent
configurations in the concurrent execution, they satisfy all the invariance properties
of the sequential executions.

We can also apply this result to certain progress properties. Suppose we
show that in any sequential execution of a program that “q is unavoidable”, by
which we mean that ¢ holds at some configuration in the execution, and, once ¢
holds, it continues to hold for the remainder of the execution. If ¢ is unavoidable,
then in any execution there is a finite prefix where ¢ does not hold, and a nonempty

suffix where ¢ holds in every configuration. Using Theorem 5.44, we claim that if a

192

concurrent execution contains an infinite number of quiescent configurations, then
for all of these, except some finite prefix, g holds.

This is related to Valiant’s suggestion for Bulk Synchronous Processing. In
[32], he suggests a model for concurrent execution where processes (threads, in our
terms) are run asynchronously for the most part (much as we model the execution of
TCB programs), but, from time to time, the system is synchronized, meaning that
all partly completed processes are allowed to complete execution, without starting
any new processes, until the system has reached a quiescent configuration.

Theorem 5.44 gives a way of getting a consistent view of the whole state space
of a program. For many purposes this is too much. Imagine a system with many
boxes, and a predicate g, whose value depends a variables in just a small subset of
the boxes. If we wish to test if ¢ holds at a point in a concurrent execution, we must
ensure that it is tested in a consistent configuration, that is, one that does not show
the effects of a partly completed thread. One way to do this is to use the above
observations, and to force the execution to become quiescent from time to time, and
to test if ¢ holds in each quiescent configuration. This means that all threads, even
those that cannot possibly affect the value of ¢, must be ended before we can test
for ¢q. It seems that is should be enough to test for ¢ in a configuration in which
no thread that can possibly change the value of ¢ is committed. This is indeed the
case, as the next theorem shows.

The theorem concerns expressions defined across several boxes. We extend
the expression evaluation operator to evaluate these expressions in a program con-

figuration. For C € PC, we define
[D.z]C £ [z](C.D.o)

For operators and constants, [e]C is defined similarly to [e]o.

Theorem 5.45 Ife is an expression in the box variables, and A' is the set of actions

193

that call procedures that can change the value of e, then

Ve, e ik
ce el €Zym N e~el AN 0<i < NumA(e) A
0 <k <|EB(&,i)] A Uncommitted(EB(e,i)[k], A")
) BB i)K]) = [e](AC(3))

This theorem says that if € ~» ¢’, and there is a configuration in ¢ where no action
that can change the value of e is committed, then the value of e in this configuration
is the same as its value in the correponding accept configuration in &’.

Theorem 5.45 suggests the following way of constructing programs that guar-
antee that a predicate that is unavoidable in any sequential execution is eventually

observed to hold in a concurrent execution. Suppose
q = Dxz>0 AN Ey=3

and suppose we show that in any sequential execution, ¢ is unavoidable. We amend
the program is by adding procedures to D and E, as shown in Figure 5.1. We show
only the procedures added to the program. Here D.festq is a partial action with a
single alternative. The condition checks if the part of ¢ local to D holds, and the
test is a call to F.testq. This latter procedure accepts only if the part of ¢ local to
E holds. Action D.testq accepts iff ¢ holds.

If we run the amended program under a control relation that does not allow
D .testq to run concurrently with any action that can change the value of ¢, then if
D .testq accepts, we know that it has done so in a configuration in which none of
these other actions is active.

We claim that the property “q is unavoidable” for the sequential executions

of the original program corresponds to the property “eventually D.testq accepts”

194

box D

action test.q x>0 & E.testq — (x--- %)
end
box FE

method test:q moy=3 — (x---%)
end

Figure 5.1: Adding a probe to a program

in any concurrent execution of the augmented program that respects the control
relation.

We call an action such as D.testq a probe. Obviously, the format we used
above works only for predicates that can be expressed as conjunctions of local terms.

We can evaluate a general expression ¢ in the following way. Suppose Dy,
Dy, ..., D, are the boxes with variables in q. We write an action Dg.testq. This
has a call to D.testq as the test. The parameters for this call are the values of Dy’s
variables from gq. Method D1.testq passes these parameters on to method Ds.testq,
along with the values for D;’s variables in ¢. Continuing in this way, the values for

all variables in ¢ are passed to D,_q.testq, which can evaluate q.

5.6 Reduction rules

We reduce an execution by performing a sequence of local transformations, each of

which is one of the following.

e remove a reject step

195

e replace adjacent queue and init steps with a rdv step

e replace a compact execution of a procedure with an atomic step
e move a right-mover right

e move a left-mover left

We prove a set of theorems that give rules for applying applying these transforma-
tions. Each theorem gives conditions on finite execution ¢ when one of the above
transformations can be applied to give ¢’ such that ¢ = ¢’. First we have the rule

for removing reject steps.

Theorem 5.46 (Reject removal rule)

(Vv C,«

: CePC Na€eA AN (C,C) € reject(a)

: ((C,C), (reject(a))) = ((C), L)
)

Proof
Use Theorems 5.25 and 5.32.
(End of proof)

The next theorem shows the four cases when a rdv step can replace a queue and an
init step. To state these theorems, we define a set of two-step executions, T'S(L,L’),
for every pair of labels L, L' € Lab,,. This set differs from TwoStep(L,L’) in that

it requires that the steps be from the same thread.

196

Theorem 5.47 (Rendezvous rule) For L, L’ € Lab,,, let

TS(L,L') & {e
| e€Zm A lel =2 A Root(e,0) = Root(e,1) A
$Seq(e) = (L, L)

mn

(V D,e
: DeB A e¢€ TS(action-start(D), p-action-init(D))
: & 5 ((Start(e) , Final(c)) , (p-action-start-rdv(D)))

(V D,e
: D eB A e€ TS(action-start(D), t-action-init(D))
: e 5 ((Start(e), Final(e)) , (t-action-start-rdv(D)))

(V D,E,¢
. D,EECB A D£E A
e € TS(guard-test(D, E) , p-method-init(F))
: ¢ 5 ((Start(e), Final(e)) , (guard-test-rdv(D, E)))

197

(Vv D,E,¢
:D,EEB A D£E A
e € TS(total-call(D, E) , t-method-init(E))
: & 5 ((Start(e) , Final(c)) , (total-call-rdv(D,E)))

The next theorem covers the five cases for replacing a compact execution of a thread

with an atomic step.

Theorem 5.48 (Atomic rule)

(Ve D,a
e €Zm N DeEB A a€ TotActs(D) A
£ is a compact execution for D.a A Last(¢) = action-end(D)

¢ 5 ((Start(e), Final(e)) , (accept(D.a)))

(Ve D,a
:€€Zm N DeB A ac€ TotActs(D) A
e is a compact execution for D.a A Last(e) = action-reject(D)

ce D ((Start(e), Final(e)) , (reject(D.a)))

(Ve D, E,m
:e€Zm N D EEB AN D#E AN m € PartMeths(E) A
€ is a compact execution for E.m A Last(e) = test-accept(D, E)

te D ((Start(e), Final(e)) , (pm-accept(D,E.m)))

198

(V e,e',D,E,m
:e€Zm N DEEB AN D#E A m € PartMeths(E) A
€ is a compact execution for E.m A
Last(e) = test-reject(D, E)
: e 5 ((Start(e), Final(e)) , (pm-reject(D, E.m)))

(V e,e',D,E,m
:e€Zm N D EEB AN D#E N m e TotMeths(E) A
€ is a compact execution for E.m A
Last(e) = total-return(D, E)
: ¢ 5 ((Start(e), Final(e)) , (tm(D,E.m)))

Next we have the rule for right-movers. Any right-mover can move right, with a
slight restriction on queue steps. Note that L is not an execution, so there is no

execution ¢ such that e = 1. Thus, the term ¢ = Swap(e) implies Swap(e) # L.
Theorem 5.49 (Right-mover rule)
(V L,L ¢
: L,L' € Lab,, N L C RM A ¢ € TwoStep(L,L") A

(L C queue = ULoci(e(0)) disj ULoci(e(1)))

: £ 5 Swap(e)

The final theorem in this section gives the rule for moving left-movers left. It applies

only to local and end steps, and not to tm steps.

199

Theorem 5.50 (Left-mover rule)

(V L,L' e
: L,L' € Lab,, N L' C localUend A ¢ € TwoStep(L,L’)

e 5 Swap(e)

We now have five reduction rules: the reject removal rule, the rendezvous rule, the
atomic rule, the right-mover rule, and the left-mover rule. All these rules apply in
any execution. So, for example, in any execution, if there is a local step following a
queue step from a different thread, the local step can be moved left. Showing that
this is possible involves showing that the steps commute, that is, the steps have the

same effect on the configuration, regardless of the order in which they are taken.

5.7 Reduction rule for tm steps

Suppose ¢ is a complete execution in which no thread calls a total method. In
this case, each thread has no right-movers after the decision step, only local and
end steps. Thus each thread obeys the two-phase locking protocol. As we have
seen, if all threads are two-phase, then we can serialize any execution. Threads
for TCB are not two-phase because of the total method calls. In this section, we
consider reduction rules for tm steps. We show the following rule for tm steps in

any execution.

200

Theorem 5.51

(V L,L' e
: L,L' € Lab,, N L ¢ atomicUend A L' C tm A
e € TwoStep(L,L")

e 5 Swap(e)

That is, in any execution a tm step can move left over any step that is not an atomic
step, or an end step. If we organize the reduction carefully, we never need to move
tm steps left over end steps. We consider here how to ensure that tm steps move
left over atomic steps.

Consider the program in Figure 1.5. We saw that if there are two calls to
X.add from different threads, then these calls can happen in either order, and the
final result is the same. The same is not true for a call to X.add and a call to
X.mult. In this case the final value of X.z depends on the order in which the
calls are made. Using the commutativity of X.add with itself, we can reduce any
concurrent execution of threads for D.aa and E.a to a sequential execution. For
the concurrent execution of D.aa and E.b where the call to X.mult from E.b falls
between the two calls to X.add from D.aa reaches a final configuration that is not
reachable by executing the two actions sequentially in either order.

Since we cannot reduce an execution containing concurrent threads, one of
which calls X.mult, and the other of which calls X.add, we exclude such executions
from consideration. As with deadlock, and termination, we define a control relation
to exclude the problematic executions.

The control relation we define here, called weak compatibility, and written
~, is defined so that if @« ~ ¢, then there is sufficient commutativity between the

procedures that may be called during a thread for o and procedures that may be

201

called during a thread for /.

To decide what commutativity on procedures is sufficient for the reduction,
we must first decide how to handle rejecting threads. The reject removal rule allows
us to remove a reject step from an execution. All rejecting threads are two-phase,
with queue and init steps before the decision step, and end steps after it. Because
of the two-phase structure, we can reduce a rejecting thread to an atomic step in
any execution. We can then apply the reject removal rule to remove the thread from
the execution.

If we apply this procedure to every rejecting thread in the execution, we
never have to move a tm step over a rejecting atomic step. This is the approach we
take in this chapter. Essentially, we are pretending that if a thread rejects, then we
can pretend that the thread was never executed at all. This is the interpretation of
rejecting threads given in [25], where a rejecting thread is represented by the empty
relation, which corresponds to the empty set of executions.

In Chapter 6 we consider the issue of fairness between action executions,
which concerns ensuring that threads for an action are started “often enough” during
an execution to ensure progress properties. We show that removing some or all of the
rejected threads from an execution can result in an execution that meets a weaker
fairness condition than the original. Thus, from the standpoint of fairness, rejected
threads are computationally significant. We show in that chapter how to reduce an
execution so that every thread, accepting and rejecting, from the original execution
appears in the reduced execution, and thus the reduced execution meets the same
fairness condition as the original execution.

There is a trade-off involved here, as there usually is. To get the stronger
reduction that preserves fairness, we need stronger commutativity conditions than
we do for the reduction than we present in this chapter. The stronger commutativity

conditions mean that fewer pairs of actions can be run concurrently, and so we trade

202

concurrency for fairness.

5.7.1 Weak compatibility

We now define the weak compatibility control relation that allows us to complete
the set of rules we use to show the reduction of a TCB execution. We define this in

terms of a relation between a procedure and a total method.

Definition 5.52 For 7 € P, and p € My,

mwlep 2 (Y D,E
D, EEB A D£E
(reA = accept(m) A" tm(D,u)) A
(meM, = pm-accept(E,m) ~"tm(D,pn)) A
(mreM; = tm(E,) ~tm(D, p))

)

If m wlc p, we say that m weakly left-commutes with p.

Thus if 7 wlc @, then a tm step for p can move left over an atomic step for m,
provided that the step for 7 is not rejecting. The relation does not use the rejecting
atomic steps, since during reduction, as discussed above, we can use the reject
removal rule to remove these from the execution, so no tm step moves left over a
reject or pm-reject step.

We give some examples of weak left commutativity. The first examples con-

cern the box Sem in Figure 2.3.

Sem.P wle Sem.V

Sem.V wle Sem.V

203

To show Sem.P wlec Sem.V, we must show for any D, F € B, such D # E,

pm-accept(E, Sem.P) ~ tm(D,Sem.V)

That is, we must show that, for any configuration in which a pm-accept(E, Sem.P)
step is enabled, the configurations reachable by executing this step followed by a
tm(D, Sem. V) step, are reachable by executing the steps in the opposite order.

Consider a configuration C in which pm-accept(E, Sem.P) is enabled. We
have C.Sem.y = 1, from Theorem 5.5. From the guard of Sem.P, we also have
that the semaphore is available in C, that is, C.Sem.o.n > 0. From such a configu-
ration, the call to Sem.P followed by the call to Sem.V leaves the value of C.Sem
unchanged, and updates the configurations of D and FE to reflect the fact that the
procedure calls have been executed. Executing the calls in the reversed order has
exactly the same effect, and thus we have weak left commutativity.

