
A Tehnology-Salable Arhiteture for Fast Cloksand High ILPKarthikeyan Sankaralingam Ramadass Nagarajan Stephen W. Kekler Doug BurgerComputer Arhiteture and Tehnology LaboratoryDepartment of Computer SienesTeh Report TR2001-02The University of Texas at Austinart�s.utexas.edu | www.s.utexas.edu/users/art
ABSTRACTCMOS tehnology saling poses hallenges in designing dynamially sheduled ores that ansustain both high instrution-level parallelism and aggressive lok frequenies. In this paper, wepresent a new arhiteture that maps ompiler-sheduled bloks onto a two-dimensional grid ofALUs. For the mapped window of exeution, instrutions exeute in a dataow-like manner, witheah ALU forwarding its result along short wires to the onsumers of the result. We desribe ourstudies of program behavior and a preliminary evaluation that show that this arhiteture has thepotential for both high lok speeds and high ILP, and may o�er the best of both the VLIW anddynami supersalar arhitetures.

1 IntrodutionConventional miroarhitetures have been improving in performane by approximately 50-60%per year, improving the instrutions per yle (IPC) using more transistors on a hip and inreas-ing the lok speed. However both strategies will fail for future tehnologies (50nm and below),with lok speed growth slowing down beause of fundamental pipelining limits and wire delaysmaking arhitetures ommuniation bound [1℄. Thus, today's arhitetures will not sale, showingdiminishing returns in IPC even with inreasing hip transistor budgets. New designs must addressthese issues, eÆiently utilizing the inreasing transistor budget while overoming ommuniationbottleneks.One approah for extrating ILP is through onventional supersalar ores that detet paral-lelism at run-time. The amount of ILP that an be deteted is limited by the issue window, whoselogi omplexity grows as the square of the number of entries [12℄. Conventional arhitetures alsorely on many frequently aessed global strutures, suh as register �les, re-order bu�ers and issuewindows, whih beome bottleneks limiting lok speed or pipeline depths.Another approah for extrating parallelism is taken by VLIW mahines, in whih ILP analysisis performed at ompile time. Instrution sheduling is performed by the ompiler, orhestratingthe ow of exeution statially. This approah performs well only for regular workloads and su�ersfrom the drawbak that dynami events are not handled well | a stall in one funtional unit foresthe entire mahine to stall, sine all funtional units must be synhronized.In this paper, we desribe a new arhiteture alled the Grid Proessor that takes into onsider-ation the tehnology onstraints of wire delays and pipelining limits. The ompiler is used to detetparallelism and statially shedule instrutions on a omputation substrate, but instrutions areissued dynamially. We propose an exeution substrate that onsists of a set of named distributedomputing elements to whih the ompiler statially assigns individual instrutions.The arhiteture does not su�er from VLIW issue restritions, as instrutions are issued dynam-ially and exeuted in a dataow fashion. Instrutions from a ompiler-generated basi blok orhyperblok are mapped statially to nodes in the omputation array, with eah node being assignedone or more instrutions. The nodes issue instrutions dynamially when the input operands areavailable. Temporary values produed and onsumed inside a blok are not visible to the arhite-tural state, and are instead forwarded diretly from the produers to their onsumers.We propose a �ne-grained partitioning of the issue window and assoiated funtional units(FU). The omputation array inludes both a grid of issue window-FU pairs (nodes) and a dedi-ated ommuniation network for passing data. Data produed at a node are routed dynamiallythrough intermediate nodes to their eventual destinations. The arhiteture is a hybrid betweenonventional supersalar and onventional VLIW arhitetures, issuing instrutions dynamiallywith stati sheduling. The hardware substrate is designed to extrat high ILP and run at aggres-sive lok rates.In the Grid Proessor, the available transistor budget is used to build an array of omputationelements aimed at overoming several hallenges of ommuniation overhead in future systems.First, by forwarding values diretly between produers and onsumers, the reliane on entralizedstrutures is redued. Seond, ompiler ontrolled physial layout ensures that the ritial path issheduled along the shortest physial path. Finally, instrution bloks are mapped onto the gridas single units of omputation amortizing sheduling and deode overhead over a large number ofinstrutions. The redued reliane on entralized strutures allows the omputation substrate tobe loked at high speeds.The remainder of this paper is organized as follows. Setion 2 desribes the key features of the1

