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Abstract

This dissertation describes CPA, a general-purpose mechanism for expressing and implementing
attention policies that control the allocation of resources among sensory processing tasks in a robot or
other advanced intelligent system.  A wide variety of attention policies can be expressed in this
mechanism, which also supports soft real-time constraints on perceptual processing.  Intelligent systems
can become inundated with data, resulting in perceptual overload and a consequent inability to formulate
a timely or appropriate response.

Perceptual overload is often modulated by a perceptual attention mechanism that filters and prioritizes
incoming data. Most existing attention mechanisms are tailored to the specific task the system is
performing.  A general-purpose attention mechanism must have a task-independent interface for
controlling attention; support a heterogeneous set of sensors; support heterogeneous methods for
processing sensor data; and support real-time throughput constraints.  The CPA is a general-purpose
attention mechanism that supports multimodal perceptual attention.  Using it, an intelligent system can
enact and control a variety of attention policies for any type or combination of sensor or sensor data.

An intelligent system dynamically creates multiple heterogeneous perception tasks in accord with
behavioral goals and installs them in the CPA.  The CPA supports two general categories of perception
tasks: detectors, which do not retain information between perception cycles; and trackers, which do.
Perception tasks are prioritized using an attention policy and are executed using a priority-based
scheduler.  A wide range of attention policies can be expressed in this mechanism, including policies that
dynamically modify perception priorities, policies in which emergency input overrides normal perception
processing, and policies that dynamically change the level of resistance to perceptual distractions.

Results show that perception intervals as short as 100 milliseconds can be achieved with a five-sensor
robot under a variety of attention policies.  Analysis of the system's performance under perceptual load
shows that qualitatively different attention policies can be realized in the attention mechanism.  We show
that intelligent systems can use the CPA to implement the four primary characteristics of human
perceptual attention: selective attention, sustained attention, divided attention, and top-down control.
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Chapter 1: Introduction
This dissertation describes a general-purpose mechanism for expressing and implementing attention

policies that control the allocation of resources among sensory processing tasks in a robot or other
advanced intelligent system.  A wide variety of attention policies can be expressed in this mechanism,
which also supports soft real-time constraints on perceptual processing.

Advances in sensor technology have enabled the construction of robots and other intelligent systems
that utilize a large number of sensors.  These sensors produce a wide variety of data about the physical
world, often at very high data rates.  Some of the systems need to respond to inputs within a very short
period of time.  However, they can become inundated with data, resulting in perceptual overload and a
consequent inability to formulate a timely or appropriate response.

In many systems, perceptual overload is modulated by a perceptual attention mechanism that filters
and prioritizes incoming data.  The most common mechanism is one that spatially filters visual data by
removing portions of the input located outside a spatial focus  of attention.  This can greatly reduce the
amount of processing needed to produce a response, but introduces the possibility of ignoring relevant
input.  A few systems use mechanisms based on visual features such as color and shape, or non-visual
features such as numeric readings.  Most existing attention mechanisms are tailored to the specific task
the system is performing.

A general-purpose attention mechanism has four major requirements: it must have a task-independent
interface for controlling attention; it must support a heterogeneous set of sensors; it must support
heterogeneous methods for processing sensor data; and it must support real-time throughput constraints.
This dissertation introduces the CPA, a general-purpose attention mechanism that supports multimodal
perceptual attention.  Using it, an intelligent system can enact and control a variety of attention policies
for any type or combination of sensor or sensor data.

An intelligent system using the CPA creates multiple heterogeneous perception tasks in response to
behavioral goals and installs them in the CPA.  The set of perception tasks can dynamically change as
behavioral goals change.  The CPA supports two general categories of perception tasks: detectors, which
do not retain information between perception cycles; and trackers, which do.  Each attention policy
controls the length of the perception interval, the allocation of perception time between the sets of
detectors and trackers, and the prioritization of sensors, detectors and trackers.

Perception tasks are prioritized using parameters in the attention policy and are then executed using a
priority-based scheduler.  The scheduler executes as many perception tasks as it can before the perception
interval expires.  This behavior can result in starvation of low priority tasks, in contrast to operating
system schedulers which typically provide guarantees of fairness and liveness.

A wide range of attention policies can be expressed in this mechanism, including policies that
dynamically modify perception priorities, policies in which emergency input overrides normal perception
processing, and policies that dynamically change the level of resistance to perceptual distractions.

We evaluate the attention mechanism in a robot navigation system that requires high-speed perceptual
throughput in order to effectively control its motion.  The robot has five input streams that provide a
mixture of numeric and symbolic data.  The quality of perception is measured using a perception quality
metric that is a function of both the quantity and quality of the input.  Results show that perception
intervals as short as 100 milliseconds can be achieved under a variety of attention policies.  Analysis of
the system's performance under perceptual load shows that qualitatively different attention policies can be
realized in the attention mechanism.

We show that intelligent systems can use the attention mechanism to implement the four primary
characteristics of human perceptual attention: selective attention, sustained attention, divided attention,
and top-down control.

Future work will formalize constraints on the behavior of attention policies, incorporate hard real-
time scheduling methods for more precise time management, define classes of domain-specific attention
policies and explore methods for automatically learning effective attention policies.
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1.1 ATTENTION IN PEOPLE AND ROBOTS

In people, attention provides two main functions.  First, it prevents perceptual overload.  The human
senses take in far more information than the human brain can process in time for it to be useful.
Attempting to attend to multiple inputs at the same time causes interference and performance degradation
[Posner and DiGirolamo, 1998].  Attention helps to select the most important information to process.  In a
robot, an attention mechanism can help prevent perceptual overload.

Even if a person could process all of the incoming information, he or she would then be subject to
response incoherence.  The amount of input might generate so many potential responses that a person
would be overwhelmed trying to decide what to do and in what order.  Attention helps to select the most
important information to respond to.  A robot could use an attention mechanism to help prevent response
incoherence.

If these problems arise in a robot and we want to use an attention mechanism, what form should it
take?  Is a human-style attention mechanism useful in a robot?  There are fundamental differences
between computers and people, which indicates that a computational perceptual attention mechanism may
differ from a human attention mechanism.  A computer’s fundamental processing speed is currently about
six orders of magnitude faster than the human brain and is increasing; it can retain information longer and
more accurately; and it can use different, more powerful, sensors which can easily be added or removed.
Additionally, most computers use a single sequential processor, while the human brain performs much of
its processing in parallel.  Furthermore, if it chooses to, a computer can completely ignore certain inputs,
or even entire streams of data, while people have difficulty ignoring unwanted input.  Given these
differences, are the properties of a human attention mechanism useful in a robot?

In summary, the questions this dissertation addresses are:

1. Do robots need an attention mechanism? 
In our robot navigation work, we have found that robot controllers require a perceptual latency (the
time delay between when sensor data is collected and when it is available for high-level processing)
of less than 200 milliseconds, and preferably closer to 100 milliseconds.  Some computer vision
systems have even more stringent requirements, with maximum latencies of approximately 30
milliseconds.  Processing a single object typically takes anywhere from 1 to 10 milliseconds in our
system.  So in the worst case, a minimum of 10 objects in the visual field can cause the system to
exceed the 100-millisecond latency required for good performance.  Robot sensors on current robots
are capable of sensing dozens, if not hundreds of distinct objects at a time.  Robots can use an
attention mechanism to reduce perceptual overload in several ways: by filtering input to reduce the
number of objects processed; by prioritizing input so the most important input is processed first; and
by ensuring that the latency requirements are met even when the perceptual system is under a heavy
load.

2. What are the useful characteristics of human attention?  
Studies of human perception and attention have identified several characteristics that are useful in
certain situations.  These characteristics include: early selection, where sensor input is heavily filtered
or blocked before it reaches the cognitive processor; late selection, where sensor input is prioritized
according to perceptual goals related to high-level tasks; habituation, where repeated, identical inputs
are eventually reduced in priority or even ignored; priming, where recently processed concepts
influence the percepts selected for processing; decay of activation, where the “interestingness” of a
percept decays exponentially over a relatively short period of time; and inhibition of return, where
objects in the field of view which have been subject to recent scrutiny acquire a reduced perception
priority.  It is not difficult to envision scenarios in which a robot can utilize some or all of these
characteristics to improve its performance.

3. Which characteristics of human attention are not useful?
The answer to this question is somewhat task-dependent, but extremes of human attentional behavior
include autism, of which one of the primary symptoms is an inability to shift the focus of attention to
novel items.  An attentional disorder at the other extreme is attention deficit, which is the inability to
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maintain a focus of attention for an appropriate amount of time.  There are also other, more specific,
disorders related to brain pathologies.  However, except for extreme cases of these disorders, they can
not be viewed as strictly negative characteristics because they can be useful in certain situations.  For
example, an attention deficit may be of benefit to a security guard who must be alert to anything
unusual.  And difficulty with shifting the focus of attention may be useful to a chess player, who
needs to concentrate for long periods of time on a relatively small and static field of view.  Clearly,
the attention mechanism must be adaptable to different situations and exhibit a wide range of
behavior.

4. Given the differences between human and computer computation and perception, what form should a
computational attention mechanism take?
This dissertation takes the view that computational attention should exhibit the flexibility and
characteristics of human attention, without attempting to duplicate the underlying architecture.  The
single-processor, multitasking computers that are prevalent today are so different from the highly
parallel human brain that a computational attention mechanism requires a significantly different
design.  Chapters 3 and 4 discuss the design tradeoffs and the architecture of the resulting system in
detail.

1.2 OVERVIEW OF THE DISSERTATION

Chapter 2 discusses characteristics of human attention in greater detail.  Chapter 3 discusses previous
work in robot perception and attention, analyzes differences in human and robot attention, and sketches a
design for a general-purpose multimodal perceptual attention system.  Chapter 4 discusses the design and
implementation of CPA (Computational Perceptual Attention), a system for robot perceptual attention.
Chapter 5 evaluates the CPA in different perception scenarios and describes how to use the CPA for robot
navigation.  Chapter 6 discusses the Q-measure, which measures perception quality and provides an
indirect measure of the performance of the attention mechanism.  A learning system can use the
performance measure to tune the attention mechanism.  Chapter 7 discusses the relationship between the
CPA and other mechanisms for attention, task scheduling and object tracking.  Chapter 8 summarizes the
dissertation and discusses future research based on this work.
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Chapter 2: Human Perception and Attention
Attention is involved in the process of perception, somehow enhancing or reducing the

"interestingness" of various sensory inputs so that some are attended to and others are not.  Attention is
not completely understood, but it appears to consist of a set of mechanisms that exhibit different,
sometimes opposing, effects.  Much of the research in attention has focused on the visual sense (or visual
mode, as psychologists would say), both because it is easy to test and because it is complex enough to be
interesting.  Most of the remaining research has investigated attention in auditory perception.  There has
been some research on cross-modal attention, usually involving combined visual and auditory perception.

In the early days of attention research, many investigators performed experiments by subjecting
themselves to various stimuli and reporting their perceptions and thoughts about what had happened
[LaBerge, 1995, chapter 2].  In the last half of the twentieth century the focus shifted to testing volunteer
subjects, often using standard double-blind tests to achieve more objective results.  A typical test
measures the reaction time to a stimulus and the effect of preceding or coincident stimuli on the reaction
times.

During the last half of the 1990s, the use of positron emission tomography (PET) scans and other
forms of brain observation have allowed researchers to observe which parts of the brain are activated
when different attention mechanisms are activated.  The results show that attention is more widespread
and non-localized than some had believed [Luck and Girelli, 1998].

In developing a theory of perceptual attention for computer systems, we are interested in attention
mechanisms that improve perceptual processing (so we can use them), and in attention disorders that
hinder perception (so we can avoid them).  We are also interested in how attention mechanisms are
activated, how they are controlled, and how such mechanisms might differ if implemented on a fast,
sequential computer than on the slow, highly parallel human brain.

2.1 THE STRUCTURE OF HUMAN PERCEPTION

The human body contains multiple sensors that send information through a network of nerves to the
brain, where it is processed.  The brain contains areas devoted to specific processing functions and
specific sensor input, although several of these areas may activate during any single act of perception.
The sensory system is highly parallel in both input and processing.  It is possible, for example, to monitor
visual input while listening to separate, unrelated conversations in each ear [Posner and DiGirolamo,
1998].  Performance at such a task is not very good, but that it can be done at all is a testament to the
flexibility and power of the human brain.

Most research has focused on vision due to its complexity and the ease of performing tests on
subjects.  The visual pathways in the brain illustrate the complexity of processing.  The figure below is
based on one in [Goodale and Humphrey, 1999].  It is a simplified representation of visual information
flow in the macaque brain.  Similar pathways have been found in other primates and it is generally
believed that this representation applies to the human brain, too.  The darker lines represent greater
information flow.

The diagram shows that processing is separated by functionality (object recognition vs. spatial
perception) and that it occurs in stages.  We do not yet know enough details about the types of processing
that occur in the different brain regions to implement the same mechanism in computing devices.

It is estimated that the human brain contains 1011 neurons, and 1014 pathways, implying a high degree
of interconnectivity among the neurons.  Electrical impulses, triggered by chemical reactions, transfer
information from neuron to neuron.  The speed of these impulses is much slower than the speed of
electrical impulses in a computer.  For example, when presented with a set of visual stimuli, the brain can
shift its attention from one object to another in 30 to 50 milliseconds [Niebur and Koch, 1998].  This is a
mental shift, rather than a physical shift of visual attention; an eye saccade requires about 200
milliseconds.  Perception can be directed to certain inputs by visual or auditory cues.  The effect of these
cues reaches a peak in about 200ms and decays in a few hundred more milliseconds [Niebur and Koch,
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1998].  These times are illustrative of the fundamental perceptual processing speeds of the human brain,
which is obviously much slower than a computer of today.

Retina

Superior
Colliculus

LGNd

Pulvinar

Posterior
Parietal
Cortex
(Spatial

perception)

Inferotemporal
Cortex
(Object

recognition)

Primary
Visual
Cortex

Figure 1.  Visual information flow in the human brain.

2.2 A BRIEF HISTORY OF ATTENTION RESEARCH

Aristotle, Lucretius, Descartes and Leibniz, among others, speculated about the mechanisms of
attention [Hatfield, 1998].  The modern era of attention research began with William James, who was the
first to outline a theory of human attention [James, 1890].  His primary hypothesis was that thought
processes produce expectations of what we should perceive, which influences what we do perceive.
Other researchers, including Gibson, Von Helmholtz, Wundt and Tichenor, hypothesized additional
mechanisms including spatial attention (attending to certain locations), and intentions to act.  (Much of
this historical background is from [Van der Heijden, 1992, Chapter 2]).

The field of attention research experienced a revival in the 1950s.  Broadbent proposed his filter
theory of attention in an attempt to explain many of the existing experimental results [Broadbent, 1958].
This theory postulates a low-level filter that allows only a limited number of percepts to reach the brain at
any time.  In this theory, the importance of conscious, directed attention is minimized.  The part of
attention involving low-level filtering is now called early selection.

A few years later, the response selection theory of attention [Deutsch and Deutsch, 1963] described
an attention process in which nearly all of the sensory input reaches a fairly high-level part of the brain,
where it is then processed if its activation is above a threshold that changes according to the person's
needs.  The part of attention involving high-level processing is now called late selection.

Starting in 1960, Treisman proposed a series of models that combined early and late selection into a
model known as Feature Integration Theory (FIT) [Treisman, 1988].  In FIT, features (colors, shapes, and
contrasts) are recognized in parallel and stored in feature maps.  A three-dimensional location map
independently stores pointers to locations of all features.  Objects are then recognized as conjunctions of
features.  Currently, Treisman and others believe that early selection (sensor and feature attenuation) is
most active when the perceptual load is high, whereas late selection (object-based and location-based) is
used when perceptual load is low [Treisman, 1998].

Currently there is a variety of research using brain scans to trace brain processing during perception
[Luck and Girelli, 1998].  There have also been advances in neurophysiological models of attention
[Crick and Koch, 1990; [Olshausen et al., 1993; Desimone and Duncan, 1995; Niebur and Koch, 1998].
An excellent collection of papers covering current research is [Parasuraman, 1998a].
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2.3 BASIC ATTENTION MECHANISMS

Attention consists of a set of mechanisms for improving perception in relation to the person’s current
high-level goals.  Inside the attention process there is a fundamental tension between the ability to notice
certain stimuli and the equally valuable ability to ignore stimuli.  Many of the mechanisms have an
opposing mechanism that counterbalances their effect.  What we think of as attention is a function of the
push and pull of a number of mechanisms, including selection, vigilance, control, and the measurable
effects of spatial focus, priming, inhibition of return and decay [Parasuraman, 1998b].

Selection is the ability to select the most important percepts from the large set of incoming percepts.
This includes selection across modalities and selection within a modality.  The discussion earlier in this
chapter mentioned the distinction between early selection (filtering percepts before they reach conscious
thought) and late selection (conscious selection of percepts from a set of percepts).  In a computational
model of attention, the reasoning process should be able to control the entire attention process, even if
some of the mechanisms being controlled correspond to automatic processes in the human brain.  An
enhancement of this is divided attention, in which percepts related to different goals are selected at the
same time.

Vigilance, or sustained attention, ensures that perceptual goals are maintained as long as necessary.
Ongoing perceptual goals can be interrupted or impaired by unexpected high-priority inputs or by an
increase in sensory data rates.  An opposite mechanism is habituation, in which repeated similar percepts
are gradually reduced in importance.

Attentional control is the ability to interrupt and resume perceptual activities as required.  In a
complex system it is no small task to interrupt and then correctly resume a process.  The other active
goals may have changed, meaning that the priority of the resumed process may need to be adjusted.  This
is almost surely a duty of the high-level reasoning process.