To show Sem.V wlc Sem.V, we must show for any D, EF € B, such that
D #E,

tm(E, Sem.V) ~ tm(D,Sem.V)

Since Sem.V is total, the steps are enabled in any configuration. The effect of
executing the procedure calls in either order is to add 2 to Sem.n, and to update
the configurations of D and E to reflect the execution of the calls. Thus we have
weak left commutativity.

Below are some examples of left commutativity using the box Buff from

Figure 1.2.

Buff.get wlc Buff.put

—=(Buff.put wlc Buff.put)

204

We show Buff.get wlc Buff.put in a way similar to that we used for Sem.P and
Sem.V, above. We note that an accepting call to Buff.get is only enabled in a
configuration in which Buff.s is not empty. Suppose Buff.s = z > §. If the call to
Buff .put puts the value y in the queue, we can see that, executing the calls in either
order, we end up with Buff.s = § <y, and z is returned to the caller of Buff.get.
Thus we have weak left commutativity.

To show —(Buff.put wlc Buff.put), we observe that calling Buff.put with
input parameter z, and then calling it from a different box with input parameter
y leaves Buff.s = § <z <y, whereas making these calls in the opposite order gives
Buff.s = s<ay<xz. Clearly §az <y # §<y <z, unless x = y. Thus, we do not have
weak left commutativity.

The following theorem gives a simple condition for determining weak left
commutativity: a procedure weakly left commutes with a total method if they

execute on disjoint sets of boxes.

Theorem 5.53
(V m,p
cmeP A peM; A

(Va',u' : n' € Range(r) A u' € Range(p) : —(x' By'))

7 owle p

We can now define weak compatibility.

205

Definition 5.54 (Weak compatibility) For a,a’ € A,

a~d & (¥Var
: T € Range(a) A 7' € Range(d')
c(reMy = 1 wle) A (7' €My = 7w wle 7')

)

If a ~ o, we say that o is weakly compatible with .

The symmetric form of the definition guarantees that ~ is symmetric, and thus
~ € CR. The definition of weak compatibility gives exactly the conditions needed
to define a left-moving rule for total method calls. Note that the definition does not
require any commutativity between the actions o and o’.

From the results given above for wlc on the methods of box Sem in Figure 2.3,

we get the following.

D.act ~ F.acq

D.act ~ FE.rel

For the actions in Figure 1.3 that use the methods of box Buff in Figure 1.2, we

have
Prod.make ~ Cons.use
Suppose we have « and o, where

Range(a) disj M,

Range(d) disj My

In this case, the conditions for & ~ ¢« are trivially satisfied. These conditions mean

that no total methods are reachable from « or o by -, or, in other words, that

206

only partial methods are called during the execution of any thread for either action.
If « is total, this means no thread for « calls a method, since only total methods
can be called from a total action. If « is partial, we have that a thread for « calls
only partial methods that do not call total methods. Since there can be at most
one call to a partial method in any alternative in a partial procedure, this gives us
a two-phase structure for all the threads for «, with the decision step in the lowest
partial procedure call, all resource acquisition steps before the decision step, and
all resource release steps after. For pairs of such threads, the two-phase locking
theorem gives us serializability under any control relation.

If we restrict attention to executions that respect weak compatibility, we get

the following rule for moving a tm step left.

Theorem 5.55 (Weak compatibility rule)

(V L,L ¢
: L,L' € Lab,, N L € REJUend A L' C tm A
e € TwoStep(L,L') A & resp ~

e 5 Swap(e)

5.7.2 Reduction that respects control relations

For reduction, we restrict ourselves to T'CB executions that respect ~. This allows
us to use the weak compatibility rule to move tm steps left. It is important, then,
that we ensure that every transformation that we apply to an execution € such that
€ resp ~ returns an execution &' such that &' resp ~.

Considering this question more generally, for any T € CR, if ¢ resp T and
we apply one of the reduction rules to part of , yielding the reduced execution &',

does €' resp T? We have the following meta-theorem. The proof is in Appendix B.

207

Theorem 5.56

(V e, e, T
ce, e €Zm N eresp T A
e e by Theorem 5.46, 5.47, 5.48, 5.49, 5.50, or 5.55

: ¢’ resp T

5.8 The first reduction theorem

We are now ready to state and prove the first reduction theorem. This theorems says

that we can reduce any complete execution that respects ~ to an atomic execution.

Theorem 5.57 (First reduction theorem)
(Ve : e€ Complete(Z) Neresp ~: (3 : € €Z, 1 e~e))

5.8.1 Outline of the proof

We prove the theorem using the following lemma. Note that we state the lemma for
executions in Complete(Z,,), rather than for Complete(Z). The latter is a subset
of the former, so this is a generalization that allows us to use mixed executions for

intermediate results during execution.

208

Lemma 5.58

(Ve
: € € Complete(Z,,) N NumA(e) >0 A eresp ~
(3 e

c el e€Zy, N €' e Complete(Z,,) N NumA(e') =1

*
ce—elsel N ey resp ~

We show the proof for this lemma below. Given Lemma 5.58 we complete the proof
of Theorem 5.57 as follows.
Given ¢ € Complete(Z,,), we construct a sequence of pairs of executions of

the following form.

€0 €0

. !
£05€1 81

. . !
€05€1,€2 &9

Each entry in the left column is a sequence of atomic executions, and each entry in
the right column is an execution in Complete(Z,,). We construct ¢y and ¢}, from
¢ using Lemma 5.58. For ¢ > 0, we construct ;41 and €}, from €] by the same
lemma. If NumA(e) < oo this process ends after a finite number of steps. In this
case, we make the sequences infinite by repeating the last line.

The first column is a chain of finite executions in (Z,, C). Since this ordered
set is a CPO, the chain has a limit in Z,. Let ¢’ be the limit.

The first column is also a CRS for the sequential execution, since for each

entry, the corresponding execution in the second column is the witness required for

209

showing initial reduction. Each successive entry in the first column has one more
accept step than the previous one, up to NumA(e), by Lemma 5.58. This gives us
e~ ¢ and € € Z,, and the proof is complete.

One way to think of this proof is that we start with the execution ¢, and we
place a marker at the beginning. We reorganize the beginning of the ¢, until there
is a single accept step next to the marker. Then we move the marker over this step,
and repeat the process with the remainder of the execution. As the marker moves
through the execution in this way, the steps of the atomic execution appear in order

on its left.

5.8.2 Proof of Lemma 5.58

We assume

e € Complete(Z,,) N NumA(e) >0 A eresp ~

we construct ¢ and €”, where

eeZ, N & e Complete(Z,) N NumA(e')=1 A

*
e—eie N ee resp ~

We do this by constructing a sequence of pairs (g;,¢}), where each pair satisfies
certain conditions. For clarity in the exposition, we use ¢ as a base for names for
executions as we present the construction of (g;41,¢€;,,) from (g;,¢;). Let D be the
first accept step in €. Let F be the last step for D’s thread. Thus, if this thread is
for action a, D is the first ACC step, and F is the first action-end(Boz(«)) step, or

the first accept(«) step. Note that in the second case, D and F are the same step.

210

We use the following predicates on executions.

Imm() = (V&
:0<k<le] AN e(k) CDEC
(3 g
:0< <k
: (Vi : 0<i<j : Root(e,i) # Root(e, k)) A
(Vi : j<i<k : Root(e,i) = Root(e,k))

)
Def(e) & (v

:0<k<|e] A e(k) CRM

G
t k< <lel
: Root(e,j) = Root(e, k) A e(k) Z RM
)

)

If Imm () holds, then for every thread with a decision step in €, all steps in & for
the thread up to and including the decision step appear as a contiguous sequence.
If gt(Start(e)), then this mean for every thread with a decision step in ¢, all steps
from the first step of the thread up to and including the decision step appear as a
contiguous sequence. We call such an execution immediate.

If Def(e) holds then the last step for every thread with steps in ¢ is not an
RM step. In particular, since all steps before the decision step are RM steps, if
qt(Start(e)), then this means that every thread with steps in € has a decision step
in e. We call such an execution definite.

If Imm/(e), Def(e) and gt(Start(e)) hold, then every thread in e begins with

211

an unbroken sequence of steps ending with a decision step.

Rendezvous reduction

We reduce € to an execution in which all RM steps before F are rdv steps. Let
e = 1o;1py, where Last(ipy) = F

Choose a box D € B. Let L be the last queue step before F in 1y that has D as
its unconditional locus. Step F cannot be the next step for L’s thread, since a init
step follows every queue step. By construction, no step from L up to and including
F has D as its unconditional locus, so we use the right-mover rule to move L right
until it reaches the position after F, or the position before the init step that is next
in its thread, whichever is reached first. In the latter case, apply the rendezvous rule
to replace the queue and init steps with a rdv step. Note that the new step does
not have an unconditional locus. Repeat this procedure for every other queue step
in 1 that has D as its unconditional locus. Then repeat the whole process for every
other box. At the end of this, we have execution 1), where 1)y — 1 and v; contains
no queue steps before F. There are no init steps before F, since q¢t(Start(1)1)), and

every init step is preceded by a queue step. Thus all RM steps before F are rdv

steps. Let
Y1 = €03ty where Last(eg) = F
en = Yo

We have (g, &), where

E0E Zr N |80| < oo A Last(eo) =F A

co; e € Complete(Zm) N € > cojehy A eo;el resp ~

212

Right-mover reduction

We construct a reduction of ¢ where the execution is immediate up to F, and every
thread with steps before F has a decision step before F. Let L be any decision step
in £9. Choose the last step from L’s thread before it in 9. This is a rdv step (since
€ € Z,, so use the right-mover rule to bring it adjacent to L. Repeat this with the
remaining steps from L’s thread to its left, and then repeat with all other decision
steps in g, giving execution 1o, where g9 — 19. We have Imm(1)o) by construction.
Now choose a thread whose last step before F is in RM. Use the right-mover rule
to move it to the right of F. Repeat this process until there are no such threads,

giving execution 1, where g9 — 1. Let

Y1 = e1;€] where Last(eq) = F
&1 = €3¢0
We have (e1,¢€]), where
e1 €7, N le1] <oo A Imm(ey) AN Def(er) N Last(e1) =F A
e1;€ € Complete(Z,,) N € erzeh A er;eh resp ~

Reject removal

We construct a reduction of ¢ in which there are no REJ steps before F. Let
Yo = €156

If 4 contains no REJ steps before F then we are done. Otherwise, let L be one
of the REJ steps before F. We reduce the steps for L’s thread to a reject step.
If L is atomic we are done. Otherwise, since Imm(e1), the steps before L in its
thread appear to it immediate left. By Theorem 5.19, all steps after L in its thread

are action-reject or test-reject steps. By the left-mover rule, we can move all of

213

these steps left over steps from other threads until all steps for L’s thread are then
contiguous. By the atomic rule, these steps can be replaced by a single reject step.
By the reject removal rule, we can remove the reject step from the execution. Repeat
this process for every REJ step before F, ending with execution 1, where 9 = 1/,

and 1 contains no REJ steps before F. Let

1 = e9;9) where Last(e;) = F

/ /N
g2 = Y136
We have (g9,¢€}), where

g9 € Zy N lea| < oo A Last(es) =F A
Imm(es) N Def(es) A
(VZ : 0S7:<|82| : 82<Z>ZREJ> A

e9; e € Complete(Zm) N € > 36l A eo5€h resp ~

Left-mover reduction

We construct a reduction of € in which has an accept step as its first step. First we

have a lemma, which gives the core of the left-mover reduction.

Lemma 5.59 Let

N@) = (Vi: 0<i<lg| : i) ZREJ)
send(y) = (#i : 0<i<ly| : $(k) C end)

#eomp(y) = (#
10 <i< |

: (k) C accept U action-end U action-reject

214

(V1
Y E€EZy N || <oo A gt(Start(y)) A
Imm(y) A Def(¢) A N(¥) A
0 < #end(v))
(3
s ez, N W <oo A gt(Start(y)) A
Imm(¢') A Def(¢') A N(4') A
send(y) < #end(1))
tp Do) A #comp(yp) = #comp(y)

Proof

Assume we have a 1 as in the antecedent of the universal quantification. Let L be the
first end step in 5. Since qt(Start(v)), we can find step L', the step that acquired
the box that L releases. Since 1) € Z,, L' is a rdv step, it is the only RM step for the
procedure call, so it is the first step of a compact execution of the procedure. Let
1)y be the segment of ¢ from the L' to L. We have #end(vg) = 1, by construction.
Consider the steps in 1y from L’s thread. There are no end steps among these
steps, and so, since resources are released in reverse order of acquisition, there are
no RM steps either. If execution is for a partial procedure, we have, since Imm (1))
and N (1), 9p(1) C ACC. The steps for the procedure call thread in the region
from 1y(2) on, for a partial procedure, and from (1) on, for a total procedure,
are after the thread’s decision step. Since there are no RM steps, and no end steps,
by Theorem 5.18, all the steps in this region for the procedure call’s thread are
thus local or tm steps. By the left-mover rule, the local steps can be moved left.
There are no REJ or end steps between L’ and L from any thread, so, by the weak

compatibility rule, the tm steps can be moved left. By the left-mover rule, L can

215

be moved left. Thus we move all these steps left until all steps for the procedure
call are contiguous at the beginning of the execution. The reduced execution starts
with a compact execution for a procedure, so we use the atomic rule to replace
these steps with an atomic step, giving 1, where ¢y — 11, #end(¢/;) = 0, and
#comp(y1) = Fcomp(yy).