M
em

or
y

In
te

rf
ac

e

In
st

ru
ct

io
n

Se
qu

en
ce

r

Block Termination Control

Nearest neighbor interconnectExpress channel

Memory

Register File

Figure 1: Grid blok diagram. Express hannels onnet the last row with the �rst rowGrid Proessor and demonstrates how programs are mapped onto it. Setion 3 haraterizes ertainaspets of program behavior indiating that existing appliations are amenable for exeution onthe Grid Proessor. Setion 4 desribes related work pertaining to wide-issue and dataow orientedmahines. Setion 5 onludes with a disussion on some of the seondary advantages inludingpower redution and speulation ontrol as well as the remaining issues to be solved.2 ArhitetureThe Grid Proessor onsists of a omputation substrate that is on�gured as a two-dimensional gridof �ne-grained omputation nodes onneted by an interonnetion network. The ompiler parti-tions the program into a sequene of bloks (basi bloks or hyperbloks [16℄), performs renaming oftemporaries, and shedules instrutions in a blok to nodes of the grid. Instrution traes generatedat run-time ould be used instead of bloks generated by the ompiler. Bloks are fethed one ata time and their instrutions are mapped to the omputation nodes en masse as assigned by theompiler. Exeution proeeds in a dataow fashion with eah instrution sending its results diretlyto other instrutions that use them. A set of interfaes are used by the omputation substrate toaess external data.2.1 Computation NodesFigure 1 shows a high level overview of the grid with some of the assoiated interfaes. Nearbyneighbors in the grid are onneted by short wires that have small ommuniation delays 1. Fastexpress hannels onnet nodes that are physially far apart in the grid. The instrution sequenerfethes bloks of instrutions from the instrution memory and plaes those instrutions on thenodes as sheduled by the ompiler. The blok termination ontrol interfaes with the register �leand the memory interfae, detets when a blok ompletes exeution, and ommits arhiteturallyvisible data to the register �le and memory. The memory interfae is used to ommuniate withthe load/store queue, ahes, and main memory.1The �gure shows one possible grid interonnet topology as an example only.2

Op 1 Op 2

ALUFrom instruction
 sequencer

Storage
Inst

Input ports

Router

Output portsFigure 2: Organization of a omputation nodeThe omputation nodes are lightweight units that perform the funtion of exeution, temporarystorage, and data forwarding. Eah omputation node onsists of a set of funtional units, storagestrutures, an instrution wakeup unit, a router, and read/write ports for ommuniation. Figure 2shows the layout of a omputation node. The funtional units onsist of an integer unit and0x0000 add r1, r2, r3 // I10x0004 add r2, r2, r1 // I20x0008 ld r4, (r1) // I30x000 add r5, r4, 1 // I40x0010 beqz r5, 0xdea // I5// End of blok B10x0014 add r10, r2, r3 // I60x0018 add r11, r2, r3 // I70x001 ld r4, (r10) // I80x0020 ld r5, (r11) // I90x0024 mul r31, r4, r5 // I100x0028 bne r31, 0xbee0 // I11// End of blok B20x002 xor r8, r5, 1 // I120x0030 sll r9, r4, r8 // I130x0034 add r13, r9, 8 // I140x0038 add r12, r9, r2 // I150x004 sw r13, r12 // I16// End of blok B30x0050 add r1, r6, r9.....0x0070 jmp 0x0050 Figure 3: A sample instrution streamoptionally a oating point unit that perform the atual exeution. The storage strutures inludea set of queues and bu�ers for storing the instrutions, their input operands, and data tokens thatneed to be forwarded to other nodes in the grid. The instrution wakeup unit mathes instrutionswith their operands as they arrive and issues them to the funtional units for exeution. The routerexamines tokens in the storage strutures and forwards them along one of the many paths out ofthis node to their eventual targets. Data tokens meant for other nodes bypass the ALU and arediretly forwarded by the router to their destinations.
3