Spatial attention is a commonly-used visual filtering mechanism.  The sensory input in the spatial
focus, commonly called the spotlight, has priority for processing.  This is a very effective method of
reducing the amount of input to be processed.  Computer vision systems often use spatial attention as
their primary, and sometimes only, attention mechanism.  An opposing effect is inhibition of return, in
which recently-scanned spatial locations have a lower priority than normal.

Priming occurs when a spatial or perceptual cue facilitates perceiving a stimulus that follows.  The
facilitation typically results in a reduced time to recognize or categorize a percept.  Its opposite is
inhibition, in which a cue impairs perceiving another stimulus.

The effects of priming and inhibition decay over a relatively short period of time.  The brain rarely
perceives a constant set of inputs.  The world changes rapidly and one of the effects of decay is to ensure
that cues do not outlast the world in which they were generated.

2.4 ATTENTION DISORDERS AND ERRORS

As might be expected from the number of times one is told to “pay attention”, perceptual attention
does not always work correctly.  There are several brain disorders and injuries that can affect attention.
One of the most prevalent is attention deficit disorder (ADD) in which the ability to focus attention is
impaired.  Some of the recognized symptoms of ADD [Swanson et al., 1998] include:

1. Inability to pay attention to details,
2. Difficulty sustaining attention,
3. Difficulty organizing tasks,
4. Easily distracted by extraneous stimuli.

As mentioned in Chapter 1, some of these characteristics are, at times, beneficial.
At the other end of the attention spectrum, one of the characteristics of autism is the inability to

change the focus of attention [Rodier, 2000].  Again, this characteristic can be beneficial in some tasks.  It
appears that a computational mechanism should be tunable to exhibit a wide spectrum of behavior as
deemed necessary.

There are situations where incorrect attentional behavior has had disastrous consequences.  Everyone
today is familiar with accidents caused by people who are fiddling with their car stereo or talking on
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cellular phones.  The most well-documented large-scale case of inattention is probably that of Eastern
Airlines flight 401, which crashed on December 29, 1972.  In that incident, the crew forgot to monitor the
plane’s flight while they attempted to visually determine whether its nose gear was properly extended.
While they were distracted, the plane gradually descended and crashed into the Everglades, killing over
one hundred people.  The flight crew received an alert from an automatic warning system 13 seconds
before the crash, but were so focused on the nose gear that they could not react in time to prevent the
crash [NTIS, 1973].

2.5 SUMMARY OF HUMAN PERCEPTUAL ATTENTION

Human perception and perceptual processing is highly parallel, yet relatively slow compared to the
speed of today’s computers.  Attention is not completely understood, but it appears to consist of a set of
mechanisms that exhibit different, sometimes opposing, effects.  Attention provides a wide range of
behaviors, from highly-focused to easily distractible.  A computer-based perception process may need to
exhibit equally flexible behavior in order to accommodate a wide variety of tasks.

2.6 TOWARD COMPUTATIONAL PERCEPTUAL ATTENTION

Human perceptual attention exhibits a variety of mechanisms that allow it to adapt to different tasks.
General-purpose perceptual attention for computers should exhibit the same flexibility.  The following
properties of the human attention mechanism are key design goals for our computational attention system.

1. Sustained attention: the mechanism should allow the computer or robot to set perceptual goals and
maintain them over a period of time.  The termination of a perceptual goal might be condition-based,
time-based or directed by a higher-level system.  Detection and tracking are two important classes of
perceptual tasks that should be sustainable.

2. Selective attention: the mechanism should support selectivity in forwarding sensor input to the
reasoning component of the system. Selectivity should be guided by features such as color, size,
shape and spatial location.

3. Divided attention: the ability to pursue more than one perceptual goal at a time is very important.
Otherwise the performance of a robot will be very limited—for example, navigation and object
recognition could not be performed at the same time, requiring the robot to stop whenever it needed
to detect objects.

4. Controllable: top-down control is important, since perceptual goals are related to other goals such as
navigation.  Two key methods of control are the ability to set perceptual goals and the ability to
dynamically prioritize perceptual goals.  The ability to be interrupted by unexpected input should be
adjustable since different tasks require different strengths of perceptual focus.
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Chapter 3: Perception and Attention in Computers
The human brain and current digital computers differ significantly in structure, speed and capabilities.

The design of perception systems is greatly affected by these differences.

3.1 SPEED, SEQUENTIAL PROCESSING AND SENSOR VARIETY

The most important difference between the human brain and computers is that most computers are
single-processor machines, which process information sequentially, while the human brain is a vastly
parallel system.  With the speed and capabilities of today’s multi-tasking operating systems, it is easy to
overlook this fundamental point.  Because of the sequential nature of machine processing, the time to
perform perception tasks usually scales linearly with the number of objects detected.  As sensors become
more powerful, more objects will be detected, making it unlikely that sensor processing will ever keep up
with sensor acquisition.

The second most important difference is that computers have a fundamental speed that is orders of
magnitude faster than that of the human brain.  The speed factor compensates somewhat for the sequential
processing, but not as much as one might hope, possibly because useful operations like face and object
recognition still take a relatively long time and are not always accurate.

The third most important difference is the variety of sensors available to computers.  Humans have a
fixed number of sensors, but robots have access to an ever-growing catalogue of sensors, whose
capabilities in many cases equal or exceed human sensors.  Other sensors provide input not available to
people, such as infrared vision, GPS locations and compass directions.  A robot can receive a huge
quantity of data at a high data rate.  Furthermore, these sensors are more controllable than in people.
Robot sensors can be turned off or completely ignored as desired, something that is difficult with human
senses [Posner and DiGirolamo, 1998].

All of these differences point to time management as a critical component of computer perception.
This affects the design of the entire perceptual system, as described in Chapter 4.

3.2 GENERALITY VS. SPEED REQUIREMENTS

The design process is complicated by a tension between generality and the need for fast low-level
sensor processing.  This research aims to produce a general-purpose, multimodal, controllable perception
system.  One can design a simple multimodal perception system as shown in the figure below.  This
design is pleasingly simple but it has several areas of potential inefficiency.

Sensor  3

Sensor 2

Sensor 1
Task 1

Task 2

Task 3

Task 4

Figure 2.  A simple, but potentially inefficient, perception system.

3.2.1 Data transmission times
A hidden cost of perception is the time required to transmit data from the sensor to the task.  A robot

whose components are distributed across multiple systems may encounter significant transmission times.
On one of our robots, we found that a rangefinder scan, which consists of 270 polar coordinates, takes
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several hundred milliseconds to transmit from one machine to another using a distributed object system.
Since robot control works best when the perceptual latency is less than 100ms, we could not control the
robot very well when transmitting raw sensor scans.  In the CPA system described in this dissertation, the
solution was to move sensor post-processing from the task side to the sensor side of the connection so that
raw data sets need not be transmitted.

3.2.2 Redundant processing
More than one task may be performing the same post-processing on the raw data.  For example, in

our robot the wall-following task and the view-matching task both utilize line segments derived from
rangefinder data.  Line segment extraction takes 15-25 milliseconds, a non-negligible amount of time.
Most or all post-processing of raw sensor data should be performed before the task level and tasks should
share the results.

3.2.3 No limits on processing time
The diagram above implicitly relies on an unspecified external program to govern the amount of time

a task can use.  There is no guarantee that an important task will receive any time at all.  The CPA system
contains a scheduler that allocates time to perception tasks in order of importance.

3.2.4 Solutions
As described above, a simple perception architecture can be the source of numerous inefficiencies.

How do we solve the above problems?  As shown in the next chapters, we:

1. Add postprocessors to the sensor streams so tasks can share processed, as well as raw, data.
2. Move all perceptual tasks that take a significant amount of time, such as object recognition, into the

perception module where they can be controlled and where they will be under the control of a real-
time task scheduler.

3. Implement a centralized attention manager that allocates time to perception tasks according to their
priority.

The resulting system is illustrated by the figure below.

Sensor  3

Sensor 2

Sensor 1
Task 1

Task 2

Task 3

Task 4

Attention

ManagerPre-proc

Pre-proc

Figure 3.  A better design for a perception system.

3.3 PREVIOUS PERCEPTUAL ATTENTION SYSTEMS

VISIT [Ahmad, 1991] processes 256x256 pixel images by moving a spatial attention “spotlight”
around the image.  A control system, consisting of a connectionist network, controls the spotlight.  VISIT
implements inhibition of return (see Chapter 2) to aid in scanning the entire image.  The network can be
trained to move the spotlight based on different characteristics of the image, including center of mass of
the portion of the image inside the current spotlight, pixel clusters in the entire image, and object features
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such as color and shape.  The attention mechanisms it uses are spatial attention, attention control and
inhibition of return.

VISIT is not multimodal and uses only spatial attention.  The control mechanism must be trained
separately for each task and can perform only one task at a time.  The size of the control network is
proportional to the size of the image being processed, so changing the input size requires creating and
training a new control network.

There are numerous other visual attention systems that also manage spatial attention.  These are
popular because until recently computers were not fast enough to process an entire camera frame in the
time allowed, even for relatively simple processing.  A useful optimization is to select only a portion of
the input to process.  Some of these systems are:

• A system that integrates bottom-up feature maps with top-down model-based object knowledge
using non-linear relaxation based on energy minimization [Milanese et al., 1992].

• A connectionist system for constructing a saliency map that emphasizes and de-emphasizes
regions of the visual input for the ALVINN autonomous navigation system.  The system learns to
handle difficult visual scenes that the general-purpose algorithm in ALVINN can not handle
[Baluja and Pomerleau, 1996].

• The SCAN (Signal Channeling Attentional Network) model, which is a sparsely-connected,
scalable neural network that incorporates an expectation-generating classifier network.  The
classifier network allows SCAN to be expectation-driven.  Like the other systems, SCAN is used
for directing spatial attention [Postma et al., 1997].

• An extension of ACT-R to incorporate visual attention and pattern recognition [Anderson et al.,
1995].  This system also uses spatial attention, and does not appear to provide real-time
guarantees.

• A spatial attention system for a social robot that incorporates top-down motives and bottom-up
feature maps [Breazeal and Scassellati, 1999].

One of the few multimodal systems is QuickSet, which manages voice and pen input for interacting
with a map [Cohen et al., 1997].  The user can, for example, circle a location on the map and say, “What
is this?” to retrieve a description of the object at that location.  However, this is a relatively easy
perception problem, compared to managing perception on a robot, because the inputs are relatively sparse
and the maximum response time limits are relatively long.

A system with broader goals and multimodal capabilities is a perception planner for mobile robots
[Xu and Vandorpe, 1994].  The system uses sensor fusion to integrate readings from multiple sensors.
The perception planner adjusts sensor parameters, uses utility functions to determine which perception
tasks have a high priority, and selects fusion techniques.  The planner also incorporates uncertainties in
data or internal states to adjust priorities of perception tasks.

In summary, most previous attention systems were unimodal and focused on spatial attention.  Most
are special-purpose mechanisms suited only for the application they were designed for.  The CPA system
described in the next chapter provides a general-purpose multimodal solution to perception processing.

3.4 ATTENTION-RELATED PROBLEMS IN CURRENT SYSTEMS

Chapter 2 mentioned the crash of Eastern Airlines flight 401, in which the flight crew was so focused
on another task that the plane flew into the ground while they were distracted.  It is of interest to note that
a nearly identical situation has occurred in a computational system.

ModSAF is a complex battlefield simulation that includes simulated helicopters flown by simulated
helicopter pilots [Hill et al., 1997].  The pilot agents must fly their helicopters while visually scouting for
enemy tanks.  If tanks are found, the helicopter scouts return to the main group and report their findings.
In one scenario, three helicopters came over a hill and suddenly encountered a field containing ninety
tanks.  Unable to divide their attention correctly, the simulated pilots concentrated on processing visual
information about the tanks.  Meanwhile the helicopters drifted out of position because the helicopter
gauges and controls were ignored.  Consequently, one of the helicopters crashed into a hillside while the
other two helicopters crashed into each other.  Input from the helicopter controls should not have been
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ignored while processing the visual input.  Instead, perceptual tasks for the two operations (scanning and
flying) should have been interleaved.  Assuming the tasks were prioritized correctly, the CPA system
discussed in the Chapter 4 of this dissertation would handle this correctly.

A second, less destructive, example is MIT's Intelligent Room project [Coen, 1997].  This room
contains a speech recognition system and a vision system that tracks people and recognizes gestures.  It is
a prototype of a room where people can point at displays containing maps and ask questions of the room's
computer.  A recent video of the system shows a person gesturing at a map, waiting a few seconds, and
then asking a question.  The system is apparently unable to process visual and audio input at the same
time.  To be fully functional, the room needs to be able to perceive multiple sources of input at the same
time.

These examples illustrate the need for a perceptual attention process in modern intelligent agents.
The rest of this dissertation discusses the design and implementation of a general-purpose attention
process that will be useful in multimodal systems like these.
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Chapter 4: Computational Perceptual Attention
This chapter discusses the design goals, operational characteristics and implementation of a system,

CPA, for multimodal computational perceptual attention.  An example that uses the CPA in a robot
navigation task is discussed in Chapter 5.  Chapter 6 discusses ways to evaluate the performance of the
CPA.

4.1 COMPUTATIONAL ENVIRONMENT

CPA is designed for a single-processor, multi-tasking computational environment.  It is designed to
meet real time bounds, but since it does not assume a real time operating system it is subject to processor
contention from unrelated processes, and can meet only soft real time bounds.  It is compatible with a
distributed system environment in which various components run on separate machines.

The overall structure of the CPA is shown in the figure below.  The various components are discussed
in more detail later in this chapter.

Sensor

CPA

Detectors

Trackers

Attn policy

Sensor

Sensor
Focus Set

Task

Figure 4.  Structure of the CPA.

A high-level system, such as a robot navigation system, directs the CPA to monitor sensor input for
types of percepts that are relevant to its current task.  The CPA delivers percepts to the focus set at regular
time intervals, the percepts having been filtered and prioritized according to the task’s needs.  The task
periodically retrieves percepts from the focus set for processing.  The sensor buffers (one for each sensor)
and the focus set act as transfer points for percepts as they pass between the asynchronous sensor, CPA
and task processes.  As the high-level system performs different tasks, it modifies the CPA to specialize it
for the task at hand.

4.2 DESIGN GOALS

The primary purpose of the attention mechanism is to maintain a focus set  of important percepts by
filtering and prioritizing perceptual input in response to the dynamically changing goals of the current
task or tasks.  The design assumes the existence of sensors to provide input and a cognitive mechanism to
control the attention process by adding, removing and prioritizing detectors as necessary.  The task does
this by collecting the perceptual components of high-level goals, from which perceptual goals can be
extracted.  The perceptual goals are then embodied in detectors and trackers.  For example, in the task
“Enter the door”, the component “door” has perceptual features.  A knowledge base can hold the
perceptual features and associated parameters needed to detect a door using cameras, rangefinders or
other sensors.  This information is used to construct an appropriate routine to detect the door and track its
position relative to the robot as the robot moves.  The detectors and trackers are activated and deactivated
by the high-level task as necessary.
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To be useful, the input must become available to the cognitive process fairly quickly.  For example, in
a robot navigation controller the correct speed and heading of the robot are a function of the current
perceptions, speed and heading.  We have found that the quality of navigation control deteriorates rapidly
when the perceptual latency , the delay between the time of sensor input and the time the information is
available to the high-level system, is greater than 200 milliseconds.  Thus, the design includes a real time
bound that the CPA must adhere to.

4.2.1 Design tradeoffs
The first factor complicating the design process is the tension between generality and the need for fast

low-level processing.  The CPA is intended to be a general-purpose attention mechanism for multimodal
systems.  To that end, it is useful to abstract most operations to as high a level as possible.  However, low-
level operations such as visual object recognition are complex tasks that often need to occur 10-30 times
per second.  This tradeoff was resolved by creating a class of perceptual tasks called Detectors, which
directly encapsulate low-level operations such as object recognition.  A Detector feeds percepts directly to
the focus set, reducing delays in making results available to the high-level system.  A second class of
perceptual tasks, Trackers, represent tasks that retain memory across perception intervals.  Trackers are
more efficient than Detectors at dealing with objects that have already been detected once.

The second factor complicating the design process is the obvious opportunity for parallelism in
multimodal, multi-tasking systems, which is offset by the reality that single-processor computers are by
far the most prevalent type of system in use today.  The CPA incorporates a priority scheduler based on
dual queues for Detectors and Trackers.  The scheduler assumes that only one processor is available.  It
provides soft real-time perceptual guarantees for the high-level system as long as each perceptual tasks
cooperates in meeting its deadline, which is prescribed by the scheduler.  An implementation based on
multiple processes controlled by a UNIX-class scheduler does not work as well (see Chapter 7).
Alternatively, the system could use a true real-time scheduler and operating system that would provide
hard real-time guarantees for perceptual latencies.

A third design problem is the need for flexibility in sensor input.  One task may require unprocessed
frames from cameras, while another may need a list of the doorways found while processing those camera
frames.  One task may require entire newsgroup articles, while another would like only the nouns used in
the article.  This problem was resolved by allowing a “sensor stream” to consist of processed percepts as
well as raw percepts (although usually not both at the same time).  Following is a discussion of each
design goal.

4.2.2 Maintain a focus set
The primary purpose of the CPA mechanism is to maintain a set of recent perceptions in an

attentional focus1.  The percepts are ordered by their activation level, which decays over time.  The decay
function usually has a very short half-life.  In order to reduce computation, the activation level of a
perception is computed only when the members of the focus set need to be sorted, i.e. when the focus set
is retrieved.

When psychologists measure decay of activation in people, the decay curve is exponential [Peterson
and Peterson, 1959] as shown in Figure 5.

activation(t) = ae−kt

Figure 5.  An exponential decay equation for activation level.