Let 9" be ¢ with 1 replaced by 1. We have o' € Z,., |¢'| < oo, gt(Start(v)),
N(¢'), and #end(y) < #end(4), ¥ > ¢/, and #comp(y}) = #comp(y'), by
construction. To show Imm(1)'), we note that &’ contains all the steps of ¢, in the
same order, for the threads other than the one reduced. For the reduced thread,
all steps for a procedure call have been deleted, and the rdv step that starts the
call has been replaced by an atomic step. When a partial procedure is replaced,
the RM step removed is replaced by a decision step, so immediacy is preserved.
There is nothing to show for a total action, since there are no RM steps before the
t-action-start-rdv step that is its decision step. To show Def (1)'), we note that the
reduction removes a RM step and some nonRM steps, and replaces it with a single
non-RM step for the thread. Thus Def(1)') must hold.
(End of proof)

To show the main reduction, we note that by the principle of induction,
we can apply the reduction in Lemma 5.59 repeatedly to s until we get 1, where
#end(¢) = 0, and #comp(y)) = #comp(e2). Since the 1) contains the end step for
the first thread, this thread must be a single accept step. Since we never move a

RM step left over an ACC step, this step is First(1). Let

v = e3;¢ where |e3] =1

e3 = Y€

216

We have (e3,¢%), where

e3 € Zq N |es]=1 A NumA(es) =1 A

e3;6h € Complete(Z,,) N € > e33eh N e35¢h resp ~

Let ¢’ = e3 and &” = ¢}, and we are done with the proof of Lemma 5.58.

217

Chapter 6

Fairness

6.1 Introduction

The last chapter showed a control relation ~ that guarantees a reduction to an
atomic execution for every complete execution respecting ~. We showed a corre-
spondence between configurations in the original execution and the reduced atomic
execution, which allow us to infer properties of the concurrent execution from those
of the atomic execution.

The purpose of a reduction theorem is to show that a set of concurrent
executions can be represented by a set of atomic executions, such that the sequential
executions cover all possible behaviours of the concurrent executions. In this way,
we avoid having to reason directly about the behaviour of the concurrent executions,
and can instead reason about the behaviour of just the atomic executions. For this
inference to be valid, we must precisely define the set of atomic executions that is
generated when we reduce a given set of concurrent executions.

In this chapter, we consider properties of atomic executions, and we show
that certain types of properties, called progress properties, are not guaranteed in

all atomic executions, but are guaranteed in executions satisfying certain fairness

218

conditions. We then consider the subset of the concurrent executions whose atomic
reductions satisfy a given fairness condition.

Consider a program containing an action a that increments the value of
integer variable z, and suppose no other action in the program affects the value of
z. What can we say about the sequence of values taken by z during an execution?
We know that it never decreases, since its value is only changed by increasing it.
What we cannot show, for general atomic executions, is that the value of x increases
in every execution. Consider an atomic execution that contains no steps for a. The
value of 2 does not change during this execution.

Consider an infinite atomic execution of the program containing an infinite
number of steps for a. In such an execution, we can see that the value of z increases
without bound. That is, for any configuration in the program, there is a later
configuration in which z has a greater value.

In Chapter 4, we showed that fairness in the choice of steps in an execution
is required to ensure an execution where every thread terminates. In a similar way
we define fairness conditions on the sequence of actions for the steps in an atomic
execution that can ensure that executions have desirable properties. This is fairness
at a higher level than thread fairness, which concerns the choice of queue semantics
steps. We are now concerned with the choice of actions. As with thread-fairness,
the fairness conditions in this chapter are of relevance only for infinite executions.

In an atomic execution, every configuration is quiescent, and so, for every
a € A, a step for « is enabled, either an accept(a) step or, if « is partial, an
reject(c) step. Note that the queue semantics steps before the decision step are
deterministic, so each action has exactly one step enabled in each configuration.

The first fairness condition for actions is weak fairness. An infinite atomic
execution ¢ is weakly fair for an action « if € contains an infinite number of steps

for a. For the example action above, if € is weakly fair for «, then the value of z

219

increases without bound in e.

Weak fairness guarantees absence of individual starvation for an action. In
the standard analogy used for this type of problem, an action is always hungry for
a step. An action starves if it waits an infinite time to take a step, where time
is measured in steps. Requiring an infinite number of steps for « is equivalent to
requiring that every step for « be followed, after a finite number of steps, by another
step for a. Thus, in an execution that is weakly fair for «, no action starves.

By design, a reject step does not change the configuration. So if reject(ca)
is enabled in configuration C, it is still enabled after any reject step. If a execution
reaches a configuration C in which only reject steps are enabled, the configuration
does not change from this point on in the execution. We call C a fizpoint of the
program.

A less stringent condition that weak fairness is minimal fairness. Execution
¢ is minimally fair if every configuration C in e, where C is not a fixpoint is followed
eventually by an accept step. An accept step is enabled in C, by definition, and
an accept(«) step remains enabled at least until an accept step is taken. In the
example above, if there is a total action o in the program, other than «, then the
minimally fair executions include an execution consisting of nothing but accept(«')
steps. In this execution, £ does not increase at all.

Minimal fairness guarantees absence of global starvation for the program. In
terms of the analogy, the program is hungry for an accept step in any nonfixpont
configuration. In a minimally fair execution, there are an infinite number of accept
steps or the execution reaches a fixpoint. Note that an execution that is weakly fair
in all actions is a minimally fair execution.

We extend weak fairness and minimal fairness to concurrent executions, by
mapping the sequence of decision steps in the execution onto accept and reject steps

in the obvious way. We show that the reduction given in the last chapter can reduce

220

a concurrent execution that is weakly fair in all actions to an atomic execution that
is minimally fair, but not necessarily weakly fair in all actions.

This means that to capture all behaviours of executions under weak compat-
ibility, we need to consider minimally fair sequential executions that are weakly fair
in a subset of the actions. Such executions satisfy fewer properties than executions
that weakly fair in all actions.

We define a control relation, called strong compatibility, that allows less con-
currency than weak compatibility. We prove a second reduction theorem that shows
how we can use control relations combining weak and strong compatibility to guar-
antee a reduction of a weakly fair concurrent execution to an atomic execution that
is weakly fair for a given subset of the actions.

In the example, we need only weak fairness for o to guarantee that z is
increasing. We do not need weak fairness on any other action. This observation
suggests a strategy for implementing TCB programs to guarantee a given progress
property. We identify the actions whose weak fairness is required to establish that
an atomic execution has the desired property, and we then use a control relation
that ensures executions that can be reduced to atomic executions that are weakly
fair in the appropriate actions.

In the final section of this chapter, we consider the implementation of fairness

conditions and control relations, using a scheduler.

6.2 Fairness conditions for TCB

To apply fairness to the execution of T'CB programs, we must decide on a sequence
of events that gives a linear order to the threads. Since the reduction maintains
the order of decision steps, we use these steps to represent the order of the threads.
For the fairness conditions we define, we must record rejecting threads as well as

accepting threads, so we define the following.

221

Definition 6.1 Ife € Z,,, and 0 <1 < |¢|, then

DLabel(e,i) = accept(Root(e,i)) if (i) c ACC
reject(Root(e,7)) if (i) C REJ

For p an ascending sequence containing every i, such that (i) C DEC,

DSeq(¢) (i : 0<i<|p| : DLabel(e,pli]))

DS %2 {e : e¢€ Complete(Z,) A |le| =00 : DSeq(e) }

We call DSeq(e) the decision sequence for e. We use A for a typical element of DS.

The set DS contains infinite sequences over Lab,. Fairness are only relevant for infi-
nite executions, so we confine our attention to infinite decision sequences. Note that,
if an infinite execution is complete, it has an infinite decision sequence. If ¢ € Z,
then DSeq(e) = SSeq(e). The decision sequence then, is an idealized representation
of an infinite execution as an atomic execution. The following function returns the

action for an label in a decision sequence.

Definition 6.2 If L € Lab,
DAct(L) £ « if L =accept(a) V L = reject(w)

6.2.1 Weak fairness

An infinite execution is weakly fair for o € A if there is an infinite number of threads

for . We formulate this in terms of decision sequences.

Definition 6.3 (Weak fairness) If A € DS, a € A, and A’ C A, then

WF(A,a) & (#i : 0<i : DAct(Afi]) =a) =
WF(A,A') 2 Va : ac A’ : WF(A,a))
WF(A) 2 WF(AA)

222

If WF(A,x), we say that A is weakly fair for x. If WF(A), we say that A is

weakly fair.

If A is weakly fair for o then A contains an infinite number of labels for «. Note
that only a finite number of these need be accept(«) labels, the rest can be reject(a)

labels.

6.2.2 Minimal fairness

An infinite execution is minimally fair if there is an infinite number of accepting
threads in it, or, it reaches a configuration where no thread can accept. This final
condition is difficult to state in terms of decision sequences, so we use the following,
slightly stronger formulation: an infinite execution is minimally fair if there is an
infinite number of accepting threads in it, or, if after all the accepting threads, there
is at least one rejecting thread for every action. We use the following function to

help with the definition.

Definition 6.4 If A € DS, then

LastA(A) £ (mink : 0<k : (Vi : k<i : A[]C reject))
Note that if there is an infinite number of accept steps in A, then the range for the
minimum is empty, and so LastA(A) = oo
Definition 6.5 (Minimal fairness) If A € DS, then

MF(A) 2 LastA(A) = oo V

V a
ta €A

: (3¢ ¢ LastA(A) <i : Ali] = reject(w))
)

223

If MF(A), we say that A is minimally fair.

Theorem 6.6

(VA : AeDS : WF(A) = MF(A))

6.3 Program properties

A property is a subset the infinite atomic executions of a program. We define prop-
erties to include only executions satisfying a condition on the sequence of persistent
states. We use conditions such as “the value of = does not decrease”, or “z increases
without bound”, for an integer box variable . We identify a subset of executions
with the condition defining it, using the name “property” for either.

Program properties can be classified as safety properties and progress (or
liveness) properties [21]. A safety property says that “nothing bad happens”. The
first example above is a safety property, asserting that a decrease in the value of x
does not occur. Safety properties can always be satisfied by a program that does
nothing. A progress property says that “something good happens”. The second
example above is a progress property, asserting that there are an infinite number of
steps increasing the value of x. A progress property requires some action be taken
by the executing program.

Our aim is to investigate the properties satisfied by all executions, and prop-
erties satisfied by all executions satisfying one of the fairness conditions from the last
section. We define a couple of types of property, one for safety, and one for progress.
We show that fair executions satisfy more progress properties than all executions,
but that both fair and unfair executions satisfy the same safety properties.

We extend the fairness operators to executions in the obvious way, writing
WF(e) instead of WF(DSeq(¢c)), for example. Using this, we define the following

sets of executions.

224

Definition 6.7

N
1>

{e|e€Zy Nl|e|]=00}

W, & {e|e€Z; N WF(g)}

=
I>

{e|e€eZ; N MF(¢) }

From Theorem 6.6, we have W; C M.

Let P be a property, that is, a subset of Z;. If Z; = P, then every execution
of the program satisfies P. If W; C P, then every weakly fair execution of the
program satisfies P. If M; C P, then every minimally fair execution of the program
satisfies P.

We define some simple properties.

Definition 6.8 For ¢ C PC,

stab(q) = {e|e€Z; AN (Vi,j : 0<i<j : €lil]€q = ¢€[jl€q)}

unav(q) 2 {e|eccstab(q) A (3k : 0<k : €fi]€q)}

We call stab(q) a stable property, and unav(q) an unavoidable property.

We identify a boolean expression over the box variables of a program with the subset
of PC, for which it is the membership predicate. So, we write D.z > 5 to mean the
set {C | Ce PCy A [D.z > 5]C}. If g is such an expression, we say “q holds in
C” to mean C € q.

For ¢ € stab(q), if ¢ holds at any configuration in ¢, it holds in every config-
uration after that one. Note that € € stab(q) if ¢ does not hold at any configuration
in e. Properties stab(q) are safety properties. For ¢ € unav(q), ¢ does not hold in
a finite prefix of the configurations of ¢, and it holds in the remainder. Properties

unav(q) are progress properties.

225

The following theorem shows an important difference between stable prop-

erties and unavoidable properties: stable properties are oblivious to fairness.

Theorem 6.9

(V q
: q C PC,
: (W; Cstab(q) = Z; Cstab(q)) A (M; Cstab(q) = Z; C stab(q))
)

Proof
We prove the first conjunct of the term. The proof for the second is similar. Assume

qg C PC,. We show
W, Cstab(q) = Z; C stab(q)
We prove the equivalence as two implications.

Case «:

An immediate consequence of W; C Z,.

Case =

We prove the contrapositive form.
Z; ¢ stab(q) = W, Z stab(q)

Assume Z; Z stab(q). Choose € € Z; such that ¢ ¢ stab(g). From Definition 6.8,
we can find 7 and j, where 0 < i < j, €[i] € ¢, and ¢[j] & ¢q. Let ¢ be an infinite
execution, where Start(e') = £[j], and SSeq(e’) is an infinite sequence of atomic steps
for the actions of the program in cyclic order. This execution is well-formed, since

any action can be started in a quiescent configuration, and it contains an infinite

226

box D
var b: boolean

¢ : boolean
action r : b:= false
action s = -b — c:= false

end

Figure 6.1: Program with fairness-dependent unavoidability properties

number of decision steps for each action, so &' € W,;. Let ¢’ =¢(0...(5 — 1));¢.
The composition is defined by construction, and &” € W;. Since £"[i] = €[é], and
e""[j] = €[j], we have £ ¢ stab(q). Thus W; Z stab(q).

(End of proof)

Theorem 6.9 brings out an important property of stability: if an execution violates
stability, there is a finite prefix of the execution that shows the violation. The result
here is a general one: restricting executions to those satisfying a fairness condition
does not widen the class of valid safety properties.

