A Technology-Scalable Architecture for Fast Clocks
and High ILP

Karthikeyan Sankaralingam Ramadass Nagarajan Stephen W. Keckler Doug Burger
Computer Architecture and Technology Laboratory
Department of Computer Sciences
Tech Report TR2001-02
The University of Texas at Austin
cart@cs.utexas.edu — www.cs.utexas.edu/users/cart

ABSTRACT

CMOS technology scaling poses challenges in designing dynamically scheduled cores that can
sustain both high instruction-level parallelism and aggressive clock frequencies. In this paper, we
present a new architecture that maps compiler-scheduled blocks onto a two-dimensional grid of
ALUs. For the mapped window of execution, instructions execute in a dataflow-like manner, with
each ALU forwarding its result along short wires to the consumers of the result. We describe our
studies of program behavior and a preliminary evaluation that show that this architecture has the
potential for both high clock speeds and high ILP, and may offer the best of both the VLIW and
dynamic superscalar architectures.

1 Introduction

Conventional microarchitectures have been improving in performance by approximately 50-60%
per year, improving the instructions per cycle (IPC) using more transistors on a chip and increas-
ing the clock speed. However both strategies will fail for future technologies (50nm and below),
with clock speed growth slowing down because of fundamental pipelining limits and wire delays
making architectures communication bound [1]. Thus, today’s architectures will not scale, showing
diminishing returns in IPC even with increasing chip transistor budgets. New designs must address
these issues, efficiently utilizing the increasing transistor budget while overcoming communication
bottlenecks.

One approach for extracting ILP is through conventional superscalar cores that detect paral-
lelism at run-time. The amount of ILP that can be detected is limited by the issue window, whose
logic complexity grows as the square of the number of entries [12]. Conventional architectures also
rely on many frequently accessed global structures, such as register files, re-order buffers and issue
windows, which become bottlenecks limiting clock speed or pipeline depths.

Another approach for extracting parallelism is taken by VLIW machines, in which ILP analysis
is performed at compile time. Instruction scheduling is performed by the compiler, orchestrating
the flow of execution statically. This approach performs well only for regular workloads and suffers
from the drawback that dynamic events are not handled well — a stall in one functional unit forces
the entire machine to stall, since all functional units must be synchronized.

In this paper, we describe a new architecture called the Grid Processor that takes into consider-
ation the technology constraints of wire delays and pipelining limits. The compiler is used to detect
parallelism and statically schedule instructions on a computation substrate, but instructions are
issued dynamically. We propose an execution substrate that consists of a set of named distributed
computing elements to which the compiler statically assigns individual instructions.

The architecture does not suffer from VLIW issue restrictions, as instructions are issued dynam-
ically and executed in a dataflow fashion. Instructions from a compiler-generated basic block or
hyperblock are mapped statically to nodes in the computation array, with each node being assigned
one or more instructions. The nodes issue instructions dynamically when the input operands are
available. Temporary values produced and consumed inside a block are not visible to the architec-
tural state, and are instead forwarded directly from the producers to their consumers.

We propose a fine-grained partitioning of the issue window and associated functional units
(FU). The computation array includes both a grid of issue window-FU pairs (nodes) and a dedi-
cated communication network for passing data. Data produced at a node are routed dynamically
through intermediate nodes to their eventual destinations. The architecture is a hybrid between
conventional superscalar and conventional VLIW architectures, issuing instructions dynamically
with static scheduling. The hardware substrate is designed to extract high ILP and run at aggres-
sive clock rates.

In the Grid Processor, the available transistor budget is used to build an array of computation
elements aimed at overcoming several challenges of communication overhead in future systems.
First, by forwarding values directly between producers and consumers, the reliance on centralized
structures is reduced. Second, compiler controlled physical layout ensures that the critical path is
scheduled along the shortest physical path. Finally, instruction blocks are mapped onto the grid
as single units of computation amortizing scheduling and decode overhead over a large number of
instructions. The reduced reliance on centralized structures allows the computation substrate to
be clocked at high speeds.

The remainder of this paper is organized as follows. Section 2 describes the key features of the

Express channel Nearest neighbor interconnect

XH !
Register File ‘
] I

Memory Interface

Instruction Sequencer

piliia il

—‘ Block Termination Control ‘<—1

H

Memory

Figure 1: Grid block diagram. Express channels connect the last row with the first row

Grid Processor and demonstrates how programs are mapped onto it. Section 3 characterizes certain
aspects of program behavior indicating that existing applications are amenable for execution on
the Grid Processor. Section 4 describes related work pertaining to wide-issue and dataflow oriented
machines. Section 5 concludes with a discussion on some of the secondary advantages including
power reduction and speculation control as well as the remaining issues to be solved.