 The variable a is the initial activation level of the percept.  The time t is in seconds.  The value
k=0.554 produces a curve in which the initial activation level decays by two-thirds after two seconds,

                                                     
1 The attentional focus may or may not correspond to short-term memory.  We have purposely made no attempt to
map one onto the other, believing that if they are related the operational characteristics of a limited short-term
memory may emerge as a by-product of normal processing.
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which we have found heuristically to produce a useful decay curve.  Higher values of k cause the
activation level to decay faster.

The percepts in the attentional focus are incoming percepts that have been annotated by the detector
or tracker that processed them during the attention phase.  Typical annotations include a type indicator
and some computed values such as the distance to or size of the object.

Incoming percepts that correspond to items already in the focus set should refresh the activation level
of the pre-existing focus item, rather than create an entirely new entry.  The appropriate detector, tracker
and/or sensor should contain the information needed to determine whether or not a percept is new.  When
a high-level task retrieves the contents of the focus set, the focus set is emptied in preparation for the next
set of percepts.

4.2.3 Real-time delivery of percepts
The CPA has a time bound that specifies the maximum amount of time allowed to update the focus

set.  The time bound will typically be on the order of 100 milliseconds for many robot-related tasks.  The
importance of sensors, detectors and trackers (discussed below) should determine the amount of time
allocated to each data item.  The CPA's performance (see Chapter 6) should degrade gracefully when the
CPA's requirements meet or exceed the allotted time.  The overhead of computing the time allocation for
various detectors and trackers should not exceed 1% of the time bound.

In order to provide an appropriate amount of attention to detectors and trackers, the available time is
divided into two pools: detection and tracking.  This provides a coarse method of limiting the amount of
time used for either task.

Under conditions of heavy perceptual load, some trackers will not be called on a given attention
cycle.  There are two cases when a tracker may not be called during an attention cycle.  One is when there
is no sensor data for that tracker.  In this case, the attention mechanism calls the tracker anyway with a
NIL percept.  The tracker may wish to provide an estimate of the object’s current position or other
characteristics it is tracking.  The second case is when the attention mechanism runs out of time.  In this
case, the tracker will be notified that it is being skipped.

4.2.4 Multimodal perception
The CPA must support multiple asynchronous sensory input streams, each of which may supply a

different type of data.  The importance of each sensor will often change while the CPA is executing.
Changes in sensor importance should be reflected in the amount of time the CPA allocates to processing
inputs from each sensor and/or in the priority assigned to data from each sensor.  Each sensor stream
should be buffered and the buffer should have a fairly small capacity: three percepts, for example.  This
ensures that data in the buffer are current and provides a coarse method of handling perceptual overload.

A sensor stream may contain raw data directly from the sensor, or it may contain processed data,
which is derived from the raw data.  The CPA treats both types of sensor streams equally.

4.2.5 Adaptable attention policy
The attention policy consists of several adjustable values and functions that are used to determine the

allocation of time to the active perceptual processing components.   The adjustable values include:
1. Attention time bound.  This parameter specifies the maximum amount of time allowed to acquire

perceptual input and update the focus set.
2. Focus strength.  The focus strength determines the activation level assigned to percepts that were not

accepted by any of the active detectors or trackers.  They receive an activation of (1 – focus strength).
For some tasks, these unexpected inputs may be important, while other tasks may wish to ignore these
inputs.  A high focus strength means that the system will be less easily distracted from its perceptual
goals.

3. Decay rate.  The decay rate affects how quickly the activation level of percepts in the focus set
decays.  This is the constant k in the decay equation presented earlier in this chapter.

4. Percentage of time allocated to object detection vs. object tracking.  As discussed in Section
4.2.3, this is a coarse method of adjusting the time allocated to detection and tracking.  For example,
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if most of the time is allocated to object tracking, it is possible that “new” objects will not be noticed.
This is desirable in some tasks, but undesirable in others.

5. Priority of sensors.  A sensor’s priority affects the order in which raw sensor percepts are processed.
A sensor’s priority may change as the cognitive task changes.

6. Priority of detectors and trackers.  As described below, trackers are created by detectors to track
newly-detected objects.  Each detector has a priority that specifies how important it is to the current
cognitive task.  This priority may change as the current task changes.  A tracker’s priority is some
combination of the priority it inherited from the detector and the priority of the object it is tracking.
This priority may change as the cognitive task changes.

7. Prioritization functions.  Each detector and tracker needs to be prioritized according to some value,
but several values are present: its sensor priority, its own priority, and its uncertainty in its tracked
parameters (for trackers).  The task can select the method of integrating these values into one overall
priority value.

An attention policy is an instantiation of the above parameters.  The attention policy affects the contents
of the focus set and, thus, the quality of perception.  Chapter 6 discusses the Q-measure, which is used to
measure the quality of perception and, indirectly, the quality of the attention policy.

4.3 COMPONENTS OF THE ATTENTION MECHANISM

The previous section mentions several components such as sensors, detectors and trackers.  This
section describes each component in detail.

4.3.1 Sensor streams
In human attention, a sensor stream provides a steady and mostly automatic stream of data.  In robots

and machines, the sensory stream is much more controllable and its contents can vary widely.  In the CPA
implementation, the Sensor class is derived from a Generator class, since a sensor can be thought of as a
generator of data (although in actuality it may just be a conduit for the data).

The code for a very simple sensor is shown below.  This sensor produces odd numbers starting from
1, every 300ms.

int num=1;

loop:
  produce num;

  num = num + 2;
  sleep(0.3);
end loop;

Figure 6.  A simple sensor.

A more typical sensor might collect a robot’s sonar readings every 100ms and place them in the
sensor stream:

loop:

  produce(robot7.getSonarData());
  sleep(0.1);
end loop;

Figure 7.  A sensor for sonar data.
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Usually, each sensor runs in a separate thread, asynchronous with the CPA and with each other.  It
stores percepts in a sensor buffer, which is typically a limited-capacity FIFO buffer.  The percepts in each
sensor buffer are retrieved periodically by the attention mechanism.  The sensor buffer acts as a coupling
mechanism between the sensor and the attention mechanism, which run in parallel, but asynchronously.

The details of the actual Sensor and Buffer classes, as well as all other classes used in the CPA
implementation are discussed at the end of this chapter, and are used in the robot navigation system
described in the next chapter.

4.3.2 Percepts
All objects in the sensor buffers and the focus set are Percepts.  The sensors produce raw percepts

while the focus set may contain either raw percepts or processed percepts.  A processed percept typically
contains the raw percept as well as some information derived from the raw percept.  For example, the raw
percept may be a set of laser rangefinder readings, while the processed percept might be a percept
representing an open door whose existence has been determined by examining the set of rangefinder
readings.  Another example is a raw percept representing one article from a jobs newsgroup, with a
processed percept representing a summary of a Java programming job extracted from the article.

4.3.3 Detectors
A detector encapsulates an object recognition method for a high-level percept.  The term “object

recognition” is used here in its most abstract sense, for detectors can be created for visual objects, audio
objects, text objects, numeric values outside a certain range, prime numbers and so on. A task should
create a detector for every object type that it finds interesting.  A detector receives raw or processed
percepts from one or more sensor streams.  If it detects the object it is looking for, it forwards the percept
to the focus set or creates one or more processed percepts and forwards them to the focus set.  A detector
may optionally instantiate a tracker to monitor the object over time.

Normally, the CPA contains a default detector that is always active.  The default detector accepts any
percept that was not accepted by any other active detector or tracker.  It places the percept in the focus set
with an activation level of (1 – focusStrength).  This makes unexpected input available to the ongoing
task at an appropriate activation level.

4.3.4 Matchers
Matchers contain functions used by detectors and trackers to identify percepts in sensory streams.

The matcher is extracted as a separate object so it can be used in different detectors.  A matcher is task–
and sensor–independent, and can be parameterized to deal with different types of data.  This allows, for
example, a wall matcher to be used with different sensor streams and to be specialized for different size
walls.  Part of the specification of a detector is a specification of its matcher and a set of arguments that
specialize the matcher for a specific task.

4.3.5 Trackers
Trackers differ from detectors in that they retain knowledge of object state between calls.  Their

processing time is also allocated from a different pool than that of the detectors.  They may use their state
knowledge to locate an object faster or to compute information (such as object speed) that requires more
than one raw percept to compute.  To prevent detectors from generating trackers for objects that are
already being tracked, a tracker installs masks on detectors to prevent them from detecting certain objects.
A common use of masks is to block the detector from seeing an object in a certain spatial location.  Like
detectors, a tracker either forwards a raw percept to the focus set or instantiates a processed percept for
the focus set.

A tracker is called every attention cycle, if time allows.  Sometimes, there may be time to call the
tracker, but no sensor data for it on that cycle.  If so, the tracker will be called with a NIL percept.  When
this happens, the tracker can still add a percept to the focus set.  The percept usually contains an estimate
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of the object’s characteristics, based on the amount of time that has passed since the last real percept was
received2.

If no time is available to call a tracker, its skipped method is called to let it know that time has
passed, but it wasn’t called.  Since time has run out, the tracker should not perform any computationally-
intensive tasks inside the skipped method.

4.3.6 Focus Set
The focus set contains the list of percepts that have been accepted by a detector or tracker.  Percepts

arrive in the focus set with an initial activation level that has been set by their detector or tracker.  When
the focus set is retrieved, the current activation level of each percept is calculated using the decay
equation described in Section 4.2.1.  Thus, the task receives prioritized percepts that are relevant to the
task and are sorted according to the task’s priorities as embodied in the set of active detectors and
trackers.  When a task retrieves the contents of the focus set, the default behavior is to clear the focus set.
However, if multiple tasks are accessing the focus set without coordinating the use of perceptual input, it
may be desirable to retain the contents after retrieval.

4.3.7 CPA: the attention manager
The attention manager component, which has the same name as the system, manages all the sensors,

detectors, and trackers as well as the focus set.  In order to detect a class of percepts, a higher-level task
creates detectors and adds them to the CPA, removing them when they are no longer relevant.  Similarly,
the task adds and removes sensors.  The task can pause the CPA, which in turn pauses each of the sensors,
detectors and trackers.  The CPA also manages the focus set, as detectors and trackers add percepts to it.
The main loop of the CPA activates detectors and trackers and monitors time used so that the loop can
finish within the time bound.  The CPA attention loop is shown in the figure below.

In Steps 3B and 4B, percepts are processed in order of sensor priority, and trackers/detectors are
processed in order of tracker/detector priority.  The nested loops are required to maintain the order of
processing.

4.4 CPA IMPLEMENTATION DETAILS

Appendix 1 gives details of the classes used to implement the CPA: CPA, Sensor, Buffer,
Detector, Matcher, Tracker and Percept.  Chapter 5 provides a full example of a CPA-based system,
and Chapter 6 provides several examples that illustrate various facets of its behavior.

                                                     
2 This is somewhat equivalent to what occurs when a person moves through a room after turning out the lights.  The
relative position of objects is estimated based on the last known position.
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1. Sensin g.

A. Sort the sensors using the sensor prioritization function.

B. Read a percept from each sensor buffer that contains data.

The percept order should reflect the relative sensor priorities.

2. Prio riti zation.

A.Sort the active trackers and detectors using the 

prioritization functions.

3. Tra ck ing.

A. Calculate the total time available for tracking, based on the

time bound and the percentage of time allocated to tracking.

B. For each percept p from 1B,

  For each tracker t,

    If tracking time has expired,

      End Step B

    Else if sensor(p) is in sensors(t),

      NewPercepts ← (trackingFunction(t))(p)

    FocusSet.add(NewPercepts).

C. while tracking time is available,

  For each tracker t not called in Step B,

    NewPercepts ← (trackingFunction(t))(NIL)

    FocusSet.add(NewPercepts).

D. For each tracker t not called in Steps B or C,

    skipped(t).

4. De tection.

A. Calculate the total time available for detection.  There may

be extra time available if the trackers did not use all of th eir

tracking time.

B. For each percept p from 1B,

  For each detector d,

    If detection time has expired,

      End Step B

    Else if sensor(p) is in sensors(d),

      NewPercepts ← (matchFunction(d))(p)

    FocusSet.add(NewPercepts).

C. If there is time left, call the default detector on any percept

that was not accepted by any detector or tracker.

The purpose of this procedure is to add new percepts to the focus set, under conditions that the
contents of the focus set are both (a) current and (b) concurrent.  Any changes to the above procedure
should satisfy these two conditions.
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Chapter 5: An example: Robot Navigation
This chapter presents a detailed example that uses the CPA in a robot navigation problem.  At the end

it presents in brief form a second, completely different example that uses the CPA to scan newsgroup
articles.  The specific procedures used here for robot navigation and object recognition are instances of
existing methods, e.g. [Kortenkamp, et al., 1998].  The intent is to illustrate perception management using
the CPA and not necessarily to describe the best possible methods for navigation or object recognition.

Robot navigation is a difficult problem for many reasons.  Physical control of the robot’s speed and
direction is governed by mathematical models that must work within a system that does not have
continuous access to sensor data.  Sensing the environment with sufficient detail and precision is an even
more difficult problem.  The position of a wall or door as detected by sensors contains uncertainty due to
sensor error and limitations in the sensor data processing.  This is complicated by relatively large errors in
the robot’s odometry information.  The robot is never exactly sure where it is or where the external
objects are.  Furthermore, the consequences of making a navigation mistake can be disastrous.  Running
an expensive robot into a wall is neither good for the robot nor good for the wall.

This chapter discusses the perceptual problems of robot navigation in the context of a specific
example and how navigation can use a general-purpose attention mechanism, the CPA described in
Chapter 4, to manage multimodal perception.  This chapter illustrates how the problem can be addressed
in our general-purpose framework without losing the efficiency of handcrafted, low-level solutions.

5.1 A ROBOT NAVIGATION PROBLEM

In this example, a robot navigation system is directing a robot down a hallway, intending to stop at a
certain door.  It navigates by locating the hallway walls and following a path between the two walls.
Additionally, it must avoid any obstacles in its path.  In this example, we are using the Flat robot
simulator [Flat, 2000], although the implementation would be nearly identical for a real robot with a
similar interface3. Flat simulates a robot in a 2-dimensional world.  It simulates not only the physical
movement of the robot, but several sensors, including laser rangefinders, sonars, and an absolute
positioning system.  The configuration used for this example assumes two laser rangefinders, one on each
side of the robot mounted at a 45° angle outward from the center of the robot.  This provides
approximately a 270° scan around the robot at 1° resolution for a distance of 25 meters.

Figure 8.  A rangefinder scan showing line segments (left) and raw data (right).

                                                     
3 To ease the process of transferring navigation routines from the simulator to a real robot, the software in our lab
utilizes an interface layer that provides identical functionality in both the simulator and the real robots.
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Figure 8 above shows a single scan from a robot with dual rangefinders.  The scan is an overhead
view; the robot is the black dot in the lower middle of each display and the robot’s current direction is
always toward the top of the window.

Line segments extracted from the data are shown on the left side, while the raw scan from the right
rangefinder is shown on the right side.  (The two scans have a 90° overlap, so one scan is sufficient to
view most of the environment.)  To the human eye, the presence of a hallway is fairly obvious in the set
of line segments, as is the doorway on the right side of the hallway.

5.2 TOP-DOWN FORMULATION OF PERCEPTION TASKS

Perception provides the robot with information about the external world.  The robot uses that
information along with its internal behavioral goals to initiate, alter or terminate actions.  In addition to
behavioral goals, the robot will have perceptual goals.  For example, in order to go to a specific room in a
building, the robot has to detect and identify the room.  On its path to the room, it will need to recognize
other objects such as corridors and elevators that help it to determine its position.  If the robot were to
scan for all known objects at all times, the set of perception tasks would be overwhelmingly large.  Thus,
the perceptual goals are typically determined at a high level and passed down to the perception
mechanism as needed.  This is known as top-down attention [Posner and DiGirolamo, 1998].  The robot
may have a few important perception goals that are active all the time, such as general obstacle detection,
but most perception goals are initiated from the cognitive part of the system.

This section discusses methods that a system can use to instantiate detectors and trackers from
perceptual goals.  These have been implemented in a prototype system but were not used in the detailed
examples of the next chapter.

5.2.1 Using spreading activation to find relevant objects
A general-purpose spreading activation process can collect a set of relevant concepts from memory.

This section describes such a process that collects objects into a structure called the SACK (Set of
Activated Concept Knowledge).  Perceptual features of the objects in the SACK are used to create
detectors and trackers.

A simple form of spreading activation [Anderson, 1984] can be used to activate relevant concepts
based on a set of primary concepts contained in the current set of high-level goals (strategies).  For
example, the goal Go through the door contains the noun door which has perceptual characteristics,
so it would be placed in the SACK as a primary concept.  Once the primary concepts have been collected
in this manner, secondary concepts are then activated from the primary concepts using spreading
activation.  For a door, related secondary concepts might be doorknob, doorframe and wall.  The
activated concepts provide perceptual schemas or templates that are used to instantiate detectors or
trackers.

As the agent’s plan evolves, concepts can be added and removed from the SACK according to the
algorithm below.  Let G be the current set of behavioral goals, and P be the objects in the goals that have
perceptual characteristics.  Each element of the SACK has two components: an object and its activation,
which we will represent as (o, a), where 0 <= a <= 1.  Let the activation function f be a function such
that f(x) < x.

1. Update the set of active behavioral goals G, and the related set P.

2. Initialize the SACK using the set P, with the activation of each object set to 1:  SACK = {(pi, 1) |

pi in P}.

3. For each concept c in the SACK,
  Activate(c.object).

The Activate function computes a transitive closure of relevant objects over the set of perceptually
relevant relations.  The algorithm terminates when the activation level of an object drops below a defined
minimum, MIN_ACTIVATION.
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Activate(c):

For each relevant relation r on c.object,
     Let w = r(c.object)
     If w is already in the SACK,

        Activation(w.object) =
           max(activation(w.object), activation(c.object))

     Else
        a = f(Activation(c.object))
        If Activation(w.object) > MIN_ACTIVATION,
           SACK = SACK + (w, a)
           Activate(w).    ;; Recur on the new object.