We do not have a result such as Theorem 6.9 for unavoidable properties, and
other progress properties. We show this using the program in Figure 6.1. The
program contains a single box D, so we drop the box component of identifiers, and

write b for D.b. We show the following

Z; ¢ unav(-b) M, ¢ unav(—b) Wi

Z; ¢ unav(-c) M, C unav(—c) W; C unav(-c)

N

unav(—b)

Since the program text contains no statement that assigns true to any variable, we

have the following.

Zi g stab(—|b)

Z; C stab(—c)

227

To show the results for Z;, let C be a configuration satisfying b A c¢. Note

that if a thread for action s is started from C, the thread rejects. Let
e = (C*®, reject(s)™)

Execution € consists of an infinite sequence of rejecting threads for s. All configu-

rations are C. Thus ¢ ¢ unav(—b), and ¢ ¢ unav(—c). This gives us

Z; ¢ unav(—b)

Z; ¢ unav(-c)

For the case of M;, we note that, since action r is total, any thread for it
accepts. Thus any ¢/ € M; contains an infinite number of accept steps. The first of
these is an accept(r), since a thread for s rejects from C. If /(i) is the first accept(r)
step, then —¢ holds in &'[i + 1]. Thus &’ € unav(—¢). If C,C’ € PC,, b holds in C,
and (C, C’) € accept(r), then b A —c holds in C'. Thus (C’,C’) € accept(r), so we

can define
e = (Co(C')®, accept(r)™)
Then € € M;, and € ¢ unav(—b). Thus

M; ¢ unav(-b)

M; C unav(-c)

For the case of W;, we note that W; C unav(—c) follows from W; C M;.
To show W; C unav(—b), assume ¢ € W ;. Since ¢ is weakly fair, it contains a step
for r. If the first such step is €(i), —c holds in all €[j] for i < j. Again, since ¢

is weakly fair, it contains a step for s after step i. Let the first such step be (k).

228

box Semk
var n: integer

b : boolean

action K : n>0 — b= false

method P = n>0Ab—n:=n-1

method V :: n:=n+1
end
box D

var x:integer

action a :: true & Semk.P — z:=z+1; Semk.V
end

Figure 6.2: The semaphore with a kill action
Then —b holds in e[k 4 1]. Thus

W;

N

unav(—b)

W; C wunav(—c)

6.4 Fairness for weak compatibility

We consider the issue of fairness in relation to programs run under the weak compat-
ibility control relation. Consider the program in Figure 6.2. The program contains
a box Semk, which is a variant of box sem. Box Semk has an action K, in addition
to the P and V methods from sem. The box has an additional variable, a boolean
b, which is initially true. Method P is amended so that a call to it accepts, and
grants the semaphore to the source of the call, only if the semaphore is available
(that is, n > 0), and b holds. A call to action K accepts only if the semaphore is
available, and, if it is, b is set to false. Box D contains an integer variable z, and
an action a. A call to a accepts, and increments z, if the semaphore is successfully

granted. Action ¢ releases the semaphore before terminating.

229

From the text of the program, we can see that it has the following stability

property.
Z; C stab(Semk.n <0 V —=Semk.b)

To show this, we note that, if Semk.n < 0 holds at any point in an execution,
then no thread accepts, and the configuration is the same for the remainder of the
execution.

If Semk.n > 0 A —~Semk.b holds in any configuration, then a thread for action
D.a rejects, and a thread for action Semk.K accepts, leaving the configuration
unchanged.

For the progress properties we have

Wi C wunav(Semk.n <0 V —-Semk.b)

M; ¢ unav(Semk.n <0V —Semk.b)

To show the first of these, assume we have ¢ € W,. If Semk.n <0V —Semk.b holds
in Start(e), then we are done. Assume this is not the case, so Semk.n > 0 A Semk.b
holds in Start(e). A thread for D.a started from such a configuration leaves the
configuration unchanged on these values. A thread for Semk.K inverts the value of
Semk.b. Since € € W, there is a thread for Semk.K in €, so there is a configuration
where Semk.n < 0 V =Semk.b holds, and so W; C unav(Semk.n <0 V —Semk.b).
To show the second, let € be an execution where Semk.n > 0 A Semk.b holds
in Start(e), and all steps in e are for D.a. Each of these threads accepts (so e € M;),
and after each step the values of Semk.n and Semk.b are unchanged. Therefore,
e ¢ unav(Semk.n <0 V —=Semk.b), and so M; € unav(Semk.n <0 V —Semk.b).

Consider now the concurrent executions of the program. We first check the

230

actions for weak compatibility. We have

Semk.K ~ D.a

Using Definition 5.54, we get just the following condition to check.

accept(Semk.K) ~ tm(D,Semk.V)

We can see that this holds by checking the code.
Suppose we start from a configuration satisfying Semk.n > 0 A Semk.b. We
can construct the following execution of a thread for Semk.K executing concurrently

with a thread for D.a.

€0 € 5 el

The execution of the thread for D.a is split between exections gy and 7. This
thread accepts. The first contains all the steps up to and including the assignment
to D.n, and the second contains the rest. Execution &' is a compact execution for
Semk.K. This must be a rejecting thread, since Semk.b is false after €y. The final
configuration is quiescent, and Semk.n > 0 A Semk.b holds

We can repeat the above execution infinitely many times to generate a con-
current execution € containing an infinite number of threads for D.a, and an infinite
number for Semk.K. Thus WF(e). Note that ¢ has a quiescent configuration be-
tween each interleaved execution of two threads, and Semk.n > 0 A Semk.b holds
in each of these configurations. As we have seen, there is no weakly fair atomic exe-
cution of the program in which Semk.n > 0 A Semk.b holds in every configuration.
Thus the atomic reduction of ¢ cannot be in W .

If we follow through the reduction process in Chapter 5 for execution e, we see

that each of the rejecting threads for Semk.K is removed during the reject removal

231

step. So the atomic reduction of € is an execution containing only accepting steps
to D.a. Therefore, the reduction is not weakly fair for Semk.K.

Note that, in the reduction in Chapter 5, every accepting thread from the
original execution appears in the atomic reduction. From this, we conclude that
if € is a weakly fair execution that respects weak compatibility, then the atomic
reduction of € may not be weakly fair in any action that has only a finite number
of accepting threads in €.

The reason for this loss of fairness is our choice to discard reject steps during
reduction. The justification given for discarding steps is that they are computation-
ally insignificant. But, as we have seen, the fact that there was a rejected thread
for an action is significant from the standpoint of fairness.

We next show a stronger control relation such that we can guarantee, for
some set A’ € A every thread in a concurrent execution for an action in A’ appears
in the atomic reduction. Using this control relation, if the concurrent execution is

weakly fair in a, and o € A’, then the atomic reduction is weakly fair in «.

6.5 Strong compatibility

We define a control relation, called strong compatibility, that allows us to maintain
weak fairness for a given action during reduction. That is, we define a control relation
~ such that if in any concurrent execution ¢, if « is only executed concurrently
with actions o' such that ¢ ~ o, then we can reduce the execution to an atomic
execution, where every decision step for threads for o, both accepting and rejecting,
appears in the atomic reduction.

To see how to do this, we look at two aspects of the proof of the first reduction
theorem. Consider the step that removes reject steps. This is necessary because
the weak compatibility rule does not allow a tm step to move left over a REJ step.

In the proof of Lemma 5.59, we used the weak compatibility rule to move a tm step

232

left over a sequence of steps from other threads. To apply this rule, we must show
that the sequence of steps contains no REJ steps. Thus, removing the reject steps
is required for the left-mover reduction to succeed.

We can certainly argue that our choice to remove all reject steps is over-
zealous. We could certainly organize reduction so that we remove a reject step only
if we reach a position where a left-moving tm step is to its right. This ensures
that we remove the only those reject steps that absolutely must be removed for the
reduction to go through.

In the proof of the first reduction theorem, we also ignore any part of the
original execution after the final accepting thread. The reduced sequence without
this suffix meets the requirements to be a reduction of the original sequence, so
this does not cause problems with the proof. It would not be hard to extend the
reduction from Chapter 5 to reduce a suffix with no ACC steps (that is, an execution
containing only steps for rejecting threads) to an atomic execution containing the
same sequence of rejecting decision steps as the original. As we have seen, rejecting
threads are two-phase, so the reduction is straightforward.

But even with these improvements, we still cannot preserve weak fairness.
Take the example from Figure 6.2. There cannot be a weakly fair execution that
is a reduction of the particular concurrent execution that we show, because in the
concurrent execution every thread for Semk.K rejects, but a step for this action in
an atomic execution with the same starting configuration always accepts. So the
threads for Semk.K cannot appear in an atomic execution.

We defined weak compatibility to have the minimum conditions that allowed
the reduction theorem to go through. One choice we made was to discard all rejected
threads. To reduce an execution, and not remove rejecting threads, we need a control
relation that allows tm steps to move left over a reject or pm-reject step.

The format of the definition of ~ is similar to that for ~. We first define a

233

commutativity condition on procedures.

Definition 6.10 For p € My, and m € P,

msley & (VD,E
.D,EEB A D#E

(reA = accept(m) ~tm(D,u) A
reject(m) N"tm(D,u)) A

(meM, = pm-accept(F,n) ~tm(D,u) A
pm-reject(E,7) ~ntm(D,u)) A

(mreM; = tm(E,) ~n"tm(D,pu))

)

The definition of strong left commutativity differs from the definition of weak left
commutativity in that it requires commutativity with both accepting and rejecting
atomic steps, not just with accepting steps. If m slc u, then a tm step for pu can
move left over any atomic step for w, accepting or rejecting. We have a couple of

properties of slc that are immediate from this definition.
Theorem 6.11
(V
€ My

c(Vr : mePy : wslep = mwle p) A

Vo : mePy : wsle p =m wle p)

Below we repeat the examples used for weak left commutativity. The first exam-

ples are for the box Sem from Figure 2.3. The first line shows that strong left

234

commutativity is truly a stronger relation than weak left commutativity.

—(Sem.P slc Sem.V)

Sem.V sle Sem.V

For the first of these, the condition that fails is, as may be expected,

pm-reject(Sem.P) ~ tm(Sem.V)

This fails because a call to Sem.P immediately after a call to Sem.V alway accepts,

SO

TwoStep(tm(Sem.V) , pm-reject(Sem.P)) =

Also, a pm-reject(Sem.P) is enabled in a configuration in which Sem.n = 0, and a

tm(Sem. V) is enabled in any configuration, so we have so

TwoStep(pm-reject(Sem.P) , tm(Sem.V)) # (

So for any € € TwoStep(pm-reject(Sem.P) , tm(Sem.V)), we have Swap(e) = L.
The commutativity of Sem.V with itself follows from the corresponding result with
wle, and Theorem 6.11.

For the box Semk in Figure 6.2, we have

—(Semk.P slc Semk.V)

=(Semk.K slc Semk.V)

The arguments for these are similar to the above argument for box Sem.

235

For the Buff example from Figure 1.2, we have

—(Buff.get slc Buff.put)

—=(Buff.put slc Buff.put)

The first of these is shown using a similar argument to that for the first case for
Sem, above. The second follows from the negative result for wlc and Theorem 6.11.

We now define the strong compatibility relation.

Definition 6.12 (Strong compatibility) For a,a’ € A,

ax~d & (¥Vnar
: T € Range(a) A 7' € Range(d')
c(mreMy = 7 sle) A (r' €My = 7 sle 7')

)

If a« =~ o, we say that o is strongly compatible with o'.

For the actions in Figure 2.3, we have

=(D.act =~ E.acq)

=(D.act =~ E.rel)

For the actions in Figure 6.2, we have
=(Semk.K = D.a)

For the actions in Figure 1.3, we have
=(Prod.make = Cons.use)

From these we see that strong compatibility allows less concurrency that weak com-

236

patibility. In particular, for the Semk example, running the program under strong
compatibility excludes the execution in which all threads for Semk.K reject. There
is no magic involved here. We have not found a way to run actions Semk.K and D.a
concurrently while preserving fairness in reduction. We are simply noticing where
the problems arise, and defining sufficient conditions to exclude the problematic
cases.

The reduction rule for =~ allows a tm step to move left over REJ steps in

addition to the steps allowed by the weak compatibility rule.

Theorem 6.13 (Strong compatibility rule)

(V L,L ¢
: L,L' € Lab,, N’ L £ end A L' C tm A
e € TwoStep(L,L') A e resp =~

: £ 5 Swap(e)

6.6 The second reduction theorem

We now have the machinery to show a reduction that preserves weak fairness. First
we define a rather more general control relation, one that is part way between weak
and strong compatibility.

It is often the case that a program has a progress property because of the
presence of a single action. An example is the property unav(—Semk.b) in the
program in Figure 6.2. To show that ¢ € unav(—=Semk.b), it is sufficient to have
WF (e, Semk.K). That is, we do not use WF (e, D.a) in the proof. The argument
given is valid, even if there are no threads for D.a in €.

For the example in Figure 6.1, to show that £ € unav(-b), we show that

there is an accepting thread in e for action D.r, and that there is an accepting

237

thread for action D.s occurring later in e. For the first of these, MF(¢) is enough.
So again, for this example, we do not require WF(e, D.r). We can show that if
e € Z;, and MF(e) and WF(e, D.s), then ¢ € unav(-b).

As we saw above, strong compatibility is a stringent requirement on actions,
so an execution running under this control relation has restricted concurrency. The
above observations suggest that we tailor the control relation to the properties that
we require of the program. That is, we find a subset of actions A’ such that for
any £ € Z; where MF(e), and WF(e, A’), we can show that the ¢ has the desired
properties. The aim is to make the set A’ as small as possible. Having done this,
we can relax the control relation on the actions in A \ A’. We define a control
relation that ensures that every concurrent execution ¢ such that WF(e), there is
an atomic execution & containing the same accept sequence as e, and for every
a € A, ¢ contains every decision step for « that is in e. Then we have MF(¢'),
and WF(¢', A'), as required.

