
A Te
hnology-S
alable Ar
hite
ture for Fast Clo
ksand High ILPKarthikeyan Sankaralingam Ramadass Nagarajan Stephen W. Ke
kler Doug BurgerComputer Ar
hite
ture and Te
hnology LaboratoryDepartment of Computer S
ien
esTe
h Report TR2001-02The University of Texas at Austin
art�
s.utexas.edu | www.
s.utexas.edu/users/
art
ABSTRACTCMOS te
hnology s
aling poses
hallenges in designing dynami
ally s
heduled
ores that
ansustain both high instru
tion-level parallelism and aggressive
lo
k frequen
ies. In this paper, wepresent a new ar
hite
ture that maps
ompiler-s
heduled blo
ks onto a two-dimensional grid ofALUs. For the mapped window of exe
ution, instru
tions exe
ute in a data
ow-like manner, withea
h ALU forwarding its result along short wires to the
onsumers of the result. We des
ribe ourstudies of program behavior and a preliminary evaluation that show that this ar
hite
ture has thepotential for both high
lo
k speeds and high ILP, and may o�er the best of both the VLIW anddynami
 supers
alar ar
hite
tures.

1 Introdu
tionConventional mi
roar
hite
tures have been improving in performan
e by approximately 50-60%per year, improving the instru
tions per
y
le (IPC) using more transistors on a
hip and in
reas-ing the
lo
k speed. However both strategies will fail for future te
hnologies (50nm and below),with
lo
k speed growth slowing down be
ause of fundamental pipelining limits and wire delaysmaking ar
hite
tures
ommuni
ation bound [1℄. Thus, today's ar
hite
tures will not s
ale, showingdiminishing returns in IPC even with in
reasing
hip transistor budgets. New designs must addressthese issues, eÆ
iently utilizing the in
reasing transistor budget while over
oming
ommuni
ationbottlene
ks.One approa
h for extra
ting ILP is through
onventional supers
alar
ores that dete
t paral-lelism at run-time. The amount of ILP that
an be dete
ted is limited by the issue window, whoselogi

omplexity grows as the square of the number of entries [12℄. Conventional ar
hite
tures alsorely on many frequently a

essed global stru
tures, su
h as register �les, re-order bu�ers and issuewindows, whi
h be
ome bottlene
ks limiting
lo
k speed or pipeline depths.Another approa
h for extra
ting parallelism is taken by VLIW ma
hines, in whi
h ILP analysisis performed at
ompile time. Instru
tion s
heduling is performed by the
ompiler, or
hestratingthe
ow of exe
ution stati
ally. This approa
h performs well only for regular workloads and su�ersfrom the drawba
k that dynami
 events are not handled well | a stall in one fun
tional unit for
esthe entire ma
hine to stall, sin
e all fun
tional units must be syn
hronized.In this paper, we des
ribe a new ar
hite
ture
alled the Grid Pro
essor that takes into
onsider-ation the te
hnology
onstraints of wire delays and pipelining limits. The
ompiler is used to dete
tparallelism and stati
ally s
hedule instru
tions on a
omputation substrate, but instru
tions areissued dynami
ally. We propose an exe
ution substrate that
onsists of a set of named distributed
omputing elements to whi
h the
ompiler stati
ally assigns individual instru
tions.The ar
hite
ture does not su�er from VLIW issue restri
tions, as instru
tions are issued dynam-i
ally and exe
uted in a data
ow fashion. Instru
tions from a
ompiler-generated basi
 blo
k orhyperblo
k are mapped stati
ally to nodes in the
omputation array, with ea
h node being assignedone or more instru
tions. The nodes issue instru
tions dynami
ally when the input operands areavailable. Temporary values produ
ed and
onsumed inside a blo
k are not visible to the ar
hite
-tural state, and are instead forwarded dire
tly from the produ
ers to their
onsumers.We propose a �ne-grained partitioning of the issue window and asso
iated fun
tional units(FU). The
omputation array in
ludes both a grid of issue window-FU pairs (nodes) and a dedi-
ated
ommuni
ation network for passing data. Data produ
ed at a node are routed dynami
allythrough intermediate nodes to their eventual destinations. The ar
hite
ture is a hybrid between
onventional supers
alar and
onventional VLIW ar
hite
tures, issuing instru
tions dynami
allywith stati
 s
heduling. The hardware substrate is designed to extra
t high ILP and run at aggres-sive
lo
k rates.In the Grid Pro
essor, the available transistor budget is used to build an array of
omputationelements aimed at over
oming several
hallenges of
ommuni
ation overhead in future systems.First, by forwarding values dire
tly between produ
ers and
onsumers, the relian
e on
entralizedstru
tures is redu
ed. Se
ond,
ompiler
ontrolled physi
al layout ensures that the
riti
al path iss
heduled along the shortest physi
al path. Finally, instru
tion blo
ks are mapped onto the gridas single units of
omputation amortizing s
heduling and de
ode overhead over a large number ofinstru
tions. The redu
ed relian
e on
entralized stru
tures allows the
omputation substrate tobe
lo
ked at high speeds.The remainder of this paper is organized as follows. Se
tion 2 des
ribes the key features of the1