The set of relevant relations in Step 3 includes spatially relevant relations such as near and part-of,
that are used to find related perceptual objects for spreading activation.  This requires a rich set of
knowledge about perceptually observable objects.  The spreading process ends at each object whose
activation is below a threshold level.  The activation must decrease at each successive recurrence in order
to ensure termination of Step 3.  Step 3 takes O(kd) time, where k is the average branching factor of the
spread, and d is the depth of the spread.  The branching factor k increases as the number of perceptually-
relevant relations increases.  The depth d is related to the activation function f and the value of
MIN_ACTIVATION.

Once the SACK is constructed, the perceptual features of the objects in the SACK are retrieved and
used to direct perception.  For example, if office-door is in the SACK, its features size, color and
location can be used to construct trackers.

In summary, the SACK is a network of concept knowledge whose roots are in the current plan and
whose contents change as the behavioral goals of the robot change.  This allows the SACK to focus the
attention of the low-level perceptual system on perceptual tasks related to current goals.   

5.2.2 Perception templates and schemas
A simpler, but less flexible, method of collecting perception tasks uses perception templates in order

to recognize a specific object.  For example, many doors look alike and are differentiated by minor
perceptual details.  A door template specifies the typical size, shape and color of a door.  When a specific
door needs to be recognized, its perceptual details are retrieved from a knowledge base and combined
with the door template to produce a description that a detector can use to recognize a door.  Since the
robot has many sensors, different templates will be instantiated depending on which sensor(s) are utilized
for the perceptual task.  Although the detectors used in the examples of this dissertation use one specific
sensor, a sophisticated system with active sensors will need a sensor planning module to allocate sensors
to perceptual tasks.  Active sensors can be directed in response to perceptual goals.  For example, if a
camera is being used to track an obstacle on the left side of the robot, it can not be used to detect a
doorway on the right side of the robot.

Individual perceptual templates are useful when perceptual knowledge is relatively sparse.  But some
knowledge bases may have much more perceptual information.  For example, a hallway is a visually
complex scene consisting of doors, walls, lights, floors, nameplates, branching corridors, trash cans,
pedestrians, light switches and many other things.  A naïve perceptual template for a hallway would
generate too many perception tasks for the system to process.  In this case it would be better to use a
perception schema to specify a subset of the perceptual characteristics that are to be used to detect the
object.  While a template specifies important features of objects, a schema specifies a set of objects and
the templates to use for those objects.  The use of schemas should significantly reduce the perceptual cost
for complex objects.  A potential drawback of both templates and schemas is the possibility that the set of
templates and schemas is incomplete.
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5.2.3 Retrieval using viewpoints
In a situation where schemas or templates are not available or feasible, a knowledge base retrieval

method based on viewpoints [Acker and Porter, 1994] could be used to collect a set of relevant objects
based on dynamic goal-related criteria.  Using a perceptual viewpoint to perform a memory retrieval will
retrieve only (or mostly) objects relevant to perception.  A viewpoint is similar to the schemas discussed
above, but can be more abstract and more dynamic, and thus applicable to more tasks.  Constructing the
viewpoint templates is apparently the most difficult part of the process.  It is possible that these could be
dynamically generated by a "viewpoint expert".  Further research in this area will determine how
applicable this approach is to the attention problem.

5.2.4 Relevance to high-level attention goals
Section 2.6 lists four characteristics of human attention that are important for high-quality attention.

They are: sustained attention, the ability to set perceptual goals and maintain them over time; selective
attention, the ability to selectively filter input based on features such as color, size and shape; divided
attention, the ability to pursue multiple perceptual goals in parallel; and top-down control , the ability to
control perception based on high-level goals.  The mechanisms described in this section, especially the
SACK-based mechanism of Section 5.2.3, support all four of these characteristics.

In the SACK algorithm described in the previous section, perceptual goals are in effect as long as
their corresponding behavioral goals are active, which is sustained attention.  The templates and their
associated detectors provide selective attention.  The ability to activate multiple detectors and trackers
provides divided attention.  And the template, schema and spreading activation methods of producing
perceptual goals all provide top-down control.  I conclude that the CPA, in conjunction with top-down
generation of perceptual goals, provides all of the key characteristics of human attention, and thus a solid
foundation for general-purpose computational perceptual attention.

5.3 SENSORS

The Flat robot simulator provides several simulated sensors.  In this example we will use absolute
positioning and laser rangefinder information.  In addition, we will use several streams of processed
rangefinder data, including jumps (discontinuities in the data), line segments, blobs (clumps of
rangefinder readings) and the robot’s linear and angular velocities as determined from the readings of the
absolute positioning sensor.  The latter are provided by a set of utilities collectively known as the dead-

reckoning.

5.3.1 Absolute positioning
The Flat simulator provides the absolute position and orientation of the robot in the simulated world4.

The difference between successive readings can be used to determine the robot’s linear and angular
velocities.  The system needs velocity information in order to predict the future position of objects based
on their last observed position and the robot and object velocities.  Flat is able to send position
information at most every 100 milliseconds.  In this example, let’s assume that the navigator needs
updated position information every 200 milliseconds (0.2 seconds).

First we’ll define a class (see Figure 9) to represent the speed and position information calculated
from the position information.

Next, we’ll define the sensor that collects the position information from Flat and creates the incoming
percepts.  First, we create the position sensor (see Figure 10).

Next is the function to acquire position readings and create a position percept (see Figure 11).  This
function is used in the position sensor to acquire data and convert it to a percept.

                                                     
4 A real robot usually provides odometry readings, which are much less precise than absolute position information.
However, at this time Flat does not provide standard odometry data.
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T-position-percept   

  Pos ;; position (x y)
  Orientation ;; angle (degrees)

  Linear-velocity ;; meters/sec
  Rot-velocity ;; degrees/sec

Figure 9.  Contents of a position percept.

(make-instance ‘T-sensor
  :name “Position sensor”

  :cpa    cpa
  :priority priority

  :generator-fn   #position-perception
  :generator-args  nil))

Figure 10.  Creating a position sensor.
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(defun position-perception (sensor &OPTIONAL

    (interval 0.2))
  "Produces a list of (position linear-velocity rot-velocity).

Converts to meters."

  (let ((position  nil)
         (stream    (output-stream sensor))

         (data       nil))

    (loop
      ;;   "Returns (time x y z theta)  sec,mm,mm,mm,degrees"

      (setq data (cdr (get-robot-reckoning-position "Spot”)))

     ;; We reflect across the X-axis to convert
      ;; the readings into a standard egocentric coordinate system.

      (when data
           (setq position

                  (make-instance 'T-position-percept
                       :pos    (make-instance ’T-point-2d

:x (/ (first data) 1000.0)
:y (/ (- (second data)) 1000.0))

                       :orientation      (fourth data)
                       :linear-velocity  (/ (second

(get-robot-reckoning-v
 "Spot"))   1000.0)

                       :rot-velocity     (- (/ (second
(get-robot-reckoning-w

"Spot"))   1000.0))))
      (store stream

                (make-instance 'T-percept
 :cpa           (cpa sensor)

 :sensor        sensor
 :timestamp  (get-time-milliseconds)

 :value         position
 :tag           :POSITION)))

       (sleep interval))))

Figure 11.  Creating position sensor percepts.

Finally, we create a simple match function for the position detector.  This function matches any
position input so that it can be placed in the focus set and made available to other system components.

(defmethod position-match-fn
    ((matcher T-matcher) (percept T-percept) (detector T-detector)
     max-detection-time)

  (declare (ignore max-detection-time))

  ;; Always matches the position input.
  (instantiate percept detector *high-priority* :POSITION))

Figure 12.  A match function for odometry.
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5.3.2 Line segments from laser rangefinder data
The laser rangefinders in our robots (both simulated and real) provide both raw and processed data.

One of the types of processed data consists of line segments extracted from the raw data.  To the human
eye, it is obvious which parts of the data form line segments, but it is non-trivial to compute them from
the raw data [Guil et al., 1995].  In this example, we treat line segments as a separate sensor stream.  The
simulator will provide segments every 0.3 seconds.

As in the odometry sensor above, we’ll first create a percept type to hold the line segments.  The
segments-percept contains the line segments as computed by the simulator, the same set of line segments
converted to the robot’s coordinate system, and the robot position at the time the segments were
produced.

T-segments-percept   
  Raw-segments

  Converted-segments
  Robot-pos

Figure 13.  Contents of a line-segments percept.

(defmethod segment-match-fn-with-display

    ((matcher T-matcher) (percept T-percept) (detector T-detector)
     max-detection-time)

  (declare (ignore max-detection-time))

  ;; Always matches the set of segments input.
  (instantiate percept template *high-priority* :SEGMENTS)

  ;; Send the line segments to a display.

  (display-segments percept)
  )

Figure 14.  A match function that also interfaces with a display.

The simple match function in Figure 14 is essentially identical to the position-match-fn shown
above.  In addition, the match function can be used to direct segments to a display as part of the user
interface.  Since all segments pass through the match function, it is an ideal place to add a call to a display
function.

The function to retrieve laser segments has many parameters that control how line segments are
extracted from the data.  These parameters are passed into the rangefinder-segment-perception

function, which collects the returned line segments and creates a percept.
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(defun rangefinder-segment-perception

     (sensor min_theta max_theta k_max_distance
      k_discontinuity_thresh k_squid_window_size

      k_squid_window_std_dev k_colinear_range_thresh
      k_colinear_theta_thresh k_colinear_contig_thresh

      k_min_segment_length k_use_filter k_filter_window_size)

  (let ((segments       nil)  ;; from the sensor
(raw-segments  nil)  ;; same data, but in object form

(stream           (output-stream sensor))
)

    (loop
      (setq segments

(get-laser-segments min_theta max_theta k_max_distance
                  k_discontinuity_thresh k_squid_window_size

                  k_squid_window_std_dev k_colinear_range_thresh

                  k_colinear_theta_thresh k_colinear_contig_thresh
                  k_min_segment_length k_use_filter
                  k_filter_window_size))

      (when segments

(setq raw-segments (make-segment-objects segments))
(store stream

       (make-instance 'T-percept
 :cpa        (cpa sensor)

 :sensor     sensor
 :timestamp  (get-time-milliseconds)

 :tag        :SEGMENTS
 :value      (make-instance 'T-segments-percept

       :raw-segments raw-segments
       :converted-segments

                                      (fix-flat-segments-2d raw-segments)
       :robot-pos

       (fix-position
(cdr (get-robot-reckoning-position

      (flat-data-robot-name *robot-state*))))
       ))))

      (sleep 0.4)

      )))

Figure 15.  Perceiving laser rangefinder segments.

5.3.3 Blobs from laser rangefinder data
A blob is defined as a set of points that are near each other but collectively far from other data points.

Parameters control the formation of blobs by setting minimum and maximum values for size, maximum
distance between the blob’s points and minimum distance of the blob from other readings.  The blob
perception is almost identical to line segment perception, the major difference being a call to get-laser-

blobs instead of get-laser-segments.  Some objects that form blobs in the laser data include table and
chair legs, human legs, lamp stands and smallish objects like robots and computers when seen from
certain angles.
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5.3.4 Doorways from laser rangefinder data
The laser rangefinder module provides a quick, but error-prone, method for detecting the possible

presence of a doorway in the rangefinder field of view.  It is based on the presence of a discontinuity, or
jump, in the rangefinder data. At a doorway, the rangefinder readings will suddenly increase as the
rangefinder beam sees through the doorway into the room or corridor beyond.  This quick detection
method has a high false positive rate, but a negligible false negative rate.  We will use this test as a quick
doorway detector, but the associated tracker will use a more accurate test involving line segments.  The
sensor to retrieve a list of possible doorways is nearly identical to the blob and segment sensors.  The
low-level function it calls is get-laser-doorways.

The figure below shows the sensor streams and object detectors in the system.  The object detectors
are described in the next section.

Abs Position

Laser Rangefinder

Simple Doorways

Blobs

Line Segments

Doorway

Hallway

Obstacle

Sensors Detectors

Figure 16.  Sensor streams and object detectors in the system.

5.4 OBJECT DETECTORS

For this example, we need several detectors: a wall detector, a doorway detector, a box detector and a
blob detector.  First, we will create a couple of simple detectors that cause line segments and blobs to be
displayed on the user interface as they are processed.  These are shown in Figure 17 below.

As an example of a more complex detector and tracker, the door detector is presented below.  It is one
of the most complex detectors developed so far.  The other detectors are similar in that they detect and
track objects based on characteristics of one or more line segments or blobs.

5.4.1 A doorway detector and tracker
To detect doorways, we’ll use two different methods.  The laser rangefinder module provides a

method for detecting doorways that is quick but also produces many false positives.  We will use this
method in the detector, but the tracker, which must be more accurate, will use a slower but more accurate
method that examines line segments.  First, we need a matcher:
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(setq segment-matcher
  (add-matcher *my-cpa*

       (make-instance   'T-matcher
 :name            "segment-display-matcher"
 :cpa               *my-cpa*

 :match-fn       #'segment-match-fn-with-display)))

 ;; This matcher gets all the blobs and displays them
 ;; on the Flat display.

(setq blob-matcher
  (add-matcher *my-cpa*

       (make-instance   'T-matcher
 :name            "blob-display-matcher"
 :cpa               *my-cpa*
 :match-fn       #'blob-match-fn-with-display)))

(setq segment-detector
  ;; This detector triggers on any segment input
  ;; and sends it to the display.
  (make-instance   'T-detector
    :name          "Segment display"
    :cpa             *my-cpa*
    :sensor          segment-sensor
    :priority        1.0
    :matcher       segment-matcher))

(setq blob-detector

  ;; This detector triggers on any blob input
  ;; and sends it to the display.

  (make-instance   'T-detector
    :name             "Blob display"
    :cpa                *my-cpa*
    :sensor            blob-sensor
    :priority          1.0
    :matcher          blob-matcher))

Figure 17.  Simple detectors that display blobs and segments.

Usually, the robot is looking for a specific doorway and knows whether it is on the right side of the
hallway or the left side.  A design decision is whether to distinguish between the right-side and left-side
doorways in the matching function or whether to make the distinction at the detector level.  If
distinguished during matching, the two categories of doorways will be available to all detectors, possibly
eliminating duplicate code in detectors, so we will use the matcher to do a quick check that determines
which side of the hallway the doorway is on.  The figure below shows a left-side doorway match function.
It uses a simple doorway detector based on large jumps in the rangefinder data, as described earlier.  The
percept contains the angle of the jump and the distance to the jump.



31

;; Uses a tracker
(defmethod simple-left-side-doorway-match-fn
    ((matcher T-matcher) (percept T-percept) (detector T-detector))

  (let ((data (value percept)))

    (when (and (>= -25.0 (angle data) -110.0)
   (not (angle-masked-p detector (angle data))))

        (track percept detector *high-priority* :LEFT-SIDE-DOORWAY)

        )
      )
    )

Figure 18.  A matcher function for left side doorways.

Note that this match function activates a tracker by using the track method rather than the
instantiate method used in previous examples.  Also, since it uses a tracker it checks to see whether a
mask has been set on the doorway position before creating a tracker.  This prevents a pathological
situation where a detector repeatedly instantiates trackers for the same object.  In this case, the mask is an
egocentric angular range that covers the expected location of the doorway.  It is adjusted each time the
tracker is called.

The track method creates a tracker, which is a subclass of detector.  In this case, it will create an
instance of doorway-tracker, shown below.  A doorway tracker is a subclass of tracker with two
additional doorway-specific fields.

T-doorway-tracker   

  Last-doorway-position
  Last-update-time

Figure 19.  The doorway-tracker class.

After the tracker has been created, the CPA will call an initialize-tracker method, at which time the
tracker can initialize itself.  Now that we have some of the tracker foundation laid, let’s look at the
definition of the doorway detector:

 (make-instance   'T-detector

    :name          "Left side doorways"
    :cpa              *my-cpa*

    :sensor           simple-laser-doorway-sensor
    :priority         0.85

    :matcher        left-side-matcher
    :tracking-fn    #’doorway-tracking-fn

    :tracker-type  'T-doorway-tracker
    :mask-fn        #'create-mask-for-doorway

    :sensor-fn       #'(lambda () segment-sensor)
    ))

Figure 20.  A doorway detector.

This detector uses several fields not used in previous examples.  The tracker-type provides the type
of tracker to create for an object.  The tracking-fn performs a function similar to the matcher, but in the
context of a tracker.  The CPA calls the mask-fn of a tracker once every attention cycle.  The sensor-fn
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indicates which sensor stream(s) the newly-instantiated tracker should be linked to.  In this case, the
tracker’s sensor stream (segment-sensor) is different from the detector’s sensor (simple-laser-

doorway-sensor) because the detector uses the simple doorway detector while the tracker uses a more
precise detector based on collinear line segments.  The track method creates a new tracker object, calls
instantiate-tracker and returns the new tracker, which is then added to the CPA.

Finally, let’s look at the tracking function.  As described in Chapter 4, once a tracker is created, its
tracking function is called every attention cycle whether or not there is sensor data available.  If data is
available, the data is checked to see whether the doorway is still visible.  If so, its position and the
uncertainty in the position are updated.

If data is not available, or if the doorway is not visible, its current position is estimated based on the
last known position and the robot’s speed and direction.  Appendix 2 discusses how to estimate the
position of objects when the robot and the object are moving.  In this case, of course, the doorway is
assumed to be stationary.  The doorway estimator contains code to perform the position estimation and to
determine the uncertainty in the estimate.

;;; The article is a list of strings.

(defmethod lisp-match-fn
    ((matcher T-matcher) (percept T-percept)

     (template T-perceptual-template))

  (let* ((data    (value percept))
 (article (article data))   ;; a list of strings

 )

    (when (member-if #'(lambda (line)
 (search "LISP" (string-upcase line)))

     article)
      (instantiate percept template *high-priority* :LISP)

      )
    )

  )

(defmethod initialize-tracker ((this T-doorway-tracker)

                                        (percept T-percept))
  "Initialize the tracker after creating it."