We show the reduction for this more general case. The reduction for execu-
tions respecting &~ as the control relation is a special case, when A’ = A. We first

define a control relation relative to a set of actions.

Definition 6.14 For A’ C A,
UA) = ~ U{(,d) | a ~ o A{a,d}disj(A'NA,)}

The control relation U(A') is & extended with pairs of weakly compatible actions
(a, @) where neither action is a partial action in A’. The following theorem gives

some properties of U(A’) that follow from this definition.

238

Theorem 6.15

<V AI,A”
:A"CA
:A'CA" = UA)DUWA"

The first part of the theorem shows that U(A’) is antimonotonic in it argument.
The other two parts show that the extreme cases of this relation.

Below we give the second reduction theorem. This theorem states that a
concurrent execution that is weakly fair and respects U(A’) can be reduced to an

atomic execution that is minimally fair, and weakly fair in A’.

Theorem 6.16 (Second reduction theorem)

(V e, A’
: £ € Complete(Z) N WF(e) A A" C A A eresp U(A)
(3 2 deZ, : e~e ANMF(E) A WF(,A))
)

Proof
The proof proceeds much as in the proof of the first reduction theorem. We do
not repeat the details here, but we note the relevant changes. We use the following

lemma.

239

Lemma 6.17

v C, A
:CePC N A'CA A Actives(C) N A" N A, A Cresp UA')
: Cresp =

)

The lemma says that in any configuration where a partial action in A’ is active, if
the configuration respects U(A’), then it also respects =.

We state and prove a variant of Lemma 5.58 that says we can reduce the
beginning of € to an execution starting with an accept or reject step, rather than
just the former. The proof of this proceeds much as with Lemma 5.58. After
the rendezvous reduction and the right-mover reduction, we do not use the reject
removal step. Instead we proceed with the left-mover reduction, this time reducing
accepting and rejecting threads at the same time. Whenever there is a tm step to
the right of a REJ step, and the tm step must move left, there are two cases. If the
REJ step is from a thread for an action in A’ then, using Lemma 6.17, we have that
the strong compatibility rule is applicable, so we apply it to move the tm step over
the REJ step; otherwise, the REJ step is from a thread for an action not in A’, so
we move any noncontiguous steps for the rejecting thread left, using the left-mover
rule, and we remove these steps, using the atomic rule, and the reject removal rule.

This gives us the necessary reduction. To show that the reduced exection
has the required fairness properties, we first note that the only time a REJ step
is removed from the execution during the reduction is when a tm step must move
left. In this case, the thread for the REJ is running concurrently with a committed
thread. Also, the only REJ steps removed are reject(a) steps for a ¢ A’. Let
¢’ be the atomic reduction of ¢ produced by the procedure described above. We

have NumA(e) = NumA(e'), so if NumA(e) = oo, then MF(¢’). Otherwise, if

240

NumA(e) < oo, then none of the rejecting threads in ¢ with decision steps appearing
after the last action-end step is removed by the above process. Since WF(¢), there
is at least one thread for each action among these, so MF(¢'). If « € A’, then no
DEC step for « is removed during the reduction. Since WF(¢), there is an infinite
number of them in e, and thus an infinite number in €', giving WF (¢, o).

(End of proof)

6.7 Scheduling TCB programs

The scheduler is the major component of an implementation of a T'CB program. The
scheduler is a control program that decides when to start a thread. The scheduler
has two tasks: to ensure that the execution of the program respects the given control
relation, and to ensure that a threads for different actions are started often enough
to satisfy the given fairness condition.

The control relation, as we have seen, is chosen to ensure that all treads are
terminating, and that all concurrent executions are reducible to atomic executions.
The fairness condition, together with the control relation, determines the fairness
condition satisfied by the reduced executions.

For concurrent execution, we restrict our attention to weak fairness. Mini-
mally fair sequential executions have very weak progress properties. We have seen
that, with a weakly fair concurrent execution, and an appropriate control relation,
we can guarantee a reduction to an atomic execution that is weakly fair for any
subset of the actions. For a minimally fair concurrent execution, we can show only
redution to a minimally fair atomic execution.

The requirements of the control relation and the fairness condition must be
handled in conjunction. To ensure that a thread for an action « is started infinitely
often, we must ensure that infinitely often there is no thread running for an action

o' such that (a, ') is not in the control relation.

241

We assume that the scheduler only interacts with the program to start
threads and end threads. To start a thread for action D.a, the scheduler puts
an entry for a in D’s call queue, according to rule (action-start). There are no
action-start steps in the execution, other than those taken by the scheduler. To
ensure that the control relation is respected, the scheduler keeps a record of the
actions with active threads at each point in the execution. Once a thread is started,
the scheduler has no further influence over its execution. The boxes execute inde-
pendently according to the semantics. When the thread completes, the scheduler
updates its record of active threads. The completion of a thread for action @ may
make it possible to start a thread for an action o, where (a, @') is not in the control
relation.

We can abstract the problem of scheduling as follows. A scheduler is a
program that interacts with an executing T'CB program. The scheduler’s task is to
ensure that every execution respects a given control relation and fairness condition.
The scheduler and the program interact using messages S(a), A(«), and R(«), for
a € A. The scheduler sends S(«) messages to the executing program to start a
thread for action «, and the executing program sends A(«) and R(«) messages to
the scheduler when a thread completes. The first is sent for an accepting thread
and the second for a rejecting thread. The program executes according to the queue
semantics, with the following additions. An action-start step is taken for action «
whenever an S(«) message is received from the scheduler, and when an action-end
or action-reject step is taken for this thread, an A(«a) or R(a) message is sent to
the scheduler.

For the scheduler’s purposes, a thread is active from the time the §(a) mes-
sage is sent, to the time the corresponding A(«) or R(«) step is received from the
executing program. The first of these is sent at a time decided by the scheduler.

When the others are sent is outside of the scheduler’s control. We assume only that

242

for every S(a) message sent, an A(«) or R(«a) is received at some later time, that
is, that every thread terminates.

We defined fairness conditions in terms of the sequence of decision steps.
The scheduler has imprecise information about the exact sequence of decision steps.
We assume only that the decision step for a thread happens at some time between
the time the scheduler sends the start message for the thread, and when it receives
the corresponding reply. But note that we can recast the weak fairness condition in

terms of the scheduler messages as follows.
WF(e,a) £ the number of S(a) messages sent is infinite

This is clearly equivalent to the earlier definition of WF (e, ar), assuming that every
thread terminates, and thus every thread that is started takes a decision step before
it ends.

This problem of scheduling an execution that is weakly fair, and respects a
given control relation, is an instance of a well-known problem in distibuted com-
puting, the problem of the dining philosophers [5]. This problem concerns a set of
philosophers, each of which can be in one of three phases, thinking, hungry, or eating.
We start with all philosophers in the thinking phase. A philosopher becomes hun-
gry when it wishes to eat. There is a control program that decides when a hungry
philosphers can start eating. We assume that every eating philosopher eventually
stops eating, an enters phase thinking. To eat again, the philosopher enters phase
hungry and waits for the control program to let it start eating.

We restrict the behaviour of the control program using an incompatibility
graph. The graph contains a node for each philospher, and an edge between two
nodes if the corresponding philosophers are not allowed to eat at the same time. The
problem is then to write a control program such that ensures that every execution

respects the incompatibility graph, and every hungry philosopher eventually eats.

243

The actions in a TCB program are the philosophers. For this case, the eating
phase corresponds to the execution of a thread for an action. There is no need for a
thinking phase, since when a thread for an action « completes, the system is ready
to start another thread for « as soon as it is able. That is, a philosopher that is not
eating is hungry.

The incompatibility graph is the complement of the control relation. There
is an edge from the node for o to the node for o' if (a, ') is not in the control
relation.

There are several solutions to this problem, some defined in terms a single
control program, some defined in terms of a network of cobperating programs. In

[25], Misra gives an algorithm for a Seuss scheduler that ensures weak fairness.

244

Chapter 7

Conclusions

7.1 Summary of the main results

The three main theorems of this work, the complete execution theorem, and the two
reduction theorems, give a framework for using the Seuss model.

The complete execution theorem gives a set of necessary and sufficient con-
ditions for an execution to be complete. The discussion following the theorem in
Chapter 4 gives guidelines for implementing a T'CB system so that all executions
are complete.

The reduction theorems show that a concurrent execution respecting a given
control relations can be reduced to an atomic execution, where the executions have
the same sequence of accepting actions, and their configuration sequences are closely
related. The first reduction theorem shows a reduction without regard to fairness,
and the second theorem shows that we can trade concurrency for fairness conditions

in the reduction.

245

7.2 Future work

Below we present a number of areas for future research stemming from the present

work.

7.2.1 Reasoning about Seuss programs

We argued in the introduction that reasoning about atomic executions of Seuss
programs is simpler than reasoning directly about concurrent executions. This is the
motivation for the reduction theorems. Given the theorems, the proof of correctness
of a Seuss program is separated into two parts. One is proving properties of atomic
executions of a program, and the other is deriving properties of the concurrent
executions from the atomic execution properties.

We also argued in the introduction that the structure of a Seuss program is
designed to allow the application of several common techniques for building correct
programs — hierarchical reasoning, compositional reasoning, and program refine-
ment. These can all be applied to reasoning about atomic executions.

A logic for atomic executions is under development. The intention is to
design a logic that allows the specification of a procedure to be derived from the
procedure’s code, and the specifications of any methods called in the code.

Before Seuss is a usable system for writing and proving programs, the rela-
tionship between the properties of a concurrent execution and the properties of its
atomic reduction must be clearly established. The discussion in Section 5.5 shows
some ideas for this.

The properties of an atomic execution can be expressed in terms of the
values of program variables. Properties such as “x > y is invariant” have a clear
interpretation for atomic executions. This property is true of an atomic execution
if > y holds in every configuration.

Consider now a concurrent execution of a program whose atomic execution

246

satisfies the above property. We cannot claim that x > y holds in every configura-
tion. From the discussion in Section 5.5, we know only that the predicate holds in
every quiescent configuration. This tells us nothing about an execution that contains
no quiescent configurations.

The example using the probe action suggests that properties of concurrent
executions may be best expressed not only in terms of the values of program vari-
ables, but also in terms of the acceptance or rejection of a thread for a given action.
If we add action « to the program, where « is a probe for z > y, and execute the
program so that a does not execute concurrently with actions that change the value
of z > y, then the property “every thread for action a accepts” is a consequence of

the invariance of x > y in the atomic executions.

7.2.2 Concurrent termination

The problem of identifying a control relation that ensures that all threads in a TCB
program are terminating is nontrivial. One approach is to define “noninterference”
conditions between actions, just as we use commutativity conditions to ensure that

actions do not interfere with each other’s execution for the purposes of reduction.

7.2.3 Negative alternatives

As noted in Section 1.4, we choose not to implement negative alternatives in TCB.
Extending the syntax and semantics of the language to include negative alternatives
is fairly straightforward. The reject removal rule is not valid if a rejecting thread can
change the values of the program variables, so this suggests that we must use strong

compatibility to ensure reduction for actions that may call negative alternatives.

247

Appendix A

Semantics for T'CB languages

A.1 Rendezvous semantics for T'CBtot

(t-action-start-rdv) C.D = (IDLE, 0, 1)
a € TotActs(D)
¥ = ()

0’ = Code(D.a)

C = C|[D ~ (ACCEPT, 0,v',0')]

(total-call-rdv) C.D = (ACCEPT, 0¢, 70, 0o)
0o = E.m(e;%);0
C.E = (IDLE, 01, 1)
v = [e]oy
y = InParam(E.m)
z = OutParam(E.m)
oz 1§ — 7]

o1
n = (m, D)
0] = Code(E.m)

D — (WAIT, 09,70, 00)
C ! /! !
E +— (ACCEPT, 01,71, 6))

248

(local-step)

(proc-term-rdv)

(action-end-rdv)

(total-return-rdv)

C.D = (ACCEPT, 0,7,)
(0,0) — (o',0")

C = C|[D — (ACCEPT,0’,~,6)]

C.D = (ACCEPT, 0,7, 1)
7= Q)
z = OutParam(D.p)
o' =0 | BozVars(D)
v =[z]o

7' = (p,Q,)

C = C[D — (RETURN, ¢’,7')]

C.D = (RETURN, 0, 7)
v = (a)

C = C[D — (IDLE, 0, 1)]

C.D= (WAIT,U(),’)/(),Q())
0y = E.m(e; z); 6,
C.E = (RETURN, 01,71)
Y= (mv D, '17)
oy = 0o [T — 7]

D — (ACCEPT, 0y, Y0, 6})

C=2C
E +— (IDLE, 01, L)

249

A.2 Rendezvous semantics for TCB

(p-action-start-rdv) C.D = (IDLE, 0, 1)
a € PartActs(D)
7 = (a)

C = C|[D — (GUARD, 0,7')]

(t-action-start-rdv) C.D = (IDLE, 0, 1)
a € TotActs(D)
7' = (a)

0’ = Code(D.a)
C = C|[D ~ (ACCEPT, 0,v',0')]

(guard-test-rdv) C.D = (GUARD, 0¢,70)
p = Proc(y)
Alt(D.p,00) = (E.m(&;%),0)
0h = E.m(e;); 0
C.E = (IDLE, 0y, 1)
v = [e]oy

y = InParam(E.m)

z = OutParam(E.m)
ol =0 [z~ L][§ — 7]
’Y{ = (m, D)