M
em

or
y

In
te

rf
ac

e

In
st

ru
ct

io
n

Se
qu

en
ce

r

Block Termination Control

Nearest neighbor interconnectExpress channel

Memory

Register File

Figure 1: Grid blo
k diagram. Express
hannels
onne
t the last row with the �rst rowGrid Pro
essor and demonstrates how programs are mapped onto it. Se
tion 3
hara
terizes
ertainaspe
ts of program behavior indi
ating that existing appli
ations are amenable for exe
ution onthe Grid Pro
essor. Se
tion 4 des
ribes related work pertaining to wide-issue and data
ow orientedma
hines. Se
tion 5
on
ludes with a dis
ussion on some of the se
ondary advantages in
ludingpower redu
tion and spe
ulation
ontrol as well as the remaining issues to be solved.2 Ar
hite
tureThe Grid Pro
essor
onsists of a
omputation substrate that is
on�gured as a two-dimensional gridof �ne-grained
omputation nodes
onne
ted by an inter
onne
tion network. The
ompiler parti-tions the program into a sequen
e of blo
ks (basi
 blo
ks or hyperblo
ks [16℄), performs renaming oftemporaries, and s
hedules instru
tions in a blo
k to nodes of the grid. Instru
tion tra
es generatedat run-time
ould be used instead of blo
ks generated by the
ompiler. Blo
ks are fet
hed one ata time and their instru
tions are mapped to the
omputation nodes en masse as assigned by the
ompiler. Exe
ution pro
eeds in a data
ow fashion with ea
h instru
tion sending its results dire
tlyto other instru
tions that use them. A set of interfa
es are used by the
omputation substrate toa

ess external data.2.1 Computation NodesFigure 1 shows a high level overview of the grid with some of the asso
iated interfa
es. Nearbyneighbors in the grid are
onne
ted by short wires that have small
ommuni
ation delays 1. Fastexpress
hannels
onne
t nodes that are physi
ally far apart in the grid. The instru
tion sequen
erfet
hes blo
ks of instru
tions from the instru
tion memory and pla
es those instru
tions on thenodes as s
heduled by the
ompiler. The blo
k termination
ontrol interfa
es with the register �leand the memory interfa
e, dete
ts when a blo
k
ompletes exe
ution, and
ommits ar
hite
turallyvisible data to the register �le and memory. The memory interfa
e is used to
ommuni
ate withthe load/store queue,
a
hes, and main memory.1The �gure shows one possible grid inter
onne
t topology as an example only.2

Op 1 Op 2

ALUFrom instruction
 sequencer

Storage
Inst

Input ports

Router

Output portsFigure 2: Organization of a
omputation nodeThe
omputation nodes are lightweight units that perform the fun
tion of exe
ution, temporarystorage, and data forwarding. Ea
h
omputation node
onsists of a set of fun
tional units, storagestru
tures, an instru
tion wakeup unit, a router, and read/write ports for
ommuni
ation. Figure 2shows the layout of a
omputation node. The fun
tional units
onsist of an integer unit and0x0000 add r1, r2, r3 // I10x0004 add r2, r2, r1 // I20x0008 ld r4, (r1) // I30x000
 add r5, r4, 1 // I40x0010 beqz r5, 0xdea
 // I5// End of blo
k B10x0014 add r10, r2, r3 // I60x0018 add r11, r2, r3 // I70x001
 ld r4, (r10) // I80x0020 ld r5, (r11) // I90x0024 mul r31, r4, r5 // I100x0028 bne r31, 0xbee0 // I11// End of blo
k B20x002
 xor r8, r5, 1 // I120x0030 sll r9, r4, r8 // I130x0034 add r13, r9, 8 // I140x0038 add r12, r9, r2 // I150x004
 sw r13, r12 // I16// End of blo
k B30x0050 add r1, r6, r9.....0x0070 jmp 0x0050 Figure 3: A sample instru
tion streamoptionally a
oating point unit that perform the a
tual exe
ution. The storage stru
tures in
ludea set of queues and bu�ers for storing the instru
tions, their input operands, and data tokens thatneed to be forwarded to other nodes in the grid. The instru
tion wakeup unit mat
hes instru
tionswith their operands as they arrive and issues them to the fun
tional units for exe
ution. The routerexamines tokens in the storage stru
tures and forwards them along one of the many paths out ofthis node to their eventual targets. Data tokens meant for other nodes bypass the ALU and aredire
tly forwarded by the router to their destinations.
3