  ;; Percept has (theta jump-size) for a doorway

  ;; theta is in degrees.
  (setf (last-update-time       this) (timestamp percept))

  (setf (last-doorway-position this) nil)
  (setf (sensor this)                     *segment-sensor*)

  (setf (uncertainty this)              0.0)

  ;; Set a mask.
  (let ((angle (- (car (value percept)))))

    (add-mask (detector this) this (list (- angle 15.0)
                   (+ angle 15.0))))

  (resume *segment-sensor*))

Figure 21.  The initialize-tracker method for the doorway tracker.

;;; The article is a list of strings.

(defmethod lisp-match-fn
    ((matcher T-matcher) (percept T-percept)

     (template T-perceptual-template))

  (let* ((data    (value percept))
 (article (article data))   ;; a list of strings
 )

    (when (member-if #'(lambda (line)
 (search "LISP" (string-upcase line)))

     article)
      (instantiate percept template *high-priority* :LISP)

      )
    )

(defmethod doorway-tracking-fn

             ((this T-doorway-tracker) (percept NULL) id time)
  "Uses the percept to update the location, or creates a
virtual percept if none is provided.  Returns the instantiated percept

so it can be placed in the Focus Set.
Time is in ms."

  ;; if the uncertainty is too high, we may have lost

  ;; track of the data.  If so, deactivate the tracker.
  (when (> (uncertainty this) *uncertainty-limit*)

    (remove-tracker (cpa this) this)
    (return-from DOORWAY-TRACKING-FN nil))
  ;; otherwise, estimate the doorway’s position at this time

  (estimate-doorway-position this id time))

Figure 22.  The doorway-tracking-fn method for a NIL percept.
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;;; The article is a list of strings.

(defmethod lisp-match-fn
    ((matcher T-matcher) (percept T-percept)

     (template T-perceptual-template))

  (let* ((data    (value percept))
 (article (article data))   ;; a list of strings

 )

    (when (member-if #'(lambda (line)
 (search "LISP" (string-upcase line)))

     article)
      (instantiate percept template *high-priority* :LISP)

      )
    )
  )

(defmethod doorway-tracking-fn ((this T-doorway-tracker)

                                             (percept T-Percept) id time)
  "Uses the percept to update the location, or creates a

virtual percept if none is provided.  Returns the instantiated percept
so it can be placed in the Focus Set."

  ;; calculate the doorway position based on data.
  (setq doorway (find-doorway-in-segments this percept id time))

  (cond (doorway
               (instantiate
                  (make-instance 'T-percept

                    :cpa    (cpa this)
                    :sensor (sensor percept)

                    :timestamp  (get-time-milliseconds)
                    :value  (list doorway-angle (/ doorway-dist 1000.0)))

                  this *high-priority* :TRACKED-DOORWAY)))

           (T     ;; If we get here, we didn't find the doorway.
             ;; if we don't have a last-doorway-position, then

             ;; the possible doorway was a false alarm.
             ;; If so, delete this tracker.

             (cond ((null (last-doorway-position this))
                       (remove-tracker (cpa this) this)
                       )

                       (T    ;; Otherwise, call the estimator
                          (doorway-tracking-fn this nil id time))))))

Figure 23. The doorway-tracking-fn method for real percepts.

5.5 NAVIGATION

The previous sections have described the sensors, detectors and trackers needed for robot navigation.
To put it into action, we create an instance of the CPA as described at the end of Chapter 4 and set its
timebound to 100 milliseconds.  The navigation system can then retrieve an updated focus set every 100
milliseconds and use the contents in order to control the robot’s motion.  It uses the wall percepts to guide
the robot’s path down the hallway and the doorway percepts to determine a stopping point.  As it detects
obstacles, it must maneuver around them, and it can stop at fuel stations to recharge its batteries.

As discussed in Chapter 1, high-quality robot control requires very short perceptual latencies.  In this
example, we set a time bound of 100 milliseconds in order to produce high-quality control.  However, the
sensors do not provide input that fast, so the trackers need to have high-quality position estimators to
support the controller.

5.6 SETTING THE ATTENTION POLICY

Chapter 6 discusses how to measure the performance of perception, which is affected by the attention
policy or policies in effect during a task.  Normally, a task will make several adjustments to the attention
policy while it is being performed.  The parameters of the attention policy were discussed in Section
4.2.5.  The table below provides appropriate values for the attention parameters of this problem and
briefly discusses the reasons behind each choice. Section 6.6 discusses ways to tune the attention policy if
perception-related problems arise.



34

Time bound 100 milliseconds Must be short; perceptual
latency affects robot control.

Focus strength 0.6 Too high a value risks
ignoring unexpected input.

Detection % 20% Detectors are fast in this
example; don’t need much
time.

Sensor priority 1.0 All sensors are equally
important.

Detector priority Obstacles: 0.95
Walls:  0.9
Doorways: 0.8
Boxes: 0.4

Can’t afford to hit anything,
but can always back up to find
a door.

Prioritization
functions

priority(x)
   × uncertainty(x)

For detectors, just use the
detector priority.  For trackers,
use this equation.  As an
object’s uncertainty rises, its
tracker acquires a higher
priority.

Table 1.  Suggested values for the attention policy parameters.

5.7 A SECOND EXAMPLE: A NEWSGROUP SCANNER

As another example, and to illustrate the flexibility of the attention mechanism, this section includes a
completely different kind of application.  The application searches newsgroups for job postings that
mention Java or LISP.  The sensor in this application reads messages from several *.jobs newsgroups.  A
percept is an entire message, stored as a list of strings, one line per string.  Two detectors search for
messages containing keywords such as “Java” and “LISP”.  The task is to find and print the articles
containing relevant jobs.  The first figure presents the match function from the matcher.  The second
figure presents the perception routine, which relies on a small set of functions to access articles via the
NNTP protocol.  The third figure presents the top-level application that uses the focus set to list relevant
articles.

The match function below finds articles containing the word “LISP”.  Matchers for other keywords or
sets of keywords would be nearly identical to this one.

;;; The article is a list of strings.

(defmethod lisp-match-fn
    ((matcher T-matcher) (percept T-percept)

     (template T-perceptual-template))

  (let* ((data    (value percept))
 (article (article data))   ;; a list of strings

 )

    (when (member-if #'(lambda (line)
 (search "LISP" (string-upcase line)))

     article)
      (instantiate percept template *high-priority* :LISP)

      )
    )

;;; The article is a list of strings.

(defmethod lisp-match-fn
    ((matcher T-matcher) (percept T-percept)

     (detector T-detector))

  (let* ((data    (value percept))
 (article  (article data))   ;; a list of strings

 )

    (when (member-if #'(lambda (line)
 (search "LISP" (string-upcase line)))

     article)
      (instantiate percept detector *high-priority* :LISP)

      )))

Figure 24.  The match function for messages containing “lisp”.
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(defun newsgroup-article-perception (sensor newsgroup-token)

  "TOKEN is a string which will be used to find
newsgroups.  Examples are \"jobs\" or \"mac\"."

  ;; Reads an article every 0.25 seconds.

  (let ((newsgroups   nil)
(max-article  0)

(min-article  0)
(group        nil)

(article      nil)
(stream       (output-stream sensor))

)

    (open-news "newshost.cc.utexas.edu")
    (setq newsgroups (filter-newsgroups (news-list) newsgroup-token))

    (close-news)

    (dolist (newsgroup newsgroups)
      (multiple-value-setq (group min-article max-article)

(parse-newsgroup-info newsgroup))

      (when (> max-article min-article)
(format *standard-output* "~2%Opening ~a, ~d articles"

group (1+ (- max-article min-article)))
(open-news)

(get-article-range group)
(loop

  (setq article (get-article))
  (store stream

 (make-instance 'T-percept
   :cpa        (cpa sensor)

   :sensor     sensor
   :timestamp  (get-time-milliseconds)

   :value      (make-instance 'news-article-percept
 :group    group

 :article  article)))
  (unless (next-article)

    (return))
  (sleep *newsgroup-article-sleep-time*)

  )
(close-news)

)))

  (format *standard-output* "~2%Done with newsgroups"))

Figure 25.  The perception function for the newsgroup scanner.
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(defun job-scanner ()

  (let ((articles       nil)

(lisp-articles  nil)
(java-articles  nil)

)

    (loop
      (setq lisp-articles  nil)

      (setq java-articles  nil)
      (setq articles (focus *my-cpa*))  ;; retrieve the focus set

      (setq java-articles

(remove-if-not #'(lambda (article)
   (eq (tag article) :JAVA))

       articles))

      (setq lisp-articles
(remove-if-not #'(lambda (article)

   (eq (tag article) :LISP))
       articles))

      (when lisp-articles
(format *standard-output* "~%LISP: ~{ ~a~}" lisp-articles))

      (when java-articles

(format *standard-output* "~%JAVA: ~{ ~a~}" java-articles))

      (when (or lisp-articles java-articles)
(terpri *standard-output*))

      (sleep 0.3)

      )
    )

  )

Figure 26.  The job scanner application.
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Chapter 6: Measuring Perception Performance
Chapters 4 and 5 describe and discuss various facets of the attention mechanism, including attention

policies and how they can affect perception.  This chapter discusses a method of measuring the quality of
an attention policy while a task is in progress and methods for using the measure to learn or fine-tune an
attention policy.  This measure, called the Q-measure, evaluates the performance of perception for a given
task.  Since perception is managed by attention, the Q-measure is a useful measure of the quality of the
attention mechanism.

Attention, as defined in this thesis, involves receiving sensor data, detecting and tracking objects that
are contained in or computed from the sensor data, and filtering and prioritizing the resulting percepts.
The best measure of the quality of attention would be one that compares the resulting prioritized list of
percepts with a correctly prioritized list.  However, the correctly prioritized list is difficult to define, and if
we could define it and compute it efficiently we wouldn’t even need an attention mechanism.

Another good measure is one that compares the set of objects that are detected or tracked against the
desired set of objects.  In a completely known world this provides an accurate quality measure.  We can
set up experiments in which the world is completely known, and use this measure to get an accurate
evaluation of the quality of different attention policies.  Even if the world is not completely known, this
measure can be approximated.  The Q-measure defined in this chapter is based on the ratio of detected
objects to desired objects.

6.1 THE Q-MEASURE

The Q-measure defined in this section is a measure of the perceptual system’s performance on a given
task at a given time.  For simplicity, we will drop the parameters and refer to it as simply Q.  The table
below lists the variables used in the formulas of this chapter.  Nd is the number of objects to detect.  In a
controlled environment, this can easily be determined.  In a real-world task, this can be determined either
from the number of active detectors or estimated from a model of the environment and the task.
Similarly, Nt is the number of objects to track.  The variables d and t represent the number of objects
actually detected and tracked, respectively.

Nd Number of objects to detect.
Nt Number of objects to track.
d Number of objects detected.
t Number of objects tracked.

Table 2.  Values used when computing the Q-measure.

A simple form of the Q-measure is the ratio:

Q =
d + t

Nd + Nt

(1)

but that formula is limited in that it measures the quantity of perception, but not the quality.  Each tracker,
and in some cases each detector, measures the uncertainty in the characteristic (location, color, etc.) that it
tracks.  An object being tracked with a high uncertainty is of lower quality than an object being tracked
with a low uncertainty.   The uncertainty is a strictly task-specific value.  For example, tracking a moving
object requires the robot’s speed and direction of travel, the object’s speed and travel, as well as its
location relative to the robot.  If each of these has associated uncertainties, as is typical, the predicted
position of the object will be an elliptical region.  The area of the region is a measure of the uncertainty in
the prediction, and thus in the ability to track the object.

We’ll define uncertainty as a number from 0 to 1, where 0.0 represents absolute certainty, and
certainty as the value one minus the uncertainty.  We define the certainty sums Cd and Ct as the sum of
the certainties of all objects detected or tracked, respectively.
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Q =
Td + Tt

Vd + Vt

Ct = 1− u(i)( )
i =1

t

∑ ,  where u(i) is the uncertainty in object i.

The Q-measure now becomes:

Q =
Cd + Ct

Nd + Nt

(2)

When all objects are detected and tracked with absolute certainty, this equation is identical to the first
one.

A final modification of the Q-measure takes into account the value of an object.  Valuable objects
tracked with low uncertainty are much more important to a task than low-value or high-uncertainty
objects.  We define the value v of an object to be a number from 0 to 1.  It is typically a function of one or
more of the priority of the sensor(s) that perceived it, the priority of the detector or tracker that is handling
it, or other task-dependent characteristics.  The sums Vd and Vt are computed using a combination of the
objects’ values and certainties using the following formula:

Vt = v(i)
i=1

t

∑ , where v(i) is the value of the object.

Tt = v(i)*(1− u(i))
i=1

t

∑ , where v(i) is the value of the object.

The final version of the Q-measure is now:

(3)

The value of an object will undoubtedly vary in relation to changing goals, so the Q-measure is not
necessarily constant over time for a fixed set of objects and system load.

The following sections contain several experiments that use attention policies to handle different tasks
and use the Q-measure to measure performance.

6.2 EXAMPLE 1: COMPARING THREE ATTENTION POLICIES

As described above, Q-measure can be used to measure the performance of an attention policy.
Assuming that an application has good object detectors and trackers, the primary factor affecting
perception quality is the amount of time available for perception.  In the experiment described below, a
robot moving into a room must detect and track twenty-two objects.  In three runs described below, the
robot uses three different attention policies while the Q-measure is recorded.  The first policy is a default
policy, where perceptual tasks are executed in the order received.  This is unlikely to be a good policy for
most applications.  The second policy prioritizes detectors and trackers using their overall importance,
and for trackers combines this with their uncertainty in the location of objects they are tracking.  This
results in much better quality perception under load.  The third policy processes the detectors and trackers
in a generic round robin fashion.  The perception quality using this method is between that of the other
two policies.



39

Figure 27.  Test environment containing twenty-two objects.

In the experiment, the robot is placed at the lower edge of the room shown in Figure 27 above.  It
moves upward into the room, gradually emerging from the narrow corridor so that all of the objects are
visible.  There are two types of objects in the room, boxes and balls.  In this experiment, both types of
objects have the same priority.  The simulation is running in the Flat robot simulator: the room is 20
meters on each side, the boxes are 1 meter square, the balls are about the same diameter as a human leg,
and the robot is about half a meter in diameter.

In this example, detectors have no uncertainty and trackers have an uncertainty that increases linearly
on each attention cycle in which sensors provide no data about the tracked object.  When data arrives and
the tracker can “see” the object again, the uncertainty is reset to zero.

As the robot moves out of the corridor and into the center of the room, it gradually detects and tracks
each of the objects in the room.  The Q-measure begins near 0, then moves toward 1.0 as the robot
gradually perceives all of the objects.  The experiment then artificially increases the time required to
perform perception operations in order to simulate increased perceptual load.  Perception loads of 2, 4, 6,
8 and 10 times normal are simulated, with each phase lasting 8 seconds.  The perception load then returns
to normal.  The only difference in the two runs is the attention policy.
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Figure 28.  Tracking under heavy perceptual load.

Figure 28 shows the tracking display for this application as it appears when the system is under 8
times normal load.  The left side shows the line segments and blobs that have been detected,
superimposed on the rangefinder data.  The front edges of the boxes are clearly visible and the circles
indicate blobs.  Note that two of the box edges, denoted by the larger circles, are also blobs.  These are
not confused with the balls in the room because they are larger than the known size of a ball.  The right
side of Figure 28 shows the location of tracked objects, denoted by circles, superimposed on the
rangefinder data.  It shows that although the sensors are detecting all 22 objects, the system only has time
to track 6 objects with a 100ms timebound.

6.2.1 Run 1: a simple attention policy – no prioritization
The simplest attention policy maintains a list of detectors and trackers, and allocates time to them in

the order they happen to appear on the list, until time is exhausted.  The graph in Figure 29 shows the Q-
measure over time for this attention policy.  The Q-measure initially reaches a value near 1.0 around cycle
80.  It then decreases in stair steps as the perceptual load increases, returning to a high value at the end of
the experiment when perceptual load returns to normal.  The Q-measure is not constant within each
interval because the sensors are slower than the attention cycle, causing the tracking uncertainty to vary.

As perceptual load increases, the application doesn’t have time to track all the objects and eventually
loses track of all but a handful of the twenty-two objects in the room. Predictably, the performance
decreases drastically as perception load increases.  However, the next section discusses a better attention
policy that maintains a higher quality of perception.
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Performance without prioritization
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Figure 29.  Perception performance without prioritization.

6.2.2 Run 2: prioritization using uncertainties
As described in Chapters 4 and 5, the attention mechanism allows an application to prioritize

detectors and trackers using prioritization functions.  The test described below uses an attention policy
whose prioritization function takes into account the tracking uncertainty.  The sorting order of a detector
or tracker is determined by the product of its priority and its uncertainty.  Under heavy perceptual load,
only a few trackers can be called each attention cycle.  Over time the uncertainty rises in trackers that are
not called.  As the uncertainty rises higher, those trackers rise in the sorted list of trackers until they are
near the top.  When they are called, their uncertainty drops to zero.  This process results in a type of round
robin scheduling where every tracker is called often enough so that all objects can be tracked at a
moderate level of uncertainty.  (A built-in round-robin scheduler would be as effective in this example,
but would not be as effective in general usage because it would not take into account dynamically
changing priorities.  Also, moving objects have a higher uncertainty than stationary objects, meaning the
uncertainties would change at different rates, something a round-robin scheduler is not prepared to deal
with.)  The perception quality rises due to better time allocation within the set of trackers.   The figure
below shows the Q-measure over the course of this run.