2.2 Exeution ModelThe ompiler partitions the program into a sequene of bloks. Bloks are onstruted suh thatthere are no internal ontrol ow hanges, and all ontrol transfers out of a blok initiate instrutionsin other bloks. These bloks may be basi bloks, hyperbloks, or program traes generated at run-time. Figure 3 shows a stream of instrutions that has been partitioned by the ompiler into threedi�erent bloks (basi bloks in this ase) B1, B2, and B3. Expliit move instrutions, separatefrom the omputation instrutions, are generated for the registers read by every blok. The moveinstrutions feth blok inputs from the register �le and pass them as internal (temporary) valuesto the blok. Figure 4 shows the Data Flow Graph (DFG) of the bloks B1, B2, and B3 in Figure 3along with the move instrutions. As shown in the �gure, all instrutions have been renamed withtemporary registers for their operands and move instrutions generated for every input register.For example, in blok B1, two move instrutions, move t2,r2 and move t3,r3 are generated bythe ompiler for input registers r2 and r3. Inside a blok, all values are referened using temporarynames. The move instrutions assoiates register inputs of the blok and temporaries. Data valuesthat must be passed to other bloks are written to the register �le.At run-time, the instrution sequener fethes a blok from the instrution memory and mapsit onto the grid en masse; there is no serialization of feth, deode and rename for the instrutionswithin a blok. Individual instrutions are written to the storage strutures of the nodes to whihthey have been assigned at ompile time. Blok exeution is initiated by the move instrutionswhih read register data and send them to their onsumers. The instrution wakeup unit mathesinoming data with an instrution and issues ready instrutions to the funtional unit for exeution.The results of the omputation are tagged and forwarded by the router through the interonnetto their eventual destinations.2.2.1 Instrution MappingThe ompiler generates a mapping by physially laying out the data ow graph of eah blok on agrid. Every omputation instrution in the blok is assigned to a node in the grid, with the ritialpath sheduled along the shortest possible physial path. All output operands are renamed withthe positions of onsumer nodes. Move instrutions serve the purpose of assoiating register datawith positions of their onsumer nodes. Figure 5 illustrates a layout of the grid with instrutionsmapped on the omputation elements. Instrutions I1 and I2 of blok B1 in Figure 4 are mappedon the grid at positions (0,1) and (1,1) respetively. Correspondingly, the move instrution movet2, r2 has (0,1) and (1,1) enoded in its destination �elds and register name r2 in its input �eld.2.2.2 Instrution Wakeup and ExeutionAs desribed in setion 2.1, multiple instrutions are mapped onto a single node and data arewritten to an operand bu�er when they arrive. Upon arrival of a data token, the instrutionand operand bu�ers are examined to wake-up and issue ready instrutions. The wakeup delayswill be onsiderably smaller than seen in onventional ores beause of smaller issue windows.The omputation node serially performs two operations whenever an operand arrives | wakeupand exeute. Serializing wakeup and exeute may inrease the yle time along the exeute-exeutepath of dependent instrutions. Wakeup-exeute an be pipelined into two stages, if the instrutionwakeup does slow the lok. The exeute phase of the produer an be overlapped with the wakeupphase of its onsumer.Conventional supersalar ores have dediated bypass paths to forward data whih an be used4

add t1, t2, t3I1

ld t4, (t1)add t2, t2, t1

add t5, t4, 1

I5 beqz t5, 0xdeac

B1

move t2, r2
move t3, r3

I4

I3I2

add t10, t2, t3 add t11, t2, t3

ld t4, (t10) ld t5, (t11)

mul t31, t4, t5

bnez t31, 0xbee0

B2

move t2, r2
move t3, r3

I10

I11

I9I8

I6 I7

move t5, r5

move t2, r2
move t4, r4

 xor t8, t5, 1

sll t9, t4, t8

add t13, t9,8 add t12, t9, t2

B3

I12

I13

I16

I15

sw t13, t12

I14Figure 4: Basi bloks shown as dataow graphs. Registers are marked with \r" and temporarieswith \t".
(0,0) (0,0)