2.2 Exe
ution ModelThe
ompiler partitions the program into a sequen
e of blo
ks. Blo
ks are
onstru
ted su
h thatthere are no internal
ontrol
ow
hanges, and all
ontrol transfers out of a blo
k initiate instru
tionsin other blo
ks. These blo
ks may be basi
 blo
ks, hyperblo
ks, or program tra
es generated at run-time. Figure 3 shows a stream of instru
tions that has been partitioned by the
ompiler into threedi�erent blo
ks (basi
 blo
ks in this
ase) B1, B2, and B3. Expli
it move instru
tions, separatefrom the
omputation instru
tions, are generated for the registers read by every blo
k. The moveinstru
tions fet
h blo
k inputs from the register �le and pass them as internal (temporary) valuesto the blo
k. Figure 4 shows the Data Flow Graph (DFG) of the blo
ks B1, B2, and B3 in Figure 3along with the move instru
tions. As shown in the �gure, all instru
tions have been renamed withtemporary registers for their operands and move instru
tions generated for every input register.For example, in blo
k B1, two move instru
tions, move t2,r2 and move t3,r3 are generated bythe
ompiler for input registers r2 and r3. Inside a blo
k, all values are referen
ed using temporarynames. The move instru
tions asso
iates register inputs of the blo
k and temporaries. Data valuesthat must be passed to other blo
ks are written to the register �le.At run-time, the instru
tion sequen
er fet
hes a blo
k from the instru
tion memory and mapsit onto the grid en masse; there is no serialization of fet
h, de
ode and rename for the instru
tionswithin a blo
k. Individual instru
tions are written to the storage stru
tures of the nodes to whi
hthey have been assigned at
ompile time. Blo
k exe
ution is initiated by the move instru
tionswhi
h read register data and send them to their
onsumers. The instru
tion wakeup unit mat
hesin
oming data with an instru
tion and issues ready instru
tions to the fun
tional unit for exe
ution.The results of the
omputation are tagged and forwarded by the router through the inter
onne
tto their eventual destinations.2.2.1 Instru
tion MappingThe
ompiler generates a mapping by physi
ally laying out the data
ow graph of ea
h blo
k on agrid. Every
omputation instru
tion in the blo
k is assigned to a node in the grid, with the
riti
alpath s
heduled along the shortest possible physi
al path. All output operands are renamed withthe positions of
onsumer nodes. Move instru
tions serve the purpose of asso
iating register datawith positions of their
onsumer nodes. Figure 5 illustrates a layout of the grid with instru
tionsmapped on the
omputation elements. Instru
tions I1 and I2 of blo
k B1 in Figure 4 are mappedon the grid at positions (0,1) and (1,1) respe
tively. Correspondingly, the move instru
tion movet2, r2 has (0,1) and (1,1) en
oded in its destination �elds and register name r2 in its input �eld.2.2.2 Instru
tion Wakeup and Exe
utionAs des
ribed in se
tion 2.1, multiple instru
tions are mapped onto a single node and data arewritten to an operand bu�er when they arrive. Upon arrival of a data token, the instru
tionand operand bu�ers are examined to wake-up and issue ready instru
tions. The wakeup delayswill be
onsiderably smaller than seen in
onventional
ores be
ause of smaller issue windows.The
omputation node serially performs two operations whenever an operand arrives | wakeupand exe
ute. Serializing wakeup and exe
ute may in
rease the
y
le time along the exe
ute-exe
utepath of dependent instru
tions. Wakeup-exe
ute
an be pipelined into two stages, if the instru
tionwakeup does slow the
lo
k. The exe
ute phase of the produ
er
an be overlapped with the wakeupphase of its
onsumer.Conventional supers
alar
ores have dedi
ated bypass paths to forward data whi
h
an be used4

add t1, t2, t3I1

ld t4, (t1)add t2, t2, t1

add t5, t4, 1

I5 beqz t5, 0xdeac

B1

move t2, r2
move t3, r3

I4

I3I2

add t10, t2, t3 add t11, t2, t3

ld t4, (t10) ld t5, (t11)

mul t31, t4, t5

bnez t31, 0xbee0

B2

move t2, r2
move t3, r3

I10

I11

I9I8

I6 I7

move t5, r5

move t2, r2
move t4, r4

 xor t8, t5, 1

sll t9, t4, t8

add t13, t9,8 add t12, t9, t2

B3

I12

I13

I16

I15

sw t13, t12

I14Figure 4: Basi
 blo
ks shown as data
ow graphs. Registers are marked with \r" and temporarieswith \t".
(0,0) (0,0)