The stair step effect is reduced, although the variance at each level increases due to the fluctuating
uncertainties.  As Section 6.2.3 shows, the mean Q-measure in this run is significantly higher than that of
the first run when the system is under load.
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Performance with uncertainty-based prioritization
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Figure 30.  Perception performance with uncertainty-based prioritization.

These two examples illustrate several points.  First, the quality of perception can become quite low
under heavy time pressure.  Second, the quality can be improved significantly by adjusting the attention
policy.  Third, the adjustable parameters of the attention mechanism are sufficient to allow scheduling
rules such as round robin scheduling to emerge as one instance of an attention policy.

Table 3 provides the attention policy settings for this example.

Time bound 100ms (default)
Focus strength 0.8 (default)
Decay rate 0.554  (default)
Detection % 20% (default)
Default detector Default detector
Sensor priorities HIGH: 0.8, LOW: 0.6
Priority of detectors and
trackers

HIGH: 0.8, LOW: 0.6

Prioritization functions Run 1: none
Run 2: p = Mean of the sensor and
                detector/tracker priorities.
        Priority = p × uncertainty

Table 3.  The attention policy for Example 1.

6.2.3 Comparing the two runs
An additional test was performed in which both versions of the experiment were run 40 times.  The

changes in perceptual load were synchronized so that the runs could be overlaid for comparison purposes.
In order to get comparable runs, care was taken to perform a full garbage collection between each run.
This ensured that, although garbage collection was active during each run, it did not consume a significant
amount of processing time.  Also, both the LISP session and the Flat robot simulator were restarted at
least every 4 runs.  The mean Q-measure for each attention cycle, plus the standard deviation and a 99%
confidence interval on the mean were calculated for each of the attention cycles across the 40 runs.  The
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results are shown below.
Figure 31 shows the mean Q-measure for the 40 runs of the default attention policy experiment

described in Section 6.2.1.  The averaged curve is a bit smoother than that presented in Figure 29 for one
run, but it has the same general shape.

Default Attention Policy Means over 40 runs
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Figure 31.  Mean Q-measure across 40 runs using the default attention policy.

Default Attention Policy Means over 40 runs 
with 99% confidence intervals
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Figure 32.  Mean Q-measure with confidence intervals across 40 runs.

Figure 32 presents the same data with error bars indicating 99% confidence intervals on each mean.
As the graph indicates, the confidence intervals are fairly small.

Figures 33 and 34 show the same data for the experiment of Section 6.2.2, which uses a more
sophisticated attention policy.  Again, the mean data reflects the data from the original run shown in
Figure 30.  The mean of the Q-measure values under heavy perceptual load is above 0.4, as opposed to
the mean from the runs using the default attention policy, which was just above 0.2.  The confidence
intervals for the second attention policy are noticeably wider than the confidence intervals for the default
attention policy.  This reflects the greater variability in the Q-measure using that attention policy.
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Uncertainty-based Attention Policy Means over 40 Runs
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Figure 33.  Mean Q-measure across 40 runs using the second attention policy.

Figures 35 and 36 present a combined view of both graphs, for comparison purposes.  In Figure 36,
the 99% confidence intervals are non-overlapping when the perceptual load is 4x or higher.  This shows
that the CPA can be used to implement attention policies that exhibit significantly different performance
under load.  The attention policies in these experiments are just two of the many different types of
attention policies that can be implemented in the CPA.

Uncertainty-based Attention Policy Means over 40 Runs
with 99% Confidence Intervals
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Figure 34.  Mean Q-measure across 40 runs with confidence intervals.
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Default Attention Policy Means over 40 runs
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Figure 35.  Combined graph of mean Q-measure for both experiments.

Default Attention Policy Means over 40 runs 
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Figure 36.  Combined graph with confidence intervals for both experiments.

The next three sections contain simpler examples that illustrate specific behaviors of the CPA.

6.2.4 Using a generic round robin policy
The experiment described above was also performed using a generic round robin attention policy.

Under this policy, if the full set of detectors or trackers was not executed on one attention cycle, execution
on the next cycle resumed at the point it left off.  These results were combined with the results above to
produce the graph in Figure 37.  The corresponding graph with error bars is not presented because the
error bars for the three lines form a nearly continuous region of black bars, rendering the graph
unreadable.
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Attention Policy Means, Multiple Runs
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Figure 37.  Combined graph for all three experiments.

A z-test shows that the round robin policy and the uncertainty-based policy are statistically different
at 142 of the 181 data points (78.5%) and at every point in the interval of highest load.

6.3 EXAMPLE 2: FOCUS ON PRIORITY OBJECTS UNDER LOAD

This example illustrates the capability to prioritize perceptual input and the effect of that prioritization
on the results of perception under heavy perceptual load.  In this example there are two sensor streams.
The objects in one are given a high priority (0.8) by their detector.  The objects in the other have a lower
priority (0.6).  At the start of the run, the system is running at normal load (1x) and an equal number of
objects of each type are present in the focus set (the output of the attention process).

As the run continues, the load increases to 2x, 4x, 6x, 8x and 10x as the system continues to process
objects.  Each phase lasts for 8 seconds, which is 80 attention cycles.  As the table and chart below show,
at a load of 2x, the attention mechanism is able to maintain the same level of performance (7 objects of
each type).  At 4x, however, it can not perceive all of the objects, so it continues to perceive 7 of the high-
priority objects, but the number of low-priority objects drops to 3.  Note that the relative object counts are
a by-product of the prioritization and filtering process prescribed by the attention policy rather than by a
deliberate decision to reduce the number of objects of a certain type.

At a perceptual load of 6x normal, the low-priority objects are rarely perceived.  As the table and
graph below show, the system can occasionally allocate time to perceive one low-priority item.  The
number of objects given in the accompanying table is an average over time, and therefore is fractional.  At
8x and 10x the number of high-priority objects is decreased.  When the load returns to normal, the
system’s performance almost immediately returns to the level achieved at the beginning of the run.  The
system is quite responsive to change.
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Figure 38.  Graph of perceived objects for Example 2.

Perceptual Load Number of high-priority
objects

Number of low-priority
objects

1x 7 7
2x 7 7
4x 7 3
6x 7 0.114
8x 5 0
10x 3 0

Table 4.  Number of perceived objects for Example 2.

The attention policy settings for Example 2 are in the Table 5.

Time bound 100ms (default)
Focus strength 0.8 (default)
Decay rate 0.554  (default)
Detection % 5%
Default detector None
Sensor priorities HIGH: 0.8, LOW: 0.6
Priority of detectors and trackers HIGH: 0.8, LOW: 0.6
Prioritization functions priority = Mean of the sensor and

detector/tracker priorities.

Table 5.  The attention policy for Example 2.

6.4 EXAMPLE 3: HANDLING EMERGENCY INPUT UNDER LOAD

This example illustrates the ability to perceive high-priority sensor input that is only occasionally
received.  This example is based on the same system used in Example 2: one sensor stream containing
high-priority (0.8) data and a second, lower priority (0.6), sensor stream.  A third sensor stream contains
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emergency priority (1.0) data, but only occasionally contains data.
During the example run, the system starts at a 1x load, and 7 objects are perceived from each of the

two standard streams (HIGH and LOW in the chart of Figure 39).  This is the phase labeled “Normal” in
the chart.  After a short time, the system load increases to 4x, which causes the number of low-priority
objects to drop to 3, just as in Example 2.  This is to illustrate responsiveness under load in the next
phase.  In the third, “Emergency”, stage the EMERGENCY stream starts sending output, whereupon the
system immediately perceives 7 objects from that stream (the maximum possible) as well as 3 objects
from the HIGH stream.  The LOW stream count drops to zero since there is no time left to perceive
objects from it.  After the emergency input is finished, the system immediately returns to the previous
state, and then to the original state as the load drops back to 1x.  The chart below shows the behavior of
the system over time.  The attention policy settings for this example are in Table 6.
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Figure 39.  Graph of perceived objects for Example 3.

Time bound 100ms (default)
Focus strength 0.8 (default)
Decay rate 0.554  (default)
Detection % 5%
Default detector None
Sensor priorities HIGH: 0.8, LOW: 0.6,

EMERGENCY: 1.0
Priority of detectors and trackers HIGH: 0.8, LOW: 0.6,

EMERGENCY: 1.0
Prioritization functions priority = Mean of the sensor and

detector/tracker priorities.

Table 6.  The attention policy for Example 3.
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6.5 EXAMPLE 4: ADJUSTING THE FOCUS STRENGTH

This example illustrates use of the focus strength parameter to adjust the activation level of
extraneous input.  As discussed in Chapters 2 and 3, people have varying abilities to ignore input that is
not relevant to the current task(s).  An extreme inability to ignore extraneous input can interfere with task
performance and is called attention deficit disorder.  At the other end of the spectrum is extreme focus,
which is characteristic of autism.  Each of these extremes can be useful at times, but is often a disability to
“normal” processing.  The CPA provides the focus strength parameter to allow extraneous input to be
enhanced or suppressed as required by the current task.

The percepts in the focus set are sorted by activation level so that the cognitive component of the
system can address the most important percepts first without expending resources to determine which are
the most important.  This example shows that by varying the focus strength parameter, the system can
alter the order of percepts in the focus set in order to adjust the system’s sensitivity to unexpected input.

Let’s suppose a multi-sensor robot is moving down a hallway looking for a certain doorway.  It’s
cameras are looking for the doorway, its rangefinder is detecting potential obstacles, its audio input
system is listening for commands and its GPS, sonar and compass systems are producing readings at
regular intervals.  Extraneous input for this task would be anything not related to doorways or obstacles.
If the activation of the extraneous input is too high, the robot might not have time to process doorway
input, and thus miss the doorway.  On the other hand, if it focuses too much on obstacles as detected by
the rangefinder, a close reading by the sonar might be ignored, causing the robot to hit something.  This
example shows how varying the focus strength parameter affects the activation level of extraneous
input

  As in the last example, this example uses three input streams, in this case called HIGH, LOW and
EXTRA.  The system contains detectors for the HIGH and LOW streams, but none for the EXTRA
stream, which is handled by the default detector and tracker.  When the contents of the focus set are
sorted, the EXTRA percepts in the focus set will be ordered according to their activation.  The activation
assigned to percepts by the default detector is (1 – focusStrength), so the system can set the importance
of extraneous input by adjusting the focus strength parameter.

In this example, the focus strength starts out at 0.5, which places the activation of the EXTRA
percepts between that of the HIGH and LOW percepts.  The focus strength is then set to 0.0, 0.2, 0.4, 0.6,
0.8 and 1.0 for five seconds each before returning to the 0.5 setting.  In this system, each stream generates
the same number of percepts.

The graph in Figure 34 shows the results of the test.  This graph, unlike the previous ones, shows the
mean activation of each type of percept in the focus set.  For example, if at some time the focus set
contains three high-priority percepts, the data point for that time is the average of the activations of each
of those percepts.

After an initial phase with default settings, the system is first put under a 2x load to place some load
on the perceptual system.  The mean activation varies little in this phase..  After five seconds, focus

strength changes to 0.0.  In this phase, the activation of the EXTRA percepts is about 0.7, which is
higher than the percepts from the other two streams.  During the remaining phases the focus strength

increases in steps.  The activation of the EXTRA percepts drops in corresponding steps while the
activation of the other percepts remains roughly the same.  By the end of the run, the activation of the
EXTRA percepts is much lower than the other percepts.
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Example 4: Varying Strength of Focus
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Figure 40.  Activation of extraneous percepts varies with focus strength.

The attention policy for this example is in the table below.

Time bound 100ms (default)
Focus strength 0.0, 0.2, 0.4, 0.6, 0.8, 1.0
Decay rate 0.554  (default)
Detection % 5%
Default detector Default detector/tracker
Sensor priorities HIGH: 0.6, LOW: 0.4, EXTRA: 1.0
Priority of detectors and trackers HIGH: 0.6, LOW: 0.64, EXTRA: (1 –

focusStrength)
Prioritization functions priority = Mean of the sensor and

detector/tracker priorities.

Table 7.  The attention policy for Example 4.

6.6 TUNING AN ATTENTION POLICY

This section discusses how to use the available attention parameters to improve an attention policy.
Section 6.1 describes the parameters that affect the Q-measure, which are repeated in the table below.
Section 5.6 lists the attention parameters that can be adjusted.

The attention policy may be modified in order to pursue a task-specific policy such as prioritizing
input from one sensor, or in order to react to a problem such as perceptual overload.  There are a variety
of ways to modify the attention policy or alter a system in some other way to manage the problem.

Several common problems are: mis-prioritization of percepts in the focus set, trackers not called often
enough, too many or too few trackers generated, and too many percepts in the focus set.  There are many
potential remedies within the CPA, including: adjust sensor priorities, adjust detector/tracker priorities,
adjust the detection %, adjust the focus strength, change the prioritization functions and turn off sensors
and detectors.  Outside of the CPA, the system can also adjust by reducing its dependency on high data
rates (e.g. the robot can slow down) or by adjusting sensor data rates.  Below is a discussion of each of the
problems and possible solutions.
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1. High-level tasks are not receiving enough percepts.
A task may perform poorly due to starvation: not receiving enough percepts.  The required percepts
may be in the focus set, but their activation is so low relative to the other percepts that the task is not
always able to process them.  Percept priority can be affected by sensor priority, detector/tracker
priority, time allocated to tracking and the prioritization functions.  If all percepts from one sensor are
mis-prioritized, the sensor’s priority can be adjusted.  Similarly, if all percepts from one detector are
mis-prioritized, the detector’s priority should be adjusted.  If the tracker prioritization function takes
into account its uncertainty, the prioritization function can be changed or the uncertainty calculation
may be incorrect.  If it does not include uncertainty calculations, perhaps it needs to.  Trackers that
are called with no data will usually increase their uncertainty, which may negatively affect the
resulting priority of their percepts.  If the default detector/tracker is generating percepts, the CPA’s
focus strength may need to be adjusted or turned off.  Another cause might be that the required
percepts are completely missing from the focus set.  In this case, the sensor may be malfunctioning,
the detector/tracker may be malfunctioning, or the priority of the detector/tracker is so low that it is
never called.

2. Trackers are not performing well.  
A good tracker requires a good perceptual model and a good motion model of the object it is tracking.
If the model is not good enough, the tracker’s uncertainty will rise, or it may lose track of the object
completely.  If the tracker is continually losing track of its object, perhaps the model needs to be
improved.  Even if its model is good, if a tracker is not called often enough with real data, the tracker
may not have a high enough priority, the detection % may be too high, the sensor data rate may be too
low or the timebound may be too short.  The CPA does not provide a way to adjust sensor data rates,
but the other problems can be addressed within the CPA. The first problem with inadequate tracking
is that poor tracking leads to poor task performance; the robot can collide with a wall or can miss its
goal.  The second problem is that when trackers are not called their uncertainty rises to the point
where they deactivate themselves, thus losing track of the object and requiring it to be detected again.
In the system described in Chapter 5, detection is more efficient, but less accurate, than tracking.  So
if the trackers are not allocated enough perception time, the detectors will take over much of the
perception task.  They will detect many objects, most of which could be ignored with more analysis.
The robot must slow or stop until the overload situation eases.

3. Too many or too few trackers being generated.
Too many redundant trackers (tracking the same object) indicates that the masking function on the
tracker is not correct.  If a tracker is tracking an object, it should set a mask on its detector so the
detector won’t generate a duplicate tracker.  Too many non-redundant trackers indicates perceptual
overload.  The system may need to reduce the data rate of one or more sensors, or shut them down
completely.  In addition, the tracking function can be adjusted to be more selective about what it
tracks.

4. The high-level program is unable to process all of the focus set.  Percepts are generated from
detectors and trackers out of sensor data, so either there are too many detectors/trackers, too much
sensor data, or the task is too slow.  In any case, the system is not performing up to specification and
perhaps should be scaled back by reducing the number of tracked objects, increasing the timebound
or reducing the sensor input.

Nd Number of objects to detect.
Nt Number of objects to track.
d Number of objects detected.
t Number of objects tracked.
A(i) Activation of an object
C(i) Certainty of a tracker or detector

Table 8.  Values used when computing the Q-measure.

The Q-measure components can also be used to adjust some CPA parameters.  If the value d
N d

 is

high, but t
Nt

 is low, the system may need to allocate more time to tracking by decreasing the “Detection
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%” parameter.  If the reverse is true, the “Detection %” parameter can be increased.  If both of those
measures are low, the system is under severe time pressure.  The “time bound” parameter can be
increased, or the system may need to adopt less ambitious goals by decreasing the number of active
detectors and trackers.   The table below gives several other situations and how the CPA can be adjusted
to compensate.  This table does not discuss various object recognition difficulties, such as viewing angle
and occlusion, which can also affect perception quality.

Indicators Action
d

N d
 is high, t

Nt
 is low Decrease Detection %.

d
N d

 is low, t
Nt

 is high Increase Detection %.

Both d
N d

 and t
Nt

 are low Increase time bound, if possible, or increase the sensor
rates.

One class of object is
ignored

Increase the priority of its detector or sensor.

An object’s activation level
is not correct

Have the tracker assign an activation that varies
according to the object’s characteristics, and use it for
its own priority.

Activation levels are
decaying too fast

Increase the decay rate constant or retrieve the contents
of the focus set more often.

Table 9.  Hints for tuning the attention parameter
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Chapter 7: Related Work
There are a variety of intelligent agents that have real-time constraints and can or do utilize

multimodal perception and perceptual attention, including agents for autonomous navigation [Pomerleau,
1993], medical diagnosis [Larsson et al., 1996], acoustic signal understanding [Lesser et al., 1995] and
socially-aware robots [Breazeal and Scassellati, 1999].

Such systems include perception, cognition and action components; the overall architecture and the
details of each component are discussed in [Hayes-Roth, 1990].  This dissertation focuses on the interface
between the perception and cognition components, with the understanding that both perceptual input and
the perception-cognition interface are affected by past, current and future actions.