B2 B3
B1

I3

I1

I2

I4

I5

I6 I7

I8 I9

I10

I11

I12

I13

I14 I15

I16

(0,0)

move t2, r2 move {(0,1) (1,1)}, r2

I1: add t1,t2,t3 add {(0,1), (1,1)}

Figure 5: Basi bloks mapped on a grid of dimension 4x4, with the 3 nearest neighbors reahablediretly. Instrution destinations are ordered pairs (x; y), whih identify a onsumer with a relativeposition x nodes below and y nodes to the right of the produer.to guarantee that following the exeution of an instrution its dependents will have that data inthe next yle. In the Grid Proessor, sine data are routed dynamially, there is no dediatedpath that is guaranteed to be free when an instrution ompletes exeution to forward its datato its onsumer. However, there are several mehanisms that an alleviate this problem. Speialwakeup tokens ould be generated during the issue stage of a produer instrution. They reahthe onsumer nodes at the end of the stage, reserving a hannel for the data to follow in the nextyle. Alternately, speulative instrution issue ould be used to hide the selet lateny with loalrollbak mehanisms in the event of inorret issue.2.2.3 Blok MappingThe instrution and operand storage strutures at a node an be used to bu�er multiple instrutionsand data, whih are assoiated through tags. There are three reasons to have multiple instrutionsmapped on a node. First, graphs larger than the physial grid an be folded over and mapped onthe grid with more than one instrution at a node. Seond, instrutions from di�erent bloks thatare fethed speulatively (using ontrol speulation or from speulative threads [19℄) an be mappedat a node. Finally, bloks from di�erent threads an also be mapped to support multithreading.5

2.3 Instrution EnodingThe Grid Proessor ISA is divided into data movement instrutions and omputation instrutions.Data movement instrutions inlude move, split and repeat instrutions. The move instrutionsfeth blok inputs from the register �le and pass them as temporary values to the blok. Enodingspae limitations restrit the number of targets that an be spei�ed in an instrution. The splitinstrutions repliate data to reah additional targets. The range of eah target (distane from theproduer) that an be spei�ed is �nite. The repeat instrutions are used to forward data to targetsoutside the range. There is a trade-o� between the instrution size, number of spei�able targetsand the range of eah target.Every instrution is enoded with an opode �eld, destination �eld, and in the ase of moveinstrutions, an input �eld. The destination �eld onsists of multiple targets, with eah targetenoded with the position of the onsumer expressed as an o�set. The move instrutions areenoded with an input register name and its destinations. Figure 5 shows a sample enoding ofa move instrution and a omputation instrution. The move instrution move t2,r2 is enodedas move (0,1),(1,1),r2 orresponding to the input register r2 and onsumer instrutions I1 andI2 that are mapped at (0,1) and (1,1) respetively. Instrution I1 is enoded with destinationsorresponding to onsumers I2 and I3 of the temporary t1. I2 is mapped at the node diretly belowI1 and I3 is mapped at the node one to the right and one below I1. An extra bit (not shown in the�gure) is neessary to speify the order of the input operands.2.4 Role of the CompilerThe ompiler plays an important role in the Grid Proessor. Apart from deteting ILP, the ompileronstruts bloks that are sheduled on the grid, and de�nes mehanisms for intra and inter-blokommuniation. The ompiler must also generate data movement instrutions to overome enodingspae limitations.In the Grid Proessor, bloks are fethed as a single unit, mapped on the grid, and exeutedin a dataow fashion. Sine the instrutions are fethed at a blok granularity, it is desirable tohave large bloks and good blok utilization. Blok utilization is de�ned as the ratio of dynamiallyexeuted instrutions to the stati size of the blok. One method of building large bloks is to buildhyperbloks based on pro�ling information. Register �le ommuniation for data passed betweensuessively exeuted bloks an be bypassed using the grid interonnet, thereby \stithing" thesebloks as a single dataow graph. The ompiler must de�ne interfaes and mehanisms to stithtogether multiple bloks. Sine data movement instrutions add overhead, when sheduling thegraph, the ompiler should minimize the ritial path and attempt to minimize the number of suhinstrutions.3 Preliminary AnalysisIn this setion, we investigate the amenability of existing appliations to the Grid Proessor andexamine few aspets of program behavior that a�et performane. Large bloks with a signi�antnumber of blok temporaries and a few input and output registers are desirable beause theyhave low register �le bandwidth. It is also desirable to have large bloks with high utilization toamortize the ost of blok feth and map. The enoding spae needed for representing temporariesis determined by the number of targets of an instrution. Fewer average targets per value produedpermits a ompat enoding. We examine these harateristis in existing appliations to determinehow well they map onto the Grid Proessor. 6