2 Architecture

The Grid Processor consists of a computation substrate that is configured as a two-dimensional grid
of fine-grained computation nodes connected by an interconnection network. The compiler parti-
tions the program into a sequence of blocks (basic blocks or hyperblocks [16]), performs renaming of
temporaries, and schedules instructions in a block to nodes of the grid. Instruction traces generated
at run-time could be used instead of blocks generated by the compiler. Blocks are fetched one at
a time and their instructions are mapped to the computation nodes en masse as assigned by the
compiler. Execution proceeds in a dataflow fashion with each instruction sending its results directly
to other instructions that use them. A set of interfaces are used by the computation substrate to
access external data.

2.1 Computation Nodes

Figure 1 shows a high level overview of the grid with some of the associated interfaces. Nearby
neighbors in the grid are connected by short wires that have small communication delays !. Fast
express channels connect nodes that are physically far apart in the grid. The instruction sequencer
fetches blocks of instructions from the instruction memory and places those instructions on the
nodes as scheduled by the compiler. The block termination control interfaces with the register file
and the memory interface, detects when a block completes execution, and commits architecturally
visible data to the register file and memory. The memory interface is used to communicate with
the load/store queue, caches, and main memory.

!The figure shows one possible grid interconnect topology as an example only.

The computation nodes are lightweight units that perform the function of execution, temporary
storage, and data forwarding. Each computation node consists of a set of functional units, storage
structures, an instruction wakeup unit, a router, and read/write ports for communication. Figure 2

shows the layout of a computation node. The functional units consist of an integer unit and

0x0000
0x0004
0x0008
0x000c
0x0010

// End

0x0014
0x0018
0x001c
0x0020
0x0024
0x0028

// End

0x002c
0x0030
0x0034
0x0038
0x004c

// End
0x0050

0x0070

optionally a floating point unit that perform the actual execution. The storage structures include
a set of queues and buffers for storing the instructions, their input operands, and data tokens that
need to be forwarded to other nodes in the grid. The instruction wakeup unit matches instructions
with their operands as they arrive and issues them to the functional units for execution. The router
examines tokens in the storage structures and forwards them along one of the many paths out of
this node to their eventual targets. Data tokens meant for other nodes bypass the ALU and are

Figure 2: Organization of a computation node

add r1, r2, r3
add r2, r2, ri
14 r4, (r1)

add rb, r4, 1
beqz r5, Oxdeac

of block Bl

add r10, r2,
add rii, r2,
1d r4, (r10)
1d r5, (ri1)
mul r31, r4, rb5
bne r31, Oxbeel

r3
r3

of block B2

Xor
sll

r8, r5, 1
r9, r4, r8
add r13, r9, 8
add r12, r9, r2
sw rl3, ri2

of block B3
add r1l, r6, r9

jmp 0x0050

//
1/
//
1/
//

Figure 3: A sample instruction stream

I1
I2
I3
I4
I5

I6
I7
I8
I9
I10
I11

I12
I13
I14
I15
I16

Input ports

From instruction
sequencer |

Opl |Op2
Inst
Storag
ALU
!
Output ports

directly forwarded by the router to their destinations.

2.2 Execution Model

The compiler partitions the program into a sequence of blocks. Blocks are constructed such that
there are no internal control flow changes, and all control transfers out of a block initiate instructions
in other blocks. These blocks may be basic blocks, hyperblocks, or program traces generated at run-
time. Figure 3 shows a stream of instructions that has been partitioned by the compiler into three
different blocks (basic blocks in this case) B1, B2, and B3. Explicit move instructions, separate
from the computation instructions, are generated for the registers read by every block. The move
instructions fetch block inputs from the register file and pass them as internal (temporary) values
to the block. Figure 4 shows the Data Flow Graph (DFG) of the blocks B1, B2, and B3 in Figure 3
along with the move instructions. As shown in the figure, all instructions have been renamed with
temporary registers for their operands and move instructions generated for every input register.
For example, in block B1, two move instructions, move t2,r2 and move t3,r3 are generated by
the compiler for input registers r2 and r3. Inside a block, all values are referenced using temporary
names. The move instructions associates register inputs of the block and temporaries. Data values
that must be passed to other blocks are written to the register file.

At run-time, the instruction sequencer fetches a block from the instruction memory and maps
it onto the grid en masse; there is no serialization of fetch, decode and rename for the instructions
within a block. Individual instructions are written to the storage structures of the nodes to which
they have been assigned at compile time. Block execution is initiated by the move instructions
which read register data and send them to their consumers. The instruction wakeup unit matches
incoming data with an instruction and issues ready instructions to the functional unit for execution.
The results of the computation are tagged and forwarded by the router through the interconnect
to their eventual destinations.