A typical agent has the characteristics shown in the figure below.  Multimodal sensors send data into
the perception subsystem, where they are filtered and prioritized using filters supplied by a cognition
module.  In order to meet real-time constraints, a scheduler controls the execution of filters.  The policies
of the scheduler are dictated by the attention policy in effect.  The cognition subsystem then receives the
percepts and acts upon them.  In a complex dynamic system, some of the actions will alter the attention
policy or the set of active filters.

Multimodal
Sensors

Filters

Attention
Policy

Cognition

Actions

Real-Time Constraints

Perception

Scheduler

Figure 41.  A typical real-time intelligent agent.

Whether an agent is multimodal is ambiguous at times.  In human perception, the term is used when
input is aggregated across completely different sensors, such as the eyes and ears.  However, a robot has a
much wider variety of sensors available.  When it uses two different types of sensors, for example visual
and acoustic, it is clearly multimodal.  However, systems such as radar-based trackers sometimes use very
similar radars operating at different frequencies.  These are termed multimodal systems in the literature
because sensor fusion techniques are applied to the two inputs, much as they would be to inputs from two
completely different sensors.  In general, if two sensors require substantially different filtering and
processing techniques or require complex fusion techniques, they can be treated as separate modes.

Agents also have many different types of filtering.  For a few simple problems, an agent may require
no filtering at all.  Those agents that do require input filtering to prevent perceptual overload can use a
static set of filters or can dynamically create sets of filters in order to satisfy high-level goals.  In addition,
filters may be memory-less or memory-based, depending on whether they require knowledge of past
inputs.

If a set of filters is required, the agent will use an attention policy to prioritize them in relation to
high-level goals.  For simple problems the attention policy can be static, but more complex problems need
dynamic attention policies.

The primary component of the real-time constraints  is the response interval, which determines how
much time an agent can take to formulate a response to an input.  Part of the response interval is allocated
to perception, and the rest to cognition.  An agent’s performance typically deteriorates, sometimes
disastrously, if the response interval constraint is not met.

The CPA mechanism described in this dissertation does not constrain the sources of input, so it is
useful with any type of input, including multimodal input, and has architectural features for efficient
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distribution of input data to filters.  It has been demonstrated in applications that use numeric, symbolic
and text input.

The CPA allows dynamic filter sets and includes both memory-less filters (detectors) and memory-
based filters (trackers).  External actions alter the active set of filters.

The CPA allows a wide variety of dynamic attention policies for prioritizing filters.  Once the filters
have been prioritized, it provides an efficient mechanism for scheduling and executing the filters under
soft real-time constraints.

The real-time constraints allowed by the CPA include an overall time bound on perception
processing, as well as individual time bounds for the sets of memory-less and memory-based filters.  The
CPA scheduler is non-preemptive, so it can not enforce hard real-time bounds, but it provides each
perceptual task with the maximum time it can execute before it must return an answer.  This form of
“cooperative” real time requires individual tasks to be well-behaved.

7.1 EXEMPLAR PERCEPTIVE INTELLIGENT AGENTS

Section 3.2 discussed several perceptual attention mechanisms that have been designed for specific
applications.  This section discusses several complex agents that use or could use a perceptual attention
mechanism.

7.1.1 Guardian
Guardian is a real time agent that accepts data from numerous monitors attached to a patient in an

intensive-care unit (ICU) and formulates recommendations for treating conditions that develop [Larsson
et al., 1996].  Guardian is one of the most sophisticated real time perceptive agents in existence.  In terms
of the agent description at the beginning of this chapter, the perceptual components of Guardian are
described in the table below.

Component Type
Sensors Numerous multimodal sensors producing numeric data.

Interaction with the nurse/physician is handled by a different
mechanism.

Filters Memory-based to compute numeric trends (e.g. rising,
falling).

Attention Policies Dynamic, in response to diagnostic goals and system load.
Size of input buffers can be varied in order to limit
processing of old data.

Real-time constraints The system must complete the diagnosis in time to treat the
patient before he/she dies (typically a few minutes).
Perception during individual diagnostic steps must be
timely.

Table 10.  Perception characteristics of Guardian.

Guardian has time to process less than 10% of its input.  Consequently, it relies heavily on intelligent
filtering of the numeric input data.  Its Focus module uses a process called dynamic thresholding to filter
inputs unless they exceed a threshold value, which is adjusted in response to input load and behavioral
goals [Washington, 1990].  The filters calculate short-term and long-term trends (e.g. rising, falling)
which are attached to the incoming percepts.  In Guardian, the output of the filters is integrated into the
system as a set of perceptual events that are processed with the other, internally-occurring, blackboard
events [Hewett and Hayes-Roth, 1989].  In clinical tests, Guardian performed extremely well when tested
against nurses and doctors in a real ICU.

Guardian’s Focus module contains nearly all of the functionality of a complex perceptual attention
mechanism like the CPA.  Perhaps its only real limitation is the separation of its numeric input from
textual dialog input.  The former is handled by the attention mechanism, while the latter is not.  The CPA
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would offer an integrated mechanism for both types of input as well as time constraints on individual
perceptual tasks.

7.1.2 IPUS
IPUS (Integrated Processing and Understanding of Signals) is a complex system for understanding

acoustic signals of all kinds [Lesser, et al., 1995].  It accepts a block of input representing an acoustic
signal over a period of time.  The length of a block is unspecified, but the waveform examples in the cited
paper are typically 1-4 seconds long.  The goal is to recognize different sounds in the waveform, such as
telephone ringers, alarm buzzers, car horns and sounds of glass clinking.  The table below lists the
perceptual attention characteristics of IPUS.

Component Type
Sensors Anything that produces waveforms.  Typical input is an

acoustic signal over a period of time.

Filters Complex, memory-based, parameterized signal processing
modules that can be activated, tuned and deactivated.

Attention Policies Dynamic, in response to goals.  Consists of the parameters
to the filters.

Real-time constraints No formal real-time constraints.

Table 11.  Perception characteristics of IPUS.

IPUS is designed to detect and correct errors produced by mis-tuned or inappropriate front-end signal
processing modules.  Consequently, a great deal of its time and effort is spent adjusting the set of filters
and the attention policy.

Like many other systems, IPUS contains precisely the attention mechanism it needs, but no more.
Integrating the CPA into IPUS would add extra functionality, especially multimodal input and real-time
constraints, that might be useful in future applications.  However, IPUS does not appear to need the extra
functionality at this time.

7.2 BLACKBOARD-BASED CONTROL METHODS

The literature on blackboard systems contains a fairly large body of work that discusses “focus of
attention”, which refers to methods of selecting the most relevant action to perform [Hayes-Roth, 1993;
Xu and Van Brussel, 1997].  I categorize this as behavioral control, not perceptual attention.  Some of
these methods are applicable to real-time systems [Garvey, 1993].  The question arises whether
behavioral control methods can be used for perceptual attention.

Garvey’s paper divides real-time behavioral control methods into two groups: those that have
multiple methods (fast and slow) available, and those based on anytime algorithms, in which processing
can be interrupted at any time and ordered to produce the best result available.

Any filter in a perceptual attention mechanism could use multiple methods based on available time.
In fact, this method is used in several of the example systems in this dissertation.  Standard anytime
algorithms might be useful in memory-based filters.  Typical blackboard-based control algorithms
provides the following perceptual features:
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Component Type
Sensors Data are instances of a fixed set of actions.  Actions may

differ, but have the same interface.

Filters Preconditions filter actions and control heuristics prioritize
them.  Mostly memory-less, although a few are memory-
based.

Attention Policies Dynamic, in response to goals.  Consists of the set of
control heuristics.

Real-time constraints Some systems support response interval constraints on
action selection.

Table 12.  Perception characteristics of blackboard control architectures.

When viewed in this light, the behavioral control mechanisms offer many of the same features as
perceptual attention mechanisms.  The main differences are in the input, which has less variety and is
usually not considered to be multimodal; and in the real-time constraints, which typically consist of a
global response time that is not subdivided further.

The other possible limitation is that few, if any, blackboard control mechanisms have been used in
situations that require response intervals of 100 ms, as is required for robot navigation.  They are more
typically applied to large-scale control problems where their performance and behavior are a more
appropriate fit.  I do not know of any blackboard control implementations that operate at very short time
scales.

7.3 DISTRIBUTED PERCEPTION IN EXPERT SYSTEMS

Of interest is the ABE/RT toolkit for building real-time expert systems, which takes a different
approach to perception [Lark, et al., 1990].  This toolkit assists in constructing and testing hard real-time
systems such as pilot assistants.  It does not contain a centralized mechanism for perception and attention,
except for a component that facilitates sharing input among different processes.  Instead, it schedules
high-level processes and counts on each of them to know its own perceptual time constraints and to
adhere to them.

This approach, while less complicated for the system architecture, might lead to an unwieldy
distribution of knowledge about the importance of various percepts.  It is unclear how well this design
turned out since the cited paper contains no evaluation and the software is no longer sold.

7.4 MULTITARGET MULTISENSOR TRACKING

Applications such as air traffic control, battlefield surveillance and air defense all require
identification and tracking of multiple targets [Mazor et al., 1998].  Many of the applications combine
data from multiple, usually identical, sensors that are scanning contiguous or slightly overlapping spatial
areas.  A few use non-identical sensors, such as radars that scan at different frequencies [Zhang et al.,
1997].  Sensor data arrive very slowly, often have a low signal-to-noise ratio, and are sometimes
incomplete [Stone et al., 1999].  Because the noise level is high, the data can be interpreted in many ways,
and it is hard to tell which interpretation is correct.  Consequently, Multiple Hypothesis Tracking (MHT)
[Reid, 1979] is the most common approach to the problem of tracking multiple targets, while Kalman
filters are used to handle noisy or missing data [Ramachandra, 1990].  In MHT, multiple possible tracks
for each target are maintained concurrently, with each track having an associated probability.  MHT is
computationally complex and one of the primary goals of an efficient algorithm is to prune unnecessary
tracks [Kurien, 1990].

 Due to the complexity of the problem, one might suppose that multitarget tracking (MTT) methods
would use perceptual attention techniques.  However, the commonly-used algorithms assume that all of
the data from each sensor sweep is of equal value and that all of it must be processed.  Consequently, the
focus of research in this area has been on faster, non-optimal algorithms, e.g. [Blair and Bar-Shalom,
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1996; Bethel and Paras, 1998; Saha and Chang, 1998].   The perceptual characteristics are summarized
below.

Component Type
Sensors Various types of radar and sonar producing very

noisy data.
Filters Spatial filters only.  All spatially relevant data are

analyzed.

Attention Policies Typically static for each problem.

Real-time constraints Typically 2-10 seconds, the interval between radar
scans.

Table 13.  Perception characteristics of multitarget tracking.

Track pruning techniques do contain some methods that fall into the category of perceptual attention.
Kurien describes four general methods for eliminating unlikely hypotheses, some of which are related to
perceptual attention:

1. Gating.  This corresponds to spatial attention.  The path of the target is projected forward in time.
Tracks that do not fall within the projected path are pruned.

2. Clustering.  Readings are clustered into small groups and the most likely track is selected from the
small cluster rather than from all of the tracks.  This is solely for computational efficiency.  If the
clustering is spatial, this has some resemblance to spatial attention.

3. Classification.  Pruning tracks with a low probability. Since tracks are the result of processing during
target tracking, as opposed to being directly perceived, this is difficult to classify as perceptual
attention, although it is somewhat analogous to sorting detectors by their priority.

4. N-scan approximation .  Basing a track on the last n sensor inputs rather than on all the scans, for
computational efficiency.  This is not related to attention.
These are the only methods in multitarget tracking that contain a hint of perceptual attention.  One

reason is that standard radars scan an area only once every 10 seconds.  At that data rate, it is important to
use as much data as possible to track objects.  Even at that speed, MHT methods are barely fast enough to
cope with the data.  However, if faster radars are developed, the processing methods might need to use
perceptual attention techniques to help cope with the higher data rates.

7.5 PROCESS SCHEDULING

One component of the CPA is the perceptual task scheduler.  It is useful to compare this scheduler to
other existing schedulers.

7.5.1 The CPA task scheduler
The CPA’s scheduler was selected based on three primary criteria: only one task will be active at any

time (since the CPA is designed for a single-processor system, this efficiently utilizes the processor); it is
more important to execute high-priority tasks than to execute all the tasks; and task priorities should be
dynamically adjustable.  These criteria led to the development of a scheduler based on dual priority
queues [Sedgewick, 1999], one for the set of detectors and one for the set of trackers.   Operating systems
typically use several queues for keeping track of active jobs [Buttazzo, 1997].  One component of the
attention policy tells the scheduler how to divide perception time between the two queues.  The scheduler
executes tasks from the tracker queue first, stopping when time expires or when it reaches the end of the
queue.  It then uses the remaining time to execute tasks from the detector queue, again stopping when
time expires or it runs out of tasks.  At the beginning of each cycle, the scheduler adjusts the priority of
active tasks according to the active attention policy.

As shown in Chapter 6, the dynamic attention policy allows a wide variety of scheduling behaviors.
However, it is not apparent from the experiments presented whether the scheduler itself is an optimal
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design.  The sections below compare the CPA’s scheduler to alternative schedulers and to other types of
systems that perform various types of dynamic-priority scheduling with real-time constraints, including
real-time operating systems [Liu, 2000].

7.5.2 The UNIX operating system scheduler
The UNIX operating system provides for multiple simultaneous processes and contains an efficient

scheduler.  Priorities of processes are dynamically adjustable and each process receives time quanta in
proportion to its relative priority [Srinivasan, 1998].  Indeed, it has been suggested that the CPA should
simply use the UNIX scheduler instead of its own.  However, I have found that the UNIX scheduler does
not meet the design criteria specified in Section 7.5.1 above and performs much worse on the perception
examples than the CPA scheduler.  I found that the user can not directly control actual process priorities,
and that the UNIX scheduler does not allow us to guarantee that high-priority tasks will receive as much
CPU time as possible.

While a UNIX user (or an attention policy) can alter a process’s ‘nice’ parameter in order to adjust
the amount of CPU time it receives, UNIX maintains an internal priority for each process that is
inaccessible to the user.  The ‘nice’ setting is just one parameter of the internal priority calculation; the
other parameters include the amount of CPU time the process has used recently (a higher amount
decreases the priority) and the number of times the process has been passed over for scheduling (a higher
amount increases the priority).  Experiments with a pair of processes, one high-priority and one low-
priority show that the internal priority differs significantly from the ‘nice’ setting and in fact will
occasionally invert, with the low-priority task receiving an internal priority that is higher than that of the
high-priority task.  The conclusion is that the user (or attention policy, in this case) can not directly set
process priorities in UNIX.

However, the other problem is worse: the user can not turn off round robin scheduling in UNIX, and
the CPU usage of high-priority tasks is not preserved when additional low-priority tasks are activated.
The consequence of this is that high-priority tasks receive less and less CPU time as load increases.  A
simulation of a simplified version of the robot experiments from Section 6 showed that under normal load
the highest-priority task received only 33% of the CPU time, even when all the other tasks were set at the
lowest possible priority.  As a consequence, the highest-priority tasks takes three times as long to
complete as they should.  Under higher than normal load, CPU time would decrease farther and it is
possible that the task would never complete within the time bound.

This violates the second design criteria, which says that it is more important to execute high-priority
tasks than to execute all of the tasks.  Under load, the UNIX scheduler will allocate time to tasks that will
never finish, thus wasting perception time.  Round robin scheduling can not be turned off in standard
UNIX systems.

7.5.3 UNIX-compatible and non-UNIX real-time OSes
The problems noted above, as well as several other serious problems, have also been noticed by

others [Yodaiken, 2001].  There are now packages available that replace the UNIX scheduler, memory
manager and other system modules in order to support hard real-time scheduling.  A prime example is
RTLinux [Yodaiken, 2001].  There are also non-UNIX real-time operating systems available, notably OS-
9 [Microware, 2000], Lynx [LynuxWorks, 2000] and OSE [Paul, 2001].  There are far too many of both
types of systems to catalog here, but useful overview lists are available at [Chandana, 2001] and
[Yodaiken, 2001].

An attention mechanism running on a real-time operating system could use the operating system
scheduler to control the tasks.  This would provide hard real-time guarantees with the added overhead of
dealing with unschedulable sets of tasks.

However, real-time operating systems use a different kind of scheduler.  The scheduler first
determines whether a set of tasks is schedulable: that is, whether the set of tasks can be completed while
meeting real-time deadlines.  Most production real-time systems deal with a fixed set of static priority
tasks that must be run at regular intervals.  The set of tasks and constraints can be analyzed and scheduled
before the tasks begin.  As long as there are no problems in the system, the schedule will be followed.
There are numerous algorithms that produce schedules under various combinations of task constraints and
processor configurations [Liu, 1991; Ecker, 1991].

Dynamic-priority tasks and dynamic task-set scheduling is more difficult because schedules have to
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be recomputed when the set of tasks changes or when any task’s priority changes.  Many algorithms
specifically tie a task’s priority to its execution time, with the shortest length task having the highest
priority [Liu, 2000, Ch. 6].  The scheduler can not determine a priori whether a set of tasks is schedulable
unless it knows enough about the task set to enumerate every possible combination of task and priority.
The scheduling problem is somewhat easier when tasks are preemptable, meaning that they can be
temporarily interrupted in order to let another task meet a deadline.

Some dynamic-priority systems use a method called tick scheduling, where the scheduler runs every n
time units, rather than whenever the task list or task priorities change [Liu, 2000, Ch. 5].  At each
scheduling interval, the scheduler produces a new schedule; optionally, it may first perform a
schedulability analysis on the active tasks.  Tick scheduling of dynamic-priority tasks of dynamic-priority
jobs is considered to be one of the very hardest scheduling problems [Liu, 2000]5.