Benhmark Average Instrutions per blokNever exeutedDynamially due to earlyStati Size Exeuted branhes NOPsgzip 144 77 59 8mf 48 35 8 5parser 29 27 1 1art 129 125 2 2equake 57 52 2 3ammp 124 103 8 13Table 1: Blok utilizationIn our experimental analysis, SPECCPU2000 benhmarks were ompiled using the Trimaran [20℄tool set. Three oating point (equake, ammp and art) and three integer (parser, gzip and mf)benhmarks were seleted for analysis. Hyperbloks were generated for these benhmarks usingTrimaran's IMPACT ompiler with the train input set for pro�ling. All of the benhmarks weresimulated using the Trimaran simulator for 500 million instrutions with the ref input set. Weolleted dynami statistis using modi�ations made to the simulator to trak blok size pro�lesand register usage.3.1 Instrution BehaviorIn this setion, we examine some aspets of program behavior. Performane is a�eted by the bloksizes in programs and grid on�gurations. A pro�le of the dynami blok size was obtained for allthe benhmarks to analyze the trade-o� of blok size with respet to blok utilization. Wide gridshave better performane at the ost of inreased area with fewer nodes having mapped instrutions.We analyze this trade-o� for three di�erent grid widths.3.1.1 Blok SizeFrom our analysis of the SPEC CPU2000 benhmarks, we observed that large hyperbloks an bebuilt. Figure 6 shows the dynami blok size pro�les for the di�erent benhmarks. For eah of thebenhmarks, the �gure plots the perentage of exeution time spent for eah dynami blok sizeas a umulative distribution funtion. Dynami blok size is the number of instrutions in a blokthat are atually exeuted, exluding prediated instrutions that are onverted to NOPs.Nearly 70% of the exeution time is spent in bloks of size greater than 26 for the integerbenhmarks and bloks of size greater than 65 for the oating point benhmarks. Aross thebenhmarks, the average number of dynami instrutions in a blok ranges from 27 to 125.High utilization perentages are desirable beause bloks are fethed and mapped as a singleunit. Bloks with poor utilization have a large number of instrutions that are fethed and mappedwithout being exeuted. In a hyperblok, instrutions may not be exeuted, either beause of earlyexits from the blok or beause of prediated instrutions being onverted to NOPs. Table 1 showsthe average number of instrutions in eah blok that belong to the ategories desribed above.For four of the six benhmarks, the average utilization is nearly 90% with average stati blok sizesranging from 29 to 129. The benhmark gzip shows worse utilization than the other benhmarks,as nearly 40% of the instrutions fethed are never exeuted. However, these preliminary resultsshow a potential for building large bloks with good utilization.7