B2 B3
B1

I3

I1

I2

I4

I5

I6 I7

I8 I9

I10

I11

I12

I13

I14 I15

I16

(0,0)

move t2, r2 move {(0,1) (1,1)}, r2

I1: add t1,t2,t3 add {(0,1), (1,1)}

Figure 5: Basi
 blo
ks mapped on a grid of dimension 4x4, with the 3 nearest neighbors rea
habledire
tly. Instru
tion destinations are ordered pairs (x; y), whi
h identify a
onsumer with a relativeposition x nodes below and y nodes to the right of the produ
er.to guarantee that following the exe
ution of an instru
tion its dependents will have that data inthe next
y
le. In the Grid Pro
essor, sin
e data are routed dynami
ally, there is no dedi
atedpath that is guaranteed to be free when an instru
tion
ompletes exe
ution to forward its datato its
onsumer. However, there are several me
hanisms that
an alleviate this problem. Spe
ialwakeup tokens
ould be generated during the issue stage of a produ
er instru
tion. They rea
hthe
onsumer nodes at the end of the stage, reserving a
hannel for the data to follow in the next
y
le. Alternately, spe
ulative instru
tion issue
ould be used to hide the sele
t laten
y with lo
alrollba
k me
hanisms in the event of in
orre
t issue.2.2.3 Blo
k MappingThe instru
tion and operand storage stru
tures at a node
an be used to bu�er multiple instru
tionsand data, whi
h are asso
iated through tags. There are three reasons to have multiple instru
tionsmapped on a node. First, graphs larger than the physi
al grid
an be folded over and mapped onthe grid with more than one instru
tion at a node. Se
ond, instru
tions from di�erent blo
ks thatare fet
hed spe
ulatively (using
ontrol spe
ulation or from spe
ulative threads [19℄)
an be mappedat a node. Finally, blo
ks from di�erent threads
an also be mapped to support multithreading.5

2.3 Instru
tion En
odingThe Grid Pro
essor ISA is divided into data movement instru
tions and
omputation instru
tions.Data movement instru
tions in
lude move, split and repeat instru
tions. The move instru
tionsfet
h blo
k inputs from the register �le and pass them as temporary values to the blo
k. En
odingspa
e limitations restri
t the number of targets that
an be spe
i�ed in an instru
tion. The splitinstru
tions repli
ate data to rea
h additional targets. The range of ea
h target (distan
e from theprodu
er) that
an be spe
i�ed is �nite. The repeat instru
tions are used to forward data to targetsoutside the range. There is a trade-o� between the instru
tion size, number of spe
i�able targetsand the range of ea
h target.Every instru
tion is en
oded with an op
ode �eld, destination �eld, and in the
ase of moveinstru
tions, an input �eld. The destination �eld
onsists of multiple targets, with ea
h targeten
oded with the position of the
onsumer expressed as an o�set. The move instru
tions areen
oded with an input register name and its destinations. Figure 5 shows a sample en
oding ofa move instru
tion and a
omputation instru
tion. The move instru
tion move t2,r2 is en
odedas move (0,1),(1,1),r2
orresponding to the input register r2 and
onsumer instru
tions I1 andI2 that are mapped at (0,1) and (1,1) respe
tively. Instru
tion I1 is en
oded with destinations
orresponding to
onsumers I2 and I3 of the temporary t1. I2 is mapped at the node dire
tly belowI1 and I3 is mapped at the node one to the right and one below I1. An extra bit (not shown in the�gure) is ne
essary to spe
ify the order of the input operands.2.4 Role of the CompilerThe
ompiler plays an important role in the Grid Pro
essor. Apart from dete
ting ILP, the
ompiler
onstru
ts blo
ks that are s
heduled on the grid, and de�nes me
hanisms for intra and inter-blo
k
ommuni
ation. The
ompiler must also generate data movement instru
tions to over
ome en
odingspa
e limitations.In the Grid Pro
essor, blo
ks are fet
hed as a single unit, mapped on the grid, and exe
utedin a data
ow fashion. Sin
e the instru
tions are fet
hed at a blo
k granularity, it is desirable tohave large blo
ks and good blo
k utilization. Blo
k utilization is de�ned as the ratio of dynami
allyexe
uted instru
tions to the stati
 size of the blo
k. One method of building large blo
ks is to buildhyperblo
ks based on pro�ling information. Register �le
ommuni
ation for data passed betweensu