2.2.1 Instruction Mapping

The compiler generates a mapping by physically laying out the data flow graph of each block on a
grid. Every computation instruction in the block is assigned to a node in the grid, with the critical
path scheduled along the shortest possible physical path. All output operands are renamed with
the positions of consumer nodes. Move instructions serve the purpose of associating register data
with positions of their consumer nodes. Figure 5 illustrates a layout of the grid with instructions
mapped on the computation elements. Instructions I1 and I2 of block Bl in Figure 4 are mapped
on the grid at positions (0,1) and (1,1) respectively. Correspondingly, the move instruction move
t2, r2 has (0,1) and (1,1) encoded in its destination fields and register name r2 in its input field.

2.2.2 Instruction Wakeup and Execution

As described in section 2.1, multiple instructions are mapped onto a single node and data are
written to an operand buffer when they arrive. Upon arrival of a data token, the instruction
and operand buffers are examined to wake-up and issue ready instructions. The wakeup delays
will be considerably smaller than seen in conventional cores because of smaller issue windows.
The computation node serially performs two operations whenever an operand arrives — wakeup
and execute. Serializing wakeup and execute may increase the cycle time along the execute-execute
path of dependent instructions. Wakeup-execute can be pipelined into two stages, if the instruction
wakeup does slow the clock. The execute phase of the producer can be overlapped with the wakeup
phase of its consumer.

Conventional superscalar cores have dedicated bypass paths to forward data which can be used

B1 B2 ‘movet2, 12"
e . B R ‘movet4, r4:
‘movet2,r2' movet2, r2 movets, 5.
: movet3, r3 : movet3, r3 :

xor tg, t5, 1
m add L, 2,13 add t10, 2, 13 Q add t11, t2, 13 /\E
sl19, t4,18
ad 12, 12, 11 @ @ Id4, (t1) tdta, o) (18) (19) 1415, (1) @
\ '/ addt13,19,8 add 12,19, t2
add 15, t4, 1 (110 muitsL 1,5 (g (5

é begz t5, Oxdeac @ bnez t31, OxbeeO sw t13, t12

=)
r

Figure 4: Basic blocks shown as dataflow graphs. Registers are marked with and temporaries

with “t”.

B1

B3

movet2, r2 —move{(0,1) (1,1)}, r2 B2

11: add t1,t2t3 —add { (0,1), (1,1)}
(1Y)

Figure 5: Basic blocks mapped on a grid of dimension 4x4, with the 3 nearest neighbors reachable
directly. Instruction destinations are ordered pairs (z,y), which identify a consumer with a relative
position nodes below and y nodes to the right of the producer.

to guarantee that following the execution of an instruction its dependents will have that data in
the next cycle. In the Grid Processor, since data are routed dynamically, there is no dedicated
path that is guaranteed to be free when an instruction completes execution to forward its data
to its consumer. However, there are several mechanisms that can alleviate this problem. Special
wakeup tokens could be generated during the issue stage of a producer instruction. They reach
the consumer nodes at the end of the stage, reserving a channel for the data to follow in the next
cycle. Alternately, speculative instruction issue could be used to hide the select latency with local
rollback mechanisms in the event of incorrect issue.

2.2.3 Block Mapping

The instruction and operand storage structures at a node can be used to buffer multiple instructions
and data, which are associated through tags. There are three reasons to have multiple instructions
mapped on a node. First, graphs larger than the physical grid can be folded over and mapped on
the grid with more than one instruction at a node. Second, instructions from different blocks that
are fetched speculatively (using control speculation or from speculative threads [19]) can be mapped
at a node. Finally, blocks from different threads can also be mapped to support multithreading.

2.3 Instruction Encoding

The Grid Processor ISA is divided into data movement instructions and computation instructions.
Data movement instructions include move, split and repeat instructions. The move instructions
fetch block inputs from the register file and pass them as temporary values to the block. Encoding
space limitations restrict the number of targets that can be specified in an instruction. The split
instructions replicate data to reach additional targets. The range of each target (distance from the
producer) that can be specified is finite. The repeat instructions are used to forward data to targets
outside the range. There is a trade-off between the instruction size, number of specifiable targets
and the range of each target.