C— C D +— (PWAIT, 09, 70, 0)))
E —

(GUARD, 01, 7))

(total-call-rdv) C.D = (ACCEPT, 09,70, 00)
0o = E.m(e;%);0
C.E = (IDLE, 01, 1)

v = [€]oo

y = InParam(E.m)

z = OutParam(E.m)
ol =07 L][j > 7]
"Yi = (mv D)

07 = Code(E.m)

D +— (WAIT, 09,70, 0)

C=C
E +— (ACCEPT, 01,7,6}))

250

(guard-accept) C.D = (GUARD, 7,7)

» = Proc(s)
Alt(D.p,o) = (L,

C — C[D ~ (ACCEPT,0,7,6")]

(guard-reject) C.D = (GUARD, 0,7)
p

I BoxVars(D)
C = C|[D ~ (REJECT,d’,v)]

(local-step) C.D = (ACCEPT, 0,7, 0)
(0,0) — (o', 0")

C = C|[D — (ACCEPT,0’,7,6')]

(proc-term-rdv) C.D = (ACCEPT, 0,7, 1)
y=(p,Q)
z = OutParam(D.p)
o' = o | BoxVars(D)
v =[z]o
7' =(p, Q)
C = C|[D — (RETURN,d¢’,v)]

251

(action-end-rdv)

(action-reject-rdv)

(test-accept-rdv)

(test-reject-rdv)

(total-return-rdv)

C.D = (RETURN, 0, 7)
v = (a)

C = C[D — (IDLE, 0, 1)]

C.D = (REJECT, 0,7)
v =(a

C = C|[D — (IDLE, 0, 1)]

C.D = (PWAIT, 0g, Yo, o)
0o = E.m(e; 2); 0}

C.E = (RETURN, 01, 71)
Y1 = (m,D,?)

oy = oo i — V]

D ~ (ACCEPT, 0,0, 6;)

C—=2C
E — (IDLE, 01, 1)

C.D= (PWAIT,O’[),"Y(),O[))
0o = E.m(e;%);0

C.E = (REJECT, 01,71)
7= (mv D)
o, = oo | BozVars(D)

D — (REJECT, 0{),70)

C=2C
E +— (IDLE, 01, L)

C.D= (WAIT,O'(),’)’[),H())
0y = E.m(e; z);0,
C.E = (RETURN, 01, 71)
1= (mv D, '17)
oy, = 0q[Z — 7]

D — (ACCEPT, 0,70, 6;)

C=2C
E — (IDLE, 01, L)

252

A.3 Queue semantics for T'CB

(action-start) C.D = (¢,0,v,0)
a € Actions(D)
Y =v<(a)

C—= C[D ~ (¢,0,7,0)]

(guard-test) C.D = (GUARD, 09, Vo)

p = Proc(y)
Alt(D.p,00) = (E.m(&;%),0)
O = E.m(2;%); 0
C.E = (¢1,01,71,61)
v = [[é]]ao
’Yi :qu(maDa/lN})

D +— (PWAIT, 09, 70, 0;)

C=2C
E— (¢1,01a’)’1791)

(total-call) C.D = (ACCEPT, 0y, Y0, bp)
0o = E.m(;%); 0
C.E = (¢1,01,71,01)
v = [e]oo
71 :714(maD77~))

D — (WAIT 00,70 90)
C=cC » 90,70,
E - (¢1701771301)

253

(p-action-init) C.D = (IDLE, 0,7)
p = Proc(y)
p € PartActs(D)
C = C[D ~ (GUARD,0,7)]

(p-method-init) C.D = (IDLE, 0,7)
v=(p,Q,0)>%
p € PartMeths(D)
y = InParam(D.p)
z = OutParam(D.p)
o' =clz— L[y — 7]
v =(p,Q)>%
C = C|[D ~— (GUARD,d¢’,v")]

(t-action-init) C.D = (IDLE, 0,)
p = Proc(y)
p € TotActs(D)
0’ = Code(D.p)
C = C|[D ~ (ACCEPT, 0,7, 0")]

(t-method-init) C.D = (IDLE, 0,7)
v=(p, Q,0)>%
p € TotMeths(D)
y = InParam(D.p)
z = OutParam(D.p)
o =0oz— L]y — 7]
7 =(p,Q)>Y
0' = Code(D.p)

C = C|[D ~ (ACcEPT,0’,v',0")]

254

(guard-accept) C.D = (GUARD, 0,7)

p = Proc(v)
Alt(D.p,o) = (L,0")

C — C[D ~ (ACCEPT,0,7,0")]

(guard-reject) C.D = (GUARD, 0,7)
p

P
Alt(D.p,o) = L
o=o

I BoxVars(D)
C = C|[D — (REJECT,d’,7)]

(local-step) C.D = (ACCEPT, 0,7, 0)
(0,0) — (0',0")

C = C|[D ~ (ACCEPT,0’,7,6)]

(proc-term) C.D = (ACCEPT, 0,7, 1)
v=(p,Q)>%
z = OutParam(D.p)
o' =0 | BozVars(D)
v =[z]o
V=0 Q, 0%
C = C[D — (RETURN, ¢’,v')]

255

(action-end)

(action-reject)

(test-accept)

(test-reject)

(total-return)

C.D = (RETURN, 0, 7)
y=(a)>9

C = C|[D — (IDLE, 0,7")]

C.D = (REJECT, 0,7)
v =(a)>y

(
C = C|[D — (IDLE, 0,7")]

C.D = (PWAIT, 09,70, o)
6o = E.m(e;2); 0,

C.E = (RETURN,01,71)
1= (vav’T})D%

oy = oo [T — V]

D — (ACCEPT, 0y, Y0, 6})

C=~C
E (IDLE7 01771)

C.D = (PWAIT,O’(),’}’(),O[))
0o = E.m(e;%);0

C.E = (REJECT, 01,71)
1= (mv D) > 7{
o, = op | BoxVars(D)

C—c|P~ (REJECT, (), Y0)
E — (IDLE, 01,7])

C.D= (WAIT,O'[),’)’[),H())
0y = E.m(e; z); 0,
C.E = (RETURN, 01,71)
"= (vav®)>7i

oy =00 % — 7]

D — (ACCEPT, 0y, 70, 6;)

C=—C
E — (IDLE,01,7})

256

Appendix B

Additional proofs

B.1 Proofs for Chapter 3

B.1.1 Proof of Theorem 3.33

We show
(vC,C' : CePC N C=C : CePC)

Assume that C = C’ and that C is well-formed. We show that C’ is locally

well-formed, call correct, and well-founded.

C' is locally well-formed
By assumption, C is locally well-formed. From Theorem 3.32 all nonlocus boxes
have the same configuration in C’ as they do in C, and they are thus well-formed.
For the loci of the rule, we check that each of the conditions of Definition 3.5 is
satisfied by the locus box configuration(s) in C'.

For Condition 1, we note that, for this condition to be violated, the step
from C to C’ must leave a locus D with a phase other than IDLE, and an empty call

queue. Since C.D is well-formed before the step, the step must involve a transition

257

from a nonempty queue to an empty queue, or a transition from IDLE to some other

phase. The only rules that can change a nonempty call queue to an empty one are

(action-end)
(action-reject)
(test-accept)
(test-reject)

(total-return)

In each of these rules, the source is left in phase IDLE. The only rules that move a

box out of the idle phase are

(p-action-init)
(p-method-init)
(t-action-init)

(t-method-init)

In each of these, the call queue must be nonempty before the rule, and it is not
changed by the rule.

For Condition 2, we note that every new box configuration introduced by the
rules obeys this condition.

For Condition 3, we note that the only rules that leave a box in phase PWAIT

or WAIT are

(total-call)

(guard-test)

and that both of these rules leave the call with a method call at the head of its code.

258

For Condition 4, we let

P = {GUARD,PWAIT, REJECT}

We note that the rules that leave a box’s phase in P are

(p-proc-init)
(guard-reject)
(guard-test)

(test-reject)

We note that none of these changes the procedure in the first entry in the call queue.
Each of the rules, other than the first, requires that its locus’s phase be in P before
the step, and the first rule is only applicable if the procedure in the first entry in
the call queue is partial.

For Condition 5, we note that the rules that leave a box in phase RETURN or

REJECT are

(proc-term)
(guard-reject)

(test-reject)

and that these set the domain of the local state for the box to the required value.

The rules that leave a box in phase IDLE are

(action-end)
(action-reject)
(test-accept)
(test-reject)

(total-return)

259

In each of these rules, the agent is in phase RETURN or IDLE prior to the step.

For Condition 6, We note that the only changes to the domain of the local
state are to extend it with parameters, or to reset it to the box variables.

For Condition 7, we note that the program is assumed to be well-formed.
In particular, no calls to actions appear in the code for a box, and no box calls a
method on itself. So if an entry is put on a call queue with a source other than |,
the call is for an action on the agent. Rule (action-start) is the only rule that can
put a call for an action in a call queue, and this rule correctly gives the source as L.

For Condition 8, we note that no rule increases the number of call queue
entries by more than one. So if box C.D.y has more than one entry for box E,
there is an entry for £ in C.D.y. Since C is call correct, this means that C.E.¢ €
{PWAIT, WAIT}. There is no rule that allows box E to place an entry in a call queue
when it is one of these phases, so there can be at most one entry for £ in D’s call
queue.

For Condition 9, We note that an entry in the call queue is not changed until
it becomes the current procedure call, so we need only show that every entry obeys
this condition when it is added to the queue. For actions, rule (action-start) sets
the parameter values to 1, which satisfies the condition. For a method call, the rules
(total-call), and (guard-test), evaluate the parameter values from the expressions
in the method call statement, and by the type rules, these are of the correct type.

For Condition 10, we note that the only rule that put a box in phase RETURN
is (proc-term), and this rule sets the parameter values to a list that matches the

type of the output parameters.

C' is call correct
We note that no rule changes the procedure name or source component of any call

queue entry, so we confine our attention to the rules that add and remove call queue

260

entries for methods. The rules that add method call entries are

(total-call)

(guard-test)

For both of these, the source is not in a waiting phase in C, but it is in C’, and there
is a new entry in the agent’s call queue in C'. We note that this is the correct type
of procedure, since (total-call) is applicable only when a method call statement is
encountered in the body code of the procedure, and, by the type rules, this must be
a total method, and (guard-test) is applicable only when the alternative function

returns a test, and, again by the type rules, this must be a partial method.

C’ is well-founded

We note from the rules that dom(K.C') is either the same as dom(K.C), or it has
one member more or less, and that if D € dom(K.C'), then D ¢ dom(K.C), or
K.C'.D = K.C.D. That is, no rule changes the “is executing for” relation other
than to add or remove an entry. Thus we only need check rules that change the
domain of this function.

From the above, we have that C’ is locally well-formed and call correct, so
Theorem 3.15 gives us that a step that removes an entry in K.C, removes an entry
for a D such that D ¢ rng(K.C). Thus, if dom(K.C’) has one fewer entry than
dom(K.C), the entry removed is at the beginning of a call stack, and thus all values
used to reach L for all the boxes in dom(K.C') are still present.

The rules that add a member to dom(K.C) are

(p-proc-init)

(t-action-init)

(t-method-init)

261

Suppose one of these rules is applied with locus D. We have

true

{ Theorem 3.15 }
KC.D=1 Vv K.C'.D € dom(K.C')

{ C'.D is well-formed, so K.C'.D # D }
KC'.D=1 V K.C'.D € dom(K.C)

{ C is well-founded }
KCD=1vVv 3k : k>0 : (K.C*(K.C'".D)= 1)
= { K.C.E=K.C'.E for E € dom(K.C) }
KC.D=1vVv 3k : k>0 : (K.C)*.(K.C'.D)= 1)

{ Definition 3.17, twice }
(KCY)Y'.D=1 v 3k : k>0 : (K.C)*'.D=1)

{ one-point rule; change range }
Bk : k=1: (KCY.D=1)v
3k : k>1: (K.C)Y'.D=1)

{ combine ranges }

Bk : k>0 : (KCY.D=1)

Thus C' is well-founded.

B.1.2 Proof of Theorem 3.51

We use the following lemmas.

Lemma B.1

v C,L,L

:CePC NLL €lab N L#L A L, L' enabled in C
: CLoci(L) disj CLoci (L")

)

262

Proof

Assume we have C € PC, and L, L’ € Lab, where L # L', and L , L’ are enabled in
C. We have

D € CLoci(L)

{ Definition 3.45 }

L € Cond(D)

= { L, L' enabled in C, L # L, Theorem 3.47 }
L' ¢ Cond(D)

= { Definition 3.45 }

D ¢ CLoci(L')

Thus CLoci(L) disj CLoci(L'), as required.
(End of proof)

Lemma B.2

(Vv L,C,C'

:LeLab N C,Ce€PC N (ND : De€CLoci(L) : CDCC.D)
: L is enabled in C = L is enabled in C'

)

Proof
Suppose L € Lab, C € PC. From Theorem 3.46, only the configurations of its
conditional loci are relevant for determining if L is enabled in C. Suppose D €

CLoci(L), and let C.D = (¢,0,v,0), and v C +'. We have

L is enabled in C
= { Theorem 3.50 }
-(C.D.¢g =IDLE A C.D.y= 1)
{ C.D € BC(D), Definition 3.5 }

263

C.Dvy#1
= {vCY'}
first(y) = first(v’)

Thus, if L is enabled in C, then first(y) = first(y’). We observe from Table 3.3
that in each case where + is used in the condition, first(vy) is the only element of 7
that is used, either directly, or in Proc(vy), or via functions K.C and W.C, or their

subfunctions. Thus, if L is enabled in C, and
C' = C[Dw (¢,0,9,0)]

then L is enabled in C’. If L has a single conditional locus we are done. If not, we

apply this argument twice, once for each conditional locus.