In real-time scheduling terms, the CPA is performing tick scheduling of dynamic-priority, non-
preemptable tasks on a single processor.  However, its scheduling problem is greatly simplified from the
general problem in that it does not have to run all of the tasks.  That is, the fairness criterion is waived.
After applying the current scheduling rules, the CPA executes the tasks in prioritized order, keeping track
of available time.  If there are still tasks to execute when time expires, it notifies the rest of the tasks that
they did not have time to run, and it then proceeds to the next scheduling cycle.  In such a situation the set
of tasks is unschedulable and a typical real-time scheduler would signal a fault.  But the CPA is designed
to perform as best it can under heavy perceptual load.  Under such conditions, perfect performance is
simply not possible, but abandoning the scheduling problem is not a good response.

However, this may lead to situations where perception quality is insufficient under heavy load.  For
example, the robot may judge an input to be low-priority, when in fact it indicates an obstacle.  If the
input is not processed the robot may hit the obstacle, and one might say that perception has failed.
Failure-proof perceptual systems (or any system, for that matter) are difficult if not impossible to build
and require techniques not in everyday use [Leveson, 1995].  AI systems must be able to detect and
recover from perceptual failure.  The cognitive system must take that into account that perceptual
limitations will arise when the system is under perceptual load.

                                                     
5 A search at Google.com turns up only six documents containing the phrase “tick scheduling”.  Two are in German,
but appear to be about fixed-priority systems.  The others are references to the Linux kernel).
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Chapter 8: Summary and Future Work
Intelligent robots need high-speed, multimodal perception with limits on maximum perceptual

latencies.  This dissertation introduces CPA, a general-purpose, multimodal perception management
system.  CPA contains domain-independent methods for focusing attention on high-priority input while
satisfying soft real-time requirements.

Characteristics of human perception and attention were incorporated into the CPA design, including:
sustained attention, especially for detecting and tracking objects; selective attention, for filtering and
prioritizing input; divided attention, in order to pursue more than one perceptual goal at a time; and
control, so the cognitive component of the system can set and modify perceptual goals.  However, the
CPA implementation is very different because the human brain and today’s computers process
information in fundamentally different ways.

Fundamental questions addressed in the CPA design include generality vs. speed, parallel design vs.
sequential implementation and the need for different types of sensor input, including input processed from
the raw input.  The resulting system manages sensors, detectors and trackers in order to produce a focus
set containing prioritized percepts.

8.1 FUTURE WORK

The CPA, which is already very useful, can be extended in several ways.  First, when multiprocessor
systems become more common, the CPA can be modified to utilize multiple processors.  The main loop
allocates time to detectors and trackers in several places.  The allocation sections can be modified to
manage a pool of processors or, if the operating system provides sufficient support, to simply start as
many detectors or trackers as there are available processors.

A more declarative version of the CPA could probably be developed.   The code for most of the
sensor streams is identical.  A great deal of the detector code is the same for each detector.  Only the
trackers differ considerably, although they have some similarities, too.

I have not implemented many trackers that use multiple sensor streams.  The CPA does not
necessarily deliver a full set of sensor percepts to a tracker at the same time.  It should not be hard to set
up a generic framework that stores sensor data for a tracker until all of it has arrived.  It is unclear what to
do if only part of the necessary set of data arrives on one attention cycle.

There are opportunities to implement more sophisticated attention policies.  The ones I have
implemented utilize some of the available parameters, but more complex strategies could be developed.

The dissertation outlines a method for creating perceptual tasks at runtime from perceptual goals such
as Go to room-37 .  The high-level concepts have associated perceptual information which can be used to
derive a perceptual task.  One question is whether perceptual tasks are generated specifically for a
perceptual goal or whether they are generic tasks that can be reused with other goals.  I suspect they are
generic but parameterized, and some knowledge will be required to correctly parameterize them for a
specific goal.

The theory of real-time operating system schedulers provides several mechanisms for describing and
analyzing real-time scheduling processes.  It would be useful to use these formal methods to describe and
analyze scheduling as performed in the CPA.  The analysis techniques might provide ways to develop
alternate schedulers for different problems, or for multiprocessor machines.  In addition, an
implementation based on a true real-time operating system might be more generally useful.
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Appendix 1: CPA Implementation Details
This section lists all of the classes in the CPA system along with their fields and methods.  The next

section provides a small example that uses some of the classes.  The more complex example in the next
chapter utilizes more of the features of the system.

In each of the classes below, the fields have accessor methods that are not listed below.  The existing
implementation of the CPA is written in Common LISP using the CLOS object system.

A1.1 CPA
As described above, the CPA class manages the attention process by keeping track of active sensors,

detectors and trackers; by allocating time to perceptual processes; and by updating the focus set.

Decay-rate Constant used in the decay equation.

Default-detector The default detector (if any).

Default-matcher The matcher used by the default detector.

Detection-time Portion of perception time allocated to detection.
Default is 0.2.

Detectors List of active detectors.

Detector-order-fn The function used to sort detectors.

Focus Contains the focus set.

Focus-strength Resistance to being distracted by unanticipated
inputs.  Used when setting activation level of
percepts matched by the default detector.

init-time The (wall clock) time this run started.

Lock A thread lock variable for the CPA.  This prevents
multiple processes from accessing the focus set at
the same time.

Matchers List of active matchers.

Name The name of this CPA.

Sensors List of active sensors.

Sensor-buffers List of active sensor buffers.

Sensor-order-fn The function used to sort sensors.  Part of the
attention policy.

State :initialized, :running, :paused or :killed

Thread Contains a pointer to the thread in which the CPA is
running.

Timebound The focus set update interval  (default 100ms).

Trackers List of active trackers.

Tracker-order-fn The function used to sort trackers.

Update-counter Counts the number of times through the main loop,
in order to provide statistics on timing.

Update-time Used when computing timing statistics.

Table 14.  Fields of the CPA class.
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add-to-focus Adds a percept to the focus set.

add-detector Adds an active detector.

add-matcher Adds an active matcher.

add-sensor Adds an active sensor.

add-tracker Adds an active tracker.

c-avg Computes the average certainty the active trackers
have in the characteristics of the objects they are
tracking.

cpa-load Returns the average “load” of the CPA, which is the
time it takes to perform one attention cycle.

cpa-main-loop The loop that performs the attention cycle.

Current-time Returns the current wall clock time relative to the
start of the run.

Decayed-activation Using the decay equation, it computes the current
activation of a percept in the focus.

focus Returns the current focus set, prioritized.

initialize-instance After creating an instance of the CPA, this method
adds a default detector and matcher.

kill Kills all the active matchers, sensors, detectors and
trackers, then terminates the CPA’s thread.

pause Pauses all the active matchers, sensors, detectors
and trackers, then terminates the CPA’s thread.

q-measure-real Calculates the current quality of perception.  The
quality can also be estimated, hence the “-real”
suffix on this method.

remove-detector Removes a detector from the CPA.

remove-matcher Removes a matcher from the CPA.

remove-sensor Removes a sensor from the CPA.

remove-sensor-buffer Removes a sensor buffer from the CPA.

remove-tracker Removes a tracker from the CPA.

remove-all-detectors Removes all detectors from the CPA.

remove-all-trackers Removes all trackers from the CPA.

resume Resumes the CPA after a pause.

set-sensor-priority Sets the priority of a sensor.

start Starts the CPA after it is created.

Table 15.  Methods of the CPA class.
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A1.2 SENSOR

Sensors store percepts in sensor buffers.  A sensor inherits most of its methods from a Generator
class.

Cpa A pointer to the CPA object which manages it.

Generator-args Arguments passed to the generator function.

Generator-fn The function which reads or generates data and
produces percepts.

Input-stream A place to store an input stream, if needed.

Name The name of this sensor.

Output-stream A place to store an output stream, if needed.

Priority The priority (importance) of this sensor.

Thread The thread in which this sensor is running.

Table 16.  Fields of the Sensor class.

close-input-stream Closes the input stream.

close-output-stream Closes the output stream.

initialize-instance After a generator object is created, this method
creates a thread to run the generator-fn.

kill Closes the input and output streams and kills the
thread in which this Sensor runs.

pause Pauses this sensor’s thread.

resume Resumes the thread after it has been paused.

Table 17.  Methods of the Sensor class.

A1.3 BUFFER

Buffers are a general-purpose class associated with the Generator class.  They are used unchanged as
sensor buffers.  Buffer inherits from an io-stream class in order to use some of its methods.  The low-level
data buffer that it manages is a FIFO buffer, typically about three elements long.  It keeps track of number
of items read from the buffer, written to the buffer, or dropped from the buffer due to buffer overruns.

bound The maximum number of elements in the buffer.

buffer The actual vector that stores elements.

cpa A pointer to the CPA object which manages it.

drop-count Tallies the number of percepts dropped due to buffer
overruns.

lock The synchronization lock which controls access to the
buffer.
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name The name of this buffer.

read-count Tallies the number of items read from the buffer.

read-pointer A pointer into the low-level data buffer.

sensor The sensor to which this buffer belongs.

size The current size of (number of items in) the buffer.

state :OPEN, :CLOSED, :PAUSED

write-count The priority (importance) of this sensor.

write-pointer A pointer into the low-level data buffer.

Table 18.  Fields of the Buffer class.

close Closes this buffer.  When closed it will not accept input.

flush Clears the buffer.

initialize-instance After a buffer object is created, this method initializes
the data buffer and creates a semaphore used to
synchronize buffer access.

increment-pointer Increments or decrements the read and write pointers of
the circular buffer.

pause Sets the state to :PAUSED.

resume Sets the state to :OPEN.

retrieve Returns the next item in the data buffer.

store Stores an item in the data buffer.

Table 19.  Methods of the Buffer class.

A1.4 MATCHER

A matcher contains a function used by detectors or trackers.

cpa A pointer to the CPA object which manages it.

match-fn The function used in percept matching.

name The name of this matcher.

Table 20.  Fields of the Matcher class.

match-data Receives a percept, a detector and the maximum amount
of time it is allowed to run.  It returns one or more
percepts.

Table 21.  Methods of the Matcher class.
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A1.5 DETECTOR

A detector uses a match function to match raw percepts.  If it finds a match, it either forwards the
percept to the focus set or creates a processed percept to encapsulate the raw percept and forwards it to
the focus set.

cpa A pointer to the CPA object which manages it.

masks A list of masks that trackers have placed on this
detector.  The contents are task-dependent.

mask-fn A function which will create a mask.

matcher The matcher used with this detector.

name The name of this detector

priority The priority (importance) of this detector.

sensor The sensor(s) which this detector monitors.

sensor-fn If a tracker is generated, this function is called to get the
sensor list for the tracker.  The tracker’s sensor(s) need
not be the same as the detector’s.

tracker-type The class to instantiate to create a tracker from this
detector.

tracking-fn The equivalent of the match-fn for a tracker generated
from this detector.

user-info The user can store anything here.

Table 22.  Fields of the Detector class.

add-mask A tracker calls this method to add a mask to the detector.

clear-masks Removes all the masks from the detector.

create-tracker Creates a tracker from the detector.

match Calls the match-data method of this detector’s matcher.

remove-mask Removes all masks associated with a given tracker.

Table 23.  Methods of the Detector class.

A1.6 TRACKER

A tracker is a subclass of Detector.  It works much like a detector except that it can add masks to the
Detector that spawned it.  The Detector fields and methods are not listed here, although they do apply to
trackers.  See the previous section for a list of those elements.  The tracker has no methods of its own.

certainty The tracker’s certainty in the object it is tracking.  For
example, it may be a measure of certainty of the object’s
position.

detector The detector that spawned this tracker.

update-id A tag supplied by the CPA that is unique for every
attention cycle.  The CPA uses this to determine whether
the tracker was called during the current attention cycle.
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Table 24.  Fields of the Tracker class.

A1.7 PERCEPT

A percept represents either a raw sensor data value or else something processed from the raw data.
For example, the raw percept might be an array of numbers representing a frame of camera input, but the
processed percept might be a description of an animal detected in the video frame.

claimed Signals whether a detector or tracker accepted the
percept during this attention cycle.

counter Counts the instantiated.  The number is used to
generate a unique identifier for each percept.

cpa A pointer to the CPA object which manages it.

current-activation The current activation of this percept.

initial-activation The initial activation of this percept.

ID A unique tag generated by the attention cycle.

match-info Stores the detector and its priority.

sensor The sensor this percept came from.

sensor-priority The priority of that sensor when the percept was
created.

tag A user-defined tag that usually identifies the type of a
raw or processed percept.

timestamp The time the percept was generated.

tracked Whether this percept is involved with a tracker.

value The raw data item from the sensor.

Table 25.  Fields of the Percept class.

Activation Returns the current activation of the percept, after
applying the decay equation.

Instantiate Sets the timestamp, ID and tracked fields of the
percept to indicate that a detector has accepted it.

instantiated-p Returns T if the ID field is not null.

Track In addition to what (instantiate) does, this method
also creates a new tracker (by calling create-tracker

on the detector) and adds the new tracker to the CPA.

Table 26.  Methods of the Percept class
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Appendix 2:  Object tracking
In order to track stationary or moving objects while the robot is moving, it is helpful to predict the

future position of an object with respect to the robot.  The robot can improve its perceptual efficiency by
limiting search to areas around the predicted position.  This appendix derives equations that can be used
to predict the position of stationary or moving objects in the environment in which the robot is traveling.

Difficulties with object tracking are not addressed here, but some of the common ones are: inability to
recognize an object due to missing sensor data or limitations in the object recognition algorithm;
occlusion; confusion with similar nearby objects; and incorrect knowledge of the robot’s motion vector or
the object’s motion vector.

A2.1 COORDINATE SYSTEM AND UNITS

The robot’s egocentric coordinate system, shown in Figure A1, is the only coordinate system used
here.  It is a standard Cartesian coordinate system that is rotated 90 degrees from the usual perspective, so
that the x-axis points directly ahead of the robot.  The origin of the coordinate system is at the center of
the robot.

In this coordinate system, angles increase in the standard counter-clockwise direction.  Coordinates
with x > 0 are ahead of the robot’s position and coordinates with y > 0 are to the left of the robot.

Any units may be used for distance measurements in the equations below, but angular measurements
must be in radians.

y

x

Figure A1.  Robot egocentric coordinate system.

A2.2 PROBLEM DESCRIPTION

Figure A2 below illustrates the problem.  At time t1 the robot is at position R1, which is the origin of
its coordinate system.  The robot is moving with linear velocity v and angular velocity  so that at time t2

it is at position R2.  Meanwhile, in the same time interval, an object moves from position O1 to position
O2.  Given the starting positions of the robot and the object, the linear and angular velocities of the robot,
and the linear velocity of the object6, what is the position of the object relative to the robot at time t2?

R1y

xR2

O1O2

Figure A2.  Illustration of the object prediction problem.

A2.3 PREDICTING THE ROBOT’S POSITION

If  = 0, the robot’s new position after ∆t = t2 – t1 is:
                                                     
6 The equations would be more accurate if they included the angular velocity of the object, but the angular velocity
is difficult to determine and the linear velocity is sufficiently accurate for short time intervals.
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−R1R2

R2 = v∗ ∆t

If  0, the robot’s path for constant v and  is along the perimeter of a circle.  The x-axis of the
robot’s coordinate system always lies tangent to the circle.  The distance along the arc of the robot’s path
from R1 to R2 must be v* t.  The angle of the robot at R2, in the R1 coordinate system is * t.  Figure
A3 below shows the positions and angles in the system.

R2

y

θ
R1

x

Figure A3.  Geometry of the robot’s motion.

Since the x-axis of the robot’s coordinate system at R2 is tangent to the circle, we know that the angle
θ is equal to * t.  Since the length of the arc along the perimeter of the circle is r , we conclude that

r = v ∗ ∆t,   so  r =
v ∗ ∆t

∗ ∆t
=

v
.

Now we can calculate the new position of the robot using trigonometry based on the robot’s circular
path:

R2 .x = r sin = v
sin( ∗ ∆t)

R2 .y = r − rcos =
v

(1− cos( ∗ ∆t))

A2.4 PREDICTING THE OBJECT’S POSITION

The object is assumed to have linear motion, so computing its position O2,R1 at time t2 in the robot’s
original coordinate system is easy:

O2, R1 = O1 + vo ∗ ∆t

This position needs to be translated and rotated into the robot’s new coordinate system.  The
translation is and the rotation is – * t.  Performing the translation first and then rotating, we arrive at the
final equation:

O2 = (O2,R1 − R1R2) •
cos( ∗ ∆t) −sin( ∗ ∆t)

sin( ∗ ∆t) cos( ∗ ∆t)
 
  

 
  

A2.5 Example: a pedestrian approaching the robot
The situation is illustrated in Figure A4 and described by the following parameters: O1 = (6.7, -1.2),
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vo = [-0.4 0.15], v = 1.6,  = 0.2.  Relative to the robot’s new position, where is the tracked object after 1
second ( t = 1.0)?

0.2

1.6

(6.7, -1.2)

(-0.4, 0.15)

Figure A4.  A pedestrian approaching the robot.

∗ ∆t = 0.2

v

w
=

1.6

0.2
= 8.0

R2 = 8.0sin(0.2),  8.0(1− cos(0.2)))(
= 1.589, 0.159( )

O2, R1 = 6.7, −1.2( ) + −0.4, 0.15( )
= 6.3, − 1.05( )

O2 = (O2, R1 − R1R2) •
cos( ∗ ∆t) −sin( ∗ ∆t)

sin( ∗ ∆t) cos( ∗ ∆t)

 
  

 
  

= 6.3 − 1.589 −1.05 − 0.159[ ] •
cos(0.2) −sin(0.2)

sin(0.2) cos(0.2)

 
  

 
  

= 4.711 −1.209[ ] •
cos(0.2) −sin(0.2)

sin(0.2) cos(0.2)

 
  

 
  

= 4.377 −2.121[ ]

After 1 second, the pedestrian will be 4.377 meters ahead of the robot and 2.121 meters to the right of
the robot.
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