Every instruction is encoded with an opcode field, destination field, and in the case of move
instructions, an input field. The destination field consists of multiple targets, with each target
encoded with the position of the consumer expressed as an offset. The mowve instructions are
encoded with an input register name and its destinations. Figure 5 shows a sample encoding of
a move instruction and a computation instruction. The move instruction move t2,r2 is encoded
asmove (0,1),(1,1),r2 corresponding to the input register r2 and consumer instructions I1 and
I2 that are mapped at (0,1) and (1,1) respectively. Instruction I1 is encoded with destinations
corresponding to consumers 12 and I3 of the temporary t1. I2 is mapped at the node directly below
I1 and I3 is mapped at the node one to the right and one below I1. An extra bit (not shown in the
figure) is necessary to specify the order of the input operands.

2.4 Role of the Compiler

The compiler plays an important role in the Grid Processor. Apart from detecting ILP, the compiler
constructs blocks that are scheduled on the grid, and defines mechanisms for intra and inter-block
communication. The compiler must also generate data movement instructions to overcome encoding
space limitations.

In the Grid Processor, blocks are fetched as a single unit, mapped on the grid, and executed
in a dataflow fashion. Since the instructions are fetched at a block granularity, it is desirable to
have large blocks and good block utilization. Block utilization is defined as the ratio of dynamically
executed instructions to the static size of the block. One method of building large blocks is to build
hyperblocks based on profiling information. Register file communication for data passed between
successively executed blocks can be bypassed using the grid interconnect, thereby “stitching” these
blocks as a single dataflow graph. The compiler must define interfaces and mechanisms to stitch
together multiple blocks. Since data movement instructions add overhead, when scheduling the
graph, the compiler should minimize the critical path and attempt to minimize the number of such
instructions.

3 Preliminary Analysis

In this section, we investigate the amenability of existing applications to the Grid Processor and
examine few aspects of program behavior that affect performance. Large blocks with a significant
number of block temporaries and a few input and output registers are desirable because they
have low register file bandwidth. It is also desirable to have large blocks with high utilization to
amortize the cost of block fetch and map. The encoding space needed for representing temporaries
is determined by the number of targets of an instruction. Fewer average targets per value produced
permits a compact encoding. We examine these characteristics in existing applications to determine
how well they map onto the Grid Processor.

Benchmark Average Instructions per block
Never executed
Dynamically due to early
Static Size Executed branches NOPs

gzip 144 77 59 8
mcf 48 35 8 5
parser 29 27 1 1
art 129 125 2 2
equake 57 52 2 3
ammp 124 103 8 13

Table 1: Block utilization

In our experimental analysis, SPEC CPU2000 benchmarks were compiled using the Trimaran [20]
tool set. Three floating point (equake, ammp and art) and three integer (parser, gzip and mcf)
benchmarks were selected for analysis. Hyperblocks were generated for these benchmarks using
Trimaran’s IMPACT compiler with the ¢rain input set for profiling. All of the benchmarks were
simulated using the Trimaran simulator for 500 million instructions with the ref input set. We
collected dynamic statistics using modifications made to the simulator to track block size profiles
and register usage.

3.1 Instruction Behavior

In this section, we examine some aspects of program behavior. Performance is affected by the block
sizes in programs and grid configurations. A profile of the dynamic block size was obtained for all
the benchmarks to analyze the trade-off of block size with respect to block utilization. Wide grids
have better performance at the cost of increased area with fewer nodes having mapped instructions.
We analyze this trade-off for three different grid widths.

3.1.1 Block Size

From our analysis of the SPEC CPU2000 benchmarks, we observed that large hyperblocks can be
built. Figure 6 shows the dynamic block size profiles for the different benchmarks. For each of the
benchmarks, the figure plots the percentage of execution time spent for each dynamic block size
as a cumulative distribution function. Dynamic block size is the number of instructions in a block
that are actually executed, excluding predicated instructions that are converted to NOPs.

Nearly 70% of the execution time is spent in blocks of size greater than 26 for the integer
benchmarks and blocks of size greater than 65 for the floating point benchmarks. Across the
benchmarks, the average number of dynamic instructions in a block ranges from 27 to 125.

High utilization percentages are desirable because blocks are fetched and mapped as a single
unit. Blocks with poor utilization have a large number of instructions that are fetched and mapped
without being executed. In a hyperblock, instructions may not be executed, either because of early
exits from the block or because of predicated instructions being converted to NOPs. Table 1 shows
the average number of instructions in each block that belong to the categories described above.
For four of the six benchmarks, the average utilization is nearly 90% with average static block sizes
ranging from 29 to 129. The benchmark gzip shows worse utilization than the other benchmarks,
as nearly 40% of the instructions fetched are never executed. However, these preliminary results
show a potential for building large blocks with good utilization.