(End of proof)

Lemma B.3

(VL,C,C',D : LeLab A C{LYC' A D€ ULoci(L) : C.DCC'.D)

Proof

From the rules, we see that in each of the cases where D is an unconditional locus
for step L, the only change to D’s configuration after the step is that an entry has
been added to the end of its call queue, so the value of the call queue before the

step is a prefix of its value after the step.

(End of proof)

Lemma B.4

(VL,C,C',D : Lelab A C(L)YC' A D¢ CLoci(L) : C.DCC'.D)

Proof

264

Assume L € Lab, and C(L)C'. We have

D ¢ CLoci(L)
{ Definition 3.45 }

D ¢ Loci(L) vV D € ULoci(L)

= { C(L)C’, Theorem 3.32, Lemma B.3 }
C.hD=C'Dv CDLCC.D

= { C is reflexive }

C.DCC.D
(End of proof)

For the proof of Theorem 3.51, we show

v L,C,C', D
:LeLab N CL)YC' A DeB A Enabled(C,D) ¢ {L,L}
: Enabled(C, D) = Enabled(C’, D)
)

Assume we have L € Lab, C and C' such that C(L)C’, and D € B, and let
L' = Enabled(C, D), where L' ¢ {1, L}. Note that the result will follow if we can
show that L’ is enabled in C’, since at most one conditional step for D is enabled
in C'.
D € CLoci(L')
= {L#L' L and L' enabled in C, Lemma B.1 }
D ¢ CLoci(L)
= { Lemma B.4 }
C.DCC.D

Thus we have (Y D : D € CLoci(L’) : C.D C C.D). Since L' is enabled in C,

Lemma B.2 implies L’ is enabled in C’, as required.

265

B.1.3 Proof of Theorem 3.14

We show

(VvC,D,E
: C € ProgConfig A C is locally well-formed and call correct A
D,E € dom(K.C) A K.C.D =K.C.E
:KCD=1V D=F
)

Assume C € ProgConfig is locally well-formed and call correct, D, E € dom(K.C),
and K.C.D = K.C.E. We have

K.CD+1
= { Let D' = Source(C.D.y); K.C.D = K.C.E }
Source(C.D.y) = D" A Source(C.E.y) = D'
= { Definition 2.23 }
(I3m = (m,DyeC.Dy) A (Im' = (m',D')e C.Ey)
= { Theorem 3.12, D" € B }
D=F

Thus

KCD+#1 = D=E

which is equivalent to

KCD=1 v D=F

as required.

266

B.1.4 Proof of Theorem 3.15

We use the following lemmas.

Lemma B.5

(Vv C,D
: C € ProgConfig N D € dom(K.C)
: K.C.D = Source(C.D.y)

)

Proof
Immediate from the definitions.

(End of proof)

Lemma B.6

(Vv C,D
: C € ProgConfig N C is locally well-formed N D € B
: D € dom(K.C) # C.D.¢p =1IDLE

)

Proof
Assume C € ProgConfig, C is locally well-formed, and D € B.

C.D.¢ # IDLE
{ C is locally well-formed, so C.D is well-formed }
C.D.¢g#DLE AN C.D.y# L
{ Definitions 2.23, 2.19 3.5, and Assumption 2.18 }
C.D.¢ #IDLE A
(Proc(C.D.y) € PartMeths(D) V Proc(C.D.y) € TotMeths(D))

267

{ distribute }
(C.D.¢ # IDLE A Proc(C.D.y) € PartMeths(D)) V
(C.D.¢ #IDLE A Proc(C.D.y) € TotMeths(D))
{ Definition 3.13 }
D € dom(Kp.C) V D € dom(Kt.C)
{ Definition 3.13 }
D € dom(K.C)

(End of proof)

For the proof of Theorem 3.15, we show

(Vv C,D
: C € ProgConfig A C is locally well-formed and call correct A
D € dom(K.C)
: K.C.D=1 Vv K.C.D € dom(K.C)

)

Assume C € ProgConfig is locally well-formed and call correct, and D € dom(K.C).
As with Theorem 3.14, we show

KCD#1 = K.C.D€dom(K.C)

Assume K.C.D # 1, and let K.C.D = E, for some E € B. We have

true

{ K.C.D = E, Lemma B.5 }
E = Source(C.D.vy)

= { Definition 2.23 }
(Im = (m,E) e C.D.y)
= { C is call correct, F € B }

268

C.E.¢ € {PWAIT, WAIT}
= { C is locally well-formed, Lemma B.6 }
E € dom(K.C)

B.1.5 Proof of Theorem 3.16

We use the following lemmas.

Lemma B.7

(VC : C € ProgConfig : dom(Kp.C)Ndom(Kt.C) =10)

Proof
Immediate from the definitions, since PartMeths(D) N TotMeths(D) = ().
(End of proof)

Lemma B.8

(Vv C,D
: C € ProgConfig N C is locally well-formed and call correct
ANDeB
: (D € rng(Kp.C) = C.D.¢p = PWAIT) A
(D € rng(Kt.C) = C.D.$ = WAIT)

Proof
Assume C € ProgConfig is locally well-formed and call correct, and D € B. We
prove the two conjuncts of the term separately. For the first part, assume D =

Kp.C.E, for some E € B.

true

269

{ Kp.C.E = D, Definition 3.13 }
(3 m,v
: m € PartMeths(E) AN v € Val*
: first(C.E.y) = (m, D,)

)
= { Definition 3.1 }

(3m : m € PartMeths(E) : (m,D) € C.E.y)
= { C is call correct }

C.D.¢ = PWAIT

The proof for the second conjunct is similar.

(End of proof)

For the proof of Theorem 3.16, we show

(v C
: C € ProgConfig A C is locally well-formed and call correct
: rng(Kp.C) disj dom(Kt.C)

Assume C € ProgConfig is locally well-formed and call correct. Since

dom(Kt.C) C B

it is sufficient to show that, for any D € B,

D € rng(Kp.C) = D ¢ dom(Kt.C)

Assume D € B. We have

D € rng(Kp.C)
= { Lemma B.8 }

270

C.D.¢ = PWAIT
= { C.D is well-formed }
C.D.¢p = PWAIT A Proc(C.D.y) € Partials(D)

= { Definition 3.13 }
D € dom(Kp.C)
= { Lemma B.7 }

D ¢ dom(Kt.C)

B.2 Proofs for Chapter 4

B.2.1 Proof of Theorem 4.7

We show

(Ve
: € € Complete(Z)
: (VY D,i
:DeB A0<i<|e
:(3j 5 i<j<lel ¢ eljl.D.g = i)

)

Assume ¢ € Complete(Z), D € B, and 0 < ¢ < |¢|. If €[i].D.¢ = IDLE, then we can
choose j = i, and we are done. Assume ¢[i].D.¢ # IDLE. If E is the root box for
the current call in D in €[i], then F is currently executing an action call. Since ¢
is complete, this action call completes at some point. Before it does so, the current
procedure call in D must complete. If the last step for this procedure call is step k,

then e[k + 1].D.¢ = IDLE. Choose j =k + 1.

271

B.2.2 Proof of Theorem 4.8

We use the following lemmas.

Lemma B.9

(VC : CePC : Actives(C)=0 = qt(C))

Proof
Assume C € PC. If ¢t(C), then all call queues are empty, so there are no active
action calls. If there are no active action calls, since C is well-founded, there can be

no active method calls. Thus all call queues are empty, and ¢¢(C).

(End of proof)
Definition B.10 For D € B,

AD) 2 {a|a€A A Box(a)=D}
Lemma B.11

(V e, D

e €Z N gl <oo A qt(Start(e)) N DeB

: NumStarts(e, D) = NumEnds(e, D) = Actives(Final(c)) disj A(D)
)

Proof

Assume € € Z, |e| < oo, qt(Start(e)), and D € B. Each action-start(D) step
in £ adds a call for « € A(D) to D’s call queue, and each action-end(D) or
action-reject(D) step removes a call for an & € A(D) from D’s call queue. No other
steps add call for actions to D’s call queue. Thus NumStarts(e, D) — NumEnds (e, D)

is the number of action calls in D’s call queue at the end of . The result follows

272

from this.

(End of proof)

For the proof of Theorem 4.8, we show

(Ve : e€Z N |e] <oo : Complete(c) = qt(Start(e)) A qt(Final(e)))

Assume ¢ € Z, and |e| < co. We have

Complete(e)
{ Definition 4.6 }
Proper(e) A (YD : D€ B : NumStarts(e, D) = NumEnds(e, D))
{ Proper(e) = qt(Start(e)), |e| < oo, Lemma B.11 }
Proper(e) AN (VD : D eB : Actives(Final(e)) disj A(D))
{ Property of disj }
Proper(e) A Actives(Final(¢)) disj (UD : DeB : A(D))
{ Definition B.10 }
Proper(e) A Actives(Final(e)) disj A
{ Actives(Final(¢)) C A }
Proper(e) A Actives(Final(e)) = ()
{ Lemma B.9 }
Proper(e) A qt(Final(g))
{ Definition 4.4, |e| < infty }
qt(Start(e)) A qt(Final(e)) A
(VD : DeB : Enabled(Final(e),D)= 1)
{ Second conjunct implies third, by Theorem 3.50 }
qt(Start(e)) A qt(Final(e))

273

B.2.3 Proof of Theorem 4.12

We use the following lemmas.
Lemma B.12
(v C,C',D,E

. C,C'ePC AN C=C'" A W.C.D=E A E € dom(W.C)
. W.C'.D=E

Proof
Assume C,C’' € PC, and L € Lab, such that C(L)C'. Also assume W.C.D = E,
and F € dom(W.C). We have

true

{ assumption }
D,E € dom(W.C)
= { Definition 3.27 }
C.D.¢$,C.E.¢p € {PWAIT, WAIT}

assumption
p

W.C.D=E A C.D.¢,C.E.¢p € {PWAIT, WAIT}

= { Theorem 3.50, Definition 3.48 }
Enabled(C,D) = L

= { L enabled in C }
D ¢ CLoci(L)

= { C(L)C’, Lemma B.4 }
C.DCC'D

= { Definition 3.6 }

C.D.¢g=C'.D.p A C.D.y=C'Dr

274

{ Definition 3.27 }
W.C'.D = W.C.D

{W.C.D=E}
W.C'.D=E

(End of proof)

Lemma B.13

(V e, T,k

Proof

ce€Z NTeBT AN0<LEk<|e| A T isa knotin elk]

(Vi : k<i<l|e| : T is aknotin e[i])

Assume ¢ € Z, T € B*, and T is a knot in [k]. We prove the result by induction

on 7. For the basis, ¢ = k, we have the result by assumption. For the induction step,

we have, for k <i < |¢|,

T is a knot in e[7]
{ Definition 4.11 }
(Vn : 0<n<|T| : Weli]lTn]l=Tnho1])
{ definition of domain }
(Vn
: 0 <n<|T|
: Weli]. Tn] =Tn® 1] A T[n] € dom(W .[i])
)
{Vover A}
(Vn : 0<n<|T| : Weli]lTh]=Thal]) A
(Vn : 0<n<|T| : Tin] € dom(W .c[i]))

275

= { range is not empty }
(V n
:0<n<|T|
: Welil. Tn)=Tna1] A
(Vn : 0<n<|T| : T[n] € dom(W.c[i]))

= { instantiate }
(Vn
:0<n<|T|
s WelilTn]=Tne 1] A Tn® 1] € dom(W .€[i])
)
= { Lemma B.12 }
(Vn : 0<n<|T| : Weli+1].T[n]|=Tnhel])
{ Definition 4.1 }

T is a knot in e[i + 1]
(End of proof)

Lemma B.14

(V e,k,D,E
ce€Z NO<L<Ek<|e|] AN DeB AN Welk].D=FE A
(Vi : k<i<|e|] : E € dom(W.eg[i]))
C (Vi k<i<|e| : Weli]lD=FE)
)

Proof
Assume e € Z,0< k <|e|, D € B, W.[k].D = E and

(Vi : kE<i<l|e| : E € dom(W.g[i]))

276

We have, for k < i < |e|,

Weli+1.D=E
= { Lemma B.12 }
W.eli].D=E A E € dom(W.cli])

{ E € dom(W .c[i]) by assumption }
W.eli].D = E

Thus we have W.e[k].D = E, and W.[i]D = E = We[i+1].D =E, for k <i <
le|, so the result follows by induction.

(End of proof)

Lemma B.15

(V e,D,k,n
ce€Z NDeB A 0O<LEk<|e| A
0<n A (Welk]))".D is in a knot in c[k]
(Vi E<i<lel : (Weli])".D is in a knot in €[i])
)

Proof
Assume € € Z, and D € B. We prove the result by induction on n.