essively exe
uted blo
ks
an be bypassed using the grid inter
onne
t, thereby \stit
hing" theseblo
ks as a single data
ow graph. The
ompiler must de�ne interfa
es and me
hanisms to stit
htogether multiple blo
ks. Sin
e data movement instru
tions add overhead, when s
heduling thegraph, the
ompiler should minimize the
riti
al path and attempt to minimize the number of su
hinstru
tions.3 Preliminary AnalysisIn this se
tion, we investigate the amenability of existing appli
ations to the Grid Pro
essor andexamine few aspe
ts of program behavior that a�e
t performan
e. Large blo
ks with a signi�
antnumber of blo
k temporaries and a few input and output registers are desirable be
ause theyhave low register �le bandwidth. It is also desirable to have large blo
ks with high utilization toamortize the
ost of blo
k fet
h and map. The en
oding spa
e needed for representing temporariesis determined by the number of targets of an instru
tion. Fewer average targets per value produ
edpermits a
ompa
t en
oding. We examine these
hara
teristi
s in existing appli
ations to determinehow well they map onto the Grid Pro
essor. 6

Ben
hmark Average Instru
tions per blo
kNever exe
utedDynami
ally due to earlyStati
 Size Exe
uted bran
hes NOPsgzip 144 77 59 8m
f 48 35 8 5parser 29 27 1 1art 129 125 2 2equake 57 52 2 3ammp 124 103 8 13Table 1: Blo
k utilizationIn our experimental analysis, SPECCPU2000 ben
hmarks were
ompiled using the Trimaran [20℄tool set. Three
oating point (equake, ammp and art) and three integer (parser, gzip and m
f)ben
hmarks were sele
ted for analysis. Hyperblo
ks were generated for these ben
hmarks usingTrimaran's IMPACT
ompiler with the train input set for pro�ling. All of the ben
hmarks weresimulated using the Trimaran simulator for 500 million instru
tions with the ref input set. We
olle
ted dynami
 statisti
s using modi�
ations made to the simulator to tra
k blo
k size pro�lesand register usage.3.1 Instru
tion BehaviorIn this se
tion, we examine some aspe
ts of program behavior. Performan
e is a�e
ted by the blo
ksizes in programs and grid
on�gurations. A pro�le of the dynami
 blo
k size was obtained for allthe ben
hmarks to analyze the trade-o� of blo
k size with respe
t to blo
k utilization. Wide gridshave better performan
e at the
ost of in
reased area with fewer nodes having mapped instru
tions.We analyze this trade-o� for three di�erent grid widths.3.1.1 Blo
k SizeFrom our analysis of the SPEC CPU2000 ben
hmarks, we observed that large hyperblo
ks
an bebuilt. Figure 6 shows the dynami
 blo
k size pro�les for the di�erent ben
hmarks. For ea
h of theben
hmarks, the �gure plots the per
entage of exe
ution time spent for ea
h dynami
 blo
k sizeas a
umulative distribution fun
tion. Dynami
 blo
k size is the number of instru
tions in a blo
kthat are a
tually exe
uted, ex
luding predi
ated instru
tions that are
onverted to NOPs.Nearly 70% of the exe
ution time is spent in blo
ks of size greater than 26 for the integerben
hmarks and blo
ks of size greater than 65 for the
oating point ben
hmarks. A
ross theben
hmarks, the average number of dynami
 instru
tions in a blo
k ranges from 27 to 125.High utilization per
entages are desirable be
ause blo
ks are fet
hed and mapped as a singleunit. Blo
ks with poor utilization have a large number of instru
tions that are fet
hed and mappedwithout being exe
uted. In a hyperblo
k, instru
tions may not be exe
uted, either be
ause of earlyexits from the blo
k or be
ause of predi
ated instru
tions being
onverted to NOPs. Table 1 showsthe average number of instru
tions in ea
h blo
k that belong to the
ategories des
ribed above.For four of the six ben
hmarks, the average utilization is nearly 90% with average stati
 blo
k sizesranging from 29 to 129. The ben
hmark gzip shows worse utilization than the other ben
hmarks,as nearly 40% of the instru
tions fet
hed are never exe
uted. However, these preliminary resultsshow a potential for building large blo
ks with good utilization.7