Basis: n =0

For 0 < k < |e|, we have

(W .g[i])°.D is in a knot in e[k]
{ definition }

D is in a knot in £[k]
= { Lemma B.13 }

(Vi : k<i<le| : Disina knot in €[i])

277

{ definition }
(Vi : k<i<le| : (W.[i])’.D is in a knot in £[i])

Induction step

Assume as the induction hypothesis, for 0 < n,

(V D,k
:DeB AN 0<Ek<le] A (W.lk])™.D is in a knot in c[k]
(Vi E<i<lel : (W.el[i])".D is in a knot in €[])

)
Suppose W.elk].D = E, for 0 < k < |¢|. We have

(W .g[k])"*1.D is in a knot in [k]
= { definition }
(W.e[k])™.E is in a knot in e[k]
= { induction hypothesis }
(Vi : k<i<le| : (W.i])".E is in a knot in €[])

{ definition of domain }
(Vi
sk <i<|e
: (W.eli])™.E is in a knot in £[i] A E € dom(W .e[i])
)
= {VYover A}
(Vi : k<i<le| : (W.[i])".E is in a knot in €[i]) A
(Vi : k<i<le| : E € dom(W.egl[i]))
= { Lemma B.14, W.[k].D = E }
(Vi : k<i<l|e| : (W.[i])".E is in a knot in €[i]) A
(Vi : k<i<l|e| : Weli].D=E)

278

= {Vover A}
(Vi
c k<< e

: Weli.D=E A (W.[i])".E is in a knot in &[]

= { definition }

(Vi @ k<i<legl : (W.e[i])"'.D is in a knot in e[i])
(End of proof)

For the proof of Theorem 4.12, we show

(V e, k,D

.e€Z AO<k<l|e| A DeB A di([k], D)
(Vi k<i<le| : dl(efi], D))

)

Assume e € 7, 0 < k < ||, and D € B. We have

di(e[k], D)

{ Definition 4.11 }
(I3n : 0<n : (W.[k])".D is in a knot in €[k])
= { Lemma B.15 }

(Fn

:0<n
(Vi E<i<l|el : (Welk])".D is in a knot in €[i])
)

= { interchange quantifications }

279

(V1

sk <i<|e
:(3n
)

0<n :

{ Definition 4.11 }
(Vi :

B.2.4 Proof of Theorem 4.14

We use the following lemmas.

Lemma B.16

vV C,D

(W.elk])™.D is in a knot in €[7])

k<i<lel : di(e[i}, D))

: CePC A DeB A di(C,D)
. D € dom(W.C.D) A di(C, W.C.D)

)

Proof

Immediate from Definitions 3.27 and 4.11.

(End of proof)

Lemma B.17
(Vv C,D
:CePC N DeEB
:di(C,D) = (Y¥n : 0<n :
)

Proof

(W.C)".D is defined)

280

Assume C € PC, and D € B. We prove the equivalence by proving the implication

in both directions.

Case =

We have

true

{ Lemma B.16 }

di(C,D) = D e dom(W.C) A dI(C, W.C.D)
{ definition }

di(C,D) = W.C.D is defined A di(C, W.C.D)

Now we have, for any deadlocked D,

true
= { above }
(Vn
:0<n A dI(C,(W.C)".D)
: (W.C)"*L.D is defined A dI(C,(W.C)"*1.D)
)
= { V antimonotonic in the range }
(Vn
:0<n A (W.C)".D is defined A dI(C,(W.C)".D)
: (W.C)""'.D is defined A dI(C,(W.C)"*!.D)
)
= { Definition 3.17, assumption }
(W.C)°.D is defined A dI(C,(W.C)°.D) A

281

(Vn
:0<n A (W.C)".D is defined A dI(C,(W.C)".D)
: (W.C)"L.D is defined A dI(C,(W.C)"*1.D)

)
= { induction }
(Vn : 0<n : (W.C)".D is defined A dI(C,(W.C)".D))
= { weaken term }

(Vn : 0<n : (W.C)".D is defined)

Case «:

Assume

(Vn : 0<n : (W.C)".D is defined)

Consider the infinite sequence U € BT,
U = (n:0<n: (W.C)".D)

Every element in this sequence is defined, by assumption. Since the sequence is
infinite, and B is finite, the sequence contains repeated values. We choose s and ¢
such that s < ¢, and U[s] = U[t]. Then the sequence Uls...t — 1] is a knot in C,
and (W.C)*.D € U[s...t —1]. Thus dI(C, D).

(End of proof)

Lemma B.18

(VC,D : CEPC ADEB : —(Dcrmg(W.C) A ¢t(C.D)))

Proof

282

Assume C € PC, and D € B. We show

D ermg(W.C) = -qt(C.D)

which is equivalent to the term above.

D € rng(W.C)

= { definition }

(3E = W.CE=D)
{ Definition 3.27 }

(3E :: C.E.¢ € {PWAIT, WAIT} A Agent(C.E.0) =D)
{ Definition 3.20 }

(FE,m = (m,E)€e C.D.y)

= { list property }
C.D~vy#1

{ Definition 3.3 }
—¢qt(C.D)

(End of proof)

For the proof of Theorem 4.14, we show

(v C

: CePC

: (VD :: Enabled(C,D)=1) = (VD = qt(C.D) Vv dI(C,D))
)

Assume C € PC. We prove the equivalence as two implications.

Case =

We have

283

(B.1)

Enabled(C,D) = L
= { Theorem 3.50, Definition 3.48 }
qt(C.D) vV C.D.$ € {PWAIT, WAIT}
= { Definition 3.27 }
qt(C.D) V D € dom(W.C)

{ predicate calculus }
—¢qt(C.D) = D € dom(W.C)
= { Lemma B.18 }
D ermg(W.C) = D e dom(W.C)

From the first and penultimate lines, we get

Enabled(C,D) = L A =¢t(C.D) = D € dom(W.C)

and from the first and last lines, we get

Enabled(C,D)=1 = (E €rng(W.C) = E € dom(W.C))

We now show, for any D

(VE : E€B : Enabled(C,E)=1)

= qt(C.D.) V dI(C,D)

by showing the following, which is equivalent.

-qt(C.D.) AN WVE : E€B : Enabled(C,E)= 1)

= dI(C,D)

We have

—qt(C.D.) AN (VE :: Enabled(C,E)= 1)

284

{ instantiate }
—qt(C.D.) N Enabled(C,D) =1 A
(VE : FEnabled(C,E)= 1)
= { above results }
D edom(W.C) A (VE : E€ermg(W.C) : E € dom(W.C))
= { Definition 3.17 }
(Vn : 0<n : (W.C)".D is defined)
{ Lemma B.17 }
di(C, D)

Case «:

We show the following, stronger, result.

(VD : qt(C.D)VdI(C,D) = Enabled(C,D)= L)

Assume D € B. We have

qt(C.D) Vv dI(C,D)
{ Lemma B.16 }
qt(C.D) Vv (dI(C,D) A di(C, W.C.D))
= { definition }
qt(C.D) v
(C.D.¢ € {PwAIT, WAIT} A C.(W.C.D).¢p € {PWAIT, WAIT})
= { Theorem 3.50, Definition 3.48 }
Enabled(C,D) = L

285

B.3 Proofs for Chapter 5

B.3.1 Proof of Theorem 5.56

We show

(V e, e, T
ce, e €Zm N eresp T A
e = ¢’ by Theorem 5.46, 5.47, 5.48, 5.49, 5.50, or 5.55
: ¢’ resp T

Assume ¢,¢’ € Z,, € resp T, and £ = ¢ by Theorem 5.46, 5.47, 5.48, 5.49, 5.50, or
5.55. A thread is active for an action from the first step taken for the thread, which

is one of

accept

reject
action-start
p-action-start-rdv

t-action-start-rdv

to the last step taken for the thread, which is one of

accept
reject
action-end

action-reject

286

Note that accept and reject steps are both the first and last for their threads. Two
threads are active at the same time if one has its first step between the first and
last step for the other. A transformation that gives —(¢’ resp T) involves moving
a start step left over an end step. Note that the start steps are all right-movers or
decision steps, and that the end steps are all left-movers or decision steps. Thus this
step involves moving a right-mover or decision step left over a left-mover or decision
step.

Theorem 5.46 removes a thread from the execution, so does not introduce
a step that violates T. Theorems 5.47, and 5.48 do not change the relative order
of the first and last steps for any threads. If Theorems 5.49, 5.50, or 5.55 are used
to show e = ¢/, then either a right-mover is moved right, or a left-mover is moved
left. None of the theorems allows a right-mover or a decision step to move left over

a left-mover or a decision step. Thus ¢’ resp T.

287

Bibliography

[1]

Alfred V Aho, John E Hopcroft, and Jeffrey D Ullman. Data Structures and
Algorithms. Addison-Wesley, 1983.

R J R Back. A method for refining atomicity in parallel algorithms. In Eddy
Odijk, Martin Rem, and Jean-Claude Syre, editors, PARLFE ’89: Parallel Ar-
chitecture and Languages Europe, vol II: Parallel Languages, number 366 in

Lecture Notes in Computer Science, pages 199-216. Springer-Verlag, 1989.

R J R Back and J von Wright. Reasoning algebraically about loops. Acta
Informatica, 36:295-334, 1999.

Rohit Chandra, Anoop Gupta, and John L. Hennessy. Cool: an object-based
language for parallel computing. Computer, 27(8):13-26, Aug 1994.

K Mani Chandy and Jayadev Misra. Parallel Program Design: A Foundation.
Addison-Wesley, 1988.

Ernie Cohen. A guide to reduction. Unpublished manuscript, 1994.

Ernie Cohen and Leslie Lamport. Reduction in TLA. In Davide Sangiorgi and
Robert de Simone, editors, CONCUR ’98: Concurrency Theory, number 1466

in Lecture Notes in Computer Science, pages 317-331. Springer-Verlag, 1998.

288

8]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

B A Davey and H A Priestley. Introduction to Lattices and Order. Cambridge
University Press, 1990.

Edsger W Dijkstra and Carel S Scholten. Predicate Calculus and Program

Semantics. Texts and Monographs in Computer Science. Springer-Verlag, 1990.

Thomas W Doeppner, Jr. Parallel program correctness through refinement. In
Fourth ACM Symposium on the Principles of Programming Languages, pages
155-169, 1977.

E Allen Emerson. Temporal and modal logic. In J van Leeuwen, editor, Hand-
book of Theoretical Computer Science, pages 996-1071. Elsevier Science Pub-
lishers, 1990.

K P Eswaran, J N Gray, R A Lorie, and I L Traiger. The notions of consis-
tency and predicate locks in a database system. Communications of the ACM,

19(11):624-633, Nov 1976.

Nissim Francez. Fairness. Texts and Monographs in Computer Science.

Springer-Verlag, 1986.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-

niques. Series in Data Management Systems. Morgan Kaufmann, 1992.

David Gries. The Science of Programming. Texts and Monographs in Computer

Science. Springer-Verlag, 1981.

C A R Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10):576-580, Oct 1969.

C A R Hoare. Proof of correctness of data representations. Acta Informatica,

1:271-282, 1972.

289

[18]

[19]

[20]

[21]

22]

[26]

C A R Hoare. Monitors: an operating system structuring concept. Communi-

cations of the ACM, 17(10):549-557, Oct 1974.

Steve J Hodges and Cliff B Jones. Non-interference properties of a concurrent
object-based language: proofs based on an operational semantics. In Burkhard
Freitag, Cliff B Jones, Christian Lengauer, and Hans-Jorg Schek, editors, Object
Orientation with Parallelism and Persistence, pages 1-22. Kluwer Academic

Publishers, 1996.

Rajeev Joshi and Jayadev Misra. On the impossibility of robust solutions for fair
resource allocation. Technical Report Technical Report TR-99-14, University

of Texas at Austin, Department of Computer Sciences, Apr 1999.

Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans-

actions on Software Engineering, 3(2):125-143, 1977.

Leslie Lamport. A theorem on atomicity in distributed algorithms. Distributed

Computing, 4:59-68, 1990.

Leslie Lamport and Fred B Schneider. Pretending atomicity. Technical Report
Research Report 44, Digital Equipment Corporation, Systems Research Center,
1989.

Richard J Lipton. Reduction: a method of proving properties of parallel pro-
grams. Communications of the ACM, 18(12):717-724, Dec 1975.

Jayadev Misra. A Discipline of Multiprogramming. Texts and Monographs
in Computer Science. Springer-Verlag, 2000 (in preparation). Parts of the
manuscript are available from ftp://ftp.cs.utexas.edu/pub/psp/seuss/-

discipline.ps.gz.

C Mohan, Donald Fussell, and Abraham Silberschatz. Compatibility and com-
mutativity of lock modes. Information and Control, 61(1):38-64, April 1984.

290

[27]

[30]

[31]

J Eliot B Moss. Nested Transactions: an Approach to Reliable Distributed
Computing. The MIT Press, 1985.

Susan Owicki and David Gries. An axiomatic proof technique for parallel pro-

grams i. Acta Informatica, 6:319-340, 1976.

Gordon D Plotkin. The structural approach to operational semantics. Technical
Report Research Paper DAIMI FN-19, Computer Science Department, Aarhus

University, Denmark, Sep 1981.

A M Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, Series 2,
42:230-265, 1936. Correction in [31].

A M Turing. On computable numbers, with an application to the Entschei-
dungsproblem. a correction. Proceedings of the London Mathematical Society,

Series 2, 43:544-546, 1937. Correction to [30].

Leslie G Valiant. A bridging model for parallel computation. Communications

of the ACM, 33(8):103-111, Aug 1990.

Akinori Yonezawa, editor. ABCL: An Object-Oriented Concurrent System. MIT
Press, 1990.

291

Vita

William Edward Adams was born in Bristol, England on December 5, 1960, to
John Edward Adams and Sheila Margaret Adams. He attended St Bede’s Roman
Catholic Comprehensive School in Bristol until 1979, when he entered Trinity Col-
lege, Cambridge. In 1982, he received a Bachelor of Arts degree in Mathematics from
Cambridge University. After leaving Trinity College he lived in London, working at
various times as a pedal cycle mechanic, a photoprocess operator, and a computer
programmer. He attended graduate classes at the City University, London, from
1987 to 1989. He also ran a branch of the Labour Party, organizing several election
campaigns, and helped lead a campaign of public-sector tenants that successfully
opposed privatization of public housing. In 1991, he entered the Graduate School
of the University of Texas at Austin. He received a Masters of Science in Computer

Sciences in 1993.

Permanent Address: 4605 Richmond Avenue
Austin TX 78745
USA

This dissertation was typeset with IATEX 2! by the author.

'IATEX 2¢ is an extension of INTEX. IATRX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin.

292

